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Graphs

Student: Jun-Jie Pan Advisor: Professor Gerard J. Chang

Department of Applied Mathematics Department of Mathematics

National Chiao Tung University National Taiwan University
Abstract

Suppose P is a graphical property. A P-partition of a graph G = (V, E) is a partition
of V' into pairwise disjoint sets such that each set induces a subgraph satisfying
property P. The P-partition problem is to find the P-partition number which is the
minimum cardinality of a P-partition of a graph. We can define P-cover and P-cover
number in a similar way, except now the subsets are not required to be disjoint.

Various P-partition and P-cover problems have been studied in the literature.
For instance, the chromatic number is the P-partition number with the property P
being “has no edges”. For thewertez-arboricitya(G) defined by Chartrand, Kronk
and Wall [8], the property P-s ‘“induces a forest”?. For the linear vertex arboricity
lva(@) defined by Harary [24]s the property P is “induces a linear forest”.

The purpose of this thesis:is to consider the problems in which property P is
“containing a Hamiltonian path”, “an”induced path” or “an isometric path of the
original graph”. That is, we study the path-partition problem, the induced-path-
partition problem and the isometric-path-cover problem.

For the path-partition problem, we give an O(|V| + |E|)-time algorithm for
graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

For the induced-path-partition problem, we present an O(|V| + |E|)-time al-
gorithm for graphs whose blocks are complete graphs, cycles or complete bipartite
graphs. We also give a polynomial-time algorithm for cographs.

We have three results for the isometric-path-cover problem. First, we determine
isometric-path numbers of block graphs, and also give an O(|V|+ |E|)-time algorithm
for finding the corresponding paths. Second, we give isometric-path numbers of com-

plete r-partite graphs and Hamming graphs of dimensions 2 and 3.
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Chapter 1

Introduction

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices
of the graph. The path-partition problem is to find the path-partition number p(G) of
a graph G, which is the minimum cardinality of a path partition of G. The concept
of path-partition number was introduced by Skupien [38], who studied the concept of

Hamiltonian shortage of a graph G, written
Su(G) = min{p : Gpxd, is' Hamiltonian}.

He [38] proved that

p(G) — 1'=04 -if Giis“Hamiltonian,
Su(@) ={ p(G)+1 =2 if G =K,
p(G) > 1, if' G is not Hamiltonian and G # Kj;.

He [38] also used an variation of Gallai-Milgram Theorem [20], saying p(G) < a(G)
for any graph G, to prove that Sy (G) < a(G) for any graph G. Notice that G has a
Hamiltonian path if and only if p(G) = 1.

The concept of path-partition number also has a close relationship with L'(2,1)-
labeling number [7] describes as follows. An L'(2, 1)-labeling of a graph G is a one to
one function f from the vertex set V(G) to the set of all nonnegative integers such
that [f(z) — f(y)| = 2if d(z,y) = 1 and [f(z) = f(y)| = 1 if d(z,y) = 2. The L'(2,1)-
labeling number, denoted by X(G), is the smallest number k such that G has a a
L'(2,1)-labeling with max{f(v) : v € V(G)} = k. Thus, p(G) = N(G°) — |V(G)| + 2,
where G° is the graph with vertex set V(G) defined by wv € E(G°) if and only if
wv € E(G) in [7]. For more details about L'(2, 1)-labeling, see [7].
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We may extend the concept of path-partition number in a more general setting.
Suppose P is a graphical property. A P-partition of a graph G = (V, E) is a partition
of V' into pairwise disjoint sets such that each set induces a subgraph satisfying
property P. The P-partition problem is to find the P-partition number which is the
minimum cardinality of a P-partition of a graph. We can define P-cover and P-cover
number in a similar way, except now the subsets are not required to be disjoint.

Various P-partition and P-cover problems have been studied in the literature.
For instance, the chromatic number is the P-partition number with the property P
being “has no edges”. For the vertez-arboricity a(G) defined by Chartrand, Kronk
and Wall [8], the property P is “induces a forest”. For the linear vertez arboricity
lva(@) defined by Harary [24], the property P is “induces a linear forest”.

The purpose of this thesis is to consider the problems in which property P is
“containing a Hamiltonian path”, “an induced path” or “an isometric path of the
original graph”. That is, we study the gpath-partition problem, the induced-path-
partition problem and the isometric-path-cover problem.

In this chapter, we first-introduce some definitions needed in later chapters.
Then, we describe motivations for studyving the three problems mentioned above and

give an overview of our results.

1.1 Basic definitions in graphs

A graph G = (V, E) consists of a finite vertex set V and a finite edge set E, where each
edge is an unordered pair {u, v} of vertices called its end-vertices. For convenience,
we write uv for an edge {u,v}. If uv € E, then u and v are adjacent. The cardinality
of V' is called the order of GG, and the cardinality of E the size. The degree of a vertex
v in a graph G, written dg(v), is the number of edges containing v. The mazimum
degree is denoted by A(G); the minimum degree by 6(G). The independence number
a(G) of G is the maximum size of a pairwise nonadjacent vertex set in G.

We illustrate a graph on paper by assigning a point to each vertex and drawing

a curve for each edge between the points representing its end-vertices, sometimes



omitting the names of the vertices or edges. Figure 1.1 is a graph with vertex set

V ={a,b,c,d}, and edge set E = {{a,b},{a,c}, {a,d},{b,c}, {b,d},{c,d}}.

X
a b
Figure 1.1: A graph G = (V, E).

A directed graph or digraph D = (V, E) consists of a vertex set V and an edge
set E, where each edge is an ordered pair of vertices. We also write uv for the edge
(u,v), with u being the tail and v being the head. We write u — v when wv € E,
meaning “there is an edge from u to v”.

Let v be a vertex in a digraph. The out-degree df,(v) is the number of edges
with tail v, and the in-degree d(v) is the number of edges with head v. Fig-
ure 1.2 shows a digraph D with.wvertex set V.= {a,b,c,d,c, f} and edge set E =
{(a,b), (b,c), (c,d), (d,e), (e,a){f, a)}. Noticerthat df(a) =1 and dj(a) = 2.

foa b

Figure 1.2: A digraph D.

A subgraph of a graph G = (V, E) is a graph H = (V' E’) such that V' C V
and £’ C E. For a subset S C V, the subgraph induced by S is the graph H = (S, E’)
with B/ = {zy € E: x,y € S}. For a subset T C E, the subgraph induced by T is
the graph H = (V',T) with V' = {x € V : x € e for some e € T'}. Figure 1.3 is a
subgraph of the graph in Figure 1.1.

A path is an ordered list of distinct vertices (vg, vy, ..., v,) such that v;_jv; is



Figure 1.3: A subgraph of the graph in Figure 1.1.

an edge for 1 < ¢ < n. The first and last vertices of a path are its end-vertices; a
u, v-path is a path with end-vertices v and v. If a graph G has a u, v-path, then the
distance from u to v, written d(u,v), is the least length of a u,v-path; if G has no
such path, then d(u,v) = co. The diameter diam(G) of a graph G is the maximum
distance between two vertices in G. An induced path is a path in which two vertices
are adjacent only for those with consecutive indices. A cycle is an an ordered list
of distinct vertices (vg, vy, ..., v,), except vg = v, such that all v;_jv; for 1 <i < n
are edges. A graph is called Hamiltonian if it has a cycle containing all vertices of
the graph. A graph with n vertices that is/a path or a cycle is denoted by P, or
C,, respectively. A graph G =(V}E)is connectéd if it has a u, v-path for each pair
of vertices u,v € V. The ordered list (¢;a,b) of the graph in Figure 1.1 is a path,
and (c,a,b,c) a cycle. The ordered list(@:bye, dye, a) of the graph in Figure 1.2 is a
directed cycle.

A complete graph of order n, written K, is a graph in which every pair of vertices
is an edge. Figure 1.1 is a complete graph of order 4. A complete bipartite graph is a
graph whose vertex set is the union of the two disjoint sets and edge set consists of all
pairs having a vertex from each of two disjoint sets covering the vertices. A complete
r-partite graph is a graph whose vertex set can be partitioned into disjoint union of
r nonempty parts, and two vertices are adjacent if and only if they are in different
parts. We use K,,, , . n. to denote the complete r-partite graph whose parts are of
sizes ny,ng, . .., n,, respectively. Figure 1.4 is the complete bipartite graph K .

The union of two graphs G = (V, E) and H = (V’, E’), written G U H is the
graph having vertex set V UV’ and edge set F'U E’. To specify the disjoint union
with VNV’ =0, we write G + H. The join of G and H, written G x H, is obtained



Figure 1.4: The complete bipartite graph K .

from G + H by adding the edges {zy : z € V and y € V'}. The Cartesian product
of graphs G and H, written GLIH, is the graph with vertex set V' x V' specified
by putting (u,u’) adjacent to (v,v’) if and only if (1) v = v and w'v" € F’, or (2)
u =" and uwv € E. Complement reducible graphs (also called cographs) are defined
recursively by the following rules: (i) K is a cograph; (ii) if G and H are cographs,
then so are G + H and G x H; (iii) no other graphs are cographs. For more details
on cographs, see [12, 13, 26]. Figure 1.5 is the Cartesian product of P, and P,, and
Figure 1.6 is a cograph since we can use the following construction.

First, let G; = a, Go = b, Gg#="¢, G4 =,d and G5 = e by rule (i). Second, we
get Gy + G5 and G4 x G5 by niile (i) Third,.we‘obtain (G; + G) x G3 by rule (ii).
Finally, we get the required graph ((G) +G3) x Gs) x (G4 X Gj5) by rule (ii).

Figure 1.5: The Cartesian product PP, of P, and P; .

A Hamming graph is the Cartesian product of complete graphs, which is the
graph K, 0K,,0... 0K, = (V,FE) with vertex set

V=A{(x1,29,...,2,): 0<ax; <m for 1 <i<r}
and edge set
E={(z1,22,....2:) (Y1, Y2, . - -, Yr) : &, = y; for all i except just one x; # y;}.

Figure 1.7 is the Hamming graph Ksl1Kj.

5



a

Figure 1.6: A cograph Kj 3.

8

Figure 1.7: The Hamming graph K5L1Kj;.

A cut-verter of a graph .s al vertex whose removal results in a graph having
more components than the original graphZ A block is a maximal connected subgraph
without a cut-vertex. Notice that therifiteérsection of two distinct blocks contains at
most one vertex; and a vertex is a eut-vertex if and only if it is the intersection of
two or more blocks. Consequently, a graph with one or more cut-vertices has at least
two blocks. An end block is a block with exactly one cut-vertex. A graph is a block
graph if it is the intersection graph of the family of blocks of some graph. Harary [23]
proved that a graph is a block graph if and only if all its blocks are complete graphs.
Figure 1.8 shows a block graph having two blocks By = ({a,b, z}, {ab,ax,bz}) and
By = ({c¢,d,z},{cd, cx,dz}), and a cut-vertex z.

1.2 Basic definitions in algorithms

In this section, we introduce some concepts on algorithms as some of our results are
in terms of algorithm.

An algorithm is a finite sequence of deterministic computational steps that trans-



a b
Figure 1.8: A graph G = (V, E) having two blocks.

form the input into the output. The time needed for an algorithm, in worst case,
expressed as a function of the size of the input of a problem is called the time com-
plexity of the algorithm. The limiting behavior of the complexity as size increases is
called the asymptotic time complezity. A function f(n) is said to be O(g(n)) if there
exists two positive constant ¢ and ng such that 0 < f(n) < cg(n) for all n > ny.

A depth-first search, as its name implies, is to search “deeper” in the graph
whenever possible. In a depth-first search, we select and “visit” a starting vertex v.
Then we select any edge vw incident to v, and- visit w. In general, suppose z is the
most recently visited vertex. The isearch:is continued by selecting some unexplored
edge xy. If y has been previously visited; we find @nother new edge incident to x. If
y has not been previously visifed, then we=isit ¢-and begin a new search starting at
vertex y. After completing the search through all paths beginning at y, the search
returns to x, the vertex from which y was first reached. The process of selecting
unexplored edges incident to x is continued until the list of these edges is exhausted.
The depth-first search can find all blocks of a graph GG and spend O(e) time if G has
e edges.

A nondeterministic algorithm consists of two phases: a guessing stage and a
checking stage which is a deterministic algorithm. Furthermore, it is assumed that
a nondeterministic algorithm always makes a correct guessing. If the checking stage
of a nondeterministic algorithm is of polynomial-time complexity, then this nonde-
terministic algorithm is called a nondeterministic polynomial algorithm. If a problem
can be solved by a nondeterministic polynomial algorithm, this problem is called a

nondeterministic polynomial (NP for short) problem. All of the problems which can



be solved in polynomial time are called P problems. Cook [10] proved the following

important theorem, we now call Cook’s Theorem.
Theorem 1.1 [10] NP = P if and only if the Satisfiability Problem is a P problem.

Let A; and Ay be two problems. A; is reducible to A, if and only if A; can be
solved in polynomial time by using a polynomial-time algorithm which solves A,. A
problem A is N'P-complete if A is in NP and every NP problem reduces to A. The
Satisfiability Problem is N'P-complete according to Cook’s Theorem.

For more details on the design and analysis of algorithms. see [1, 11].

1.3 Path partition

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices
of the graph. The path-partition problem is to find the path-partition number p(G) of
a graph G, which is the minimum cardinality of a path partition of G. For the graph
G in Figure 1.9, p(G) = 1.

Figure 1.9: A graph G with p(G) = 1.

The concept of path-partition number was introduced by Skupieri [38], who

studied the concept of Hamiltonian shortage of a graph G, written
Su(G) = min{p : G x K, is Hamiltonian}.

