國立交通大學

顯示科技研究所

碩士論文

光學像差對於全像儲存系統的影響

The Influence of Aberration on Holographic Data Storage System

1896

研究生:李功賀

指導教授:許根玉 教授

中華民國一百年七月

光學像差對於全像儲存系統的影響

The Influence of Aberration on Holographic Data Storage System

研究生:李功賀 Student: Kong-Ho Li

指導教授:許根玉 教授 Advisor: Ken-Yuh Hsu

A Thesis

Submitted to Display Institute

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of Requirements

for the Degree of Master

in

Display Institute
July 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月

光學像差對於全像儲存系統的影響

學生:李功賀 指導教授:許根玉

國立交通大學顯示科技研究所碩士班

摘 要

ALLE TO

本論文探討全像儲存系統中,成像系統光學像差對於儲存品質的影響。 展據像差理論,我們分別在同調照明與非同調照明情況下計算出資訊頁面 經過成像系統受像差影響後的影像,並將影像轉化為概率分布函數圖。接 著採用通訊系統的頻道模型理論,將概率分佈函數轉換成系統誤碼率與儲 存容量,以之做為評估儲存系統性能的參數。模擬中我們分別求出各種像 差單獨對系統誤碼率以及儲存容量之影響,並找出系統對該像差的最大容 忍度,最後比較各種像差的嚴重性。 The Influence of Aberration on Holographic Data Storage

Student: Kong-Ho Li

Advisor: Ken-Yuh Hsu

Display Institute
National Chiao Tung University

ABSTRACT

In this thesis, we investigate the influence of optical aberrations on

holographic data storage. By using aberration theory, we derive output images of

the holographic storage system when coherent or incoherent light source be

applied. Then, the corresponding probability density function (PDF) of output

data could be found. Then, by use of PDF we apply the channel model of

communication theory to find the bit error rate and storage capacity of data

storage system, and thus to evaluate the quality of the system. In our simulation,

the influence of each individual aberration was evaluated separately, and the

tolerance of the aberrations in storage system was found.

II

碩士這兩年的生活中,首先我必須感謝我的指導老師,許根玉老師,以及合作實驗室老師,林烜輝老師,在研究上給我的建議與指導,使我能順利的完成碩士論文。除了老師的指導外,Vera、阿龍學長、男哥、仁崇學長、柏霖學長、俊華學長、啟新學長、翊安學長,都給予了我實驗與研究中許多的幫助。與昶慶、信甫、怡安、小個、加蹦之間的互相砥礪也使我能有許多的成長。

除了學業上眾人對我的幫助,我還要感謝我的父母,在我碩士的兩年之內對我的照顧與關心。感謝介堯、土摸、淇淇、宜文願意當我處於自暴自棄的情況下時聽我靠腰。感謝室友老大、隊長等人無論寒暑的在一起游泳。感謝玉山夫婦之前在我實驗上的仗義相助。感謝舞蘭願意在我孤獨的時候給我陪伴。感謝所有光電 98 級同學們能時常相約聚餐...等。真的要感謝的人太多了,實在無法一一道盡。而這些人的幫助也都使我碩士生活中除了繁忙的研究之外能有許多放鬆與舒壓的空間,也讓我這兩年來能過的既快樂又充實。

最後我要感謝交通大學,他培育了我六年的時間,我也在這經歷了許許多多酸甜苦 辣的回憶,但願有一天我能不負學校的栽培,為社會奉獻,為學校爭光。

2011 夏 賀

目錄

中文摘要	1
英文摘要	. II
誌 謝	Ш
目錄	IV
圖目錄	. V
表目錄	VI
第一章 緒論	. 1
1.1 光資訊儲存簡史	. 1
1.2 體積全像儲存系統	. 3
1.3 研究動機	. 5
1.4 內容編排	. 6
第二章 原理	. 7
2.1 通訊理論	. 7
2.2.1 波面像差理論	
2.2.2 横向像差	14
2.3 球差原理與現象	
2.4 彗差原理與現象	
2.5 像散與場曲之原理與現象	
2.5.1 像散之原理與現象	
2.5.2 場曲之原理與現象	24
2.5.3 綜合像散與場曲影響結果	
2.6 畸變原理與現象	28
2.7 同調系統中的像差	
第三章 電腦模擬	35
3.1 非同調照明系統中的模擬	35
3.2 同調照明系統中的模擬	42
3.3 系統模擬	52
3.4 孔徑光欄對系統之影響	
3.5 系統改進	58
3.6 模擬結果討論	
第四章 結論	
附錄 A 直角坐標中的像差多項式	
附錄 B 非同調照明模擬方式說明	
附錄() 同調照明系統中的模擬方式	68

模擬程式1	非同調照明之模擬	69
模擬程式2	同調照明之模擬	72
模擬程式3	求取储存系統評估參數	75
參考資料		76

圖目錄

啚	1	體積全像儲存系統示意圖	4
昌	2	全像儲存系統通訊通道示意圖	8
啚	3	受雜訊影響資訊的 PDF 圖	9
啚	4	輸出閥值與誤碼率之關係圖	9
啚	5	輸出閥值與誤碼率之關係圖	11
昌	6	高斯折射面與實際折射面的差異	12
昌	7	波面像差示意圖	13
置	8	像差多項式中的參數與光學系統的對照圖	13
昌	9	横向像差於像平面上的參數示意圖	15
昌	10	球面像差的波前輪廓	16
啚	11	球差示意圖(a)正型球差(b)負型球差	17
啚	12	球差造成點光源在平面上的擴散情形	18
		球差能量強度分佈圖	
		彗差的波前輪廓圖	
		彗差成因示意圖	
置	16	彗差圈在像平面上與光瞳圈的相對關係圖	20
		完整彗差示意圖	
		彗差的點擴散影像	
		彗差的能量強度分佈圖	
		像散之波前輪廓圖	
		像散示意圖	
		場曲波前示意圖	
		成像曲面圖	
		像散加上場曲的能量分布圖	
		畸變波前示意圖	
啚	26	畸變造成像點於像平面上的位移示意圖	29

邑	27	(a)理想影像 (b)枕形畸變 (c)桶形畸變	29
圖	28	(a)同調光源示意圖 (b)非同調光源示意圖	30
昌	29	成像系統等效模型	32
啚	30	球差 TSPH 值與誤碼率之間的關係	36
圖	31	横向像差值與誤碼率的關係	37
圖	32	不同 N. A 情況下波面像差值與開始造成資訊錯誤的誤碼率	44
昌	33	不同畫素大小與繞射極限比值下系統對於波面像差值的容忍值	44
昌	34	全像儲存架構示意圖	52
昌	35	成像系統配置圖	53
啚	36	鏡組光路圖	58
啚	37	理想輸入訊號	66
啚	38	受求差影響的輸出影像	66
啚	39	輸出影像個資訊點之灰階值	67
		非同調照明系統的模擬流程	
邑	41	同調照明系統中的模擬流程	68
ŧ	1	表1目。錄	2
•		谷代元嵘���衣 艾瑞環受各種像差影響之結果	
		文····································	
		FSPH 在不同大小時的 PDF 圖	
•		TCO 在不同大小時的 PDF 圖	
		TTFC(假設 TTFC=2TSFC)在不同大小時的 PDF 圖	
		TDIS 在不同大小時的 PDF 圖	
		波面像差值的模擬取樣規則	
		不同 N. A. 時各項差開始造成誤碼之波面像差值(畫素寬 6. 7um)	
•		系統 N. A. = 0. 1 時各像差在可容忍最大值時之 PDF	
		系統 N. A. = 0. 2 時各像差在可容忍最大值時之 PDF	
		系統 N. A. = 0. 3 時各像差在可容忍最大值時之 PDF	
		系統 N. A. = 0. 4 時各像差在可容忍最大值時之 PDF	
		系統 N. A. = 0. 5 時各像差在可容忍最大值時之 PDF	
		系統 N. A. = 0. 6 時各像差在可容忍最大值時之 PDF	

表 16	系統 N. A. =0.7 時各像差在可容忍最大值時之 PDF	. 51
表 17	Zemax 光路試算表	. 53
表 18	模擬系統之出瞳 N. A. 與波面像差係數值表	. 53
表 19	系統使用不同解析度進行儲存時的結果	. 55
表 20	系統孔徑光欄改變時出瞳 N. A. 與波面像差係數值	. 56
表 21	系統孔徑光欄改變時使用不同解析度進行儲存的結果	. 57
表 22	改進後之系統光路試算表	. 58
表 23	改進後系統之出瞳 N. A. 與波面像差係數值	. 59
表 24	改進之系統使用不同解析度進行儲存的結果	. 60
表 25	波面像差座標兩種形式對照表	. 65

第一章 緒論

本章中將簡介光資訊儲存的原理與發展簡史。接著對體積全像儲存系 統進行簡介,並與現有的光儲技術做比較,從而提出其優點以及其發展之 重要性。再接下來將討論可能影響體積全像儲存容量的原因,以及本論文 的研究動機與目標。最後則是本篇論文的編次。

1.1 光資訊儲存簡史

隨著資訊科技的進步,人們對於硬體儲存容量的需求越來越高,因此 具有體積小攜帶方便,且儲存容量大等優點的光資訊儲存原件成為現今主 要的儲存技術之一。光資訊儲存泛指各種應用各種光學現象(反射,折射, 繞射),將數位資訊在材料上進行儲存的技術。目前光碟片的讀寫方式是將 光束聚焦於材料上,改變材料之光學性質(例如反光振幅或相位變化)以代 表該位置之資訊為 0 或是 1,故光波的繞射極限大小將限制光碟片上單位面 積內可記錄的總資訊量。為了追求更高的儲存容量,光碟發展所使用的光 波長越來越短,聚焦鏡頭的數值孔徑也越來越高。

最早廣泛為大眾使用的光儲存原件為 CD(Compact Disc, 光碟),使用紅外光(波長 780nm)做讀寫,單片容量約 700MB,從它開始帶動了數位音響的發展,目前仍然是唱片及其他小資訊量檔案的主要儲存媒介。1996 年開始正式被提出的 DVD(Digital Versatile Disc,數位多功能光碟),使用紅光(波長 650nm)進行讀寫,單層容量可達 4.7GB,是目前最普遍使用的光儲原件,廣泛使用於高畫質影像及商業軟體的儲存。

隨著 Full HD(Full High Definition, 頂級高畫質訊號)顯示器漸漸普及,人們開始追求更高畫質的影音檔案,這樣的需要推動了藍光(405nm)光碟的發展。BD(Blu-ray Disk,藍光光碟)以及 HD DVD(High Definition DVD,

高解析數位多功能光碟)是藍光光碟發展中的兩大規格,但HD-DVD已於2008年由於眾支持者的倒戈而退場。目前BD由於價格與應用面的關係,普及度仍不高,但隨著時間的推演,BD終將在大容量的儲存上全面取代DVD,DVD光碟機也將被BD光碟機淘汰。各代光碟比較如表1所示[1]。

	CD	DVD	HD DVD	BD
雷射波長	780nm	650nm	405nm	405nm
數值孔徑	0.45	0.6	0. 65	0.85
軌距	1.6um	0.74um	0.4um	0.32um
單層容量	700MB	4. 7GB	15GB	33. 4GB
目前最大層	僅單層	雙面雙層	單面雙層	單面四層
數與容量		17GB	30GB	128GB
優勢	價格最低	容量適中且	讀寫頭相容	儲存容量最大
		價格相對低	於 DVD	
現況	用於唱片	目前最普及	現已停產	儲存 Full HD 影像

表1 各代光碟比較表

1896

1.2 體積全像儲存系統

現有的光儲存技術容量與存取速度分別受限於繞射光點的大小以及光碟機的轉速,很難在現有的技術上有重大的發展。此外光碟的存取範圍侷限在單一平面上(2D),雖然目前已開發出擁有四層記錄層的 BD 光碟,為了避免讀取時,聚焦光線受其它記錄層的影響,因此每多一層所需的技術以及難度都將更高。這些原因限制了目前光儲技術的容量及存取速度上限。

體積全像儲存技術(示意圖如圖 1)運用全像原理,使用空間光調制器 (SLM)將二維資訊影像投影出與具有同調性的參考光進行干涉,記錄在具有厚度的底片上。底片通常是使用感光後折射率會改變的材料,如:光折變晶體(photo refractive crystal),光感高分子聚合物(photopolymer),光折變高分子材料(photorefractive polymer),雙光子吸收材料(two-photon absorption)等。資訊讀取時,以參考光重建影像,並使用 CCD 接收。有別於目前單點序列式的光碟存取系統,全像技術一次可以記錄以及重建整個頁面的資訊。藉由頁面上各點資訊平行輸出的特性,訊號傳輸速度將大幅提升。此外,以體積全像多功記錄方式,將許多頁資訊儲存在同個位置的材料體積之中,只有符合布拉格條件(Bragg condition)的光波才能將其對應的影像重建出來,因此資訊可以在三維體積中做記錄,大幅提升了材料單位體積內的容量,並使得儲存材料的形狀更具有彈性。同樣根據這樣的特性,科學家發產出許多的多工技術(multiplexing),如位移多工,角度多工,旋轉多工,波長多工,相位多工等,使材料同一點上能記錄多張資訊。

體積全像儲存系統一直被視為最具有發展性的新一代光儲技術,目前全球已有數家公司(General Electric, InPhase, IBM, Rockwell, Lucent, Polaroid, Samsung)積極的對其做研究。美國奇異公司(General Electric Company)於 2009 年的發表會中展示出一種全像儲存材料,能在與目前 DVD系統相容規格下,具有 500GB 容量[2]。相信體積全像儲存技術在發展下一代數位光儲科技將佔有重要角色。

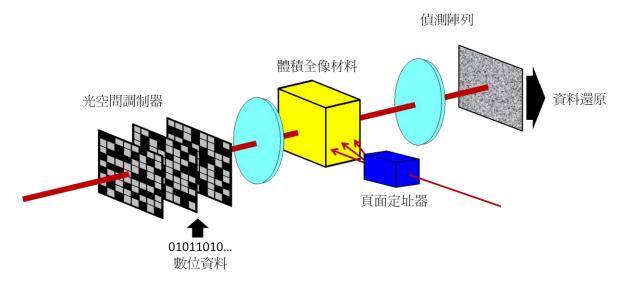


圖 1 體積全像儲存系統示意圖

1.3 研究動機

討論一個儲存系統的實際容量,除了計算物理以及材料的極限之外,還必須考慮資料存入到讀出的錯誤率。當資料在存取的過程中,受到雜訊的影響時,便有可能使得讀出的訊號與原始產生差異。系統資料的錯誤率越高,就必須加入更多的錯誤修正碼(Error Correction Code)來將資料做回復,因而降低了系統的容量。但是,當錯誤率過高時,即使加入錯誤修正碼此系統也無法使用。

體積全像儲存系統中的雜訊依來源主要可分為頁面間的串音干擾 (inter-page crosstalk)與畫素間的串音干擾 (inter-pixel crosstalk)。頁面串音干擾是由全像多工儲存造成,原因是當以一參考光重建某一頁資訊時,它同時照射到儲存在同一位置的其他相鄰頁面資訊,因而產生來自其他頁面重建的資訊,造成雜訊。畫素間的干擾則來自光路系統中的缺陷,通常被視為系統雜訊,包含光學元件誤差,SLM 顯像對比,CCD 暗電流等。頁面串音干擾可在已知系統雜訊的情況下,應用波恩近似法[3] (Born approximation)求出。故系統雜訊可以視為評估全像儲存系統容量的首要根本。

