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摘  要 
假設 P是一個圖形性質。圖形的 P-分割是將點集分割成互不相交的的集合，

使得這些集合都誘導出滿足性質 P的子圖。P-分割數是是圖中所有 P-分割的最

小數，而 P-分割問題是找出 P-分割數的問題。同樣的，我們也可以定義所謂的

P-覆蓋和 P-覆蓋數，而他們和 P-分割、P-分割數只差在不要求集合要互不相交

而已。 

各式各樣的 P-分割和 P-覆蓋早已在文獻中被探討。比如，著色數是 P 為「沒

有邊」這個性質的 P-分割數。由 Chartrand，Kronk 和 Wall [8]所定義的點蔭度

a(G)，其 P 為「森林」這個性質。由 Harary [24]定義的線性點蔭度 lva(G)，其 P
為「線性森林」這個性質。 

這篇論文的目的是考慮 P 為「有一條漢米爾頓路徑」、「誘導路徑」或「原

圖的同距路徑」性質。也就是說，此篇論文探討路徑分割問題、誘導路徑分割問

題和同距路徑覆蓋問題。 
就路徑分割問題而言，我們在塊形為完全圖、圈或完全二分圖的圖形上，給

了一個 O(|V|+|E|)-時間的演算法。 
就誘導路徑分割問題而言，我們在塊形為完全圖、圈或完全二分圖的圖形

上，給了一個 O(|V|+|E|)-時間的演算法。我們也在補可約的圖形上給了一個多項

式時間的演算法。 
在同距路徑覆蓋問題上我們有三個結果。首先，我們決定了塊形圖形的同距

路徑覆蓋數，並給了一個找出對應的路徑，時間為 O(|V|+|E|)的演算法。最後，

我們算出完全 r 分圖、2 維和 3 維漢明圖的同距路徑覆蓋數。 
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Abstract

Suppose P is a graphical property. A P -partition of a graph G = (V, E) is a partition

of V into pairwise disjoint sets such that each set induces a subgraph satisfying

property P . The P -partition problem is to find the P -partition number which is the

minimum cardinality of a P -partition of a graph. We can define P -cover and P -cover

number in a similar way, except now the subsets are not required to be disjoint.

Various P -partition and P -cover problems have been studied in the literature.

For instance, the chromatic number is the P -partition number with the property P

being “has no edges”. For the vertex-arboricity a(G) defined by Chartrand, Kronk

and Wall [8], the property P is “induces a forest”. For the linear vertex arboricity

lva(G) defined by Harary [24], the property P is “induces a linear forest”.

The purpose of this thesis is to consider the problems in which property P is

“containing a Hamiltonian path”, “an induced path” or “an isometric path of the

original graph”. That is, we study the path-partition problem, the induced-path-

partition problem and the isometric-path-cover problem.

For the path-partition problem, we give an O(|V | + |E|)-time algorithm for

graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

For the induced-path-partition problem, we present an O(|V | + |E|)-time al-

gorithm for graphs whose blocks are complete graphs, cycles or complete bipartite

graphs. We also give a polynomial-time algorithm for cographs.

We have three results for the isometric-path-cover problem. First, we determine

isometric-path numbers of block graphs, and also give an O(|V |+ |E|)-time algorithm

for finding the corresponding paths. Second, we give isometric-path numbers of com-

plete r-partite graphs and Hamming graphs of dimensions 2 and 3.
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Chapter 1

Introduction

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices

of the graph. The path-partition problem is to find the path-partition number p(G) of

a graph G, which is the minimum cardinality of a path partition of G. The concept

of path-partition number was introduced by Skupień [38], who studied the concept of

Hamiltonian shortage of a graph G, written

SH(G) = min{p : G×Kp is Hamiltonian}.

He [38] proved that

SH(G) =





p(G)− 1 = 0, if G is Hamiltonian,
p(G) + 1 = 2, if G = K1,
p(G) ≥ 1, if G is not Hamiltonian and G 6= K1.

He [38] also used an variation of Gallai-Milgram Theorem [20], saying p(G) ≤ α(G)

for any graph G, to prove that SH(G) ≤ α(G) for any graph G. Notice that G has a

Hamiltonian path if and only if p(G) = 1.

The concept of path-partition number also has a close relationship with L′(2, 1)-

labeling number [7] describes as follows. An L′(2, 1)-labeling of a graph G is a one to

one function f from the vertex set V (G) to the set of all nonnegative integers such

that |f(x)−f(y)| ≥ 2 if d(x, y) = 1 and |f(x)−f(y)| ≥ 1 if d(x, y) = 2. The L′(2, 1)-

labeling number, denoted by λ′(G), is the smallest number k such that G has a a

L′(2, 1)-labeling with max{f(v) : v ∈ V (G)} = k. Thus, p(G) = λ′(Gc)− |V (G)|+ 2,

where Gc is the graph with vertex set V (G) defined by uv ∈ E(Gc) if and only if

uv ∈ E(G) in [7]. For more details about L′(2, 1)-labeling, see [7].

1



We may extend the concept of path-partition number in a more general setting.

Suppose P is a graphical property. A P -partition of a graph G = (V, E) is a partition

of V into pairwise disjoint sets such that each set induces a subgraph satisfying

property P . The P -partition problem is to find the P -partition number which is the

minimum cardinality of a P -partition of a graph. We can define P -cover and P -cover

number in a similar way, except now the subsets are not required to be disjoint.

Various P -partition and P -cover problems have been studied in the literature.

For instance, the chromatic number is the P -partition number with the property P

being “has no edges”. For the vertex-arboricity a(G) defined by Chartrand, Kronk

and Wall [8], the property P is “induces a forest”. For the linear vertex arboricity

lva(G) defined by Harary [24], the property P is “induces a linear forest”.

The purpose of this thesis is to consider the problems in which property P is

“containing a Hamiltonian path”, “an induced path” or “an isometric path of the

original graph”. That is, we study the path-partition problem, the induced-path-

partition problem and the isometric-path-cover problem.

In this chapter, we first introduce some definitions needed in later chapters.

Then, we describe motivations for studying the three problems mentioned above and

give an overview of our results.

1.1 Basic definitions in graphs

A graph G = (V, E) consists of a finite vertex set V and a finite edge set E, where each

edge is an unordered pair {u, v} of vertices called its end-vertices. For convenience,

we write uv for an edge {u, v}. If uv ∈ E, then u and v are adjacent. The cardinality

of V is called the order of G, and the cardinality of E the size. The degree of a vertex

v in a graph G, written dG(v), is the number of edges containing v. The maximum

degree is denoted by ∆(G); the minimum degree by δ(G). The independence number

α(G) of G is the maximum size of a pairwise nonadjacent vertex set in G.

We illustrate a graph on paper by assigning a point to each vertex and drawing

a curve for each edge between the points representing its end-vertices, sometimes

2



omitting the names of the vertices or edges. Figure 1.1 is a graph with vertex set

V = {a, b, c, d}, and edge set E = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

ua u b

uc u d

¡
¡

¡

@
@

@

Figure 1.1: A graph G = (V, E).

A directed graph or digraph D = (V,E) consists of a vertex set V and an edge

set E, where each edge is an ordered pair of vertices. We also write uv for the edge

(u, v), with u being the tail and v being the head. We write u → v when uv ∈ E,

meaning “there is an edge from u to v”.

Let v be a vertex in a digraph. The out-degree d+
D(v) is the number of edges

with tail v, and the in-degree d−D(v) is the number of edges with head v. Fig-

ure 1.2 shows a digraph D with vertex set V = {a, b, c, d, c, f} and edge set E =

{(a, b), (b, c), (c, d), (d, e), (e, a), (f, a)}. Notice that d+
D(a) = 1 and d−D(a) = 2.

u
a

u
b

u
c

u
d

u
e

u
f

@
@

@¡
¡

¡

-
6

Iª

?
-

Figure 1.2: A digraph D.

A subgraph of a graph G = (V, E) is a graph H = (V ′, E ′) such that V ′ ⊆ V

and E ′ ⊆ E. For a subset S ⊆ V , the subgraph induced by S is the graph H = (S, E ′)

with E ′ = {xy ∈ E : x, y ∈ S}. For a subset T ⊆ E, the subgraph induced by T is

the graph H = (V ′, T ) with V ′ = {x ∈ V : x ∈ e for some e ∈ T}. Figure 1.3 is a

subgraph of the graph in Figure 1.1.

A path is an ordered list of distinct vertices (v0, v1, . . . , vn) such that vi−1vi is

3



ua u b

uc u d

Figure 1.3: A subgraph of the graph in Figure 1.1.

an edge for 1 ≤ i ≤ n. The first and last vertices of a path are its end-vertices; a

u, v-path is a path with end-vertices u and v. If a graph G has a u, v-path, then the

distance from u to v, written d(u, v), is the least length of a u, v-path; if G has no

such path, then d(u, v) = ∞. The diameter diam(G) of a graph G is the maximum

distance between two vertices in G. An induced path is a path in which two vertices

are adjacent only for those with consecutive indices. A cycle is an an ordered list

of distinct vertices (v0, v1, . . . , vn), except v0 = vn such that all vi−1vi for 1 ≤ i ≤ n

are edges. A graph is called Hamiltonian if it has a cycle containing all vertices of

the graph. A graph with n vertices that is a path or a cycle is denoted by Pn or

Cn, respectively. A graph G = (V, E) is connected if it has a u, v-path for each pair

of vertices u, v ∈ V . The ordered list (c, a, b) of the graph in Figure 1.1 is a path,

and (c, a, b, c) a cycle. The ordered list (a, b, c, d, e, a) of the graph in Figure 1.2 is a

directed cycle.

A complete graph of order n, written Kn, is a graph in which every pair of vertices

is an edge. Figure 1.1 is a complete graph of order 4. A complete bipartite graph is a

graph whose vertex set is the union of the two disjoint sets and edge set consists of all

pairs having a vertex from each of two disjoint sets covering the vertices. A complete

r-partite graph is a graph whose vertex set can be partitioned into disjoint union of

r nonempty parts, and two vertices are adjacent if and only if they are in different

parts. We use Kn1,n2,...,nr to denote the complete r-partite graph whose parts are of

sizes n1, n2, . . . , nr, respectively. Figure 1.4 is the complete bipartite graph K2,2.

The union of two graphs G = (V, E) and H = (V ′, E ′), written G ∪ H is the

graph having vertex set V ∪ V ′ and edge set E ∪ E ′. To specify the disjoint union

with V ∩ V ′ = ∅, we write G + H. The join of G and H, written G×H, is obtained

4
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Figure 1.4: The complete bipartite graph K2,2.

from G + H by adding the edges {xy : x ∈ V and y ∈ V ′}. The Cartesian product

of graphs G and H, written G¤H, is the graph with vertex set V × V ′ specified

by putting (u, u′) adjacent to (v, v′) if and only if (1) u = v and u′v′ ∈ E ′, or (2)

u′ = v′ and uv ∈ E. Complement reducible graphs (also called cographs) are defined

recursively by the following rules: (i) K1 is a cograph; (ii) if G and H are cographs,

then so are G + H and G ×H; (iii) no other graphs are cographs. For more details

on cographs, see [12, 13, 26]. Figure 1.5 is the Cartesian product of P2 and P2, and

Figure 1.6 is a cograph since we can use the following construction.

First, let G1 = a, G2 = b, G3 = c, G4 = d and G5 = e by rule (i). Second, we

get G1 + G2 and G4 ×G5 by rule (ii). Third, we obtain (G1 + G2)×G3 by rule (ii).

Finally, we get the required graph ((G1 + G2)×G3)× (G4 ×G5) by rule (ii).

ua u b

uc u d

Figure 1.5: The Cartesian product P2¤P2 of P2 and P2 .

A Hamming graph is the Cartesian product of complete graphs, which is the

graph Kn1¤Kn2¤ . . . ¤Knr = (V, E) with vertex set

V = {(x1, x2, . . . , xr) : 0 ≤ xi < ni for 1 ≤ i ≤ r}

and edge set

E = {(x1, x2, . . . , xr)(y1, y2, . . . , yr) : xi = yi for all i except just one xj 6= yj}.

Figure 1.7 is the Hamming graph K2¤K3.

5
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Figure 1.6: A cograph K1,3.

u

u

u

u

u

u

Figure 1.7: The Hamming graph K2¤K3.

A cut-vertex of a graph is a vertex whose removal results in a graph having

more components than the original graph. A block is a maximal connected subgraph

without a cut-vertex. Notice that the intersection of two distinct blocks contains at

most one vertex; and a vertex is a cut-vertex if and only if it is the intersection of

two or more blocks. Consequently, a graph with one or more cut-vertices has at least

two blocks. An end block is a block with exactly one cut-vertex. A graph is a block

graph if it is the intersection graph of the family of blocks of some graph. Harary [23]

proved that a graph is a block graph if and only if all its blocks are complete graphs.

Figure 1.8 shows a block graph having two blocks B1 = ({a, b, x}, {ab, ax, bx}) and

B2 = ({c, d, x}, {cd, cx, dx}), and a cut-vertex x.

1.2 Basic definitions in algorithms

In this section, we introduce some concepts on algorithms as some of our results are

in terms of algorithm.

An algorithm is a finite sequence of deterministic computational steps that trans-

6



ua

ux

u b

uc u d

¡
¡

¡

@
@

@
@

@
@

¡
¡

¡

Figure 1.8: A graph G = (V,E) having two blocks.

form the input into the output. The time needed for an algorithm, in worst case,

expressed as a function of the size of the input of a problem is called the time com-

plexity of the algorithm. The limiting behavior of the complexity as size increases is

called the asymptotic time complexity. A function f(n) is said to be O(g(n)) if there

exists two positive constant c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

A depth-first search, as its name implies, is to search “deeper” in the graph

whenever possible. In a depth-first search, we select and “visit” a starting vertex v.

Then we select any edge vw incident to v, and visit w. In general, suppose x is the

most recently visited vertex. The search is continued by selecting some unexplored

edge xy. If y has been previously visited, we find another new edge incident to x. If

y has not been previously visited, then we visit y and begin a new search starting at

vertex y. After completing the search through all paths beginning at y, the search

returns to x, the vertex from which y was first reached. The process of selecting

unexplored edges incident to x is continued until the list of these edges is exhausted.

The depth-first search can find all blocks of a graph G and spend O(e) time if G has

e edges.

A nondeterministic algorithm consists of two phases: a guessing stage and a

checking stage which is a deterministic algorithm. Furthermore, it is assumed that

a nondeterministic algorithm always makes a correct guessing. If the checking stage

of a nondeterministic algorithm is of polynomial-time complexity, then this nonde-

terministic algorithm is called a nondeterministic polynomial algorithm. If a problem

can be solved by a nondeterministic polynomial algorithm, this problem is called a

nondeterministic polynomial (NP for short) problem. All of the problems which can
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be solved in polynomial time are called P problems. Cook [10] proved the following

important theorem, we now call Cook’s Theorem.

Theorem 1.1 [10] NP = P if and only if the Satisfiability Problem is a P problem.

Let A1 and A2 be two problems. A1 is reducible to A2 if and only if A1 can be

solved in polynomial time by using a polynomial-time algorithm which solves A2. A

problem A is NP-complete if A is in NP and every NP problem reduces to A. The

Satisfiability Problem is NP-complete according to Cook’s Theorem.

For more details on the design and analysis of algorithms. see [1, 11].

1.3 Path partition

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices

of the graph. The path-partition problem is to find the path-partition number p(G) of

a graph G, which is the minimum cardinality of a path partition of G. For the graph

G in Figure 1.9, p(G) = 1.

u

u

u

u

u

¡
¡

¡

@
@

@

Figure 1.9: A graph G with p(G) = 1.