He [38] proved that

p(G) —1=0, if G is Hamiltonian,
Su(G)=< p(G)+1=2, if G=Kj,
p(G) > 1, if G is not Hamiltonian and G # Kj;.

He [38] also used an variation of Gallai-Milgram Theorem [20], saying p(G) < a(G)
for any graph G, to prove that Sy(G) < «(G) for any graph G. Notice that G has

8



a Hamiltonian path if and only if p(G) = 1. Since the Hamiltonian path problem
is N'P-complete for planar graphs [21], bipartite graphs [22], chordal graphs [22],
chordal bipartite graphs [31] and strongly chordal graphs [31], so is the path-partition
problem. On the other hand, the path-partition problem is polynomially solvable for
trees [25, 38|, interval graphs [4, 5, 14], circular-arc graphs [5, 14], cographs [7, 12,
30], cocomparability graphs [15], block graphs [39, 40, 41] and bipartite distance-
hereditary graphs [43].

The concept of path-partition number also has a close relationship with L'(2, 1)-
labeling number [7] describes as follows. An L'(2, 1)-labeling of a graph G is a one to
one function f from the vertex set V(G) to the set of all nonnegative integers such
that |f(z) — f(y)| > 2if d(z,y) =1 and |f(z) — f(y)| > 1lif d(x,y) = 2. The L'(2,1)-
labeling number, denoted by X (G), is the smallest number & such that G has a a
L'(2,1)-labeling with max{f(v) : v € V(G)} = k. Thus, p(G) = N (G°) — |V (G)| + 2,
where G° is the graph with vertex sety ¥/ (G) defined by uwv € E(G°) if and only if
wv € E(G) in [7]. For more details about.L(2, I)-labeling, see [7].

1.4 Induced-path partition

The concept of induced-path partition was-€onsidered by Chartrand et al. [9] as
the P-partition with the property of being a path. More precisely, an induced-path
partition of a graph is a collection of vertex-disjoint induced paths that cover all
vertices of the graph. The induced-path-partition problem is to find the induced-path
number p(G) of a graph G, which is the minimum cardinality of an induced-path

partition of G. For the graph G in of Figure 1.10, p(G) = 2.

Figure 1.10: A graph G with p(G) = 2.

Chartrand et al. [9] gave the induced-path numbers of complete bipartite

9



graphs, complete binary trees, 2-dimensional meshs, butterflies and general trees.
Broere et al. [6] determined exact values for complete multipartite graphs. Char-
trand et al. [9] conjectured that p(Qg) < d for the d-dimensional hypercube Q4 with
d > 2. Alsardary [3] proved that p(Qs) < 16. From an algorithmic point of view,
Le et al. [27] proved that the induced-path-partition problem is N'P-complete for
general graphs.

1.5 Isometric-path cover

An isometric path between two vertices in a graph G is a shortest path joining them.
An isometric-path cover of a graph is a collection of isometric paths that cover all
vertices of the graph. The isometric-path-cover problem is to find the isometric-path
number ip(G) of a graph G which is the minimum cardinality of an isometric-path
cover. The concept of the isometric-path number has a close relationship with the
game of cops and robbers described’as follows.

The game is played by two players, the cop and the robber, on a graph. The two
players move alternatively, starting with the cop. Each player’s first move consists of
choosing a vertex at which to'start: At eachrsubsequent move, a player may choose
either to stay at the same vertex.or.to move t6 an adjacent vertex. The object for
the cop is to catch the robber, and for the robber is to prevent this from happening.
Nowakowski and Winkler [32] and Quilliot [37] independently proved that the cop wins
if and only if the graph can be reduced to a single vertex by successively removing
pitfalls, where a pitfall is a vertex whose close neighborhood is a subset of the close
neighborhood of another vertex.

As not all graphs are cop-win graphs, Aigner and Fromme [2] introduced the
concept of the cop-number of a general graph G, denoted by ¢(G), which is the
minimum number of cops needed to put into the graph in order to catch the robber.
On the way to giving an upper bound for the cop-numbers of planar graphs, they
showed that a single cop moving on an isometric path P guarantees that after a

finite number of moves the robber will be immediately caught if he moves onto P.
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Observing this fact, Fitzpatrick [16] then introduced the concept of isometric-path
cover and pointed out that ¢(G) < ip(G). For the graph G of Figure 1.11, ip(G) = 2.

Figure 1.11: A graph G with ip(G) = 2.

The isometric-path number of the Cartesian product P, UF,,00...0F,, has
been studied in the literature. Fitzpatrick [17] gave bounds for the case when n, =
ny = ... = ng. Fisher and Fitzpatrick [18] gave exact values for the case d = 2.
Fitzpatrick et al. [19] gave a lower bound, which is in fact the exact value if d + 1 is

a power of 2, for the case when ny =ns = ... =ng = 2.

1.6 Overview of the'thesis

In this thesis, we study path-partition numbers,.induced-path numbers and isometric-
path numbers. We give a brief overview of the thesis.

In Chapter 1, we introducé.basic terminology in graphs and algorithms. We also
describe motivations of the three problems studied in this thesis, namely the path-
partition problem, the induced-path-partition problem and the isometric-path-cover
problem.

Chapter 2 is devoted to the path-partition problem. This problem has been
proved to be N'P-complete for many classes of graphs, while it is also polynomially
solvable for some classes of graphs such as trees and block graphs. As these graphs
all have tree structures, the purpose of this chapter is to use a unified method, called
a labeling algorithm, to give an O(|V| + |E|)-time algorithm for the path-partition
problem for graphs whose blocks are complete graphs, cycles or complete bipartite
graphs.

Chapter 3 considers the induced-path-partition problem. Le et al. [27] used
the fact that Not-All-Equal 3SAT is N/P-complete to prove that the induced-path-
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partition problem is NP-complete for general graphs. The main purpose of this
chapter is to present an O(|V| 4 |E|)-time algorithm for finding the induced-path
numbers of graphs whose blocks are complete graphs, cycles or complete bipartite
graphs. We also give a polynomial-time algorithm for finding the induced-path num-
bers of cographs.

In Chapter 4, we discuss the isometric-path-cover problem. This is a relatively
new problem. Previous and our results on this problem are most non-algorithmic.
We have three results for this problem. First, we determine isometric-path numbers
of block graphs, and also give an O(|V| + | E|)-time algorithm for finding the corre-
sponding paths. Second, we give isometric-path numbers of complete r-partite graphs
and Hamming graphs of dimensions 2 and 3.

Chapter 5 makes a conclusion, in which we give some open problems on the
path-partition problem, the induced-path-partition problem and the isometric-path-

cover problem.
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Chapter 2

Path Partition

2.1 Preliminary of path partition

Recall that a path partition of a graph is a collection of vertex-disjoint paths that
cover all vertices of the graph. The path-partition problem is to find the path-partition
number p(G) of a graph G, which is the minimum cardinality of a path partition
of G. Notice that G has a Hamiltouian ‘path if and only if p(G) = 1. Since the
Hamiltonian path problem is NP-conipléteé for planar graphs [21], bipartite graphs
[22], chordal graphs [22], chordal bipartite graphs [31] and strongly chordal graphs
[31], so is the path-partition problem:-Ou-the-other hand, the path-partition problem
is polynomially solvable for trees’[25; 38], interval graphs [4, 5, 14], circular-arc graphs
[5, 14], cographs [7, 12, 30], cocomparability graphs [15], block graphs [39, 40, 41] and
bipartite distance-hereditary graphs [43].

The purpose of this chapter is to give a linear-time algorithm for the path-
partition problem for graphs whose blocks are complete graphs, cycles or complete
bipartite graphs. For technical reasons, we consider the following generalized problem,
which is a labeling approach for the problem.

Suppose every vertex v in the graph G is associated with an integer f(v) €
{0,1,2,3}. An f-path partition is a collection P of vertex-disjoint paths such that
the following conditions hold.

(P1) Any vertex v with f(v) # 3 is in some path in P.
(P2) If f(v) =0, then v itself is a path in P.

13



(P3) If f(v) =1, then v is an end-vertex of some path in P.

The f-path-partition problem is to determine the f-path-partition number py(G) which
is the minimum cardinality of an f-path partition of G. It is clear that p(G) = ps(G)
when f(v) = 2 for all vertices v in G. Notice that as there may have some vertices of

labels 3, an f-path partition is not necessary a path partition.

2.2 Path partition in graphs

The labeling approach used in this chapter starts from an end block. Suppose B =
(V, E) is an end block whose only cut-vertex is z. Let A be the graph G — (V — {x}).
Notice that we can view G as the “composition” of A and B, i.e., G is the union of
A and B which meet at a common vertex x. The idea is to get the path-partition
number of G from those of A and B.

In the lemmas and theorems of this chapter, we use the following notation.
Suppose z is a specified vertex of'a graph H =(V, E) in which f is a vertex labeling.
For i = 0,1,2,3, we define the function 'f; : V& —.{0,1,2,3} by fi(y) = f(y) for all

vertices y except fi(z) = i.

Lemma 2.1 Suppose x is a specified vertexin a graph H. Then the following state-

ments hold.
(1) pp(H) <pp(H) < pp(H) < pyy(H).
(2) pp(H) <pg(H) <pp(H) + 1.
(3) pr(H) <pp(H) < pp(H) + 1.
(4) pg,(H) = min{py,(H), p(H — x)} <ps(H —x) = pg(H) — 1.
() ps(H) = pp(H) = 1.

Proof. (1) The inequalities follow from that an f;-path partition is an f;-path par-

tition whenever ¢ < j.
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(2) The second inequality follows from that replacing the path Pz in an f-path
partition by two paths P and x results in an fy-path partition of H.

(3) The second inequality follows from that replacing the path Pz@ in an fo-
path partition by two paths Px and () results in an fi-path partition of H.

(4) The first equality follows from that one is an fs-path partition of H if and
only if it is either an fo-path partition of H or an f-path partition of H — x. The
second equality follows from that P is an fy-path partition of H if and only if it is
the union of {x} and an f-path partition of H — x.

(5) According to (1), (3) and (4), we have

ps(H) = py(H) = min{py, (H), py(H—x)} > min{py, (H)=1,py,(H)=1} = pp, (H)—1.

Lemma 2.2 (1) py(G) < min{p;(Ap*¥ pi(B) — 1,ps(A) + pp(B) — 1}.
(2) pp(G) < pp(A) +ppB) =1k

Proof. (1) Suppose P is an optimal f-path partition of A, and Q an fy-path partition
of B. Then z € Q and so (PU.Q)*— {r} is an f-path partition of G. This gives
pr(G) < pp(A) + pgo(B) — 1. Similatlyipp(&) < ps,(A) + ps(B) — 1.

(2) The inequality follows from that if P (respectively, Q) is an optimal f;-path
partition of A (respectively, B) in which Pz € P (respectively, Q) € Q) contains z,
then (P U QU {PzQ}) — {Px,xQ} is an fo-path partition of G. ]

We now have the following theorem which is the key for the inductive step of

our algorithm.

Theorem 2.3 Suppose o = py,(B) — py,(B) and 5 = py,(B) — pp,(B). (Notice that
a, €{0,1}.) Then the following statements hold.

(1) If f(x) =0, then ps(G) = py(A) + py(B) — 1.
(2) If f(x) =1, then ps(G) = py,_,(A) + py,(B) — 1.
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(3) If f(x) > 2 and a = B =0, then py(G) = ps(A) + ppo(B) — 1.
(4) If f(2) > 2 and a = 0 and § = 1, then py(C) = ps,(4) + py(B)
(5) If f(x) > 2 and a = 1, then ps(G) = py,_,(A) + ps,.,(B) — 1.

Proof. Suppose P is an optimal f-path partition of G. Let P* be the path in P
that contains z. (It is possible that there is no such path when f(z) = 3.) There are
three possibilities for P*: (a) P* does not exist or P* C A; (b) P* C B; (¢) x is an
internal vertex of P*, say P* = P'zP”, with P’z C A and zP"” C B. (The latter is
possible only when f(z) > 2.)

For the case when (a) holds, {P € P : P C A} is an f-path partition of A and
{Pe€P:PC B}U{x}isan fo-path partition of B. We then have the inequality in

(a'). Similarly, we have (b') and (¢') corresponding to (b) and (c).
(a") pp(G) = pr(A) + g (B) — 1.
(b") ps(G) > psy (A) +ps(B) — 1 (We may replace ps(B) by ps,(B) when f(x) > 2.)
() ps(G) > ps, (A) + py, (B)—"1. (This is possible only when f(z) > 2.)

We are now ready to prove the theorem.

(1) Since f(z) = 0, we have: fr=fq According to Lemma 2.2 (1), ps(G) <
ps(A)+ps(B) — 1. On the other hand, (a') and (b') give ps(G) > ps(A) +ps(B) — 1.

(2) Since f(x) =1, we have f = f;. Lemma 2.2 (1), together with (a’) and (b’),
gives ps(G) = min{py, (A) + ps,(B) — 1,ps, (A) + py, (B) — 1}. If a = 0, then

pfo(A) +pf1(B) —-1=> pfl(A) + (pf0<B) - Oé) —1 :pfl(A) +pf0(B) - 1;
and if &« = 1, then
P (A) +ps(B) =1 > (g (A) = 1) + (pr(B) + @) = 1 =py (A) + pp (B) — 1.

Hence p;(G) = py,_,(A) + ps. (B) — 1.

