國 立 交 通 大學

應用數學系

博士論文

圖形之路徑分割及其變型

Path Partition and Its Variations in Graphs

研 究 生：潘俊杰
指導教授：張鎮華教授

中華民國九十三年六月

圖形之路徑分割及其變型 Path Partition and Its Variations in Graphs

研 究 生：潘俊杰 Student：Jun－Jie Pan
指導教授：張鎮華教授 Advisor：Professor Gerard J．Chang

國立交通大學
應用數學系
博 士 論 文

A Dissertation
Submitted to Department of Applied Mathematics
College of Science
National Chiao Tung University in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Applied Mathematics
June 2004
Hsinchu，Taiwan，Republic of China
中華民國九十三年六月

Acknowledgments

To God I owe everything.
To everyone that helped make the completion of this thesis possible I offer my thanks.

My advisor, Professor Gerard Jennhwa Chang, provided me with expert guidance, many hours of discussion, and financial support to complete the thesis. I am grateful for his time, effort, patience and support.

I am thankful to members of my committee: Professor Ko-Wei Lih, Professor Frank Kwang-Ming Hwang, Profeŝsor Chiluyuan Chen, Professor Bor-Liang Chen, Professor Kuo-Ching Huang, Professor Chiang Lin, Professor Roger K. Yeh and Professor Jing-Ho Yan. Thanks to them for suggesting many thoughtful improvements.

I wish to thank many officemates I have had in the past six years. Dr. Ju-Si Lee, Dr. Yu-Chi Liu, Chih-Hung Yen and Guan-Yu Chen, with whom I had many discussions not only about mathematics.

Special thanks go to Professor Frank Kwang-Ming Hwang, Professor Hung-Lin Fu and Professor Chiuyuan Chen for sharing experience on research.

To my parents, I am indebted with gratitude for their infinite support throughout all stages of the preparation of this thesis, and throughout all stages of my life.

圖形之路徑分割及其變型

研究生：潘俊杰

國立交通大學

應用數學系

摘 要

假設 P 是一個圖形性質。圖形的 P－分割是將點集分割成互不相交的的集合，使得這些集合都誘導出滿足性質 P 的子圖。 P－分割數是是圖中所有 P－分割的最小數，而 P－分割問題是找出 $P=$ 分割數的問題。同樣的，我們也可以定義所謂的 P－覆蓋和 P－覆蓋數，而他們和 P－分割，P－分割數只差在不要求集合要互不相交而已。

各式各様的 P－分割和 P－覆盖早包在文獻中被探討。比如，著色數是 P 為 「沒有邊」這個性質的 P－分割數。由 Chartrand，Kronk 和Wall［8］所定義的點蔭度 $a(G)$ ，其 P 為「森林」這個性質。由 Harary［24］定義的線性點蔭度 $\operatorname{lva}(G)$ ，其 P為「線性森林」這個性質。

這篇論文的目的是考慮 P 為「有一條漢米爾頓路徑」「誘導路徑」或「原圖的同距路徑」性質。也就是說，此篇論文探討路徑分割問題，誘導路徑分割問題和同距路徑覆蓋問題。

就路徑分割問題而言，我們在塊形為完全圖，圈或完全二分圖的圖形上，給了一個 $O(|V|+|E|)$－時間的演算法。

就誘導路徑分割問題而言，我們在塊形為完全圖，圈或完全二分圖的圖形上，給了一個 $O(|V|+|E|)$－時間的演算法。我們也在補可約的圖形上給了一個多項式時間的演算法。

在同距路徑覆蓋問題上我們有三個結果。首先，我們決定了塊形圖形的同距路徑覆蓋數，並給了一個找出對應的路徑，時間為 $O(|V|+|E|)$ 的演算法。最後，我們算出完全 r 分圖， 2 維和 3 維漢明圖的同距路徑覆蓋數。

Path Partition and Its Variations in Graphs

Student: Jun-Jie Pan
Department of Applied Mathematics
National Chiao Tung University

Advisor: Professor Gerard J. Chang
Department of Mathematics
National Taiwan University

Abstract

Suppose P is a graphical property. A P-partition of a graph $G=(V, E)$ is a partition of V into pairwise disjoint sets such that each set induces a subgraph satisfying property P. The P-partition problem is to find the P-partition number which is the minimum cardinality of a P-partition of a graph. We can define P-cover and P-cover number in a similar way, except now the subsets are not required to be disjoint.

Various P-partition and P-cover problems have been studied in the literature. For instance, the chromatic number is the P-partition number with the property P being "has no edges". For the vertex-arboricitŷ $a(G)$ defined by Chartrand, Kronk and Wall [8], the property P is "induces a forest". For the linear vertex arboricity $\operatorname{lva}(G)$ defined by Harary [24], the property P is "induces a linear forest".

The purpose of this thesis is to consider the problems in which property P is "containing a Hamiltonian path", "an induced path" or "an isometric path of the original graph". That is, we study the path-partition problem, the induced-pathpartition problem and the isometric-path-cover problem.

For the path-partition problem, we give an $O(|V|+|E|)$-time algorithm for graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

For the induced-path-partition problem, we present an $O(|V|+|E|)$-time algorithm for graphs whose blocks are complete graphs, cycles or complete bipartite graphs. We also give a polynomial-time algorithm for cographs.

We have three results for the isometric-path-cover problem. First, we determine isometric-path numbers of block graphs, and also give an $O(|V|+|E|)$-time algorithm for finding the corresponding paths. Second, we give isometric-path numbers of complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

Contents

Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
List of Figures v
1 Introduction 1
1.1 Basic definitions in graphs 2
1.2 Basic definitions in algorithms 1896 6
1.3 Path partition 8
1.4 Induced-path partition 9
1.5 Isometric-path cover 10
1.6 Overview of the thesis 11
2 Path Partition 13
2.1 Preliminary of path partition 13
2.2 Path partition in graphs 14
2.3 Path partitions for special blocks 18
2.4 Algorithm for graphs with special blocks 21
3 Induced-path Partition 30
3.1 Preliminary of induced-path partition 30
3.2 Induced-path partition in graphs with special blocks 31
3.2.1 Inductive theorem 31
3.2.2 Induced-path partitions for special blocks 36
3.2.3 Algorithm for graphs with special blocks 40
3.3 Induced-path partition in cographs 47
4 Isometric-path Cover 51
4.1 Preliminary of isometric-path cover 51
4.2 Isometric-path cover in block graphs 51
4.2.1 Formula for block graphs 52
4.2.2 Algorithm for block graphs 54
4.3 Isometric-path cover in complete r-partite graphs 58
4.4 Isometric-path cover in Hamming graphs 61
5 Conclusion 69
Bibliography
71

List of Figures

1.1 A graph $G=(V, E)$. 3
1.2 A digraph D. 3
1.3 A subgraph of the graph in Figure ??. 4
1.4 The complete bipartite graph $K_{2,2}$. 5
1.5 The Cartesian product $P_{2} \square P_{2}$ of P_{2} and P_{2} 5
1.6 A cograph $K_{1,3}$. 6
1.7 The Hamming graph $K_{2} \square K_{3}$. 6
1.8 A graph $G=(V, E)$ having two blocks. 7
1.9 A graph G with $p(G)=1$..E. 8
1.10 A graph G with $\rho(G)=2$ 9
1.11 A graph G with $\operatorname{ip}(G)=2.5 .1396$ 11
2.1 Graph G_{1} of 12 vertices and 5 blocks 26
2.2 Graph G_{2} results from G_{1} by deleting $\{g\}$. 27
2.3 Graph G_{3} results from G_{2} by deleting $\{h\}$. 27
2.4 Graph G_{4} results from G_{3} by deleting $\{e, f\}$. 27
2.5 Graph G_{5} results from G_{4} by deleting $\{a, b, c\}$ 28
2.6 Graph G_{6} results from G_{5} by deleting d and set $f(i)=1$. 28
2.7 Graph G_{7} results from G_{6} by deleting i and set $f(k)=1$. 28
2.8 Graph G_{8} results from G_{7} by deleting k and set $f(j)=1$ 29
2.9 Graph G_{9} results from G_{8} by deleting j and set $f(l)=1$. 29
3.1 Graph G_{1} of 9 vertices and 3 blocks. 45
3.2 Graph G_{2} results from G_{1} by deleting $\{e\}$. 45
3.3 Graph G_{3} results from G_{2} by deleting $\{a, b, d\}$ 46
3.4 Graph G_{3} with a new label at vertex c. 46
3.5 Graph G_{3} with a new label at vertex f 46
4.1 Graph G_{1} of 5 vertices, and an empty stack S. 56
4.2 Graph G_{2} results from G_{1} by deleting a. Update stack S. 56
4.3 Graph G_{3} results from G_{2} by deleting b. Update stack S 57
4.4 Graph G_{4} results from G_{3} by deleting d and e. Update stack S. 57
4.5 Update stack S by poping ($e, c, 1$). 57
4.6 Isometric-path covers of $K_{2} \square K_{i}$ for $2 \leq i \leq 4$, and $K_{3} \square K_{3}$ 62
4.7 An isometric-path cover of $K_{2} \square K_{2} \square K_{2}$. 63
4.8 An isometric-path cover of $K_{2} \square K_{3} \square K_{3}$. 65
4.9 Another isometric-path cover of $K_{2} \square K_{3} \square K_{3}$. 65
4.10 An isometric-path cover of $K_{2} \square K_{3} \square K_{4}$. 66
4.11 An isometric-path cover of $K_{2} \square K_{3} \square K_{5}$. 66
4.12 An isometric-path cover of K_{3} ■ $K_{3} \square K_{3}$. 66
4.13 An isometric-path cover of $K_{3} \square K_{3} \square K_{4}$. 67
4.14 An isometric-path cover of $K_{2} \square K_{3} \square K_{6}$. 67
4.15 An isometric-path cover of $K_{2} \square K_{5} \square K_{5}$. 68
4.16 An isometric-path cover of $K_{3} \square K_{5} \square K_{5}$. 68

Chapter 1

Introduction

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices of the graph. The path-partition problem is to find the path-partition number $p(G)$ of a graph G, which is the minimum cardinality of a path partition of G. The concept of path-partition number was introduced by Skupien [38], who studied the concept of Hamiltonian shortage of a graph G, written

He [38] proved that

$$
S_{H}(G)=\min \left\{p: G \times K_{p} \text { is Hamiltonian }\right\} .
$$

$$
S_{H}(G)= \begin{cases}p(G)-1=0, & \text { if } G \text { is Hamiltonian, } \\ p(G)+1=2, & \text { if } G=K_{1}, \\ p(G) \geq 1, & \text { if } G \text { is not Hamiltonian and } G \neq K_{1} .\end{cases}
$$

He [38] also used an variation of Gallai-Milgram Theorem [20], saying $p(G) \leq \alpha(G)$ for any graph G, to prove that $S_{H}(G) \leq \alpha(G)$ for any graph G. Notice that G has a Hamiltonian path if and only if $p(G)=1$.

The concept of path-partition number also has a close relationship with $L^{\prime}(2,1)$ labeling number [7] describes as follows. An $L^{\prime}(2,1)$-labeling of a graph G is a one to one function f from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$. The $L^{\prime}(2,1)-$ labeling number, denoted by $\lambda^{\prime}(G)$, is the smallest number k such that G has a a $L^{\prime}(2,1)$-labeling with $\max \{f(v): v \in V(G)\}=k$. Thus, $p(G)=\lambda^{\prime}\left(G^{c}\right)-|V(G)|+2$, where G^{c} is the graph with vertex set $V(G)$ defined by $u v \in E\left(G^{c}\right)$ if and only if $u v \in E(G)$ in [7]. For more details about $L^{\prime}(2,1)$-labeling, see [7].

We may extend the concept of path-partition number in a more general setting. Suppose P is a graphical property. A P-partition of a graph $G=(V, E)$ is a partition of V into pairwise disjoint sets such that each set induces a subgraph satisfying property P. The P-partition problem is to find the P-partition number which is the minimum cardinality of a P-partition of a graph. We can define P-cover and P-cover number in a similar way, except now the subsets are not required to be disjoint.

Various P-partition and P-cover problems have been studied in the literature. For instance, the chromatic number is the P-partition number with the property P being "has no edges". For the vertex-arboricity $a(G)$ defined by Chartrand, Kronk and Wall [8], the property P is "induces a forest". For the linear vertex arboricity lva (G) defined by Harary [24], the property P is "induces a linear forest".

The purpose of this thesis is to consider the problems in which property P is "containing a Hamiltonian path", "an induced path" or "an isometric path of the original graph". That is, we study the path-partition problem, the induced-pathpartition problem and the isometric-path-cover problem.

In this chapter, we first introduce some definitions needed in later chapters. Then, we describe motivations for studying the three problems mentioned above and give an overview of our results.

1.1 Basic definitions in graphs

A graph $G=(V, E)$ consists of a finite vertex set V and a finite edge set E, where each edge is an unordered pair $\{u, v\}$ of vertices called its end-vertices. For convenience, we write $u v$ for an edge $\{u, v\}$. If $u v \in E$, then u and v are adjacent. The cardinality of V is called the order of G, and the cardinality of E the size. The degree of a vertex v in a graph G, written $d_{G}(v)$, is the number of edges containing v. The maximum degree is denoted by $\Delta(G)$; the minimum degree by $\delta(G)$. The independence number $\alpha(G)$ of G is the maximum size of a pairwise nonadjacent vertex set in G.

We illustrate a graph on paper by assigning a point to each vertex and drawing a curve for each edge between the points representing its end-vertices, sometimes
omitting the names of the vertices or edges. Figure 1.1 is a graph with vertex set $V=\{a, b, c, d\}$, and edge set $E=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\}$.

Figure 1.1: A graph $G=(V, E)$.

A directed graph or digraph $D=(V, E)$ consists of a vertex set V and an edge set E, where each edge is an ordered pair of vertices. We also write $u v$ for the edge (u, v), with u being the tail and v being the head. We write $u \rightarrow v$ when $u v \in E$, meaning "there is an edge from u to v ".

Let v be a vertex in a digraph. The out-degree $d_{D}^{+}(v)$ is the number of edges with tail v, and the in-degree $d_{D}^{-}(v)$ is the number of edges with head v. Figure 1.2 shows a digraph D with vertex set $V_{b}=\{a, b, c, d, c, f\}$ and edge set $E=$ $\left\{(a, b),(b, c),(c, d),(d, e),(e, a)_{2}^{*}(f, a)\right\}$. Notice that $d_{D}^{+}(a)=1$ and $d_{D}^{-}(a)=2$.

Figure 1.2: A digraph D.

A subgraph of a graph $G=(V, E)$ is a graph $H=\left(V^{\prime}, E^{\prime}\right)$ such that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For a subset $S \subseteq V$, the subgraph induced by S is the graph $H=\left(S, E^{\prime}\right)$ with $E^{\prime}=\{x y \in E: x, y \in S\}$. For a subset $T \subseteq E$, the subgraph induced by T is the graph $H=\left(V^{\prime}, T\right)$ with $V^{\prime}=\{x \in V: x \in e$ for some $e \in T\}$. Figure 1.3 is a subgraph of the graph in Figure 1.1.

A path is an ordered list of distinct vertices $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ such that $v_{i-1} v_{i}$ is

Figure 1.3: A subgraph of the graph in Figure 1.1.
an edge for $1 \leq i \leq n$. The first and last vertices of a path are its end-vertices; a u, v-path is a path with end-vertices u and v. If a graph G has a u, v-path, then the distance from u to v, written $d(u, v)$, is the least length of a u, v-path; if G has no such path, then $d(u, v)=\infty$. The diameter $\operatorname{diam}(G)$ of a graph G is the maximum distance between two vertices in G. An induced path is a path in which two vertices are adjacent only for those with consecutive indices. A cycle is an an ordered list of distinct vertices $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$, except $v_{0}=v_{n}$ such that all $v_{i-1} v_{i}$ for $1 \leq i \leq n$ are edges. A graph is called Hamiltonian if it has a cycle containing all vertices of the graph. A graph with n vertices that is a path or a cycle is denoted by P_{n} or C_{n}, respectively. A graph $G \equiv(V, E)$ is connected if it has a u, v-path for each pair of vertices $u, v \in V$. The ordered list (c, a, b) of the graph in Figure 1.1 is a path, and (c, a, b, c) a cycle. The ordered list (a, b, c, d, e, a) of the graph in Figure 1.2 is a directed cycle.

A complete graph of order n, written K_{n}, is a graph in which every pair of vertices is an edge. Figure 1.1 is a complete graph of order 4. A complete bipartite graph is a graph whose vertex set is the union of the two disjoint sets and edge set consists of all pairs having a vertex from each of two disjoint sets covering the vertices. A complete r-partite graph is a graph whose vertex set can be partitioned into disjoint union of r nonempty parts, and two vertices are adjacent if and only if they are in different parts. We use $K_{n_{1}, n_{2}, \ldots, n_{r}}$ to denote the complete r-partite graph whose parts are of sizes $n_{1}, n_{2}, \ldots, n_{r}$, respectively. Figure 1.4 is the complete bipartite graph $K_{2,2}$.

The union of two graphs $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$, written $G \cup H$ is the graph having vertex set $V \cup V^{\prime}$ and edge set $E \cup E^{\prime}$. To specify the disjoint union with $V \cap V^{\prime}=\emptyset$, we write $G+H$. The join of G and H, written $G \times H$, is obtained

Figure 1.4: The complete bipartite graph $K_{2,2}$.
from $G+H$ by adding the edges $\left\{x y: x \in V\right.$ and $\left.y \in V^{\prime}\right\}$. The Cartesian product of graphs G and H, written $G \square H$, is the graph with vertex set $V \times V^{\prime}$ specified by putting (u, u^{\prime}) adjacent to $\left(v, v^{\prime}\right)$ if and only if (1) $u=v$ and $u^{\prime} v^{\prime} \in E^{\prime}$, or (2) $u^{\prime}=v^{\prime}$ and $u v \in E$. Complement reducible graphs (also called cographs) are defined recursively by the following rules: (i) K_{1} is a cograph; (ii) if G and H are cographs, then so are $G+H$ and $G \times H$; (iii) no other graphs are cographs. For more details on cographs, see $[12,13,26]$. Figure 1.5 is the Cartesian product of P_{2} and P_{2}, and Figure 1.6 is a cograph since we can use the following construction.

First, let $G_{1}=a, G_{2}=b, G_{3}=c, G_{4} \# d$ and $G_{5}=e$ by rule (i). Second, we get $G_{1}+G_{2}$ and $G_{4} \times G_{5}$ by rule (ii). Third, we obtain $\left(G_{1}+G_{2}\right) \times G_{3}$ by rule (ii). Finally, we get the required graph $\left(\left(G_{1}+G_{2}\right) \times G_{3}^{(}\right) \times\left(G_{4} \times G_{5}\right)$ by rule (ii).

Figure 1.5: The Cartesian product $P_{2} \square P_{2}$ of P_{2} and P_{2}.

A Hamming graph is the Cartesian product of complete graphs, which is the graph $K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}=(V, E)$ with vertex set

$$
V=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right): 0 \leq x_{i}<n_{i} \text { for } 1 \leq i \leq r\right\}
$$

and edge set

$$
E=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right)\left(y_{1}, y_{2}, \ldots, y_{r}\right): x_{i}=y_{i} \text { for all } i \text { except just one } x_{j} \neq y_{j}\right\}
$$

Figure 1.7 is the Hamming graph $K_{2} \square K_{3}$.

Figure 1.6: A cograph $K_{1,3}$.

Figure 1.7: The Hamming graph $K_{2} \square K_{3}$.

A cut-vertex of a graph is a vertex whose removal results in a graph having more components than the original graph. A block is a maximal connected subgraph without a cut-vertex. Notice that the intersection of two distinct blocks contains at most one vertex; and a vertex is a cut-vertex if and only it is the intersection of two or more blocks. Consequently, a graph with one or more cut-vertices has at least two blocks. An end block is a block with exactly one cut-vertex. A graph is a block graph if it is the intersection graph of the family of blocks of some graph. Harary [23] proved that a graph is a block graph if and only if all its blocks are complete graphs. Figure 1.8 shows a block graph having two blocks $B_{1}=(\{a, b, x\},\{a b, a x, b x\})$ and $B_{2}=(\{c, d, x\},\{c d, c x, d x\})$, and a cut-vertex x.

1.2 Basic definitions in algorithms

In this section, we introduce some concepts on algorithms as some of our results are in terms of algorithm.

