
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

180

N 16U _0
x
c& 150 -

w

140

z

120

110

Fig. 6.

than 5
down ti
incurre
decrem
perfect
can be
be used
for that

Hum

Thus implementation of implicit communication within human-
computer systems need not require the development and use of
complex all-encompassing models of human performance. This
work also demonstrates the need to define efficient dialog styles
for systems employing explicit communication between human
and computer decision makers in multiple-task time-constrained
situations. It thus serves as a basis for research in model, al-
gorithm, and dialog design to increase human-computer system
performance and to utilize computers within these systems in a
manner more compatible with the human's capabilities.

REFERENCES
a bi cU [1] W. B. Rouse, "Human-computer interaction in multiple task situations,"
0A3 S COST IEEE Trans. Syst., Man, Cybern., vol. SMC-5, pp. 384-392, 1977.
04 S COST [2] ,"Human-computer interaction in the control of dynamic systems,"
*5 S COST ACM Computing Surveys, vol. 13, pp. 71-99, 1981.

[3] , "Human interaction with an intelligent computer in multi-task
l I i situations," in Proc. 1lth Annu. Conf. Manual Control, NASA-Ames

I2 3 4 5 6 7 8 9 10 Research Center, NASA TM X-62, 464, 1975, pp. 130-143.[4] J. S. Greenstein, "The use of models of human decision making to

SUBSYSTEM NUMBER enhance human-computer interaction," in Proc. 1980 IEEE Int. Conf.
Cybernetics and Society, 1980, pp. 968-970.

Total down time for each subsystem for different costs of explicit [5] M. K. Tulga and T. B. Sheridan, "Dynamic decisions and workload in
communication. multi-task supervisory control," IEEE Trans. Syst., Man, Cybern., vol.

SMC-10, pp. 217-231,1980.
[6] J. S. Greenstein and W. B. Rouse, "A model of human decisionmaking

s would cause explicit communication to result in larger in multiple process monitoring situations," IEEE Trans. Syst., Man,
imes than implicit communication. Thus the time penalties Cybern., vol. SMC-12, pp. 182-193, 1982.
d by explicit communication can offset the performance [71 K. R. Pattipati, D. L. Kleinman, and A. R. Ephrath, "A dynamic

ent expected froimp.citcommunication usingandecision model of human task selection performance," IEEE Trans.ent expected from implicit communication using an im- Syst., Man, Cybern., vol. SMC-13, pp. 145-166,1983.
model. If the time penalties and degree of model validity [8] J. S. Greenstein and M. E. Revesman, "Development and validation of a
quantified for a given application, simulation analyses can mathematical model of human decisionmaking for human-computer
I to determine the most efficient communication technique communication," IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp.

t application. ~~~~~~~~~~~~148-154, 1986.
t application. [91 M. E. Revesman and J. S. Greenstein, "Application of a mathematical

model of human decisionmaking for human-computer communication,"
IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp. 142-147,1986.

DISCUSSION [10] J. S. Greenstein and S. T. Lam, "An experimental study of dialogue-based
communication for dynamic human-computer task allocation," Int. J.tan-computer commumcation is a critical design issue for Man-Mach. Studies, vol. 23, pp. 605-621, 1985.

human-computer systems which employ dynamic task allo-
cation. Communication of the human's action plan to the com-
puter can be achieved by explicit or implicit means. Appropriate
use of these means of communication and of the information
communicated improves system performance.
The results of the first study indicate that the use of a model to

convey the human's action plan to the computer implicitly can
significantly enhance performance, even when the model is im-
perfect. This occurs because less conflict and redundancy is
present; the computer is better able to select its own actions to
complement the actions of the human. The availability of a
model of the human is not sufficient for successful implementa-
tion of such a system, however. An appropriate algorithm for
employment of the model must also be developed. A poor choice
of algorithm can lead to poorer performance than that obtained
with no communication at all.
The results of the second simulation indicate that the time cost

of explicit communication can be traded against the misinforma-
tion cost of implicit communication using an imperfect model.
Situations are likely to arise in which employment of one or the
other technique is advantageous. If the time costs of explicit
communication and the predictive validity of candidate models
can be quantified for a given application, the simulation method-
ology utilized in this correspondence offers a means to determine
effective communication subsystems for human-computer inter-
action.

This work demonstrates the need for models of human de-
cisionmaking performance and algorithms which describe how to
use such models effectively. Given an appropriate algorithm for
use of the model, implicit communication based upon a model
achieving quite modest levels of predictive validity can enhance
system performance relative to a no-communication baseline.

Adaptive Navigation of Automated Vehicles by Image
Analysis Techniques

WEN-HSIANG TSAI AND YUNG-CHO CHEN

Abstract-Image analysis techniques are applied to adaptive automatic
vehicle navigation. The proposed image-based navigation system is made
adaptive to follow any selected path embedded in a curve-type path
network. This is achieved with three major capabilities of the proposed
system: path network learning, reference path setup, and guided path
navigation. The first capability enables the system to extract relevant
information out of a given network map, and the second collects along-path
reference data for a selected path from the extracted network information.
During guided path navigation, consecutive path images are taken by a

television camera on the vehicle and then analyzed for navigation control
along path curves and for angular turning at path crossings. The control
structure of the automatic navigation process is modelled as a Moore-type
sequential machine in automata theory. Correct path navigation is ascer-

tained by verifying each path crossing encountered on the road against the

Manuscript received August 15, 1985; revised April 19, 1986.
W. H. Tsai is with the Department of Information Science and the Micro-

electronics and Information Science and Technology Research Center, Na-
tional Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China.
Y. C. Chen was with the Institute of Computer Engineering, National Chiao

Tung University, Hsinchu, Taiwan 30050, Republic of China. He is now with
the Institute of Information Industry, Taipei, Taiwan, Republic of China.
IEEE Log Number 8609833.

0018-9472/86/0900-0730$01.00 ©1986 IEEE

730

IEEE TRANSACTIONS ON SYSIEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTDiBER/OCTOBER 1986

reference data by an image matching technique. Simulation of vehicle
movement vith a computer-controlled pantilt is also described. Simulation
results show the feasibility of the proposed approach.