The concept of path-partition number was introduced by Skupień [38], who

studied the concept of Hamiltonian shortage of a graph G, written

SH(G) = min{p : G×Kp is Hamiltonian}.

He [38] proved that

SH(G) =





p(G)− 1 = 0, if G is Hamiltonian,
p(G) + 1 = 2, if G = K1,
p(G) ≥ 1, if G is not Hamiltonian and G 6= K1.

He [38] also used an variation of Gallai-Milgram Theorem [20], saying p(G) ≤ α(G)

for any graph G, to prove that SH(G) ≤ α(G) for any graph G. Notice that G has
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a Hamiltonian path if and only if p(G) = 1. Since the Hamiltonian path problem

is NP-complete for planar graphs [21], bipartite graphs [22], chordal graphs [22],

chordal bipartite graphs [31] and strongly chordal graphs [31], so is the path-partition

problem. On the other hand, the path-partition problem is polynomially solvable for

trees [25, 38], interval graphs [4, 5, 14], circular-arc graphs [5, 14], cographs [7, 12,

30], cocomparability graphs [15], block graphs [39, 40, 41] and bipartite distance-

hereditary graphs [43].

The concept of path-partition number also has a close relationship with L′(2, 1)-

labeling number [7] describes as follows. An L′(2, 1)-labeling of a graph G is a one to

one function f from the vertex set V (G) to the set of all nonnegative integers such

that |f(x)−f(y)| ≥ 2 if d(x, y) = 1 and |f(x)−f(y)| ≥ 1 if d(x, y) = 2. The L′(2, 1)-

labeling number, denoted by λ′(G), is the smallest number k such that G has a a

L′(2, 1)-labeling with max{f(v) : v ∈ V (G)} = k. Thus, p(G) = λ′(Gc)− |V (G)|+ 2,

where Gc is the graph with vertex set V (G) defined by uv ∈ E(Gc) if and only if

uv ∈ E(G) in [7]. For more details about L′(2, 1)-labeling, see [7].

1.4 Induced-path partition

The concept of induced-path partition was considered by Chartrand et al. [9] as

the P -partition with the property of being a path. More precisely, an induced-path

partition of a graph is a collection of vertex-disjoint induced paths that cover all

vertices of the graph. The induced-path-partition problem is to find the induced-path

number ρ(G) of a graph G, which is the minimum cardinality of an induced-path

partition of G. For the graph G in of Figure 1.10, ρ(G) = 2.
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Figure 1.10: A graph G with ρ(G) = 2.

Chartrand et al. [9] gave the induced-path numbers of complete bipartite
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graphs, complete binary trees, 2-dimensional meshs, butterflies and general trees.

Broere et al. [6] determined exact values for complete multipartite graphs. Char-

trand et al. [9] conjectured that ρ(Qd) ≤ d for the d-dimensional hypercube Qd with

d ≥ 2. Alsardary [3] proved that ρ(Qd) ≤ 16. From an algorithmic point of view,

Le et al. [27] proved that the induced-path-partition problem is NP-complete for

general graphs.

1.5 Isometric-path cover

An isometric path between two vertices in a graph G is a shortest path joining them.

An isometric-path cover of a graph is a collection of isometric paths that cover all

vertices of the graph. The isometric-path-cover problem is to find the isometric-path

number ip(G) of a graph G which is the minimum cardinality of an isometric-path

cover. The concept of the isometric-path number has a close relationship with the

game of cops and robbers described as follows.

The game is played by two players, the cop and the robber, on a graph. The two

players move alternatively, starting with the cop. Each player’s first move consists of

choosing a vertex at which to start. At each subsequent move, a player may choose

either to stay at the same vertex or to move to an adjacent vertex. The object for

the cop is to catch the robber, and for the robber is to prevent this from happening.

Nowakowski and Winkler [32] and Quilliot [37] independently proved that the cop wins

if and only if the graph can be reduced to a single vertex by successively removing

pitfalls, where a pitfall is a vertex whose close neighborhood is a subset of the close

neighborhood of another vertex.

As not all graphs are cop-win graphs, Aigner and Fromme [2] introduced the

concept of the cop-number of a general graph G, denoted by c(G), which is the

minimum number of cops needed to put into the graph in order to catch the robber.

On the way to giving an upper bound for the cop-numbers of planar graphs, they

showed that a single cop moving on an isometric path P guarantees that after a

finite number of moves the robber will be immediately caught if he moves onto P .
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Observing this fact, Fitzpatrick [16] then introduced the concept of isometric-path

cover and pointed out that c(G) ≤ ip(G). For the graph G of Figure 1.11, ip(G) = 2.
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Figure 1.11: A graph G with ip(G) = 2.

The isometric-path number of the Cartesian product Pn1¤Pn2¤ . . . ¤Pnd
has

been studied in the literature. Fitzpatrick [17] gave bounds for the case when n1 =

n2 = . . . = nd. Fisher and Fitzpatrick [18] gave exact values for the case d = 2.

Fitzpatrick et al. [19] gave a lower bound, which is in fact the exact value if d + 1 is

a power of 2, for the case when n1 = n2 = . . . = nd = 2.

1.6 Overview of the thesis

In this thesis, we study path-partition numbers, induced-path numbers and isometric-

path numbers. We give a brief overview of the thesis.

In Chapter 1, we introduce basic terminology in graphs and algorithms. We also

describe motivations of the three problems studied in this thesis, namely the path-

partition problem, the induced-path-partition problem and the isometric-path-cover

problem.

Chapter 2 is devoted to the path-partition problem. This problem has been

proved to be NP-complete for many classes of graphs, while it is also polynomially

solvable for some classes of graphs such as trees and block graphs. As these graphs

all have tree structures, the purpose of this chapter is to use a unified method, called

a labeling algorithm, to give an O(|V | + |E|)-time algorithm for the path-partition

problem for graphs whose blocks are complete graphs, cycles or complete bipartite

graphs.

Chapter 3 considers the induced-path-partition problem. Le et al. [27] used

the fact that Not-All-Equal 3SAT is NP-complete to prove that the induced-path-
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partition problem is NP-complete for general graphs. The main purpose of this

chapter is to present an O(|V | + |E|)-time algorithm for finding the induced-path

numbers of graphs whose blocks are complete graphs, cycles or complete bipartite

graphs. We also give a polynomial-time algorithm for finding the induced-path num-

bers of cographs.

In Chapter 4, we discuss the isometric-path-cover problem. This is a relatively

new problem. Previous and our results on this problem are most non-algorithmic.

We have three results for this problem. First, we determine isometric-path numbers

of block graphs, and also give an O(|V | + |E|)-time algorithm for finding the corre-

sponding paths. Second, we give isometric-path numbers of complete r-partite graphs

and Hamming graphs of dimensions 2 and 3.

Chapter 5 makes a conclusion, in which we give some open problems on the

path-partition problem, the induced-path-partition problem and the isometric-path-

cover problem.
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Chapter 2

Path Partition

2.1 Preliminary of path partition

Recall that a path partition of a graph is a collection of vertex-disjoint paths that

cover all vertices of the graph. The path-partition problem is to find the path-partition

number p(G) of a graph G, which is the minimum cardinality of a path partition

of G. Notice that G has a Hamiltonian path if and only if p(G) = 1. Since the

Hamiltonian path problem is NP-complete for planar graphs [21], bipartite graphs

[22], chordal graphs [22], chordal bipartite graphs [31] and strongly chordal graphs

[31], so is the path-partition problem. On the other hand, the path-partition problem

is polynomially solvable for trees [25, 38], interval graphs [4, 5, 14], circular-arc graphs

[5, 14], cographs [7, 12, 30], cocomparability graphs [15], block graphs [39, 40, 41] and

bipartite distance-hereditary graphs [43].

The purpose of this chapter is to give a linear-time algorithm for the path-

partition problem for graphs whose blocks are complete graphs, cycles or complete

bipartite graphs. For technical reasons, we consider the following generalized problem,

which is a labeling approach for the problem.

Suppose every vertex v in the graph G is associated with an integer f(v) ∈
{0, 1, 2, 3}. An f -path partition is a collection P of vertex-disjoint paths such that

the following conditions hold.

(P1) Any vertex v with f(v) 6= 3 is in some path in P .

(P2) If f(v) = 0, then v itself is a path in P .
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(P3) If f(v) = 1, then v is an end-vertex of some path in P .

The f -path-partition problem is to determine the f -path-partition number pf (G) which

is the minimum cardinality of an f -path partition of G. It is clear that p(G) = pf (G)

when f(v) = 2 for all vertices v in G. Notice that as there may have some vertices of

labels 3, an f -path partition is not necessary a path partition.

2.2 Path partition in graphs

The labeling approach used in this chapter starts from an end block. Suppose B =

(V,E) is an end block whose only cut-vertex is x. Let A be the graph G− (V −{x}).
Notice that we can view G as the “composition” of A and B, i.e., G is the union of

A and B which meet at a common vertex x. The idea is to get the path-partition

number of G from those of A and B.

In the lemmas and theorems of this chapter, we use the following notation.

Suppose x is a specified vertex of a graph H = (V, E) in which f is a vertex labeling.

For i = 0, 1, 2, 3, we define the function fi : V → {0, 1, 2, 3} by fi(y) = f(y) for all

vertices y except fi(x) = i.

Lemma 2.1 Suppose x is a specified vertex in a graph H. Then the following state-

ments hold.

(1) pf3(H) ≤ pf2(H) ≤ pf1(H) ≤ pf0(H).

(2) pf1(H) ≤ pf0(H) ≤ pf1(H) + 1.

(3) pf2(H) ≤ pf1(H) ≤ pf2(H) + 1.

(4) pf3(H) = min{pf2(H), pf (H − x)} ≤ pf (H − x) = pf0(H)− 1.

(5) pf (H) ≥ pf1(H)− 1.

Proof. (1) The inequalities follow from that an fi-path partition is an fj-path par-

tition whenever i < j.
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(2) The second inequality follows from that replacing the path Px in an f1-path

partition by two paths P and x results in an f0-path partition of H.

(3) The second inequality follows from that replacing the path PxQ in an f2-

path partition by two paths Px and Q results in an f1-path partition of H.

(4) The first equality follows from that one is an f3-path partition of H if and

only if it is either an f2-path partition of H or an f -path partition of H − x. The

second equality follows from that P is an f0-path partition of H if and only if it is

the union of {x} and an f -path partition of H − x.

(5) According to (1), (3) and (4), we have

pf (H) ≥ pf3(H) = min{pf2(H), pf (H−x)} ≥ min{pf1(H)−1, pf0(H)−1} = pf1(H)−1.

Lemma 2.2 (1) pf (G) ≤ min{pf (A) + pf0(B)− 1, pf0(A) + pf (B)− 1}.
(2) pf2(G) ≤ pf1(A) + pf1(B)− 1.

Proof. (1) Suppose P is an optimal f -path partition of A, andQ an f0-path partition

of B. Then x ∈ Q and so (P ∪ Q) − {x} is an f -path partition of G. This gives

pf (G) ≤ pf (A) + pf0(B)− 1. Similarly, pf (G) ≤ pf0(A) + pf (B)− 1.

(2) The inequality follows from that if P (respectively, Q) is an optimal f1-path

partition of A (respectively, B) in which Px ∈ P (respectively, xQ ∈ Q) contains x,

then (P ∪Q ∪ {PxQ})− {Px, xQ} is an f2-path partition of G.

We now have the following theorem which is the key for the inductive step of

our algorithm.

Theorem 2.3 Suppose α = pf0(B)− pf1(B) and β = pf1(B)− pf2(B). (Notice that

α, β ∈ {0, 1}.) Then the following statements hold.

(1) If f(x) = 0, then pf (G) = pf (A) + pf (B)− 1.

(2) If f(x) = 1, then pf (G) = pf1−α(A) + pfα(B)− 1.
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(3) If f(x) ≥ 2 and α = β = 0, then pf (G) = pf (A) + pf0(B)− 1.

(4) If f(x) ≥ 2 and α = 0 and β = 1, then pf (G) = pf3(A) + pf (B).

(5) If f(x) ≥ 2 and α = 1, then pf (G) = pf1−β
(A) + pf1+β

(B)− 1.

Proof. Suppose P is an optimal f -path partition of G. Let P ∗ be the path in P
that contains x. (It is possible that there is no such path when f(x) = 3.) There are

three possibilities for P ∗: (a) P ∗ does not exist or P ∗ ⊆ A; (b) P ∗ ⊆ B; (c) x is an

internal vertex of P ∗, say P ∗ = P ′xP ′′, with P ′x ⊆ A and xP ′′ ⊆ B. (The latter is

possible only when f(x) ≥ 2.)

For the case when (a) holds, {P ∈ P : P ⊆ A} is an f -path partition of A and

{P ∈ P : P ⊆ B} ∪ {x} is an f0-path partition of B. We then have the inequality in

(a′). Similarly, we have (b′) and (c′) corresponding to (b) and (c).

(a′) pf (G) ≥ pf (A) + pf0(B)− 1.

(b′) pf (G) ≥ pf0(A)+pf (B)−1. (We may replace pf (B) by pf2(B) when f(x) ≥ 2.)

(c′) pf (G) ≥ pf1(A) + pf1(B)− 1. (This is possible only when f(x) ≥ 2.)

We are now ready to prove the theorem.

(1) Since f(x) = 0, we have f = f0. According to Lemma 2.2 (1), pf (G) ≤
pf (A) + pf (B)− 1. On the other hand, (a′) and (b′) give pf (G) ≥ pf (A) + pf (B)− 1.

(2) Since f(x) = 1, we have f = f1. Lemma 2.2 (1), together with (a′) and (b′),

gives pf (G) = min{pf1(A) + pf0(B)− 1, pf0(A) + pf1(B)− 1}. If α = 0, then

pf0(A) + pf1(B)− 1 ≥ pf1(A) + (pf0(B)− α)− 1 = pf1(A) + pf0(B)− 1;

and if α = 1, then

pf1(A) + pf0(B)− 1 ≥ (pf0(A)− 1) + (pf1(B) + α)− 1 = pf0(A) + pf1(B)− 1.

Hence pf (G) = pf1−α(A) + pfα(B)− 1.

(3) According to Lemma 2.2 (1), pf (G) ≤ pf (A) + pf0(B) − 1. On the other

hand, as pf0(A) ≥ pf1(A) ≥ pf (A) and pf0(B) = pf1(B) = pf2(B), (a′)–(c′) give

pf (G) ≥ pf (A) + pf0(B)− 1.
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(4) According to Lemma 2.1 (4) and α = 0 and β = 1, we have

pf (B − x) = pf0(B)− 1 = pf1(B)− 1 = pf2(B).

This, together with Lemma 2.1 (4), gives that the above value is also equal to pf3(B)

and so pf (B). Then, an optimal f3-path partition P of A, together with an optimal

pf -path partition of B − x (respectively, B) when x is (respectively, is not) in a path

of P , forms an f2-path partition of G. Thus, pf (G) ≤ pf2(G) ≤ pf3(A) + pf (B).

On the other hand, since pf1(A) ≥ pf (A) ≥ pf3(A) and pf0(B)−1 = pf1(B)−1 =

pf (B), (a′) or (c′) implies pf (G) ≥ pf3(A) + pf (B). Also, as pf0(A) − 1 ≥ pf3(A) by

Lemma 2.1 (4), (b′) implies pf (G) ≥ pf3(A) + pf (B).

(5) According to Lemma 2.1 (1) and Lemma 2.2, we have

pf (G) ≤ pf2(G) ≤ min{pf0(A) + pf2(B)− 1, pf1(A) + pf1(B)− 1}.