An algorithm is a finite sequence of deterministic computational steps that trans-

Figure 1.8: A graph $G=(V, E)$ having two blocks.
form the input into the output. The time needed for an algorithm, in worst case, expressed as a function of the size of the input of a problem is called the time complexity of the algorithm. The limiting behavior of the complexity as size increases is called the asymptotic time complexity. A function $f(n)$ is said to be $O(g(n))$ if there exists two positive constant c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

A depth-first search, as its name implies, is to search "deeper" in the graph whenever possible. In a depth-first search, we select and "visit" a starting vertex v. Then we select any edge $v w$ incident to v, and visit w. In general, suppose x is the most recently visited vertex. The searchsis continued by selecting some unexplored edge $x y$. If y has been previously visited, we find another new edge incident to x. If y has not been previously visited, then wevisit y and begin a new search starting at vertex y. After completing the search through all paths beginning at y, the search returns to x, the vertex from which y was first reached. The process of selecting unexplored edges incident to x is continued until the list of these edges is exhausted. The depth-first search can find all blocks of a graph G and spend $O(e)$ time if G has e edges.

A nondeterministic algorithm consists of two phases: a guessing stage and a checking stage which is a deterministic algorithm. Furthermore, it is assumed that a nondeterministic algorithm always makes a correct guessing. If the checking stage of a nondeterministic algorithm is of polynomial-time complexity, then this nondeterministic algorithm is called a nondeterministic polynomial algorithm. If a problem can be solved by a nondeterministic polynomial algorithm, this problem is called a nondeterministic polynomial ($\mathcal{N P}$ for short) problem. All of the problems which can
be solved in polynomial time are called \mathcal{P} problems. Cook [10] proved the following important theorem, we now call Cook's Theorem.

Theorem $1.1[10] \mathcal{N P}=\mathcal{P}$ if and only if the Satisfiability Problem is a \mathcal{P} problem.
Let A_{1} and A_{2} be two problems. A_{1} is reducible to A_{2} if and only if A_{1} can be solved in polynomial time by using a polynomial-time algorithm which solves A_{2}. A problem A is $\mathcal{N} \mathcal{P}$-complete if A is in $\mathcal{N} \mathcal{P}$ and every $\mathcal{N} \mathcal{P}$ problem reduces to A. The Satisfiability Problem is $\mathcal{N} \mathcal{P}$-complete according to Cook's Theorem.

For more details on the design and analysis of algorithms. see $[1,11]$.

1.3 Path partition

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices of the graph. The path-partition problem is to find the path-partition number $p(G)$ of a graph G, which is the minimum cardinality of a path partition of G. For the graph G in Figure 1.9, $p(G)=1$.

Figure 1.9: A graph G with $p(G)=1$.

The concept of path-partition number was introduced by Skupień [38], who studied the concept of Hamiltonian shortage of a graph G, written

$$
S_{H}(G)=\min \left\{p: G \times K_{p} \text { is Hamiltonian }\right\} .
$$

He [38] proved that

$$
S_{H}(G)= \begin{cases}p(G)-1=0, & \text { if } G \text { is Hamiltonian, } \\ p(G)+1=2, & \text { if } G=K_{1}, \\ p(G) \geq 1, & \text { if } G \text { is not Hamiltonian and } G \neq K_{1}\end{cases}
$$

He [38] also used an variation of Gallai-Milgram Theorem [20], saying $p(G) \leq \alpha(G)$ for any graph G, to prove that $S_{H}(G) \leq \alpha(G)$ for any graph G. Notice that G has
a Hamiltonian path if and only if $p(G)=1$. Since the Hamiltonian path problem is $\mathcal{N} \mathcal{P}$-complete for planar graphs [21], bipartite graphs [22], chordal graphs [22], chordal bipartite graphs [31] and strongly chordal graphs [31], so is the path-partition problem. On the other hand, the path-partition problem is polynomially solvable for trees $[25,38]$, interval graphs $[4,5,14]$, circular-arc graphs [5, 14], cographs [7, 12, 30], cocomparability graphs [15], block graphs [39, 40, 41] and bipartite distancehereditary graphs [43].

The concept of path-partition number also has a close relationship with $L^{\prime}(2,1)$ labeling number [7] describes as follows. An $L^{\prime}(2,1)$-labeling of a graph G is a one to one function f from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$. The $L^{\prime}(2,1)-$ labeling number, denoted by $\lambda^{\prime}(G)$, is the smallest number k such that G has a a $L^{\prime}(2,1)$-labeling with $\max \{f(v): v \in V(G)\}=k$. Thus, $p(G)=\lambda^{\prime}\left(G^{c}\right)-|V(G)|+2$, where G^{c} is the graph with vertex set $V(G)$ defined by $u v \in E\left(G^{c}\right)$ if and only if $u v \in E(G)$ in [7]. For more details about $L^{\prime}(2,1)$-labeling, see [7].

1.4 Induced-path partition

1896
The concept of induced-path partition was considered by Chartrand et al. [9] as the P-partition with the property of being a path. More precisely, an induced-path partition of a graph is a collection of vertex-disjoint induced paths that cover all vertices of the graph. The induced-path-partition problem is to find the induced-path number $\rho(G)$ of a graph G, which is the minimum cardinality of an induced-path partition of G. For the graph G in of Figure 1.10, $\rho(G)=2$.

Figure 1.10: A graph G with $\rho(G)=2$.
Chartrand et al. [9] gave the induced-path numbers of complete bipartite
graphs, complete binary trees, 2-dimensional meshs, butterflies and general trees. Broere et al. [6] determined exact values for complete multipartite graphs. Chartrand et al. [9] conjectured that $\rho\left(Q_{d}\right) \leq d$ for the d-dimensional hypercube Q_{d} with $d \geq 2$. Alsardary [3] proved that $\rho\left(Q_{d}\right) \leq 16$. From an algorithmic point of view, Le et al. [27] proved that the induced-path-partition problem is $\mathcal{N} \mathcal{P}$-complete for general graphs.

1.5 Isometric-path cover

An isometric path between two vertices in a graph G is a shortest path joining them. An isometric-path cover of a graph is a collection of isometric paths that cover all vertices of the graph. The isometric-path-cover problem is to find the isometric-path number $\operatorname{ip}(G)$ of a graph G which is the minimum cardinality of an isometric-path cover. The concept of the isometric-path number has a close relationship with the game of cops and robbers described as follows,

The game is played by two players, the cop and the robber, on a graph. The two players move alternatively, starting with the cop. Each player's first move consists of choosing a vertex at which tostart. At each subsequent move, a player may choose either to stay at the same vertex or to move to an adjacent vertex. The object for the cop is to catch the robber, and for the robber is to prevent this from happening. Nowakowski and Winkler [32] and Quilliot [37] independently proved that the cop wins if and only if the graph can be reduced to a single vertex by successively removing pitfalls, where a pitfall is a vertex whose close neighborhood is a subset of the close neighborhood of another vertex.

As not all graphs are cop-win graphs, Aigner and Fromme [2] introduced the concept of the cop-number of a general graph G, denoted by $c(G)$, which is the minimum number of cops needed to put into the graph in order to catch the robber. On the way to giving an upper bound for the cop-numbers of planar graphs, they showed that a single cop moving on an isometric path P guarantees that after a finite number of moves the robber will be immediately caught if he moves onto P.

Observing this fact, Fitzpatrick [16] then introduced the concept of isometric-path cover and pointed out that $c(G) \leq \operatorname{ip}(G)$. For the graph G of Figure 1.11, $\operatorname{ip}(G)=2$.

Figure 1.11: A graph G with $\operatorname{ip}(G)=2$.

The isometric-path number of the Cartesian product $P_{n_{1}} \square P_{n_{2}} \square \ldots \square P_{n_{d}}$ has been studied in the literature. Fitzpatrick [17] gave bounds for the case when $n_{1}=$ $n_{2}=\ldots=n_{d}$. Fisher and Fitzpatrick [18] gave exact values for the case $d=2$. Fitzpatrick et al. [19] gave a lower bound, which is in fact the exact value if $d+1$ is a power of 2 , for the case when $n_{1}=n_{2}=\ldots=n_{d}=2$.

1.6 Overview of the thesis

In this thesis, we study path-partition numbers, induced-path numbers and isometricpath numbers. We give a brief overview of the thesis.

In Chapter 1, we introduce basic terminology in graphs and algorithms. We also describe motivations of the three problems studied in this thesis, namely the pathpartition problem, the induced-path-partition problem and the isometric-path-cover problem.

Chapter 2 is devoted to the path-partition problem. This problem has been proved to be $\mathcal{N} \mathcal{P}$-complete for many classes of graphs, while it is also polynomially solvable for some classes of graphs such as trees and block graphs. As these graphs all have tree structures, the purpose of this chapter is to use a unified method, called a labeling algorithm, to give an $O(|V|+|E|)$-time algorithm for the path-partition problem for graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

Chapter 3 considers the induced-path-partition problem. Le et al. [27] used the fact that Not-All-Equal 3SAT is $\mathcal{N} \mathcal{P}$-complete to prove that the induced-path-
partition problem is $\mathcal{N} \mathcal{P}$-complete for general graphs. The main purpose of this chapter is to present an $O(|V|+|E|)$-time algorithm for finding the induced-path numbers of graphs whose blocks are complete graphs, cycles or complete bipartite graphs. We also give a polynomial-time algorithm for finding the induced-path numbers of cographs.

In Chapter 4, we discuss the isometric-path-cover problem. This is a relatively new problem. Previous and our results on this problem are most non-algorithmic. We have three results for this problem. First, we determine isometric-path numbers of block graphs, and also give an $O(|V|+|E|)$-time algorithm for finding the corresponding paths. Second, we give isometric-path numbers of complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

Chapter 5 makes a conclusion, in which we give some open problems on the path-partition problem, the induced-path-partition problem and the isometric-pathcover problem.

Chapter 2

Path Partition

2.1 Preliminary of path partition

Recall that a path partition of a graph is a collection of vertex-disjoint paths that cover all vertices of the graph. The path-partition problem is to find the path-partition number $p(G)$ of a graph G, which is the minimum cardinality of a path partition of G. Notice that G has a Hamiltonian path if and only if $p(G)=1$. Since the Hamiltonian path problem is $\boldsymbol{N} \mathcal{P}$-complete for planar graphs [21], bipartite graphs [22], chordal graphs [22], chordal bipartite graphs [31] and strongly chordal graphs [31], so is the path-partition problem. On the other hand, the path-partition problem is polynomially solvable for trees $[25,38]$, interval graphs $[4,5,14]$, circular-arc graphs [5, 14], cographs [7, 12, 30], cocomparability graphs [15], block graphs [39, 40, 41] and bipartite distance-hereditary graphs [43].

The purpose of this chapter is to give a linear-time algorithm for the pathpartition problem for graphs whose blocks are complete graphs, cycles or complete bipartite graphs. For technical reasons, we consider the following generalized problem, which is a labeling approach for the problem.

Suppose every vertex v in the graph G is associated with an integer $f(v) \in$ $\{0,1,2,3\}$. An f-path partition is a collection \mathcal{P} of vertex-disjoint paths such that the following conditions hold.
(P1) Any vertex v with $f(v) \neq 3$ is in some path in \mathcal{P}.
(P2) If $f(v)=0$, then v itself is a path in \mathcal{P}.
(P3) If $f(v)=1$, then v is an end-vertex of some path in \mathcal{P}.
The f-path-partition problem is to determine the f-path-partition number $p_{f}(G)$ which is the minimum cardinality of an f-path partition of G. It is clear that $p(G)=p_{f}(G)$ when $f(v)=2$ for all vertices v in G. Notice that as there may have some vertices of labels 3 , an f-path partition is not necessary a path partition.

2.2 Path partition in graphs

The labeling approach used in this chapter starts from an end block. Suppose $B=$ (V, E) is an end block whose only cut-vertex is x. Let A be the graph $G-(V-\{x\})$. Notice that we can view G as the "composition" of A and B, i.e., G is the union of A and B which meet at a common vertex x. The idea is to get the path-partition number of G from those of A and B.

In the lemmas and theorems of this chapter, we use the following notation. Suppose x is a specified vertex of a graph $H=(V, E)$ in which f is a vertex labeling. For $i=0,1,2,3$, we define the function $f_{i} ; V \rightarrow\{0,1,2,3\}$ by $f_{i}(y)=f(y)$ for all vertices y except $f_{i}(x)=i$.

1896
Lemma 2.1 Suppose x is a specified vertex in a graph H. Then the following statements hold.
(1) $p_{f_{3}}(H) \leq p_{f_{2}}(H) \leq p_{f_{1}}(H) \leq p_{f_{0}}(H)$.
(2) $p_{f_{1}}(H) \leq p_{f_{0}}(H) \leq p_{f_{1}}(H)+1$.
(3) $p_{f_{2}}(H) \leq p_{f_{1}}(H) \leq p_{f_{2}}(H)+1$.
(4) $p_{f_{3}}(H)=\min \left\{p_{f_{2}}(H), p_{f}(H-x)\right\} \leq p_{f}(H-x)=p_{f_{0}}(H)-1$.
(5) $p_{f}(H) \geq p_{f_{1}}(H)-1$.

Proof. (1) The inequalities follow from that an f_{i}-path partition is an f_{j}-path partition whenever $i<j$.
(2) The second inequality follows from that replacing the path $P x$ in an f_{1}-path partition by two paths P and x results in an f_{0}-path partition of H.
(3) The second inequality follows from that replacing the path $P x Q$ in an $f_{2^{-}}$ path partition by two paths $P x$ and Q results in an f_{1}-path partition of H.
(4) The first equality follows from that one is an f_{3}-path partition of H if and only if it is either an f_{2}-path partition of H or an f-path partition of $H-x$. The second equality follows from that \mathcal{P} is an f_{0}-path partition of H if and only if it is the union of $\{x\}$ and an f-path partition of $H-x$.
(5) According to (1), (3) and (4), we have
$p_{f}(H) \geq p_{f_{3}}(H)=\min \left\{p_{f_{2}}(H), p_{f}(H-x)\right\} \geq \min \left\{p_{f_{1}}(H)-1, p_{f_{0}}(H)-1\right\}=p_{f_{1}}(H)-1$.

Lemma 2.2 (1) $p_{f}(G) \leq \min \left\{p_{f}(A)+p_{f_{0}}(B)-1, p_{f_{0}}(A)+p_{f}(B)-1\right\}$.
(2) $p_{f_{2}}(G) \leq p_{f_{1}}(A)+p_{f_{2}}(B)-1$ S

Proof. (1) Suppose \mathcal{P} is an optimal f-path partition of A, and \mathcal{Q} an f_{0}-path partition of B. Then $x \in \mathcal{Q}$ and so $(\mathcal{P}, \mathcal{Q})-\{x\}$ is an f-path partition of G. This gives $p_{f}(G) \leq p_{f}(A)+p_{f_{0}}(B)-1$. Similarly, $p_{f}(G) \leq p_{f_{0}}(A)+p_{f}(B)-1$.
(2) The inequality follows from that if \mathcal{P} (respectively, \mathcal{Q}) is an optimal f_{1}-path partition of A (respectively, B) in which $P x \in \mathcal{P}$ (respectively, $x Q \in \mathcal{Q}$) contains x, then $(\mathcal{P} \cup \mathcal{Q} \cup\{P x Q\})-\{P x, x Q\}$ is an f_{2}-path partition of G.

We now have the following theorem which is the key for the inductive step of our algorithm.

Theorem 2.3 Suppose $\alpha=p_{f_{0}}(B)-p_{f_{1}}(B)$ and $\beta=p_{f_{1}}(B)-p_{f_{2}}(B)$. (Notice that $\alpha, \beta \in\{0,1\}$.) Then the following statements hold.
(1) If $f(x)=0$, then $p_{f}(G)=p_{f}(A)+p_{f}(B)-1$.
(2) If $f(x)=1$, then $p_{f}(G)=p_{f_{1-\alpha}}(A)+p_{f_{\alpha}}(B)-1$.
(3) If $f(x) \geq 2$ and $\alpha=\beta=0$, then $p_{f}(G)=p_{f}(A)+p_{f_{0}}(B)-1$.
(4) If $f(x) \geq 2$ and $\alpha=0$ and $\beta=1$, then $p_{f}(G)=p_{f_{3}}(A)+p_{f}(B)$.
(5) If $f(x) \geq 2$ and $\alpha=1$, then $p_{f}(G)=p_{f_{1-\beta}}(A)+p_{f_{1+\beta}}(B)-1$.

Proof. Suppose \mathcal{P} is an optimal f-path partition of G. Let P^{*} be the path in \mathcal{P} that contains x. (It is possible that there is no such path when $f(x)=3$.) There are three possibilities for $P^{*}:$ (a) P^{*} does not exist or $P^{*} \subseteq A$; (b) $P^{*} \subseteq B$; (c) x is an internal vertex of P^{*}, say $P^{*}=P^{\prime} x P^{\prime \prime}$, with $P^{\prime} x \subseteq A$ and $x P^{\prime \prime} \subseteq B$. (The latter is possible only when $f(x) \geq 2$.)

For the case when (a) holds, $\{P \in \mathcal{P}: P \subseteq A\}$ is an f-path partition of A and $\{P \in \mathcal{P}: P \subseteq B\} \cup\{x\}$ is an f_{0}-path partition of B. We then have the inequality in $\left(a^{\prime}\right)$. Similarly, we have $\left(b^{\prime}\right)$ and ($\left.c^{\prime}\right)$ corresponding to (b) and (c).
$\left(\mathrm{a}^{\prime}\right) p_{f}(G) \geq p_{f}(A)+p_{f_{0}}(B)-1$.
(b') $p_{f}(G) \geq p_{f_{0}}(A)+p_{f}(B)-1$. (We may replace $p_{f}(B)$ by $p_{f_{2}}(B)$ when $f(x) \geq 2$.)
($\left.\mathrm{c}^{\prime}\right) p_{f}(G) \geq p_{f_{1}}(A)+p_{f_{1}}(B)-1$. (This is possible only when $f(x) \geq 2$.)
We are now ready to prove the theorem.
(1) Since $f(x)=0$, we have $f_{1}=f_{0 .}$ According to Lemma $2.2(1), p_{f}(G) \leq$ $p_{f}(A)+p_{f}(B)-1$. On the other hand, ($\left.\mathrm{a}^{\prime}\right)$ and ($\left.\mathrm{b}^{\prime}\right)$ give $p_{f}(G) \geq p_{f}(A)+p_{f}(B)-1$.
(2) Since $f(x)=1$, we have $f=f_{1}$. Lemma $2.2(1)$, together with ($\left.\mathrm{a}^{\prime}\right)$ and ($\left.\mathrm{b}^{\prime}\right)$, gives $p_{f}(G)=\min \left\{p_{f_{1}}(A)+p_{f_{0}}(B)-1, p_{f_{0}}(A)+p_{f_{1}}(B)-1\right\}$. If $\alpha=0$, then

$$
p_{f_{0}}(A)+p_{f_{1}}(B)-1 \geq p_{f_{1}}(A)+\left(p_{f_{0}}(B)-\alpha\right)-1=p_{f_{1}}(A)+p_{f_{0}}(B)-1
$$

and if $\alpha=1$, then

$$
p_{f_{1}}(A)+p_{f_{0}}(B)-1 \geq\left(p_{f_{0}}(A)-1\right)+\left(p_{f_{1}}(B)+\alpha\right)-1=p_{f_{0}}(A)+p_{f_{1}}(B)-1
$$

Hence $p_{f}(G)=p_{f_{1-\alpha}}(A)+p_{f_{\alpha}}(B)-1$.
(3) According to Lemma 2.2 (1), $p_{f}(G) \leq p_{f}(A)+p_{f_{0}}(B)-1$. On the other hand, as $p_{f_{0}}(A) \geq p_{f_{1}}(A) \geq p_{f}(A)$ and $p_{f_{0}}(B)=p_{f_{1}}(B)=p_{f_{2}}(B)$, ($\left.\mathrm{a}^{\prime}\right)-\left(\mathrm{c}^{\prime}\right)$ give $p_{f}(G) \geq p_{f}(A)+p_{f_{0}}(B)-1$.
(4) According to Lemma 2.1 (4) and $\alpha=0$ and $\beta=1$, we have

$$
p_{f}(B-x)=p_{f_{0}}(B)-1=p_{f_{1}}(B)-1=p_{f_{2}}(B) .
$$

This, together with Lemma 2.1 (4), gives that the above value is also equal to $p_{f_{3}}(B)$ and so $p_{f}(B)$. Then, an optimal f_{3}-path partition \mathcal{P} of A, together with an optimal p_{f}-path partition of $B-x$ (respectively, B) when x is (respectively, is not) in a path of \mathcal{P}, forms an f_{2}-path partition of G. Thus, $p_{f}(G) \leq p_{f_{2}}(G) \leq p_{f_{3}}(A)+p_{f}(B)$.