I. INTRODUCnON
The study of automaticaly guided vehicles has received consid-

erable attention recently because of their potential applicability
in several domains. Such vehicles are suggested to solve partially
the increasingly complex modem transportation problems [1]-[3].
They can be used in automated warehouses for inventory control.
In robotics, they serve as the legs of robots [4]. They are also
applicable in pilotless aero-navigation.
A central issue of automated vehicle systems is to guide an

individual vehicle to foUow a desired or preselected path [5], [6].
In conventional reference systems, guidance signals are obtained
either from mechanical wall folowers [7] or from embedded
current-excited wires [8]. Recently, sidewaUs or guardrails have
also been proposed as a new type of reference systems for vehicle
control by radar or ultrasonic signals [9], [10].
With the advance of optical sensing and computer vision

technology, it now becomes feasible to use low-cost optical
sensors such as video cameras for automated vehicle guidance.
This approach has been employed in ground vehicle guidance to
avoid path obstacles [4], [11]-[13]. We present another applica-
tion of this approach to automatic vehicle navigation to follow a
preselected path. The reference on the path, from which guidance
signals can be obtained, is any line or curve opticaly detectable
with a video camera. In present-day roads and highways, painted
stripes on the two sides of a traffic lane serve as such reference.
For a vehicle or aircraft flying at a reasonable height from the
ground, highways themselves may be used as the reference.
However, the proposed automatic navigation by curve-type refer-
ence paths seems most applicable in indoor environments in
which curve stripes may be painted either on the floor or on the
ceiling. Typical examples of such environments are large
warehouses or buildings. Thus the proposed approach will be
particularly useful for warehouse or indoor transportation auto-
mation.
For automated vehicles to be more useful in real-world appli-

cations, they should be provided with the capability of navigating
in a path network, instead of just along a single route. This
makes flexible path scheduling and automatic path planning
possible. To accomplish this goal, the navigation capability should
include not only smooth following of path curves but also angu-
lar turning at path crossings. It is also desirable to make the
vehicle capable of recognizing all the crossings expected during a
navigation session.
To this end, a navigation control scheme, which includes both

the path-turning and the crossing-recognition capabilities, is pro-
posed here. The scheme is based on image analysis techniques. In
addition, the navigation system is also made capable of extract-
ing the information contained in any path network expected to
be visited, as weUl as the information contained in any selected
navigation path. With these capabilities, the system may be said
to possess adaptive navigation functions and can traverse differ-
ent paths in any given network, just like today's manually driven
cars.

In short, three types of navigation capabilities can be identified
in the proposed automated vehicle system, namely, path network
learning, reference path setup, and guided path navigation. Each
capability is built up by performing several basic steps as il-
lustrated in Fig. 1.

A. Path Network Learning
The first step in network learning is network image segmenta-

tion. To concentrate on the study of navigation control, only
simulated network maps with hand-drawn curves are imaged and
processed. However, it should be noted that hand-drawn network
maps with relative scaling identical to real networks are adequate

Fig. 1. System configuration of proposed adaptive automatic navigation
system.

(a)

(b)
Fig. 2. Network path segmentation. (a) Image of hand-drawn path network.
(b) Segmented path network from Fig. 2(a) after image thresholding and
curve thinning.

for indoor applications, where curve stripes are painted on floors
or ceilings as reference paths. For example, Fig. 2(a) is a network
map image, and Fig. 2(b) shows the segmented network paths
after image thresholding and curve thinning techniques are ap-
plied [15].
The next step is to extract useful path information for guided

path navigation, including lengths, directions, and interconnec-
tion structures of the path curves in the network. Such informa-
tion is organized systematically into a network database for
efficient information retrieval during reference path setup.

731

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

(a)

(b)

Fig. 3. Reference path selection. (a) Labelled path network of Fig. 2(b)
displayed on television monitor with alphabets at all crossing and terminal
points. (b) Redisplay of path network with selected reference path repre-
sented by label sequence SPKJLM.

B. Reference Path Setup
To facilitate user interaction with the system during reference

path setup, the system first displays the whole segmented path
network as a picture on a television monitor. All path crossing
points (on the ends of path segments) are given different al-
phabets for identification. Fig. 3(a) shows such a picture corre-

sponding to Fig. 2(b). A user can then arbitrarily select a refer-
ence path by specifying a sequence of alphabets, each repre-
senting a crossing or terminal point along the path. For example,
with SPKJLM as the selected path, the corresponding picture
returned by the system is shown in Fig. 3(b).
The next step is to extract all the along-path information out

of the network database according to the selected path points.
The procedure essentially is to trace the selected path through the
database and collect useful information in the mean time. The
details will be described in Section III. The collected information
is organized as a reference path database or simply reference data.

C. Guided Path Navigation
The basic idea of image-based guided navigation is to take an

image of the current vehicle location, extract relevant local infor-
mation from the image, and then match the result with the
reference data to generate an error signal for navigation direction
correction. It will be shown in the next section that this process
can be modeled as a Moore sequential machine in finite au-

tomata theory [16].
To start a guided navigation session, the proposed approach

requires that the vehicle be brought as close to the starting point
as possible. The control state and a set of navigation parameters

are also initialized. The system then performs input scene classifi-
cation at each visited spot by matching the input local image with
the reference data to determine what type of scene is being
observed locally. Based on the classified input and the current
control state, the system enters another state and generates an
error signal for direction change in the next step.

Lacking a vehicle for actual field testing, only the design
principle of the control structure and the image processing tech-
niques for automatic navigation are emphasized in this study.
However, the proposed system has been simulated with a televi-
sion camera and a pantilt, both controlled by a multiprocessor
system [14]. The simulation result is very encouraging. Moreover,
the system is designed in such a way that the interface between
the image-based control and the physical vehicle is kept mini-
mum. Therefore, the simulation setup is believed to be easily
adaptable to real applications.