On the other hand, if (a′) holds, then by Lemma 2.1 (5) and that pf0(B) = pf1(B)+1,

pf (G) ≥ pf (A) + pf0(B)− 1 ≥ (pf1(A)− 1) + (pf1(B) + 1)− 1 = pf1(A) + pf1(B)− 1.

This, together with (b′) and (c′), gives

pf (G) = min{pf0(A) + pf2(B)− 1, pf1(A) + pf1(B)− 1}.

If β = 0, then

pf0(A) + pf2(B)− 1 ≥ pf1(A) + (pf1(B)− β)− 1 = pf1(A) + pf1(B)− 1;

and if β = 1, then

pf1(A) + pf1(B)− 1 ≥ (pf0(A)− 1) + (pf2(B) + β)− 1 = pf0(A) + pf2(B)− 1.

Hence pf (G) = pf1−β
(A) + pf1+β

(B)− 1.
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2.3 Path partitions for special blocks

Notice that the inductive theorem (Theorem 2.3) can be applied to solve the path-

partition problem on graphs for which the problem can be solved on its blocks. In

this section, we mainly consider the case when the blocks are complete graphs, cycles

or complete bipartite graphs.

Now, we assume that B = (V,E) is a graph in which each vertex v has a label

f(v) ∈ {0, 1, 2, 3}. Recall that f−1(i) is the set of pre-images of i, i.e.,

f−1(i) = {v ∈ V : f(v) = i}.

According to Lemma 2.1 (4), we have pf (B) = pf (B − f−1(0)) + |f−1(0)|.
Therefore, in this section we only consider the function f with f−1(0) = ∅.

We first consider the case when B is a complete graph.

Lemma 2.4 Suppose B is a complete graph. If f−1(1) 6= ∅ or f−1(2) = ∅, then

pf (B) = d|f−1(1)|/2e else pf (B) = 1.

Proof. It is clear that pf (B) ≥ d|f−1(1)|/2e. For the case when f−1(1) 6= ∅ or

f−1(2) = ∅, we can pair the vertices in f−1(1) as end-vertices of paths to form an

f -path partition; and so pf (B) ≤ d|f−1(1)|/2e. For the case when f−1(1) = ∅ and

f−1(2) 6= ∅, it is clear that a Hamiltonian path forms an f -path partition; and so

pf (B) = 1.

Next, consider the case when B is a path. This is useful as a subroutine for

handling cycles.

Lemma 2.5 Suppose B is a path.

(1) If x is an end-vertex of B with f(x) = 3, then pf (B) = pf (B − x).

(2) If x is an end-vertex of B with f(x) ∈ {1, 2} and another vertex y with f(y) = 1

such that no vertex between x and y has a label 1 (choose y the other end-vertex

of B if there is no such vertex), then ρf (B) = ρf (B
′) + 1 where B′ is the path

obtained from B by deleting x, y and all vertices between them.
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Proof. (1) Since f(x) = 3, by Lemma 2.1 (4), pf (B) ≤ pf (B − x). As x is an

end-vertex of B, pf (B) ≥ pf (B− x) follows from that deleting x from a path (if any)

in an f -path partition of B results in an f -path partition of B − x.

(2) First, we claim that if f(x) = 2, then ρf (B) = ρf1(B). By Lemma 2.1 (1),

ρf (B) ≤ ρf1(B). Since x is an end-vertex of B and f(x) = 2, an f -path partition is

in fact an f1-path partition of B. Thus ρf (B) ≥ ρf1(B). Now, we can assume that

f(x) = 1.

Let P denotes the path from x to y in B. First, ρf (B) ≤ ρf (B
′)+1 follows from

that an f -path partition of B′, together with P , forms an f -path partition of B. On

the other hand, suppose P is an optimal f -path partition of B. Since f(x) = f(y) = 1

and x is an end vertex of B, P has some P ′ ⊆ P with x ∈ P ′. Deleting all vertices

of P from the paths in P results in an f -path partition of B′ whose size is less than

|P| by at least one. Thus, ρf (B)− 1 ≥ ρf (B
′).

We then consider the case when B is a cycle.

Lemma 2.6 Suppose B is a cycle.

(1) If f−1(2) = ∅, then pf (B) = d|f−1(1)|/2e.

(2) If P is a path from x to y in B such that f−1(1)∩P = {x, y} and f−1(2)∩P 6= ∅,
then pf (B) = pf (B − P ) + 1.

Proof. (1) It is clear that pf (B) ≥ d|f−1(1)|/2e. As f−1(2) = ∅, we can pair

the vertices in f−1(1) as end-vertices of paths to form an f -path partition; and so

pf (B) ≤ d|f−1(1)|/2e.
(2) First, pf (B) ≤ pf (B−P )+1 follows from that an f -path partition of B−P

together with P forms an f -path partition of B. On the other hand, suppose P is

an optimal f -path partition of B. Since f−1(1) ∩ P = {x, y} and f−1(2) ∩ P 6= ∅, P
must contain some P ′ ⊆ P using x or y as one of its end-vertex. Deleting all vertices

of P from the paths in P results in an f -path partition of B − P whose size is less

than |P| by at least one. Thus, pf (B)− 1 ≥ pf (B − P ).
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Finally, we consider the case when B is a complete bipartite graph with C ∪D

as a bipartition of the vertex set. For i ∈ {0, 1, 2, 3}, let

Ci = {u ∈ C : f(u) = i} with ci = |Ci|;

Di = {v ∈ D : f(v) = i} with di = |Di|.

We have the following lemmas.

Lemma 2.7 If c1 = d1 = 0 and c2 ≥ d2 and x ∈ C2, then pf (B) = pf ′(B) where f ′

is the same as f except f ′(x) = 1.

Proof. pf (B) ≤ pf ′(B) follows from the fact that any f ′-path partition of B is an

f -partition.

Suppose P is an optimal f -path partition of B. We may assume that P is

chosen so that the paths in P cover as few vertices as possible. For the case when

P has a path Py with y ∈ C, we may interchange y and x to assume that Px ∈ P .

In this case, P is an f ′-path partition of B and so pf ′(B) ≤ pf (B). So, now assume

that all end-vertices of paths in P are in D. Then, these end-vertices are all in D2

for otherwise we may delete those end-vertices in D3 to get a new P which covers

fewer vertices. We may further assume that paths in P cover no vertices in D3, for

otherwise we may interchange such a vertex with an end-vertex of a path in P and

then delete it from the path. Thus each path of P uses vertices in C2 ∪C3 ∪D2, and

has end-vertices in D2. These imply that d2 > c2, contradicting that c2 ≥ d2.

By symmetry, we may prove a similar theorem for the case when d1 = c1 = 0

and d2 ≥ c2 and d2 ≥ 1.

Lemma 2.8 Suppose x ∈ C1. Also, either d2 ≥ 1 with y ∈ D2, or else c1 > d1 and

d2 = 0 < d3 with y ∈ D3. Then pf (B) = pf ′(B− x), where f ′ is the same as f except

f ′(y) = 1.

Proof. Suppose Py is in an optimal f ′-path partition P of B−x. Then (P−{Py})∪
{Pyx} is an f -path partition of B and so pf (B) ≤ pf ′(B − x).
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On the other hand, suppose Px is in an optimal f -path partition P of B. For

the case when y is not covered by any path in P , we have y ∈ D3 and so c1 > d1 and

d2 = 0. Consequently, there is some Qz ∈ P with z ∈ C2 ∪ C3 or z ∈ D3. For the

former case, we replace Qz by Qzy in P ; for the latter, we replace Qz by Qy. So, in

any case we may assume that y is covered by some path RyS in P . If RyS = Px,

then again we may interchange y with the last vertex of P to assume that RyS = Tyx

in P for some T . If RyS 6= Px, then we may replace the two paths RyS and Px

by Ryx and PS. So, in any case, we may assume that P has a path Uyx. Then,

(P − {Uyx}) ∪ {Uy} is an f ′-path partition of B − x. Thus pf ′(B − x) ≤ pf (B).

By symmetry, we may prove a similar theorem for the case when x ∈ D1; and

either c2 ≥ 1 with y ∈ C2, or else d1 > c1 and c2 = 0 < c3 with y ∈ C3.

2.4 Algorithm for graphs with special blocks

We are ready to give a linear-time algorithm for the path-partition problem in graphs

whose blocks are complete graphs, cycles or complete bipartite graphs. Notice that

we may consider only connected graphs. We present five procedures. The first four

are subroutines which calculate f -path-partition numbers of complete graphs, paths,

cycles and complete bipartite graphs, respectively, by using Lemmas 2.4 to 2.8. The

last one is the main routine for the problem.

First, Lemmas 2.1 (4) and 2.4 lead to the following subroutine for complete

graphs.

Algorithm PCG. Find the f -path partition number pf (B) of a complete graph B.

Input. A complete graph B and a vertex labeling f .

Output. pf (B).

Method.

if (f−1(1) 6= ∅ or f−1(2) = ∅)
then pf (B) = |f−1(0)|+ d|f−1(1)|/2e;
else pf (B) = |f−1(0)|+ 1;

return pf (B).
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Lemma 2.5 leads to the following subroutine for paths, which is useful for the

cycle subroutine.

Algorithm PP. Find the f -path partition number pf (B) of the path B.

Input. A path B and a vertex labeling f with f−1(0) = ∅.
Output. pf (B).

Method.

pf (B) ← 0;

B′ ← B;

while (B′ 6= ∅) do

choose an end-vertex x of B′;

if (f(x) = 3) then B′ ← B′ − x else

choose a vertex y nearest to x with f(y) = 1

(let y be the other end-vertex if there is no such vertex);

pf (B) ← pf (B) + 1;

B′ ← B′− all vertices between (and including) x and y;

end else;

end while;

return pf (B).
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Lemmas 2.1 (4) and 2.6 lead to the following subroutine for cycles.

Algorithm PC. Find the f -path partition number pf (B) of a cycle B.

Input. A cycle B and a vertex labeling f .

Output. pf (B).

Method.

if (f−1(0) = ∅ and f−1(2) = ∅)
then pf (B) ← df−1(1)/2e;
else if (f−1(0) = ∅ and f−1(2) 6= ∅ and |f−1(1)| ≤ 1) then

pf (B) ← 1;

else if (f−1(0) = ∅ and f−1(2) 6= ∅ and |f−1(1)| ≥ 2) then

choose a path P from x to y such that

f−1(1) ∩ P = {x, y} and f−1(2) ∩ P 6= ∅;
pf (B) ← pf (B − P ) + 1 by calling PP(B − P );

else // now f−1(0) 6= ∅ //

let B − f−1(0) be the disjoint union of paths P1, P2, . . . , Pk;

pf (B) ← |f−1(0)|;
for i = 1 to k do pf (B) ← pf (B) + pf (Pi) by calling PP(Pi);

end else;

return pf (B).

Lemmas 2.1 (4), 2.7 and 2.8 lead to the following subroutine for complete bi-

partite graphs. In the subroutine, we inductively reduce the size of C ∪D. Besides

the reduction of C0 and D0 in the second line, we consider 9 cases. The first case is

for C = ∅ or D = ∅. The next 5 cases are for c1 ≥ 1 or d1 ≥ 1. In particular, the case

of c1 ≥ 1 is covered by cases 2 and 3, except when d2 = 0 and (c1 ≤ d1 or d3 = 0).

The case of d1 ≥ 1 is covered by cases 4 and 5, except when c2 = 0 and (d1 ≤ c1 or

c3 = 0). The exceptions are then covered by case 6. Finally, the last 3 cases are for

c1 = d1 = 0.
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Algorithm PCB. Find the f -path partition number pf (B) of a complete bipartite

graph B.

Input. A complete bipartite graph B with a bipartition C ∪D of vertices and a

vertex labeling f .

Output. pf (B).

Method.

ci ← |f−1(i) ∩ C| and di ← |f−1(i) ∩D| for 0 ≤ i ≤ 3;

pf (B) ← c0 + d0;

while (true) do

if (c1 = c2 = c3 = 0 or d1 = d2 = d3 = 0) then

pf (B) ← pf (B) + c1 + c2 + d1 + d2; return pf (B);

else if (c1 ≥ 1 and d2 ≥ 1) then // use Lemma 2.8 //

c1 ← c1 − 1; d2 ← d2 − 1; d1 ← d1 + 1;

else if (c1 ≥ 1 and c1 > d1 and d2 = 0 < d3) then // use Lemma 2.8 //

c1 ← c1 − 1; d3 ← d3 − 1; d1 ← d1 + 1;

else if (d1 ≥ 1 and c2 ≥ 1) then // use the remark after Lemma 2.8 //

d1 ← d1 − 1; c2 ← c2 − 1; c1 ← c1 + 1;

else if (d1 ≥ 1 and d1 > c1 and c2 = 0 < c3) then // remark after Lemma 2.8 //

d1 ← d1 − 1; c3 ← c3 − 1; c1 ← c1 + 1;

else if (c2 = d2 = 0 and (c1 = d1 ≥ 1 or c1 > d1 ≥ 1 with d3 = 0

or d1 > c1 ≥ 1 with c3 = 0)) then

pf (B) ← pf (B) + max{c1, d1}; return pf (B);

else // by now c1 = d1 = 0 // if (c2 = d2 = 0) then

return pf (B);

else if (c2 ≥ d2) then // use Lemma 2.7 //

c1 ← 1; c2 ← c2 − 1;

else if (c2 < d2) then // use the remark after Lemma 2.7 //

d1 ← 1; d2 ← d2 − 1;

end while.
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Finally, Theorem 2.3 and the subroutines above lead to the main algorithm.

Algorithm PG. Find the path-partition number pf (G) of the connected graph G

whose blocks are complete graphs, cycles or complete bipartite graphs.

Input. A graph G and a vertex labeling f .

Output. pf (G).

Method.

pf (G) ← 0; G′ ← G;

while (G′ 6= ∅) do

choose a block B of G′ with only one cut-vertex x or with no cut-vertex;

if (B is a complete graph) then

find pfi
(B) by calling PCG(B, fi) for 0 ≤ i ≤ 3;

if (B is a cycle) then

find pfi
(B) by calling PC(B, fi) for 0 ≤ i ≤ 3;

if (B is a complete bipartite graph) then

find pfi
(B) by calling PCB(B, fi) for 0 ≤ i ≤ 3;

α := pf0(B)− pf1(B); β := pf1(B)− pf2(B);

if (f(x) = 0) then pf (G) ← pf (G) + pf (B)− 1;

else if (f(x) = 1) then

pf (G) ← pf (G) + pfα(B)− 1; f(x) ← 1− α;

else // by now f(x) = 2 or 3 //

case 1: α = β = 0

pf (G) ← pf (G) + pf0(B)− 1;

case 2: α = 0 and β = 1

pf (G) ← pf (G) + pf (B); f(x) ← 3;

case 3: α = 1

pf (G) ← pf (G) + pf1+β
(B)− 1; f(x) ← 1− β;

G′ := G′ − (B − {x});
end while;

output pf (G).
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Theorem 2.9 Algorithm PG computes the f -path partition number of a connected

graph whose blocks are complete graphs, cycles or complete bipartite graphs in linear

time.

Proof. The correctness of the algorithm follows from Lemma 2.1 (4) and Lemmas 2.4

to 2.8. The algorithm takes only linear time since the depth-first search can be used

to find blocks one by one in linear time, and each subroutine requires only O(|B|)
operations.

We close this section by giving an example that demonstrates the algorithm.

Example 2.1 Consider the graph G1 of 12 vertices and 5 blocks in Figure 2.1. Notice

that its blocks are three complete graphs, a cycle and a complete bipartite graph.