(3) According to Lemma 2.2 (1), ps(G) < ps(A) + ps,(B) — 1. On the other
hand, as py,(A) > py,(A) > pr(A) and py,(B) = py,(B) = pp,(B), (a')-(c) give
pi(G) = ps(A) +pg(B) — 1.
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(4) According to Lemma 2.1 (4) and @ = 0 and 3 = 1, we have

pf(B—l') :pf0<B) —1 :pfl(B> —1 :pfz(B>‘

This, together with Lemma 2.1 (4), gives that the above value is also equal to py, (B)
and so ps(B). Then, an optimal f5-path partition P of A, together with an optimal
ps-path partition of B — x (respectively, B) when z is (respectively, is not) in a path
of P, forms an fy-path partition of G. Thus, pf(G) < ps,(G) < pr(A) + ps(B).

On the other hand, since py, (A) > ps(A) > pr,(A) and pg,(B)—1 = py (B)—1 =
pr(B), (&/) or (¢/) implies pr(G) > pyr,(A) + pr(B). Also, as pg(A) — 1 > pp(A) by
Lemma 2.1 (4), (b') implies p;(G) > pyr,(A) + ps(B).

(5) According to Lemma 2.1 (1) and Lemma 2.2, we have
p#(G) < pp(G) < min{pg, (A) + pp,(B) = 1,ps (A) + pp (B) — 1}
On the other hand, if (a’) holds, then by Lémma 2.1 (5) and that py,(B) = py, (B)+1,
pi(G) 2 ps(A) +pp(B) = 1 2pp(A) =8) $pnfB) +1) =1 =pp(A) +pp(B) - 1.
This, together with (b’) and (¢’), gives
p(G) = min{py, (A) +pp(B) = 1,p5 (A) + pj (B) — 1}.

If 3 =0, then

Po(A) +pp(B) =12 pp(A) + (ps(B) = 8) =1 = pp(A) +pp(B) — 15
and if 5 =1, then

Pr(A) +pp(B) =12 (pr(A) = 1) + (pr(B) + ) = 1 = pgp(A) + pp(B) — 1.

Hence pf(G) = py,_,(A) +py,,(B) — 1. 1
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2.3 Path partitions for special blocks

Notice that the inductive theorem (Theorem 2.3) can be applied to solve the path-
partition problem on graphs for which the problem can be solved on its blocks. In
this section, we mainly consider the case when the blocks are complete graphs, cycles
or complete bipartite graphs.

Now, we assume that B = (V| E) is a graph in which each vertex v has a label

f(v) €{0,1,2,3}. Recall that f~'(i) is the set of pre-images of i, i.e.,
fH) ={veV: flv)=i}.

According to Lemma 2.1 (4), we have p;(B) = py(B — f71(0)) + |f*(0)].
Therefore, in this section we only consider the function f with f~1(0) = .

We first consider the case when B is a complete graph.

Lemma 2.4 Suppose B is a complete graph. If f~Y(1) # 0 or f71(2) = 0, then
ps(B) = [If 1 (1)|/2] else pr(B)=1.

Proof. It is clear that py(B) = [|f *L)[/2]. For the case when f~'(1) # 0 or
f71(2) = 0, we can pair the vertiées-inyf=(1) as end-vertices of paths to form an
f-path partition; and so p;(B) < f|f~'(1)}/2]: For the case when f~'(1) = () and
f742) # 0, it is clear that a Hamiltonian path forms an f-path partition; and so
py(B) =1. "

Next, consider the case when B is a path. This is useful as a subroutine for

handling cycles.

Lemma 2.5 Suppose B is a path.
(1) If z is an end-vertex of B with f(x) =3, then ps(B) = ps(B — x).

(2) Ifx is an end-vertex of B with f(x) € {1,2} and another vertex y with f(y) =1
such that no vertex between x and y has a label 1 (choose y the other end-vertex
of B if there is no such vertez), then ps(B) = ps(B’) + 1 where B’ is the path

obtained from B by deleting x,y and all vertices between them.
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Proof. (1) Since f(x) = 3, by Lemma 2.1 (4), py(B) < ps(B — ). As x is an
end-vertex of B, py(B) > ps(B — z) follows from that deleting = from a path (if any)
in an f-path partition of B results in an f-path partition of B — x.

(2) First, we claim that if f(x) = 2, then ps(B) = py,(B). By Lemma 2.1 (1),
ps(B) < pp(B). Since x is an end-vertex of B and f(z) = 2, an f-path partition is
in fact an fi-path partition of B. Thus pf(B) > pyf,(B). Now, we can assume that
flw) =1

Let P denotes the path from = to y in B. First, ps(B) < py(B')+1 follows from
that an f-path partition of B’, together with P, forms an f-path partition of B. On
the other hand, suppose P is an optimal f-path partition of B. Since f(z) = f(y) =1
and x is an end vertex of B, P has some P’ C P with x € P’. Deleting all vertices
of P from the paths in P results in an f-path partition of B’ whose size is less than

|P| by at least one. Thus, ps(B) —1 > ps(B’). ]
We then consider the case when B is a cycle.

Lemma 2.6 Suppose B is a cycle.

(1) If f71(2) = 0, then py(BY = FETAE2].

(2) If P is a path from x toy in B such that f~*(1)NP = {x,y} and f~1(2)NP #£ 0,
then pg(B) = pg(B — P) + 1.

Proof. (1) It is clear that ps(B) > [|f71(1)]/2]. As f~1(2) = 0, we can pair
the vertices in f~1(1) as end-vertices of paths to form an f-path partition; and so
pe(B) < [IF1(1)1/2].

(2) First, ps(B) < ps(B— P)+1 follows from that an f-path partition of B — P
together with P forms an f-path partition of B. On the other hand, suppose P is
an optimal f-path partition of B. Since f~*(1) NP = {z,y} and f~'(2)NP #0, P
must contain some P’ C P using = or y as one of its end-vertex. Deleting all vertices
of P from the paths in P results in an f-path partition of B — P whose size is less
than |P| by at least one. Thus, ps(B) —1 > ps(B — P). ]
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Finally, we consider the case when B is a complete bipartite graph with C'U D
as a bipartition of the vertex set. For ¢ € {0,1,2,3}, let

We have the following lemmas.

Lemma 2.7 If ¢y = dy =0 and co > dy and x € Cy, then pg(B) = pp(B) where f’

is the same as f except f'(x) = 1.

Proof. p;(B) < py/(B) follows from the fact that any f’-path partition of B is an
f-partition.

Suppose P is an optimal f-path partition of B. We may assume that P is
chosen so that the paths in P cover as few vertices as possible. For the case when
P has a path Py with y € C, we qnay interchange y and z to assume that Px € P.
In this case, P is an f’-path partition of B and so ps (B) < ps(B). So, now assume
that all end-vertices of pathsin ‘P are inD. Then, these end-vertices are all in D,
for otherwise we may delete those endsvertices in D3 to get a new P which covers
fewer vertices. We may further assume that paths in P cover no vertices in Ds, for
otherwise we may interchange such a vertex with an end-vertex of a path in P and
then delete it from the path. Thus each path of P uses vertices in Cy U C3 U Do, and

has end-vertices in Dy. These imply that ds > co, contradicting that co > ds. [ |

By symmetry, we may prove a similar theorem for the case when d; = ¢; = 0

and ds > ¢ and dy > 1.

Lemma 2.8 Suppose x € Cy. Also, either do > 1 with y € Ds, or else ¢c; > dy and
dy =0 < ds withy € D3. Then ps(B) =pp (B —x), where f' is the same as [ except
fly) =1

Proof. Suppose Py is in an optimal f’-path partition P of B—xz. Then (P —{Py})U
{Pyx} is an f-path partition of B and so ps(B) < pp(B — z).

20



On the other hand, suppose Px is in an optimal f-path partition P of B. For
the case when y is not covered by any path in P, we have y € D3 and so ¢; > d; and
dy = 0. Consequently, there is some Qz € P with z € Co, U C5 or z € Ds. For the
former case, we replace QQz by QQzy in P; for the latter, we replace (Qz by Qy. So, in
any case we may assume that y is covered by some path RyS in P. If RyS = Pu,
then again we may interchange y with the last vertex of P to assume that RyS = Tyx
in P for some T. If RyS # Px, then we may replace the two paths RyS and Px
by Ryx and PS. So, in any case, we may assume that P has a path Uyx. Then,
(P —{Uyz}) U{Uy} is an f’-path partition of B — z. Thus pp(B —x) < pg(B).

By symmetry, we may prove a similar theorem for the case when x € D;; and

either ¢g > 1 with y € (s, or else d; > ¢; and ¢, = 0 < ¢3 with y € Cs.

2.4 Algorithm for graphs with special blocks

We are ready to give a linear-time algorithm for the path-partition problem in graphs
whose blocks are complete graphs, eyeles or complete bipartite graphs. Notice that
we may consider only connected graphs:- We present five procedures. The first four
are subroutines which calculate_f-path-partition numbers of complete graphs, paths,
cycles and complete bipartite graphs, respectively, by using Lemmas 2.4 to 2.8. The
last one is the main routine for the problem.

First, Lemmas 2.1 (4) and 2.4 lead to the following subroutine for complete

graphs.

Algorithm PCG. Find the f-path partition number ps(B) of a complete graph B.
Input. A complete graph B and a vertex labeling f.
Output. ps(B).
Method.
if (f7H(1) #0or f71(2) =0)
then py(B) = [f71(0)[ + [I/ 7 (1)]/2];
else pp(B) = [f7(0)| + 1;

return p(B).
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Lemma 2.5 leads to the following subroutine for paths, which is useful for the

cycle subroutine.

Algorithm PP. Find the f-path partition number p;(B) of the path B.
Input. A path B and a vertex labeling f with f~(0) = 0.
Output. ps(B).
Method.
ps(B) < 0;
B’ «— B;
while (B’ # () do
choose an end-vertex x of B';
if (f(z) = 3) then B’ «— B’ — x else
choose a vertex y nearest to = with f(y) =1
(let y be the other end-vertex if there is no such vertex);
ps(B) — ps(B) £
B’ «+ B’— allzvertices between (and including) = and y;
end else;
end while;

return p(B).
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Lemmas 2.1 (4) and 2.6 lead to the following subroutine for cycles.

Algorithm PC. Find the f-path partition number ps(B) of a cycle B.
Input. A cycle B and a vertex labeling f.
Output. ps(B).
Method.
if (f71(0) =0 and f71(2) = 0)
then py(B) — [£~1(1)/2];
else if (f71(0) =0 and f~'(2) # 0 and |f~'(1)| < 1) then
py(B) — L
else if (f~1(0) =0 and f~1(2) # 0 and |f~*(1)] > 2) then
choose a path P from z to y such that
SO NP ={z,y} and f71(2) N P # 0;
pf(B) < ps(B — P) + 1 by calling PP(B — P);
else // now f~1(0) #0 //
let B — f~1(0) be the disjointiunion of paths Pi, Py, ..., Py;
ps(B) — |1 (0)]:
for i = 1 to k do pp(B) < pe(B) + ps(PF;) by calling PP(P);
end else;

return ps(B).

Lemmas 2.1 (4), 2.7 and 2.8 lead to the following subroutine for complete bi-
partite graphs. In the subroutine, we inductively reduce the size of C'U D. Besides
the reduction of Cy and Dy in the second line, we consider 9 cases. The first case is
for C' = (0 or D = (). The next 5 cases are for ¢; > 1 or d; > 1. In particular, the case
of ¢; > 1 is covered by cases 2 and 3, except when dy = 0 and (¢; < d; or d3 = 0).
The case of d; > 1 is covered by cases 4 and 5, except when ¢y = 0 and (d; < ¢; or

c3 = 0). The exceptions are then covered by case 6. Finally, the last 3 cases are for

01:d1:0.
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Algorithm PCB. Find the f-path partition number p¢(B) of a complete bipartite
graph B.
Input. A complete bipartite graph B with a bipartition C'U D of vertices and a
vertex labeling f.
Output. ps(B).
Method.
i — |fY@)NC)and d; + |f~1(i) N D| for 0 <i < 3;
ps(B) « co + do;
while (true) do
if (¢ =co=c3=0o0rd; =dy =d3;=0) then
pr(B) <= ps(B) +c1 + c2 + dy + dy; return py(B);
else if (¢; > 1 and dy > 1) then // use Lemma 2.8 //
cp—c—1; dy—dy—1; dy — dy+1;
else if (¢; > 1 and ¢; > dyjand:dy = 0 < d3) then // use Lemma 2.8 //
c1 < c1— 1; dge— dyprpdiady % di + 1
else if (d; > 1 and-¢y.> 1) then //.use the remark after Lemma 2.8 //
di «— dy — 1556 «—les"="1; c; <=1 + 1;
else if (d; > 1 and dy > ¢, and ¢y =0 < ¢3) then // remark after Lemma 2.8 //
di—dy—1; cg—c3—=1 1 —c1+1;
else if (co =dy=0and (¢ =dy >1ore¢; >d; > 1withds =0
or dy > ¢; > 1 with ¢3 = 0)) then
py(B) — ps(B) + max{cy,d1}; return p;(B);
else // by now ¢; =dy =0 // if (¢; = dy = 0) then
return p(B);
else if (¢; > dy) then // use Lemma 2.7 //
cp—1; cg—co—1;
else if (co < dy) then // use the remark after Lemma 2.7 //
di «— 1; dy+— dy—1;

end while.
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Finally, Theorem 2.3 and the subroutines above lead to the main algorithm.