On the other hand, since $p_{f_{1}}(A) \geq p_{f}(A) \geq p_{f_{3}}(A)$ and $p_{f_{0}}(B)-1=p_{f_{1}}(B)-1=$ $p_{f}(B)$, ($\left.\mathrm{a}^{\prime}\right)$ or $\left(\mathrm{c}^{\prime}\right)$ implies $p_{f}(G) \geq p_{f_{3}}(A)+p_{f}(B)$. Also, as $p_{f_{0}}(A)-1 \geq p_{f_{3}}(A)$ by Lemma 2.1 (4), ($\left.\mathrm{b}^{\prime}\right)$ implies $p_{f}(G) \geq p_{f_{3}}(A)+p_{f}(B)$.
(5) According to Lemma 2.1 (1) and Lemma 2.2, we have

$$
p_{f}(G) \leq p_{f_{2}}(G) \leq \min \left\{p_{f_{0}}(A)+p_{f_{2}}(B)-1, p_{f_{1}}(A)+p_{f_{1}}(B)-1\right\} .
$$

On the other hand, if (a^{\prime}) holds, then by Lêmma 2.1 (5) and that $p_{f_{0}}(B)=p_{f_{1}}(B)+1$, $p_{f}(G) \geq p_{f}(A)+p_{f_{0}}(B)-1 \geq\left(p_{f_{1}}(A)-\mathbb{1}\right)+\left(p_{f_{1}}(B)+1\right)-1=p_{f_{1}}(A)+p_{f_{1}}(B)-1$. This, together with $\left(\mathrm{b}^{\prime}\right)$ and $\left(\mathrm{c}^{\prime}\right)$, gives 1896

$$
p_{f}(G)=\min \left\{p_{f_{0}}(A)+p_{f_{2}}(B)-1, p_{f_{1}}(A)+p_{f_{1}}(B)-1\right\}
$$

If $\beta=0$, then

$$
p_{f_{0}}(A)+p_{f_{2}}(B)-1 \geq p_{f_{1}}(A)+\left(p_{f_{1}}(B)-\beta\right)-1=p_{f_{1}}(A)+p_{f_{1}}(B)-1
$$

and if $\beta=1$, then

$$
p_{f_{1}}(A)+p_{f_{1}}(B)-1 \geq\left(p_{f_{0}}(A)-1\right)+\left(p_{f_{2}}(B)+\beta\right)-1=p_{f_{0}}(A)+p_{f_{2}}(B)-1
$$

Hence $p_{f}(G)=p_{f_{1-\beta}}(A)+p_{f_{1+\beta}}(B)-1$.

2.3 Path partitions for special blocks

Notice that the inductive theorem (Theorem 2.3) can be applied to solve the pathpartition problem on graphs for which the problem can be solved on its blocks. In this section, we mainly consider the case when the blocks are complete graphs, cycles or complete bipartite graphs.

Now, we assume that $B=(V, E)$ is a graph in which each vertex v has a label $f(v) \in\{0,1,2,3\}$. Recall that $f^{-1}(i)$ is the set of pre-images of i, i.e.,

$$
f^{-1}(i)=\{v \in V: f(v)=i\} .
$$

According to Lemma 2.1 (4), we have $p_{f}(B)=p_{f}\left(B-f^{-1}(0)\right)+\left|f^{-1}(0)\right|$. Therefore, in this section we only consider the function f with $f^{-1}(0)=\emptyset$.

We first consider the case when B is a complete graph.
Lemma 2.4 Suppose B is a complete graph. If $f^{-1}(1) \neq \emptyset$ or $f^{-1}(2)=\emptyset$, then $p_{f}(B)=\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil$ else $p_{f}(B)=1$.

Proof. It is clear that $p_{f}(B) \geq\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil$. For the case when $f^{-1}(1) \neq \emptyset$ or $f^{-1}(2)=\emptyset$, we can pair the vertices in $f_{96}^{-1}(1)$ as end-vertices of paths to form an f-path partition; and so $p_{f}(B) \leq \int\left|f^{-1}(1)\right| / 27$. For the case when $f^{-1}(1)=\emptyset$ and $f^{-1}(2) \neq \emptyset$, it is clear that a Hamiltonian path forms an f-path partition; and so $p_{f}(B)=1$.

Next, consider the case when B is a path. This is useful as a subroutine for handling cycles.

Lemma 2.5 Suppose B is a path.
(1) If x is an end-vertex of B with $f(x)=3$, then $p_{f}(B)=p_{f}(B-x)$.
(2) If x is an end-vertex of B with $f(x) \in\{1,2\}$ and another vertex y with $f(y)=1$ such that no vertex between x and y has a label 1 (choose y the other end-vertex of B if there is no such vertex), then $\rho_{f}(B)=\rho_{f}\left(B^{\prime}\right)+1$ where B^{\prime} is the path obtained from B by deleting x, y and all vertices between them.

Proof. (1) Since $f(x)=3$, by Lemma 2.1 (4), $p_{f}(B) \leq p_{f}(B-x)$. As x is an end-vertex of $B, p_{f}(B) \geq p_{f}(B-x)$ follows from that deleting x from a path (if any) in an f-path partition of B results in an f-path partition of $B-x$.
(2) First, we claim that if $f(x)=2$, then $\rho_{f}(B)=\rho_{f_{1}}(B)$. By Lemma 2.1 (1), $\rho_{f}(B) \leq \rho_{f_{1}}(B)$. Since x is an end-vertex of B and $f(x)=2$, an f-path partition is in fact an f_{1}-path partition of B. Thus $\rho_{f}(B) \geq \rho_{f_{1}}(B)$. Now, we can assume that $f(x)=1$.

Let P denotes the path from x to y in B. First, $\rho_{f}(B) \leq \rho_{f}\left(B^{\prime}\right)+1$ follows from that an f-path partition of B^{\prime}, together with P, forms an f-path partition of B. On the other hand, suppose \mathcal{P} is an optimal f-path partition of B. Since $f(x)=f(y)=1$ and x is an end vertex of B, \mathcal{P} has some $P^{\prime} \subseteq P$ with $x \in P^{\prime}$. Deleting all vertices of P from the paths in \mathcal{P} results in an f-path partition of B^{\prime} whose size is less than $|\mathcal{P}|$ by at least one. Thus, $\rho_{f}(B)-1 \geq \rho_{f}\left(B^{\prime}\right)$.

We then consider the case when B is a cycle.

Lemma 2.6 Suppose B is a cycle.
(1) If $f^{-1}(2)=\emptyset$, then $\left.p_{f}(B)=\left|f^{-1}(1)\right| / 2\right\rceil$.
(2) If P is a path from x to y in B such that $f^{-1}(1) \cap P=\{x, y\}$ and $f^{-1}(2) \cap P \neq \emptyset$, then $p_{f}(B)=p_{f}(B-P)+1$.

Proof. (1) It is clear that $p_{f}(B) \geq\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil$. As $f^{-1}(2)=\emptyset$, we can pair the vertices in $f^{-1}(1)$ as end-vertices of paths to form an f-path partition; and so $p_{f}(B) \leq\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil$.
(2) First, $p_{f}(B) \leq p_{f}(B-P)+1$ follows from that an f-path partition of $B-P$ together with P forms an f-path partition of B. On the other hand, suppose \mathcal{P} is an optimal f-path partition of B. Since $f^{-1}(1) \cap P=\{x, y\}$ and $f^{-1}(2) \cap P \neq \emptyset, \mathcal{P}$ must contain some $P^{\prime} \subseteq P$ using x or y as one of its end-vertex. Deleting all vertices of P from the paths in \mathcal{P} results in an f-path partition of $B-P$ whose size is less than $|\mathcal{P}|$ by at least one. Thus, $p_{f}(B)-1 \geq p_{f}(B-P)$.

Finally, we consider the case when B is a complete bipartite graph with $C \cup D$ as a bipartition of the vertex set. For $i \in\{0,1,2,3\}$, let

$$
\begin{aligned}
& C_{i}=\{u \in C: f(u)=i\} \text { with } c_{i}=\left|C_{i}\right| \\
& D_{i}=\{v \in D: f(v)=i\} \text { with } d_{i}=\left|D_{i}\right| .
\end{aligned}
$$

We have the following lemmas.

Lemma 2.7 If $c_{1}=d_{1}=0$ and $c_{2} \geq d_{2}$ and $x \in C_{2}$, then $p_{f}(B)=p_{f^{\prime}}(B)$ where f^{\prime} is the same as f except $f^{\prime}(x)=1$.

Proof. $p_{f}(B) \leq p_{f^{\prime}}(B)$ follows from the fact that any f^{\prime}-path partition of B is an f-partition.

Suppose \mathcal{P} is an optimal f-path partition of B. We may assume that \mathcal{P} is chosen so that the paths in \mathcal{P} cover as few vertices as possible. For the case when \mathcal{P} has a path $P y$ with $y \in C$, we may interchange y and x to assume that $P x \in \mathcal{P}$. In this case, \mathcal{P} is an f^{\prime}-path partition of B and so $p_{f^{\prime}}(B) \leq p_{f}(B)$. So, now assume that all end-vertices of pathsin \mathcal{P} are in D. Then, these end-vertices are all in D_{2} for otherwise we may delete those end-vertices in D_{3} to get a new \mathcal{P} which covers fewer vertices. We may further assume that paths in \mathcal{P} cover no vertices in D_{3}, for otherwise we may interchange such a vertex with an end-vertex of a path in \mathcal{P} and then delete it from the path. Thus each path of \mathcal{P} uses vertices in $C_{2} \cup C_{3} \cup D_{2}$, and has end-vertices in D_{2}. These imply that $d_{2}>c_{2}$, contradicting that $c_{2} \geq d_{2}$.

By symmetry, we may prove a similar theorem for the case when $d_{1}=c_{1}=0$ and $d_{2} \geq c_{2}$ and $d_{2} \geq 1$.

Lemma 2.8 Suppose $x \in C_{1}$. Also, either $d_{2} \geq 1$ with $y \in D_{2}$, or else $c_{1}>d_{1}$ and $d_{2}=0<d_{3}$ with $y \in D_{3}$. Then $p_{f}(B)=p_{f^{\prime}}(B-x)$, where f^{\prime} is the same as f except $f^{\prime}(y)=1$.

Proof. Suppose $P y$ is in an optimal f^{\prime}-path partition \mathcal{P} of $B-x$. Then $(\mathcal{P}-\{P y\}) \cup$ $\{P y x\}$ is an f-path partition of B and so $p_{f}(B) \leq p_{f^{\prime}}(B-x)$.

On the other hand, suppose $P x$ is in an optimal f-path partition \mathcal{P} of B. For the case when y is not covered by any path in \mathcal{P}, we have $y \in D_{3}$ and so $c_{1}>d_{1}$ and $d_{2}=0$. Consequently, there is some $Q z \in \mathcal{P}$ with $z \in C_{2} \cup C_{3}$ or $z \in D_{3}$. For the former case, we replace $Q z$ by $Q z y$ in \mathcal{P}; for the latter, we replace $Q z$ by $Q y$. So, in any case we may assume that y is covered by some path $R y S$ in \mathcal{P}. If $R y S=P x$, then again we may interchange y with the last vertex of P to assume that $R y S=T y x$ in \mathcal{P} for some T. If $R y S \neq P x$, then we may replace the two paths $R y S$ and $P x$ by Ryx and PS. So, in any case, we may assume that \mathcal{P} has a path $U y x$. Then, $(\mathcal{P}-\{U y x\}) \cup\{U y\}$ is an f^{\prime}-path partition of $B-x$. Thus $p_{f^{\prime}}(B-x) \leq p_{f}(B)$.

By symmetry, we may prove a similar theorem for the case when $x \in D_{1}$; and either $c_{2} \geq 1$ with $y \in C_{2}$, or else $d_{1}>c_{1}$ and $c_{2}=0<c_{3}$ with $y \in C_{3}$.

2.4 Algorithm for graphs with special blocks

We are ready to give a linear-time algorithm for the path-partition problem in graphs whose blocks are complete graphs, cycres or complete bipartite graphs. Notice that we may consider only connected graphs. We present five procedures. The first four are subroutines which calculate f-path-partition numbers of complete graphs, paths, cycles and complete bipartite graphs, respectively, by using Lemmas 2.4 to 2.8. The last one is the main routine for the problem.

First, Lemmas 2.1 (4) and 2.4 lead to the following subroutine for complete graphs.

Algorithm PCG. Find the f-path partition number $p_{f}(B)$ of a complete graph B.
Input. A complete graph B and a vertex labeling f.
Output. $p_{f}(B)$.

Method.

if $\left(f^{-1}(1) \neq \emptyset\right.$ or $\left.f^{-1}(2)=\emptyset\right)$
then $p_{f}(B)=\left|f^{-1}(0)\right|+\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil ;$
else $p_{f}(B)=\left|f^{-1}(0)\right|+1 ;$
return $p_{f}(B)$.

Lemma 2.5 leads to the following subroutine for paths, which is useful for the cycle subroutine.

Algorithm PP. Find the f-path partition number $p_{f}(B)$ of the path B.
Input. A path B and a vertex labeling f with $f^{-1}(0)=\emptyset$.
Output. $p_{f}(B)$.

Method.

$$
\begin{aligned}
& p_{f}(B) \leftarrow 0 \\
& B^{\prime} \leftarrow B ; \\
& \text { while }\left(B^{\prime} \neq \emptyset\right) \text { do }
\end{aligned}
$$

choose an end-vertex x of B^{\prime};
if $(f(x)=3)$ then $B^{\prime} \leftarrow B^{\prime}-x$ else
choose a vertex y nearest to x with $f(y)=1$
(let y be the other end-vertex if there is no such vertex);
$p_{f}(B) \leftarrow p_{f}(B)+1$; ;
$B^{\prime} \leftarrow B^{\prime}-$ all vertices between (and including) x and y;
end else;
end while;
return $p_{f}(B)$.

Lemmas 2.1 (4) and 2.6 lead to the following subroutine for cycles.

Algorithm PC. Find the f-path partition number $p_{f}(B)$ of a cycle B.
Input. A cycle B and a vertex labeling f.
Output. $p_{f}(B)$.

Method.

$$
\text { if }\left(f^{-1}(0)=\emptyset \text { and } f^{-1}(2)=\emptyset\right)
$$

then $p_{f}(B) \leftarrow\left\lceil f^{-1}(1) / 2\right\rceil ;$
else if $\left(f^{-1}(0)=\emptyset\right.$ and $f^{-1}(2) \neq \emptyset$ and $\left.\left|f^{-1}(1)\right| \leq 1\right)$ then
$p_{f}(B) \leftarrow 1 ;$
else if $\left(f^{-1}(0)=\emptyset\right.$ and $f^{-1}(2) \neq \emptyset$ and $\left.\left|f^{-1}(1)\right| \geq 2\right)$ then
choose a path P from x to y such that

$$
\begin{gathered}
f^{-1}(1) \cap P=\{x, y\} \text { and } f^{-1}(2) \cap P \neq \emptyset ; \\
p_{f}(B) \leftarrow p_{f}(B-P)+1 \text { by calling } \mathbf{P P}(B-P) ;
\end{gathered}
$$

else // now $f^{-1}(0) \neq \emptyset / /$
let $B-f^{-1}(0)$ be the disjoint union of paths $P_{1}, P_{2}, \ldots, P_{k}$;
$p_{f}(B) \leftarrow\left|f^{-1}(0)\right| ;$
for $i=1$ to k do $\overline{p_{f}}(B) \backsim p_{f}(B)+p_{f}\left(P_{i}\right)$ by calling $\mathbf{P P}\left(P_{i}\right)$;
end else;
return $p_{f}(B)$.

Lemmas 2.1 (4), 2.7 and 2.8 lead to the following subroutine for complete bipartite graphs. In the subroutine, we inductively reduce the size of $C \cup D$. Besides the reduction of C_{0} and D_{0} in the second line, we consider 9 cases. The first case is for $C=\emptyset$ or $D=\emptyset$. The next 5 cases are for $c_{1} \geq 1$ or $d_{1} \geq 1$. In particular, the case of $c_{1} \geq 1$ is covered by cases 2 and 3 , except when $d_{2}=0$ and $\left(c_{1} \leq d_{1}\right.$ or $\left.d_{3}=0\right)$. The case of $d_{1} \geq 1$ is covered by cases 4 and 5 , except when $c_{2}=0$ and ($d_{1} \leq c_{1}$ or $c_{3}=0$). The exceptions are then covered by case 6 . Finally, the last 3 cases are for $c_{1}=d_{1}=0$.

Algorithm PCB. Find the f-path partition number $p_{f}(B)$ of a complete bipartite graph B.

Input. A complete bipartite graph B with a bipartition $C \cup D$ of vertices and a vertex labeling f.

Output. $p_{f}(B)$.

Method.

$c_{i} \leftarrow\left|f^{-1}(i) \cap C\right|$ and $d_{i} \leftarrow\left|f^{-1}(i) \cap D\right|$ for $0 \leq i \leq 3 ;$
$p_{f}(B) \leftarrow c_{0}+d_{0} ;$
while (true) do
if ($c_{1}=c_{2}=c_{3}=0$ or $d_{1}=d_{2}=d_{3}=0$) then
$p_{f}(B) \leftarrow p_{f}(B)+c_{1}+c_{2}+d_{1}+d_{2} ;$ return $p_{f}(B) ;$
else if ($c_{1} \geq 1$ and $d_{2} \geq 1$) then // use Lemma $2.8 / /$
$c_{1} \leftarrow c_{1}-1 ; \quad d_{2} \leftarrow d_{2}-1 ; \quad d_{1} \leftarrow d_{1}+1 ;$
else if ($c_{1} \geq 1$ and $c_{1}>d_{1}$ and $d_{2}=0<d_{3}$) then // use Lemma $2.8 / /$
$c_{1} \leftarrow c_{1}-1 ; \quad d_{3} \leftarrow d_{3}-1 ;-d_{1} \leftarrow d_{1}+1 ;$
else if $\left(d_{1} \geq 1\right.$ and $\left.c_{2} \geq 1\right)$ then // use the remark after Lemma $2.8 / /$
$d_{1} \leftarrow d_{1}-1 ; c_{2} \leftarrow c_{2}-1 ; c_{1} \leftarrow c_{1}+1 ;$
else if $\left(d_{1} \geq 1\right.$ and $d_{1}>c_{1}$ and $\left.c_{2}=0<c_{3}\right)$ then // remark after Lemma 2.8 //
$d_{1} \leftarrow d_{1}-1 ; \quad c_{3} \leftarrow c_{3}-1 ; \quad c_{1} \leftarrow c_{1}+1 ;$
else if $\left(c_{2}=d_{2}=0\right.$ and $\left(c_{1}=d_{1} \geq 1\right.$ or $c_{1}>d_{1} \geq 1$ with $d_{3}=0$

$$
\text { or } \left.d_{1}>c_{1} \geq 1 \text { with } c_{3}=0\right) \text {) then }
$$

$p_{f}(B) \leftarrow p_{f}(B)+\max \left\{c_{1}, d_{1}\right\} ;$ return $p_{f}(B) ;$
else // by now $c_{1}=d_{1}=0 / /$ if $\left(c_{2}=d_{2}=0\right)$ then
return $p_{f}(B)$;
else if $\left(c_{2} \geq d_{2}\right)$ then // use Lemma $2.7 / /$
$c_{1} \leftarrow 1 ; \quad c_{2} \leftarrow c_{2}-1 ;$
else if $\left(c_{2}<d_{2}\right)$ then // use the remark after Lemma 2.7 //

$$
d_{1} \leftarrow 1 ; \quad d_{2} \leftarrow d_{2}-1 ;
$$

end while.

Finally, Theorem 2.3 and the subroutines above lead to the main algorithm.

Algorithm PG. Find the path-partition number $p_{f}(G)$ of the connected graph G whose blocks are complete graphs, cycles or complete bipartite graphs.

Input. A graph G and a vertex labeling f.
Output. $p_{f}(G)$.

Method.

$p_{f}(G) \leftarrow 0 ; G^{\prime} \leftarrow G ;$
while $\left(G^{\prime} \neq \emptyset\right)$ do
choose a block B of G^{\prime} with only one cut-vertex x or with no cut-vertex;
if (B is a complete graph) then
find $p_{f_{i}}(B)$ by calling $\operatorname{PCG}\left(B, f_{i}\right)$ for $0 \leq i \leq 3$;
if (B is a cycle) then
find $p_{f_{i}}(B)$ by calling $\mathbf{P C}\left(B, f_{i}\right)$ for $0 \leq i \leq 3$;
if (B is a complete bipartite graph) then
find $p_{f_{i}}(B)$ by calling $\mathrm{PCB}\left(B, \hat{f}_{i}\right)$ for $0 \leq i \leq 3$;
$\alpha:=p_{f_{0}}(B)-p_{f_{1}}(\underline{B}) ; \beta:=p_{f_{1}}(B)-p_{f_{2}}(B)$;
if $(f(x)=0)$ then $p_{f}(G)=p_{f}^{\prime}(G)+p_{f}(B)-1$;
else if $(f(x)=1)$ then
$p_{f}(G) \leftarrow p_{f}(G)+p_{f_{\alpha}}(B)-1 ; \quad f(x) \leftarrow 1-\alpha ;$
else // by now $f(x)=2$ or $3 / /$
case 1: $\alpha=\beta=0$

$$
p_{f}(G) \leftarrow p_{f}(G)+p_{f_{0}}(B)-1
$$

case 2: $\alpha=0$ and $\beta=1$

$$
p_{f}(G) \leftarrow p_{f}(G)+p_{f}(B) ; \quad f(x) \leftarrow 3 ;
$$

case 3: $\alpha=1$

$$
p_{f}(G) \leftarrow p_{f}(G)+p_{f_{1+\beta}}(B)-1 ; \quad f(x) \leftarrow 1-\beta ;
$$

$$
G^{\prime}:=G^{\prime}-(B-\{x\}) ;
$$

end while;
output $p_{f}(G)$.