In the remainder of this work, the Moore machine model for
system control is presented in Section II. In Section III, path
network and reference path information extraction is described.
Detailed image processing techniques used in the basic control
steps are described in Section IV. Simulation results and discus-
sions are included in Section V.

II. FINITE-AUTOMATA MODEL FOR IMAGE-BASED GUIDED
PATH NAVIGATION

A Moore sequential machine determines its next state and its
output by its input and its current state, respectively. This is
found useful for modeling the control structure of the proposed
system. To facilitate the discussions in the sequel, some graph-
theoretic terminologies are defined here. With a path network
regarded as a graph, a terminal or crossing point is just a node in
the graph. More specifically, a terminal point will be called a
terminal node, and a crossing point a nonterminal node. On the
other hand, the path (line or curve) segment between two nodes
will be called an edge. Thus, a terminal node is one with only one
incident edge, and a nonterminal node one with more than two
incident edges. Note that a node with two incident edges is not
considered to exist in a network graph here; it is simply regarded
as a path point on an edge in this study. Finally, the two nodes
incident to an edge will be called the end nodes of the edge. In
the following, the camera's field of view will be called the image
window.

A. Control States of Finite-Automata Model
When a vehicle is traversing a path embedded in a network, at

least five situations may be identified according to what is " seen"
in an image window:

1) the vehicle is moving along an edge;
2) the vehicle has arrived at a non-destination node (called the

expected node) which is expected to be visited;
3) the vehicle is leaving a node (called the old node) just

visited in the previous control steps;
4) the vehicle has arrived at a destination node; and
5) the vehicle has arrived at a non-identifiable node or a

location without any edge or node in the window.

As an illustration, let Fig. 4(a) be a path network with the three
labelled nodes A, B, C as a selected reference path. The above
five situations are shown in Fig. 4(b)-(f), respectively, in which
dotted squares are image windows. Each of the above five situa-
tions may be considered as a control state for the finite automata
model. They will be denoted symbolically in the following discus-
sions as 1) TAE (traverse along an edge), 2) REN (reach the
expected node), 3) LON (leave the old node), 4) RDN (reach the
destination node), and 5) RUN (reach unidentified node), respec-
tively. Situation 3) (i.e., LON) is possible when image taking rate
is high enough. That is, a node may be seen more than once
through the image window before the vehicle completely passes
it. Several cases may cause situation 5) (i.e., RUN) to occur: a) the

732

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Illustration of control states corresponding to input scenes.
(a) Small network with reference path ABC. (b) Moving along an edge. (c)
Arrive at expected node. (d) Leaving old node. (e) Arrive at destination node.
(f) Arrive at nonidentifiable node.

vehicle goes astray to a node not along the selected path as in the
case shown by Fig. 4(f); b) the path network map, and so the
reference data, does not include all physically existing nodes
along the selected path; c) image noise causes an irreal node to
appear in the image window after image processing; and d) the
vehicle goes astray laterally so far from its path that no path edge
or node can be found in the image window.

Finally, two system parameters are mentioned here, which will
be used later in this section for determining state transition for
the finite-automata model. One is the length I for which the
vehicle has moved along the edge currently being traversed
(called the current edge), measured from the old node. Another is
just the total length L of the current edge.

B. State Responses of Finite-Automata Model

Once the vehicle enters a control state, its response to the state
is automatic and fixed, as described in the following.

1) In the TAE state, the response is to move further along the
current edge in a direction determined by the current vehicle
center and the next edge point to be visited.

2) In the REN state, the response is to move to the next edge
which the vehicle should turn to at the expected node just
reached. The move direction is determined by the current vehicle
center and an edge point to be visited on the next edge.

3) In the LON state, the response is also to move further on the
current edge in a direction determined similarly to 1).

4) In the RDN state, the response is simply to stop the naviga-
tion.

5) In the RUN state, the response is also to stop.
It seems that the response of 3) is identical to that of 1), but

actually it is not. To move further on the current edge, which
edge in the window is the current one should be determined first
because in the LON state, several edges incident to the old node
appear in the image window (see Fig. 4(d) for an example).
Similar edge identification is also found necessary for the re-
sponse of 2) in order to choose the next edge to turn to from the
several ones appearing in the window (e.g., see Fig. 4(c)). The

details in terms of image processing techniques will be described
in Section IV. The above five responses will be symbolically
denoted as MFCE (move further on the current edge), TTNE (turn
to the next edge), MFON (move further near the old node), and
STOP (stop) for 4) and 5) above, respectively.

C. System Inputs to Finite-Automata Model
Input scene classification is required to determine the type of

scene at the spot currently being visited. A classification al-
gorithm is present here. Graphically, only three types of scene are
seen in an image window, i.e., nothing, a node, or an edge. But
for the case of a node, it may be the expected node, the old node,
the destination node, or an erroneous or nonidentifiable node.
Therefore, totally five types of input scene can be identified with
one erroneous type including the cases of nothing and non-iden-
tifiable nodes. The classification algorithm assigns an input image
window to one of these five types, based on three sources of
information: a) system parameters / and L; b) local reference
information about the old node and the expected node; and c)
whether the expected node is the destination. All the information
except I is part of the reference data.