Algorithm PG. Find the path-partition number p;(G) of the connected graph G
whose blocks are complete graphs, cycles or complete bipartite graphs.
Input. A graph G and a vertex labeling f.
Output. ps(G).
Method.
pp(G) « 0; G — G;
while (G' # () do
choose a block B of G’ with only one cut-vertex x or with no cut-vertex;
if (B is a complete graph) then
find py,(B) by calling PCG(B, f;) for 0 <7 < 3;
if (B is a cycle) then
find py,(B) by calling PC(B, f;) for 0 <i < 3;
if (B is a complete bipartite graph).then
find py,(B) byealling PCB(B, f;) for 0 <i < 3;
a = pg(B) = pp(B); Bi=pp(B) = pp(B);
if (f(xz) =0) then pp(G) = ppl&) +p;(B) — 1;
else if (f(z) = 1) then
pi(G) = ps(G) +pr(B) = 15 f(z) =1 -«
else // by now f(x)=2o0r 3 //
case 1: a=03=0
py(G) — ps(G) +pp(B) — 1
case 2: a=0and =1
pr(G) < pr(G) +ps(B); flx) < 3;
case 3: a =1
pi(G) — ps(G) +ppy(B) — 15 f(z) —1-0;
G =G — (B - {z});
end while;

output ps(G).
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Theorem 2.9 Algorithm PG computes the f-path partition number of a connected
graph whose blocks are complete graphs, cycles or complete bipartite graphs in linear

time.

Proof. The correctness of the algorithm follows from Lemma 2.1 (4) and Lemmas 2.4
to 2.8. The algorithm takes only linear time since the depth-first search can be used
to find blocks one by one in linear time, and each subroutine requires only O(|B])

operations. 1

We close this section by giving an example that demonstrates the algorithm.

Example 2.1 Consider the graph G; of 12 vertices and 5 blocks in Figure 2.1. Notice
that its blocks are three complete graphs, a cycle and a complete bipartite graph.

1. We begin with the assignment f(v) = 2 for every vertex v. Set ps(G) = 0.

Figure 2.1: Graph G; of 12 vertices and 5 blocks.

2. Choose the block By = {f, g}, which is a complete graph, with the only cut-
vertex f in G1. Call the subroutine PCG. Thus,a=2—1=1land f=1-1=
0. Then, pf(G) = 0 and f(f) = 1 (with a path fg results). Delete By — {f}
from G to get the graph G, in Figure 2.2.
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Figure 2.2: Graph Gy results from G5 by deleting {g}.

3. Choose the block By = {e, h}, which is a complete graph, with the only cut-
vertex e in GG. Call the subroutine PCG. Thus,a =2—1=1and f =1-1=0.
Then, pf(G) = 0 and f(e) = 1 (with a path eh results). Delete By — {e} from
G5 to get the graph G5 in Figure 2.3.

Figure 2.3: Graph G resultsfrom G5 by deleting {h}.

4. Choose the block Bs = {d, e, f}, which is a complete graph, with the only cut-
vertex d. Call the subroutine PCG. Thus, a =2 —-2=0and f=2—-1= 1.
Then, ps(G) = 1 and f(d) = 3 (with the path P, = gfeh or gfdeh results).
Delete B3 — {d} to get the graph G4 from G in Figure 2.4.

Figure 2.4: Graph G4 results from G5 by deleting {e, f}.

5. Choose the block By = {a,b,c,d}, which is a cycle, with the only cut-vertex
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d. Call the subroutine PC. Thus, a =2 —-1=1and § =1—1 = 0. Then,
pf(G) =1, P, = gfeh and f(d) =1 (with a path dcba results). Delete B, — {d}
from G4 to get the graph G5 from G, in Figure 2.5.

2 2
OO
o<

0"1;9@
2

2

Figure 2.5: Graph G5 results from G4 by deleting {a, b, c}.

6. Choose the final block Bs = {d, 1, j, k,l}, which is a complete bipartite graph.
Call the subroutine PCB. Set ¢o = dy =2, dy =1 and ¢g = dy =1 = ¢35 =
ds = 0. Since d; = 1 and ¢; = 2 > 1, by the remark after Lemma 2.8, we have
di=0,c0=2—1=1and ¢ = 1. That is, we delete d from G5 to get a new

label 1 at vertex ¢. Then, we get the graph Gg in Figure 2.6.

£

Figure 2.6: Graph Gg results from G5 by deleting d and set f(i) = 1.

7. Since ¢; = 1 and dy = 2, by Lemma 2.8, we have ¢; =0, d = 1 and d; = 1.
That is, we delete ¢ from Gg to get a new label 1 at vertex k. Then, we get the

graph G7 in Figure 2.7.

2
2 1

Figure 2.7: Graph G7 results from Gy by deleting 7 and set f(k) = 1.
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8. Since d; = 1 and ¢y = 1, by the remark after Lemma 2.8, we have d; =0, ¢; = 0
and ¢; = 1. That is, we delete k from G to get a new label 1 at vertex j. Then,

we get the graph Gy in Figure 2.8.

1

!

2
Figure 2.8: Graph Gj results from G; by deleting k& and set f(j) = 1.

9. Since ¢y = 1 and dy = 1, by Lemma 2.8, we have ¢; =0, d, = 0 and d; = 1.
That is, we delete 7 from Gg to get a new label 1 at vertex [. Then, we get the
graph Gy in Figure 2.9.

©
1

Figure 2.9: Graph Gy fesults fromi Gg by deleting j and set f(1) = 1.
10. Since ¢; = ¢o = ¢3 = 0,"we have py(Bs) ='d; + do + d3 = 1 (a path abcdijkl

results). Hence, pf(G) = 14 pp(Bs) =2 and an optimal path partition P =
{gfeh,abcdikjl}.
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Chapter 3

Induced-path Partition

3.1 Preliminary of induced-path partition

Recall that an induced path is a path in which two vertices are adjacent only for
those with consecutive indices. An induced-path partition of a graph is a collection of
vertex-disjoint induced paths that cover all vertices of the graph. The induced-path-
partition problem is to find the induced-path-number p(G) of a graph G, which is the
minimum cardinality of an induced-path| partition of G.

The concept of induced-path number was introduced by Chartrand et al. [9],
who gave the induced-path numbérs of-complete bipartite graphs, complete binary
trees, 2-dimensional meshs, butterflies and general trees. Broere et al. [6] determined
exact values for complete multipartite graphs. Chartrand et al. [9] conjectured that
p(Qq) < d for the d-dimensional hypercube @, with d > 2. Alsardary [3] proved that
p(Qq) < 16. From an algorithmic point of view, Le et al. [27] proved that the induced
path partition problem is N'P-complete for general graphs.

The purpose of this chapter is to give a linear-time algorithm for the induced-
path numbers of graphs whose blocks are complete graphs, cycles or complete bipartite

graphs and a polynomial-time algorithm for cographs.
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3.2 Induced-path partition in graphs with special
blocks

In this section, we shall present a linear-time algorithm for the induced-path numbers
for graphs whose blocks are complete graphs, cycles or complete bipartite graphs.

We use the same approach as in above chapter on this problem. Since the
structure is the same as the above chapter, the results of the Subsection 3.2.1 is
similar to those in Section 2.2. For completeness, we still present the results in detail.

For technical reasons, we consider the following generalized problem, which is a
labeling approach for the problem.

Suppose every vertex v in the graph G is associated with an integer f(v) €
{0,1,2,3}. An f-induced-path partition is a collection P of vertex-disjoint induced
paths such that the following conditions hold.

(P1) Any vertex v with f(v) # 3 is ingseme induced path in P.
(P2) If f(v) =0, then v itselfis an induced path in P.
(P3) If f(v) =1, then v is an end-vertex of some-induced path in P.

The f-induced-path-partition problemis to detérmine the f-induced-path number p;(G)
which is the minimum cardinality of an f-induced-path partition of GG. It is clear that
p(G) = ps(G) when f(v) = 2 for all vertices v in G. Notice that as there may have
some vertices of labels 3, an f-induced-path partition is not necessary a induced-path

partition.

3.2.1 Inductive theorem

The labeling approach used in this subsection starts from an end block. Suppose B =
(V, E) is an end block whose only cut-vertex is z. Let A be the graph G — (V — {«}).
Notice that we can view G as the “composition” of A and B, i.e., G is the union
of A and B which meet at a common vertex x. The idea is to get the induced-path

number of G from those of A and B.
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In the lemmas and theorems of this subsection, we use the following notation.
Suppose x is a specified vertex of a graph H = (V, E) in which f is a vertex labeling.
For i = 0,1,2,3, we define the function f; : V' — {0,1,2,3} by fi(y) = f(y) for all

vertices y except fi(z) = i.

Lemma 3.1 Suppose x is a specified vertex in a graph H. Then the following state-

ments hold.
(1) pp(H) < pr,(H) < pp,(H) < pgo(H).
(2) pr(H) < pgo(H) < pp,(H) + 1.
(3) pp(H) < pp(H) < pp,(H) + 1.
(4) prs(H) = min{py,(H), py(H — )} < py(H = x) = pg(H) = 1.
(5) ps(H) = ps (H) — 1.

Proof. (1) The inequalities follow from that, anf;-induced-path partition is an f;-
induced-path partition whenever < j.

(2) The second inequality followsfrom that replacing the induced path Pz in an
fi-induced-path partition by two induced paths P and x results in an fy-induced-path
partition of H.

(3) The second inequality follows from that replacing the induced path Pz(@
in an fs-induced-path partition by two induced paths Px and @ results in an f;-
induced-path partition of H.

(4) The first equality follows from that one is an f3-induced-path partition of
H if and only if it is either an f>-induced-path partition of H or an f-induced-path
partition of H — x. The second equality follows from that P is an fy-induced-path
partition of H if and only if it is the union of {z} and an f-induced-path partition
of H—x.

(5) According to (1), (3) and (4), we have

py(H) > pg(H) = min{ps, (H), ps(H—x)} > min{py, (H)—1, ps, (H)—=1} = py, (H)—1.
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Lemma 3.2 (1) pf(G) < min{ps(A) + ps, (B) — 1, ps (A) + ps(B) — 1}.
(2) pp(G) < pp(A) +pp(B) — 1.

Proof. (1) Suppose P is an optimal f-induced-path partition of A, and Q an fo-
induced-path partition of B. Then x € Q and so (P U Q) — {z} is an f-induced-
path partition of G. This gives pf(G) < ps(A) + ps,(B) — 1. Similarly, ps(G) <
p(A) + pp(B) — 1.

(2) The inequality follows from that if P (respectively, Q) is an optimal f;-
induced-path partition of A (respectively, B) in which Pz € P (respectively, zQ) € Q)
contains z, then (P U QU {PzQ}) — {Px,zQ} is an fo-induced-path partition of G.

We now have the following theorem ,which is key for the inductive step of our

algorithm.

Theorem 3.3 Suppose a = pyg, (B) — pp(B) and B = py,(B) — ps,(B). (Notice that
a, 5 € {0,1}.) Then the followinyg statements hold.

(1) If f(x) = 0. then py(G) = p, (AVHBHB) - 1.
(2) If f(a) = 1, then py(G) = ps_, (4) + s, (B) — 1.

3) If f(z) > 2 and o = B = 0, then pp(G) = ps(A) + pp, (B) — 1.
(4) If f(z) > 2 and o = 0 and B = 1, then ps(G) = ps,(A) + ps(B).
(5) If f(a) 2 2 and a = 1, then py(G) = py,_,(A) + ppy,,(B) — 1.

Proof. Suppose P is an optimal f-induced-path partition of G. Let P* be the
induced path in P that contains z. (It is possible that there is no such induced path
when f(x) = 3.) There are three possibilities for P*: (a) P* does not exist or P* C A;
(b) P* C B; (c) x is an internal vertex of P*, say P* = P'xP”, with P’z C A and
xP" C B. (This is possible only when f(z) > 2.)
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For the case when (a) holds, {P € P : P C A} is an f-induced-path partition
of Aand {P € P: P C B}U{z} is an fy-induced-path partition of B. We then have
the inequality in (a’). Similarly, we have (b’) and (c¢’) corresponding to (b) and (c).

(o) p1(G) = py(A) + ppo(B) — 1.
(b") ps(G) > psy(A) + pp(B) — 1. (We may replace pg(B) by pg,(B) when f(x) > 2.)
() ps(G) > pp(A) + pg, (B) — 1. (This is possible only when f(z) > 2.)

We are now ready to prove the theorem.

(1) Since f(z) = 0, we have f = fy. According to Lemma 3.2 (1), ps(G) <
ps(A)+ ps(B) — 1. On the other hand, (a’) and (b’) give ps(G) > pr(A) + ps(B) — 1.

(2) Since f(x) =1, we have f = f;. Lemma 3.2 (1), together with (a’) and (b’),
gives pf(G) = min{py, (A) + ps,(B) — 1, ps (A) + pp, (B) — 1}. If e =0, then

Pio(A) + pp (B) =1 2 pp (A)sf(pr(B) i~ ) — 1 = py, (A) + pso(B) — 1

and if o = 1, then

p1 (A) + pso(B) =1 2 (pg, A) =1 B) + @) — 1 = pg(A) + pp (B) — 1.

Hence pf(G) = pp,_ (A) + pr(B) — 1.

(3) According to Lemma 3.2 (1), p;(G) < pr(A) + pp(B) — 1. On the other
hand, as pfo(A) > pfl(A) > pf(A> and pfo(B> - pfl(B) = pfz(B)7 (a)-(c') give
ps(G) = pp(A) + pg(B) — 1.

(4) According to Lemma 3.1 (4) and v = 0 and 5 = 1, we have

pt(B =) = ps(B) — 1 = pp(B) — 1 = pp,(B).