Theorem 2.9 Algorithm PG computes the f-path partition number of a connected graph whose blocks are complete graphs, cycles or complete bipartite graphs in linear time.

Proof. The correctness of the algorithm follows from Lemma 2.1 (4) and Lemmas 2.4 to 2.8. The algorithm takes only linear time since the depth-first search can be used to find blocks one by one in linear time, and each subroutine requires only $O(|B|)$ operations.

We close this section by giving an example that demonstrates the algorithm.

Example 2.1 Consider the graph G_{1} of 12 vertices and 5 blocks in Figure 2.1. Notice that its blocks are three complete graphs, a cycle and a complete bipartite graph.

1. We begin with the assignment $f(v)=2$ for every vertex v. Set $p_{f}(G)=0$.

Figure 2.1: Graph G_{1} of 12 vertices and 5 blocks.
2. Choose the block $B_{1}=\{f, g\}$, which is a complete graph, with the only cutvertex f in G_{1}. Call the subroutine PCG. Thus, $\alpha=2-1=1$ and $\beta=1-1=$ 0 . Then, $p_{f}(G)=0$ and $f(f)=1$ (with a path $f g$ results). Delete $B_{1}-\{f\}$ from G_{1} to get the graph G_{2} in Figure 2.2.

Figure 2.2: Graph G_{2} results from G_{1} by deleting $\{g\}$.
3. Choose the block $B_{2}=\{e, h\}$, which is a complete graph, with the only cutvertex e in G_{2}. Call the subroutine PCG. Thus, $\alpha=2-1=1$ and $\beta=1-1=0$. Then, $p_{f}(G)=0$ and $f(e)=1$ (with a path $e h$ results). Delete $B_{2}-\{e\}$ from G_{2} to get the graph G_{3} in Figure 2.3.

Figure 2.3: Graph G3 results from G_{2} by deleting $\{h\}$.
4/4)
4. Choose the block $B_{3}=\{d, e, f\}$, which is a complete graph, with the only cutvertex d. Call the subroutine PCG. Thus, $\alpha=2-2=0$ and $\beta=2-1=1$. Then, $p_{f}(G)=1$ and $f(d)=3$ (with the path $P_{1}=g f e h$ or $g f d e h$ results). Delete $B_{3}-\{d\}$ to get the graph G_{4} from G_{3} in Figure 2.4.

Figure 2.4: Graph G_{4} results from G_{3} by deleting $\{e, f\}$.
5. Choose the block $B_{4}=\{a, b, c, d\}$, which is a cycle, with the only cut-vertex
d. Call the subroutine PC. Thus, $\alpha=2-1=1$ and $\beta=1-1=0$. Then, $p_{f}(G)=1, P_{1}=g$ feh and $f(d)=1$ (with a path dcba results). Delete $B_{4}-\{d\}$ from G_{4} to get the graph G_{5} from G_{4} in Figure 2.5.

Figure 2.5: Graph G_{5} results from G_{4} by deleting $\{a, b, c\}$.
6. Choose the final block $B_{5}=\{d, i, j, k, l\}$, which is a complete bipartite graph. Call the subroutine PCB. Set $c_{2}=d_{2}=2, d_{1}=1$ and $c_{0}=d_{0}=c_{1}=c_{3}=$ $d_{3}=0$. Since $d_{1}=1$ and $c_{2}=2 \geq 1$, by the remark after Lemma 2.8 , we have $d_{1}=0, c_{2}=2-1=1$ and $c_{1}=1$. That is, we delete d from G_{5} to get a new label 1 at vertex i. Then, we get the graph G_{6} in Figure 2.6.

Figure 2.6: Graph G_{6} results from G_{5} by deleting d and set $f(i)=1$.
7. Since $c_{1}=1$ and $d_{2}=2$, by Lemma 2.8, we have $c_{1}=0, d_{2}=1$ and $d_{1}=1$. That is, we delete i from G_{6} to get a new label 1 at vertex k. Then, we get the graph G_{7} in Figure 2.7.

Figure 2.7: Graph G_{7} results from G_{6} by deleting i and set $f(k)=1$.
8. Since $d_{1}=1$ and $c_{2}=1$, by the remark after Lemma 2.8, we have $d_{1}=0, c_{2}=0$ and $c_{1}=1$. That is, we delete k from G_{7} to get a new label 1 at vertex j. Then, we get the graph G_{8} in Figure 2.8.

Figure 2.8: Graph G_{8} results from G_{7} by deleting k and set $f(j)=1$.
9. Since $c_{1}=1$ and $d_{2}=1$, by Lemma 2.8, we have $c_{1}=0, d_{2}=0$ and $d_{1}=1$. That is, we delete j from G_{8} to get a new label 1 at vertex l. Then, we get the graph G_{9} in Figure 2.9.

Figure 2.9: Graph G_{9} results from G_{8} by deleting j and set $f(l)=1$.

10. Since $c_{1}=c_{2}=c_{3}=0$, we haye $p_{f}\left(B_{5}\right)=d_{1}+d_{2}+d_{3}=1$ (a path abcdijkl results). Hence, $p_{f}(G)=1+p_{f}\left(B_{5}\right)=2$ and an optimal path partition $\mathcal{P}=$ $\{g f e h, a b c d i k j l\}$.

Chapter 3

Induced-path Partition

3.1 Preliminary of induced-path partition

Recall that an induced path is a path in which two vertices are adjacent only for those with consecutive indices. An induced-path partition of a graph is a collection of vertex-disjoint induced paths that cover all vertices of the graph. The induced-pathpartition problem is to find the induced-path number $\rho(G)$ of a graph G, which is the minimum cardinality of an induced-path partition of G.

The concept of induced-path number was introduced by Chartrand et al. [9], who gave the induced-path numbers of complete bipartite graphs, complete binary trees, 2-dimensional meshs, butterflies and general trees. Broere et al. [6] determined exact values for complete multipartite graphs. Chartrand et al. [9] conjectured that $\rho\left(Q_{d}\right) \leq d$ for the d-dimensional hypercube Q_{d} with $d \geq 2$. Alsardary [3] proved that $\rho\left(Q_{d}\right) \leq 16$. From an algorithmic point of view, Le et al. [27] proved that the induced path partition problem is $\mathcal{N} \mathcal{P}$-complete for general graphs.

The purpose of this chapter is to give a linear-time algorithm for the inducedpath numbers of graphs whose blocks are complete graphs, cycles or complete bipartite graphs and a polynomial-time algorithm for cographs.

3.2 Induced-path partition in graphs with special blocks

In this section, we shall present a linear-time algorithm for the induced-path numbers for graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

We use the same approach as in above chapter on this problem. Since the structure is the same as the above chapter, the results of the Subsection 3.2.1 is similar to those in Section 2.2. For completeness, we still present the results in detail.

For technical reasons, we consider the following generalized problem, which is a labeling approach for the problem.

Suppose every vertex v in the graph G is associated with an integer $f(v) \in$ $\{0,1,2,3\}$. An f-induced-path partition is a collection \mathcal{P} of vertex-disjoint induced paths such that the following conditions hold.
(P1) Any vertex v with $f(v) \neq 3$ is in some induced path in \mathcal{P}.
(P2) If $f(v)=0$, then v itself is an induced path in \mathcal{P}.
(P3) If $f(v)=1$, then v is and-vertex of some induced path in \mathcal{P}.
1896
The f-induced-path-partition problem is to determine the f-induced-path number $\rho_{f}(G)$ which is the minimum cardinality of an f-induced-path partition of G. It is clear that $\rho(G)=\rho_{f}(G)$ when $f(v)=2$ for all vertices v in G. Notice that as there may have some vertices of labels 3 , an f-induced-path partition is not necessary a induced-path partition.

3.2.1 Inductive theorem

The labeling approach used in this subsection starts from an end block. Suppose $B=$ (V, E) is an end block whose only cut-vertex is x. Let A be the graph $G-(V-\{x\})$. Notice that we can view G as the "composition" of A and B, i.e., G is the union of A and B which meet at a common vertex x. The idea is to get the induced-path number of G from those of A and B.

In the lemmas and theorems of this subsection, we use the following notation. Suppose x is a specified vertex of a graph $H=(V, E)$ in which f is a vertex labeling. For $i=0,1,2,3$, we define the function $f_{i}: V \rightarrow\{0,1,2,3\}$ by $f_{i}(y)=f(y)$ for all vertices y except $f_{i}(x)=i$.

Lemma 3.1 Suppose x is a specified vertex in a graph H. Then the following statements hold.
(1) $\rho_{f_{3}}(H) \leq \rho_{f_{2}}(H) \leq \rho_{f_{1}}(H) \leq \rho_{f_{0}}(H)$.
(2) $\rho_{f_{1}}(H) \leq \rho_{f_{0}}(H) \leq \rho_{f_{1}}(H)+1$.
(3) $\rho_{f_{2}}(H) \leq \rho_{f_{1}}(H) \leq \rho_{f_{2}}(H)+1$.
(4) $\rho_{f_{3}}(H)=\min \left\{\rho_{f_{2}}(H), \rho_{f}(H-x)\right\} \leq \rho_{f}(H-x)=\rho_{f_{0}}(H)-1$.
(5) $\rho_{f}(H) \geq \rho_{f_{1}}(H)-1$.

Proof. (1) The inequalities follow from that an f_{i}-induced-path partition is an f_{j} -induced-path partition whenever $i<j$.
(2) The second inequality follows from that replacing the induced path $P x$ in an f_{1}-induced-path partition by two induced paths P and x results in an f_{0}-induced-path partition of H.
(3) The second inequality follows from that replacing the induced path $P x Q$ in an f_{2}-induced-path partition by two induced paths $P x$ and Q results in an f_{1} -induced-path partition of H.
(4) The first equality follows from that one is an f_{3}-induced-path partition of H if and only if it is either an f_{2}-induced-path partition of H or an f-induced-path partition of $H-x$. The second equality follows from that \mathcal{P} is an f_{0}-induced-path partition of H if and only if it is the union of $\{x\}$ and an f-induced-path partition of $H-x$.
(5) According to (1), (3) and (4), we have
$\rho_{f}(H) \geq \rho_{f_{3}}(H)=\min \left\{\rho_{f_{2}}(H), \rho_{f}(H-x)\right\} \geq \min \left\{\rho_{f_{1}}(H)-1, \rho_{f_{0}}(H)-1\right\}=\rho_{f_{1}}(H)-1$.

Lemma $3.2(1) \rho_{f}(G) \leq \min \left\{\rho_{f}(A)+\rho_{f_{0}}(B)-1, \rho_{f_{0}}(A)+\rho_{f}(B)-1\right\}$.
(2) $\rho_{f_{2}}(G) \leq \rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1$.

Proof. (1) Suppose \mathcal{P} is an optimal f-induced-path partition of A, and \mathcal{Q} an $f_{0}-$ induced-path partition of B. Then $x \in \mathcal{Q}$ and so $(\mathcal{P} \cup \mathcal{Q})-\{x\}$ is an f-inducedpath partition of G. This gives $\rho_{f}(G) \leq \rho_{f}(A)+\rho_{f_{0}}(B)-1$. Similarly, $\rho_{f}(G) \leq$ $\rho_{f_{0}}(A)+\rho_{f}(B)-1$.
(2) The inequality follows from that if \mathcal{P} (respectively, \mathcal{Q}) is an optimal $f_{1^{-}}$ induced-path partition of A (respectively, B) in which $P x \in \mathcal{P}$ (respectively, $x Q \in \mathcal{Q}$) contains x, then $(\mathcal{P} \cup \mathcal{Q} \cup\{P x Q\})-\{P x, x Q\}$ is an f_{2}-induced-path partition of G.

We now have the following theorem, which is key for the inductive step of our algorithm.

Theorem 3.3 Suppose $\alpha=\rho_{\rho_{0}}(B)-\rho_{f_{1}}(B)$ and $\beta=\rho_{f_{1}}(B)-\rho_{f_{2}}(B)$. (Notice that $\alpha, \beta \in\{0,1\}$.) Then the following statements hold.
(1) If $f(x)=0$, then $\rho_{f}(G)=\rho_{f}(A)+\rho_{f}(B)-1$.
(2) If $f(x)=1$, then $\rho_{f}(G)=\rho_{f_{1-\alpha}}(A)+\rho_{f_{\alpha}}(B)-1$.
(3) If $f(x) \geq 2$ and $\alpha=\beta=0$, then $\rho_{f}(G)=\rho_{f}(A)+\rho_{f_{0}}(B)-1$.
(4) If $f(x) \geq 2$ and $\alpha=0$ and $\beta=1$, then $\rho_{f}(G)=\rho_{f_{3}}(A)+\rho_{f}(B)$.
(5) If $f(x) \geq 2$ and $\alpha=1$, then $\rho_{f}(G)=\rho_{f_{1-\beta}}(A)+\rho_{f_{1+\beta}}(B)-1$.

Proof. Suppose \mathcal{P} is an optimal f-induced-path partition of G. Let P^{*} be the induced path in \mathcal{P} that contains x. (It is possible that there is no such induced path when $f(x)=3$.) There are three possibilities for P^{*} : (a) P^{*} does not exist or $P^{*} \subseteq A$; (b) $P^{*} \subseteq B$; (c) x is an internal vertex of P^{*}, say $P^{*}=P^{\prime} x P^{\prime \prime}$, with $P^{\prime} x \subseteq A$ and $x P^{\prime \prime} \subseteq B$. (This is possible only when $f(x) \geq 2$.)

For the case when (a) holds, $\{P \in \mathcal{P}: P \subseteq A\}$ is an f-induced-path partition of A and $\{P \in \mathcal{P}: P \subseteq B\} \cup\{x\}$ is an f_{0}-induced-path partition of B. We then have the inequality in (a^{\prime}). Similarly, we have (b^{\prime}) and (c^{\prime}) corresponding to (b) and (c).
$\left(\mathrm{a}^{\prime}\right) \rho_{f}(G) \geq \rho_{f}(A)+\rho_{f_{0}}(B)-1$.
(b') $\rho_{f}(G) \geq \rho_{f_{0}}(A)+\rho_{f}(B)-1$. (We may replace $\rho_{f}(B)$ by $\rho_{f_{2}}(B)$ when $f(x) \geq 2$.)
(c') $\rho_{f}(G) \geq \rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1$. (This is possible only when $f(x) \geq 2$.)
We are now ready to prove the theorem.
(1) Since $f(x)=0$, we have $f=f_{0}$. According to Lemma $3.2(1), \rho_{f}(G) \leq$ $\rho_{f}(A)+\rho_{f}(B)-1$. On the other hand, (a^{\prime}) and ($\left.\mathrm{b}^{\prime}\right)$ give $\rho_{f}(G) \geq \rho_{f}(A)+\rho_{f}(B)-1$.
(2) Since $f(x)=1$, we have $f=f_{1}$. Lemma 3.2 (1), together with (a^{\prime}) and ($\left.\mathrm{b}^{\prime}\right)$, gives $\rho_{f}(G)=\min \left\{\rho_{f_{1}}(A)+\rho_{f_{0}}(B)-1, \rho_{f_{0}}(A)+\rho_{f_{1}}(B)-1\right\}$. If $\alpha=0$, then

$$
\rho_{f_{0}}(A)+\rho_{f_{1}}(B)-1 \geq \rho_{f_{1}}(A)+\left(\rho_{f_{0}}(B)-\alpha\right)-1=\rho_{f_{1}}(A)+\rho_{f_{0}}(B)-1 ;
$$

and if $\alpha=1$, then

$$
\rho_{f_{1}}(A)+\rho_{f_{0}}(B)-1 \geq\left(\rho_{f_{0}}(A)-1\right)+\left(\rho_{f_{1}}(B)+\alpha\right)-1=\rho_{f_{0}}(A)+\rho_{f_{1}}(B)-1 .
$$

Hence $\rho_{f}(G)=\rho_{f_{1-\alpha}}(A)+\rho_{f_{\alpha}}(B)-1.1 / T$
(3) According to Lemma 3.2 (1), $\rho_{f}(G) \leq \rho_{f}(A)+\rho_{f_{0}}(B)-1$. On the other hand, as $\rho_{f_{0}}(A) \geq \rho_{f_{1}}(A) \geq \rho_{f}(A)$ and $\rho_{f_{0}}(B)=\rho_{f_{1}}(B)=\rho_{f_{2}}(B)$, ($\left.\mathrm{a}^{\prime}\right)-\left(\mathrm{c}^{\prime}\right)$ give $\rho_{f}(G) \geq \rho_{f}(A)+\rho_{f_{0}}(B)-1$.
(4) According to Lemma 3.1 (4) and $\alpha=0$ and $\beta=1$, we have

$$
\rho_{f}(B-x)=\rho_{f_{0}}(B)-1=\rho_{f_{1}}(B)-1=\rho_{f_{2}}(B) .
$$

This, together with Lemma 3.1 (4), gives that the above value is also equal to $\rho_{f_{3}}(B)$ and so $\rho_{f}(B)$. Then, an optimal f_{3}-induced-path partition \mathcal{P} of A, together with an optimal f-induced-path partition of $B-x$ (respectively, B) when x is (respectively, is not) in an induced path of \mathcal{P}, forms an f_{2}-induced-path partition of G. Thus, $\rho_{f}(G) \leq \rho_{f_{2}}(G) \leq \rho_{f_{3}}(A)+\rho_{f}(B)$.

On the other hand, since $\rho_{f_{1}}(A) \geq \rho_{f}(A) \geq \rho_{f_{3}}(A)$ and $\rho_{f_{0}}(B)-1=\rho_{f_{1}}(B)-1=$ $\rho_{f}(B)$, ($\left.\mathrm{a}^{\prime}\right)$ or $\left(\mathrm{c}^{\prime}\right)$ implies $\rho_{f}(G) \geq \rho_{f_{3}}(A)+\rho_{f}(B)$. Also, as $\rho_{f_{0}}(A)-1 \geq \rho_{f_{3}}(A)$ by Lemma 3.1 (4), (b') implies $\rho_{f}(G) \geq \rho_{f_{3}}(A)+\rho_{f}(B)$.
(5) According to Lemma 3.1 (1) and Lemma 3.2, we have

$$
\rho_{f}(G) \leq \rho_{f_{2}}(G) \leq \min \left\{\rho_{f_{0}}(A)+\rho_{f_{2}}(B)-1, \rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1\right\} .
$$

On the other hand, if (a^{\prime}) holds, then by Lemma 3.1 (5) and that $\rho_{f_{0}}(B)=\rho_{f_{1}}(B)+1$, $\rho_{f}(G) \geq \rho_{f}(A)+\rho_{f_{0}}(B)-1 \geq\left(\rho_{f_{1}}(A)-1\right)+\left(\rho_{f_{1}}(B)+1\right)-1=\rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1$. This, together with (b^{\prime}) and (c^{\prime}), gives

$$
\rho_{f}(G)=\min \left\{\rho_{f_{0}}(A)+\rho_{f_{2}}(B)-1, \rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1\right\}
$$

If $\beta=0$, then

$$
\rho_{f_{0}}(A)+\rho_{f_{2}}(B)-1 \geq \rho_{f_{1}}(A)+\left(\rho_{f_{1}}(B)-\beta\right)-1=\rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1
$$

and if $\beta=1$, then

$$
\rho_{f_{1}}(A)+\rho_{f_{1}}(B)-1 \geq\left(\rho_{f_{0}}(A)-1\right)+\left(\rho_{f_{2}}(B)+\beta\right)-1=\rho_{f_{0}}(A)+\rho_{f_{2}}(B)-1 .
$$

Hence $\rho_{f}(G)=\rho_{f_{1-\beta}}(A)+\rho_{f_{1+\beta}}(B)^{4} 1$./n

Before we use the theorems of this subsection to design an efficient algorithm, let us use them to give an alternative proof for a result on trees.

Let T be a tree. For a vertex v of T with $d_{T}(v) \geq 3$, the excess degree $\varepsilon(v)$ of v is equal to $d_{T}(v)-2$. A penultimate vertex is a vertex that is not a leaf and all of whose neighbors are leaves, with the possible exception of one.