First, the ratio r = l/L provides some information to check if
the input scene is consistent with what is expected according to
the reference data. Suppose that a node, say N, is found in the
image window now. If the current value of 1 is approximately
equal to L (i.e., r = 1), then at least it can be sure that the
appearance of N is not inconsistent with the reference data
(which includes the current edge and its length L). But this
traverse-distance check, according to I and L, is not adequate to
assure that N is indeed the correct node to be visited next
because the vehicle might have erroneously navigated to an
unexpected edge and reached a node N' at a distance also
approximately equal to L from the old node. In other words, N
and N' are non-distinguishable simply by the ratio r.
Hence a further check, called node scene matching, is per-

formed in the classification procedure, using the second informa-
tion source: the local reference information about the expected
node. The details will be described in Section IV-B. Briefly
speaking, the check is to find out whether the number of incident
edges and the angles between edge pairs included in the input
scene are all similar to those of the reference data. On the
contrary, when r is approximately zero, i.e., when I is small
compared with L, the node N found in the window is very
possibly the old node because the vehicle is still very close to the
old node. But to be sure, node scene matching again has to be
performed to check the similarity of N to the old node. Failure
of traverse-distance check or node scene matching (henceforth
called node consistency check) means that the input window
contains a nonidentifiable node.
When an input scene passes node consistency check, one more

check according to the third information source above is per-
formed to see if it is the destination node. The flow diagram
shown in Fig. 5 gives a summary of the above discussions on
input scene classification, where thresholds t1 through t4 are
constrained by the following inequalities and are determined by
experiments:

tl 6 t2 < t3 6 t4; tl 6 0 ; t4 1> 1.
The result of input scene classification is a type label assigned to
the input window. The five type labels are EDGE (edge), EXP NODE
(expected node), OLD NODE (old node), DEST NODE (destination
node), and ERROR (error).

D. State Transition of Finite-Automata Model
With previous discussions on system states, responses, and

inputs, it is now ready to describe the most essential part of the
proposed finite automata model, namely, its state transition.

Initially, the start point of the vehicle may be regarded as the
old node. Thus the initial state of the system is LON. Two final
states are RDN and RUN. Once the vehicle is in either of them,

733

734 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

Extracted
window scene

S to)

Fig. 5. Input scene classification procedure (note: r = I/L).

r.xr
NODE

/ DEST
NODE

OLD
NODE,

Fig. 6. State transition diagram of Moore-machine model for guided path navigation.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

i=EDGB i=EXP NODE i-OLD NODE i=F-,RROR i=DEST NODE

s÷TA s -R REN s+LONLONDN S RDN

r -MGE r - TTNE r -NFMFON r STOP

End

Fig. 7. Guided path navigation procedure based on state transition of Fig. 6 (s c state, i = input, r = response).

navigation is stopped. The overall state transition diagram is
shown in Fig. 6 in which the initial state is marked with the
"start" label and the final states are double circled. The diagram
seems complicated but is really not. Briefly speaking, in each of
the three nonfinal states TAE, REN, and LON the five types of
inputs, EDGE, EXP NODE, OLD NODE, DEST NODE, and ERROR, bring
the system to enter the five control states, TAE, REN, LON, RDN,
and RUN, respectively, except that the input OLD NODE causes the
TAE state to transit into the erroneous RUN state. The reason for
the exception is that once the vehicle leaves an old node and is
moving along an edge (i.e., in the TAE state), it will never
backward to visit the old node again. A block diagram illustrat-
ing the sequential steps of the guided path navigation based on

the state-transition diagram is shown in Fig. 7. For example, for
the consecutive input image windows shown in Fig. 4(b)-(f), the
sequences of system states, responses, and inputs, respectively,
are as follows (assuming that TAE is the current state and that
Fig. 4(b) is the input image window seen after the response to the
current state MFCE iS completed):

1) input sequence: EDGE, EXP NODE, OLD NODE, DEST NODE;
2) state sequence: TAE, REN, LON, RDN;
3) response sequence: MFCE, TTNE, MFON, STOP.

III. EXTRACTION AND ORGANIZATION OF PATH
NETWORK AND REFERENCE PATH INFORMATION

In this section, we describe the method we use for organizing
path network and reference path information, as well as the
procedures for extracting these two types of information. In the
following, an edge with two end nodes i and j will be denoted as
(i,).

A. Path Network Information Extraction and Organization
In the network database, an entry is created for each node or

edge in the network. The entry for each node a contains the

number Na of the incident edges of a, and the image coordinates
Xa and Ya of a. In addition, a direction list La is created for a,
which includes the directions of all the incident edges of a. The
entry for each edge (i, j) contains the length L(i, j) of the edge.
The input to the network information extraction procedure is a

graph of interconnected curve segments whose widths are one
point in each direction. The first step is to collect nodes, includ-
ing terminal and nonterminal ones, by checking the curve points
one by one. All nodes thus collected, together with their attri-
butes, are stored into a set of node entries. The next step in the
extraction procedure is to trace all edges, starting from the
collected nodes. For each node a, tracing begins from a neigh-
boring point i of a, and then a neighboring point j of i, and so
on, until a node, say b, is found. This completes the tracing of
edge (a, b). The tracing process then continues from another
neighboring point of a which leads to another incident edge of
a, and then again from the third neighboring point, and so on,
until all incident edges of a are traced. The whole process above
is repeated next for another node until all nodes are processed.
All node and edge attributes are also computed in the process.
The final result will be a complete network database.

B. Reference Path Information Extraction and Organization
The information of a reference path is specified by a sequential

list of entries, with each entry being created for a node encoun-
tered along the path. The entry for each node a contains 1) the
number Na of the incident edges of a; 2) the angle T(c, b) to
turn at node a (called the turning angle) from the "incoming"
incident edge (c, a) to the "outgoing" edge (a, b); 3) the length
L(c, a) of the incoming edge (c, a); and 4) a list Aa of angle
entries. Each angle entry in Aa contains the mutual angle be-
tween a pair of "neighboring" edges of a. Here by an "incoming"
edge (i, j) in a reference path, we mean the incident edge of node
j along which j can be reached. An outgoing edge is similarly
defined. And by two neighboring edges, we mean, e.g., the edges

735

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

(B, E) and (B, C) in Fig. 4(a). Edges (B, E) and (B, D), on the
contrary, are not neighboring. The angles in each angle list are
computed and arranged in a special order in the extraction
procedure of the reference data described next. Note that the
above information for the reference path is just a subset of that
for the network except that direction lists are replaced by angle
lists. Angle lists are required here for the purpose of making node
scene matching rotation-free.
The input to the reference path information extraction proce-

dure, as mentioned previously, is a node-label sequence repre-
senting the selected reference path. The sequential list of entries,
which forms the reference path, can be collected easily by tracing
through the path nodes one by one in the network database,
excepted that a direction list, instead of an- angle list, is collected
for each node now. The direction list collected for each node is
then transformed into a corresponding angle list as described in
the following.