本論文探討因為光學元件不完美導至成像誤差而產生的系統雜訊。首先,根據幾何光學的波面函數理論,計算透鏡五種單色像差對於成像品質的影響,配合全像儲存的通訊理論,以推得輸出資訊的信號分佈函數,稱為概率密度分佈函數(Probability Density Function, PDF),再根據通訊理論求出儲存系統的容量及誤碼率等特性,如此便可為頁面間的串音干擾建立系統模型。然後,藉由分析比較各個像差對 PDF 圖的影響程度,可供未來體積全像儲存系統的光學設計做參考。

1.4 內容編排

本論文的編排次序如下:

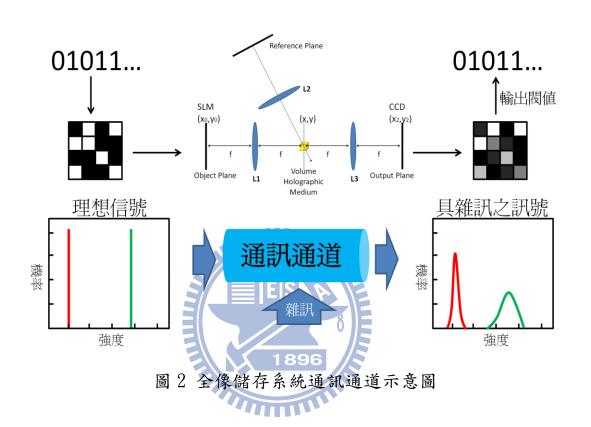
第二章將對論文內會用到的理論模型做說明。首先介紹訊息理論,說明如何在已知的系統輸出分佈下,估計其誤碼率與容量的大小。接著簡介像差的基礎理論,其中將特別說明對成像品質影響最大的五個賽德像差的特性,這部分將像差對於影像的影響分為同調照明與非同調照明兩部分,並分別使用橫向像差與波面像差理論對畫出輸出光點的強度分佈。

第三章將使用前面的理論對於五種像差做一般性的模擬。模擬分為同 調照明與非同調照明兩部分。在固定的系統參數的情況下,將使用誤碼率 以及儲存容量做為評估的工具,分別求出該系統對於單一像差的最大容忍 度並,並對各像差所造成的影響進行比較。最後則以實際的光學系統之參 數進行模擬與分析。

第四章將對前面各章的結果進行分析與討論,對我碩士兩年內所做 的研究做總結。

第二章 原理

本章將對論文中所用到的理論做介紹。首先將像儲存系統等效為資訊 傳輸系統,說明如何在已知輸入與輸出資訊函數的情況下,使用通訊理論 評估儲存系統之品質以及計算儲存容量。


接下來將介紹像差的來源與種類。文中將使用波面函數理論對像差做論述,提出計算像差所使用的公式系統,並根據數學式,對最重要的五種像差的特性進行解說。最後的小節中將說明同調系統與非同調系統間的差異,並說明在同調系統中,像差的計算方式。

2.1 通訊理論

體積全像儲存系統是藉由光學系統之調變,將數位訊號轉換成儲存介質上折射率變化的技術。資訊儲存時,0與1的數位訊號被轉換成暗與亮的光強度資訊顯示在空間光調制器(SLM)上。經由透鏡進行傅氏轉換後,整頁的資訊聚焦成光點在材料上與參考光進行干涉,並將干涉條紋記錄在材料上。資訊讀取時,使用參考光照射材料重建其相對應的頁面資訊,經過透鏡再做一次傅氏轉換後以 CCD 偵測,最後由電腦還原成數位訊號。整個全像儲存從存入到讀出的過程可視為資訊在通訊通道(communication channel)中進行傳遞,因此我們可以使用通訊理論來探討體積全像系統的儲存容量。

儲存系統中原始的頁面資訊只會具有亮與暗兩種強度,但資訊在經過通道時受到雜訊影響,輸出端接收到的資訊將呈現出灰階分佈。若將輸出資訊的灰階值在不同強度出現的次數進行統計可得該輸出的 PMF 圖(power mass function),這是一個離散型的統計模型。而當 PMF 圖內統計的數量大到足以使得函數被視為連續分佈時,將此時的 PMF 對總發生次數進行正規化,即可得到該系統的 PDF(power density function)圖。如圖 2 所示,輸

入資訊的 PDF 圖只在代表 0 與 1 的強度上有值。但輸出訊號的 PDF 圖上 0 與 1 的訊號強度受到雜訊的影響,分別呈現了某一個展開的分佈。因此我們必須輸入一個閥值(Threshold value)使電腦能夠判斷讀取到的資訊是 0 或 1。

若系統中的雜訊過大,將使 0 與 1 的分佈函數出現重疊,此時無論如何選擇閥值都會使部分資訊在判斷時出錯誤,遭判定錯誤的訊號稱為誤碼,誤碼率(Bit error rate)為判定一通訊系統好壞之重要數值,誤碼率之定義為誤碼量除以傳輸總資訊量,誤碼率越高的系統傳輸品質越差。因此在資訊出現重疊的系統中,閥值的選定極為重要,選定好的閥值才能使誤碼率最小,也能正確的表達出系統的傳輸資訊。

以下將針對一個實際的例子說明輸出閥值與誤碼率的關係。範例中假設輸入與輸出的強度皆分為 256(0~255)個灰階值,且理想訊號代表 0 的強度為 20,代表 1 的強度為 200。圖 3 為一受雜訊影響的輸出 PDF 圖,0 與 1 的分佈在中間出現重疊處,因此我們需要對此輸出資訊設定一個最佳的輸出閥值。

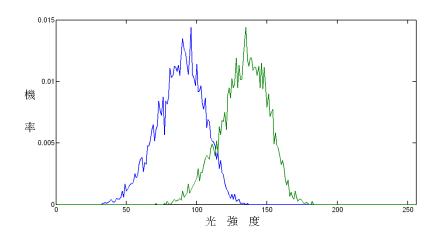


圖 3 受雜訊影響資訊的 PDF 圖

輸出閥值必須使輸出的資訊具有最小誤碼率,因此我們必須藉由閥值 與誤碼率之間的關係來求得,在我們的系統中其關係式如下[4]:

$$BER = \pi_0 \sum_{I=I_T}^{255} P_0(I) + \pi_1 \sum_{I=0}^{I_T} P_1(I)$$
 (1)

其中 π_0 與 π_1 代表輸入資訊中位元為0與1所佔的比例, $P_{0/1}(I)$ 代表位元為0與1的輸出分佈函數, I_T 代表所選定的輸出閥值大小。此處假設0/1出現之機率相等($\pi_0 = \pi_1 = 0.5$),將圖3的輸出分佈函數代入此關係式,並將 I_T 由0逐一增加到255,可得到圖4的關係圖。由關係圖中可知誤碼率受輸出閥值影響,當選取輸出閥值為113時,可得最小誤碼率0.092。

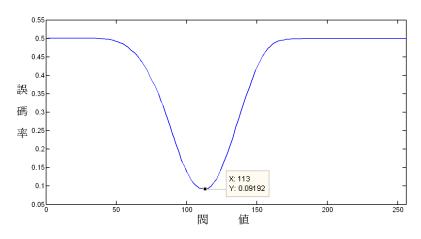


圖 4 輸出閥值與誤碼率之關係圖

最後我們引用通訊理論中的傳輸線單位容量(per bit capacity)[5],來估計全像儲存系統的最大資訊傳遞量。其意義為資料傳輸過程中一個單位位元可被儲存下來的資訊比例。在我們的系統中,傳輸線之單位儲存容量(storage capacity)的公式可寫為:

$$SC = \sum_{I=0}^{255} \left[\pi_1 P_1(I) \log_2 \frac{P_1(I)}{\pi_1 P_1(I) + \pi_0 P_0(I)} + \pi_0 P_0(I) \log_2 \frac{P_0(I)}{\pi_1 P_1(I) + \pi_0 P_0(I)} \right]$$
(2)

式子代表為每位元的傳輸量。使用上式來求取圖 2.2 對應之儲存容量,可得 SC=0.698 位元。若將此值乘上儲存頁面的總位元數,再乘上系統儲存的總頁數,即可得到該系統的實際儲存容量。其中值得注意的是,由以上兩個數學式子看出,誤碼率跟輸出閥值有關,而儲存容量則與閥值無關,因此,儲存容量與誤碼率之間並無絕對的關係。

藉由本節提到的公式,我們即可在已知輸出頁面影像的情況下計算系統的儲存容量。後面我針對本論文中探討的主題像差做分析,以計算輸出 頁面影像。 1896

2.2 像差概論

在計算像差對於儲存系統 PDF 圖的影響之前,我們必須了解像差的來源與種類以說明像差對於影像造成的影響。接下來的小節將使用波面像差以及橫向像差理論對像差進行分析,以了解像點受到像差影響時的分佈情形。

一般常用的成像公式,皆是以高斯光學為基礎所建立。這是一個共軸的光學系統,所有的光學系統與現象皆旋轉對稱於光軸。在高斯光學的系統中,由物平面上某一點發出的所有光線,在經過光學系統的傳遞之後,皆能在像平面上相對應的點重新匯聚成一個清晰的像點(稱為共軛點),為一理想成像系統。圖 5 為其示意圖:

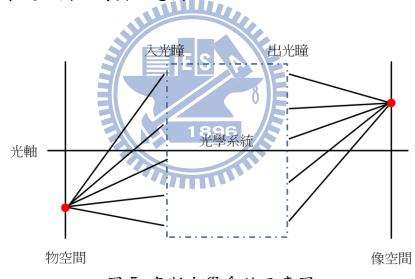


圖 5 高斯光學系統示意圖

高斯光學在計算上假設光線與光軸的角度很小,使得 $\sin\theta \approx \theta \approx \tan\theta$ 。以正弦函數的泰勒展開式為例:

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots$$
 (3)

由上式可以看出,當角度很小的時候,第二項以後收斂的很快,藉此達到近似的條件,因此高斯光學又稱為一階光學。然而,在實際的情況下,

許多光學系統的視場角度皆不在近軸近似的情況下。此時,除了角度本身數值上產生的差異之外,也使得光線實際折射的位置與高斯光學的計算上產生差距(如圖 6 所示)。此外,理論上拋物面才能使光線完美的聚焦在焦點上,但透鏡的製作過程中為求方便,折射表面皆以球面做近似,因此光線折射後無法完美聚焦。這些導致實際成像與理想影像出現差異的情況便稱為像差。

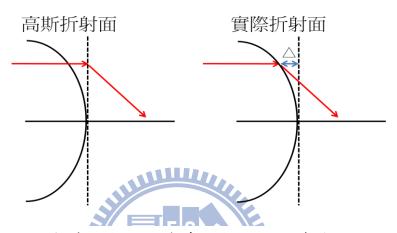


圖 6 高斯折射面與實際折射面的差異

以上所述僅為考慮單色光的差異,稱為單色像差。實際上不同波長的 光線對同樣的材料具有不同的折射率,因此物點所發射出不同波長的光經 過成像系統後會在不同的位置匯聚,使得成像的顏色產生分離。這個現象 稱為多色像差,或簡稱色差。而在我們的儲存系統中,使用單色光做記錄, 因此在後面的研究中也僅需對單色像差做研究與探討。

2.2.1 波面像差理論

波面像差理論是用以表現出聚焦中的光波受到像差影響時,波前形狀的改變。圖7表示光學系統中光波從出光瞳至像平面上的分佈情形。理想上的光波前應如圖中黑色的弧線,是一個完美的球面。但是當系統具有像差時,波前形狀受到破壞,成為圖上藍色的線條,故此時的波前將無法完美的聚焦在理想的成像位置上。₩為波面像差函數,代表理想波面與實際波面之間的差值。

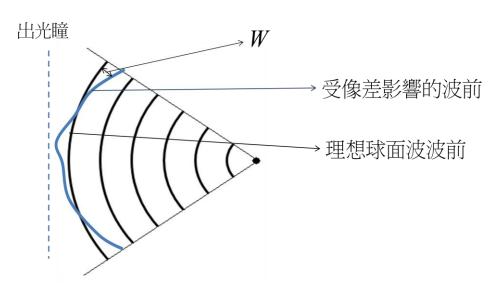


圖7波面像差示意圖

而現今常用的像差多項式數學模型,是由漢密頓(W. Hamilton)爵士根據波面像差理論[6]所提出。他藉由多項式來將像差做分類,並顯示出系統參數與像差之間的關係,使人們在光學系統的調整上能有所依據。

像差多項式理論建立在具有軸對稱關係的光學系統之中,藉此能夠消除許多不必要的項次,使得表現上能夠十分的簡潔,並且符合直觀上的物理意義。像差多項式中,將光學系統簡化如圖 8 所示,圖中,η,ρ,θ 分別代表:物體的高度,光線在光瞳上到光軸的高度,ρ與垂直線所夾的角度。

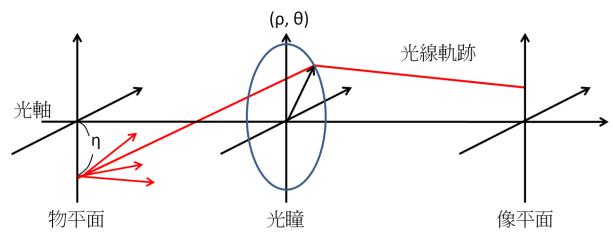


圖 8 像差多項式中的參數與光學系統的對照圖

應用解析幾何之推導結果[7],若物體在 η 軸上,則必可由 η^2 , ρ^2 , $\eta \rho \cos \theta$

三項來完整表達出一條光線的行徑。在極座標中,像差多項式的通式可寫成以下形式[8]:

$$w = w(\rho, \eta, \theta) = w \sum_{i} w_{jk} \eta^{i} \rho^{j} \cos^{k} \theta$$
 (4)

此外在光軸上,單一平面的四個象限具有對稱性,故可得

$$w(\rho, \eta, \theta) = w(\rho, \eta, -\theta) = w(-\rho, -\eta, \theta) = w(-\rho, -\eta, -\theta)$$

最後將式(4)展開成為:

$$w = {}_{0}w_{20} \rho^{2} + {}_{1}w_{11} \eta \rho \cos \theta + {}_{2}w_{00} \eta^{2}$$

$$+ {}_{0}w_{40} \rho^{4} + {}_{1}w_{31} \eta \rho^{3} \cos \theta + {}_{2}w_{22} \eta^{2} \rho^{2} \cos^{2} \theta + {}_{2}w_{20} \eta^{2} \rho^{2} + {}_{3}w_{11} \eta^{3} \rho \cos \theta$$

$$+ high order terms$$
(5)

第一行的三項描述的是近軸影像,第一項說明的是光波聚焦時的波前曲率,第二項說明影像的放大率,第三項為不影響成像品質的活塞誤差(若由傅式光學的角度來看,該項為像場之相位,它表示像平面上各點之相位正比於影像高度的平方,觀察影像強度時可被忽略)。第二行的五項為初階像差,又稱賽德(Seidal)像差,依序為:球差,彗差,像散,場曲,畸變。這五項是像差多項式中複雜性最低,但對於影像的品質影響卻最大的,且各自分別具有獨特的光學現象。因此賽德像差是研究光學系統中,像差對於影像品質影響最重要的部分。