Corollary 3.4 [9] Let T be a tree, and let H be the forest induced by the vertices of T having degree 3 or more. Let H^{\prime} be a spanning sub-forest of H of maximum size that $d_{H^{\prime}}(v) \leq \varepsilon(v)$ for every vertex v of H. Then,

$$
\rho(T)=1+\left|E\left(H^{\prime}\right)\right|+\sum_{v \in V(H)}\left[\varepsilon(v)-d_{H^{\prime}}(v)\right] .
$$

Proof. The corollary is clear when the tree has just one vertex. Suppose now T has at least two vertices. Choose a penultimate vertex x whose with leaf-neighbors x_{1}, x_{2}, \ldots, x_{r}. Let $T^{\prime}=T-\left\{x, x_{1}, x_{2}, \ldots, x_{r}\right\}$. By Theorem 3.3 (5), (2) and (1) and the induction hypothesis,

$$
\rho(T)=\rho\left(T^{\prime}\right)+r-1=1+\left|E\left(H_{T^{\prime}}^{\prime}\right)\right|+\sum_{v \in V\left(H_{T^{\prime}}\right)}\left(\varepsilon(v)-d_{H_{T^{\prime}}^{\prime}}(v)\right)+r-1,
$$

where $H_{T^{\prime}}$ is the forest induced by the vertices of T^{\prime} having degree 3 or more, and $H_{T^{\prime}}^{\prime}$ is a spanning sub-forest of H of maximum size such that $d_{H^{\prime}}(v) \leq \varepsilon(v)$ for every vertex v of $H_{T^{\prime}}$. Since $\varepsilon(x)=r-1, d_{H^{\prime}}(x)=1$ and $\left|E\left(H^{\prime}\right)\right|=\left|E\left(H_{T^{\prime}}^{\prime}\right)\right|+1$, the corollary then follows.

3.2.2 Induced-path partitions for special blocks

Besides the inductive theorem (Theorem 3,3) we also need to establish formula for the induced-path numbers of specialgraphs including complete graphs, cycles or complete bipartite graphs. Here we assume that B is a graph in which each vertex v has a label $f(v) \in\{0,1,2,3\}$. Recall that $f^{-1}(i)$ is the set of pre-images of i, i.e., 1896

$$
f^{-1}(i) \Rightarrow\{v \in V(B): f(v)=i\} .
$$

Also, $f^{-1}(I)=\cup_{i \in I} f^{-1}(i)$ for any $I \subseteq\{0,1,2,3\}$. According to Lemma 3.1 (4), $\rho_{f}(B)=\rho_{f}\left(B-f^{-1}(0)\right)+\left|f^{-1}(0)\right|$. Therefore, in this section we only consider the function f with $f^{-1}(0)=\emptyset$.

We first consider the case when B is a complete graph.

Lemma 3.5 If B is a complete graph, then $\rho_{f}(B)=\left\lceil\left|f^{-1}(\{1,2\})\right| / 2\right\rceil$.

Proof. The equality holds since an induced path of a complete graph is a 2-path or a 1-path.

Next, we consider the case when B is a path. This is useful as a subroutine for handling cycles.

Lemma 3.6 Suppose B is a path.
(1) If x is an end-vertex of B with $f(x)=3$, then $\rho_{f}(B)=\rho_{f}(B-x)$.
(2) If x is an end-vertex of B with $f(x) \in\{1,2\}$ and another vertex y with $f(y)=1$ such that no vertex between x and y has a label 1 (choose y the other end-vertex of B if there is no such vertex), then $\rho_{f}(B)=\rho_{f}\left(B^{\prime}\right)+1$ where B^{\prime} is the path obtained from B by deleting x, y and all vertices between them.

Proof. (1) Since $f(x)=3$, by Lemma $3.1(4), \rho_{f}(B) \leq \rho_{f}(B-x)$. As x is an endvertex of $B, \rho_{f}(B) \geq \rho_{f}(B-x)$ follows from that deleting x from an induced path (if any) in an f-induced-path partition of B results in an f-induced-path partition of $B-x$.
(2) First, we claim that if $f(x)=2$, then $\rho_{f}(B)=\rho_{f_{1}}(B)$. By Lemma 3.1 (1), $\rho_{f}(B) \leq \rho_{f_{1}}(B)$. Since x is an end-vertex of B and $f(x)=2$, an f-induced-path partition is in fact an f_{1}-induced-path partition of B. Thus $\rho_{f}(B) \geq \rho_{f_{1}}(B)$. Now, we can assume that $f(x)=1$.

Let P denotes the path from x to y in B. First, $\rho_{f}(B) \leq \rho_{f}\left(B^{\prime}\right)+1$ follows from that an f-induced-path partition of \mathcal{B}^{\prime}, together with P, forms an f-inducedpath partition of B. On the other hand, suppose \mathcal{P} is an optimal f-induced-path partition of B. Since $f(x)=f(y)=1$ and x is an end-vertex of B, \mathcal{P} has some $P^{\prime} \subseteq P$ with $x \in P^{\prime}$. Deleting all vertices of P from the paths in \mathcal{P} results in an f-induced-path partition of B^{\prime} whose size is less than $|\mathcal{P}|$ by at least one. Thus, $\rho_{f}(B)-1 \geq \rho_{f}\left(B^{\prime}\right)$.

We now consider the case when B is a cycle.

Lemma 3.7 Suppose B is a cycle.
(1) If $f^{-1}(\{1,2\})=\emptyset$, then $\rho_{f}(B)=0$.
(2) When $f^{-1}(1)=\emptyset$ and $f^{-1}(2) \neq \emptyset$, if there exists a vertex with label 3, then $\rho_{f}(B)=1$ else $\rho_{f}(B)=2$.
(3) When $f^{-1}(1)=\{x\}$, if x has at least one neighbor labeled with 3 , then $\rho_{f}(B)=1$ else $\rho_{f}(B)=2$.
(4) If $\left|f^{-1}(1)\right| \geq 2$ and $f^{-1}(2)=\emptyset$, then $\rho_{f}(B)=\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil$.
(5) When $f^{-1}(1)$ contains exactly two vertices which are adjacent and $f^{-1}(2) \neq \emptyset$, then $\rho_{f}(B)=2$.
(6) If P is an induced path from x to y in B such that $f^{-1}(1) \cap P=\{x, y\}$ and $f^{-1}(2) \cap P \neq \emptyset$, then $\rho_{f}(B)=\rho_{f}(B-P)+1$.

Proof. The proof from (1) to (5) are obvious.
(5) First, $\rho_{f}(B) \leq \rho_{f}(B-P)+1$ follows from that an f-induced-path partition of $B-P$ together with P forms an f-induced-path partition of B. On the other hand, suppose \mathcal{P} is an optimal f-induced-path partition of B. Since $f^{-1}(1) \cap P=\{x, y\}$ and $f^{-1}(2) \cap P \neq \emptyset, \mathcal{P}$ must contain some $P^{\prime} \subseteq P$. Deleting all vertices of P from the paths in \mathcal{P} results in an f-induced-path partition of $B-P$ whose size is less than $|\mathcal{P}|$ by at least one. Thus, $\rho_{f}(B)-1 \geq \rho_{f}(B-P)$.

We now consider the case when B is a complete bipartite graph with $C \cup D$ as a bipartition of the vertex set. For $i=0,1,2,3$, let

$$
\begin{aligned}
& C_{i}=\{x \in C: f(x)=i\} \text { and } c_{i}=\left|C_{i}\right| \\
& D_{i}=\{y \in D: f(y)=i\} \text { and } d_{i}=\left|D_{i}\right| .
\end{aligned}
$$

Notice that an induced path of a complete bipartite graph has at most 3 vertices. We then have the following lemmas.

Lemma 3.8 Suppose $c_{1} \geq 2$ and $d_{2} \geq 1$. If $x, z \in C_{1}$ and $y \in D_{2}$, then $\rho_{f}(B)=$ $\rho_{f}(B-\{x, y, z\})+1$.

Proof. First, $\rho_{f}(B) \leq \rho_{f}(B-\{x, y, z\})+1$ since $x y z$ is an induced path. On the other hand, suppose \mathcal{P} is an optimal f-induced-path partition of B. We claim that there exists a path $x y T$ in \mathcal{P}. Otherwise, suppose $x P$ and $Q y R$ are in \mathcal{P} with $|R| \leq 1$.

When $P=y^{\prime} S$, we may replace $x P=x y^{\prime} S$ by $x y S$ and $Q y R$ by $Q y^{\prime} R$; when $P=\emptyset$, we may replace $x P=x$ by $x y R$ and $Q y R$ by Q. Next we claim that $T=z$. Otherwise, suppose $S z$ is in \mathcal{P}. In this case we may replace $x y T$ by $x y z$ and $S z$ by $S T$. Therefore, we may assume that \mathcal{P} contains $x y z$, and so $\rho_{f}(B)-1 \geq \rho_{f}(B-\{x, y, z\})$.

By symmetry, we may prove a similar lemma for the case when $d_{1} \geq 2$ and $c_{2} \geq 1$.

Lemma 3.9 Suppose $2 c_{2}>d_{1}+d_{2}$. If $x \in C_{2}$, then $\rho_{f}(B)=\rho_{f^{\prime}}(B)$ where f^{\prime} is the same as f except $f^{\prime}(x)=1$.

Proof. First, $\rho_{f}(B) \leq \rho_{f^{\prime}}(B)$ since an f^{\prime}-induced-path partition of B is an f-inducedpath partition of B. On the other hand, suppose \mathcal{P} is an optimal f-induced-path partition of B. If every vertex in C_{2} is an internal vertex of some induced path in \mathcal{P}, then the two end-vertices of this induced path are in $D_{1} \cup D_{2}$, and so $2 c_{2} \leq d_{1}+d_{2}$ which is impossible. Hence, we mày assume that x is the end-vertex of an induced path in \mathcal{P}. This gives $\rho_{f}(B) \geq \rho_{f^{\prime}}(B)$. S

By symmetry, we may prove a similar lemmă for the case when $2 d_{2}>c_{1}+c_{2}$.
We may repeatedly apply Lemmas 3.8 and 3.9 and the remarks after them until the following conditions hold:

$$
\left(d_{1} \leq 1 \text { or } c_{2}=0\right), \quad\left(c_{1} \leq 1 \text { or } d_{2}=0\right), \quad 2 c_{2} \leq d_{1}+d_{2}, \quad 2 d_{2} \leq c_{1}+c_{2}
$$

Notice that it is impossible that $c_{2}=0<d_{2}$, for otherwise the second condition gives $c_{1} \leq 1$ while the forth gives $2 \leq 2 d_{2} \leq c_{1} \leq 1$, a contradiction. So, either $c_{2}=d_{2}=0$ or both c_{2} and d_{2} are nonzero. The latter case implies $c_{1}=c_{2}=d_{1}=d_{2}=1$, in which case $\rho(B)=2$.

Lemma 3.10 Suppose $c_{2}=d_{2}=0, c_{1} \geq 1$ and $d_{1} \geq 1$. If $x \in C_{1}$ and $y \in D_{1}$, then $\rho_{f}(B)=\rho_{f}(B-\{x, y\})+1$.

Proof. First, $\rho_{f}(B) \leq \rho_{f}(B-\{x, y\})+1$ since $x y$ is an induced path. On the other hand, suppose \mathcal{P} is an optimal f-induced-path partition of B. If $x y$ is not in \mathcal{P}, then
\mathcal{P} contains $x P$ and $y Q$. For the case when $P=\emptyset$, we may replace $x P=x$ by $x y$ and $y Q$ by Q. For the case when $P=y^{\prime}$, we may replace $x P=x y^{\prime}$ by $x y$ and $y Q$ by $y^{\prime} Q$. So, we may assume that $x P=x y^{\prime} z$. By symmetry, we may also assume that $y Q=y z^{\prime} x^{\prime}$. As $c_{2}=d_{2}=0$, it is the case that $y^{\prime} \in D_{3}$ and $z^{\prime} \in C_{3}$. Then we may replace $x y^{\prime} z$ by $x y$ and $y z^{\prime} x^{\prime}$ by $x^{\prime} z$. Therefore, we may assume that $x y$ is in \mathcal{P} and so $\rho_{f}(B)-1 \geq \rho_{f}(B-\{x, y\})$.

Lemma 3.11 Suppose $d_{1}=c_{2}=d_{2}=0, c_{1} \geq 2$ and $d_{3} \geq 1$. If $x, z \in C_{1}$ and $y \in D_{3}$, then $\rho_{f}(B)=\rho_{f}(B-\{x, y, z\})+1$.

Proof. First, $\rho_{f}(B) \leq \rho_{f}(B-\{x, y, z\})$ since $x y z$ is an induced path. On the other hand, suppose \mathcal{P} is an optimal f-induced path of B. By the condition $d_{1}=c_{2}=d_{2}=$ 0 , it is easy to see that we may assume that $x y z$ is an induced path in \mathcal{P}. Hence, $\rho_{f}(B)-1 \geq \rho_{f}(B-\{x, y, z\})$.

By symmetry, we may prove a similar lemma for the case when $c_{1}=c_{2}=d_{2}=$ $0, d_{1} \geq 2$ and $c_{3} \geq 1$.

3.2.3 Algorithm for graphs with special blocks

We are ready to give a linear-time algorithm for the induced-path number of graphs whose blocks are complete graphs, cycles or complete bipartite graphs. Notice that we may consider only connected graphs. We present five procedures. The first four are subroutines which calculate f-induced-path numbers of complete graphs, paths, cycles and complete bipartite graphs, respectively, by using Lemmas 3.5 to 3.11. The last one is the main routine for the problem.

Lemmas 3.1 (4) and 3.5 lead to the following subroutine for complete graphs.

Algorithm IPCG. Find the f-induced-path number $\rho_{f}(B)$ of a complete graph B.
Input. A complete graph B and a vertex labeling f.
Output. $\rho_{f}(B)$.

Method.

$\rho_{f}(B)=\left|f^{-1}(0)\right|+\left\lceil\left|f^{-1}(\{1,2\})\right| / 2\right\rceil ;$
return $\rho_{f}(B)$.

Lemma 3.6 leads to the following subroutine for paths, which is used in the cycle subroutine.

Algorithm IPP. Find the f-induced-path number $\rho_{f}(B)$ of a path B.
Input. A path B and a vertex labeling f with $f^{-1}(0)=\emptyset$.
Output. $\rho_{f}(B)$.
Method.

$$
\begin{aligned}
& \rho_{f}(B) \leftarrow 0 ; \\
& B^{\prime} \leftarrow B ;
\end{aligned}
$$

while $\left(B^{\prime} \neq \emptyset\right)$ do

choose an end-vertex x of $B^{\prime} ;$,
if $(f(x)=3)$ then $B^{\prime} \leftarrow B^{\prime}-x$ else
choose a vertex y nearest to x with $f(y)=1$
(let y be the other end-vertex if there is no such vertex);
$\rho_{f}(B) \leftarrow \rho_{f}(B)+1 ;$
$B^{\prime} \leftarrow B^{\prime}-$ all vertices between (and including) x and y;
end else;
end while;
return $\rho_{f}(B)$.

Lemmas 3.1 (4) and 3.7 lead to the following subroutine for cycles.

Algorithm IPC. Find the f-induced-path number $\rho_{f}(B)$ of a cycle B.
Input. A cycle B and a vertex labeling f.
Output. $\rho_{f}(B)$.

Method.

if $\left(f^{-1}(\{0,1,2\})=\emptyset\right)$ then $\rho_{f}(B) \leftarrow 0$;
else if $\left(f^{-1}(\{0,1\})=\emptyset \neq f^{-1}(2)\right)$ then
if there exists a vertex with label 3 then $\rho_{f}(B) \leftarrow 1$ else $\rho_{f}(B) \leftarrow 2$;
else if $\left(f^{-1}(0)=\emptyset\right.$ and $\left.f^{-1}(1)=\{x\}\right)$ then
if x has a neighbor labeled with 3 then $\rho_{f}(B) \leftarrow 1$ else $\rho_{f}(B) \leftarrow 2$;
else if $\left(f^{-1}(0)=\emptyset\right.$ and $\left|f^{-1}(1)\right| \geq 2$ and $\left.f^{-1}(2)=\emptyset\right)$ then

$$
\rho_{f}(B) \leftarrow\left\lceil\left|f^{-1}(1)\right| / 2\right\rceil ;
$$

else if $\left(f^{-1}(0)=\emptyset\right.$ and $\left|f^{-1}(1)\right| \geq 2$ and $\left.f^{-1}(2) \neq \emptyset\right)$ then
if $\left(f^{-1}(1)\right.$ contains exactly two vertices which are adjacent) then $\rho_{f}(B) \leftarrow 2$;
else choose an $x-y$ induced path P with $f^{-1}(1) \cap P=\{x, y\}$ and $f^{-1}(2) \cap P \neq \emptyset$;

$$
p_{f}(B) \leftarrow p_{f}(B=P)+1 \text { by calling } \mathbf{P} \mathbf{P}(B-P) \text {; }
$$

else // now $f^{-1}(0) \neq \emptyset / /$ —1896
let $B-f^{-1}(0)$ be the disjoint union of paths $P_{1}, P_{2}, \ldots, P_{k}$;
$\rho_{f}(B) \leftarrow\left|f^{-1}(0)\right| ;$
for $i=1$ to k do $\rho_{f}(B) \leftarrow \rho_{f}(B)+\rho_{f}\left(P_{i}\right)$ by calling $\mathbf{P P}\left(P_{i}\right)$;
end else;
return $\rho_{f}(B)$.

Lemma 3.1 (4) and Lemmas 3.8 to 3.11 lead to the following subroutine for complete bipartite graphs.

Algorithm IPCB. Find the f-induced-path number $\rho_{f}(B)$ of a complete bipartite graph B.

Input. A complete bipartite graph B with a bipartition $C \cup D$ of vertices and a vertex labeling f.

Output. $\rho_{f}(B)$.

Method.

$c_{i} \leftarrow\left|f^{-1}(i) \cap C\right|$ and $d_{i} \leftarrow\left|f^{-1}(i) \cap D\right|$ for $0 \leq i \leq 3 ; \rho_{f}(B) \leftarrow c_{0}+d_{0} ;$
while (true) do
if ($c_{1} \geq 2$ and $d_{2} \geq 1$) then // use Lemma $3.8 / /$
$c_{1} \leftarrow c_{1}-2 ; \quad d_{2} \leftarrow d_{2}-1 ; \quad \rho_{f}(B) \leftarrow \rho_{f}(B)+1 ;$
else if $\left(d_{1} \geq 2\right.$ and $\left.c_{2} \geq 1\right)$ then // remark after Lemma $3.8 / /$

$$
d_{1} \leftarrow d_{1}-2 ; \quad c_{2} \leftarrow c_{2}-1 ; \quad \rho_{f}(B) \leftarrow \rho_{f}(B)+1
$$

else if $\left(2 c_{2}>d_{1}+d_{2}\right)$ then/E use Lemma $3.9 / /$
$c_{2} \leftarrow c_{2}-1 ; \quad c_{1} \leftarrow c_{1}+1 ;$
else if $\left(2 d_{2}>c_{1}+c_{2}\right)$ then//remark after Lemma 3.9 //
$d_{2} \leftarrow d_{2}-1 ; \quad d_{1} \leftarrow d_{1}+1 ;$
else if ($c_{1}=c_{2}=d_{1}=d_{2}=1$) then

$$
\rho_{f}(B) \leftarrow \rho_{f}(B)+2 ; \text { return } \rho_{f}(B) ;
$$

else if $\left(c_{2}=d_{2}=0\right.$ and $c_{1} \geq 1$ and $\left.d_{1} \geq 1\right)$ then // use Lemma $3.10 / /$
$c_{1} \leftarrow c_{1}-1 ; \quad d_{1} \leftarrow d_{1}-1 ; \quad \rho_{f}(B) \leftarrow \rho_{f}(B)+1 ;$
else if ($d_{1}=c_{2}=d_{2}=0$ and $c_{1} \geq 2$ and $d_{3} \geq 1$) then // use Lemma $3.11 / /$
$c_{1} \leftarrow c_{1}-2 ; \quad d_{3} \leftarrow d_{3}-1 ; \quad \rho(B) \leftarrow \rho(B)+1 ;$
else if $\left(c_{1}=c_{2}=d_{2}=0\right.$ and $d_{1} \geq 2$ and $\left.c_{3} \geq 1\right)$ then // remark after Lemma $3.11 / /$ $d_{1} \leftarrow d_{1}-2 ; \quad c_{3} \leftarrow c_{3}-1 ; \quad \rho(B) \leftarrow \rho(B)+1 ;$
else // now $c_{2}=d_{2}=0$ with $\left(c_{1}+d_{1} \leq 1\right.$ or $c_{1}=c_{3}=0$ or $\left.d_{1}=d_{3}=0\right) / /$

$$
\rho_{f}(B) \leftarrow \rho_{f}(B)+c_{1}+c_{2}+d_{1}+d_{2} ; \quad \text { return } \rho_{f}(B) ;
$$

end while.