Let D1, D.,. *, D,,, be the directions of all the incident edges
of node a. The transformation begins by sorting all Di values
into order. Let D, DI, D,D be the result with D' being the
smallest. Since all direction values are measured with respect to a
reference direction, it is easy to figure out that Di and D'+1 are
the directions of two neighboring edges, and their mutual angle,
denoted as Ai, can be computed according to the following two
equations:

Ai = D'+,-Di
Am = (3600 + Dj)-Dm , for 1 < i < m -1.

Let the direction of the incoming edge of a be D''. Then, the Ai
values are re-indexed in such a way that the one with value
Aj = DJ-+1-DJ' is the new A1, followed by others in the counter-
clockwise order as the new A2,A3,. -, Am. Each Ai will be
called an interedge angle in the following discussions. These Ai
values form the angle list of node a, with A1 as the first entry in
the list.

IV. IMAGE PROCESSING TECHNIQUES FOR GUIDED PATH
NAVIGATION

In this section, we discuss the image processing techniques
used in the basic control steps of guided path n

Fig. 8. Example of input window.

a-"- (expectedD 1Df I node)
(last step)

I (

(a)

(c)

(b)

(d)

Fig. 9. Incoming/outgoing edge determination in input window.
(a) Case 1: incoming edge is edge with its direction Di closest to -D>. (b)
Case 2: incoming edge is edge with its direction Di closest to D - T. (c)
Case 3: outgoing edge is edge with its direction Do closest to Df. 4) Case 4:
outgoing edge is edge with its direction Do closest to - Df + Te.

A. Input Image Processing
The procedure to process an input image window basically is

identical to that for path network learning, including curve
segmentation (by thresholding and thinning) and window infor-
mation extraction (by node collection, edge tracing, and attribute
computation). Extracted window information includes a node
entry and a list of incident edge directions. Such information is
the window data. An edge or a node found in the input image
window is the input edge or node. An example of input window
is shown in Fig. 8.
A basic operation which is necessary in most of the control

steps described subsequently is the decision on which edge in the
input window is the incoming edge or the outgoing edge. There
are four distinct cases which should be considered.

Case 1: Determine which input edge is the incoming edge
along which the vehicle was approaching an expected node in the
last control step (see Fig. 9(a)).

Case 2: Determine which input edge was the incoming edge
while the vehicle was leaving an old node along the outgoing edge
in the last control step (see Fig. 9(b)).

Case 3: Determine which input edge is the outgoing edge along
which the vehicle was leaving an old node in the last control step
(see Fig. 9(c)).

Case 4: Determine which input edge is the outgoing edge while
the vehicle was approaching an expected node in the last control
step (Fig 9(d)).
One solution to the problem of Case 1 is to compare one by

one all the input edge directions with the navigation direction Df

of the last control step and choose the input edge with its
direction Di closest to the opposite of Df as the incoming edge.
Note that Df is one of the system parameter available and is
updated in every control step. It is defined as the direction of the
tangent to the edge portion currently being visited by the vehicle.
A similar technique can be adopted for Case 2 above, using the

turning angle Te at the old node and the last navigation direction
Df. Actually, since Df is approximately equal to the direction Do
of the outgoing edge, the incoming edge can be chosen as the
input edge with its direction Di closest to D - Te, as illustrated
in Fig. 9(b). Cases 3 and, 4 can be solved similarly to Cases 1 and
2, respectively. The details are omitted here.

B. Node Scene Matching
The procedure for node scene matching is shown in Fig. 10,

which, as mentioned previously, includes two distinct types of
consistency checks. The first is about the consistency of incident
edge numbers, and the second about the consistency of interedge
angles. To complete the second check, the system performs the
following steps.

Step 1: Transform the direction list of the input node in the
window data into a corresponding interedge angle list.

Step 2: Find corresponding interedge angle pairs, each pair
consisting of an interedge angle of the input node and a corre-
sponding one of the expected or the old node.

Step 3: Measure the similarity of all corresponding interedge
angle pairs according to a mismatch measure, and then decide if
the input node matches the reference data.

736

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1985

WVindow data and reference
data of expected or old node

M atching i
fails Matcching s ucceeds

Fig. 10. Flowchart of node scene matching procedure.

The first step can be accomplished in the same way as used for
setting up the angle lists in the reference data (see Section III-B)
except that the final operation to re-index the computed angles is
not executed because the incoming edge in the window is un-
known yet. To perform the second step, we first determine which
edge in the window is the incoming edge (see Section IV-A).
Re-indexing of computed interedge angles for the input window
is then performed in the same way as mentioned in Section III-B.
Finally, we pair up all interedge angles in the input window with
those in the reference data. This completes the second step above.
The mismatch measure d proposed for step 3 is defined as the

sum of all the differences between the interedge angle pairs, or

m

d= EjAt-Al
i=l1

where Al and A' are two corresponding angles paired up in step
2. The consistency check of interedge angles is passed if d is less
than a preselected threshold t. If the input is just a terminal
node, then the consistency check of interedge angles is ignored.

C. System Initialization and System Parameters

In the system initialization procedure, an image window is first
taken, path curves are then extracted, and the start point is
searched. The image processing techniques used are similar to
those for network processing. The incident edge of the start point
is then traced and approximated as a straight line. Its direction
Do is also computed. The final step is to initialize a set of system
parameters described as follows which are updated whenever the
system states are changed.

1) Navigation directions Df: Initialized as D,
2) Old node No: Initialized as the start point in the reference

data.
3) Expected node Ne: Initialized as the next node to be visited.
4) Control state s: Initialized as LON, i.e., leaving the old node

that is the start point.
5) Navigation length on current edge 1: Initialized as 0.

Fig. 11. Input window for illustration of MFCE response.

With the old and the expected nodes specified, the following
items in the reference data can be retrieved, which should also be
considered as system parameters. Assume that a denotes the
starting point (i.e., the old node) and b, the expected node.