1. We begin with the assignment f(v) = 2 for every vertex v. Set pf (G) = 0.

ja2 jb 2

jc 2jd2

je2 jf
2

jg
2

jh 2
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2
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2
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2

¡
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@
@@

HHHHH

@
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¡
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Figure 2.1: Graph G1 of 12 vertices and 5 blocks.

2. Choose the block B1 = {f, g}, which is a complete graph, with the only cut-

vertex f in G1. Call the subroutine PCG. Thus, α = 2−1 = 1 and β = 1−1 =

0. Then, pf (G) = 0 and f(f) = 1 (with a path fg results). Delete B1 − {f}
from G1 to get the graph G2 in Figure 2.2.
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Figure 2.2: Graph G2 results from G1 by deleting {g}.

3. Choose the block B2 = {e, h}, which is a complete graph, with the only cut-

vertex e in G2. Call the subroutine PCG. Thus, α = 2−1 = 1 and β = 1−1 = 0.

Then, pf (G) = 0 and f(e) = 1 (with a path eh results). Delete B2 − {e} from

G2 to get the graph G3 in Figure 2.3.
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Figure 2.3: Graph G3 results from G2 by deleting {h}.

4. Choose the block B3 = {d, e, f}, which is a complete graph, with the only cut-

vertex d. Call the subroutine PCG. Thus, α = 2 − 2 = 0 and β = 2 − 1 = 1.

Then, pf (G) = 1 and f(d) = 3 (with the path P1 = gfeh or gfdeh results).

Delete B3 − {d} to get the graph G4 from G3 in Figure 2.4.
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Figure 2.4: Graph G4 results from G3 by deleting {e, f}.

5. Choose the block B4 = {a, b, c, d}, which is a cycle, with the only cut-vertex
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d. Call the subroutine PC. Thus, α = 2 − 1 = 1 and β = 1 − 1 = 0. Then,

pf (G) = 1, P1 = gfeh and f(d) = 1 (with a path dcba results). Delete B4−{d}
from G4 to get the graph G5 from G4 in Figure 2.5.
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Figure 2.5: Graph G5 results from G4 by deleting {a, b, c}.

6. Choose the final block B5 = {d, i, j, k, l}, which is a complete bipartite graph.

Call the subroutine PCB. Set c2 = d2 = 2, d1 = 1 and c0 = d0 = c1 = c3 =

d3 = 0. Since d1 = 1 and c2 = 2 ≥ 1, by the remark after Lemma 2.8, we have

d1 = 0, c2 = 2 − 1 = 1 and c1 = 1. That is, we delete d from G5 to get a new

label 1 at vertex i. Then, we get the graph G6 in Figure 2.6.
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Figure 2.6: Graph G6 results from G5 by deleting d and set f(i) = 1.

7. Since c1 = 1 and d2 = 2, by Lemma 2.8, we have c1 = 0, d2 = 1 and d1 = 1.

That is, we delete i from G6 to get a new label 1 at vertex k. Then, we get the

graph G7 in Figure 2.7.
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Figure 2.7: Graph G7 results from G6 by deleting i and set f(k) = 1.
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8. Since d1 = 1 and c2 = 1, by the remark after Lemma 2.8, we have d1 = 0, c2 = 0

and c1 = 1. That is, we delete k from G7 to get a new label 1 at vertex j. Then,

we get the graph G8 in Figure 2.8.

jj
1

jl
2

Figure 2.8: Graph G8 results from G7 by deleting k and set f(j) = 1.

9. Since c1 = 1 and d2 = 1, by Lemma 2.8, we have c1 = 0, d2 = 0 and d1 = 1.

That is, we delete j from G8 to get a new label 1 at vertex l. Then, we get the

graph G9 in Figure 2.9.

jl
1

Figure 2.9: Graph G9 results from G8 by deleting j and set f(l) = 1.

10. Since c1 = c2 = c3 = 0, we have pf (B5) = d1 + d2 + d3 = 1 (a path abcdijkl

results). Hence, pf (G) = 1 + pf (B5) = 2 and an optimal path partition P =

{gfeh, abcdikjl}.
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Chapter 3

Induced-path Partition

3.1 Preliminary of induced-path partition

Recall that an induced path is a path in which two vertices are adjacent only for

those with consecutive indices. An induced-path partition of a graph is a collection of

vertex-disjoint induced paths that cover all vertices of the graph. The induced-path-

partition problem is to find the induced-path number ρ(G) of a graph G, which is the

minimum cardinality of an induced-path partition of G.

The concept of induced-path number was introduced by Chartrand et al. [9],

who gave the induced-path numbers of complete bipartite graphs, complete binary

trees, 2-dimensional meshs, butterflies and general trees. Broere et al. [6] determined

exact values for complete multipartite graphs. Chartrand et al. [9] conjectured that

ρ(Qd) ≤ d for the d-dimensional hypercube Qd with d ≥ 2. Alsardary [3] proved that

ρ(Qd) ≤ 16. From an algorithmic point of view, Le et al. [27] proved that the induced

path partition problem is NP-complete for general graphs.

The purpose of this chapter is to give a linear-time algorithm for the induced-

path numbers of graphs whose blocks are complete graphs, cycles or complete bipartite

graphs and a polynomial-time algorithm for cographs.
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3.2 Induced-path partition in graphs with special

blocks

In this section, we shall present a linear-time algorithm for the induced-path numbers

for graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

We use the same approach as in above chapter on this problem. Since the

structure is the same as the above chapter, the results of the Subsection 3.2.1 is

similar to those in Section 2.2. For completeness, we still present the results in detail.

For technical reasons, we consider the following generalized problem, which is a

labeling approach for the problem.

Suppose every vertex v in the graph G is associated with an integer f(v) ∈
{0, 1, 2, 3}. An f -induced-path partition is a collection P of vertex-disjoint induced

paths such that the following conditions hold.

(P1) Any vertex v with f(v) 6= 3 is in some induced path in P .

(P2) If f(v) = 0, then v itself is an induced path in P .

(P3) If f(v) = 1, then v is an end-vertex of some induced path in P .

The f -induced-path-partition problem is to determine the f -induced-path number ρf (G)

which is the minimum cardinality of an f -induced-path partition of G. It is clear that

ρ(G) = ρf (G) when f(v) = 2 for all vertices v in G. Notice that as there may have

some vertices of labels 3, an f -induced-path partition is not necessary a induced-path

partition.

3.2.1 Inductive theorem

The labeling approach used in this subsection starts from an end block. Suppose B =

(V,E) is an end block whose only cut-vertex is x. Let A be the graph G− (V −{x}).
Notice that we can view G as the “composition” of A and B, i.e., G is the union

of A and B which meet at a common vertex x. The idea is to get the induced-path

number of G from those of A and B.
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In the lemmas and theorems of this subsection, we use the following notation.

Suppose x is a specified vertex of a graph H = (V, E) in which f is a vertex labeling.

For i = 0, 1, 2, 3, we define the function fi : V → {0, 1, 2, 3} by fi(y) = f(y) for all

vertices y except fi(x) = i.

Lemma 3.1 Suppose x is a specified vertex in a graph H. Then the following state-

ments hold.

(1) ρf3(H) ≤ ρf2(H) ≤ ρf1(H) ≤ ρf0(H).

(2) ρf1(H) ≤ ρf0(H) ≤ ρf1(H) + 1.

(3) ρf2(H) ≤ ρf1(H) ≤ ρf2(H) + 1.

(4) ρf3(H) = min{ρf2(H), ρf (H − x)} ≤ ρf (H − x) = ρf0(H)− 1.

(5) ρf (H) ≥ ρf1(H)− 1.

Proof. (1) The inequalities follow from that an fi-induced-path partition is an fj-

induced-path partition whenever i < j.

(2) The second inequality follows from that replacing the induced path Px in an

f1-induced-path partition by two induced paths P and x results in an f0-induced-path

partition of H.

(3) The second inequality follows from that replacing the induced path PxQ

in an f2-induced-path partition by two induced paths Px and Q results in an f1-

induced-path partition of H.

(4) The first equality follows from that one is an f3-induced-path partition of

H if and only if it is either an f2-induced-path partition of H or an f -induced-path

partition of H − x. The second equality follows from that P is an f0-induced-path

partition of H if and only if it is the union of {x} and an f -induced-path partition

of H − x.

(5) According to (1), (3) and (4), we have

ρf (H) ≥ ρf3(H) = min{ρf2(H), ρf (H−x)} ≥ min{ρf1(H)−1, ρf0(H)−1} = ρf1(H)−1.
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Lemma 3.2 (1) ρf (G) ≤ min{ρf (A) + ρf0(B)− 1, ρf0(A) + ρf (B)− 1}.
(2) ρf2(G) ≤ ρf1(A) + ρf1(B)− 1.

Proof. (1) Suppose P is an optimal f -induced-path partition of A, and Q an f0-

induced-path partition of B. Then x ∈ Q and so (P ∪ Q) − {x} is an f -induced-

path partition of G. This gives ρf (G) ≤ ρf (A) + ρf0(B) − 1. Similarly, ρf (G) ≤
ρf0(A) + ρf (B)− 1.

(2) The inequality follows from that if P (respectively, Q) is an optimal f1-

induced-path partition of A (respectively, B) in which Px ∈ P (respectively, xQ ∈ Q)

contains x, then (P ∪Q∪ {PxQ})− {Px, xQ} is an f2-induced-path partition of G.

We now have the following theorem which is key for the inductive step of our

algorithm.

Theorem 3.3 Suppose α = ρf0(B)− ρf1(B) and β = ρf1(B)− ρf2(B). (Notice that

α, β ∈ {0, 1}.) Then the following statements hold.

(1) If f(x) = 0, then ρf (G) = ρf (A) + ρf (B)− 1.

(2) If f(x) = 1, then ρf (G) = ρf1−α(A) + ρfα(B)− 1.

(3) If f(x) ≥ 2 and α = β = 0, then ρf (G) = ρf (A) + ρf0(B)− 1.

(4) If f(x) ≥ 2 and α = 0 and β = 1, then ρf (G) = ρf3(A) + ρf (B).

(5) If f(x) ≥ 2 and α = 1, then ρf (G) = ρf1−β
(A) + ρf1+β

(B)− 1.

Proof. Suppose P is an optimal f -induced-path partition of G. Let P ∗ be the

induced path in P that contains x. (It is possible that there is no such induced path

when f(x) = 3.) There are three possibilities for P ∗: (a) P ∗ does not exist or P ∗ ⊆ A;

(b) P ∗ ⊆ B; (c) x is an internal vertex of P ∗, say P ∗ = P ′xP ′′, with P ′x ⊆ A and

xP ′′ ⊆ B. (This is possible only when f(x) ≥ 2.)
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For the case when (a) holds, {P ∈ P : P ⊆ A} is an f -induced-path partition

of A and {P ∈ P : P ⊆ B}∪ {x} is an f0-induced-path partition of B. We then have

the inequality in (a′). Similarly, we have (b′) and (c′) corresponding to (b) and (c).

(a′) ρf (G) ≥ ρf (A) + ρf0(B)− 1.

(b′) ρf (G) ≥ ρf0(A)+ρf (B)−1. (We may replace ρf (B) by ρf2(B) when f(x) ≥ 2.)

(c′) ρf (G) ≥ ρf1(A) + ρf1(B)− 1. (This is possible only when f(x) ≥ 2.)

We are now ready to prove the theorem.

(1) Since f(x) = 0, we have f = f0. According to Lemma 3.2 (1), ρf (G) ≤
ρf (A) + ρf (B)− 1. On the other hand, (a′) and (b′) give ρf (G) ≥ ρf (A) + ρf (B)− 1.

(2) Since f(x) = 1, we have f = f1. Lemma 3.2 (1), together with (a′) and (b′),

gives ρf (G) = min{ρf1(A) + ρf0(B)− 1, ρf0(A) + ρf1(B)− 1}. If α = 0, then

ρf0(A) + ρf1(B)− 1 ≥ ρf1(A) + (ρf0(B)− α)− 1 = ρf1(A) + ρf0(B)− 1;

and if α = 1, then

ρf1(A) + ρf0(B)− 1 ≥ (ρf0(A)− 1) + (ρf1(B) + α)− 1 = ρf0(A) + ρf1(B)− 1.

Hence ρf (G) = ρf1−α(A) + ρfα(B)− 1.

(3) According to Lemma 3.2 (1), ρf (G) ≤ ρf (A) + ρf0(B) − 1. On the other

hand, as ρf0(A) ≥ ρf1(A) ≥ ρf (A) and ρf0(B) = ρf1(B) = ρf2(B), (a′)–(c′) give

ρf (G) ≥ ρf (A) + ρf0(B)− 1.

(4) According to Lemma 3.1 (4) and α = 0 and β = 1, we have

ρf (B − x) = ρf0(B)− 1 = ρf1(B)− 1 = ρf2(B).

This, together with Lemma 3.1 (4), gives that the above value is also equal to ρf3(B)

and so ρf (B). Then, an optimal f3-induced-path partition P of A, together with an

optimal f -induced-path partition of B − x (respectively, B) when x is (respectively,

is not) in an induced path of P , forms an f2-induced-path partition of G. Thus,

ρf (G) ≤ ρf2(G) ≤ ρf3(A) + ρf (B).
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On the other hand, since ρf1(A) ≥ ρf (A) ≥ ρf3(A) and ρf0(B)−1 = ρf1(B)−1 =

ρf (B), (a′) or (c′) implies ρf (G) ≥ ρf3(A) + ρf (B). Also, as ρf0(A) − 1 ≥ ρf3(A) by

Lemma 3.1 (4), (b′) implies ρf (G) ≥ ρf3(A) + ρf (B).

(5) According to Lemma 3.1 (1) and Lemma 3.2, we have

ρf (G) ≤ ρf2(G) ≤ min{ρf0(A) + ρf2(B)− 1, ρf1(A) + ρf1(B)− 1}.

On the other hand, if (a′) holds, then by Lemma 3.1 (5) and that ρf0(B) = ρf1(B)+1,

ρf (G) ≥ ρf (A) + ρf0(B)− 1 ≥ (ρf1(A)− 1) + (ρf1(B) + 1)− 1 = ρf1(A) + ρf1(B)− 1.

This, together with (b′) and (c′), gives

ρf (G) = min{ρf0(A) + ρf2(B)− 1, ρf1(A) + ρf1(B)− 1}.

If β = 0, then

ρf0(A) + ρf2(B)− 1 ≥ ρf1(A) + (ρf1(B)− β)− 1 = ρf1(A) + ρf1(B)− 1;

and if β = 1, then

ρf1(A) + ρf1(B)− 1 ≥ (ρf0(A)− 1) + (ρf2(B) + β)− 1 = ρf0(A) + ρf2(B)− 1.

Hence ρf (G) = ρf1−β
(A) + ρf1+β

(B)− 1.

Before we use the theorems of this subsection to design an efficient algorithm,

let us use them to give an alternative proof for a result on trees.

Let T be a tree. For a vertex v of T with dT (v) ≥ 3, the excess degree ε(v) of

v is equal to dT (v)− 2. A penultimate vertex is a vertex that is not a leaf and all of

whose neighbors are leaves, with the possible exception of one.