This, together with Lemma 3.1 (4), gives that the above value is also equal to ps,(B)
and so pg(B). Then, an optimal fs-induced-path partition P of A, together with an
optimal f-induced-path partition of B — x (respectively, B) when z is (respectively,
is not) in an induced path of P, forms an fs-induced-path partition of G. Thus,
p(G) < pp(G) < pp(A) + pr(B).
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On the other hand, since pyr, (A) > pr(A) > pp(A) and pg (B)—1 = pp, (B)—1 =
ps(B), (a') or (') implies ps(G) = pr,(A) + ps(B). Also, as py(A) =1 = pg(A) by
Lemma 3.1 (4), (V') implies pf(G) > ps,(A) + ps(B).

(5) According to Lemma 3.1 (1) and Lemma 3.2, we have
p(G) < pp(G) < min{py, (A) + pp(B) — 1, p, (A) + pp (B) — 1}
On the other hand, if (a’) holds, then by Lemma 3.1 (5) and that pg,(B) = pg, (B)+1,
pr(G) = pp(A) +pp(B) =1 = (pp(A) = 1) + (pr(B) +1) =1 = pp (A) + pp, (B) — 1.
This, together with (b’) and (), gives
ps(G) = min{py, (A) + pp(B) = 1, pp (A) + pp (B) — 1}

If 3 =0, then

Pio(A) +pp(B) =12 pp (A (B)~ 8) — 1= pp(A) + pp(B) = 15
and if 5 =1, then

pr(A) + pp(B) =12 (pr,(A) s ltpp(B)+ ) — 1= pp(A) + pp(B) — 1.

Hence ps(G) = pp_y(A) + pr(B) =1L "

Before we use the theorems of this subsection to design an efficient algorithm,
let us use them to give an alternative proof for a result on trees.

Let T be a tree. For a vertex v of T with dr(v) > 3, the excess degree ¢(v) of
v is equal to dr(v) — 2. A penultimate vertex is a vertex that is not a leaf and all of

whose neighbors are leaves, with the possible exception of one.

Corollary 3.4 [9] Let T be a tree, and let H be the forest induced by the vertices of
T having degree 3 or more. Let H' be a spanning sub-forest of H of mazimum size

that dg:(v) < e(v) for every vertex v of H. Then,

p(T) =1+ EH) + Y [e(v) = du(v)].
veV (H)
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Proof. The corollary is clear when the tree has just one vertex. Suppose now 7' has
at least two vertices. Choose a penultimate vertex x whose with leaf-neighbors z1,
Ty, Tp. Let TV =T — {x,x1,29,...,2,}. By Theorem 3.3 (5), (2) and (1) and the
induction hypothesis,
p(T)=p(T')+r—1=1+|EHp)|+ Y (cv)—du, ) +r-1,
veV (Hypr)

where Hy is the forest induced by the vertices of T” having degree 3 or more, and
H/., is a spanning sub-forest of H of maximum size such that dg(v) < e(v) for every
vertex v of Hy. Since e(z) = r — 1, dg(z) = 1 and |E(H')| = |E(H})| + 1, the

corollary then follows. ]

3.2.2 Induced-path partitions for special blocks

Besides the inductive theorem (Theorem 3.3) we also need to establish formula for the
induced-path numbers of special graphs including complete graphs, cycles or complete
bipartite graphs. Here we assume that B is a graph in which each vertex v has a

label f(v) € {0,1,2,3}. Recall that |f=1(i) is the set of pre-images of 4, i.e.,

FH6) = g V(B): f(v) = i}.

Also, f~Y(I) = Ujerf1(i) for any I C {0,1,2,3}. According to Lemma 3.1 (4),
ps(B) = py(B — f710)) + |f~1(0)|. Therefore, in this section we only consider the
function f with f~1(0) = 0.

We first consider the case when B is a complete graph.
Lemma 3.5 If B is a complete graph, then p;(B) = [|f~1({1,2})]/2].

Proof. The equality holds since an induced path of a complete graph is a 2-path or
a 1-path. [

Next, we consider the case when B is a path. This is useful as a subroutine for

handling cycles.
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Lemma 3.6 Suppose B is a path.
(1) If x is an end-vertex of B with f(x) =3, then ps(B) = ps(B — x).

(2) Ifx is an end-vertex of B with f(z) € {1,2} and another vertex y with f(y) =1
such that no vertex between x and y has a label 1 (choose y the other end-vertex
of B if there is no such vertex), then ps(B) = pg(B’) + 1 where B’ is the path

obtained from B by deleting x,y and all vertices between them.

Proof. (1) Since f(z) = 3, by Lemma 3.1 (4), ps(B) < ps(B —z). As z is an end-
vertex of B, pp(B) > ps(B — z) follows from that deleting  from an induced path
(if any) in an f-induced-path partition of B results in an f-induced-path partition of
B —x.

(2) First, we claim that if f(z) = 2, then ps(B) = pyf,(B). By Lemma 3.1 (1),
pf(B) < pf(B). Since z is an end-vertex of B and f(z) = 2, an f-induced-path
partition is in fact an fi-induced-path partitien of B. Thus ps(B) > py, (B). Now,
we can assume that f(z) = 1.

Let P denotes the path-from & toy in B. First, ps(B) < ps(B’) + 1 follows
from that an f-induced-path partition of' B’} together with P, forms an f-induced-
path partition of B. On the other hand; suppose P is an optimal f-induced-path
partition of B. Since f(z) = f(y) = 1 and z is an end-vertex of B, P has some
P’ C P with z € P'. Deleting all vertices of P from the paths in P results in an

f-induced-path partition of B’ whose size is less than |P| by at least one. Thus,

ps(B) =1 = ps(B'). "
We now consider the case when B is a cycle.

Lemma 3.7 Suppose B is a cycle.

(1) If f'({1.2}) = 0, then ps(B) = 0.

(2) When f~2(1) = 0 and f~1(2) # 0, if there exists a vertex with label 3, then
pr(B) =1 else ps(B) = 2.
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(3) When f~1(1) = {x}, if © has at least one neighbor labeled with 3, then ps(B) =1
else pp(B) = 2.

(4) 17D 2 2 and f71(2) = 0, then ps(B) = [If71(1)]/2].

(5) When f~1(1) contains exactly two vertices which are adjacent and f~1(2) # 0,
then ps(B) = 2.

(6) If P is an induced path from x to y in B such that f~1(1) N P = {z,y} and

Proof. The proof from (1) to (5) are obvious.

(5) First, pp(B) < ps(B — P) +1 follows from that an f-induced-path partition
of B— P together with P forms an f-induced-path partition of B. On the other hand,
suppose P is an optimal f-induced-path partition of B. Since f~1(1) N P = {z,y}
and f~1(2) N P # (), P must contain some P’ C P. Deleting all vertices of P from
the paths in P results in an f-induced-path partition of B — P whose size is less than

|P| by at least one. Thus, p¢(B).= 1> p(B —P) ]

We now consider the case when Blisa complete bipartite graph with C'U D as

a bipartition of the vertex set. For a=.0,1,2,3, let
Ci={zeC: f(xr)=1i} and ¢ =|Ci;

D;={yeD: f(y) =i} and d; =|D;.
Notice that an induced path of a complete bipartite graph has at most 3 vertices. We

then have the following lemmas.

Lemma 3.8 Suppose ¢; > 2 and dy > 1. If x,z € Cy and y € Do, then ps(B) =
pf<B o {ZB,y,Z}) + 1.

Proof. First, ps(B) < ps(B — {x,y,2}) + 1 since zyz is an induced path. On the
other hand, suppose P is an optimal f-induced-path partition of B. We claim that
there exists a path xyT in P. Otherwise, suppose zP and QyR are in P with |R| < 1.
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When P = ¢S, we may replace xP = xy'S by zyS and QyR by Qy'R; when P = (),
we may replace P = z by xyR and QyR by Q). Next we claim that T" = z. Otherwise,
suppose Sz is in P. In this case we may replace xyT by zyz and Sz by ST'. Therefore,

we may assume that P contains xyz, and so ps(B) —1 > pg(B — {z,y, 2}). ]

By symmetry, we may prove a similar lemma for the case when d; > 2 and

6221.

Lemma 3.9 Suppose 2co > dy + do. If v € Cy, then pp(B) = pp(B) where f' is the

same as f except f'(x) = 1.

Proof. First, ps(B) < py(B) since an f’-induced-path partition of B is an f-induced-
path partition of B. On the other hand, suppose P is an optimal f-induced-path
partition of B. If every vertex in Cs is an internal vertex of some induced path in P,
then the two end-vertices of this induced path are in D; U Dy, and so 2¢y < dq + ds
which is impossible. Hence, we may assume that x is the end-vertex of an induced

path in P. This gives py(B) >ps (B). ]

By symmetry, we may prove a'similar lemma for the case when 2d; > ¢ + co.
We may repeatedly apply Tiemmas 3.8 and'3.9 and the remarks after them until

the following conditions hold:
(dl S 1 or Co :0), (Cl S 1 or dQI()), 2C2 Sdl—i-dg, 2d2 §61+C2.

Notice that it is impossible that ¢ = 0 < ds, for otherwise the second condition gives
c1 < 1 while the forth gives 2 < 2ds < ¢; < 1, a contradiction. So, either ¢ = dy =0
or both ¢y and dy are nonzero. The latter case implies ¢; = ¢o = dy = dy = 1, in

which case p(B) = 2.

Lemma 3.10 Suppose co =dys =0, ¢, > 1 anddy > 1. If v € Cy and y € Dy, then
pr(B) = ps(B —{z,y}) + 1.

Proof. First, pg(B) < ps(B —{z,y}) + 1 since zy is an induced path. On the other
hand, suppose P is an optimal f-induced-path partition of B. If zy is not in P, then
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P contains P and y(Q. For the case when P = (), we may replace zP = x by zy
and y@Q by @Q. For the case when P = y’, we may replace xP = xy’ by zy and yQ
by 4'Q. So, we may assume that P = xy'z. By symmetry, we may also assume that
yQ = yZ'x’. As ¢y = dy = 0, it is the case that ' € D3 and 2’ € (3. Then we may
replace xy'z by xy and yz'z’ by 2’z. Therefore, we may assume that zy is in P and

50 pg(B) — 1> ps(B —{z,y}). "

Lemma 3.11 Suppose di = ¢co = dy =0, ¢; > 2 and d3 > 1. If x,z € C} and
y € Ds, then py(B) = ps(B — {z,y,2}) + 1.

Proof. First, ps(B) < ps(B — {x,y, 2}) since zyz is an induced path. On the other
hand, suppose P is an optimal f-induced path of B. By the condition d; = ¢, = dy =

0, it is easy to see that we may assume that xyz is an induced path in P. Hence,

pf(B)_lzpf(B_{x7y7Z}>' i

By symmetry, we may prove a-similar lemma for the case when ¢; = ¢ = dy =

0, di > 2and ¢35 > 1.

3.2.3 Algorithm for graphs with special blocks

We are ready to give a linear-time algorithm for the induced-path number of graphs
whose blocks are complete graphs, cycles or complete bipartite graphs. Notice that
we may consider only connected graphs. We present five procedures. The first four
are subroutines which calculate f-induced-path numbers of complete graphs, paths,
cycles and complete bipartite graphs, respectively, by using Lemmas 3.5 to 3.11. The

last one is the main routine for the problem.
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Lemmas 3.1 (4) and 3.5 lead to the following subroutine for complete graphs.

Algorithm IPCG. Find the f-induced-path number ps(B) of a complete graph B.
Input. A complete graph B and a vertex labeling f.
Output. ps(B).
Method.
ps(B) = [fHO)[ + [If ({1, 2H)l/2]:
return p;(B).

Lemma 3.6 leads to the following subroutine for paths, which is used in the

cycle subroutine.

Algorithm IPP. Find the f-induced-path number p;(B) of a path B.
Input. A path B and a vertex labeling f with f~1(0) = 0.
Output. ps(B).
Method.
ps(B) — 0;
B' — B;
while (B’ # () do
choose an end-vertex x of ‘Bf;
if (f(z) = 3) then B’ «— B’ — x else
choose a vertex y nearest to x with f(y) =1
(let y be the other end-vertex if there is no such vertex);
ps(B) — ps(B) + 1;
B’ « B'— all vertices between (and including) = and y;
end else;
end while;

return p;(B).
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Lemmas 3.1 (4) and 3.7 lead to the following subroutine for cycles.

Algorithm IPC. Find the f-induced-path number ps(B) of a cycle B.
Input. A cycle B and a vertex labeling f.
Output. ps(B).
Method.
i (£71({0,1,2}) = 0) then py(B) — 0;
else if (f71({0,1}) =0 # f~'(2)) then
if there exists a vertex with label 3 then p;(B) < 1 else ps(B) «— 2;
else if (f71(0) =0 and f~'(1) = {z}) then
if  has a neighbor labeled with 3 then p¢(B) < 1 else ps(B) « 2;
else if (f7'(0) =0 and |f~*(1)| > 2 and f~!(2) = 0) then
pr(B) — [IfH(D)]/2];
else if (f~1(0) =0 and |f~'(1)| > 2 and f~*(2) # () then
if (f7'(1) contains exactly two vertices which are adjacent) then p;(B) « 2;
else choose an z-y induced path- P with f ~'(1) N P = {z,y} and f~*(2) N P # 0;
ps(B) <« ps(B = Py+ 1 by calling PP(B — P);
else // now f71(0) A0 //
let B — f71(0) be the disjoint-union of paths Py, Ps, ..., By;
ps(B) — [f7H0)];
for i =1 to k do ps(B) < ps(B) + ps(P;) by calling PP(P));
end else;

return p;(B).
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Lemma 3.1 (4) and Lemmas 3.8 to 3.11 lead to the following subroutine for

complete bipartite graphs.