6) Total length of the current edge L: Initialized as the value
L(a, b) in the node entry of b, which is the distance for the
vehicle to travel from the old node to the expected node.

7) Turning angle To at the old node: No initial value.
8) Turning angle Te at the expected node: Initialized as the

value T(a, c) in the node entry of b, where c is the third node to
be visited in the reference path.

9) Interedge angles of the expected node: Initialized as those
contained in the angle list of b.

10) Numbers of incident edges of the old and the expected nodes,
respectively: Initialized as the corresponding numbers contained
in the node entries of a and b, respectively.

All the above parameters are used in input scene classification,
especially in node scene matching, except the control state s
which is used for state transition.

D. Response MFCE-Moving Further on Current Edge
MFCE iS the response to the TAE (traversing along an edge)

state. Shown in Fig. 11 is a typical image window "seen" on the
vehicle through the camera when the vehicle is in the TAE state.
The first step of the MFCE response is to find the edge point P
nearest to the window center X. X should be on the current edge
(i.e., P is identical to X), if the vehicle always navigates on the
path without going astray laterally. But in real navigation, this is
seldom the case. The remaining steps of MFCE iS just to find a
point N on the current edge for the vehicle to move ahead to in
the next control step. N should be on the forward direction of
navigation with respect to P on the current edge. To find N, two
neighboring edge points B and F of P are retrieved from the
image data, and their directions with respect to P is computed.
The one, say F, with its direction closer to the last navigation
direction Df is selected. Now, N can be found by tracing the
current edge from P through F until a point at a distance of a
fixed number of points from P is reached, which is then selected
as the desired point N. The direction D of N with respect to X,
the vehicle center, is finally computed and used for correction of
the vehicular navigation direction. Let D' be the vehicular navi-
gation direction of the last control step. Then the error signal AD
for vehicular direction change is just the difference between D
and D'. On the other hand, the new navigation direction Df of
the control system is updated as the direction of N with respect
to its preceding edge point. Df and D should not be confused.
The latter is used for guiding the navigation of the physical
vehicle while the former is used for input scene classification.

E. Response TTNE- Turning to New Edge
Fig. 12 illustrates the following. Assume that a is the input

node around which the edge turning is to be made. The first step
is to identify the incoming edge and the outgoing edge in the
input window (see Section IV-A). We can then ignore all the

737

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

Fig. 12. Image window for illustration of TTNE response at expected node.

Fig. 13. Image window for illustration of MFON response at old node.

Stop

Fig. 14. Steps of three types of response MFCE, TTNE, and MFON (CE = current

edge).

other incident edges and connect the incoming and the outgoing
edges as a single edge. What remains to do in TTNE now is
identical to the response steps of MFCE described in the previous
section except that the selected next point N to move to may fall
on the incoming edge or on the outgoing edge.

F. Response MFON-Moving Further Near Old Node

MFON is the response to the LON state in which the old node is
" seen" again in the input window, although the vehicle is already
traversing along the outgoing edge. The first step is to identify
the outgoing edge in the window (see Section IV-A and Fig. 13).

A special case here is the first MFON response to the system
initial LON state, in which the old node identified in input scene
classification is just the start point with only one incident edge.
In such a case, the incident edge is directly regarded as the
outgoing edge. After the outgoing edge is identified and regarded
as the current edge, all remaining steps are identical to those
performed in the response of MFCE. We mention here that the
system state is updated immediately after an input scene is
classified. As a summary of the three types of response described
in this and in the last sections, a flowchart of the response steps
is included in Fig. 14, which emphasizes the overlapped steps in
the three types of response.

V. SIMULATION RESULTS AND DISCUSSIONS
The configuration of the hardware system which has been set

up for simulation is shown in Fig. 15, including a pantilt, a
television monitor, and a television camera mounted on the
pantilt, all connected to and controlled by a multi-micro-
processor system [14]. A hand-drawn curve-type network map is
hung on a wall far away enough from the pantilt-camera set to
avoid perspective effect on image taking. This configuration
simulates indoor ground navigation with the network painted on
a high ceiling or aero-navigation with the paths on the ground.
To facilitate pantilt control, extensive data measurement has

been performed to set up a piecewise linear model that expresses
the relationship between control time and pantilt move distance
[18]. Based on this model, the pantilt can be moved for any
desired distance after being triggered for a corresponding amount
of time, via the use of a self-constructed control interface.
During the learning stage of the simulation, the camera zoom

is adjusted in such a way that the whole network map can be
included within the camera's field of view. Fig. 2(a) shows one of
such images. During the navigation stage, the camera zoom is
readjusted so that only a small portion of the map can be seen
within the view. This simulates the availability of local scenes to
the system during the along-path navigation.

Since the image scales of an identical scene are different under
different camera zooms, the lengths computed for the image
taken with one zoom must be converted into corresponding
lengths for the image taken with another zoom. This is required
to make scale-free matching in scene classification as well as
scale-free distance computation for system parameter updating.
The method used in this study is to measure the areas A1 and A2
of a fixed-size block square imaged with two different zooms, and
use the following equality for length conversion:

L2 = L1*(A21A1)
which is based on the triangulation principle that the area ratio is
equal to the square of the length ratio. In real applications,
square-area measurement might be impractical, but a similar
length conversion equation will be required for scale adjustment.
As a simulation example, with the path network as shown in

Fig. 2 and the selected path as shown in Fig. 4 which are the
results of the network learming stage and the reference path setup
stage, respectively, the consecutive image windows taken during
the navigation session are shown in Fig. 16. The plus sign at the
center of each window represents the vehicle center, and the x
represents the next edge point (denoted as N previously) to move
toward in the next step. In Fig. 17, we mark down all the vehicle
center locations with a plus sign and all the next edge points with
a square on the network map. As can be seen, though the vehicle
goes astray from the path edges at the end of most control steps,
the selected path is followed to its end successfully. This means
that image-based navigation control of the simulated vehicular
movement by the pantilt is quite effective, and edge turnings
supported by node scene matchings are also feasible.