Corollary 3.4 [9] Let T be a tree, and let H be the forest induced by the vertices of

T having degree 3 or more. Let H ′ be a spanning sub-forest of H of maximum size

that dH′(v) ≤ ε(v) for every vertex v of H. Then,

ρ(T ) = 1 + |E(H ′)|+
∑

v∈V (H)

[ε(v)− dH′(v)].
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Proof. The corollary is clear when the tree has just one vertex. Suppose now T has

at least two vertices. Choose a penultimate vertex x whose with leaf-neighbors x1,

x2,..., xr. Let T ′ = T − {x, x1, x2, . . . , xr}. By Theorem 3.3 (5), (2) and (1) and the

induction hypothesis,

ρ(T ) = ρ(T ′) + r − 1 = 1 + |E(H ′
T ′)|+

∑

v∈V (HT ′ )

(ε(v)− dH′
T ′

(v)) + r − 1,

where HT ′ is the forest induced by the vertices of T ′ having degree 3 or more, and

H ′
T ′ is a spanning sub-forest of H of maximum size such that dH′(v) ≤ ε(v) for every

vertex v of HT ′ . Since ε(x) = r − 1, dH′(x) = 1 and |E(H ′)| = |E(H ′
T ′)| + 1, the

corollary then follows.

3.2.2 Induced-path partitions for special blocks

Besides the inductive theorem (Theorem 3.3) we also need to establish formula for the

induced-path numbers of special graphs including complete graphs, cycles or complete

bipartite graphs. Here we assume that B is a graph in which each vertex v has a

label f(v) ∈ {0, 1, 2, 3}. Recall that f−1(i) is the set of pre-images of i, i.e.,

f−1(i) = {v ∈ V (B) : f(v) = i}.

Also, f−1(I) = ∪i∈If
−1(i) for any I ⊆ {0, 1, 2, 3}. According to Lemma 3.1 (4),

ρf (B) = ρf (B − f−1(0)) + |f−1(0)|. Therefore, in this section we only consider the

function f with f−1(0) = ∅.
We first consider the case when B is a complete graph.

Lemma 3.5 If B is a complete graph, then ρf (B) = d|f−1({1, 2})|/2e.

Proof. The equality holds since an induced path of a complete graph is a 2-path or

a 1-path.

Next, we consider the case when B is a path. This is useful as a subroutine for

handling cycles.
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Lemma 3.6 Suppose B is a path.

(1) If x is an end-vertex of B with f(x) = 3, then ρf (B) = ρf (B − x).

(2) If x is an end-vertex of B with f(x) ∈ {1, 2} and another vertex y with f(y) = 1

such that no vertex between x and y has a label 1 (choose y the other end-vertex

of B if there is no such vertex), then ρf (B) = ρf (B
′) + 1 where B′ is the path

obtained from B by deleting x, y and all vertices between them.

Proof. (1) Since f(x) = 3, by Lemma 3.1 (4), ρf (B) ≤ ρf (B − x). As x is an end-

vertex of B, ρf (B) ≥ ρf (B − x) follows from that deleting x from an induced path

(if any) in an f -induced-path partition of B results in an f -induced-path partition of

B − x.

(2) First, we claim that if f(x) = 2, then ρf (B) = ρf1(B). By Lemma 3.1 (1),

ρf (B) ≤ ρf1(B). Since x is an end-vertex of B and f(x) = 2, an f -induced-path

partition is in fact an f1-induced-path partition of B. Thus ρf (B) ≥ ρf1(B). Now,

we can assume that f(x) = 1.

Let P denotes the path from x to y in B. First, ρf (B) ≤ ρf (B
′) + 1 follows

from that an f -induced-path partition of B′, together with P , forms an f -induced-

path partition of B. On the other hand, suppose P is an optimal f -induced-path

partition of B. Since f(x) = f(y) = 1 and x is an end-vertex of B, P has some

P ′ ⊆ P with x ∈ P ′. Deleting all vertices of P from the paths in P results in an

f -induced-path partition of B′ whose size is less than |P| by at least one. Thus,

ρf (B)− 1 ≥ ρf (B
′).

We now consider the case when B is a cycle.

Lemma 3.7 Suppose B is a cycle.

(1) If f−1({1, 2}) = ∅, then ρf (B) = 0.

(2) When f−1(1) = ∅ and f−1(2) 6= ∅, if there exists a vertex with label 3, then

ρf (B) = 1 else ρf (B) = 2.
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(3) When f−1(1) = {x}, if x has at least one neighbor labeled with 3, then ρf (B) = 1

else ρf (B) = 2.

(4) If |f−1(1)| ≥ 2 and f−1(2) = ∅, then ρf (B) = d|f−1(1)|/2e.

(5) When f−1(1) contains exactly two vertices which are adjacent and f−1(2) 6= ∅,
then ρf (B) = 2.

(6) If P is an induced path from x to y in B such that f−1(1) ∩ P = {x, y} and

f−1(2) ∩ P 6= ∅, then ρf (B) = ρf (B − P ) + 1.

Proof. The proof from (1) to (5) are obvious.

(5) First, ρf (B) ≤ ρf (B−P ) + 1 follows from that an f -induced-path partition

of B−P together with P forms an f -induced-path partition of B. On the other hand,

suppose P is an optimal f -induced-path partition of B. Since f−1(1) ∩ P = {x, y}
and f−1(2) ∩ P 6= ∅, P must contain some P ′ ⊆ P . Deleting all vertices of P from

the paths in P results in an f -induced-path partition of B−P whose size is less than

|P| by at least one. Thus, ρf (B)− 1 ≥ ρf (B − P ).

We now consider the case when B is a complete bipartite graph with C ∪D as

a bipartition of the vertex set. For i = 0, 1, 2, 3, let

Ci = {x ∈ C : f(x) = i} and ci = |Ci|;

Di = {y ∈ D : f(y) = i} and di = |Di|.

Notice that an induced path of a complete bipartite graph has at most 3 vertices. We

then have the following lemmas.

Lemma 3.8 Suppose c1 ≥ 2 and d2 ≥ 1. If x, z ∈ C1 and y ∈ D2, then ρf (B) =

ρf (B − {x, y, z}) + 1.

Proof. First, ρf (B) ≤ ρf (B − {x, y, z}) + 1 since xyz is an induced path. On the

other hand, suppose P is an optimal f -induced-path partition of B. We claim that

there exists a path xyT in P . Otherwise, suppose xP and QyR are in P with |R| ≤ 1.
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When P = y′S, we may replace xP = xy′S by xyS and QyR by Qy′R; when P = ∅,
we may replace xP = x by xyR and QyR by Q. Next we claim that T = z. Otherwise,

suppose Sz is in P . In this case we may replace xyT by xyz and Sz by ST . Therefore,

we may assume that P contains xyz, and so ρf (B)− 1 ≥ ρf (B − {x, y, z}).

By symmetry, we may prove a similar lemma for the case when d1 ≥ 2 and

c2 ≥ 1.

Lemma 3.9 Suppose 2c2 > d1 + d2. If x ∈ C2, then ρf (B) = ρf ′(B) where f ′ is the

same as f except f ′(x) = 1.

Proof. First, ρf (B) ≤ ρf ′(B) since an f ′-induced-path partition of B is an f -induced-

path partition of B. On the other hand, suppose P is an optimal f -induced-path

partition of B. If every vertex in C2 is an internal vertex of some induced path in P ,

then the two end-vertices of this induced path are in D1 ∪D2, and so 2c2 ≤ d1 + d2

which is impossible. Hence, we may assume that x is the end-vertex of an induced

path in P . This gives ρf (B) ≥ ρf ′(B).

By symmetry, we may prove a similar lemma for the case when 2d2 > c1 + c2.

We may repeatedly apply Lemmas 3.8 and 3.9 and the remarks after them until

the following conditions hold:

(d1 ≤ 1 or c2 = 0), (c1 ≤ 1 or d2 = 0), 2c2 ≤ d1 + d2, 2d2 ≤ c1 + c2.

Notice that it is impossible that c2 = 0 < d2, for otherwise the second condition gives

c1 ≤ 1 while the forth gives 2 ≤ 2d2 ≤ c1 ≤ 1, a contradiction. So, either c2 = d2 = 0

or both c2 and d2 are nonzero. The latter case implies c1 = c2 = d1 = d2 = 1, in

which case ρ(B) = 2.

Lemma 3.10 Suppose c2 = d2 = 0, c1 ≥ 1 and d1 ≥ 1. If x ∈ C1 and y ∈ D1, then

ρf (B) = ρf (B − {x, y}) + 1.

Proof. First, ρf (B) ≤ ρf (B − {x, y}) + 1 since xy is an induced path. On the other

hand, suppose P is an optimal f -induced-path partition of B. If xy is not in P , then
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P contains xP and yQ. For the case when P = ∅, we may replace xP = x by xy

and yQ by Q. For the case when P = y′, we may replace xP = xy′ by xy and yQ

by y′Q. So, we may assume that xP = xy′z. By symmetry, we may also assume that

yQ = yz′x′. As c2 = d2 = 0, it is the case that y′ ∈ D3 and z′ ∈ C3. Then we may

replace xy′z by xy and yz′x′ by x′z. Therefore, we may assume that xy is in P and

so ρf (B)− 1 ≥ ρf (B − {x, y}).

Lemma 3.11 Suppose d1 = c2 = d2 = 0, c1 ≥ 2 and d3 ≥ 1. If x, z ∈ C1 and

y ∈ D3, then ρf (B) = ρf (B − {x, y, z}) + 1.

Proof. First, ρf (B) ≤ ρf (B − {x, y, z}) since xyz is an induced path. On the other

hand, suppose P is an optimal f -induced path of B. By the condition d1 = c2 = d2 =

0, it is easy to see that we may assume that xyz is an induced path in P . Hence,

ρf (B)− 1 ≥ ρf (B − {x, y, z}).

By symmetry, we may prove a similar lemma for the case when c1 = c2 = d2 =

0, d1 ≥ 2 and c3 ≥ 1.

3.2.3 Algorithm for graphs with special blocks

We are ready to give a linear-time algorithm for the induced-path number of graphs

whose blocks are complete graphs, cycles or complete bipartite graphs. Notice that

we may consider only connected graphs. We present five procedures. The first four

are subroutines which calculate f -induced-path numbers of complete graphs, paths,

cycles and complete bipartite graphs, respectively, by using Lemmas 3.5 to 3.11. The

last one is the main routine for the problem.
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Lemmas 3.1 (4) and 3.5 lead to the following subroutine for complete graphs.

Algorithm IPCG. Find the f -induced-path number ρf (B) of a complete graph B.

Input. A complete graph B and a vertex labeling f .

Output. ρf (B).

Method.

ρf (B) = |f−1(0)|+ d|f−1({1, 2})|/2e;
return ρf (B).

Lemma 3.6 leads to the following subroutine for paths, which is used in the

cycle subroutine.

Algorithm IPP. Find the f -induced-path number ρf (B) of a path B.

Input. A path B and a vertex labeling f with f−1(0) = ∅.
Output. ρf (B).

Method.

ρf (B) ← 0;

B′ ← B;

while (B′ 6= ∅) do

choose an end-vertex x of B′;

if (f(x) = 3) then B′ ← B′ − x else

choose a vertex y nearest to x with f(y) = 1

(let y be the other end-vertex if there is no such vertex);

ρf (B) ← ρf (B) + 1;

B′ ← B′− all vertices between (and including) x and y;

end else;

end while;

return ρf (B).
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Lemmas 3.1 (4) and 3.7 lead to the following subroutine for cycles.

Algorithm IPC. Find the f -induced-path number ρf (B) of a cycle B.

Input. A cycle B and a vertex labeling f .

Output. ρf (B).

Method.

if (f−1({0, 1, 2}) = ∅) then ρf (B) ← 0;

else if (f−1({0, 1}) = ∅ 6= f−1(2)) then

if there exists a vertex with label 3 then ρf (B) ← 1 else ρf (B) ← 2;

else if (f−1(0) = ∅ and f−1(1) = {x}) then

if x has a neighbor labeled with 3 then ρf (B) ← 1 else ρf (B) ← 2;

else if (f−1(0) = ∅ and |f−1(1)| ≥ 2 and f−1(2) = ∅) then

ρf (B) ← d|f−1(1)|/2e;
else if (f−1(0) = ∅ and |f−1(1)| ≥ 2 and f−1(2) 6= ∅) then

if (f−1(1) contains exactly two vertices which are adjacent) then ρf (B) ← 2;

else choose an x-y induced path P with f−1(1) ∩ P = {x, y} and f−1(2) ∩ P 6= ∅;
pf (B) ← pf (B − P ) + 1 by calling PP(B − P );

else // now f−1(0) 6= ∅ //

let B − f−1(0) be the disjoint union of paths P1, P2, . . . , Pk;

ρf (B) ← |f−1(0)|;
for i = 1 to k do ρf (B) ← ρf (B) + ρf (Pi) by calling PP(Pi);

end else;

return ρf (B).
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Lemma 3.1 (4) and Lemmas 3.8 to 3.11 lead to the following subroutine for

complete bipartite graphs.

Algorithm IPCB. Find the f -induced-path number ρf (B) of a complete bipartite

graph B.

Input. A complete bipartite graph B with a bipartition C ∪D of vertices and a

vertex labeling f .

Output. ρf (B).

Method.

ci ← |f−1(i) ∩ C| and di ← |f−1(i) ∩D| for 0 ≤ i ≤ 3; ρf (B) ← c0 + d0;

while (true) do

if (c1 ≥ 2 and d2 ≥ 1) then // use Lemma 3.8 //

c1 ← c1 − 2; d2 ← d2 − 1; ρf (B) ← ρf (B) + 1;

else if (d1 ≥ 2 and c2 ≥ 1) then // remark after Lemma 3.8 //

d1 ← d1 − 2; c2 ← c2 − 1; ρf (B) ← ρf (B) + 1;

else if (2c2 > d1 + d2) then // use Lemma 3.9 //

c2 ← c2 − 1; c1 ← c1 + 1;

else if (2d2 > c1 + c2) then // remark after Lemma 3.9 //

d2 ← d2 − 1; d1 ← d1 + 1;

else if (c1 = c2 = d1 = d2 = 1) then

ρf (B) ← ρf (B) + 2; return ρf (B);

else if (c2 = d2 = 0 and c1 ≥ 1 and d1 ≥ 1) then // use Lemma 3.10 //

c1 ← c1 − 1; d1 ← d1 − 1; ρf (B) ← ρf (B) + 1;

else if (d1 = c2 = d2 = 0 and c1 ≥ 2 and d3 ≥ 1) then // use Lemma 3.11 //

c1 ← c1 − 2; d3 ← d3 − 1; ρ(B) ← ρ(B) + 1;

else if (c1 = c2 = d2 = 0 and d1 ≥ 2 and c3 ≥ 1) then // remark after Lemma 3.11 //

d1 ← d1 − 2; c3 ← c3 − 1; ρ(B) ← ρ(B) + 1;

else // now c2 = d2 = 0 with ( c1 + d1 ≤ 1 or c1 = c3 = 0 or d1 = d3 = 0) //

ρf (B) ← ρf (B) + c1 + c2 + d1 + d2; return ρf (B);

end while.
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Finally, Theorem 3.3 leads to the following main algorithm.

Algorithm IPG. Find the f -induced-path number ρf (G) of the connected graph G

whose blocks are complete graphs, cycles or complete bipartite graphs.

Input. A graph G and a vertex labeling f .

Output. ρf (G).

Method.