Algorithm IPCB. Find the f-induced-path number p;(B) of a complete bipartite

graph B.

Input. A complete bipartite graph B with a bipartition C'U D of vertices and a

vertex labeling f.

Output. ps(B).

Method.

ci — |f1 @) NC|and d; « [ f~1 (i) N D] for 0 < i < 3; ps(B) « co + do;
while (true) do

if (¢; > 2 and dy > 1) then // use Lemma 3.8 //

else

else

else

else

else

else

else

=2 dye—dy—1; py(B)— pp(B) +1;

if (d; > 2 and ¢, > 1) then // remark after Lemma 3.8 //

di —dy —2; ¢ —=1,"pi(B) — ps(B) + 1;

if (2¢9 > dy + do):then }// use Lemma 3.9 //

Cy—cy—1; cpe—ea + 1

if (2dy > ¢1 + co) then // remark after Lemma 3.9 //

dy — dy — 1; dy <Sidp+1;

if (¢t =y =dy =dy =1) then

ps(B) < ps(B) +2; return py(B);

if (o =dy=0and ¢; > 1and d; > 1) then // use Lemma 3.10 //
co—c—1; dy—di—1; ps(B)—ps(B)+1;

if (dy =cy =dy=0and ¢; > 2 and d3 > 1) then // use Lemma 3.11 //
¢ ¢ —2; dg—ds—1; p(B)—p(B)+1;

if (g =y =dy=0and d; > 2 and ¢3 > 1) then // remark after Lemma 3.11 //
di—dy —2; c3+—c3—1; p(B)« p(B)+1;

else // now co =dy =0 with (¢;+dy <lorcg=c3=0o0rd; =d3=0)//

pr(B) «— ps(B) +c1 +co +di + do; return pg(B);

end while.
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Finally, Theorem 3.3 leads to the following main algorithm.

Algorithm IPG. Find the f-induced-path number p;(G) of the connected graph G
whose blocks are complete graphs, cycles or complete bipartite graphs.
Input. A graph G and a vertex labeling f.
Output. pf(G).
Method.
ps(G) — 0;
while (G # () do
choose a block B with cut-vertex x or with no cut-vertex;
if (B is a complete graph) then
find py,(B) by calling IPCG(B, f;) for 0 <i < 3;
else if (B is a cycle) then
find py,(B) by calling IPC(B, f;) for 0 <i < 3;
else if (B is a complete bipartite graph) then
find py,(B) by calling IPCB(Bj.f;)for 0 <i < 3;
a = pg,(B) = pp(B)s 3 = ppB) = py,(B);
if (f(z) = 0) then p(G) < ppG)+ pf(B) —
else if (f(z) = 1) then
pi(G) — ps(G) + pr(B) = 13 f(z) — 1 -
else // by now f(x)=2o0r3 //
case 1: a=3=0
pi(G) — pp(G) + p(B) — 1
case 2: a=0and =1
pi(G) — ps(G) + pp(B);  flz) < 3;
case 3: a =1
pi(G) — ps(G) + prs(B) = 1; f(z) —1—=5;
G:=G—(B—{z});
end while;

output p(G).
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Theorem 3.12 Algorithm IPG computes the induced-path number of a connected
graph whose blocks are complete graphs, cycles or complete bipartite graphs in linear

time.

Proof. The correctness of the algorithm follows from Theorem 3.3, Lemma 3.1 (4)
and Lemmas 3.5 to 3.11. The algorithm takes only linear time since the depth-first
search can be used to find blocks one by one in linear time, and each subroutine

requires only O(|B]) operations. ]

We now give an example to demonstrate the algorithm.

Example 3.1 Consider the graph G of 9 vertices and 3 blocks in Figure 3.1. Notice
that its blocks are a complete graph, a cycle and a complete bipartite graph.

1. We begin with the assignment f(v) = 2 for every vertex v. Set ps(G;1) = 0.

2 2 2 2 2

OGN §0, -0)
R

@—&) - )~ @

2 2 2 2

Figure 3.1: Graph ‘Gyof'9 vertices and 3 blocks.

2. Choose the block By = {d, e}, which is a complete graph, with the only cut-
vertex d in GG;. Call the subroutine IPCG. Thus, a =2 —-1 =1 and g =
1—1=0. Then, p;(G) =0+1—1=0 and relabel f(d) =1 (with an induced
path de results). Delete By — {d} from G to get the graph G5 in Figure 3.2.

1 2 2 2
i
>
o0 W W
2 2 2 2
Figure 3.2: Graph G, results from G by deleting {e}.
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3. Choose the block By = {a,b,c,d}, which is a cycle, with the only cut-vertex ¢
in Gy. Call the subroutine IPC. Thus, « =2—2=0and f =2—2 = 0. Then,
pi(G) =0+2—1=1 (with an induced path edab results). Delete By — {c}
from G5 to get the graph G5 in Figure 3.3.

2 2

2

v &)

Figure 3.3: Graph G3 results from G5 by deleting {a, b, d}.

4. Choose the final block Bs = {¢, f, g, h,i}, which is a complete bipartite graph.
Call the subroutine IPCB. Notice that co =3, dy =2 and cg =c¢; = c3 =dy =
dy = d3 = 0. Since 2¢y > dy + ds, by using Lemma 3.9, we get a new label 1 at

vertex c as in Figure 3.4.

1 2

2

SES|

Figure 3.4: Graph G3with a new label at vertex c.

5. Now, ¢ =1, co =dy =2 and ¢y = ¢c3 = dy = d3 = 0. Since 2¢y > dy + ds, again

by Lemma 3.9, we relabel vertex f by 1 as in Figure 3.5.

1 1 2
&
>
& o
2 2
Figure 3.5: Graph G35 with a new label at vertex f.

6. Nowcy =1, =dy =2and ¢g = c3 =dy =d3 =0. Since ¢; > 2 and dy > 1, by
Lemma 3.8, we have ps(B3) = 1+ ps(Bs —{c, h, f}) (with a path chf results).
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Continue this process to calculate pr(Bs — {c, h, f}), we get ps(Bs) = 2 ( with
an induced path gi results). Hence, p(G) = 1 + ps(Bs) = 3, and an optimal
induced-path partition is P = {edab, chf, gi}.

3.3 Induced-path partition in cographs

This section gives a polynomial-time algorithm for the induced-path number of cographs.
Recall that cographs are defined by the following rules:

(i) K7 is a cograph;

(ii) if G and H are cographs, then so are G + H and G x H;

(iii) no other graphs are cographs.

For more details on cographs, see [12, 13, 26].

For technical reasons, we consider the following generalized definition. Let
p(G,t,p) be the minimum among all induced-path numbers of all graphs G(t, p) ob-
tained from G by removing ¢ vertieés-and p pairs of nonadjacent vertices. It is clear
that p(G) = p(G,0,0).

In the following lemma, suppose G.=(V, E) and H = (V', E’).

Lemma 3.13 For ¢+ 2p < |VI+|V’|, we have
IO<G + H7t7p) = Hl(}n{p(G,tl + a7p1) + p(H7 t2 + a,p2 — CL)},

where

C ={(t1,t2,p1,p2,0a) : t=1t1+1t2, p=p1+po,
t1+a+2p; < |V,
ta +a+2(py —a) < [V,
D2 2 a 2 07
t1 >0, t2>0, p1 >0, po >0, a>0}.
Proof. Suppose P is an optimal induced-path partition of (G + H)(t,p). Then,

p(G+ H,t,p) > p(G,t1 + a,p1) + p(H, ts + a,ps — a) for some t; and a. Thus,

p(G+H7t7p) Z mcln{p(G7t1 +Cl,p1) +p(H7t2 +aap2 _CL)}?
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where

C = {(t1,t2,p1,p2,a) : t =1t +ty, p=p1+ Do,
t1+a+2p; <|V)|,
ty +a+2(py —a) < [V,
p2 > a >0,
t1>0,t>0, pr >0, pp >0, a>0}.

On the other hand, suppose Q (respectively, R) is an optimal induced-path
partition of G(t1 + a, p1) (respectively, H(ts + a,py — a)). Then QU R is an induced-
path partition of (G + H)(t,p). Thus,

p(G+ H7t7p) S mcl,n{p(G7tl + avpl) +p(Hat2 + a,p2 — a>}7

where

C = {(t1,ta,pr,pa,a) : t=1t1+1ts, p=p1+ po,
t1+a—|—2p1§|V|,
ty+a+2(ps —a) < |V,
P2 > a 205ty >0, t2 >0, p1 >0, pp >0, a> 0}

Hence

p<G + Hvtap) = mcl,n{p(Gatl . aapl) IS p(H7 o + a,p2 — a)}7
where

C ={(t1,t2,p1,p2,a) : t=t1 +ta, p=pr+Do,
th+a+2p <[V,
ty+a+2(py —a) < V'],
p2>a>0,t >0t >0, p >0, pp >0, a>0}. ]

Lemma 3.14 Fort+2p < |V|+ |V'|, we have
p(G x H,t,p) :m[i)n{p(G,t1+a+c,p1—|—b) +p(H, to+b+c,ps+a)+a+b+c},

where
D = {(t17t27p17p27a5b>c) tl=t +t27 P =p1+ P2,
a+2b+c+t+2p < |V,
20+ b+ c+ty+2py < |V,
t1 20,1220, pr 20, pp >0,
a>0,b>0, ce{0,1}}.
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Proof. Suppose P is an optimal induced-path partition of (G x H)(t,p), P has a
(respectively, b) P; whose internal vertex is in G(t; + a + ¢,p1 + b) (respectively,
H(ts + b+ c¢,ps + a)), and ¢ edges whose end-vertices are in the different parts. If
¢ > 2 and at least two vertices in the same part in ¢ edges are nonadjacent, then we
can interchange two edges with a P3 and a vertex. If there exists two edges in ¢ edges
whose end-vertices in the same part (also the other part) are adjacent, then we can
interchange these two edges with two other edges whose end-vertices are in the same

part. Thus,
p(G X H7t7p) 2 len{p(G7tl +G+C,p1 +b) +p(H,t2—|—b—|—C,p2—|—a) —|—a—i—b—|—c},

where
D = {(t1,t2,p1,p2,a,b,¢) 1 t=1t1+1ts, p=p1+ D2,
a+2b+c+t+2p < |V,
20+ b+ ¢+ ty + 2py < |V,
t1 20,1220, p1 =20, pp >0,
a'>:0, b >0, ce {0,1}}.

On the other hand, suppose, O [(respéctively, R) is an optimal induced-path
partition of the graph G(t; + @&-He, p1 + b) (tespectively, H(to+b+ ¢, ps+a)), and we
have the set S containing (a +b) Pzand.cedges.-So Q U R U S is an induced-path

partition of a graph G x H(t, p):.Thus,

p(G X H7t7p) S len{p(G7t1 +CL+C,p1 +b) +p(H7t2+b+Cap2+a) —|—a—i—b—|—c},

where
D = {(t1,t2,p1,p2,a,b,¢) 1 t =11 +t2, p=p1+po,
a+2b+c+t+2p < |V,
20+ b+ c+ty+2py < |V,
t1 20,1220, p1 =20, pp >0,
a>0,b0>0, ce{0,1}}.
And so,

IO(G X H7t7p) :len{p<G7t1 +G+C,p1—|—b) +p(H7t2+b+c7p2+a) +a’+b+c}7
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where

D:{<tlat27plap27gabac): t =11 +1t2, p=p1+ Do,
a+2b+c+t+2p <|V|,
20+ b+ c+ty+ 2py < |V,
t1 20, 1220, pr 20, p, 20,
a>0,b>0, ce{0,1}}.

Theorem 3.15 There is a polynomaial-time algorithm for computing the induced-path

number of a cograph.

Proof. At any iteration, Lemmas 3.13 uses polynomial time and Lemma 3.14 uses

polynomial time. And by the definition of cographs, the theorem holds. [
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Chapter 4

Isometric-path Cover

4.1 Preliminary of isometric-path cover

Recall that an isometric path between two vertices in a graph G is a shortest path
joining them. An isometric-path cover of a graph is a collection of isometric paths
that cover all vertices of the graph. The isometric-path-cover problem is to find the
isometric-path number ip(G) of a_graph Giwhich is the minimum cardinality of an
isometric-path cover.

The isometric-path number of the Cartesian product P, UPF,,00...0F,, has
been studied extensively in the litérature—Fitzpatrick [17] gave bounds for the case
when ny = ny = ... = ng. Fisher and Fitzpatrick [18] gave exact values for the case
d = 2. Fitzpatrick et al. [19] gave a lower bound, which is in fact the exact value if
d+ 1 is a power of 2, for the case when n; =ny = ... =ng = 2.

The purpose of this chapter is to give a linear-time algorithm for the isometric-
path-cover problem in block graphs. We also determine isometric-path numbers of

complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

4.2 Isometric-path cover in block graphs

The purpose of this section is to give isometric-path numbers of block graphs. We also
give a linear-time algorithm to find the corresponding paths. For technical reasons,
we consider a slightly more general problem as follows. Suppose every vertex v in the

graph G is associated with a non-negative integer f(v). We call such function f a
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vertex labeling of G. An f-isometric-path cover of GG is a family C of isometric paths

such that the following conditions hold.

(C1) If f(v) =0, then v is in an isometric path in C.

(C2) If f(v) > 1, then v is an end-vertex of at least f(v) isometric paths in C, while

the counting is twice if v itself is a path in C.

The f-isometric-path number of G, denoted by ip;(G), is the minimum cardi-
nality of an f-isometric-path cover of G. It is clear that when f(v) = 0 for all vertices
v in G, we have ip(G) = ip;(G). The attempt of this section is to determine the

f-isometric-path number of a block graph.