Finally, Theorem 3.3 leads to the following main algorithm.

Algorithm IPG. Find the f-induced-path number $\rho_{f}(G)$ of the connected graph G whose blocks are complete graphs, cycles or complete bipartite graphs.

Input. A graph G and a vertex labeling f.
Output. $\rho_{f}(G)$.

Method.

$\rho_{f}(G) \leftarrow 0 ;$
while $(G \neq \emptyset)$ do
choose a block B with cut-vertex x or with no cut-vertex;
if (B is a complete graph) then
find $\rho_{f_{i}}(B)$ by calling $\operatorname{IPCG}\left(B, f_{i}\right)$ for $0 \leq i \leq 3$;
else if (B is a cycle) then
find $\rho_{f_{i}}(B)$ by calling $\operatorname{IPC}\left(B, f_{i}\right)$ for $0 \leq i \leq 3$;
else if (B is a complete bipartite graph) then
find $\rho_{f_{i}}(B)$ by calling $\mathbf{I P C B}\left(B, f_{i}\right)$ for $0 \leq i \leq 3$;
$\alpha:=\rho_{f_{0}}(B)-\rho_{f_{1}}(B) ; \beta:=\rho_{f_{1}}(B)-\rho_{f_{2}}(B) ;$
if $(f(x)=0)$ then $\rho_{f}(G)-\rho_{f}(G)+\rho_{f}(B)-1$;
else if $(f(x)=1)$ then

$$
\rho_{f}(G) \leftarrow \rho_{f}(G)+\rho_{f_{\alpha}}(B)-1 ; \quad f(x) \leftarrow 1-\alpha ;
$$

else // by now $f(x)=2$ or $3 / /$
case 1: $\alpha=\beta=0$

$$
\rho_{f}(G) \leftarrow \rho_{f}(G)+\rho_{f_{0}}(B)-1 ;
$$

case 2: $\alpha=0$ and $\beta=1$

$$
\rho_{f}(G) \leftarrow \rho_{f}(G)+\rho_{f}(B) ; \quad f(x) \leftarrow 3 ;
$$

case 3: $\alpha=1$

$$
\rho_{f}(G) \leftarrow \rho_{f}(G)+\rho_{f_{1+\beta}}(B)-1 ; \quad f(x) \leftarrow 1-\beta ;
$$

$G:=G-(B-\{x\}) ;$
end while;
output $\rho_{f}(G)$.

Theorem 3.12 Algorithm IPG computes the induced-path number of a connected graph whose blocks are complete graphs, cycles or complete bipartite graphs in linear time.

Proof. The correctness of the algorithm follows from Theorem 3.3, Lemma 3.1 (4) and Lemmas 3.5 to 3.11 . The algorithm takes only linear time since the depth-first search can be used to find blocks one by one in linear time, and each subroutine requires only $O(|B|)$ operations.

We now give an example to demonstrate the algorithm.

Example 3.1 Consider the graph G_{1} of 9 vertices and 3 blocks in Figure 3.1. Notice that its blocks are a complete graph, a cycle and a complete bipartite graph.

1. We begin with the assignment $f(v)_{n}=2$ for every vertex v. Set $\rho_{f}\left(G_{1}\right)=0$.

Figure 3.1: Graph $^{1} G_{1}$ of 9 vertices and 3 blocks.
2. Choose the block $B_{1}=\{d, e\}$, which is a complete graph, with the only cutvertex d in G_{1}. Call the subroutine IPCG. Thus, $\alpha=2-1=1$ and $\beta=$ $1-1=0$. Then, $\rho_{f}(G)=0+1-1=0$ and relabel $f(d)=1$ (with an induced path de results). Delete $B_{1}-\{d\}$ from G_{1} to get the graph G_{2} in Figure 3.2.

Figure 3.2: Graph G_{2} results from G_{1} by deleting $\{e\}$.
3. Choose the block $B_{2}=\{a, b, c, d\}$, which is a cycle, with the only cut-vertex c in G_{2}. Call the subroutine IPC. Thus, $\alpha=2-2=0$ and $\beta=2-2=0$. Then, $\rho_{f}(G)=0+2-1=1$ (with an induced path edab results). Delete $B_{2}-\{c\}$ from G_{2} to get the graph G_{3} in Figure 3.3.

Figure 3.3: Graph G_{3} results from G_{2} by deleting $\{a, b, d\}$.
4. Choose the final block $B_{3}=\{c, f, g, h, i\}$, which is a complete bipartite graph. Call the subroutine IPCB. Notice that $c_{2}=3, d_{2}=2$ and $c_{0}=c_{1}=c_{3}=d_{0}=$ $d_{1}=d_{3}=0$. Since $2 c_{2}>d_{1}+d_{2}$, by using Lemma 3.9, we get a new label 1 at vertex c as in Figure 3.4.

Figure 3.4: Graph G_{3} with a new label at vertex c.
5. Now, $c_{1}=1, c_{2}=d_{2}=2$ and $c_{0}=c_{3}=d_{0}=d_{3}=0$. Since $2 c_{2}>d_{1}+d_{2}$, again by Lemma 3.9, we relabel vertex f by 1 as in Figure 3.5.

Figure 3.5: Graph G_{3} with a new label at vertex f.
6. Now $c_{2}=1, c_{1}=d_{2}=2$ and $c_{0}=c_{3}=d_{1}=d_{3}=0$. Since $c_{1} \geq 2$ and $d_{2} \geq 1$, by Lemma 3.8, we have $\rho_{f}\left(B_{3}\right)=1+\rho_{f}\left(B_{3}-\{c, h, f\}\right)$ (with a path chf results).

Continue this process to calculate $\rho_{f}\left(B_{3}-\{c, h, f\}\right)$, we get $\rho_{f}\left(B_{3}\right)=2$ (with an induced path $g i$ results). Hence, $p_{f}(G)=1+p_{f}\left(B_{3}\right)=3$, and an optimal induced-path partition is $\mathcal{P}=\{e d a b, c h f, g i\}$.

3.3 Induced-path partition in cographs

This section gives a polynomial-time algorithm for the induced-path number of cographs.
Recall that cographs are defined by the following rules:
(i) K_{1} is a cograph;
(ii) if G and H are cographs, then so are $G+H$ and $G \times H$;
(iii) no other graphs are cographs.

For more details on cographs, see $[12,13,26]$.
For technical reasons, we consider the following generalized definition. Let $\rho(G, t, p)$ be the minimum among all induced-path numbers of all graphs $G(t, p)$ obtained from G by removing t vertices and p pairs of nonadjacent vertices. It is clear that $\rho(G)=\rho(G, 0,0)$.

In the following lemma, suppose $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$.
Lemma 3.13 For $t+2 p \leq|V|+\left|V^{\prime}\right|$, we have

$$
\rho(G+H, t, p)=\min _{C}\left\{\rho\left(G, t_{1}+a, p_{1}\right)+\rho\left(H, t_{2}+a, p_{2}-a\right)\right\},
$$

where

$$
\begin{aligned}
C=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& t_{1}+a+2 p_{1} \leq|V|, \\
& t_{2}+a+2\left(p_{2}-a\right) \leq\left|V^{\prime}\right|, \\
& p_{2} \geq a \geq 0, \\
& \left.t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, a \geq 0\right\} .
\end{aligned}
$$

Proof. Suppose \mathcal{P} is an optimal induced-path partition of $(G+H)(t, p)$. Then, $\rho(G+H, t, p) \geq \rho\left(G, t_{1}+a, p_{1}\right)+\rho\left(H, t_{2}+a, p_{2}-a\right)$ for some t_{1} and a. Thus,

$$
\rho(G+H, t, p) \geq \min _{C}\left\{\rho\left(G, t_{1}+a, p_{1}\right)+\rho\left(H, t_{2}+a, p_{2}-a\right)\right\},
$$

where

$$
\begin{aligned}
C=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& \left.t_{1}+a+2 p_{1} \leq \mid V\right) \mid, \\
& t_{2}+a+2\left(p_{2}-a\right) \leq\left|V^{\prime}\right|, \\
& p_{2} \geq a \geq 0, \\
& \left.t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, a \geq 0\right\} .
\end{aligned}
$$

On the other hand, suppose \mathcal{Q} (respectively, \mathcal{R}) is an optimal induced-path partition of $G\left(t_{1}+a, p_{1}\right)$ (respectively, $H\left(t_{2}+a, p_{2}-a\right)$). Then $\mathcal{Q} \cup \mathcal{R}$ is an inducedpath partition of $(G+H)(t, p)$. Thus,

$$
\rho(G+H, t, p) \leq \min _{C}\left\{\rho\left(G, t_{1}+a, p_{1}\right)+\rho\left(H, t_{2}+a, p_{2}-a\right)\right\},
$$

where

$$
\begin{aligned}
C=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& t_{1}+a+2 p_{1} \leq|V|, \\
& t_{2}+a+2\left(p_{2}-a\right) \leq|V|, \\
& \left.p_{2} \geq a \geq 0, t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, a \geq 0\right\} .
\end{aligned}
$$

Hence

$$
\rho(G+H, t, p)=\min _{C}\left\{\rho\left(G, t_{1}+a, p_{1}\right)+\rho\left(H, t_{2}+a, p_{2}-a\right)\right\},
$$

where

1896

$$
\begin{aligned}
C=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& t_{1}+a+2 p_{1} \leq|V|, \\
& t_{2}+a+2\left(p_{2}-a\right) \leq\left|V^{\prime}\right|, \\
& \left.p_{2} \geq a \geq 0, t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, a \geq 0\right\} .
\end{aligned}
$$

Lemma 3.14 For $t+2 p \leq|V|+\left|V^{\prime}\right|$, we have

$$
\rho(G \times H, t, p)=\min _{D}\left\{\rho\left(G, t_{1}+a+c, p_{1}+b\right)+\rho\left(H, t_{2}+b+c, p_{2}+a\right)+a+b+c\right\},
$$

where

$$
\begin{aligned}
D=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a, b, c\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& a+2 b+c+t_{1}+2 p_{1} \leq|V|, \\
& 2 a+b+c+t_{2}+2 p_{2} \leq\left|V^{\prime}\right|, \\
& t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, \\
& a \geq 0, b \geq 0, c \in\{0,1\}\} .
\end{aligned}
$$

Proof. Suppose \mathcal{P} is an optimal induced-path partition of $(G \times H)(t, p), \mathcal{P}$ has a (respectively, b) P_{3} whose internal vertex is in $G\left(t_{1}+a+c, p_{1}+b\right)$ (respectively, $H\left(t_{2}+b+c, p_{2}+a\right)$), and c edges whose end-vertices are in the different parts. If $c \geq 2$ and at least two vertices in the same part in c edges are nonadjacent, then we can interchange two edges with a P_{3} and a vertex. If there exists two edges in c edges whose end-vertices in the same part (also the other part) are adjacent, then we can interchange these two edges with two other edges whose end-vertices are in the same part. Thus,

$$
\rho(G \times H, t, p) \geq \min _{D}\left\{\rho\left(G, t_{1}+a+c, p_{1}+b\right)+\rho\left(H, t_{2}+b+c, p_{2}+a\right)+a+b+c\right\},
$$

where

$$
\begin{aligned}
D=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a, b, c\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& a+2 b+c+t_{1}+2 p_{1} \leq|V|, \\
& 2 a+b+c+t_{2}+2 p_{2} \leq\left|V^{\prime}\right|, \\
& t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, \\
& a \geq 0, b \geq 0, c \in\{0,1\}\} .
\end{aligned}
$$

On the other hand, suppose \mathcal{Q} (respectively, \mathcal{R}) is an optimal induced-path partition of the graph $G\left(t_{1}+\bar{a}+c, p_{1}+b\right)$ (respectively, $H\left(t_{2}+b+c, p_{2}+a\right)$), and we have the set S containing $(a+b) P_{3}$ and \mathcal{C} edges. So $\mathcal{Q} \cup \mathcal{R} \cup S$ is an induced-path partition of a graph $G \times H(t, p)$. Thus,

$$
\rho(G \times H, t, p) \leq \min _{D}\left\{\rho\left(G, t_{1}+a+c, p_{1}+b\right)+\rho\left(H, t_{2}+b+c, p_{2}+a\right)+a+b+c\right\},
$$

where

$$
\begin{aligned}
D=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a, b, c\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& a+2 b+c+t_{1}+2 p_{1} \leq|V|, \\
& 2 a+b+c+t_{2}+2 p_{2} \leq\left|V^{\prime}\right|, \\
& t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, \\
& a \geq 0, b \geq 0, c \in\{0,1\}\} .
\end{aligned}
$$

And so,

$$
\rho(G \times H, t, p)=\min _{D}\left\{\rho\left(G, t_{1}+a+c, p_{1}+b\right)+\rho\left(H, t_{2}+b+c, p_{2}+a\right)+a+b+c\right\},
$$

where

$$
\begin{aligned}
D=\left\{\left(t_{1}, t_{2}, p_{1}, p_{2}, a, b, c\right):\right. & t=t_{1}+t_{2}, p=p_{1}+p_{2}, \\
& a+2 b+c+t_{1}+2 p_{1} \leq|V|, \\
& 2 a+b+c+t_{2}+2 p_{2} \leq\left|V^{\prime}\right|, \\
& t_{1} \geq 0, t_{2} \geq 0, p_{1} \geq 0, p_{2} \geq 0, \\
& a \geq 0, b \geq 0, c \in\{0,1\}\} .
\end{aligned}
$$

Theorem 3.15 There is a polynomial-time algorithm for computing the induced-path number of a cograph.

Proof. At any iteration, Lemmas 3.13 uses polynomial time and Lemma 3.14 uses polynomial time. And by the definition of cographs, the theorem holds.

Chapter 4

Isometric-path Cover

4.1 Preliminary of isometric-path cover

Recall that an isometric path between two vertices in a graph G is a shortest path joining them. An isometric-path cover of a graph is a collection of isometric paths that cover all vertices of the graph. The isometric-path-cover problem is to find the isometric-path number $\operatorname{ip}(G)$ of a graph G^{η} which is the minimum cardinality of an isometric-path cover.

The isometric-path number of the Cartesian product $P_{n_{1}} \square P_{n_{2}} \square \ldots \square P_{n_{d}}$ has been studied extensively in the literature. Fitzpatrick [17] gave bounds for the case when $n_{1}=n_{2}=\ldots=n_{d}$. Fisher and Fitzpatrick [18] gave exact values for the case $d=2$. Fitzpatrick et al. [19] gave a lower bound, which is in fact the exact value if $d+1$ is a power of 2 , for the case when $n_{1}=n_{2}=\ldots=n_{d}=2$.

The purpose of this chapter is to give a linear-time algorithm for the isometric-path-cover problem in block graphs. We also determine isometric-path numbers of complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

4.2 Isometric-path cover in block graphs

The purpose of this section is to give isometric-path numbers of block graphs. We also give a linear-time algorithm to find the corresponding paths. For technical reasons, we consider a slightly more general problem as follows. Suppose every vertex v in the graph G is associated with a non-negative integer $f(v)$. We call such function f a
vertex labeling of G. An f-isometric-path cover of G is a family \mathcal{C} of isometric paths such that the following conditions hold.
(C1) If $f(v)=0$, then v is in an isometric path in \mathcal{C}.
(C2) If $f(v) \geq 1$, then v is an end-vertex of at least $f(v)$ isometric paths in \mathcal{C}, while the counting is twice if v itself is a path in \mathcal{C}.

The f-isometric-path number of G, denoted by $\operatorname{ip}_{f}(G)$, is the minimum cardinality of an f-isometric-path cover of G. It is clear that when $f(v)=0$ for all vertices v in G, we have $\operatorname{ip}(G)=\operatorname{ip}_{f}(G)$. The attempt of this section is to determine the f-isometric-path number of a block graph.

4.2.1 Formula for block graphs

In this subsection, we determine the f-isometric-path numbers for block graphs G. Without loss of generality, we may assume that G is connected.

First, a useful lemma.

Lemma 4.1 Suppose x is a non-cut-vertex of a block graph G with a vertex labeling f. If vertex labeling f^{\prime} is the same as f except that $f^{\prime}(x)=\max \{1, f(x)\}$, then $\operatorname{ip}_{f}(G)=\operatorname{ip}_{f^{\prime}}(G)$.

Proof. Notice that an internal vertex of an isometric path in a block graph is a cut-vertex. Since x is not a cut-vertex, x must be an end-vertex of any isometric path. It follows that a collection \mathcal{C} is an f-isometric-path cover if and only if it is an f^{\prime}-isometric-path cover. The lemma then follows.

Now, we may assume that $f(v) \geq 1$ for all non-cut-vertices v of G, and call such a vertex labeling regular. We have the following theorem for the inductive step.

Theorem 4.2 Suppose G is a block graph with a regular labeling f, and x is a non-cut-vertex in a block B with exactly one cut-vertex y or with no cut-vertex in which case let y be any vertex of $B-\{x\}$. When $f(x)=1$, let $G^{\prime}=G-x$ with a regular
vertex labeling f^{\prime} which is the same as f except $f^{\prime}(y)=f(y)+1$. When $f(x) \geq 2$, let $G^{\prime}=G$ with a regular vertex labeling f^{\prime} which is the same as f except $f^{\prime}(x)=f(x)-1$ and $f^{\prime}(y)=f(y)+1$. Then $\operatorname{ip}_{f}(G)=\operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Proof. We first prove that $\operatorname{ip}_{f}(G) \geq \operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$. Suppose \mathcal{C} is an optimal f-isometricpath cover of G. Choose an isometric path P in \mathcal{C} having x as an end-vertex. We consider four cases.

Case 1.1. $P=x$ and $f(x)=1$ (i.e., $\left.G^{\prime}=G-x\right)$.
In this case, $\mathcal{C}^{\prime}=(\mathcal{C}-\{P\}) \cup\{y\}$ is an f^{\prime}-isometric-path cover of G^{\prime}. Hence, $\operatorname{ip}_{f}(G)=|\mathcal{C}| \geq\left|\mathcal{C}^{\prime}\right| \geq \operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Case 1.2. $P=x$ and $f(x) \geq 2$ (i.e., $\left.G^{\prime}=G\right)$.
In this case, $\mathcal{C}^{\prime}=(\mathcal{C}-\{P\}) \cup\{x y\}$ is an f^{\prime}-isometric-path cover of G^{\prime}. Hence, $\operatorname{ip}_{f}(G)=|\mathcal{C}| \geq\left|\mathcal{C}^{\prime}\right| \geq \operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Case 1.3. $P=x z$ for some vertex z in $B-\{x, y\}$.
In this case, $\mathcal{C}^{\prime}=(\mathcal{C}-\{P\}) \mathcal{U}\{y z\}$ is an f^{\prime}-isometric-path cover of G^{\prime}. Hence, $\operatorname{ip}_{f}(G)=|\mathcal{C}| \geq\left|\mathcal{C}^{\prime}\right| \geq \operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Case 1.4. $P=x y Q$, where Q contains no vêrtices in B.
In this case, $\mathcal{C}^{\prime}=(\mathcal{C}-\{P\}) \mathcal{U}^{2}\{y Q\}$ is ${ }^{\text {Gan }} f^{\prime}$-isometric-path cover of G^{\prime}. Hence, $\operatorname{ip}_{f}(G)=|\mathcal{C}| \geq\left|\mathcal{C}^{\prime}\right| \geq \operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Next, we prove that $\operatorname{ip}_{f}(G) \leq \operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$. Suppose \mathcal{C}^{\prime} is an optimal f^{\prime}-isometricpath cover of G^{\prime}. Choose a path P^{\prime} in \mathcal{C}^{\prime} having y as an end-vertex. We consider three cases.

Case 2.1. $P^{\prime}=y x$.
In this case, $G^{\prime}=G$ and $\mathcal{C}=\left(\mathcal{C}^{\prime}-\left\{P^{\prime}\right\}\right) \cup\{x\}$ is an f-isometric-path cover of G. Hence, $\operatorname{ip}_{f}(G) \leq|\mathcal{C}| \leq\left|\mathcal{C}^{\prime}\right|=\operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Case 2.2. $P^{\prime}=y z$ for some z in $B-\{x, y\}$.
In this case, $\mathcal{C}=\left(\mathcal{C}^{\prime}-\left\{P^{\prime}\right\}\right) \cup\{x z\}$ is an f-isometric-path cover of G. Hence, $\operatorname{ip}_{f}(G) \leq|\mathcal{C}| \leq\left|\mathcal{C}^{\prime}\right|=\operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Case 2.3. $P^{\prime}=y Q$, where Q contains no vertex in B.
In this case, $\mathcal{C}=\left(\mathcal{C}^{\prime}-\left\{P^{\prime}\right\}\right) \cup\{x y Q\}$ is an f-isometric-path cover of G. Hence,
$\operatorname{ip}_{f}(G) \leq|\mathcal{C}| \leq\left|\mathcal{C}^{\prime}\right|=\operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.
Consequently, we have the following result for f-isometric-path numbers of connected block graphs.