2.2.2 横向像差

除了波面像差,横向像差也是目前光學設計中最常使用的表示法之一。 横向像差的優點在於可以直接表現出點光源在像平面上的擴張程度,且與 像差多項式之間存在著簡單的關係式,因此成為目前用來分析影像品質最 直接的方式。橫向像差與像差多項式在極座標系中的關係如下[9]:

$$\Delta x' = -\frac{1}{n \sin \alpha} \times (\sin \theta \frac{\partial w}{\partial \rho} + \frac{\cos \theta}{\rho} \frac{\partial w}{\partial \theta})$$

$$\Delta y' = -\frac{1}{n \sin \alpha} \times (\cos \theta \frac{\partial w}{\partial \rho} - \frac{\sin \theta}{\rho} \frac{\partial w}{\partial \theta})$$
(6)

上式中, α 角為出瞳到像平面的張角,n 為像平面所在介質之折射率,x' 以及 y' 為像平面上弧矢方向與正切方向上的座標, $\Delta x'$ 與 $\Delta y'$ 則分別代表像點在像平面上弧矢方向與正切方向上的偏移量,其中正切方向為像平面上光軸與理想像點的連線方向,弧矢方向為像平面上通過像點與正切方向垂直的方向,圖 9 為參數示意圖。接下來的章節,我將使用這個關係式,探討賽德像差中各項對於像點在像平面上的分佈情況,並藉此推導出各個像差對於 PDF 圖的影響。在接下來章節的計算中,皆假設前面文章中所提的 η 與 ρ 為規一化的參數以配合所使用的計算系統。

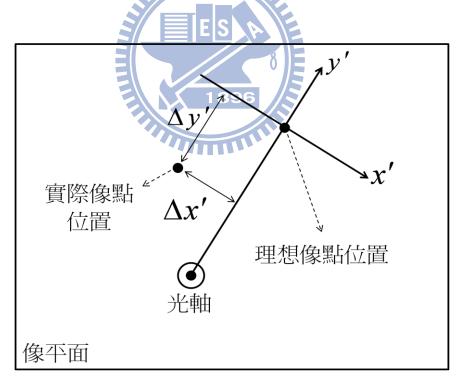


圖 9 横向像差於像平面上的參數示意圖

2.3 球差原理與現象

球差在像差多項式內的表示式為 $_0w_{40}\rho^4$,此像差的函數中不具有物體高度 η 的變數,因此對於任何視場來說球差的影響是相同的,故球差對於影像的影響不會因為成像位置的高度而不同。此外,由於球差不具有 $\cos\theta$ 項,因此可知其波面形狀的分佈是圓對稱的。圖10為理想波前與受到球差影響之波前的相對關係圖,圖中的x-y平面(x與y為出瞳平面上的座標)代表理想球面的參考面,這是一個將理想球面波拉成平面的等相位面。

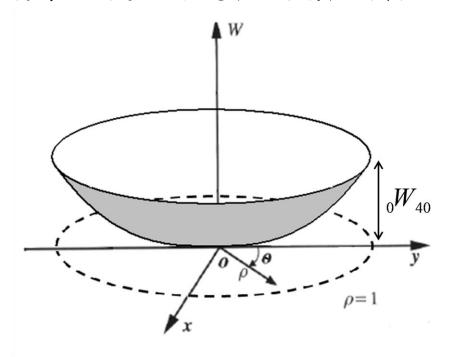


圖 10 球面像差的波前輪廓

若由其成因來看,球差的產生是由於透鏡表面由球面所近似而成,因此當光線通過光瞳上不同高度時,會具有不同焦距,故而匯聚到不同距離的像平面上,如圖 11 所示(圖中實線為近軸像平面,虛線為通過光瞳最外圍光線的聚焦平面)。由於不同高度入射光線的焦平面位置不同,導致該光點實際投影到像平面上的截面積變大。圖中的 TSPH 稱為橫向球差 (transverse spherical aberration),即為球差造成光線在像平面上的最大偏移距離。其中光束通過光瞳時,較接近光軸的光線焦距大於遠離光軸的光線焦距時,稱為正型球差,反之則稱之為負型球差。凸透鏡具有正的球差,凹透鏡則為負。

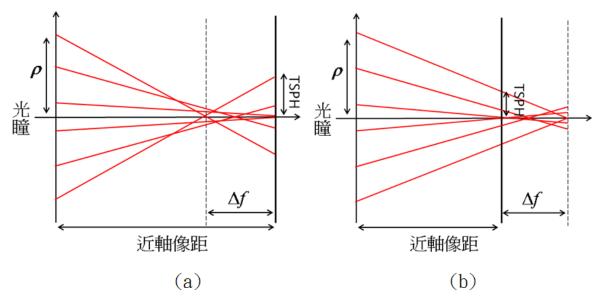


圖 11 球差示意圖(a)正型球差 (b)負型球差

藉由横向像差與像差多項式之間的關係,可推導出球面像差的横向像差公式為

$$\Delta x' = -\frac{4}{n \sin \alpha} \times_0 w_{40} \rho^3 \sin \theta = TSPH \times \rho^3 \sin \theta$$

$$\Delta y' = -\frac{4}{n \sin \alpha} \times_0 w_{40} \rho^3 \cos \theta = TSPH \times \rho^3 \cos \theta$$
(7)

式中的n與 $\sin \alpha$ 分別代表出瞳到像平面空間中的折射係數以及出瞳方的數值孔徑。由公式可知球面像差所導致的散光點形狀是一個圓形,散光半徑與入射光瞳高度的三次方成正比,且當 $\rho=1$ 時, $\sqrt{\Delta x'^2 + \Delta y'^2} = TSPH$ 。藉由横向像差公式可以畫出像點受到球差影響後在像平面上的圖形與能量分佈圖。圖 12為球差在近軸像平面上造成的點擴散影像,圖片假設 TSPH=1mm,其影像在像平面上呈現圓對稱。圖 13 則為球差在不同範圍內的強度分佈圖,由圖上可以看出能量在中央的部分單位面積內的能量強度十分高,越遠離中心能量降低的越快。

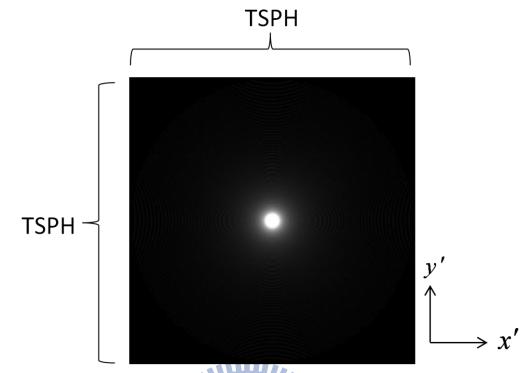


圖 12 球差造成點光源在平面上的擴散情形

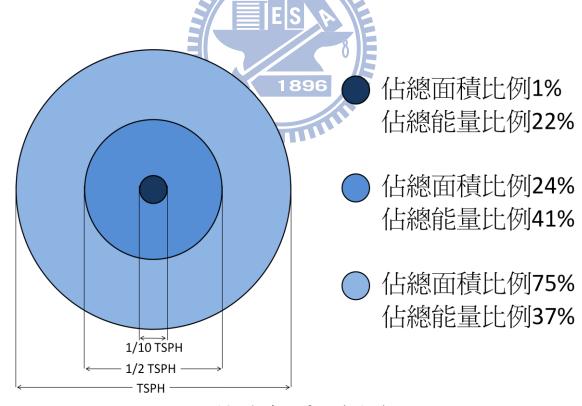


圖 13 球差能量強度分佈圖

2.4 彗差原理與現象

彗差在像差多項式內的表示式為 $_1 w_{31} \eta \rho^3 \cos \theta$,由式子內所包含的元素可知彗差同時受到視場角(物高),入射光瞳半徑與離軸角度的影響。其波面輪廓如圖 14 所示。

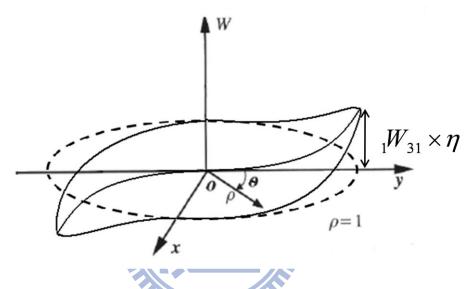
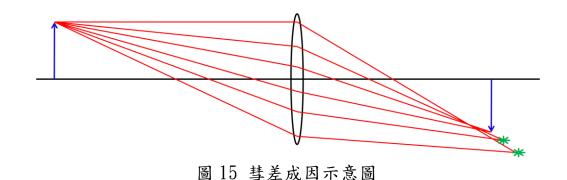



圖 14 彗差的波前輪廓圖

彗差的成因與現象是五種賽德項差中最為複雜且難懂的一個。如圖 15 所示,若只考慮二維光學系統,彗差可視為離軸物點所發出之光線,通過光瞳不同高度時,具有不同焦距以及不同放大率所產生。當光瞳外圈光線的放大較內圈為小時,稱為內彗差,反之則為外彗差。不同於球差,彗差為內或外與透鏡之之凹凸無特別關係。

19

彗差的横向像差公式可寫為:

置。

$$\Delta x' = -\frac{1}{n \sin \alpha} \times {}_{1}w_{31} \eta \rho^{2} \sin 2\theta = TSCO \times \eta \rho^{2} \sin 2\theta$$

$$\Delta y' = -\frac{1}{n \sin \alpha} \times {}_{1}w_{31} \eta \rho^{2} (2 + \cos 2\theta) = TSCO \times \eta \rho^{2} (2 + \cos 2\theta)$$
(8)

式中 TSCO 為彗差造成之最大散光圈的半徑,這部分會在稍後做詳細的說明。觀察彗差的橫向像差公式,首先假設 ρ 與 η 為定值進行描點,可得入射光瞳上某一圈上,光線具有不同 θ 時的成像位置圖。如圖 16 所示,描點的結果使成像形狀為一圓形,其半徑為 $\frac{1}{n\sin\alpha} \times {}_1w_{31} \eta \rho^2$ 且圓心與近軸像點的距離為 $\frac{2}{n\sin\alpha} \times {}_1w_{31} \eta \rho^2$ 。此外,由於此圓方程式的角度參數為 2θ ,因此,當光線在光瞳上面旋轉一圈時,在實際的彗差圈上已經轉了兩圈,圖中光瞳與彗差圈上所標示的數字相同者即代表同一條光線分別通過這兩者的位

1896

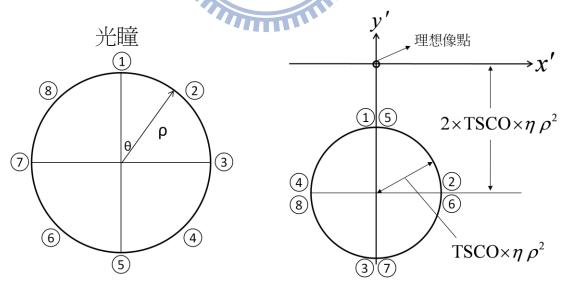
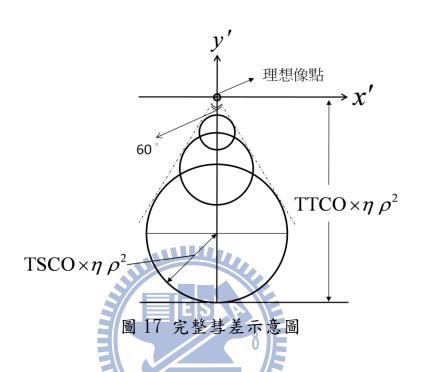



圖 16 彗差圈在像平面上與光瞳圈的相對關係圖

最後將所有光瞳圈所產生的彗差圈疊加在一起,即可得到最後的點擴 散圖,如圖 17 所示。對照圖 16 彗差圈的表示圖, TSCO 代表橫向弧矢彗差 (transverse sagittal coma aberration)與 TTCO 代表橫向正切彗差 (transverse tangential coma aberration),分別代表當 ρ 與 η 等於 1 時,點光源在像平面上弧矢與正切方向的偏移距離,且藉由簡單的幾何關係可以得到 TTCO=3TSCO。因此可知所有的彗差圈都會切在六十度的夾角內。

最後我們使用模擬軟體計算出彗差的點擴散影像(圖 18)與光強度分佈 情形(圖 19)。由圖形可以看出,光強密度在近軸像點附近最強,並向外快速的遞減。與球差相同,彗差的形狀也都是相似的。

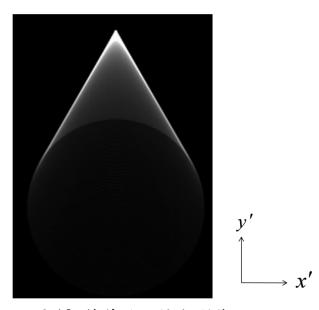


圖 18 彗差的點擴散影像

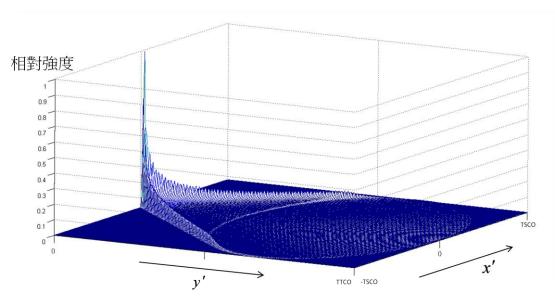


圖 19 彗差的能量強度分佈圖

2.5 像散與場曲之原理與現象

像散與場曲在像差多項式內的表示式為 $_2w_{22}\,\eta^2\,\rho^2\cos\theta^2$ 與 $_2w_{20}\,\eta^2\,\rho^2$, 兩者的組成元素十分相似,表現出來的特性也具有一定的共通性,在大部分的光學模擬軟體中,都會把這兩者的影響結合並放在同一張分析圖中。因此在這一節中,我們將先分別就數學式介紹這兩種像差的成因與現象,最後結合兩者的橫向像差結果,表現在同一張點擴散圖上。

2.5.1 像散之原理與現象

首先介紹像散,代表像散的多項式為 $_2w_{22}$ η^2 $\rho^2\cos\theta^2$,其波面輪廓如圖 20 所示,就直覺上看來,像散造成出射光瞳的光波前在水平與垂直方向具有不同的曲率半徑。

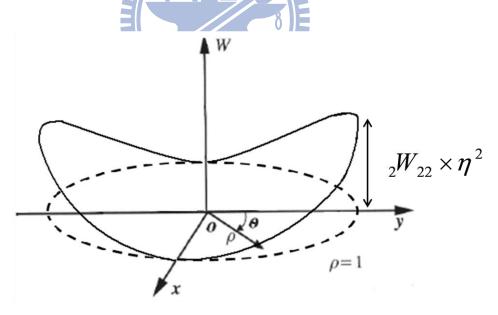


圖 20 像散之波前輪廓圖

若僅討論單一物點的成像,由於像散造成聚焦光束的波前在水平與垂直方向具有不同曲率半徑,故可知出射光瞳的光束中弧矢光線聚焦處與正切光線聚焦處不同。探討其成因,是由於光束以斜向穿過透鏡時,弧矢光線與正切光線的光程不同所致。像散之橫向像差公式如下所示:

$$\Delta x' = 0$$

$$\Delta y' = -\frac{2}{n \sin \alpha} \times {}_{2}w_{22} \eta^{2} \rho \cos \theta$$
(9)