4.2.1 Formula for block graphs

In this subsection, we determine the f-isometric-path numbers for block graphs G.
Without loss of generality, we may assume that G is connected.

First, a useful lemma.

Lemma 4.1 Suppose x is a non-cut-verterof a block graph G with a vertex labeling

f. If vertex labeling f" is the same as f eweept that f'(x) = max{l, f(x)}, then

Proof. Notice that an internal vertex of an isometric path in a block graph is a
cut-vertex. Since x is not a cut-vertex, x must be an end-vertex of any isometric
path. It follows that a collection C is an f-isometric-path cover if and only if it is an

f'-isometric-path cover. The lemma then follows. [

Now, we may assume that f(v) > 1 for all non-cut-vertices v of G, and call such

a vertex labeling reqular. We have the following theorem for the inductive step.

Theorem 4.2 Suppose G is a block graph with a reqular labeling f, and x is a non-
cut-vertex in a block B with exactly one cut-verter y or with no cut-vertex in which

case let y be any vertex of B — {x}. When f(x) =1, let G' = G — x with a regular

o2



vertex labeling f' which is the same as f except f'(y) = f(y)+1. When f(z) > 2, let
G’ = G with a regular vertex labeling f" which is the same as f except f'(z) = f(z)—1

and f'(y) = f(y) + 1. Then ip;(G) = ip;(G').

Proof. We first prove that ip;(G) > ip;(G’). Suppose C is an optimal f-isometric-
path cover of G. Choose an isometric path P in C having x as an end-vertex. We
consider four cases.

Case 1.1. P=z and f(z) =1 (i.e., G' = G — ).

In this case, ' = (C — {P}) U {y} is an f’-isometric-path cover of G’. Hence,
ips(G) = IC] > C'] > ip (G).

Case 1.2. P =z and f(x) > 2 (i.e., G' = G).

In this case, ' = (C — {P}) U {zy} is an f’-isometric-path cover of G’. Hence,
ips(G) = IC] > C'] > ip (G).

Case 1.3. P = zz for some vertex z in B — {z,y}.

In this case, C' = (C — {PHWU{yz} is ai.f'-isometric-path cover of G’. Hence,
ips(G) = €] > C'] > ip (G7).

Case 1.4. P = zy(@), where € contains no vertices in B.

In this case, C' = (C — { P}) U{y@Q}is:an f’~isometric-path cover of G'. Hence,
ip/(G) =[] = €' = ip ().

Next, we prove that ip;(G) < ip;(G’). Suppose C' is an optimal f’-isometric-
path cover of G'. Choose a path P’ in C’ having y as an end-vertex. We consider
three cases.

Case 2.1. P/ = yx.

In this case, G’ = G and C = (C' — {P'}) U {z} is an f-isometric-path cover of
G. Hence, ip;(G) < |C| < [C'| = ipp(G).

Case 2.2. P’ = yz for some z in B — {z,y}.

In this case, C = (C' — {P'}) U{xz} is an f-isometric-path cover of G. Hence,
ip(G) <[] < €] = ip ().

Case 2.3. P/ = y@Q, where ) contains no vertex in B.

In this case, C = (C' — {P'}) U{xyQ} is an f-isometric-path cover of G. Hence,
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ip;(G) < [C] < |C'] = ipy(C). .

Consequently, we have the following result for f-isometric-path numbers of con-

nected block graphs.

Theorem 4.3 If G = (V, E) is a connected block graph with a regular vertex labeling
[, then ip;(G) = (3(5)1, where s(G) =, oy, f(v).

Proof. The theorem is obvious when G has only one vertex. For the case when G
has more than one vertex, we apply Theorem 4.2 repeatedly until the graph becomes

trivial. Notice that the s(G") = s(G) when Theorem 4.2 is applied. ]
For the isometric-path-cover problem, we have

Corollary 4.4 If G is a connected block graph, then ip(G) = [HC(QG)L where nc(G) is

the number of non-cut-vertices of G.

Proof. The corollary follows from Theorem 4.3 and the fact that ip(G) = ip;(G)
for the regular vertex labeling=f with f(v) =1 if v is a non-cut-vertex and f(v) =0

otherwise. 1

Corollary 4.5 [18] If T is any tree thenip(T') = [@L where ((T) is the number of

leaves in T

4.2.2 Algorithm for block graphs

Based on Theorem 4.2, we are able to design an algorithm for the isometric-path-cover
problem in block graphs. Notice that we may only consider connected block graphs
with regular vertex labelings. To speed up the algorithm, we may modify Theorem

4.2 a little bit so that each time a non-cut-vertex is handled.

Theorem 4.6 Suppose G is a block graph with a reqular labeling f, and x is a non-
cut-verter in a block B with exactly one cut-vertex y or with no cut-verter in which
let y be any vertex in B —{x}. Let G' = G — x with a regular vertez labeling f' which
is the same as f except f'(y) = f(y) + f(x). Then ip;(G) = ipp(G').

o4



Proof. The theorem follows from repeatedly applying Theorem 4.2. [
Now, we are ready to give the algorithm.

Algorithm IP Find the f-isometric-path number ip ;(G) of a connected block graph.
Input. A connected block graph G and a regular vertex labeling f.

Output. An optimal f-isometric-path cover C of G and ip(G).

Method.

1. construct a stack S which is empty at the beginning;
let G — G;
while (G’ has more than one vertex) do
choose a block B with exactly one cut-vertex y

2

3

4

5 or with no cut-vertex in which case choose any y € B;
6. for (all vertices z in B — {y}) do

7 fy) — fly) + f(z);

8 push (z,y, f(2)) into »5;

9 G — G —

10. end for;

11.  end while;

12, ip;(G) « [f(r)/2], where 7 is the only vertex of G';

13.  let C be the family of isometric paths containing ip(G) copies of the path r;
14.  while (S is not empty) do

15. pop (z,y,1) from S;

16. choose 7 copies of path P in C using y as an end-vertex;

17. if (P = yx) then

18. replace the ¢ copies of P by 4 copies of z in C;

19. if (P = yz for some vertex z in the block of G containing =) then

20. replace the i copies of P by ¢ copies of xz in C;

21. if (P = y@ where @ has no vertices in the block of G containing =) then
22. replace the i copies of P by the ¢ copies of zy@ in C;

23. end while.
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Algorithm IP can be implemented in linear time to the number of vertices and
edges.

We close this section by giving an example that demonstrates the algorithm

Example 4.1 Consider the graph G, of 5 vertices and 2 blocks in Figure 4.1. Notice

that its blocks are two complete graphs.

1. Give a regular vertex labeling f such that f(c) =0, and f(v) =1 for v # ¢ of

G, in Figure 4.1.

2. Construct an empty stack S in Figure 4.1.

1 @ (© 1
N

(c) 0

Stack S

1 (a (DR

Figure 4.1: Graph G of 5 vertices, and an empty stack S.

3. Choose the block By = {a,b,'c}, which is.&’complete graph, with the only cut-
vertex ¢, and another vertex a.“Thus;"f(c¢) = 0+ f(a) = 1. Then, push (a,c, 1)

into S, and delete a from G to get the graph G5 in Figure 4.2.

Stack S

1v1
1
B 1 a,c, 1

Figure 4.2: Graph G, results from (7 by deleting a. Update stack S.

4. Choose the vertex b. Thus, f(¢) = 1+ f(b) = 2. Then, push (b,¢, 1) into S,

and delete b from G5 to get the graph G3 in Figure 4.3.

o6



Stack S

1 @v@ 1
@1 b,c,1

a,c, 1

Figure 4.3: Graph Gj results from G5 by deleting b. Update stack S.

5. Choose the final block By = {¢,d,e} and the vertex c¢. For all vertices of
V(By) — {c}, continue this process. Thus, f(c¢) = 4. Then, ip(G) = 2 and the
isometric-path cover is P = {c,c}. Hence, we obtain the graph G4 in Figure
4.4.

Stack S

e,c 1

d,c,1
© 4 b,c,1

a,c,1

Figure 4.4: Graph G, resultsfrom G3-by deleting d and e. Update stack S.

6. Pop (e,c, 1) from stack S to update as.in Figure 4.5. Thus, we get P = {ce, c}.

Stack S

d,c, 1
b,c,1
a,c, 1

Figure 4.5: Update stack S by poping (e, ¢, 1).

7. Also, pop (d, ¢, 1) from S, and we get P = {ce, cd}. Continue this Process. Pop
(b,c,1) from S to obtain P = {ceb, cd}. Finally, pop (a,c, 1) form S. Hence,

P = {ceb, cda}.
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4.3 Isometric-path cover in complete r-partite graphs

In this section we determine isometric-path numbers of all complete r-partite graphs.

Suppose G is the complete r-partite graph K, ,,, . », of n vertices, where r > 2,

77777

ny>ng > ...>n,andn =n; +ny+...+n,. Let G has « parts of odd sizes. We

notice that every isometric path in G has at most 3 vertices. Consequently,

ip(G) = [%W :

Also, for any path of 3 vertices in an isometric-path cover C, two end-vertices of the
path is in a part of G’ and the center vertex in another part. In case when two paths
of 3 vertices in C have a common end-vertex, we may replace one by a path of 2
vertices. And, a path of 1 vertex can be replaced by a path of 2 vertices. So, without
loss of generality, we may only consider isometric-path covers in which every path is

of 2 or 3 vertices, and two 3-vertices paths have different end-vertices.
Lemma 4.7 If 3n; > 2n, then ip(G) = [2:].

Proof. First, ip(G) > [%] sinee every isometri¢ path contains at most two vertices
in the first part.
1.

Suppose n —ny > 2 and the claim holds for n" —n} < n —mn;. Then we remove two

On the other hand, we use an induction on n — ny to prove that ip(G) < [

03

When n —ny = 1, we have G = K,,_11. In this case, it is clear that ip(G) < |

0|3

vertices from the first part and one vertex from the second part to form an isometric
3-path P. Since 3n; > 2n, we have n; —2 > 2(n —n; — 1) > 0 and so n; — 2 > na.
Then, the remaining graph G’ has v’ > 2, n} =ny — 2 and n’ = n — 3. It then still
satisfies 3n| > 2n’. Asn’—n| = n—ny; —1, by the induction hypothesis, ip(G’) < f%lﬂ

and so ip(G) < [%lﬂ +1=[%]. ]

Lemma 4.8 If 3a > n, then ip(G) = [252].
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Proof. Suppose C is an optimum isometric-path cover with py paths of 2 vertices

and ps paths of 3 vertices. Then
2ps + 3p3 = n.

Notice that there are at most n — « vertices in GG can be paired up as the end-vertices

of the 3-paths in P. Hence p3 < "% and so

n—ao n—+« .
2py + 2p3 =2 n — 5 T 3 or 1p(G):p2—|—p32[

n+ a—‘
1 .

On the other hand, we use an induction on n — a to prove that ip(G) < [2£2].
When n — a < 1, we have n = a and G is the complete graph of order n. So,
ip(G) = [4] = [**]. Suppose n — a > 2 and the claim holds for n' — o/ < n — a.
In this case, 3a > n > « + 2 which implies @ > 1 and n > 3. Then we may remove
two vertices from the first part of andrene,vertex form an odd part other than the
first part to form an isometric 3%path Pof G The remaining graph G’ has n’ =n—3
and o = o — 1. It then satisfies 3a/ > n'. Notice that v’ > 2 unless G = K371 in

which n = 4 and o = 2 imply ip(G)=2r= [**]. By the induction hypothesis,

ip(G") < %427 and so ip(G) < (B ] 4 Les [ te]. .

Lemma 4.9 If 3n; < 2n and 3a < n, then ip(G) = [§].

Proof. Since every isometric path in G has at most 3 vertices, ip(G) > [F].

On the other hand, we use an induction on n to prove that ip(G) < [%]. When
n < 8, by the assumptions that 3n; < 2n and 3o < n we have G € {Ks1, Koo, Kjp,
K2,2717 K4727 K4,1,17 K3,35 K3,2,17 K2,2727 KQ,Q,LI; K4,3a K4,2,17 K372,27 K2,2,2,17 K573a K5,2,17
K474, K473,1, K4’2’2, K47271,1, K3’3’2, K37272,1, K2’2’272, K272,271’1}. It is Straightforward to
check that ip(G) < [3].

Suppose n > 9 and the claim holds for n’ < n. We remove two vertices from

the first part and one vertex from the jth part to form an isometric 3-path P for
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G, where j is the largest index such that j > 2 and n; is odd (when n; are even for
all i > 2, we choose j = r). Then, the remaining subgraph G’ has n’ = n — 3 and
o =a—1or o <2. Therefore, 3a < n and n > 9 imply that 3o’ < n’ in any case.
We shall prove that 3n] < 2n’ according to the following cases.

Case 1. n; > ny + 2.

In this case, ny —2 > ny > n; for all ¢ > 2 and so n| = n; — 2. Therefore,
3ny =3(n1 —2) <2(n—3)=2n

Case 2. n; <ny+1 and ny < 4.

In this case, nj < ng <4 and n’ > 6. Then, 3n] <12 < 2n/.

Case 3. ny <ng+1and ny > 5 and r = 2.

In this case, n} < ng—1and n' =n—3 = ny; +ny —3 > 2ny — 3. Then,
3nf < 3ny —3 <4dny —8 < 2n.

Case 4. n; <ngy+ 1 and ny >Hand . > 3.

In this case, n] < ny andn! =m=8.> 0, +ns +1—3 > 2ny — 2. Then,

3n} < 3ny <4dny — 5 < 2n. ]
According to Lemma 4.7 4.8 and 4.9, we have the following theorem.