Theorem 4.3 If $G=(V, E)$ is a connected block graph with a regular vertex labeling f, then $\operatorname{ip}_{f}(G)=\left\lceil\frac{s(G)}{2}\right\rceil$, where $s(G)=\sum_{v \in V} f(v)$.

Proof. The theorem is obvious when G has only one vertex. For the case when G has more than one vertex, we apply Theorem 4.2 repeatedly until the graph becomes trivial. Notice that the $s\left(G^{\prime}\right)=s(G)$ when Theorem 4.2 is applied.

For the isometric-path-cover problem, we have
Corollary 4.4 If G is a connected block graph, then $\operatorname{ip}(G)=\left\lceil\frac{\mathrm{nc}(G)}{2}\right\rceil$, where $\operatorname{nc}(G)$ is the number of non-cut-vertices of G.

Proof. The corollary follows from Theorem 4.3 and the fact that $\operatorname{ip}(G)=\operatorname{ip}_{f}(G)$ for the regular vertex labeling f with $f(v)=1$ if v is a non-cut-vertex and $f(v)=0$ otherwise.

1896
Corollary 4.5 [18] If T is any treethen $\mathrm{ip}(T)=\left\lceil\frac{\ell(T)}{2}\right\rceil$, where $\ell(T)$ is the number of leaves in T.

4.2.2 Algorithm for block graphs

Based on Theorem 4.2, we are able to design an algorithm for the isometric-path-cover problem in block graphs. Notice that we may only consider connected block graphs with regular vertex labelings. To speed up the algorithm, we may modify Theorem 4.2 a little bit so that each time a non-cut-vertex is handled.

Theorem 4.6 Suppose G is a block graph with a regular labeling f, and x is a non-cut-vertex in a block B with exactly one cut-vertex y or with no cut-vertex in which let y be any vertex in $B-\{x\}$. Let $G^{\prime}=G-x$ with a regular vertex labeling f^{\prime} which is the same as f except $f^{\prime}(y)=f(y)+f(x)$. Then $\operatorname{ip}_{f}(G)=\operatorname{ip}_{f^{\prime}}\left(G^{\prime}\right)$.

Proof. The theorem follows from repeatedly applying Theorem 4.2.

Now, we are ready to give the algorithm.

Algorithm IP Find the f-isometric-path number $\operatorname{ip}_{f}(G)$ of a connected block graph.
Input. A connected block graph G and a regular vertex labeling f.
Output. An optimal f-isometric-path cover \mathcal{C} of G and $\operatorname{ip}_{f}(G)$.

Method.

1. construct a stack S which is empty at the beginning;
2. let $G^{\prime} \leftarrow G$;
3. while (G^{\prime} has more than one vertex) do
4. choose a block B with exactly one cut-vertex y
5.
6.
7.
8.
9.
10.
11.
12. $\quad \operatorname{ip}_{f}(G) \leftarrow\lceil f(r) / 2\rceil$, where r is the only vertex of G^{\prime};
13.
14.
15.
16.
17.
18.
19.
20.
21. end while.

Algorithm IP can be implemented in linear time to the number of vertices and edges.

We close this section by giving an example that demonstrates the algorithm

Example 4.1 Consider the graph G_{1} of 5 vertices and 2 blocks in Figure 4.1. Notice that its blocks are two complete graphs.

1. Give a regular vertex labeling f such that $f(c)=0$, and $f(v)=1$ for $v \neq c$ of G_{1} in Figure 4.1.
2. Construct an empty stack S in Figure 4.1.

Figure 4.1: Graph G_{1} of 5^{5} vertices, and an empty stack S.
3. Choose the block $B_{1}=\{a, b, c\}$, which is a complete graph, with the only cutvertex c, and another vertex d. Thus, $f(c)=0+f(a)=1$. Then, push $(a, c, 1)$ into S, and delete a from G_{1} to get the graph G_{2} in Figure 4.2.

Figure 4.2: Graph G_{2} results from G_{1} by deleting a. Update stack S.
4. Choose the vertex b. Thus, $f(c)=1+f(b)=2$. Then, push $(b, c, 1)$ into S, and delete b from G_{2} to get the graph G_{3} in Figure 4.3.

Figure 4.3: Graph G_{3} results from G_{2} by deleting b. Update stack S.
5. Choose the final block $B_{2}=\{c, d, e\}$ and the vertex c. For all vertices of $V\left(B_{2}\right)-\{c\}$, continue this process. Thus, $f(c)=4$. Then, $\operatorname{ip}(G)=2$ and the isometric-path cover is $\mathcal{P}=\{c, c\}$. Hence, we obtain the graph G_{4} in Figure 4.4.

Stack S

$$
\text { (c) } 4 \begin{array}{|l|}
\hline e, c, 1 \\
\hline d, c, 1 \\
\hline b, c, 1 \\
\hline a, c, 1 \\
\hline
\end{array}
$$

Figure 4.4: Graph G_{4} results from G_{3} by deleting d and e. Update stack S.

1896

6. Pop $(e, c, 1)$ from stack S toupdate as in Figure 4.5. Thus, we get $\mathcal{P}=\{c e, c\}$.

Stack S

$d, c, 1$
$b, c, 1$
$a, c, 1$

Figure 4.5: Update stack S by poping $(e, c, 1)$.
7. Also, pop $(d, c, 1)$ from S, and we get $\mathcal{P}=\{c e, c d\}$. Continue this Process. Pop $(b, c, 1)$ from S to obtain $\mathcal{P}=\{c e b, c d\}$. Finally, pop $(a, c, 1)$ form S. Hence, $\mathcal{P}=\{c e b, c d a\}$.

4.3 Isometric-path cover in complete r-partite graphs

In this section we determine isometric-path numbers of all complete r-partite graphs.
Suppose G is the complete r-partite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$ of n vertices, where $r \geq 2$, $n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and $n=n_{1}+n_{2}+\ldots+n_{r}$. Let G has α parts of odd sizes. We notice that every isometric path in G has at most 3 vertices. Consequently,

$$
\operatorname{ip}(G) \geq\left\lceil\frac{n}{3}\right\rceil .
$$

Also, for any path of 3 vertices in an isometric-path cover \mathcal{C}, two end-vertices of the path is in a part of G and the center vertex in another part. In case when two paths of 3 vertices in \mathcal{C} have a common end-vertex, we may replace one by a path of 2 vertices. And, a path of 1 vertex can be replaced by a path of 2 vertices. So, without loss of generality, we may only consider isometric-path covers in which every path is of 2 or 3 vertices, and two 3 -vertices paths have different end-vertices.

Lemma 4.7 If $3 n_{1}>2 n$, then $\operatorname{ip}(G)=\left\lceil\frac{n_{1}}{2}\right\rceil$

Proof. First, $\operatorname{ip}(G) \geq\left\lceil\frac{n_{1}}{2}\right\rceil$ since every isometric path contains at most two vertices in the first part.

On the other hand, we use an induction on $n-n_{1}$ to prove that $\operatorname{ip}(G) \leq\left\lceil\frac{n_{1}}{2}\right\rceil$. When $n-n_{1}=1$, we have $G=K_{n-1,1}$. In this case, it is clear that $\operatorname{ip}(G) \leq\left\lceil\frac{n_{1}}{2}\right\rceil$. Suppose $n-n_{1} \geq 2$ and the claim holds for $n^{\prime}-n_{1}^{\prime}<n-n_{1}$. Then we remove two vertices from the first part and one vertex from the second part to form an isometric 3 -path P. Since $3 n_{1}>2 n$, we have $n_{1}-2>2\left(n-n_{1}-1\right)>0$ and so $n_{1}-2>n_{2}$. Then, the remaining graph G^{\prime} has $r^{\prime} \geq 2, n_{1}^{\prime}=n_{1}-2$ and $n^{\prime}=n-3$. It then still satisfies $3 n_{1}^{\prime}>2 n^{\prime}$. As $n^{\prime}-n_{1}^{\prime}=n-n_{1}-1$, by the induction hypothesis, $\operatorname{ip}\left(G^{\prime}\right) \leq\left\lceil\frac{n_{1}^{\prime}}{2}\right\rceil$ and so $\operatorname{ip}(G) \leq\left\lceil\frac{n_{1}^{\prime}}{2}\right\rceil+1=\left\lceil\frac{n_{1}}{2}\right\rceil$.

Lemma 4.8 If $3 \alpha>n$, then $\operatorname{ip}(G)=\left\lceil\frac{n+\alpha}{4}\right\rceil$.

Proof. Suppose \mathcal{C} is an optimum isometric-path cover with p_{2} paths of 2 vertices and p_{3} paths of 3 vertices. Then

$$
2 p_{2}+3 p_{3} \geq n
$$

Notice that there are at most $n-\alpha$ vertices in G can be paired up as the end-vertices of the 3 -paths in \mathcal{P}. Hence $p_{3} \leq \frac{n-\alpha}{2}$ and so

$$
2 p_{2}+2 p_{3} \geq n-\frac{n-\alpha}{2}=\frac{n+\alpha}{2} \text { or } \operatorname{ip}(G)=p_{2}+p_{3} \geq\left\lceil\frac{n+\alpha}{4}\right\rceil
$$

On the other hand, we use an induction on $n-\alpha$ to prove that $\operatorname{ip}(G) \leq\left\lceil\frac{n+\alpha}{4}\right\rceil$. When $n-\alpha \leq 1$, we have $n=\alpha$ and G is the complete graph of order n. So, $\operatorname{ip}(G)=\left\lceil\frac{n}{2}\right\rceil=\left\lceil\frac{n+\alpha}{4}\right\rceil$. Suppose $n-\alpha \geq 2$ and the claim holds for $n^{\prime}-\alpha^{\prime}<n-\alpha$. In this case, $3 \alpha>n \geq \alpha+2$ which implies $\alpha>1$ and $n>3$. Then we may remove two vertices from the first part of and one vertex form an odd part other than the first part to form an isometric 3-path P of G. The remaining graph G^{\prime} has $n^{\prime}=n-3$ and $\alpha^{\prime}=\alpha-1$. It then satisfies $3 \alpha^{\prime}>n^{\prime}$. Notice that $r^{\prime} \geq 2$ unless $G=K_{2,1,1}$ in which $n=4$ and $\alpha=2$ imply $\operatorname{ip}(G)=2=\left\lceil\frac{n+\alpha}{4}\right\rceil$. By the induction hypothesis, $\operatorname{ip}\left(G^{\prime}\right) \leq\left\lceil\frac{n^{\prime}+\alpha^{\prime}}{4}\right\rceil$ and so $\operatorname{ip}(G) \leq\left\lceil\frac{n^{\prime}+\alpha^{\prime}}{4}\right\rceil+1=\left\lceil\frac{n+\alpha}{4}\right\rceil$.

Lemma 4.9 If $3 n_{1} \leq 2 n$ and $3 \alpha \leq n$, then $\operatorname{ip}(G)=\left\lceil\frac{n}{3}\right\rceil$.

Proof. Since every isometric path in G has at most 3 vertices, $\operatorname{ip}(G) \geq\left\lceil\frac{n}{3}\right\rceil$.
On the other hand, we use an induction on n to prove that $\operatorname{ip}(G) \leq\left\lceil\frac{n}{3}\right\rceil$. When $n \leq 8$, by the assumptions that $3 n_{1} \leq 2 n$ and $3 \alpha \leq n$ we have $G \in\left\{K_{2,1}, K_{2,2}, K_{3,2}\right.$, $K_{2,2,1}, K_{4,2}, K_{4,1,1}, K_{3,3}, K_{3,2,1}, K_{2,2,2}, K_{2,2,1,1}, K_{4,3}, K_{4,2,1}, K_{3,2,2}, K_{2,2,2,1}, K_{5,3}, K_{5,2,1}$, $\left.K_{4,4}, K_{4,3,1}, K_{4,2,2}, K_{4,2,1,1}, K_{3,3,2}, K_{3,2,2,1}, K_{2,2,2,2}, K_{2,2,2,1,1}\right\}$. It is straightforward to check that $\operatorname{ip}(G) \leq\left\lceil\frac{n}{3}\right\rceil$.

Suppose $n \geq 9$ and the claim holds for $n^{\prime}<n$. We remove two vertices from the first part and one vertex from the j th part to form an isometric 3-path P for
G, where j is the largest index such that $j \geq 2$ and n_{j} is odd (when n_{i} are even for all $i \geq 2$, we choose $j=r$). Then, the remaining subgraph G^{\prime} has $n^{\prime}=n-3$ and $\alpha^{\prime}=\alpha-1$ or $\alpha^{\prime} \leq 2$. Therefore, $3 \alpha \leq n$ and $n \geq 9$ imply that $3 \alpha^{\prime} \leq n^{\prime}$ in any case. We shall prove that $3 n_{1}^{\prime} \leq 2 n^{\prime}$ according to the following cases.

Case 1. $n_{1} \geq n_{2}+2$.
In this case, $n_{1}-2 \geq n_{2} \geq n_{i}$ for all $i \geq 2$ and so $n_{1}^{\prime}=n_{1}-2$. Therefore, $3 n_{1}^{\prime}=3\left(n_{1}-2\right) \leq 2(n-3)=2 n^{\prime}$.

Case 2. $n_{1} \leq n_{2}+1$ and $n_{2} \leq 4$.
In this case, $n_{1}^{\prime} \leq n_{2} \leq 4$ and $n^{\prime} \geq 6$. Then, $3 n_{1}^{\prime} \leq 12 \leq 2 n^{\prime}$.
Case 3. $n_{1} \leq n_{2}+1$ and $n_{2} \geq 5$ and $r=2$.
In this case, $n_{1}^{\prime} \leq n_{2}-1$ and $n^{\prime}=n-3=n_{1}+n_{2}-3 \geq 2 n_{2}-3$. Then, $3 n_{1}^{\prime} \leq 3 n_{2}-3 \leq 4 n_{2}-8<2 n^{\prime}$.

Case 4. $n_{1} \leq n_{2}+1$ and $n_{2} \geq 5$ and $r_{2} \geq 3$.
In this case, $n_{1}^{\prime} \leq n_{2}$ and $n^{\prime}=n=3 \geq n_{1}+n_{2}+1-3 \geq 2 n_{2}-2$. Then, $3 n_{1}^{\prime} \leq 3 n_{2} \leq 4 n_{2}-5<2 n^{\prime}$.

According to Lemma 4.7,4.8 and 4.9, we have the following theorem.

Theorem 4.10 Suppose G is the complete r-partite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$ of n vertices with $r \geq 2, n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and $n=n_{1}+n_{2}+\ldots+n_{r}$. If there are exactly α indices i with n_{i} odd, then

$$
\operatorname{ip}(G)= \begin{cases}\left\lceil\frac{n_{1}}{2}\right\rceil, & \text { if } 3 n_{1}>2 n \\ \left\lceil\frac{n+\alpha}{4}\right\rceil, & \text { if } 3 \alpha>n \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } 3 \alpha \leq n \text { and } 3 n_{1} \leq 2 n\end{cases}
$$

In the proofs of the lemmas above, the essential points for the arguments is the fact that each partite set of the complete r-partite graph is trivial. If we add some edges into the graph but still keep that each partite set can be partitioned into $\left\lfloor\frac{n_{i}}{2}\right\rfloor$ pairs of two nonadjacent vertices and $n_{i}-2\left\lfloor\frac{n_{i}}{2}\right\rfloor$ vertex, then the same result still holds.

Corollary 4.11 Suppose G is the graph obtained from the complete r-partite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$ of n vertices by adding edges such that each i-th part can be partitioned into $\left\lfloor\frac{n_{i}}{2}\right\rfloor$ pairs of two nonadjacent vertices and $n_{i}-2\left\lfloor\frac{n_{i}}{2}\right\rfloor$ vertex, where $r \geq 2$, $n_{1} \geq n_{2} \geq \ldots \geq n_{r}$ and $n=n_{1}+n_{2}+\ldots+n_{r}$. If there are exactly α indices i with n_{i} odd, then

$$
\operatorname{ip}(G)= \begin{cases}\left\lceil\frac{n_{1}}{2}\right\rceil, & \text { if } 3 n_{1}>2 n \\ \left\lceil\frac{n+\alpha}{4}\right\rceil, & \text { if } 3 \alpha>n \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } 3 \alpha \leq n \text { and } 3 n_{1} \leq 2 n\end{cases}
$$

4.4 Isometric-path cover in Hamming graphs

In this section we determine isometric-path numbers of Cartesian products of 2 and 3 complete graphs. Recall that a Hamming graph is the Cartesian product of complete graphs, which is the graph $K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}=(V, E)$ with vertex set

$$
V=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right): 0 \leq x_{i}<n_{i} \text { for } 1 \leq i \leq r\right\}
$$

and edge set

$$
E=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right)\left(y_{1}, y_{2}, y_{r}\right): x_{i}=y_{i} \text { for all } i \text { except just one } x_{j} \neq y_{j}\right\} .
$$

Suppose G is the Hamming graph $K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{r}}$ of n vertices, where $n=n_{1} n_{2} \ldots n_{r}$ and $n_{i} \geq 2$ for $1 \leq i \leq r$. We notice that every isometric path in G has at most $r+1$ vertices. Consequently,

$$
\operatorname{ip}(G) \geq\left\lceil\frac{n}{r+1}\right\rceil
$$

We first consider the case when $r=2$

Theorem 4.12 If $n_{1} \geq 2$ and $n_{2} \geq 2$, then $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right)=\left\lceil\frac{n_{1} n_{2}}{3}\right\rceil$.

Proof. We only need to prove that $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right) \leq\left\lceil\frac{n_{1} n_{2}}{3}\right\rceil$. We shall prove this assertion by induction on $n_{1}+n_{2}$. For the case when $n_{1}+n_{2} \leq 6$, the isometric-path
covers

$$
\begin{aligned}
\mathcal{C}_{2,2} & =\{(0,0)(0,1),(1,0)(1,1)\} \\
\mathcal{C}_{2,3} & =\{(0,0)(0,1)(1,1),(0,2)(1,2)(1,0)\}, \\
\mathcal{C}_{2,4} & =\{(0,0)(0,1)(1,1),(0,2)(1,2)(1,0),(0,3)(1,3)\} \text { and } \\
\mathcal{C}_{3,3} & =\{(0,0)(2,0)(2,2),(0,1)(0,2)(1,2),(1,0)(1,1)(2,1)\}
\end{aligned}
$$

for $K_{2} \square K_{2}, K_{2} \square K_{3}, K_{2} \square K_{4}$ and $K_{3} \square K_{3}$ respectively, gives the assertion.

Figure 4.6: Isometric-path covers of $K_{2} \square K_{i}$ for $2 \leq i \leq 4$, and $K_{3} \square K_{3}$.

Suppose $n_{1}+n_{2} \geq 7$ and the assertion holds for $n_{1}^{\prime}+n_{2}^{\prime}<n_{1}+n_{2}$. For the case when all $n_{i} \leq 4$, without loss of generality we may assume that $n_{1}=4$ and $3 \leq n_{2} \leq 4$. As we can partition the vertex set of $K_{n_{1}} \square K_{n_{2}}$ into the vertex sets of two copies of distance invariant induced subgraphs $K_{2} \square K_{n_{2}}$,

$$
\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right) \leq 2 \mathrm{ip}\left(K_{2} \square K_{n_{2}}\right) \leq 2\left\lceil\frac{2 n_{2}}{3}\right\rceil=\left\lceil\frac{n_{1} n_{2}}{3}\right\rceil .
$$

For the case when there is at least one $n_{i} \geq 5$, say $n_{1} \geq 5$, again we can partition the vertex set of $K_{n_{1}} \square K_{n_{2}}$ into the vertex sets of two distance invariant induced subgraphs $K_{3} \square K_{n_{2}}$ and $K_{n_{1}-3} \square K_{n_{2}}$. Then,

$$
\begin{aligned}
\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}}\right) & \leq \operatorname{ip}\left(K_{3} \square K_{n_{2}}\right)+\operatorname{ip}\left(K_{n_{1}-3} \square K_{n_{2}}\right) \\
& \leq\left\lceil\frac{3 n_{2}}{3}\right\rceil+\left\lceil\frac{\left(n_{1}-3\right) n_{2}}{3}\right\rceil=\left\lceil\frac{n_{1} n_{2}}{3}\right\rceil .
\end{aligned}
$$

Lemma 4.13 If n_{1}, n_{2} and n_{3} are positive even integers, then

$$
\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right)=\frac{n_{1} n_{2} n_{3}}{4} .
$$

Proof. We only need to prove that $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq \frac{n_{1} n_{2} n_{3}}{4}$. First, the isometricpath cover $\mathcal{C}_{2,2,2}=\{(0,0,0)(0,0,1)(0,1,1)(1,1,1),(1,0,1)(1,0,0)(1,1,0)(0,1,0)\}$ for $K_{2} \square K_{2} \square K_{2}$ proves the assertion for the case when $n_{1}=n_{2}=n_{3}=2$.