In the simulation, at the end of each control step, to avoid
taking blurred images, the pantilt is controlled to stop a little
while for image taking. The pantilt is held still afterward until
image analysis is completed and proper decision made. Each

738

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

TV monitor

Panti it

Fig. 15. Simulation system configuration.

-I.
..

... ..+
,. ..

I'

(a)

,.- ..
... .. h

.1
(e)

(i)

i.n
11 -.

I

(m)

(b)

'I.

,- 1.,

(D)

......_

.1 ...

%. t }

L-_,

(c) (d)

-i

(g)

...
.; ..

()

i'

(h)

).....
: s.,

(1)

':_..3.J,

(n) (o)

control step takes time about three seconds. For real applica-
tions, the vehicle must be allowed to continue its movement
during image taking and decision making. With no movable
vehicle available for field test, no attempt has been made on
estimating vehicle speed ranges and corresponding image sam-
pling rates for real navigation. We emphasize in this research
only the feasibility study on the application of image analysis
techniques to automatic vehicle navigation, and this is shown
possible by the simulation results as described previously.

It should be noted that several assumptions have been im-
plicitly made in the previous discussions on the characteristics of
the path network.

1) Path nodes should be spaced far enough apart so that only a
single node will appear at one time in the image window.

2) The vehicle must navigate slowly enough so that no path
node will be skipped during successive image taking.

3) The edges should be smooth enough (not wavy) so that
measured I values can be consistent with the L value in the
network database.

4) Only one edge is allowed to appear in the image window
during the TAE state.

5) The angles between edges must be large enough.
Basically, the above assumptions can be satisfied more easily if

the image window size is selected to be smaller (or equivalently, if
the network image is taken from a smaller distance) and if the
vehicle navigates more slowly.

Finally, we mention that no error recovery capability has been
included in the proposed system so far; as long as the system
enters an erroneous state, it simply stops. Actually, more intelli-
gence can be added to the system to handle some unexpected
situations. For example, if a non-identifiable node appears in the
middle of two reference nodes, the system can simply instruct the
vehicle to proceed ahead to see if the expected node can be
encountered next at the expected distance from the old node.
Moreover, if the vehicle gets lost without "seeing" any path curve
,in the window, it may try to move backward and proceed a
smaller distance from the last starting position. Additional de-
vices, such as infrared beacons, also may be used for absolute
position sensing. This makes the system more robust in error
recovery. If the navigation is performed in outdoor environments,
certain special along-path scenes, such as rivers, bridges, build-
ings, mountains, etc., may also be utilized for consistency checks.
It is also desirable to extend the system's learning capability so
that partial network maps may be learned as the vehicle explores
forward in the network.

Fig. 16. Image windows of simulated navigation session along reference path
shown in Fig. 4 selected from network shown in Fig. 2.

Fig. 17. Overview of simulated navigation session of Fig. 16. Squares denote
next edge points, and plus signs vehicle centers.

ACKNOWLEDGMENT
The authors are grateful to one of the referees for his many

useful comments on the paper, especially on the implicit assump-
tions on the path network characteristics, which led to great
improvement of the paper.

REFERENCES
[1] R. E. Plotkin, "Automation of the highways, an overview," IEEE Trans.

Veh. Technol., vol. VT-18, no. 2, pp. 77-80, Aug. 1969.
[2] R. E. Fenton et al., "Fundamental studies in automatic vehicle control,"

Transport. Control Lab., The Ohio State Univers., Columbus, OH, Sept.
1980.

[3] -, "Advances toward the automatic highway," Highway Res. Record,
Highway Research Board, no. 344, pp. 1-20, 1971.

[4] H. P. Moravec, "The Stanford cart and the CMU rover," Proc. IEEE,
vol. 71, pp. 872-884, July 1983.

[5] W. H. Cormier and R. E. Fenton, "On the steering of automated
vehicles-a velocity-adaptive controller," IEEE Trans. Veh. Technol.,
vol. VT-29, no. 4, pp. 375-385, Nov. 1980.

[61 R. E. Fenton, G. Melocik, and K. W. Olson, "On the steering of
automated vehicles-Theory and experiment," IEEE Trans. Automat.
Contr., vol. AC-21, pp. 306-315, June 1976.

[7] S. E. Shladover, "Optimal and suboptimal steering control of rubber-
tired guideway vehicles," M.S. thesis, Dept. Mech. Eng., MIT, Cam-
bridge, MA, Feb. 1974.

[8] K. W. Olson, "Wire reference configurations in vehicle lateral control,"
IEEE Trans. Veh. Technol., vol. VT-26, pp. 161-172, May 1977.

739

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-16, NO. 5, SEPTEMBER/OCTOBER 1986

[9] R. J. Mayhan and R. A. Bishel, "A two-frequency radar for vehicle
automatic lateral control," IEEE Trans. Veh. Technol., vol. VT-31, no. 1,
Feb. 1982.

[10] G. T. Clemence and G. W. Hurlbut, "The application of acoustic
ranging to the automatic control of a ground vehicle," IEEE Trans. Veh.
Technol., vol. VT-32, no. 3, Aug. 1983.

[11] D. B. Gennery, "A stereo vision system for an autonomous vehicle," in
Proc. 15th Int. Joint Conf. Artif. Intell., Aug. 1977.

[12] H. P. Moravec, "Towards automatic visual obstacle avoidance," in Proc.
15th Int. Joint Conf. Artif. Intell., Aug. 1977.

[13] S. Tsugawa et al., "An automobile with artificial intelligence," in Proc.
15th Int. Joint Conf. Artif. Intell., Aug. 1977.

[14] W. H. Tsai et al., "Architecture of a multi microprocessor system for
parallel processing of image sequences," in Proc. IEEE Computer Soc.
Workshop Computer Architecture for Patt. Anal. Image Database Mana-
gement, 1981, pp. 104-111.

[15] A. Rosenfeld and A. C.. Kak, Digital Picture Processing, vol. II. New
York: Academic, 1982.

[16] T. L. Booth, Finite Automata and Sequential Machines. New York:
Wiley, 1967.