由式中可看出像散在近軸向平面上所造成的像點擴散分佈為一條沿垂直方向,長度為 $\frac{2}{n\sin\alpha} \times {}_2 w_{22} \eta^2$ 的直線。其光線匯聚示意圖如圖 21 所示,在具有像散的光學系統中,弧矢光線的焦距光束匯聚交成一垂直線,而正切光線則會聚焦成一水平線。

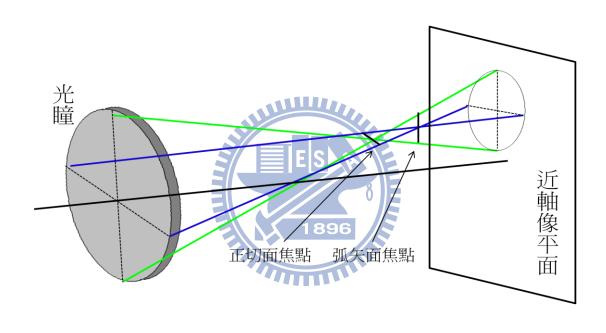
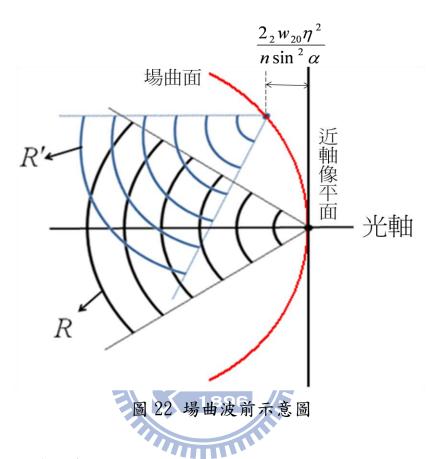



圖 21 像散示意圖

2.5.2 場曲之原理與現象

接著介紹場曲,代表場曲的數學式為 $_2w_{20}$ η^2 ρ^2 ,其波前示意圖如圖 22 所示(圖中 $_2w_{20}>0$),場曲的出現使得曲率中心偏離光軸的光波(遠離光軸的物體光)之波前曲率半徑產生改變,其改變量正比於物體高度的平方。因此,由物平面上不同高度發出的光線將聚焦在不同的距離的像平面上,若將不同高度的像點位置做連接,則所得到的實際影像面稱為場曲面。場曲與前面三種像差不同,它只使得離軸光波的曲率大小改變,並不會造成球

面波形狀的缺陷,光波仍能在場曲面上完美的匯聚成點光源。若將觀測屏幕沿場曲面做佈置即可得到清晰的影像,因此以波面的觀點來說,場曲不算是真正的像差。

場曲的橫向像差公式如下所示:

$$\Delta x' = -\frac{2}{n \sin \alpha} \times {}_{2}w_{20} \, \eta^{2} \, \rho \sin \theta$$

$$\Delta y' = -\frac{2}{n \sin \alpha} \times {}_{2}w_{20} \, \eta^{2} \, \rho \cos \theta$$
(10)

由式子中可看出場曲在近軸像平面上所造成的點擴散圖形是一個實心的圓形,其半徑為 $\frac{2}{n\sin\alpha} \times {_2}w_{20}\,\eta^2$ 。

2.5.3 綜合像散與場曲影響結果

在此將綜合分析兩者對成像造成的影響。通常在光學軟體的分析圖中,常會將像散與場曲所造成的影響畫成類似圖 23 的視場曲面關係圖,圖上標記了與 S 的曲線分別代表光束在正切方向與弧矢方向光線的聚焦平面。而藉由幾何光追跡的推導[10]可知代表場曲的像差係數 2 w20 的值會受到像散係數 2 w22 所影響,但 2 w22 並不會受到 2 w20 所影響。因此若假設 2 w22 與 2 w20 皆為正,而 2 w20 保持定值 2 w22 漸漸增大時,兩條曲線皆會離近軸像平面越來越遠,且兩者間的距離也會越來越大。反之,若是 2 w20 漸漸增加而 2 w22 保持定值,則兩條直線之間同樣會漸漸遠離近軸像平面,但兩者之間的距離仍將維持一定值。若假設系統中的 2 w22 等於零時,T 與 S 的曲線將合在一起,這個時候的場曲面稱為系統的帕茲伐平面。而若將屏幕沿著了與 S 的中線做佈置,則可使兩者造成的影響減到最小而得到最佳的成像平面。

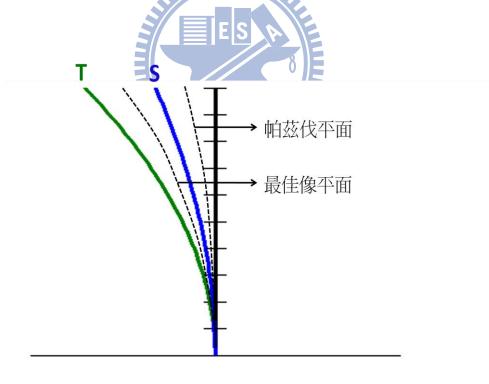


圖 23 成像曲面圖

觀察像散與場曲的橫向像差公式可發現兩者之間具有相同的組成元素,故可將其合併得到以下的式子:

$$\Delta x' = 0 - \frac{2}{n \sin \alpha} \times {}_{2}w_{20} \eta^{2} \rho \sin \theta$$
$$= TSFC \times \eta^{2} \rho \sin \theta$$

$$\Delta y' = -\frac{2}{n \sin \alpha} \times {}_{2}w_{20} \eta^{2} \rho \cos \theta - \frac{2}{n \sin \alpha} \times {}_{2}w_{22} \eta^{2} \rho \cos \theta$$
$$= -\frac{2}{n \sin \alpha} \times ({}_{2}w_{20} + {}_{2}w_{22}) \eta^{2} \rho \cos \theta$$
$$= TTFC \times \eta^{2} \rho \cos \theta$$
(11)

由數學式中可看出像散與場曲的橫向像差公式合併後所得到的擴散形狀是一橢圓形,其中 TSFC (transverse sagittal field curvature)與 TTFC (transverse tangential field curvature)分別為該橢圓形在水平與垂直方向的軸長。對於一般的透鏡來說 $_2w_{22}$ 與 $_2w_{20}$ 的正負是相同的,且數值差異不大[11]。圖 24 為像散加上場曲對像點造成的點擴散分佈圖,圖中假設 (TSFC=TTFC)。

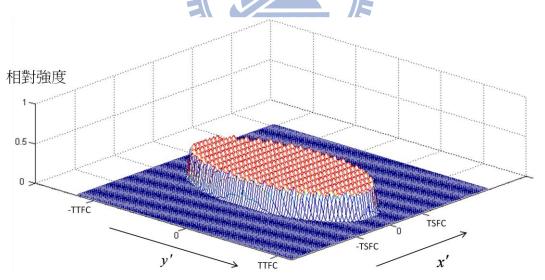


圖 24 像散加上場曲的能量分布圖

2.6 畸變原理與現象

畸變是賽德像差中的最後一個,它在像差多項式內的表示式可寫 為 $_3w_{11}\eta^3\rho\cos\theta$,其波前改變情形如圖 25 所示。畸變同樣只會發生在遠離 光軸的像點上,當畸變出現時,波前產生傾斜,因此使得光波聚焦在像平 面上的位置發生改變。與場曲相同,畸變的出現並不會造成球面波形狀的 缺陷,光波仍能在像平面上的某處完美的匯聚成一個點,因此以波面相差 的概念來看,畸變也不算是一個真正的像差。

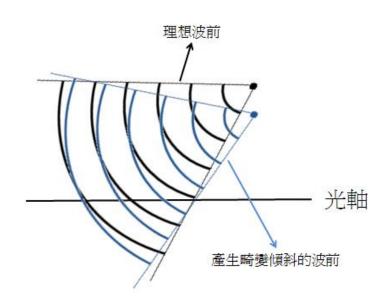


圖 25 畸變波前示意圖

若要知道畸變造成離軸像點在像平面上位移的量,可直接分析其橫向 像差公式:

$$\Delta x' = 0$$

$$\Delta y' = \frac{1}{n \sin \alpha} \times {}_{3}w_{11} \eta^{3} = -TDIS \times \eta^{3}$$
(12)

其中 TDIS 稱為橫向畸變(Transverse Distortion)代表像點在像平面上的最大位移量。由式子中可以看出,像點在的弧矢方向的位移量恆為 0,故可知像點只會朝著光軸或其反方向做移動,且其位移量正比於物體高度的三次方,圖 26 為像點在像平面上位移的參考圖。根據前面所描述,像點

產生畸變時光線仍可以完美的匯聚,因此觀察畸變時只觀察單一成像點是 沒有意義的,必須將物體影像完整描繪出來,才能看出畸變對於成像所造 成的影響。

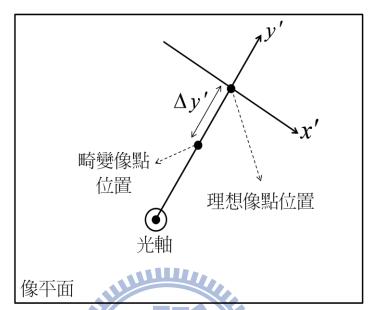


圖 26 畸變造成像點於像平面上的位移示意圖

而當某一像點的放大率大於其理想放大率,即實際成像點較理想上的 更遠離光軸時,稱此現象為枕形畸變(pincushion),此時 $_3w_{11}$ 為負值,其影 像示意圖如圖 $_27(b)$ 所示。反之則稱為桶形畸變(barrel),此時 $_3w_{11}$ 為正值, 如圖 $_27(c)$ 所示。通常人眼對於桶形畸變有較大的接受度,因此在鏡頭的修 正上通常會偏向此情況。

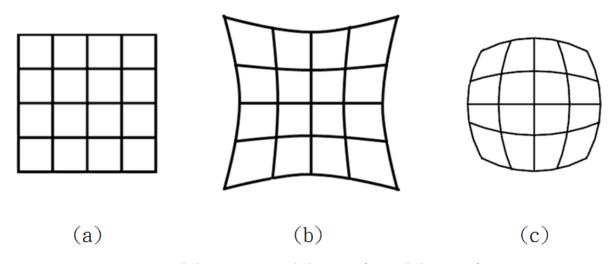


圖 27 (a)理想影像 (b)枕形畸變 (c)桶形畸變

2.7 同調系統中的像差

前面的章節中皆是在幾何光學的範圍之下,使用光線的方式來分析像差,然而在實際的情況下,根據光的波動性質,光線不可能聚焦成一點,而會受限於繞射極限形成艾瑞環(Airy disc),此即為光波的繞射現象。故當像差所造成的像點擴散範圍越接近繞射極限,或系統處於同調照明的情況下時,光的波動性質將無法被忽略,必須使用波動光學理論方能計算出像差對於成像的影響。全像儲存系統中必須使用雷射光做記錄或重建,故通常為一同調照明系統(亦有某些架構中使用非同調進行照明[12]),故在此將先對兩種照明系統做簡介。

在同調系統中鄰近的光波的相位相同,因此各球面波會在特定的位置與方向上產生建設性干涉,這些干涉點的連線即為光線的前進方向,其示意圖如圖 28 (a)。而在非同調照明系統中,鄰近光波間的相位是隨機的,因此各光波在空間中產生建設性干涉的位置並沒有一定的規律,此時干涉點的連線不具有特定的方向性。若以幾何光學的觀點來看,此系統中具有射向各個不同角度的光線,示意圖如圖 28 (b)。若要將一同調光源改為非同調,最常見的做法在光源的路徑上加入一亂數相位板(diffuser)即可打亂光源彼此間的同調特性,毛玻璃即是一種亂數相位板。日常所見到的照明系統絕大多數為非同調系統,而用同調光源進行照明時,會由於干涉而在影像上出現光斑(speckle),較不適合人眼觀賞。

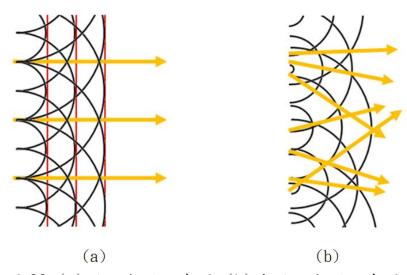


圖 28 (a)同調光源示意圖 (b)非同調光源示意圖

在同調照明系統中,光源上各位置間的相位差為定值,因此彼此會有干涉的情況產生,在一維空間中,若假設輸入資訊為f(x),則輸出資訊之強度分佈 $I_c(\alpha)$ 可寫為以下形式 $(x,\alpha$ 代表輸入與輸出平面的位置函數):

$$I_c(\alpha) = |f(\alpha) * h(\alpha)|^2$$
 (13)

式中的代 h(a) 表該系統中點擴散函數,此式子說明計算同調照明系統中輸出平面上的強度分佈時,必須將輸入平面上各點經由點擴散函數所造成之振幅進行疊加,最後再取絕對值平方轉換回強度。

而在非同調照明系統中,光源上各位置間的相位差是隨機的,因此輸出強度在疊加的過程中會變成零,而不具有干涉的現象。若假設在與前述相同的系統中,非同調照明所造成之輸出強度分佈 $I_i(\alpha)$ 則為以下形式:

$$I_i(\alpha) = \left| f(\alpha) \right|^2 * \left| h(\alpha) \right|^2 \tag{14}$$

此式子說明計算非同調照明系統中輸出平面上的強度分佈時,需將輸入資訊之強度與點擴散函數的絕對值平方做卷積運算。這代表在使用非同調光源做照明時,只需直接將輸入平面上各點到輸出平面上的強度進行加總即可得到輸出平面上的強度分佈。

根據上面的分析,非同調照明系統在不考慮繞射極限的情況下可直接使用橫向像差公式求出輸出影響的分佈。而同調照明系統中,光的波動特性明顯,故必須使用波面像差理論配合光波繞射公式方能求出輸出影像的強度分佈。根據傅氏光學中線性光學系統模型的假設,所有軸對稱的成像系統,無論系統是由多少面透鏡所組成,皆可簡化成圖 29 的模型。此模型將光學系統中的所有原件等效為圖中的方塊,物空間中任意點發出的光皆以球面波的形式自入光瞳(entrance pupil)進入該方塊,經由方塊的傳遞之後由方塊後方的出光瞳(exit pupil)離開方塊,並再次以球面波的形式於像平面上匯聚。此處所提到的入光瞳以及出光瞳的定義與幾何光學中相同,故可由幾何光學的方式求出。

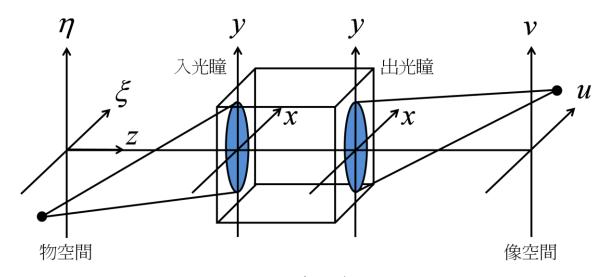


圖 29 成像系統等效模型

根據以上的分析,如欲求輸出影像分佈時,只需考慮各像點以球面波的形式自光瞳到像平面上的繞射情況,最後再將所有光點加總即可。若假設輸入資訊為 $U_o(\xi,\eta)$,則輸出資訊之表示式如下[13]:

$$U_{i}(u,v) = \iint h(u - \tilde{\xi}, v - \tilde{\eta}) U_{g}(\tilde{\xi}, \tilde{\eta}) d\tilde{\xi} d\tilde{\eta}$$
 (15)