ρf (G) ← 0;

while (G 6= ∅) do

choose a block B with cut-vertex x or with no cut-vertex;

if (B is a complete graph) then

find ρfi
(B) by calling IPCG(B, fi) for 0 ≤ i ≤ 3;

else if (B is a cycle) then

find ρfi
(B) by calling IPC(B, fi) for 0 ≤ i ≤ 3;

else if (B is a complete bipartite graph) then

find ρfi
(B) by calling IPCB(B, fi) for 0 ≤ i ≤ 3;

α := ρf0(B)− ρf1(B); β := ρf1(B)− ρf2(B);

if (f(x) = 0) then ρf (G) ← ρf (G) + ρf (B)− 1;

else if (f(x) = 1) then

ρf (G) ← ρf (G) + ρfα(B)− 1; f(x) ← 1− α;

else // by now f(x) = 2 or 3 //

case 1: α = β = 0

ρf (G) ← ρf (G) + ρf0(B)− 1;

case 2: α = 0 and β = 1

ρf (G) ← ρf (G) + ρf (B); f(x) ← 3;

case 3: α = 1

ρf (G) ← ρf (G) + ρf1+β
(B)− 1; f(x) ← 1− β;

G := G− (B − {x});
end while;

output ρf (G).
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Theorem 3.12 Algorithm IPG computes the induced-path number of a connected

graph whose blocks are complete graphs, cycles or complete bipartite graphs in linear

time.

Proof. The correctness of the algorithm follows from Theorem 3.3, Lemma 3.1 (4)

and Lemmas 3.5 to 3.11. The algorithm takes only linear time since the depth-first

search can be used to find blocks one by one in linear time, and each subroutine

requires only O(|B|) operations.

We now give an example to demonstrate the algorithm.

Example 3.1 Consider the graph G1 of 9 vertices and 3 blocks in Figure 3.1. Notice

that its blocks are a complete graph, a cycle and a complete bipartite graph.

1. We begin with the assignment f(v) = 2 for every vertex v. Set ρf (G1) = 0.
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Figure 3.1: Graph G1 of 9 vertices and 3 blocks.

2. Choose the block B1 = {d, e}, which is a complete graph, with the only cut-

vertex d in G1. Call the subroutine IPCG. Thus, α = 2 − 1 = 1 and β =

1− 1 = 0. Then, ρf (G) = 0 + 1− 1 = 0 and relabel f(d) = 1 (with an induced

path de results). Delete B1 − {d} from G1 to get the graph G2 in Figure 3.2.
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Figure 3.2: Graph G2 results from G1 by deleting {e}.
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3. Choose the block B2 = {a, b, c, d}, which is a cycle, with the only cut-vertex c

in G2. Call the subroutine IPC. Thus, α = 2− 2 = 0 and β = 2− 2 = 0. Then,

ρf (G) = 0 + 2 − 1 = 1 (with an induced path edab results). Delete B2 − {c}
from G2 to get the graph G3 in Figure 3.3.

jc
2

jf
2

jg
2

jh
2

ji
2

@
@@

HHHHH
@

@@
¡

¡¡

Figure 3.3: Graph G3 results from G2 by deleting {a, b, d}.

4. Choose the final block B3 = {c, f, g, h, i}, which is a complete bipartite graph.

Call the subroutine IPCB. Notice that c2 = 3, d2 = 2 and c0 = c1 = c3 = d0 =

d1 = d3 = 0. Since 2c2 > d1 + d2, by using Lemma 3.9, we get a new label 1 at

vertex c as in Figure 3.4.
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Figure 3.4: Graph G3 with a new label at vertex c.

5. Now, c1 = 1, c2 = d2 = 2 and c0 = c3 = d0 = d3 = 0. Since 2c2 > d1 + d2, again

by Lemma 3.9, we relabel vertex f by 1 as in Figure 3.5.
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Figure 3.5: Graph G3 with a new label at vertex f .

6. Now c2 = 1, c1 = d2 = 2 and c0 = c3 = d1 = d3 = 0. Since c1 ≥ 2 and d2 ≥ 1, by

Lemma 3.8, we have ρf (B3) = 1 + ρf (B3 − {c, h, f}) (with a path chf results).
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Continue this process to calculate ρf (B3 − {c, h, f}), we get ρf (B3) = 2 ( with

an induced path gi results). Hence, pf (G) = 1 + pf (B3) = 3, and an optimal

induced-path partition is P = {edab, chf, gi}.

3.3 Induced-path partition in cographs

This section gives a polynomial-time algorithm for the induced-path number of cographs.

Recall that cographs are defined by the following rules:

(i) K1 is a cograph;

(ii) if G and H are cographs, then so are G + H and G×H;

(iii) no other graphs are cographs.

For more details on cographs, see [12, 13, 26].

For technical reasons, we consider the following generalized definition. Let

ρ(G, t, p) be the minimum among all induced-path numbers of all graphs G(t, p) ob-

tained from G by removing t vertices and p pairs of nonadjacent vertices. It is clear

that ρ(G) = ρ(G, 0, 0).

In the following lemma, suppose G = (V, E) and H = (V ′, E ′).

Lemma 3.13 For t + 2p ≤ |V |+ |V ′|, we have

ρ(G + H, t, p) = min
C
{ρ(G, t1 + a, p1) + ρ(H, t2 + a, p2 − a)},

where

C = {(t1, t2, p1, p2, a) : t = t1 + t2, p = p1 + p2,
t1 + a + 2p1 ≤ |V |,
t2 + a + 2(p2 − a) ≤ |V ′|,
p2 ≥ a ≥ 0,
t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0, a ≥ 0}.

Proof. Suppose P is an optimal induced-path partition of (G + H)(t, p). Then,

ρ(G + H, t, p) ≥ ρ(G, t1 + a, p1) + ρ(H, t2 + a, p2 − a) for some t1 and a. Thus,

ρ(G + H, t, p) ≥ min
C
{ρ(G, t1 + a, p1) + ρ(H, t2 + a, p2 − a)},
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where

C = {(t1, t2, p1, p2, a) : t = t1 + t2, p = p1 + p2,
t1 + a + 2p1 ≤ |V )|,
t2 + a + 2(p2 − a) ≤ |V ′|,
p2 ≥ a ≥ 0,
t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0, a ≥ 0}.

On the other hand, suppose Q (respectively, R) is an optimal induced-path

partition of G(t1 + a, p1) (respectively, H(t2 + a, p2− a)). Then Q∪R is an induced-

path partition of (G + H)(t, p). Thus,

ρ(G + H, t, p) ≤ min
C
{ρ(G, t1 + a, p1) + ρ(H, t2 + a, p2 − a)},

where

C = {(t1, t2, p1, p2, a) : t = t1 + t2, p = p1 + p2,
t1 + a + 2p1 ≤ |V |,
t2 + a + 2(p2 − a) ≤ |V |,
p2 ≥ a ≥ 0, t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0, a ≥ 0}.

Hence

ρ(G + H, t, p) = min
C
{ρ(G, t1 + a, p1) + ρ(H, t2 + a, p2 − a)},

where

C = {(t1, t2, p1, p2, a) : t = t1 + t2, p = p1 + p2,
t1 + a + 2p1 ≤ |V |,
t2 + a + 2(p2 − a) ≤ |V ′|,
p2 ≥ a ≥ 0, t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0, a ≥ 0}.

Lemma 3.14 For t + 2p ≤ |V |+ |V ′|, we have

ρ(G×H, t, p) = min
D
{ρ(G, t1 + a + c, p1 + b) + ρ(H, t2 + b + c, p2 + a) + a + b + c},

where
D = {(t1, t2, p1, p2, a, b, c) : t = t1 + t2, p = p1 + p2,

a + 2b + c + t1 + 2p1 ≤ |V |,
2a + b + c + t2 + 2p2 ≤ |V ′|,
t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0,
a ≥ 0, b ≥ 0, c ∈ {0, 1}}.
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Proof. Suppose P is an optimal induced-path partition of (G × H)(t, p), P has a

(respectively, b) P3 whose internal vertex is in G(t1 + a + c, p1 + b) (respectively,

H(t2 + b + c, p2 + a)), and c edges whose end-vertices are in the different parts. If

c ≥ 2 and at least two vertices in the same part in c edges are nonadjacent, then we

can interchange two edges with a P3 and a vertex. If there exists two edges in c edges

whose end-vertices in the same part (also the other part) are adjacent, then we can

interchange these two edges with two other edges whose end-vertices are in the same

part. Thus,

ρ(G×H, t, p) ≥ min
D
{ρ(G, t1 + a + c, p1 + b) + ρ(H, t2 + b + c, p2 + a) + a + b + c},

where
D = {(t1, t2, p1, p2, a, b, c) : t = t1 + t2, p = p1 + p2,

a + 2b + c + t1 + 2p1 ≤ |V |,
2a + b + c + t2 + 2p2 ≤ |V ′|,
t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0,
a ≥ 0, b ≥ 0, c ∈ {0, 1}}.

On the other hand, suppose Q (respectively, R) is an optimal induced-path

partition of the graph G(t1 + a+ c, p1 + b) (respectively, H(t2 + b+ c, p2 + a)), and we

have the set S containing (a + b) P3 and c edges. So Q ∪ R ∪ S is an induced-path

partition of a graph G×H(t, p). Thus,

ρ(G×H, t, p) ≤ min
D
{ρ(G, t1 + a + c, p1 + b) + ρ(H, t2 + b + c, p2 + a) + a + b + c},

where
D = {(t1, t2, p1, p2, a, b, c) : t = t1 + t2, p = p1 + p2,

a + 2b + c + t1 + 2p1 ≤ |V |,
2a + b + c + t2 + 2p2 ≤ |V ′|,
t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0,
a ≥ 0, b ≥ 0, c ∈ {0, 1}}.

And so,

ρ(G×H, t, p) = min
D
{ρ(G, t1 + a + c, p1 + b) + ρ(H, t2 + b + c, p2 + a) + a + b + c},
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where

D = {(t1, t2, p1, p2, a, b, c) : t = t1 + t2, p = p1 + p2,
a + 2b + c + t1 + 2p1 ≤ |V |,
2a + b + c + t2 + 2p2 ≤ |V ′|,
t1 ≥ 0, t2 ≥ 0, p1 ≥ 0, p2 ≥ 0,
a ≥ 0, b ≥ 0, c ∈ {0, 1}}.

Theorem 3.15 There is a polynomial-time algorithm for computing the induced-path

number of a cograph.

Proof. At any iteration, Lemmas 3.13 uses polynomial time and Lemma 3.14 uses

polynomial time. And by the definition of cographs, the theorem holds.
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Chapter 4

Isometric-path Cover

4.1 Preliminary of isometric-path cover

Recall that an isometric path between two vertices in a graph G is a shortest path

joining them. An isometric-path cover of a graph is a collection of isometric paths

that cover all vertices of the graph. The isometric-path-cover problem is to find the

isometric-path number ip(G) of a graph G which is the minimum cardinality of an

isometric-path cover.

The isometric-path number of the Cartesian product Pn1¤Pn2¤ . . . ¤Pnd
has

been studied extensively in the literature. Fitzpatrick [17] gave bounds for the case

when n1 = n2 = . . . = nd. Fisher and Fitzpatrick [18] gave exact values for the case

d = 2. Fitzpatrick et al. [19] gave a lower bound, which is in fact the exact value if

d + 1 is a power of 2, for the case when n1 = n2 = . . . = nd = 2.

The purpose of this chapter is to give a linear-time algorithm for the isometric-

path-cover problem in block graphs. We also determine isometric-path numbers of

complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

4.2 Isometric-path cover in block graphs

The purpose of this section is to give isometric-path numbers of block graphs. We also

give a linear-time algorithm to find the corresponding paths. For technical reasons,

we consider a slightly more general problem as follows. Suppose every vertex v in the

graph G is associated with a non-negative integer f(v). We call such function f a
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vertex labeling of G. An f -isometric-path cover of G is a family C of isometric paths

such that the following conditions hold.

(C1) If f(v) = 0, then v is in an isometric path in C.

(C2) If f(v) ≥ 1, then v is an end-vertex of at least f(v) isometric paths in C, while

the counting is twice if v itself is a path in C.

The f -isometric-path number of G, denoted by ipf (G), is the minimum cardi-

nality of an f -isometric-path cover of G. It is clear that when f(v) = 0 for all vertices

v in G, we have ip(G) = ipf (G). The attempt of this section is to determine the

f -isometric-path number of a block graph.

4.2.1 Formula for block graphs

In this subsection, we determine the f -isometric-path numbers for block graphs G.

Without loss of generality, we may assume that G is connected.

First, a useful lemma.

Lemma 4.1 Suppose x is a non-cut-vertex of a block graph G with a vertex labeling

f . If vertex labeling f ′ is the same as f except that f ′(x) = max{1, f(x)}, then

ipf (G) = ipf ′(G).

Proof. Notice that an internal vertex of an isometric path in a block graph is a

cut-vertex. Since x is not a cut-vertex, x must be an end-vertex of any isometric

path. It follows that a collection C is an f -isometric-path cover if and only if it is an

f ′-isometric-path cover. The lemma then follows.

Now, we may assume that f(v) ≥ 1 for all non-cut-vertices v of G, and call such

a vertex labeling regular. We have the following theorem for the inductive step.

Theorem 4.2 Suppose G is a block graph with a regular labeling f , and x is a non-

cut-vertex in a block B with exactly one cut-vertex y or with no cut-vertex in which

case let y be any vertex of B − {x}. When f(x) = 1, let G′ = G − x with a regular
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vertex labeling f ′ which is the same as f except f ′(y) = f(y) + 1. When f(x) ≥ 2, let

G′ = G with a regular vertex labeling f ′ which is the same as f except f ′(x) = f(x)−1

and f ′(y) = f(y) + 1. Then ipf (G) = ipf ′(G
′).

Proof. We first prove that ipf (G) ≥ ipf ′(G
′). Suppose C is an optimal f -isometric-

path cover of G. Choose an isometric path P in C having x as an end-vertex. We

consider four cases.

Case 1.1. P = x and f(x) = 1 (i.e., G′ = G− x).

In this case, C ′ = (C − {P}) ∪ {y} is an f ′-isometric-path cover of G′. Hence,

ipf (G) = |C| ≥ |C ′| ≥ ipf ′(G
′).

Case 1.2. P = x and f(x) ≥ 2 (i.e., G′ = G).

In this case, C ′ = (C − {P}) ∪ {xy} is an f ′-isometric-path cover of G′. Hence,

ipf (G) = |C| ≥ |C ′| ≥ ipf ′(G
′).

Case 1.3. P = xz for some vertex z in B − {x, y}.
In this case, C ′ = (C − {P}) ∪ {yz} is an f ′-isometric-path cover of G′. Hence,

ipf (G) = |C| ≥ |C ′| ≥ ipf ′(G
′).

Case 1.4. P = xyQ, where Q contains no vertices in B.

In this case, C ′ = (C − {P}) ∪ {yQ} is an f ′-isometric-path cover of G′. Hence,

ipf (G) = |C| ≥ |C ′| ≥ ipf ′(G
′).

Next, we prove that ipf (G) ≤ ipf ′(G
′). Suppose C ′ is an optimal f ′-isometric-

path cover of G′. Choose a path P ′ in C ′ having y as an end-vertex. We consider

three cases.

Case 2.1. P ′ = yx.

In this case, G′ = G and C = (C ′ − {P ′}) ∪ {x} is an f -isometric-path cover of

G. Hence, ipf (G) ≤ |C| ≤ |C ′| = ipf ′(G
′).

Case 2.2. P ′ = yz for some z in B − {x, y}.
In this case, C = (C ′ − {P ′}) ∪ {xz} is an f -isometric-path cover of G. Hence,

ipf (G) ≤ |C| ≤ |C ′| = ipf ′(G
′).

Case 2.3. P ′ = yQ, where Q contains no vertex in B.

In this case, C = (C ′−{P ′})∪{xyQ} is an f -isometric-path cover of G. Hence,

53



ipf (G) ≤ |C| ≤ |C ′| = ipf ′(G
′).

Consequently, we have the following result for f -isometric-path numbers of con-

nected block graphs.

Theorem 4.3 If G = (V,E) is a connected block graph with a regular vertex labeling

f , then ipf (G) = d s(G)
2
e, where s(G) =

∑
v∈V f(v).