[17] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[18] Y. C. Chen and W. H. Tsai, "Design and simulation of an image-based
system for automatic conveyance guidance," Tech. Rep., National Chiao
Tung University, Institute of Computer Eng., Hsinchu, Taiwan, R.O.C.,
June 1983 (in Chinese).

[19] A. Rosenfeld and A. C. Kak, Digital Picture Processing, vol. I. New
York: Academic, 1982.

A New Algorithm for Graph Monomorphism Based
on the Projections of the Product Graph

FOLORUNSO A. AKINNIYI, ANDREW K. C. WONG,
MEMBER, IEEE, AND DEBORAH A. STACEY

Abstract-A new algorithm is presented for detecting graph monomor-
phisms for a pair of graphs. This algorithm entails a tree search based on
the projections of the product graph called the net of the two graphs. It
uses the minimum number of neighbors of the projected graphs to detect
infeasible subtrees. The algorithm, in comparison with that of Deo and
coworkers, is more efficient in its storage space utilization and average
execution time. It does not suffer from the ambiguity which arises in Deo
et al.'s work when cyclic graphs are matched. Applications to attributed
graph monomorphisms are included.

I. INTRODUCTION
The graph monomorphism problem, also known as the sub-

graph isomorphism problem, is one which finds out whether or
not a one-to-one vertex mapping between two graphs that pre-
serve incidence relations exists. The graphs are assumed to be
finite. The formalism and terminology used are based on Berge
[3] and Ghahraman et al. [11].
Graph monomorphism has wide applications in areas such as

scene analysis, information storage and retrieval, chemical docu-
mentation, and network analysis. In scene analysis, a graph
morphism task is to compare an image to a reference scene for
purposes of recognition and/or classification. Ideally, the graph
morphism problem is that of isomorphism. However, if occlusion
occurs, graph monomorphism or the largest common subgraph
isomorphism is more applicable. Even the well-known traveling
salesman problem can be formulated as one of finding an opti-

Manuscript received October 10, 1983; revised April 30, 1986.
F. Akinniyi was with the Systems Design Engineering Department, Univer-

sity of Waterloo, Waterloo, ON, Canada. He is now with the Federal
Agricultural Coordinating Unit, Ibadan, Nigeria, on leave from the University
of Lagos, Lagos, Nigeria.
A.K.C.Wong and D.A.Stacey are with the Systems Design Engineering

Department, University of Waterloo, ON, Canada, N2L 3G1.
IEEE Log Number 8609838.

mal cost graph monomorphism [11] in which each itinerary is
mapped onto a transportation network to achieve the best itiner-
ary.

It is well-known that the graph monomorphism problem be-
longs to the class of NP-complete problems [10]. Problems in this
class are inherently intractable; that is, any algorithm designed to
solve the general problem will require exponential time complex-
ity. Over the past two decades, considerable efforts have been
devoted to the problems related to graph isomorphism. A com-
prehensive survey of the major works can be found in [16].
Unfortunately, hitherto, no polynomial time algorithm has been
found. Attempts to solve the problem have been largely con-
centrated in four areas:

1) The first area is the design of polynomial time algorithms
for various special cases of the problem. For instance, the tree
isomorphism algorithm which runs in 0(n) (see [1, pp. 84-86]).
Also, there is the 0(n log n) algorithm of Hopcroft and Tarjan
[14] for detecting isomorphism of a pair of planar graphs.

2) The second area is the design of polynomial time heuristics
which iteratively partition the vertices of the two graphs into
classes and then refine the partitioned classes until a one-to-one
vertex mapping is (or is not) achieved. Unfortunately, these
heuristics fail for graphs of high order. The most celebrated
example is that of Corneil and Gotlieb [8]. Another is that of
Sussenguth [19] which extends Ungers' isomorphism algorithm to
include graph monomorphism.

3) The third area is theoretical works such as finding the
mathematical functions [5,18,21] which are invariant for isomor-
phism and proving that certain classes of the isomorphism prob-
lem are polynomially equivalent [6]. That is, such problems have
the same degree of difficulty as the general isomorphism prob-
lem.

4) The final area is the use of backtracking for exhaustive
search. Algorithms in this category utilize the refinement tech-
niques based on the neighbors of the two graphs to prune the
search tree. Notable procedures are the depth first search al-
gorithm of Deo et al. [9]; the distance matrix algorithm of
Schmidt [17] which suffers from its inapplicability to graph
monomorphism; Ullmann's subgraph isomorphism [22]; and that
of Cheng et al. [6] which utilizes Berztiss' [4] elementary k-for-
mula and Ullmann's tree search to develop a pseudo-parallel
algorithm for subgraph isomorphism.

Recently, Ghahraman et al. [11] proposed a backtracking
algorithm based on the product (called the net) of two graphs,
namely, the pattern graph which represents the domain of the
morphism, and the base graph representing the range. According
to this algorithm, a subgraph known as the star pattern subnet
(SPS) is formed for each vertex in the net. The feasibility of each
vertex is then determined by solving the problem of maximum
matching in a bipartite graph (MMBG) which is associated with
the SPS of that vertex. By investigating the existence of SPS's
whose projections coincide with the pattern graph, the existence
of a monomorphism can be ascertained. The utilization of the
MMBG criterion (called the strong necessary condition in [11])
leads to an effective and fast pruning of the search tree with the
result that monomorphisms are found near the root. However,
the iterative solution of the MMBG problem does not enhance
the overall efficiency of the algorithm. The best algorithm still
requires 0(n5/2) time complexity [15], where n is the order of
the graph.

In this correspondence, a new algorithm, reminiscent of the net
formulation, is proposed. Unlike that of [11], the new algorithm
does not require the explicit derivation of the SPS nor the
solution of the MMBG problem. Rather, the weighted projec-
tions of the SPS (called the weighted edge subgraph (WES)) and
the minimum number of neighbors (MINN) of the resulting
projected star subgraph are used in conducting the tree search.

0018-9472/86/0900-0740$01.00 01986 IEEE

740