其中 $U_g(\tilde{\xi},\tilde{\eta}) = \frac{1}{|M|}U_o(\xi,\eta)$,代表使用幾何光學所求出理想輸出影像的分佈,這個影像與原始的物體只有簡單的放大關係,而 M 為影像放大率,h(u,v)則為像平面上的點擴散函數,其數學式可寫為:

$$h(u,v) = A \iint P(x,y) \exp\left\{-j\frac{2\pi}{\lambda z_i}(ux + vy)\right\} dxdy$$
 (16)

A代表一常數強度,由於不會影響圖形的分佈,故在此可以忽略,P(x,y)為出光瞳的穿透函數, z_i 為出光瞳到像平面上的距離。由式(16)可知,像平面上的點擴散分佈可視為孔徑函數至像平面上的繞射條紋,。而當像差在系統中出現時,只需將孔徑函數對波面像差多項式做修正即可,修正過的穿透函數 P'(x,y) 可寫為[14]:

$$P'(x,y) = P(x,y) \exp[j\frac{2\pi}{\lambda}W(x,y)]$$
(17)

W(x,y)為像差多項式在直角坐標中的形式(說明見附錄 A)。藉由以上列出的關係式,我們即可計算在同調系統中受像差影響時的輸出的影像強度分佈。表 2 列出了輸出平面上點擴散分佈受到五種不同像差影響時的結果 (所有的像差係數皆假設為 0.5 個波長)。

根據數學式的分析可知,點擴散的的形狀只與波面像差系數值的大小有關,而影像的尺寸則與出光瞳方的數值孔徑有關。由表 2 可看出,艾瑞環受到各個像差影響而出現了不同的形狀,可視為艾瑞環受到了像差的影響而產生缺陷。而其形狀改變的趨勢與橫向像差的計算結果相似(球差所影響之艾瑞環能量以圓對稱向外擴散且遞減,彗差之能量分佈較偏向上面,像散之能量分佈往垂直方向拉長,場曲之能量以圓對稱擴散出去,畸變則直接造成像點的偏移),故可知當像差值夠大足以忽略艾瑞環的影響時,使用波面像差計算的點擴結果將近似於橫向像差之結果,。

1896

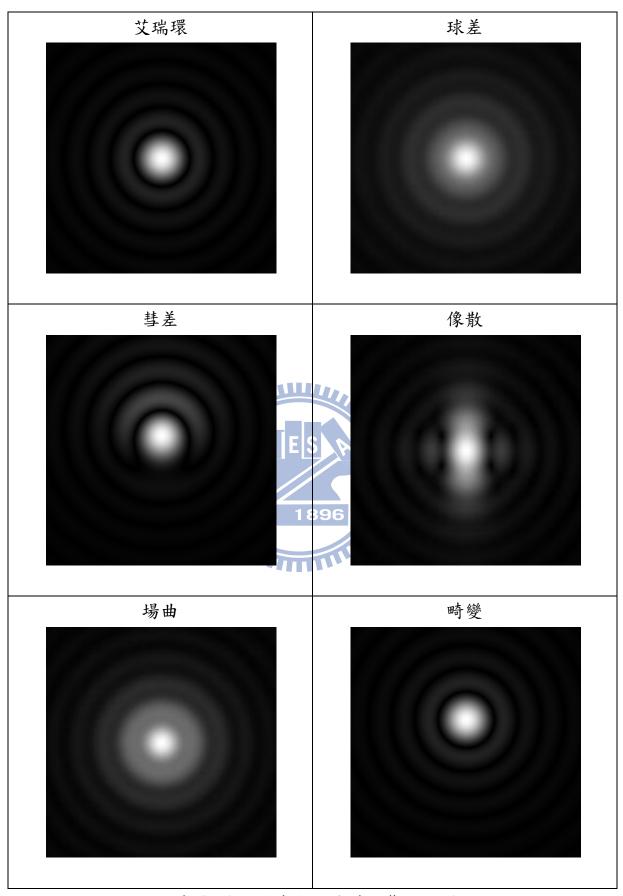


表 2 艾瑞環受各種像差影響之結果

第三章 電腦模擬

本章將使用 Matlab 模擬軟體,配合之前所寫的像差理論來計算賽德像 差對於全像儲存系統之誤碼率以及容量的影響。模擬主要分為兩部分,第 一部分將使用橫向像差公式,以幾何光學的方式計算非同調光系統中像差 對輸出資訊頁面的影響。第二部分則改用波面像差理論,以波動光學的方 式對同調系統做計算。兩部分都將使用 PDF 圖對輸出影像之誤碼率及儲存 容量做估計,並做出分析。

3.1 非同調照明系統中的模擬

本小節將使用橫向像差的公式對輸出影像的強度分佈做模擬,由於橫向像差公式是以純幾何光學的概念做運算,模擬中並不考慮光的繞射現象,故同樣忽略了光點的繞射極限,因此這個模擬適用於以非同調光做照明,且像差造成光點之擴散範圍遠大於光點繞射極限的系統中。

接下來將對模擬中使用的系統做介紹,模擬中我們使用波長為 473nm 的藍光做光源,接收資訊頁面的 CCD 共有 1000x1000 個畫素(一次可傳輸 100 萬位元),每個畫素皆為正方形,畫素寬度為 6.7um,而理想輸出訊號的強度比為 1:10(輸出能量範圍為 0~255,其中強度 20 代表資訊為 0,強度 200 代表資訊為 1)。

模擬時,我們假設系統一次只受到一種像差的影響,並將該像差的横向像差值從 0 開始每間隔 0.67um(1/10 個畫素寬)計算一次 PDF 圖直到誤碼出現。已知道光學系統參數的情況下,橫向像差係數可使用透鏡模擬軟體(如:Zemax, CodeV, OSLO···)求得,軟體提供之係數通常以釐米(mm)為單位。以球差為例,圖 30 為 TSPH 值大小與誤碼率之關係圖(詳細說明見附錄 B),由圖上可知,當 TSPH 值大於 8.71um 時(CCD 畫素大小的 1.3 倍),球差開始對系統造成誤碼。換言之,當 CCD 畫素寬度為 6.7um 且假設傳輸過程中不

具有其他的雜訊時,只要 TSPH 大於 8.71 um,即使其餘像差係數皆為 0,系 統仍會有誤碼出現。

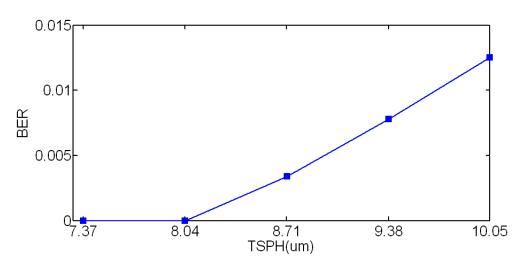


圖 30 球差 TSPH 值與誤碼率之間的關係

同理,我們可分別求出其他賽德像差開始造成誤碼的橫向像差值,結果如表 3 各像差開始造成誤碼時的橫向像差值所示。其中由於場曲值會受到像散所影響,且兩者對於影像的影響可歸納在一起,故在此我們將此兩者的模擬做合併,並假設 TTFC 等於兩倍的 TSFC。各像差之 PDF 圖,輸出閥值,誤碼率以及儲存容量則分別列於表 4-表 7 中。

横向像差别	TSPH	TTCO	TTFC	TDIS
横向像差值與資	1.3	1.4	0. 9	0. 5
訊點寬度的比例	1. 5	1.4	υ. ΰ	0. 5
對比我們實驗系	8.71um	9.38um	6.03um	3.35um
統的實際數值	o. Hulli	ฮ. องนแ	บ. บอนเม	อ. ออนเม

表 3 各像差開始造成誤碼時的橫向像差值

為了方便觀察,表3各像差開始造成誤碼時的橫向像差值的結果畫於圖31中。由模擬結果可知系統對於畸變的容忍範圍最小,其次為像散加場曲。事實上誤碼是否出現只與橫向像差值與資訊點寬度的比例有關,因此

對於不同畫素大小的儲存系統可推得其對應的橫向像差值。

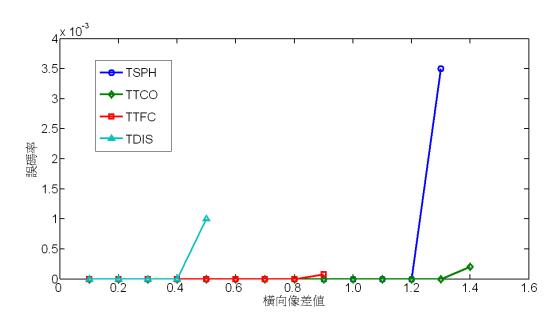


圖 31 横向像差值與誤碼率的關係

TSPH (與畫素大	PDF	I_{t}	BER	SC
小之比例)	0.12 0.11- 0.08- 0.08- 0.04- 0.02- 0.002- 0.002- 0.002- 0.002- 0.002- 0.003- 0.004- 0.003- 0.004- 0.003- 0.004- 0.003	58-163	0	1
0.7	0.07 0.06- 0.05- 0.02- 0.01- 0	77-144	0	1
1. 0	0.07 0.06- 0.05- \$\frac{1}{29} 0.04- 0.02- 0.01- 0.01- 0.01- 0.001- 0	98-124	0	1
1. 3	0.05 0.04 0.02 0.01 0.02 0.01 0.01 0.02 0.01 150 200 250	108	0. 002	0. 998

表 4 TSPH 在不同大小時的 PDF 圖

TTCO (與畫素大 小之比例)	PDF	I_{t}	BER	SC
0.5	0.07 0.06- 0.05- All 0.04- 0.02- 0.01-	57-164	0	1
0.8	0.06 0.05- 0.04- 150 200 250	83-138	0	1
1.1	0.06 0.05- 0.04- 150 200 250	96-124	0	1
1.4	0.04 0.04 0.002 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.03	110	2×10 ⁻⁴	0. 999

表 5 TTCO 在不同大小時的 PDF 圖

TTFC (與畫素大 小之比例)	PDF	I_{t}	BER	SC
0.3	0.05 0.04 0.02 0.02 0.01 0.02 0.01 150 200 250	57-164	0	1
0.5	0.02 0.02 0.01 0.01 0.01 0.005 0 50 100 Intensity 150 200 250	77-144	0	1
0. 7	0.02 0.02 0.01 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.010	94-127	0	1
0.9	0.025 0.025 0.015 0.005 0.005 150 200 250	111	8×10 ⁻⁵	0. 999

表 6 TTFC(假設 TTFC=2TSFC)在不同大小時的 PDF 圖

TDIS				
(與畫素大	PDF	I_{t}	BER	SC
小之比例)				
0.2	0.18 0.16- 0.14- 0.12- 0.08- 0.08- 0.08- 0.00- 0.04- 0.02- 0 50 100 Intensity 200 250	68-152	0	1
0.3	0.16 0.14- 0.12- 0.01- 0.06- 0.04- 0.02- 0 00- 0 0	90-132	0	1
0.4	0.14 0.12- 0.1- 0.08- 0.06- 0.04- 0.02- 0 50 100 Intensity 150 200 250	109-113	0	1
0.5	0.14 0.12- 0.1- 0.08- 0.08- 0.00	110	0. 001	0. 997

表7 TDIS 在不同大小時的 PDF 圖

3.2 同調照明系統中的模擬

實際上在大部分的全樣儲存系統中大多以同調光源做記錄,此外系統設計時通常會希望 CCD 具有較小的畫素,最好能接近光學系統的繞射極限,以得到更高的資料儲存量與傳輸率。在這些情況下,光的波動性直接十分明顯,因此本節將使用波面像差的概念,代入光波繞射公式來計算資訊頁面的輸出分佈。

模擬中使用的系統與3.1節相同,但由於在此使用的是波面像差理論, 因此這部分的模擬中的變數用波面像差系數(模擬方式詳見附錄 C)。波面像 差系數同樣可以直接使用透鏡模擬軟體求得,軟體所提供的系數通常以波 長為單位。以球差為例,當₀w₄₀=1,則代表光波由出光瞳離開時,光波靠 近光瞳邊緣的相位比光軸上之光波快 2π (一個波長)。此外,根據2.7節的 分析,波面像差系數只造成艾瑞環的變形,而原始艾瑞環的大小仍由系統 之數值孔徑所決定(點擴散分佈的形狀取決於波面像差係數,而分布範圍大 小取決於數值孔徑),因此本節的模擬中,除了波面像差係數外,必須多考 慮數值孔徑這項變數。數值孔徑之值從 0.1 開始,每間隔 0.1 取樣一次直 到 0.7。對於同一數值孔徑下則與 3.1 節一樣,分別將各波面像差系數慢慢 增大直到該像差開始對系統造成誤碼(在此同樣將像散與場曲一起模擬,並 假設 2,W22=2,W20)。但在模擬過程中發現所得的波面像差系數的分佈範圍差異 較大(可能小於1,也可能大於100),若是如同3.1節中使用取樣間隔為0.1, 數據量會太大以至於難以計算而且沒有意義,故此處的模擬中對於波像差 的取樣規則訂於表 8 之中,例如當某像差值等於 20 卻無法造成輸出資訊之 誤碼時,接下來的模擬數值將為 22、24、26···,而當該像差數值等於 50 卻 無法造成輸出資訊之誤碼時,接下來的模擬數值將為55、60、65…。

波面像差系數值(λ)	<10	10~20	20~50	50~100	>100
模擬取樣間隔(λ)	0.1	1	2	5	10

表 8 波面像差值的模擬取樣規則

藉由前面解說的方式進行模擬,可得到不同數值孔徑下,波面像差開始造成誤碼率的值,如表 9 所示,例如當此系統中 N. A. 值為 0.1 時(此時艾瑞環第一個零點離中心的位置為 5.77um),只要球差的波面像差值大於 0.3,輸出資訊就會有誤碼產生。表 9 相對應之 PDF 圖,輸出閥值,誤碼率以及儲存容量則分別列於表 3.8-表 3.14 中(N. A. 從 0.1~0.7[15])。

N. A. 像差	0.1	0.2	0.3	0.4	0.5	0.6	0.7
球差	0.3	3.4	16	50	120	260	>300
彗差	0.4	3. 1	9.5	26	44	70	110
像散+場曲	0.2	0.7	1.5	2. 6	4	5. 6	7. 7
畸變	0.3	0.6	0.9	1. 2	1.5	1.8	2. 1
畫素大小與艾 瑞環半寬比值	1.16	2. 32	3. 48	4. 64	5. 81	6. 97	8. 13

表 9 不同 N. A. 時各項差開始造成誤碼之波面像差值(畫素寬 6.7um)

不同 N. A 情況下,波面像差值與開始造成資訊錯誤的誤碼率如圖 32 所示。而通常在已知使用波長以及出瞳 N. A. 情況下,藉由繞射極限的公式可知沒有像差時,像平面上艾瑞環之中心至第一個零點的距離為 1.22 λ/N. A. 。故為了能使表 9 的結果能推廣到所有的系統,我們將表中的 N. A. 值改為 CCD 畫素寬度與繞射寬度之比值,並畫成圖 33,例如,某一成像系統造成艾瑞環之半寬為 1.92 μm, CCD 畫素寬為 6.7 μm, 此時畫素大小與繞射極限之比值為 3.48,故可根據圖 33 得知該系統對 ων3ω 的容忍度為 16 個波長。如此即可在已知系統條件下大略找出該系統可容忍的最大像差值。由圖上可看出,無論哪一種像差都會隨著系統畫素大小與繞射極限比值的增加而上升,故可知在固定 CCD 畫素的情況下,光路系統的繞射極限越小則對於波面像差的容忍值可以越高。由模擬結果可知系統對於畸變的容忍度是最低的,其次是像散加場曲,彗差,容忍度最高的則為球差。