Proof. The theorem is obvious when G has only one vertex. For the case when G

has more than one vertex, we apply Theorem 4.2 repeatedly until the graph becomes

trivial. Notice that the s(G′) = s(G) when Theorem 4.2 is applied.

For the isometric-path-cover problem, we have

Corollary 4.4 If G is a connected block graph, then ip(G) = dnc(G)
2
e, where nc(G) is

the number of non-cut-vertices of G.

Proof. The corollary follows from Theorem 4.3 and the fact that ip(G) = ipf (G)

for the regular vertex labeling f with f(v) = 1 if v is a non-cut-vertex and f(v) = 0

otherwise.

Corollary 4.5 [18] If T is any tree then ip(T ) = d `(T )
2
e, where `(T ) is the number of

leaves in T .

4.2.2 Algorithm for block graphs

Based on Theorem 4.2, we are able to design an algorithm for the isometric-path-cover

problem in block graphs. Notice that we may only consider connected block graphs

with regular vertex labelings. To speed up the algorithm, we may modify Theorem

4.2 a little bit so that each time a non-cut-vertex is handled.

Theorem 4.6 Suppose G is a block graph with a regular labeling f , and x is a non-

cut-vertex in a block B with exactly one cut-vertex y or with no cut-vertex in which

let y be any vertex in B−{x}. Let G′ = G−x with a regular vertex labeling f ′ which

is the same as f except f ′(y) = f(y) + f(x). Then ipf (G) = ipf ′(G
′).
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Proof. The theorem follows from repeatedly applying Theorem 4.2.

Now, we are ready to give the algorithm.

Algorithm IP Find the f -isometric-path number ipf (G) of a connected block graph.

Input. A connected block graph G and a regular vertex labeling f .

Output. An optimal f -isometric-path cover C of G and ipf (G).

Method.

1. construct a stack S which is empty at the beginning;

2. let G′ ← G;

3. while (G′ has more than one vertex) do

4. choose a block B with exactly one cut-vertex y

5. or with no cut-vertex in which case choose any y ∈ B;

6. for (all vertices x in B − {y}) do

7. f(y) ← f(y) + f(x);

8. push (x, y, f(x)) into S;

9. G′ ← G′ − x;

10. end for;

11. end while;

12. ipf (G) ← df(r)/2e, where r is the only vertex of G′;

13. let C be the family of isometric paths containing ip(G) copies of the path r;

14. while (S is not empty) do

15. pop (x, y, i) from S;

16. choose i copies of path P in C using y as an end-vertex;

17. if (P = yx) then

18. replace the i copies of P by i copies of x in C;

19. if (P = yz for some vertex z in the block of G containing x) then

20. replace the i copies of P by i copies of xz in C;

21. if (P = yQ where Q has no vertices in the block of G containing x) then

22. replace the i copies of P by the i copies of xyQ in C;

23. end while.
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Algorithm IP can be implemented in linear time to the number of vertices and

edges.

We close this section by giving an example that demonstrates the algorithm

Example 4.1 Consider the graph G1 of 5 vertices and 2 blocks in Figure 4.1. Notice

that its blocks are two complete graphs.

1. Give a regular vertex labeling f such that f(c) = 0, and f(v) = 1 for v 6= c of

G1 in Figure 4.1.

2. Construct an empty stack S in Figure 4.1.

ja1 jb 1

jc 0

jd1 je 1

¡
¡¡

@
@@

@
@@

¡
¡¡

Stack S

Figure 4.1: Graph G1 of 5 vertices, and an empty stack S.

3. Choose the block B1 = {a, b, c}, which is a complete graph, with the only cut-

vertex c, and another vertex a. Thus, f(c) = 0 + f(a) = 1. Then, push (a, c, 1)

into S, and delete a from G1 to get the graph G2 in Figure 4.2.

jb 1

jc 1

jd1 je 1

@
@@

@
@@

¡
¡¡

Stack S

a, c, 1

Figure 4.2: Graph G2 results from G1 by deleting a. Update stack S.

4. Choose the vertex b. Thus, f(c) = 1 + f(b) = 2. Then, push (b, c, 1) into S,

and delete b from G2 to get the graph G3 in Figure 4.3.
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jc 1

jd1 je 1

@
@@

¡
¡¡

Stack S

a, c, 1
b, c, 1

Figure 4.3: Graph G3 results from G2 by deleting b. Update stack S.

5. Choose the final block B2 = {c, d, e} and the vertex c. For all vertices of

V (B2) − {c}, continue this process. Thus, f(c) = 4. Then, ip(G) = 2 and the

isometric-path cover is P = {c, c}. Hence, we obtain the graph G4 in Figure

4.4.

jc 4

Stack S

a, c, 1
b, c, 1
d, c, 1
e, c, 1

Figure 4.4: Graph G4 results from G3 by deleting d and e. Update stack S.

6. Pop (e, c, 1) from stack S to update as in Figure 4.5. Thus, we get P = {ce, c}.

Stack S

a, c, 1
b, c, 1
d, c, 1

Figure 4.5: Update stack S by poping (e, c, 1).

7. Also, pop (d, c, 1) from S, and we get P = {ce, cd}. Continue this Process. Pop

(b, c, 1) from S to obtain P = {ceb, cd}. Finally, pop (a, c, 1) form S. Hence,

P = {ceb, cda}.
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4.3 Isometric-path cover in complete r-partite graphs

In this section we determine isometric-path numbers of all complete r-partite graphs.

Suppose G is the complete r-partite graph Kn1,n2,...,nr of n vertices, where r ≥ 2,

n1 ≥ n2 ≥ . . . ≥ nr and n = n1 + n2 + . . . + nr. Let G has α parts of odd sizes. We

notice that every isometric path in G has at most 3 vertices. Consequently,

ip(G) ≥
⌈n

3

⌉
.

Also, for any path of 3 vertices in an isometric-path cover C, two end-vertices of the

path is in a part of G and the center vertex in another part. In case when two paths

of 3 vertices in C have a common end-vertex, we may replace one by a path of 2

vertices. And, a path of 1 vertex can be replaced by a path of 2 vertices. So, without

loss of generality, we may only consider isometric-path covers in which every path is

of 2 or 3 vertices, and two 3-vertices paths have different end-vertices.

Lemma 4.7 If 3n1 > 2n, then ip(G) = dn1

2
e.

Proof. First, ip(G) ≥ dn1

2
e since every isometric path contains at most two vertices

in the first part.

On the other hand, we use an induction on n− n1 to prove that ip(G) ≤ dn1

2
e.

When n − n1 = 1, we have G = Kn−1,1. In this case, it is clear that ip(G) ≤ dn1

2
e.

Suppose n− n1 ≥ 2 and the claim holds for n′ − n′1 < n − n1. Then we remove two

vertices from the first part and one vertex from the second part to form an isometric

3-path P . Since 3n1 > 2n, we have n1 − 2 > 2(n − n1 − 1) > 0 and so n1 − 2 > n2.

Then, the remaining graph G′ has r′ ≥ 2, n′1 = n1 − 2 and n′ = n − 3. It then still

satisfies 3n′1 > 2n′. As n′−n′1 = n−n1−1, by the induction hypothesis, ip(G′) ≤ dn′1
2
e

and so ip(G) ≤ dn′1
2
e+ 1 = dn1

2
e.

Lemma 4.8 If 3α > n, then ip(G) = dn+α
4
e.
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Proof. Suppose C is an optimum isometric-path cover with p2 paths of 2 vertices

and p3 paths of 3 vertices. Then

2p2 + 3p3 ≥ n.

Notice that there are at most n−α vertices in G can be paired up as the end-vertices

of the 3-paths in P . Hence p3 ≤ n−α
2

and so

2p2 + 2p3 ≥ n− n− α

2
=

n + α

2
or ip(G) = p2 + p3 ≥

⌈
n + α

4

⌉
.

On the other hand, we use an induction on n− α to prove that ip(G) ≤ dn+α
4
e.

When n − α ≤ 1, we have n = α and G is the complete graph of order n. So,

ip(G) = dn
2
e = dn+α

4
e. Suppose n − α ≥ 2 and the claim holds for n′ − α′ < n − α.

In this case, 3α > n ≥ α + 2 which implies α > 1 and n > 3. Then we may remove

two vertices from the first part of and one vertex form an odd part other than the

first part to form an isometric 3-path P of G. The remaining graph G′ has n′ = n−3

and α′ = α − 1. It then satisfies 3α′ > n′. Notice that r′ ≥ 2 unless G = K2,1,1 in

which n = 4 and α = 2 imply ip(G) = 2 = dn+α
4
e. By the induction hypothesis,

ip(G′) ≤ dn′+α′
4
e and so ip(G) ≤ dn′+α′

4
e+ 1 = dn+α

4
e.

Lemma 4.9 If 3n1 ≤ 2n and 3α ≤ n, then ip(G) = dn
3
e.

Proof. Since every isometric path in G has at most 3 vertices, ip(G) ≥ dn
3
e.

On the other hand, we use an induction on n to prove that ip(G) ≤ dn
3
e. When

n ≤ 8, by the assumptions that 3n1 ≤ 2n and 3α ≤ n we have G ∈ {K2,1, K2,2, K3,2,

K2,2,1, K4,2, K4,1,1, K3,3, K3,2,1, K2,2,2, K2,2,1,1, K4,3, K4,2,1, K3,2,2, K2,2,2,1, K5,3, K5,2,1,

K4,4, K4,3,1, K4,2,2, K4,2,1,1, K3,3,2, K3,2,2,1, K2,2,2,2, K2,2,2,1,1}. It is straightforward to

check that ip(G) ≤ dn
3
e.

Suppose n ≥ 9 and the claim holds for n′ < n. We remove two vertices from

the first part and one vertex from the jth part to form an isometric 3-path P for
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G, where j is the largest index such that j ≥ 2 and nj is odd (when ni are even for

all i ≥ 2, we choose j = r). Then, the remaining subgraph G′ has n′ = n − 3 and

α′ = α − 1 or α′ ≤ 2. Therefore, 3α ≤ n and n ≥ 9 imply that 3α′ ≤ n′ in any case.

We shall prove that 3n′1 ≤ 2n′ according to the following cases.

Case 1. n1 ≥ n2 + 2.

In this case, n1 − 2 ≥ n2 ≥ ni for all i ≥ 2 and so n′1 = n1 − 2. Therefore,

3n′1 = 3(n1 − 2) ≤ 2(n− 3) = 2n′.

Case 2. n1 ≤ n2 + 1 and n2 ≤ 4.

In this case, n′1 ≤ n2 ≤ 4 and n′ ≥ 6. Then, 3n′1 ≤ 12 ≤ 2n′.

Case 3. n1 ≤ n2 + 1 and n2 ≥ 5 and r = 2.

In this case, n′1 ≤ n2 − 1 and n′ = n − 3 = n1 + n2 − 3 ≥ 2n2 − 3. Then,

3n′1 ≤ 3n2 − 3 ≤ 4n2 − 8 < 2n′.

Case 4. n1 ≤ n2 + 1 and n2 ≥ 5 and r ≥ 3.

In this case, n′1 ≤ n2 and n′ = n − 3 ≥ n1 + n2 + 1 − 3 ≥ 2n2 − 2. Then,

3n′1 ≤ 3n2 ≤ 4n2 − 5 < 2n′.

According to Lemma 4.7, 4.8 and 4.9, we have the following theorem.

Theorem 4.10 Suppose G is the complete r-partite graph Kn1,n2,...,nr of n vertices

with r ≥ 2, n1 ≥ n2 ≥ . . . ≥ nr and n = n1 + n2 + . . . + nr. If there are exactly α

indices i with ni odd, then

ip(G) =





dn1

2
e, if 3n1 > 2n;

dn+α
4
e, if 3α > n;

dn
3
e, if 3α ≤ n and 3n1 ≤ 2n.

In the proofs of the lemmas above, the essential points for the arguments is the

fact that each partite set of the complete r-partite graph is trivial. If we add some

edges into the graph but still keep that each partite set can be partitioned into bni

2
c

pairs of two nonadjacent vertices and ni − 2bni

2
c vertex, then the same result still

holds.
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Corollary 4.11 Suppose G is the graph obtained from the complete r-partite graph

Kn1,n2,...,nr of n vertices by adding edges such that each i-th part can be partitioned

into bni

2
c pairs of two nonadjacent vertices and ni − 2bni

2
c vertex, where r ≥ 2,

n1 ≥ n2 ≥ . . . ≥ nr and n = n1 + n2 + . . . + nr. If there are exactly α indices i with

ni odd, then

ip(G) =





dn1

2
e, if 3n1 > 2n;

dn+α
4
e, if 3α > n;

dn
3
e, if 3α ≤ n and 3n1 ≤ 2n.

4.4 Isometric-path cover in Hamming graphs

In this section we determine isometric-path numbers of Cartesian products of 2 and 3

complete graphs. Recall that a Hamming graph is the Cartesian product of complete

graphs, which is the graph Kn1¤Kn2¤ . . . ¤Knr = (V, E) with vertex set

V = {(x1, x2, . . . , xr) : 0 ≤ xi < ni for 1 ≤ i ≤ r}

and edge set

E = {(x1, x2, . . . , xr)(y1, y2, . . . , yr) : xi = yi for all i except just one xj 6= yj}.

Suppose G is the Hamming graph Kn1¤Kn2¤ . . . ¤Knr of n vertices, where

n = n1n2 . . . nr and ni ≥ 2 for 1 ≤ i ≤ r. We notice that every isometric path in G

has at most r + 1 vertices. Consequently,

ip(G) ≥
⌈

n

r + 1

⌉
.

We first consider the case when r = 2

Theorem 4.12 If n1 ≥ 2 and n2 ≥ 2, then ip(Kn1¤Kn2) = dn1n2

3
e.

Proof. We only need to prove that ip(Kn1¤Kn2) ≤ dn1n2

3
e. We shall prove this

assertion by induction on n1 + n2. For the case when n1 + n2 ≤ 6, the isometric-path
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covers

C2,2 = {(0, 0)(0, 1), (1, 0)(1, 1)},

C2,3 = {(0, 0)(0, 1)(1, 1), (0, 2)(1, 2)(1, 0)},

C2,4 = {(0, 0)(0, 1)(1, 1), (0, 2)(1, 2)(1, 0), (0, 3)(1, 3)} and

C3,3 = {(0, 0)(2, 0)(2, 2), (0, 1)(0, 2)(1, 2), (1, 0)(1, 1)(2, 1)}

for K2¤K2, K2¤K3, K2¤K4 and K3¤K3 respectively, gives the assertion.

r r

r r

K2¤K2

r r

r r

r r

K2¤K3

r r

r r

r r

r r

K2¤K4

r r r

r r r

r r r

K3¤K3

Figure 4.6: Isometric-path covers of K2¤Ki for 2 ≤ i ≤ 4, and K3¤K3.

Suppose n1 + n2 ≥ 7 and the assertion holds for n′1 + n′2 < n1 + n2. For the

case when all ni ≤ 4, without loss of generality we may assume that n1 = 4 and

3 ≤ n2 ≤ 4. As we can partition the vertex set of Kn1¤Kn2 into the vertex sets of

two copies of distance invariant induced subgraphs K2¤Kn2 ,

ip(Kn1¤Kn2) ≤ 2ip(K2¤Kn2) ≤ 2

⌈
2n2

3

⌉
=

⌈n1n2

3

⌉
.