Theorem 4.10 Suppose G is the complete r-partite graph Ky, n,...n, of n vertices
withr > 2, n >ng > ... >0, andn =ny +ns + ...+ n,. If there are exactly «

indices © with n; odd, then

(5], if 3ny > 2my
ip(G) = ¢ [™27, if3a > n;
(51 if 3a < n and 3n; < 2n.

0|3

In the proofs of the lemmas above, the essential points for the arguments is the
fact that each partite set of the complete r-partite graph is trivial. If we add some
edges into the graph but still keep that each partite set can be partitioned into | % |

pairs of two nonadjacent vertices and n; — 2| % | vertex, then the same result still

holds.
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Corollary 4.11 Suppose G is the graph obtained from the complete r-partite graph

n. Of m vertices by adding edges such that each i-th part can be partitioned

77777

into | %] pairs of two nonadjacent vertices and n; — 2|5 | wvertex, where r > 2,

2

|3

nyg>MNg > ...>n, andn=mny +ns+...+n,. If there are exactly o indices v with

n; odd, then
[, if 3ny > 2n;
ip(G) = ¢ [™2], if 3a > m;
(1, if 3a < n and 3n; < 2n.

3 f3

4.4 Isometric-path cover in Hamming graphs

In this section we determine isometric-path numbers of Cartesian products of 2 and 3
complete graphs. Recall that a Hamming graph is the Cartesian product of complete

graphs, which is the graph K, 0K,,0...0K,, = (V, E) with vertex set
V ={(z1, 29, . 25%,) : 0 << n; for 1 <i<r}
and edge set
E={(x1,29,...,2:)(y1, Y2, o5 Yr) : T; = yj for all ¢ except just one x; # y;}.

Suppose G is the Hamming graph K, UK,,0... 00K, of n vertices, where
n =mniny...n, and n; > 2 for 1 < i < r. We notice that every isometric path in G

has at most r + 1 vertices. Consequently,

ip(G)z[ 1 W

r+1

We first consider the case when r = 2

Theorem 4.12 Ifn; > 2 and ny > 2, then ip(K,,0K,,) = ["52].

Proof. We only need to prove that ip(/,,00K,,) < [*52]. We shall prove this

assertion by induction on n; 4+ ny. For the case when ny +ny < 6, the isometric-path
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covers

Cop = {(0,0)(0,1),(1,0)(1, 1)},

Cos = {(0,0)(0,1)(1,1),(0,2)(1,2)(1,0)},

Coa = {(0,0)(0,1)(1,1),(0,2)(1,2)(1,0),(0,3)(1,3)} and
Cas = {(0,0)(2,0)(2,2),(0,1)(0,2)(1,2), (1,0)(1,1)(2, 1)}

for KoUK, Kol1K3, KoK, and K3LK3 respectively, gives the assertion.

— .
HT/P/.ﬁ \\\\\\\\\\\\\\\\\\ >

KoUK, KoUK KoUKy KK,

Figure 4.6: Isometric-path covers, of K>l for 2 < i < 4, and K30Ks3.

Suppose n; + ny > 7 and the assertion holds for n} + n, < ny; + ny. For the
case when all n; < 4, without loss of generality we may assume that n; = 4 and
3 < mny < 4. As we can partition the vertex set of K, 1K, into the vertex sets of

two copies of distance invariant induced subgraphs K>[1K,,,,

9
ip(K,,OK,,) < 2ip(Ko0K,,) < 2 [ ;ﬂ _ {

nlnﬂ

3

For the case when there is at least one n; > 5, say ny; > 5, again we can partition
the vertex set of K, [1K,, into the vertex sets of two distance invariant induced
subgraphs K3UK,, and K,,_sUK,,. Then,

ip(K,,0K,,) <ip(KsOK,,)+ip(K,,_s0K,,)
< [32] + [Pe] = [, :

Lemma 4.13 If ny,ny and ng are positive even integers, then

ip(Koy O, R, ) = 102
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Proof. We only need to prove that ip( K, 0K,,K,,) < ™72 First, the isometric-
path cover Caa = {(0,0,0)(0,0,1)(0,1,1)(1,1,1), (1,0,1)(1,0,0)(1,1,0)(0,1,0)} for

K>5OK5[K5 proves the assertion for the case when ny = ng = ng = 2.

L=

(0,00)  (0,0,1)

Figure 4.7: An isometric-path cover of Kyl1K5[1K,.

For the general case, as the vertex set of K, K, 11K, can be partitioned into
the vertex sets of ™72 copies of distance invariant induced subgraphs K>UK5[1K,

n1n2n3> ip(KQDKQDKQ) < nlngng. .

4

ip(K,, OK,,0K,,) < (

Lemma 4.14 [fn3 > 3 is odd, thenip(K5LIK,00K,,,) = ns + 1.

Proof. First, we claim that ip(KOKEAL, ;) > ns+ 1. Suppose to the contrary that

the graph can be covered by nmg isometri¢ paths

P (Iih T2, %’3)(%17 Yi2, yz‘3)(2’¢1, 2i2;s Zz’3)(wi1, W;2, wiS)»

1 = 1,2,...,n3. These paths are in fact vertex-disjoint paths of 4 vertices, each
contains exactly one type-j edge for j = 1,2,3, where an edge (x1, 2, 23)(y1, Y2, y3)
is type-j if x; # y;. For each P; we then have z;; = 1 — w;; and z;5 = 1 — w;o, which
imply that x;; + x;2 has the same parity with w;; + w;s. We call the path P; even or
odd when x;; + x;2 is even or odd, respectively. Also, as P; has just one type-3 edge,
by symmetry, we may assume either x;3 # ;3 = 2i3 = W;3 O Xy3 = Y3 # 2i3 = W;3,
for which we call P; type 1-3 or type 2-2 respectively. For a type 2-2 path P; we may
further assume that z;; # y;1 = z;1 = wiy.

For 0 < z3 < ng, the x3-square is the set

S(z3) = {(0,0,23),(0,1,z3), (1,0, 23), (1,1, 23)}.
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Notice that a type 1-3 path P; contains 1 vertex in S(x;3) and 3 vertices in S(w;3),
while a type 2-2 path P; contains 2 vertices in S(z;3) and 2 vertices in S(w;3). We
call a type 1-3 path P; is adjacent to another type 1-3 path P; if the last 3 vertices of
P; and the first vertex of P; form a square. This defines a digraph D whose vertices
are all type 1-3 paths, in which each vertex has out-degree one and in-degree at most
one. In fact, each vertex then has in-degree one. In other words, the “adjacent to” is
a bijection. Consequently, vertices of all type 1-3 paths together form p squares; and
so vertices of all type 2-2 paths form the other n3 — p squares.

Since z;1 # yi1 = 2z;1 = w; for a type 2-2 path P, the first two vertices of a type
2-2 path together with the first two vertices of another type 2-2 path form a square.
This shows that there is an even number of type 2-2 paths. Therefore, there is an
odd number of type 1-3 paths.

On the other hand, in a type l:3mpath P; we have z;, + z;, = v;, + v;, has the
different parity with z;, + z;,, dnd, thelsame parity with w;, + w;,. So it is adjacent
to a type 1-3 path whose parity'is the same as z;;°+ z;,. That is, a type 1-3 path is
adjacent to a type 1-3 path of different-parity: Therefore, the digraph D is the union
of some even directed cycle. This‘is-a. contradiction to the fact that there is an odd
number of type 1-3 paths.

The arguments above prove that ip(K.OK,OK,,) > n3 + 1. On the other
hand, since the vertex set of Ko[IK,0K,, is the union of the vertex sets of (ng +
1)/2 copies of Ky[1K500K5, by the cover Caa in the proof of Lemma 4.13, we have
ip(K.OK,0K,,) <ng+ 1. [

Theorem 4.15 If all n; > 2, then ip(K,,0K,,0K,,) = ["2%] except for the case
when two n; are 2 and the third is odd. In the exceptional case, ip(K,,0K,,0K,,) =

nina2ns
ang 4 ],

Proof. The exceptional case holds according to Lemma 4.14.
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For the main case, by Lemma 4.13, we may assume that at least one n; is odd.
Again, we only need to prove that ip(K,, OK,,K,,) < [*72%]. We shall prove the
assertion by induction on 2?:1 n;. For the case when Z?Zl n; < 10, the following
isometric-path covers for Kol1K3[K3, KoLK3OK,, KyOK3OKs, K3OK3OK3 and
K3OK3Ky, respectively, prove the assertion:

Coss = {(0,1,1)(0,1,0)(0,0,0)(1,0,0), (0,2,2)(0,2,0)(1,2,0)(1,1,0),
, (0,0, )(0, 12)(1,1,2)

(0,0,0) (0, o 1) 0,0,2)

Figure 4.8: An isometrig-path cover of Ky[JK3[K3.

Let 55y = Cozs\{(0,251)(1,2, 1)(1,2, 1) (6;0,2)(0,1,2)(1,1,2) }U
( {(0,2,1)(1,2,1)(1,1,1)(1,1,3),(0,0,2)(0, 1 ,2)(1,1,2)(1,1,4)}. )

1,13 (1,14)

000)  (001)  (002)

Figure 4.9: Another isometric-path cover of Ks[1K3[1K3.
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(0,0,1) (0,0,2) (0,0,3)

(0,0,0)

Figure 4.10: An isometric-path cover of Ko[JK3[K}y.

(0,0,0)

Figure 4.11: Anisometric-path cover of Ko1K 30K.

(0,0,0)

Figure 4.12: An isometric-path cover of K3[1K3[1Kj3.
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(0,0,0) (001>

Figure 4.13: An isometric-path cover of K3[JK3[JK},.

Suppose Y27 n; > 11 and the assertion holds for 375 n/ < 377 | n;. We shall
consider the following cases.

For the case when there is some 4, say ¢ = 3, such that ng > 7 or ng = 6 with all
n; > 3, we have ip(K,,0K,,0K,,) < ip(K,,0K,,0K,) + ip(K,,0K,,0K,,_4) <
[rugad] 4 [unalia=tl] _ [mimns).

For the case when some n;, say ngs, is equal to 4, we may assume n; > ns and
so ny > 4. Then ip(K,,0K,,0K,) < ip(K;OK,,00K,) + ip(K,, 0K,,0K,) =
[2mat] 4 [(u=Bnad] _ [mamm ]

There are 6 remaining cases.— The:following isometric-path covers prove the

assertion for KolIK3[Kg, Ko1K O K5and K3UKsOK 5, respectively:

62,3,6 = C;,3,3U{(070a4>(0707 3)(17073
(0,2,3)(0,2,5)(1;2,5

—
ZE

0,00)  (0,0,1) (002) (003) T004) (005)

Figure 4.14: An isometric-path cover of Ky[JK3[1Kj.

{( ,1)( ,4,0)( ,3,0)(1,3,0), (1,4,0)(1,4,1)(1,3,1)(0,3,1),
(0,4,3)(0,4,2)(0,3,2)(1,3,2), (1,4,2)(1,4,3)(1,3,3)(0,3,3),
(1,0,3)(1,0,4)(1,4,4), (0,4,4)(0,3,4)(1,3,4)};
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(0,0,0)

Figure 4.15: An isometric-path cover of Ko[JK5[K.

(0,0,0)

Figure 4.16: An isometric-path cover of K3[K5[K5.

The other 3 cases follows from the following inequalities:

OK;0K,)

(K3

p

i

<

)

ip(KsOK;0Ks5) < ip(K;OKs0OK3)+ip(KsOKs0OK,) < 19+13

lp(K3|:|K3|:|K5

32.
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Chapter 5

Conclusion

This thesis studies three problems on vertex partition/cover: the path-partition prob-
lem, the induced-path-partition problem and the isometric-path-cover problem. Many
of our results are solved from algorithmic points of view.

For the path-partition problem, we give an O(|V| + |E|)-time algorithm for
graphs whose blocks are complete graphs;ieycles or complete bipartite graphs.

For the induced-path-paptition-problém, we present an O(|V| + |E|)-time al-
gorithm for graphs whose blocks are complete graphs, cycles or complete bipartite
graphs. We also give a polynomial;time algorithm for cographs.

We have three results for the isometrie=path-cover problem. First, we determines
isometric-path numbers of block graphs, and also give an O(|V'|+ |E|)-time algorithm
for finding the corresponding paths. Second, we determine isometric-path numbers
of complete r-partite graphs and Hamming graphs of dimensions 2 and 3.

Although some results of the above three problems are obtained, there are still
many questions remain open. We describe below some of them that we concern most.

In Chapter 2, we use the tree structure to obtain an algorithm for the path-
partition problem on graphs whose blocks are handleable. A nature question is that
can we extend our result to graphs with small separator structure.

For the induced-path numbers, Alsardary [3] gave an upper bound on hyper-

cubes. It is our hope to determine the exact values of them. It is also interesting to
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characterize graphs whose path-partition numbers are equal to induced-path numbers.

For the isometric-path-cover problem, a first question that we can not answer
is that whether the isometric-path-cover problem is NP-complete or not. We are
also interested in finding an efficient algorithm on threshold graphs. Fitzpatrick et al.
[19] gave an upper bound of isometric-path numbers on hypercubes. Can we find the
exact values of them? We also study the isometric-path numbers on d-dimensional
Hamming graphs for d = 2 and 3. Can we determine the isometric-path numbers for
Hamming graphs with a general dimension d? It is also interesting to characterize
graphs whose cop-numbers are equal to isometric-path numbers. Finally, it is our

hope to study approximation algorithms for the above problem.
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