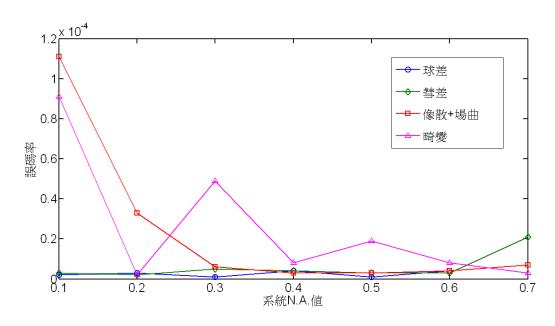


圖 32 不同 N. A 情況下波面像差值與開始造成資訊錯誤的誤碼率

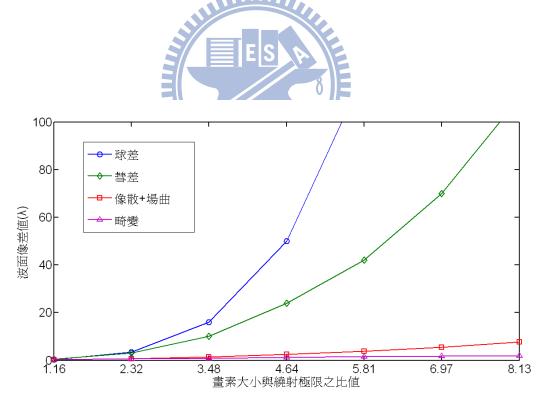


圖 33 不同畫素大小與繞射極限比值下系統對於波面像差值的容忍值

波面像差值	PDF	I_{t}	BER	SC
艾瑞環 N. A. =0.1	0.018 0.016 0.014 0.012 0.010 0.006 0.006 0.006 0.006 0.006 0.000	87-128	0	1
$_{0}W_{40}=0.3$	0.015 0.005 0.005 0.005	112	2×10^{-6}	0.99
$_{1}w_{31}=0.4$	0.012 0.001 0.008 0.004 0.002 0.004 0.002 1896 0.006 150 Intensity 200 250	108	3×10^{-6}	0. 99
$_{2}w_{22} = 0.2$ $_{2}w_{20} = 0.2$	0.014 0.012 0.001 0.008 0.008 0.004 0.002 0 100 Intensity	115	1.11×10 ⁻⁴	0. 99
$_{3}W_{11}=0.3$	0.015 0.005 0.005 0.005	109	9.1×10 ⁻⁵	0. 99

表 10 系統 N. A. = 0.1 時各像差在可容忍最大值時之 PDF

波面像差值	PDF	I_{t}	BER	SC
艾瑞環 N. A. =0.2	0.05 0.04 100 100 150 100 150 200 250	58-149	0	1
$_{0}W_{40}=3.4$	0.015 0.005 0.005 0.005 50 100 intensity 200 250	106	3×10^{-6}	0. 99
$_{1}w_{31} = 3.1$	0.018 0.016 0.014 0.012 0.019 0.006 0.006 0.006 0.004 0.002 0.002 0.002	100	2×10^{-6}	0. 99
$_{2}w_{22} = 0.7$ $_{2}w_{20} = 0.7$	0.018 0.016 0.014 0.012 0.011 100 0.004 0.004 0.004 0.002 0.004 0.002	105	3.3×10 ⁻⁵	0. 99
$_{3}W_{11}=0.6$	0.025 0.025 0.015 0.005 0.005 100 Intensity 150 200 250	101	2×10 ⁻⁶	0. 99

表 11 系統 N. A. = 0. 2 時各像差在可容忍最大值時之 PDF

波面像差值	PDF	I_{t}	BER	SC
艾瑞環 N. A. =0.3	0.18 0.16- 0.14- 0.12- 0.08- 0.08- 0.04- 0.04- 0.02- 0.04- 0.02- 0.04- 0.02- 0.05- 0.04- 0.05- 0.04- 0.05- 0.05- 0.06- 0.07- 0.08- 0.0	42-184	0	1
$_{0}W_{40}=16$	0.015 0.005 0.005 0.005	115	1×10 ⁻⁶	0. 99
$_{1}w_{31} = 9.5$	0.015 0.001 0.005 1896 150 200 250	110	5×10 ⁻⁶	0. 99
$_{2}w_{22} = 1.5$ $_{2}w_{20} = 1.5$	0.015 0.005 0.005 0.005 0.005 100 Intensity 150 200 250	114	6×10 ⁻⁶	0. 99
$_{3}W_{11}=0.9$	0.045 0.04- 0.035- 0.03- 0.025- 0.01- 0.01- 0.005- 0.01- 0.005- 0.01- 0.005- 0.01- 0.005- 0.01- 0.005- 0.01- 0.005- 0.01- 0.005- 0.01-	111	4.9×10 ⁻⁵	0.99

表 12 系統 N. A. = 0. 3 時各像差在可容忍最大值時之 PDF

波面像差值	PDF	I_t	BER	SC
艾瑞環 N. A. =0. 4	0.12 0.1- 0.08- 0.06- 0.04- 0.02- 0 50 100 Intensity 150 200 250	31-170	0	1
$_{0}W_{40} = 50$	0.018 0.016- 0.014- 0.012- 100 0.008- 0.006- 0.006- 0.004- 0.002- 0 0.002- 0 0 0 0 0 0.002- 0 0 0 0 0 0 0.002- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	104	4×10^{-6}	0. 99
$_{1}w_{31} = 24$	0.016 0.012- 0.012- 0.014- 0.001- 0.004- 0.002- 0 50 100 Intensity 50 200 250	100	4×10^{-6}	0. 99
$_{2}w_{22} = 2.6$ $_{2}w_{20} = 2.6$	0.018 0.016 0.014 0.012 0.019 0.008 0.008 0.008 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002	104	3×10^{-6}	0.99
$_{3}W_{11} = 1.2$	0.05 0.04 10.03 0.02 0.01 0.01 100 Intensity 150 200 250	101	8×10 ⁻⁶	0. 99

表 13 系統 N. A. = 0. 4 時各像差在可容忍最大值時之 PDF

波面像差值	PDF	I_{t}	BER	SC
艾瑞環 N. A. =0.5	0.12 0.1- 0.08- 0.06- 0.04- 0.02- 0 50 100 Intensity 150 200 250	27-172	0	1
$_{0}W_{40} = 120$	0.018 0.016- 0.014- 0.012- 0.011- 100 0.008- 0.006- 0.004- 0.002- 0 0.002- 0 0 0 0 0.002- 0 0 0 0 0 0.002- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	104	1×10 ⁻⁶	0.99
$_{1}w_{31} = 44$	0.018 0.016- 0.014- 0.012- 0.006- 0.006- 0.006- 0.004- 0.002- 0 50 100 intensity 200 250	100	3×10^{-6}	0. 99
$_{2}w_{22} = 4$ $_{2}w_{20} = 4$	0.018 0.016 0.014 0.012 0.010 0.006 0.006 0.004 0.002 0.000 50 100 Intensity 150 200 250	104	3×10 ⁻⁶	0. 99
$_{3}W_{11} = 1.5$	0.05 0.04 0.03 0.01 0.01 0.01 100 Intensity 150 200 250	101	1.9×10 ⁻⁵	0.99

表 14 系統 N. A. = 0.5 時各像差在可容忍最大值時之 PDF

波面像差值	PDF	I_t	BER	SC
艾瑞環 N. A. =0. 6	0.18 0.16- 0.14- 0.12- 0.08- 0.08- 0.04- 0.02- 0 50 100 intensity 150 200 250	28-169	0	1
$_{0}W_{40} = 260$	0.018 0.016- 0.014- 0.012- 1.0004- 0.006- 0.004- 0.002- 0 0.002- 0 100 Intensity	104	4×10^{-6}	0. 99
$_{1}w_{31} = 70$	0.018 0.016- 0.014- 0.012- 0.006- 0.006- 0.006- 0.004- 0.002- 0 50 100 Intensity 50 200 250	100	3×10 ⁻⁶	0. 99
${}_{2}w_{22} = 5.6$ ${}_{2}w_{20} = 5.6$	0.016 0.012- 0.012- 0.001- 0.006- 0.004- 0.002- 0.000- 0.0004- 0.002- 0.0004- 0.002- 0.0004- 0.002- 0.0004- 0.002- 0.001- 0.002-	104	4×10^{-6}	0. 99
$_{3}W_{11} = 1.8$	0.06 0.05 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	101	8×10^{-6}	0. 99

表 15 系統 N. A. =0.6 時各像差在可容忍最大值時之 PDF

波面像差值	PDF	I_{t}	BER	SC
艾瑞環 N. A. =0.7	0.2 0.15- 0.05- 0.05- 100 Intensity 150 200 250	25-173	0	1
$_{0}W_{40} = 300$	0.025 0.02- 20.015- 0.005- 0.005- 100 Intensity 150 200 250	93-115	0	1
$_{1}w_{31} = 110$	0.018 0.016- 0.014- 0.012- Miliag 0.01- 200 0.008- 0.006- 0.004- 0.002-	100	2.1×10 ⁻⁵	0. 99
$_{2}w_{22} = 7.7$ $_{2}w_{20} = 7.7$	0.016 0.014 0.012 0.001 0.000 0.000 0.0004 0.0002 0.0004 0.0002	104	7×10^{-6}	0. 99
$_{3}W_{11}=2.1$	0.07 0.06- 0.05- 100 0.04- 0.02- 0.01-	101	3×10 ⁻⁶	0. 99

表 16 系統 N. A. = 0. 7 時各像差在可容忍最大值時之 PDF

3.3系統模擬

本小節將以一個實際的系統參數進行模擬。圖 34 為一常見傅式全像儲存系統架構,其優點在於資訊光可在系統傅式平面處會聚成一個很小的點,故可以使材料具有更高的儲存密度。而由於我們的模擬中只在意資訊影像從 SLM 到 CCD 的過程中受成像系統像差的影響,因此模擬時我們只需對圖 34 中虛線方框中的成像系統進行模擬。模擬中我們假設雷射波長為 473nm,且系統為同調照明,SLM 的畫素大小為 8.1 um,CCD 畫素大小為 6.7 um,SLM 與 CCD 可使用之最大解析度皆為 1000x1000,故可得系統的最大物體半高為 5.73mm,最大影像半高則為 4.74mm。

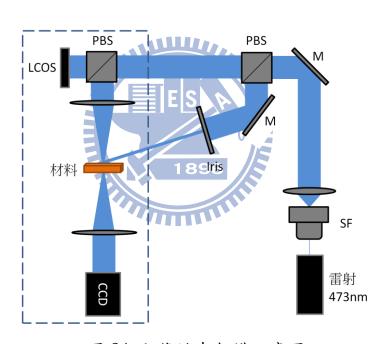
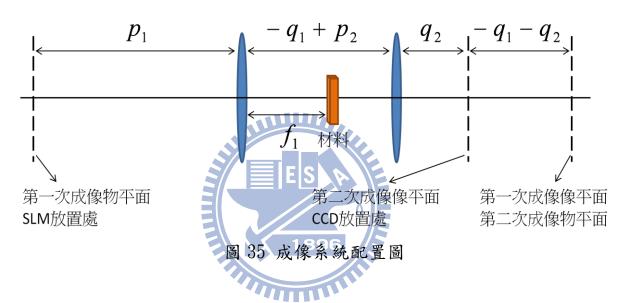



圖 34 全像儲存架構示意圖

由於在我們的系統中 SLM 與 CCD 的畫素大小並不匹配,因此無法直接使用 4-f 系統做成像。而為了使系統仍能具有傅式全像的優點,我們將傳統的 4-f 系統修改成二次成像系統,並使系統之放大率不等於一,且根據傅氏光學的概念,若以平面波照射一物體時,則無論物體距離透鏡多遠皆可在透鏡的後焦平面上得到其傅氏轉換的強度分佈,故此時只需將材料放置於第一面透鏡的後焦平面上即可。圖 35 為成像系統之配置圖,我們將兩片透鏡的位置稍做調整,使物體對第一面透鏡成像後影像位置落於第二面

透鏡的後面,此時所成的影像對於第二面透鏡來說是一虚物,接著藉由第二面透鏡對虛物做成像,最後 CCD 則放置於第二次成像的像平面上。系統中我們使用兩面相同的雙凸透鏡,光路之細節則使用 Zemax 軟體的試算表呈現於表 17 中。此處我們將孔徑光欄設定在系統中第一面透鏡的第一個面上。透鏡為焦聚 150mm 的雙凸透鏡,兩面的曲率皆為 153. 49mm,中央厚度為9mm,材質為 BK7(n=1.5168)。將波長與物體高度一並設定至 Zemax 之中後,即可經由 Zemax 計算出該系統內的五個波面像差系數與出瞳方 N. A. 值,並將這些數值列於表 18 之中。

(i) Le	ens Data Editor						×
<u>E</u> dit	\underline{S} olves \underline{O} ptions]	<u>H</u> elp					
	Surf:Type	Comment	Radius	Thickness	Glass	Semi-Diameter	^
OBJ	Standard		Infinity	240.000000		5.727582	
STO	Standard		153.490000	9.000000	BK7	20.142291	
2	Standard		-153.490000	242.050000		20.294349	7
3	Standard		153.490000	9.000000	BK7	12.189287	7
4	Standard		-153.490000	66.657885		11.792935	7
IMA	Standard		Infinity			5.297169	v
<							> .::

表 17 Zemax 光路試算表

出瞳方 N. A.	$_{0}W_{40}$	$_{1}W_{31}$	$_{2}W_{22}$	$_{2}W_{20}$	$_{3}W_{11}$
0.1	31.81	6.81	2.40	2.28	0.97

表 18 模擬系統之出瞳 N. A. 與波面像差係數值表

藉由表 18 所列之參數,對照 3.2 節的結論可知在此畫素大小與繞射極限比值下必定會使得輸出資訊出現誤碼的情形,然而成像系統之 N. A. 與 CCD 畫素大小通常都是定值,因此只能藉由使用 CCD 多個畫素(2x2,3x3…)組成一個資訊點的方式來設法提高畫素大小與繞射極限比值來設法降低儲存系統的誤碼率,但每頁的儲存容量卻也將因此而減少。再次對照 3.2 節的模擬結果可知,此系統受限於球差、像散、場曲與畸變的關係,因此至少必須使用 CCD 上 4x4 以上的畫素做為輸出影像的一個位元(此時輸出資訊頁面之總容量由 1000x1000 bit 下降至 250x250 bit)才有機會使誤碼率降為零,故我們模擬了畫素為 3x3 到 6x6 時系統的誤碼情形,模擬結果之 PDF圖、輸出閥值、誤碼率、儲存容量與單頁之解析度如表 19 所示。

根據模擬的結果可知當使用 5x5 的畫素做一個位元時,可使得誤碼率低於最大誤碼率可修正之上限(0.005),而當使用畫素為 6x6 時,方可使誤碼率降為 0。

位元大小(容量/頁)	PDF	I_{t}	BER	SC
3x3 110K(bit)	9x 10 ⁻³ 8	99	0.14	0.54
4x4 62.5K(bit)	0.014 0.012- 0.011- 2 0.008- 0.004- 0.002- 0 0001- 100 Intensity 150 200 250	102	0.01	0.95
5x5 40K(bit)	0.018 0.016- 0.014- 0.012- 1	102	7.5×10^{-5}	0.99
6x6 27.6K(bit)	0.025 0.02- 20.015- 0.005- 0.005- 0.005- 150 200 250	101-107	0	1