For the case when there is at least one ni ≥ 5, say n1 ≥ 5, again we can partition

the vertex set of Kn1¤Kn2 into the vertex sets of two distance invariant induced

subgraphs K3¤Kn2 and Kn1−3¤Kn2 . Then,

ip(Kn1¤Kn2) ≤ ip(K3¤Kn2) + ip(Kn1−3¤Kn2)

≤ ⌈
3n2

3

⌉
+

⌈
(n1−3)n2

3

⌉
=

⌈
n1n2

3

⌉
.

Lemma 4.13 If n1, n2 and n3 are positive even integers, then

ip(Kn1¤Kn2¤Kn3) =
n1n2n3

4
.
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Proof. We only need to prove that ip(Kn1¤Kn2¤Kn3) ≤ n1n2n3

4
. First, the isometric-

path cover C2,2,2 = {(0, 0, 0)(0, 0, 1)(0, 1, 1)(1, 1, 1), (1, 0, 1)(1, 0, 0)(1, 1, 0)(0, 1, 0)} for

K2¤K2¤K2 proves the assertion for the case when n1 = n2 = n3 = 2.

r r

r r

r r

r r

(0,0,0) (0,0,1)

Figure 4.7: An isometric-path cover of K2¤K2¤K2.

For the general case, as the vertex set of Kn1¤Kn2¤Kn3 can be partitioned into

the vertex sets of n1n2n3

8
copies of distance invariant induced subgraphs K2¤K2¤K2,

ip(Kn1¤Kn2¤Kn3) ≤
(n1n2n3

8

)
ip(K2¤K2¤K2) ≤ n1n2n3

4
.

Lemma 4.14 If n3 ≥ 3 is odd, then ip(K2¤K2¤Kn3) = n3 + 1.

Proof. First, we claim that ip(K2¤K2¤Kn3) ≥ n3 +1. Suppose to the contrary that

the graph can be covered by n3 isometric paths

Pi : (xi1, xi2, xi3)(yi1, yi2, yi3)(zi1, zi2, zi3)(wi1, wi2, wi3),

i = 1, 2, . . . , n3. These paths are in fact vertex-disjoint paths of 4 vertices, each

contains exactly one type-j edge for j = 1, 2, 3, where an edge (x1, x2, x3)(y1, y2, y3)

is type-j if xj 6= yj. For each Pi we then have xi1 = 1− wi1 and xi2 = 1− wi2, which

imply that xi1 + xi2 has the same parity with wi1 + wi2. We call the path Pi even or

odd when xi1 + xi2 is even or odd, respectively. Also, as Pi has just one type-3 edge,

by symmetry, we may assume either xi3 6= yi3 = zi3 = wi3 or xi3 = yi3 6= zi3 = wi3,

for which we call Pi type 1-3 or type 2-2 respectively. For a type 2-2 path Pi we may

further assume that xi1 6= yi1 = zi1 = wi1.

For 0 ≤ x3 < n3, the x3-square is the set

S(x3) = {(0, 0, x3), (0, 1, x3), (1, 0, x3), (1, 1, x3)}.

63



Notice that a type 1-3 path Pi contains 1 vertex in S(xi3) and 3 vertices in S(wi3),

while a type 2-2 path Pi contains 2 vertices in S(xi3) and 2 vertices in S(wi3). We

call a type 1-3 path Pi is adjacent to another type 1-3 path Pj if the last 3 vertices of

Pi and the first vertex of Pj form a square. This defines a digraph D whose vertices

are all type 1-3 paths, in which each vertex has out-degree one and in-degree at most

one. In fact, each vertex then has in-degree one. In other words, the “adjacent to” is

a bijection. Consequently, vertices of all type 1-3 paths together form p squares; and

so vertices of all type 2-2 paths form the other n3 − p squares.

Since xi1 6= yi1 = zi1 = wi1 for a type 2-2 path Pi, the first two vertices of a type

2-2 path together with the first two vertices of another type 2-2 path form a square.

This shows that there is an even number of type 2-2 paths. Therefore, there is an

odd number of type 1-3 paths.

On the other hand, in a type 1-3 path Pi we have xi1 + xi2 = yi1 + yi2 has the

different parity with zi1 + zi2 , and the same parity with wi1 + wi2 . So it is adjacent

to a type 1-3 path whose parity is the same as zi1 + zi2 . That is, a type 1-3 path is

adjacent to a type 1-3 path of different parity. Therefore, the digraph D is the union

of some even directed cycle. This is a contradiction to the fact that there is an odd

number of type 1-3 paths.

The arguments above prove that ip(K2¤K2¤Kn3) ≥ n3 + 1. On the other

hand, since the vertex set of K2¤K2¤Kn3 is the union of the vertex sets of (n3 +

1)/2 copies of K2¤K2¤K2, by the cover C2,2,2 in the proof of Lemma 4.13, we have

ip(K2¤K2¤Kn3) ≤ n3 + 1.

Theorem 4.15 If all ni ≥ 2, then ip(Kn1¤Kn2¤Kn3) = dn1n2n3

4
e except for the case

when two ni are 2 and the third is odd. In the exceptional case, ip(Kn1¤Kn2¤Kn3) =

n1n2n3

4
+ 1.

Proof. The exceptional case holds according to Lemma 4.14.
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For the main case, by Lemma 4.13, we may assume that at least one ni is odd.

Again, we only need to prove that ip(Kn1¤Kn2¤Kn3) ≤ dn1n2n3

4
e. We shall prove the

assertion by induction on
∑3

i=1 ni. For the case when
∑3

i=1 ni ≤ 10, the following

isometric-path covers for K2¤K3¤K3, K2¤K3¤K4, K2¤K3¤K5, K3¤K3¤K3 and

K3¤K3¤K4, respectively, prove the assertion:

C2,3,3 = {(0, 1, 1)(0, 1, 0)(0, 0, 0)(1, 0, 0), (0, 2, 2)(0, 2, 0)(1, 2, 0)(1, 1, 0),
(0, 2, 1)(1, 2, 1)(1, 1, 1), (0, 0, 2)(0, 1, 2)(1, 1, 2),
(0, 0, 1)(1, 0, 1)(1, 0, 2)(1, 2, 2)};

r
(0,0,0)

r

r r

r r

r
(0,0,1)

r

r r

r r

r
(0,0,2)

r

r r

r r

Figure 4.8: An isometric-path cover of K2¤K3¤K3.

(
Let C∗2,3,3 = C2,3,3\{(0, 2, 1)(1, 2, 1)(1, 1, 1), (0, 0, 2)(0, 1, 2)(1, 1, 2)}∪

{(0, 2, 1)(1, 2, 1)(1, 1, 1)(1, 1, 3), (0, 0, 2)(0, 1, 2)(1, 1, 2)(1, 1, 4)}.
)

r
(0,0,0)

r

r r

r r

r
(0,0,1)

r

r r

r r

r
(0,0,2)

r

r r

r r

r
(1,1,3)

r
(1,1,4)

Figure 4.9: Another isometric-path cover of K2¤K3¤K3.

C2,3,4 = {(0, 1, 1)(0, 1, 0)(0, 0, 0)(1, 0, 0), (0, 2, 1)(0, 2, 0)(1, 2, 0)(1, 1, 0),
(0, 2, 3)(0, 2, 2)(1, 2, 2)(1, 1, 2), (0, 1, 3)(0, 1, 2)(0, 0, 2)(1, 0, 2),
(0, 0, 1)(1, 0, 1)(1, 1, 1)(1, 1, 3), (1, 2, 1)(1, 2, 3)(1, 0, 3)(0, 0, 3)};
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(0,0,3)
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Figure 4.10: An isometric-path cover of K2¤K3¤K4.

C2,3,5 = C∗2,3,3 ∪ {(0, 1, 4)(0, 1, 3)(0, 2, 3)(1, 2, 3), (0, 0, 3)(0, 0, 4)(0, 2, 4)(1, 2, 4),
(1, 0, 3)(1, 0, 4)};

r
(0,0,0)

r

r r

r r

r
(0,0,1)

r

r r

r r

r
(0,0,2)

r

r r

r r

r
(0,0,3)

r

r r

r r

r
(0,0,4)

r

r r

r r

Figure 4.11: An isometric-path cover of K2¤K3¤K5.

C3,3,3 = {(0, 0, 0)(0, 2, 0)(1, 2, 0)(1, 2, 1), (1, 1, 0)(2, 1, 0)(2, 2, 0)(2, 2, 1),
(0, 2, 1)(0, 1, 1)(1, 1, 1)(1, 1, 2), (1, 0, 1)(2, 0, 1)(2, 1, 1)(2, 1, 2),
(0, 1, 0)(0, 1, 2)(0, 2, 2)(1, 2, 2), (0, 0, 1)(0, 0, 2)(2, 0, 2)(2, 2, 2),
(1, 0, 2)(1, 0, 0)(2, 0, 0)};

r
(0,0,0)

r r

r r r

r r r

r
(0,0,1)

r r
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r r r

r
(0,0,2)

r r
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Figure 4.12: An isometric-path cover of K3¤K3¤K3.

C3,3,4 = {(0, 0, 0)(0, 2, 0)(1, 2, 0)(1, 2, 1), (1, 1, 0)(2, 1, 0)(2, 2, 0)(2, 2, 1),
(0, 2, 1)(0, 1, 1)(1, 1, 1)(1, 1, 2), (1, 0, 1)(2, 0, 1)(2, 1, 1)(2, 1, 2),
(0, 1, 0)(0, 1, 2)(0, 2, 2)(1, 2, 2), (0, 0, 2)(2, 0, 2)(2, 2, 2)(2, 2, 3),
(0, 1, 3)(1, 1, 3)(1, 0, 3)(1, 0, 2), (1, 0, 0)(2, 0, 0)(2, 0, 3)(2, 1, 3),
(0, 0, 1)(0, 0, 3)(0, 2, 3)(1, 2, 3)}.
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Figure 4.13: An isometric-path cover of K3¤K3¤K4.

Suppose
∑3

i=1 ni ≥ 11 and the assertion holds for
∑3

i=1 n′i <
∑3

i=1 ni. We shall

consider the following cases.

For the case when there is some i, say i = 3, such that n3 ≥ 7 or n3 = 6 with all

nj ≥ 3, we have ip(Kn1¤Kn2¤Kn3) ≤ ip(Kn1¤Kn2¤K4) + ip(Kn1¤Kn2¤Kn3−4) ≤
dn1n24

4
e+ dn1n2(n3−4)

4
e = dn1n2n3

4
e.

For the case when some ni, say n3, is equal to 4, we may assume n1 ≥ n2 and

so n1 ≥ 4. Then ip(Kn1¤Kn2¤K4) ≤ ip(K2¤Kn2¤K4) + ip(Kn1−2¤Kn2¤K4) =

d2n24
4
e+ d (n1−2)n24

4
e = dn1n2n3

4
e.

There are 6 remaining cases. The following isometric-path covers prove the

assertion for K2¤K3¤K6, K2¤K5¤K5 and K3¤K5¤K5, respectively:

C2,3,6 = C∗2,3,3 ∪ {(0, 0, 4)(0, 0, 3)(1, 0, 3)(1, 2, 3), (0, 1, 3)(0, 1, 4)(0, 2, 4)(1, 2, 4),
(0, 2, 3)(0, 2, 5)(1, 2, 5)(1, 1, 5), (0, 1, 5)(0, 0, 5)(1, 0, 5)(1, 0, 4)};

r
(0,0,0)

r

r r

r r

r
(0,0,1)

r
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(0,0,2)
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r
(0,0,4)
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r r

r
(0,0,5)

r

r r

r r

Figure 4.14: An isometric-path cover of K2¤K3¤K6.

C2,5,5 = C2,3,5\{(1, 0, 3)(1, 0, 4)}∪
{(0, 4, 1)(0, 4, 0)(0, 3, 0)(1, 3, 0), (1, 4, 0)(1, 4, 1)(1, 3, 1)(0, 3, 1),

(0, 4, 3)(0, 4, 2)(0, 3, 2)(1, 3, 2), (1, 4, 2)(1, 4, 3)(1, 3, 3)(0, 3, 3),
(1, 0, 3)(1, 0, 4)(1, 4, 4), (0, 4, 4)(0, 3, 4)(1, 3, 4)};
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Figure 4.15: An isometric-path cover of K2¤K5¤K5.

C3,5,5 = C2,3,5\{(1, 0, 3)(1, 0, 4)}∪
{(0, 4, 0)(2, 4, 0)(2, 0, 0)(2, 0, 1), (0, 3, 0)(2, 3, 0)(2, 1, 0)(2, 1, 1),

(0, 4, 1)(0, 3, 1)(1, 3, 1)(1, 3, 0), (1, 4, 0)(1, 4, 1)(2, 4, 1)(2, 2, 1),
(1, 0, 3)(2, 0, 3)(2, 2, 3)(2, 2, 0), (1, 0, 4)(2, 0, 4)(2, 3, 4)(2, 3, 1),
(0, 3, 2)(2, 3, 2)(2, 1, 2)(2, 1, 3), (0, 4, 4)(0, 4, 2)(2, 4, 2)(2, 0, 2),
(0, 4, 3)(1, 4, 3)(1, 3, 3)(1, 3, 2), (0, 3, 3)(2, 3, 3)(2, 4, 3)(2, 4, 4),
(0, 3, 4)(1, 3, 4)(1, 4, 4)(1, 4, 2), (2, 2, 2)(2, 2, 4)(2, 1, 4)}.
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Figure 4.16: An isometric-path cover of K3¤K5¤K5.

The other 3 cases follows from the following inequalities:

ip(K2¤K5¤K6) ≤ ip(K2¤K3¤K6) + ip(K2¤K2¤K6) ≤ 9 + 6 = 15,

ip(K3¤K3¤K5) ≤ ip(K3¤K3¤K2) + ip(K3¤K3¤K3) ≤ 5 + 7 = 12,

ip(K5¤K5¤K5) ≤ ip(K5¤K5¤K3)+ip(K5¤K5¤K2) ≤ 19+13 = 32.
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Chapter 5

Conclusion

This thesis studies three problems on vertex partition/cover: the path-partition prob-

lem, the induced-path-partition problem and the isometric-path-cover problem. Many

of our results are solved from algorithmic points of view.

For the path-partition problem, we give an O(|V | + |E|)-time algorithm for

graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

For the induced-path-partition problem, we present an O(|V | + |E|)-time al-

gorithm for graphs whose blocks are complete graphs, cycles or complete bipartite

graphs. We also give a polynomial-time algorithm for cographs.

We have three results for the isometric-path-cover problem. First, we determines

isometric-path numbers of block graphs, and also give an O(|V |+ |E|)-time algorithm

for finding the corresponding paths. Second, we determine isometric-path numbers

of complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

Although some results of the above three problems are obtained, there are still

many questions remain open. We describe below some of them that we concern most.

In Chapter 2, we use the tree structure to obtain an algorithm for the path-

partition problem on graphs whose blocks are handleable. A nature question is that

can we extend our result to graphs with small separator structure.

For the induced-path numbers, Alsardary [3] gave an upper bound on hyper-

cubes. It is our hope to determine the exact values of them. It is also interesting to
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characterize graphs whose path-partition numbers are equal to induced-path numbers.

For the isometric-path-cover problem, a first question that we can not answer

is that whether the isometric-path-cover problem is NP-complete or not. We are

also interested in finding an efficient algorithm on threshold graphs. Fitzpatrick et al.

[19] gave an upper bound of isometric-path numbers on hypercubes. Can we find the

exact values of them? We also study the isometric-path numbers on d-dimensional

Hamming graphs for d = 2 and 3. Can we determine the isometric-path numbers for

Hamming graphs with a general dimension d? It is also interesting to characterize

graphs whose cop-numbers are equal to isometric-path numbers. Finally, it is our

hope to study approximation algorithms for the above problem.
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