Figure 4.7: An isometric-path cover of $K_{2} \square K_{2} \square K_{2}$.

For the general case, as the vertex set of $K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}$ can be partitioned into the vertex sets of $\frac{n_{1} n_{2} n_{3}}{8}$ copies of distance invariant induced subgraphs $K_{2} \square K_{2} \square K_{2}$, $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq\left(\frac{n_{1} n_{2} n_{3}}{8}\right) \operatorname{ip}\left(K_{2} \square K_{2} \square K_{2}\right) \leq \frac{n_{1} n_{2} n_{3}}{4}$.

Lemma 4.14 If $n_{3} \geq 3$ is odd, then $\mathrm{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right)=n_{3}+1$.
Proof. First, we claim that ip $\left(K_{2} \square K_{2} \square \underline{K}_{n_{3}}\right) \geq n_{3}+1$. Suppose to the contrary that the graph can be covered by \bar{n}_{3} isometric paths

$$
P_{i}:\left(x_{i 1}, x_{i 2}, x_{i 3}\right)\left(y_{i 1}, y_{i 2}, y_{i 3}\right)\left(z_{i 1}, z_{i 2}, z_{i 3}\right)\left(w_{i 1}, w_{i 2}, w_{i 3}\right),
$$

$i=1,2, \ldots, n_{3}$. These paths are in fact vertex-disjoint paths of 4 vertices, each contains exactly one type- j edge for $j=1,2,3$, where an edge $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)$ is type- j if $x_{j} \neq y_{j}$. For each P_{i} we then have $x_{i 1}=1-w_{i 1}$ and $x_{i 2}=1-w_{i 2}$, which imply that $x_{i 1}+x_{i 2}$ has the same parity with $w_{i 1}+w_{i 2}$. We call the path P_{i} even or odd when $x_{i 1}+x_{i 2}$ is even or odd, respectively. Also, as P_{i} has just one type- 3 edge, by symmetry, we may assume either $x_{i 3} \neq y_{i 3}=z_{i 3}=w_{i 3}$ or $x_{i 3}=y_{i 3} \neq z_{i 3}=w_{i 3}$, for which we call P_{i} type 1-3 or type 2-2 respectively. For a type 2-2 path P_{i} we may further assume that $x_{i 1} \neq y_{i 1}=z_{i 1}=w_{i 1}$.

For $0 \leq x_{3}<n_{3}$, the x_{3}-square is the set

$$
S\left(x_{3}\right)=\left\{\left(0,0, x_{3}\right),\left(0,1, x_{3}\right),\left(1,0, x_{3}\right),\left(1,1, x_{3}\right)\right\} .
$$

Notice that a type 1-3 path P_{i} contains 1 vertex in $S\left(x_{i 3}\right)$ and 3 vertices in $S\left(w_{i 3}\right)$, while a type 2-2 path P_{i} contains 2 vertices in $S\left(x_{i 3}\right)$ and 2 vertices in $S\left(w_{i 3}\right)$. We call a type 1-3 path P_{i} is adjacent to another type 1-3 path P_{j} if the last 3 vertices of P_{i} and the first vertex of P_{j} form a square. This defines a digraph D whose vertices are all type 1-3 paths, in which each vertex has out-degree one and in-degree at most one. In fact, each vertex then has in-degree one. In other words, the "adjacent to" is a bijection. Consequently, vertices of all type 1-3 paths together form p squares; and so vertices of all type 2-2 paths form the other $n_{3}-p$ squares.

Since $x_{i 1} \neq y_{i 1}=z_{i 1}=w_{i 1}$ for a type 2-2 path P_{i}, the first two vertices of a type 2-2 path together with the first two vertices of another type 2-2 path form a square. This shows that there is an even number of type 2-2 paths. Therefore, there is an odd number of type 1-3 paths.

On the other hand, in a type $1-3$ path P_{i} we have $x_{i_{1}}+x_{i_{2}}=y_{i_{1}}+y_{i_{2}}$ has the different parity with $z_{i_{1}}+z_{i_{2}}$, and the same parity with $w_{i_{1}}+w_{i_{2}}$. So it is adjacent to a type 1-3 path whose parity is the same as $z_{i_{11}}+z_{i_{2}}$. That is, a type 1-3 path is adjacent to a type 1-3 path of different parity. Therefore, the digraph D is the union of some even directed cycle. This is a contradiction to the fact that there is an odd number of type 1-3 paths.

The arguments above prove that $\operatorname{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right) \geq n_{3}+1$. On the other hand, since the vertex set of $K_{2} \square K_{2} \square K_{n_{3}}$ is the union of the vertex sets of ($n_{3}+$ 1)/2 copies of $K_{2} \square K_{2} \square K_{2}$, by the cover $\mathcal{C}_{2,2,2}$ in the proof of Lemma 4.13, we have $\operatorname{ip}\left(K_{2} \square K_{2} \square K_{n_{3}}\right) \leq n_{3}+1$.

Theorem 4.15 If all $n_{i} \geq 2$, then $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right)=\left\lceil\frac{n_{1} n_{2} n_{3}}{4}\right\rceil$ except for the case when two n_{i} are 2 and the third is odd. In the exceptional case, $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right)=$ $\frac{n_{1} n_{2} n_{3}}{4}+1$.

Proof. The exceptional case holds according to Lemma 4.14.

For the main case, by Lemma 4.13, we may assume that at least one n_{i} is odd. Again, we only need to prove that $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq\left\lceil\frac{n_{1} n_{2} n_{3}}{4}\right\rceil$. We shall prove the assertion by induction on $\sum_{i=1}^{3} n_{i}$. For the case when $\sum_{i=1}^{3} n_{i} \leq 10$, the following isometric-path covers for $K_{2} \square K_{3} \square K_{3}, K_{2} \square K_{3} \square K_{4}, K_{2} \square K_{3} \square K_{5}, K_{3} \square K_{3} \square K_{3}$ and $K_{3} \square K_{3} \square K_{4}$, respectively, prove the assertion:

$$
\begin{aligned}
\mathcal{C}_{2,3,3}=\{ & (0,1,1)(0,1,0)(0,0,0)(1,0,0),(0,2,2)(0,2,0)(1,2,0)(1,1,0), \\
& (0,2,1)(1,2,1)(1,1,1),(0,0,2)(0,1,2)(1,1,2), \\
& (0,0,1)(1,0,1)(1,0,2)(1,2,2)\}
\end{aligned}
$$

Figure 4.8: An isometric-path cover of $K_{2} \square K_{3} \square K_{3}$.

Figure 4.9: Another isometric-path cover of $K_{2} \square K_{3} \square K_{3}$.

$$
\begin{aligned}
\mathcal{C}_{2,3,4}= & \{(0,1,1)(0,1,0)(0,0,0)(1,0,0),(0,2,1)(0,2,0)(1,2,0)(1,1,0), \\
& (0,2,3)(0,2,2)(1,2,2)(1,1,2),(0,1,3)(0,1,2)(0,0,2)(1,0,2), \\
& (0,0,1)(1,0,1)(1,1,1)(1,1,3),(1,2,1)(1,2,3)(1,0,3)(0,0,3)\}
\end{aligned}
$$

Figure 4.10: An isometric-path cover of $K_{2} \square K_{3} \square K_{4}$.

$$
\begin{aligned}
\mathcal{C}_{2,3,5}= & \mathcal{C}_{2,3,3}^{*} \cup\{(0,1,4)(0,1,3)(0,2,3)(1,2,3),(0,0,3)(0,0,4)(0,2,4)(1,2,4), \\
& (1,0,3)(1,0,4)\} ;
\end{aligned}
$$

Figure 4.11: An isometric-path cover of $K_{2} \square K_{3} \square K_{5}$.
$\mathcal{C}_{3,3,3}=\left\{(0,0,0)(0,2,0)(1,2,0)(1,2,1),\left(\frac{1}{1}, 1,0\right)(2,1,0)(2,2,0)(2,2,1)\right.$, $(0,2,1)(0,1,1)(1,1,1)(1,1,2),(1,0,1)(2,0,1)(2,1,1)(2,1,2)$, $(0,1,0)(0,1,2)(0,2,2)(1,2,2) ;(0,0,1)(0,0,2)(2,0,2)(2,2,2)$, $(1,0,2)(1,0,0)(2,0,0)\} ;$

Figure 4.12: An isometric-path cover of $K_{3} \square K_{3} \square K_{3}$.

$$
\begin{aligned}
\mathcal{C}_{3,3,4}=\{ & (0,0,0)(0,2,0)(1,2,0)(1,2,1),(1,1,0)(2,1,0)(2,2,0)(2,2,1), \\
& (0,2,1)(0,1,1)(1,1,1)(1,1,2),(1,0,1)(2,0,1)(2,1,1)(2,1,2), \\
& (0,1,0)(0,1,2)(0,2,2)(1,2,2),(0,0,2)(2,0,2)(2,2,2)(2,2,3), \\
& (0,1,3)(1,1,3)(1,0,3)(1,0,2),(1,0,0)(2,0,0)(2,0,3)(2,1,3), \\
& (0,0,1)(0,0,3)(0,2,3)(1,2,3)\} .
\end{aligned}
$$

Figure 4.13: An isometric-path cover of $K_{3} \square K_{3} \square K_{4}$.

Suppose $\sum_{i=1}^{3} n_{i} \geq 11$ and the assertion holds for $\sum_{i=1}^{3} n_{i}^{\prime}<\sum_{i=1}^{3} n_{i}$. We shall consider the following cases.

For the case when there is some i, say $i=3$, such that $n_{3} \geq 7$ or $n_{3}=6$ with all $n_{j} \geq 3$, we have $\mathrm{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}}\right) \leq \operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{4}\right)+\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{n_{3}-4}\right) \leq$ $\left\lceil\frac{n_{1} n_{2} 4}{4}\right\rceil+\left\lceil\frac{n_{1} n_{2}\left(n_{3}-4\right)}{4}\right\rceil=\left\lceil\frac{n_{1} n_{2} n_{3}}{4}\right\rceil$.

For the case when some n_{i}, say n_{3}, is equal to 4 , we may assume $n_{1} \geq n_{2}$ and so $n_{1} \geq 4$. Then $\operatorname{ip}\left(K_{n_{1}} \square K_{n_{2}} \square K_{4}\right) \leq \operatorname{ip}\left(K_{2} \square K_{n_{2}} \square K_{4}\right)+\mathrm{ip}\left(K_{n_{1}-2} \square K_{n_{2}} \square K_{4}\right)=$ $\left\lceil\frac{2 n_{2} 4}{4}\right\rceil+\left\lceil\frac{\left(n_{1}-2\right) n_{2} 4}{4}\right\rceil=\left\lceil\frac{n_{1} n_{2} n_{3}}{4}\right\rceil$.

There are 6 remaining eases. The following isometric-path covers prove the assertion for $K_{2} \square K_{3} \square K_{6}, K_{2} \square K_{5} \square K_{5}$ and $K_{3} \square K_{5} \square K_{5}$, respectively:

$$
\begin{aligned}
& \mathcal{C}_{2,3,6}=\mathcal{C}_{2,3,3}^{*} \cup\{(0,0,4)(0,0,3)(1,0,3)(1,2,3),(0,1,3)(0,1,4)(0,2,4)(1,2,4) \\
&(0,2,3)(0,2,5)(1,2,5)(1,1,5), \\
&(0,1,5)(0,0,5)(1,0,5)(1,0,4)\}
\end{aligned}
$$

Figure 4.14: An isometric-path cover of $K_{2} \square K_{3} \square K_{6}$.

$$
\begin{aligned}
\mathcal{C}_{2,5,5}= & \mathcal{C}_{2,3,5} \backslash\{(1,0,3)(1,0,4)\} \cup \\
& \{(0,4,1)(0,4,0)(0,3,0)(1,3,0),(1,4,0)(1,4,1)(1,3,1)(0,3,1), \\
& (0,4,3)(0,4,2)(0,3,2)(1,3,2),(1,4,2)(1,4,3)(1,3,3)(0,3,3), \\
& (1,0,3)(1,0,4)(1,4,4),(0,4,4)(0,3,4)(1,3,4)\}
\end{aligned}
$$

Figure 4.15: An isometric-path cover of $K_{2} \square K_{5} \square K_{5}$.

Figure 4.16: An isometric-path cover of $K_{3} \square K_{5} \square K_{5}$.
The other 3 cases follows from the following inequalities:

$$
\begin{gathered}
\operatorname{ip}\left(K_{2} \square K_{5} \square K_{6}\right) \leq \operatorname{ip}\left(K_{2} \square K_{3} \square K_{6}\right)+\operatorname{ip}\left(K_{2} \square K_{2} \square K_{6}\right) \leq 9+6=15, \\
\operatorname{ip}\left(K_{3} \square K_{3} \square K_{5}\right) \leq \operatorname{ip}\left(K_{3} \square K_{3} \square K_{2}\right)+\operatorname{ip}\left(K_{3} \square K_{3} \square K_{3}\right) \leq 5+7=12, \\
\mathrm{ip}\left(K_{5} \square K_{5} \square K_{5}\right) \leq \mathrm{ip}\left(K_{5} \square K_{5} \square K_{3}\right)+\mathrm{ip}\left(K_{5} \square K_{5} \square K_{2}\right) \leq 19+13=32 .
\end{gathered}
$$

Chapter 5

Conclusion

This thesis studies three problems on vertex partition/cover: the path-partition problem, the induced-path-partition problem and the isometric-path-cover problem. Many of our results are solved from algorithmic points of view.

For the path-partition problem, we give an $O(|V|+|E|)$-time algorithm for graphs whose blocks are complete graphs,' cycles or complete bipartite graphs.

For the induced-path-partition problem, we present an $O(|V|+|E|)$-time algorithm for graphs whose blocks are complete gräphs, cycles or complete bipartite graphs. We also give a polynomial-time algorithm for cographs.

We have three results for the isometric-path-cover problem. First, we determines isometric-path numbers of block graphs, and also give an $O(|V|+|E|)$-time algorithm for finding the corresponding paths. Second, we determine isometric-path numbers of complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

Although some results of the above three problems are obtained, there are still many questions remain open. We describe below some of them that we concern most.

In Chapter 2, we use the tree structure to obtain an algorithm for the pathpartition problem on graphs whose blocks are handleable. A nature question is that can we extend our result to graphs with small separator structure.

For the induced-path numbers, Alsardary [3] gave an upper bound on hypercubes. It is our hope to determine the exact values of them. It is also interesting to
characterize graphs whose path-partition numbers are equal to induced-path numbers.
For the isometric-path-cover problem, a first question that we can not answer is that whether the isometric-path-cover problem is $\mathcal{N} \mathcal{P}$-complete or not. We are also interested in finding an efficient algorithm on threshold graphs. Fitzpatrick et al. [19] gave an upper bound of isometric-path numbers on hypercubes. Can we find the exact values of them? We also study the isometric-path numbers on d-dimensional Hamming graphs for $d=2$ and 3. Can we determine the isometric-path numbers for Hamming graphs with a general dimension d ? It is also interesting to characterize graphs whose cop-numbers are equal to isometric-path numbers. Finally, it is our hope to study approximation algorithms for the above problem.

Bibliography

[1] A. V. Aho, J. E. Hopcropt and J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading, Massachusetts, 1974.
[2] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1-12.
[3] S. Y. Alsardary, The induced path number of the hypercube, Congr. Numer. 128 (1997) 5-18.
[4] S. R. Arikati and C. Pandu Rangan, Linear algorithm for optimal path cover problem on interval graphs, Inform. Process. Lett. 35 (1990) 149-153.
[5] H. J. Bonuccelli and D. P. Bovet, Minimum node disjoint path covering for circular-arc graphs, Inform. Process. Lett. 8 (1979) 159-161.
[6] I. Broere, E. Jonck and M. Voigt, The induced path number of a complete multipartite graph, Tatra Mt. Math, Publ. 9 (1996) 83-88.
[7] G. J. Chang and D. Kuo, The $L(2,1)$-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316.
[8] G. Chartrand, H. V. Kronk, and C. E. Wall, The point arboricity of a graph, Israel J. Math. 6 (1968) 169-175.
[9] G. Chartrand, J. McCanna, N. Sherwani, M. Hossain and J. Hashmi, The induced path number of bipartite graphs, Ars Combin. 37 (1994) 191-208.
[10] S. A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symposium on Theory of Computing, 1971, 151-158.
[11] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, 1990.
[12] D. G. Corneil, H. Lerchs and L. Stewarts, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163-174.
[13] D. G. Corneil, Y.Perl, L. K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934.
[14] P. Damaschke, Paths in interval graphs and circular arc graphs, Discrete Math. 112 (1993) 49-64.
[15] P. Damaschke, J. S. Deogun, D. Kratsch and G. Steiner, Finding hamiltonian paths in cocomparability graphs using the bump number algorithm, Order 8 (1992) 383-391.
[16] S. L. Fitzpatrick, Aspects of domination and dynamic domination, Ph.D. Thesis, Dalhousie University, Nova Scotia, Canada, 1997.
[17] S. L. Fitzpatrick, The isometric path number of the Cartesian product of paths, Congr. Numer. 137 (1999) 109-119.
[18] D. C. Fisher and S. L. Fitzpatrick, The isometric path number of a graph, J. Combin. Math. Combin. Comput. 38 (2001) 97-110.
[19] S. L. Fitzpatrick, R. J. Nowakowski, D. Holton, and I. Caines, Covering hypercubes by isometric paths, Discrete Math. 240 (2001) 253-260.
[20] T. Gallai and A. N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged) 21 (1960) 181-186.
[21] M. R. Garey, D. S. Johnson and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976) 704-714.
[22] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[23] F. Harary, A characterization of block-graphs, Canad. Math. Bull. 1 (1963) 113121.
[24] F. Harary, Conditional colorbility in graphs, Graphs and Applications: Proc. 1st Colorado Symposium on Graph Theory, (ed. F. Harary and J.S. Maybee), Wiley, New York, 1985, 127-136.
[25] H. A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin. Theory Ser. B 35 (1978) 125-133.
[26] H. Lerchs, On cliques and kernels, Department of Computer Science, 1971.
[27] H.-O. Le, V. B. Le and H. Müller, Splitting a graph into disjoint induced paths or cycles, Discrete Appl. Math., 131 (2003) 199-212.
[28] L. Lesniak-Foster and H. J. Straight, The cochromatic number of a graph, Ars Combin. 3 (1997) 39-45.
[29] Y. D. Liang, G. K. Mancher, C. Rhee and T. Mankus, A linear algorithm for finding Hamiltonian circuits in circular-arc graphs, 32 nd ACM Southestern Conf., 1994, 101-118.
[30] R. Lin, S. Olariu and G. Pruesse, An optimal path cover algorithm for cographs, Comput. Math. Appl. 30 (1995) 75-83.
[31] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1996) 291-298.
[32] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239.
[33] J.-J. Pan and G. J. Chang, Path partition for graphs with special blocks, to appear in Discrete Appl. Math.
[34] J.-J. Pan and G. J. Chang, Isometric-path numbers of block graphs, submitted.
[35] J.-J. Pan and G. J. Chang, Isometric-path numbers of graphs, submitted.
[36] J.-J. Pan and G. J. Chang, Induced-path numbers for graphs with special blocks, submitted.
[37] A. Quilliot, Jeux positionnels et propriété de helly, Thèse de 3e cycle, Université de Paris VI, 1978.
[38] Z. Skupień, Path partitions of vertices and Hamiltonicity of graphs, Proc. 2nd Czechoslovakian Symposium on Graph Theory, Prague, 1974.
[39] R. Strikant, Ravi Sundaram, Karan Sher Singh and C. Pandu Rangan, Optimal path cover problem on block graphs and bipartite permutation graphs, Theoret. Comput. Sci. 115 (1993) 351-357.
[40] P.-K. Wong, Optimal path cover problem on block graphs, Theoret. Comput. Sci. 225 (1999) 163-169.
[41] J.-H. Yan and G. J. Chang, The path-partition problem in block graphs, Inform. Process. Lett. 52 (1994) 317-322.
[42] J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi, k-Path partitions in trees, Discrete Appl. Math. 78 (1997) 227-233.
[43] H.-G. Yeh and G. J. Chang, The path-partition problem in bipartite distancehereditary graphs, Taiwanese J. Math. 2 (1998) 353-360.