表 19 系統使用不同解析度進行儲存時的結果

3.4 孔徑光欄對系統之影響

根據波面像差的公式可知像差係數的大小與物體的高度及光瞳孔半徑大小有關,因此在光學設計中,有時會藉由限制孔徑光欄的大小來控制像差對影像的影響。然而這項結論的應用範圍通常為非同調照明系統,且根據 3.2 節內對同調照明系統的模擬可知當系統的 N. A. 越高時,輸出資訊對於像差的容忍度也越高,因此本節將模擬系統孔徑光欄變化時像差對於誤碼率以及儲存容量的影響,來觀察這項結論是否同樣能應用在同調照明的全像儲存系統中。模擬中使用的光路架構與 3.3 節內相同,但我們此處將孔徑光欄的大小減為原來的一半,則可得此時系統的五個波面像差系數與出瞳方 N. A. 值並列於表 20 中。

出瞳方 N. A.	$_{0}W_{40}$	$_{1}W_{31}$ $_{2}W_{3}$	$_{2}W_{20}$	$_{3}W_{11}$
0.05	1.99	0.85 - 0.6	0.57	0.48

表 20 系統孔徑光欄改變時出瞳 N.A. 與波面像差係數值

為了讓兩組系統有對照的依據,在此同樣模擬了畫素為 3x3 到 6x6 時系統的誤碼情形,模擬結果之之 PDF 圖、輸出閥值、誤碼率、儲存容量與單頁之解析度如表 21 所示。此條件下模擬的結果與 3.3 節中十分相似,同樣在使用 5x5 的畫素做一個位元時能使誤碼率低於 0.005,並在使用畫素為 6x6 的時候能使誤碼率降為 0。

位元大小(容量/頁)	PDF	I_{t}	BER	SC
3x3 110K(bit)	9 x 10 ³ 8 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	99	0.15	0.54
4x4 62.5K(bit)	0.014 0.012- 0.011- 0.001- 0.004- 0.002- 0.004- 0.002- 0.004- 0.002- 0.004- 0.002- 0.006-	103	0. 01	0.96
5x5 40K(bit)	0.015 0.005	103	5×10 ⁻⁵	0.99
6x6 27.6K(bit)	0.025 0.02- 20.015- 0.005- 0.005- 0.005- 150 200 250	101-107	0	1

表 21 系統孔徑光欄改變時使用不同解析度進行儲存的結果

3.5 系統改進

對照 3.2 節中歸納出的像差容忍度,可發現 3.3 節的系統中,球差是主要限制系統誤差的像差。此外根據像差理論可知,球差對於輸出影像的影響在整個影像上是均勻的,並不像其他像差會在像點遠離光軸的時候影響越來越大,因此若能降低系統的球差值,將能大幅降低球差造成的誤碼率。本節中將根據這個推論設計一個透鏡組並觀察其效能。

由於希望設計中透鏡組的組成鏡片能容易取得,因此皆採用 Edmund 光學元件公司產品目錄中現有的鏡片。設計圖如圖 36 所示,光路試算表如表 22 所示,其中假設波長為 473nm,光欄設在第三面透鏡的第一個面,入射光瞳大小設為 37.3mm,物體半高設為 5.73mm。圖 36 中透鏡的型號由左至右依次為 Y45-171,Y45-165,Y32-996,Y45-165 [16]。由於這些透鏡皆為左右對稱,因此並沒有正反面的問題。此透鏡組是以光學設計中常見的三片鏡組(Triplet)為基礎所建立的,圖 36 中右邊的三個透鏡即為典型三片鏡組形式。最左邊的凸透鏡則是用來縮短系統長度,以增加出瞳 N.A.。同樣藉由光學軟體的計算,我們可以得到此系統之出瞳 N.A.與波面像差值如表 23 所示。

圖 36 鏡組光路圖

表面編號	表面 名稱	表面類型	Y半徑	厚度	玻璃	折射 模式	Y 半孔徑	
物體		球面	無窮大(N)	156.5000		折射	0	
1		球面	257.5700	4.9300	BK7_SCHO	折射	14.0919 ^O	
2		球面	-257.5700 P	52.2163 ^V		折射	14.1596 ^O	
3		球面	76.6700	4.9600	BK7_SCHO	折射	13.9463 ^O	
4		球面	-76.6700 ^P	7.6262 ^V		折射	13.7861 ^O	
光欄		球面	-52.1000	2.5000	BK7_SCHO	折射	12.2743 ^O	
6		球面	52.1000 P	12.0000 V		折射	12.2558 ^O	
7		球面	76.6700	4.9600	BK7_SCHO	折射	13.8098 ^O	
8		球面	-76.6700 P	142.8288 ^S		折射	13.8632 ^O	
影像		球面	無窮大(N)	0.0000		折射	4.7368 ^O	
	資料結 星 ,							

表 22 改進後之系統光路試算表

出瞳方 N. A.	$_{0}W_{40}$	$_{1}W_{31}$	$_{2}W_{22}$	$_{2}W_{20}$	$_{3}W_{11}$
0.075	0.34	-1.53	1.96	1.69	-0.17

表 23 改進後系統之出瞳 N. A. 與波面像差係數值

為了使改進後的系統與前面相互對照,在此同樣模擬了畫素為 3x3 到 6x6 時系統的誤碼情形,模擬結果之之 PDF 圖、輸出閥值、誤碼率、儲存容量與單頁之解析度如表 24 所示。由模擬的結果可發現,此系統可在使用 4x4 個畫素作為一個位元時使輸出之誤碼率降低至 0.005 以下(此條件下單頁儲存容量提升了 22.5 Kb),並在 5x5 時使 0 與 1 的分佈完全分開(此條件下單頁儲存容量提升了 12.4 Kb)。

位元大小(容量/頁)	PDF	I_{t}	BER	SC
3x3 110K(bit)	0.015 0.001 0.005	104	0.02	0.94
4x4 62.5K(bit)	0.015 0.005	107	6×10 ⁻⁴	0.99
5x5 40K(bit)	0.025 0.02- 1896 0.015- 0.005- 0.005- 0.005- 0.005- 0.005- 0.015- 0.005- 0.015- 0.005- 0.015- 0.	103-108	0	1
6x6 27.6K(bit)	0.025 0.015 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	94-120	0	1

表 24 改進之系統使用不同解析度進行儲存的結果

3.6 模擬結果討論

由模擬的結果可知,在繞射極限可被忽略的非同調照明系統中,輸出資訊的 PDF 與橫向像差值有關,五個賽德項差所能容許的最大橫向像差值皆小於 1.5 個畫素寬。其中系統對於畸變的要求最嚴苛,最大只能到 0.4 個畫素寬,其次是像散加場曲的 0.8 個畫素寬。此外由模擬中可以明顯看出球差的 PDF 分佈與後面三者相異,這是由於球差是唯一一個不受物體高度影響的像差,它在影像上各處的影響是相同的,因此其 PDF 分佈會均勻的往兩邊擴散。其餘的像差皆會受到物體高度的影響,影像在光軸附近仍十分清晰但光點離光軸越遠時將越模糊(或越偏離原來的位置),因此 PDF 分佈會在理想強度的附近有極大值,而尾端部分的分佈則會被拉長。

在同調照明系統中,輸出資訊的 PDF 與系統的出同方艾瑞環寬度以及波面像差系數值兩項參數有關,故只要知道某系統中此兩系參數之間的比例,即可由模擬結論(圖 33)中估計出該系統對於各個像差的最大容忍值。由模擬的結果可以看出,儲存系統對於各個像差之波面像差系數的容忍度由低至高分別為畸變、像散加場曲、彗差、容忍度最高的則為球差,且當畫素寬度與艾瑞環半寬比例大於 6.97 時,球差與彗差幾乎可以被忽略(對於任意的系統來說此時的波面像差系數要求皆可以很輕易的達到)。此外當系統 N. A. 增加時對於球差的容忍度上升的很快,其次是彗差,像散加場曲,系統 N. A. 增加時對於球差的容忍度上升的很快,其次是彗差,像散加場像當公式,可發現此排列順序與像差多項式內所含有之孔徑參數 ρ的次方數相同,故可知以同調光源進行照明時,成像系統對於具有孔徑參數超高次方像差的容忍度較大。在同調照明系統內只有畸變的 PDF 圖尾端有較為明顯的拉長現象。由於在一固定的系統之內,即使將所有像差修正為 0,系統的約拉長現象。由於在一固定的系統之內,即使將所有像差修正為 0,系統的統射極限仍會造成分佈 PDF 變寬,故系統的 N. A. 與波長將決定該系統經過像差修正後,可能使用的最小畫素寬度。

同調與非同調系統中,畸變的 PDF 十分相似,特別是當繞射光點大小遠小於 CCD 畫素寬時,這應該畸變是唯一個在像平面上仍以完整艾瑞環型式出現的像差,因此產生像差時影像品質較不受光學波動性質的影響。且

無論在同調或非同調照明系統中,對於畸變都是要求最嚴苛的,其次則是像散加場曲。

經由 3.3 節中的模擬可以知道,在該系統條件的情況下,至少必須使用 5x5 的畫素(單一資訊頁之總容量為 200x200 個 bit,誤碼率之精準度為 2.5×10^{-5})來組成一個位元才有可能使得系統的誤碼率小於 0.005,並至少要使用 6x6 的畫素(單一資訊頁之總容量為 166x166 個 bit,誤碼率之精準 度為 3.6×10^{-5})才有可能使得代表 0 與代表 1 的分佈完全分開。

3.4 節中我們希望試著藉由控制孔徑(使出瞳 N.A.縮小為原來的一半)的方式來縮小各像差的橫向差值,觀察儲存的品質。但模擬的結果發現,在使用同樣解析度的情況下所得到的 PDF 分佈與 3.3 節的結果十分相似,故可知在同調光源照明的全儲存系統中無法藉由控制孔徑使波面像差值縮小,進而達到降低誤碼率的目的。這是由於孔徑縮小的過程中艾瑞環也跟著變大,然而這樣的過程卻會造成系統光學像差的可調範圍縮小,並降低資訊影像可能達到最高解析度。

最後我們針對球差進行修正得到了一個改進的系統。由影像模擬的結果發現,此系統能在使用 4x4 的畫素為一個位元時,使誤碼率低於 0.005,並在使用 5x5 的畫素時,使 PDF 上 0 與 1 的分佈完全分開。相較於 3.3 節中的系統,改進過後的鏡組確實能具有較高的效能。

第四章 結論

本論文像差理論來計算非同調與同調照明情況下像差對於全像儲存系統的影響。在非同調系統中,鄰近光波間沒有任何相對關係,輸出平面上影像的強度分佈可直接使用光線密度的概念來做疊加,因此可以應用純幾何光學概念的橫向像差公式來模擬。而在同調照明系統中,由於光的波動性質明顯,因此必須使用波面像差的概念,配合波動光學的方式來求得輸出影像的強度分佈。使用橫向像差計算像點分佈時,不考慮光波的繞射現象,光點擴散的大小與形狀只與橫向像差係數值有關。應用波面像差代入繞射公式計算像點分佈時,輸出光點擴散分佈受到波面像差系數與系統繞射極限影響,其形狀與波面像差係數有關,而影像分佈的大小則與系統的繞射極限有關。最後在已知輸出頁面的強度分佈的強況下,即可得知輸出資訊頁的PDF圖,並應用通訊理論的概念計算出輸出閥值,誤碼率以及儲存容量。

1896

在非同調系統的模擬中、藉由增加各像差的橫向像差值可得到系統對於該像差的最大容忍範圍,而此容忍值只與畫素大小和橫向像差值的比例大小有關,故此結果可應用於任何以非同調照明且解析度為1000x1000的全像儲存系統中。在同調系統中的模擬則改用波面像差系數做為變數,且由於波動光學中必須考慮到繞射極限的影響,因此模擬時多了繞射光點寬度的變數,故模擬中又分別在同一系統,不同 N. A. 的情況下做計算。對於其他任意系統,則只需求出該系統畫素大小與繞射光點寬度之比值即可在前面的模擬結果中找到相對應的像差容忍值。而當系統之 N. A. 值越大時可發現系統對於各像差的容忍度皆越來越高,但容忍值增加的速度以球差寬度為 6. 7um 時,當系統 N. A. 值大於 0. 7 時,球差與彗差幾乎可以忽略以球差寬度為 6. 7um 時,當系統 N. A. 值大於 0. 7 時,球差與彗差幾乎可以忽略,其次是彗差,像散加場曲,於可以很輕易的達到。最後由模擬結果可發現,無論是在使用橫向像差進行模擬的非同調照明系統或是以波面像差做模擬的同調照明系統中,時變可容忍的數值範圍皆是最小的,其

次是像散加場曲。

藉由系統的模擬結果可知此該系統至少要使用 5x5 的畫素做為一個位元才能使誤碼率低於 0.005,使用 6x6 的畫素時則可以使 0 與 1 的分佈完全分開。而藉由改變系統光欄的模擬結果可知我們無法藉由縮小孔徑來降低系統的誤碼率,因為此時像差值雖然變小,但繞射光點卻變大了。雖然兩個系統具有十分相似的 PDF 以及誤碼率,但是由於原始系統的繞射光點較小,故具有較高像差消除空間使輸出影像有更高的解析度。因此在同調系統照明的全像儲存系統中會希望光路具有較高的 N. A. 值。而在最後針對球差進行修正的系統模擬中可看出,此鏡組確實能使系統具有較高的頁面畫素使用率。

經由本論文的研究與分析即可知固定條件下,系統對於像差的要求, 以提供全像儲存光學系統中的透鏡設計做參考。或提供多工儲存時,計算 誤碼率的起始 PDF 參考模型。

附錄 A 直角坐標中的像差多項式

幾何光學的推導當中,像差多項式通常以極座標(ρ,θ)的形式出現,如公式(5)所示。但在傅氏光學的推導中卻常以直角坐標(x,y)的形式出現。 將要極座標轉為直角坐標時,只需根據以下規則做代換即可:

$$\rho = \sqrt{x^2 + y^2}$$

$$\rho \cos \theta = y$$

賽德像差的兩種座標軸形式列於表 25 中:

	極座標形式	直角坐標形式
球差	$_{0}W_{40}\rho^{4}$	$_{0}W_{40}(x^{2}+y^{2})^{2}$
彗差	$_{1}w_{31}\eta\rho^{3}\cos\theta$	$_{1}w_{31}\eta(x^{2}+y^{2})y$
像散	$_2 w_{22} \eta^2 \rho^2 \cos^2 \theta$	$_{2}w_{22}\eta^{2}y^{2}$
場曲	$_{2}w_{20}\eta^{2}\rho^{2}$ 1896	$_{2}w_{20}\eta^{2}(x^{2}+y^{2})$
畸變	$_{3}W_{11}\eta^{3}\rho\cos\theta$	$_3w_{11}\eta^3y$

表 25 波面像差座標兩種形式對照表

附錄 B 非同調照明模擬方式說明

模擬單頁 PDF 的第一步必須先建立一個理想的輸入影像。 圖 37 為某一資訊影像的一部分,每個資訊點的寬度假設為 6.7um,且每個資訊點使用 10x10 個子畫素做模擬。

圖 37 理想輸入訊號

1896

以球差為例,假設我們輸入 TSPH=6.7um,根據橫向像差的公式,可描繪出像平面上一點受球差影響時的點擴散分佈。將向平面上所有像點的擴散分佈疊加在一起,即可得到的受球差影響的輸出影像,如圖 38 所示。

圖 38 受求差影響的輸出影像

接著將這個圖形內每個資訊點(10x10 的範圍)上的強度做平均,即可得圖 39 的資訊點灰階分佈圖。

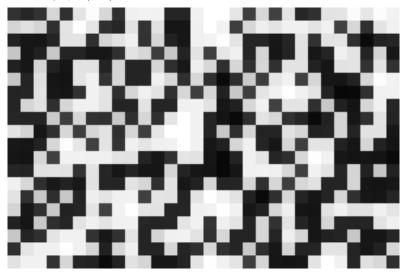


圖 39 輸出影像個資訊點之灰階值

藉由圖 39 輸出影像個資訊點之灰階值即可統計出該像差情況下輸出 資訊頁面的 PDF 圖,並根據 2.1 節中的通訊通道理論,求出誤碼率以及儲 存容量。最後藉由輸入不同大小的橫向像差值,分別計算出 PDF 圖、誤碼 率以及儲存容量後,即可得到圖 30 中 TSPH 值與誤碼率的關係,並能找到 系統對於球差的容忍度。其餘的像差皆可以使用同樣的方式找到系統對該 像差的容忍度。

最後可整理出非同調照明系統的模擬流程圖如下:

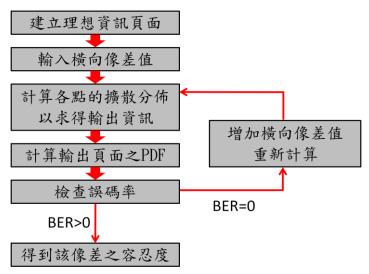


圖 40 非同調照明系統的模擬流程

附錄 C 同調照明系統中的模擬方式

相較於非同調照明系統,同調照明系統的模擬中使用的模擬參數是波面像差系數,以外同調系統中還多了一項繞射極限的影響,因此模擬的方式與過程較為複雜。

模擬中我選擇先在固定系統 N. A. (繞射極限)的情況下輸入像差值來計算輸出資訊的 PDF。PDF的計算方式與附錄 B 相似,首先建立一個完美的輸入資訊,接著輸入波面像差值,並使用 2.7 節中的公式(17)計算輸出影像上單點的擴散分佈,將像平面上所有點擴散分佈組成輸出影像,最後統計出該影像的 PDF 圖以求出誤碼率與儲存容量。模擬一次只輸入一種像差值,將該像差漸漸增大直到出現誤碼率。接下來增加系統的 N. A. 並重複上面的流程。當系統 N. A. 值所造成之繞射極限遠小於畫素寬度時即可停止。

最後可整理出同調照明系統的模擬流程圖如下:

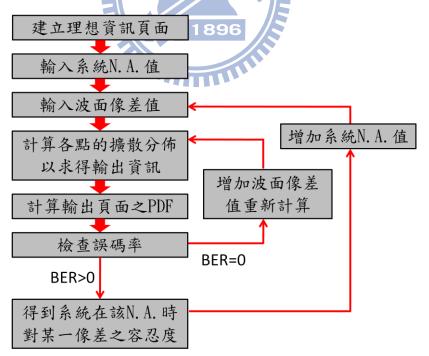


圖 41 同調照明系統中的模擬流程

模擬程式1 非同調照明之模擬

此模擬使用 matlab 程式語言模擬非同調光源照明時,資訊頁面受像差影響時之 PDF

clear TSPH=0 % 横向球差值(公尺) TTCO=0 % 横向彗差値(公尺) % 橫向弧矢場曲値(公尺) TSFC=0 TTFC=0 % 横向正切場曲値(公尺) TDIS=0 % 横向畸變值(公尺) % CCD畫素寬度(公尺) pixelsize=6.7e-6 % 此值必須稍微大於五個橫向像差值的,但此值越小運算越快 ass1=0% 資訊頁上橫向解析度的 $sa_n=500$ $sa_m=500$ I0i=20I1i = 200sp=10;sph=TSPH/pixelsize*sp sco=TTCO/pixelsize*sp/3 sfc=TSFC/pixelsize*sp tfc=TTFC/pixelsize*sp dis=TDIS/pixelsize*sp ass=ass1/pixelsize*sp a=-ass:ass; corx=kron(a,ones((2*ass+1),1))/ass;b=-ass:ass; b=rot90(b); cory=kron(b,ones(1,(2*ass+1)))/ass;lo=sqrt(corx.^2+cory.^2);

pupil=lo;

```
pupil(pupil<=1)=1;</pre>
pupil(pupil>1)=0;
cosphi=cory./lo.*pupil;
cosphi((ass+1),(ass+1))=0;
sinphi=corx./lo.*pupil;
sinphi((ass+1),(ass+1))=0;
lo=lo.*pupil;
sin2phi=2*cosphi.*sinphi;
cos2phi=cosphi.^2-sinphi.^2;
apdf=zeros(2,256);
for ggn=1:sa_n
for ggm=1:sa_m
        ita = sqrt((ggn^2 + ggm^2)/(sa_n^2 + sa_m^2));
        ta=atand(ggm/ggn);
        acorx1=-sph.*lo.^3.*sinphi-sco.*ita.*lo.^2.*sin2phi-sfc.*ita.^2.*lo.*sinphi;
acoryl=-sph.*lo.^3.*cosphi-sco*ita.*lo.^2.*(2+cos2phi)-tfc*ita.^2.*lo.*cosphi-dis*ita.^3;
        acorx=cosd(ta)*acorx1+sind(ta)*acory1;
        acory=-sind(ta)*acorx1+cosd(ta)*acory1;
        picdistt=zeros(2*ass+1,2*ass
        for sn=1:2*ass+1
            for sm=1:2*ass+1
                dism=acory(sn,sm)+ass+1+0.001;
                disn=acorx(sn,sm)+ass+1+0.001;
            picdist=zeros(2*ass+1,2*ass+1);
picdist(ceil(dism)-1,ceil(disn)-1)=(ceil(dism)-dism)*(ceil(disn)-disn)*pupil(sn,sm);
picdist(ceil(dism)-1,ceil(disn))=(ceil(dism)-dism)*(disn-floor(disn))*pupil(sn,sm);
picdist(ceil(dism),ceil(disn)-1)=(dism-floor(dism))*(ceil(disn)-disn)*pupil(sn,sm);
picdist(ceil(dism),ceil(disn))=(dism-floor(dism))*(disn-floor(disn))*pupil(sn,sm);
            picdistt=picdistt+picdist;
            end
        end
sa=picdistt/sum(sum(picdistt));
```

```
hdata=36;
vdata=36;
ze=zeros((hdata+4),(vdata+4));
dp=rand(hdata,vdata);
dp=round(dp);
ze(3:(hdata+2),3:(vdata+2))=dp;
ze=ze*((I1i-I0i)/I1i)+I0i/I1i;
idp=kron(ze,ones(sp,sp));
odp=conv2(idp,sa);
data = odp((ass+4*sp+1):(ass+sp*hdata),(ass+4*sp+1):(ass+sp*vdata));
fe=eye(hdata-4);
fe=kron(fe,ones(1,sp));
be=eye(vdata-4);
be=kron(be,ones(sp,1));
oid=fe*data*be;
oid=oid*sum(sum(ze(5:(hdata),5:(vdata))))/sum(sum(oid))*200;
oid=round(oid);
oid0=2*(dp(3:(hdata-2),3:(vdata-2))-0.5).*oid
oid1=2*(0.5-dp(3:(hdata-2),3:(vdata-2))
pdf0=zeros(1,256);
pdf1=pdf0;
for n=1:256
    pdfO(n)=length((find(oidO==(n-1))));
end
for n=1:256
    pdfl(n)=length((find(oidl==(n-1))));
end
pdf=[pdf0;pdf1];
apdf=apdf+pdf;
apdfrot=rot90(apdf,3);
                                            % 最後所得之輸出頁面PDF
end
end
```

模擬程式2 同調照明之模擬

此模擬使用 matlab 程式語言模擬同調光源照明時,資訊頁面受像差影響時之 PDF

```
clear
w040=0;
                           % 球差波面像差値(λ)
                           % 彗差波面像差値(λ)
w131=0;
w222=0;
                           % 像散波面像差値(λ)
                           % 場曲波面像差値(λ)
w220=0;
                           % 畸變波面像差値(λ)
w311=0;
pixelsize=6.7e-6;
                           % CCD畫素寬度(公尺)
                           %光瞳取樣數量,當像差值越大時此值必須越大,此值越小計算越快
ass=200;
wave1=473e-9
                              系統使用波長
                             系統出瞳N.A.
epNA=0.1;
nmax=500;
mmax=500;
I0i=20;
                                入資訊頁代表0的光強度
                           % 輸入資訊頁代表1的光強度
I1i = 200;
sp=10;
adrp=wavel/epNA/pixelsize*sp
[X,Y]=meshgrid((-ass+1:ass)*(adrp)/ass,(-ass+1:ass)*(adrp)/ass);
[th, rho] = cart2pol(X,Y);
pupil=sqrt(X.^2+Y.^2);
clear X Y
pupil(pupil<=1)=1;</pre>
pupil(pupil>1)=0;
apdf=zeros(2,256);
for ggn=1:nmax
for ggm=1:mmax
ita = sqrt((ggn^2 + ggm^2)/(nmax^2 + mmax^2));
```

```
th2=th+atan(ggm/ggn);
[corx,cory]=pol2cart(th2,rho);
clear th2
w=exp(i*2*pi*(w040*(cory.^2+corx.^2).^2+w131*ita*cory.*(cory.^2+corx.^2)+w222*ita^2*cory.^
2+w220*ita^2*(cory.^2+corx.^2)+w311*ita^3*cory));
clear corx cory
pupil0=gsingle(pupil.*w);
datan=ass*2/sp;
dp=round(rand(datan,datan));
idp=gsingle(kron(dp,ones(sp,sp)))*((I1i-I0i)/I1i)+I0i/I1i;
ft1=fft2(idp);
clear idp
ft1=fftshift(ft1);
ft2=ft1.*pupil0;
clear ft1 pupi10
im=ifft2(ft2);
clear ft2
odp=double(abs(im)/sum(sum(abs(im)))*sum(sum(dp*(2*ass)/datan*(2*ass)/datan)));
fe=eye(datan);
fe=kron(fe,ones(1,(2*ass)/datan));
be=eye(datan);
be=kron(be,ones((2*ass)/datan,1));
oid=round(fe*odp*be/((2*ass)/datan)/((2*ass)/datan)*200);
clear fe be
oid0=2*(dp-0.5).*oid;
oid1=2*(0.5-dp).*oid;
pdf0=zeros(1,256);
pdf1=pdf0;
for n=1:256
    pdf0(n)=length((find(oid0=(n-1))));
end
for n=1:256
```

```
pdf1(n)=length((find(oid1==(n-1))));
end
pdf=[pdf0;pdf1];
apdf=apdf+pdf;
end
ggn
ita
end
apdfrot=rot90(apdf,3);
    % 最後所得之輸出頁面PDF
```


模擬程式 3 求取儲存系統評估參數

此模擬使用 matlab 程式語言來計算已知 PDF 情況下系統之誤碼率,輸出閥值以及儲存容量。

```
apdfrot=apdfrot/sum(sum(apdfrot))
                                   %使用前須將目標PDF資料讀入workspace並改名爲 apdfrot
total=sum(sum(apdfrot));
data0=apdfrot(:,1);
datal=apdfrot(:,2);
total0=sum(sum(data0));
totall=sum(sum(data1));
pi0=total0/total;
pil=total1/total;
p0=data0/total0
p1=data1/total1
ber=zeros(256,1);
for ittempt=1:256
   ber(ittempt)=pi0*sum(p0((ittempt+1):256))+pi1*sum(p1(1:ittempt));
end
BERmin=min(ber)
                                      % 誤碼率
threshold=find(ber==BERmin)
                                      %輸出閥値
SC=0:
for n=1:256
   if p0(n)>0
   SC=SC+pi0*p0(n).*log2(p0(n)./(pi1.*p1(n)+pi0.*p0(n)));
   end
   if pl(n)>0
   SC=SC+pi1*pl(n).*log2(pl(n)./(pil.*pl(n)+pi0.*p0(n)));
   end
end
SC
                                      %儲存容量
```

参考資料

- [1] 拓墣產業研究所, "<u>迎接光儲存 DVD 產業新紀元</u>", 台北, 拓墣科技股份有限公司, 2004.3 月
- [2] GE news center, "GE Breakthrough Validates Technology to Enable 500-Gigabyte Disc", 27 April 2 009.

 http://www.genewscenter.com/content/detail.aspx?releaseid=6676&newsareaid=2&menusearchcategoryid=
- [3] Claire Gu, John Hong, Ian McMichael, Ragini Saxena, and Fai Mok, "CROSS-TALK-LIMITED STORAGE CAPACITY OF VOLUME HOLOGRAPHIC MEMORY." Journal of the Optical Society of America, Vol. 9, Iss. 11, 1992.
- [4] Hans J. Coufal, Demetri Psaltis, Glenn T. Sincerbox, "Holographic Data Storage", Springer, New York, p. 91-100, 2000.
- [5] Neifeld, M. A. and W. C. Chou. "Information theoretic limits to the capacity of volume holographic optical memory." Applied Optics 36(2): Optical Society of America, 514-517, 1997.
- [6] 張 弘, "幾何光學", 初版二刷, 台北, 東華書局, p. 189-192, 1993. 3 月
- [7] 張 弘, "幾何光學", 初版二刷, 台北, 東華書局, p. 190, 1993. 3 月
- [8] 許阿娟、朱嘉雯、林佳芬、陳志隆,"光學系統設計進階篇", fourth version, Chap. 3.2, 2002, http://www.phys.ncku.edu.tw/optics/book_2/list_1.htm.
- [9] 張 弘, "幾何光學", 初版二刷, 台北, 東華書局, p. 183-185, 1993. 3 月
- [10] JAMES C. WYANT, KATHERINE CREATH, "APPLIED OPTICS AND OPTICAL ENGINEERING", VOL. XI, p. 15-28, 1992. http://www.optics.arizona.edu/jcwyant/zernikes/Zernikes.pdf

- [11] 張 弘, "幾何光學", 初版二刷, 台北, 東華書局, p. 353, 1993. 3 月
- [12]C. B. Burkhardt, "Use of a random phase mask for the recording of Fourier transform holograms of data masks, "Appl. Opt. 9, 695-700, 1969.
- [13] Joseph W. Goodman, "Introduction to Fourier Optics", third edition, Englewood Colorado, ROBERTS & COMPANY, p. 128-131, 2005.
- [14] Joseph W. Goodman, "Introduction to Fourier Optics", third edition, Englewood Colorado, ROBERTS & COMPANY, p. 145-147, 2005.
- [15]Y. Takashima and L. Hesselink, "Lens designs of high NA objectives for page-based holographic data storage systems," Proc. OSA Annual Meeting, 2007.
- [16] Edmund optics, "OPTICS AND OPTICAL INSTRUMENTS CATALOG," Taiwan, Edmund optics, spring 2011.