
Å
>¦×ç

�m	�çÍ

² = � d

À�Æ�ò{ç5û

A Study of Key-Evolving Cryptosystems

û
Þ :{/Á

Nû`¤:{d�`¤

2M¬Å��ü�þ~

À�Æ�ò{ç5û

A Study of Key-Evolving
Cryptosystems

û
 Þ : {/Á Student: Zhi-Jia Tzeng

Nû`¤: {d� ²= Advisor:Wen-Guey Tzeng

Å
>¦×ç�mçÍ

�m	�çÍ

²=�d

A dissertation is submitted to

Department of Computer Science

National Chiao Tung University

for the degree of

doctor of philosophy

in

Computer Science

July 2006

Hsinchu, Taiwan, Republic of China

2M¬Å��ü�þ~

À�Æ�ò{ç5û

û
 Þ : {/Á Nû`¤: {d� ²=

Å
>¦×ç �mçÍ �m	�çÍ

¿b
ÊtÇÀ�ò{ç³, rÖ�d�%n�¬7À�¢ÐíTÜ½æ, �ø<j¶\à

VTÜÀ�¢Ðí½æ, ªà}à�íÆ§j�� ãÊí��J£�Nµíwñ\�j
¶�� Ê¥¹�d2, BbT|�ø_À�Æ�íò{j¶ TÜ¥_½æ, �à° �
²érí¼� (forward-secure signature) Í$ø�, �ø_Ô4: ÿu�òÀ�}Ó
OvÈ7Z�, OutÇíÀ�ºu	ì.�í� BbøÀ�íÞ·U�}AüívÈ
�¨, ÊvÈ�¨ j, jò6Ë�vÈ�¨ j í�òÀ� SKj; ÊvÈ�¨ j + 1, j
ò6Ë�vÈ�¨ j +1 í�òÀ� SKj+1� OuÊÀ�í�^�Èq, tÇÀ�ºu
	ì.�í� à�ø_f£6b£m7 m #jò6, F.ââtÇÀ� PK l�vÈ
�¨ j ítÇÀ� PKj, yø]7�òA 〈j, c〉� çvÈ�¨* j ��� j + 1, jò
6ÛbyhFí�òÀ� SKj AÑ SKj+1, Í(
�tÎ SKj� À�Æ�íò{Í
$, ¹U�òÀ� SKj³ÜCu¢Ð, .}	àwFv¨ �òím75ér� ¥¹�d
3bí!�à-:

1. BbT|ú_�ÀíÀ�Æ�tÇÀ��òj¶, ¥<j¶x� z-�4 í4�,
U) z z�òÀ�\�Ð, EÍ.	àwFvÈ�¨í�òm7íér� ¸f$
ítÇÀ�ò{Í$ª�, hí�òj¶íòd2¨Ö7vÈí�m� Ñ7�p
híò{j¶uérí, Bbcq DDH ½æu Øí, ¸ random oracle _�
A
� Bbíhíò{j¶uªJJf \�íÛU (passive attack) ¸_çí
²ÏòdÛU¶ (adaptive chosen ciphertext attack)�

2. BbT|jò6àSÊ TA bí6�-, Uàérí}à�l�j¶, �|hí
�òÀ�� Í(T|}à�íÀ�Æ�ò{Í$, 1/n�àSø}à�íÀ�
Æ�ò{Í$, ¸ ãÊí�� (proactive mechanism) T!¯, V�# TA í
ér4�

3. BbT|ø_}à�Æ§í�²ér¼�j¶, �#7 Abdalla and Reyzin í
�²ér¼� j¶íér4, 3bu�âs_xÍ, Æ§íj�¸ãÊí��V

i

d�í� ¥_}à�Æ§í�²ér¼�j¶ ¯7Öá��ò}� (polyno-
mial secret sharing) ¸
¶í (multiplicative) xÍ� à��VíÀøUà6
(single-user) í¼�j¶uérí, BbªJ�phí}à�í¼�j¶uér
í�

À�Æ��òÍ$ªJ@à�JV�Ñ!�íw�Í$, U)w��ì®��²ér
(forward-secure) ¸ (²ér (backward-secure), 1/ªJÁý CRL ílæH
g� tÇÀ�íV�\@àÊÚä¼�� æ¦æÒæ��Ä£_A¦m���jÞ, Ñ
7læ\¦¾íV�, æ���X@6 SP(Service Provider) ÛbçÕílæ�È�
7¥�íÍ$éru¸ñ�v¨í�òÀ��É, mÍv¨j í�òÀ�SKj øÊv
¨ j +1 vÌ^, FJv¨jí CRL, Êv¨j +1ªJ .ÛbæO� FJ©ø_hív
¨íÇá,CRL í×üÿu0, Ä7ªJ�ôlæ CRL í�È, Áý SP úlæ CRL
FG|íHg� ÇÕBbn�7”°¥vÈ”í½æ, Bbcq ø_��X@6æÊO°
¥vÈí/�Â�
É�å: À�Æ�ò{Í$, k-�4, tÇÀ��ò, �²ér, Æ§ò{j¶,

CRLs, V�, w�, °¥vÈ�

ii

A Study of Key Evolving
Cryptosystems

Student: Zhi-Jia Tzeng Advisor:Wen-Guey Tzeng

Department of Computer Science

College of Computer Science

National Chiao Tung University

Abstract

The key exposure problem of public key encryption schemes has been dis-
cussed in the open literature. Threshold cryptosystems, proactive mechanism
and smart card are used for many years to handle this problem. In this the-
sis, we propose the first key-evolving paradigm to deal with the key exposure
problem. The key-evolving paradigm is like the one used for forward-secure
digital signature schemes. Let the lifetime of the master secret key be divided
into time periods such that at time period j, the decryptor holds the private
key SKj, while the public key PK is fixed during its lifetime. At time period
j, a sender encrypts a message m as 〈j, c〉, which can be decrypted only with
the private key SKj. When the time makes a transit from period j to j + 1,
the decryptor updates its private key from SKj to SKj+1 and deletes SKj im-
mediately. The key-evolving paradigm assures that compromise of the private
key SKj does not jeopardize the message encrypted at the other time periods.
Our results are listed in the following.

1. We propose three simple key-evolving public key encryption schemes
with z-resilience such that compromise of z private keys does not affect
confidentiality of messages encrypted in other time periods. Compar-
ison to the public key cryptosystems, a ciphertext in the new scheme
contains time information. Assuming that the decisional Diffie-Hellman

iii

(DDH) problem is hard and the random oracle model, we show that
our schemes are secure against passive adversaries and against adaptive
chosen ciphertext attack.

2. We present how key-evolving with TAs does. The decryptor can evolve
the private key by the aid of TAs in a secure distributed way. Then, we
consider the case of distributed key-evolving encryption scheme. Further-
more, we combine the distributed methods with proactive mechanism to
enhance the security of TAs.

3. We propose a distributed forward-secure signature to enhance the secu-
rity of Abdalla and Reyzin’s forward-secure signature scheme via thresh-
old and proactive mechanisms. Our distributed threshold forward-secure
signature scheme combine both multiplicative and polynomial secret
sharing tricks. Then, We can prove that our scheme is secure if the
single-user scheme is secure.

The key-evolving public key encryption schemes are applied to reduce the stor-
age cost of Certificate Revocation Lists (CRLs) in the encryption certificate-
based authentication protocols. Public key certificates have been used in many
applications, such as electronic commerce, accessing Internet resources and
personal communications services, etc. Let Service Provider (SP) provide some
services. The users subscribe the services from SP. While accessing the ser-
vices, SP authenticates the identity of the user via a certificated authentication
protocol based on the key-evolving public key encryption scheme. However, if
a user’s secret key for the certificate is lost or compromised, SP need additional
storage cost for saving CRLs. The security of such certificate-based protocols
depends on the secret key of the current time period. Since the disclosed se-
cret key SKj of time period j is automatically revoked at time period j + 1,
CRLs of time period j does not be maintained at time period j + 1. That
is, in the beginning of a new time period the size of CRLs is reset to zero.
Thus, the size of CRLs can be reduced. Finally, we discuss the problem of
time synchronization. Our schemes assume that SP should have time server
for synchronization among SP and all subscribers.

Keywords: key-evolving, k-resilience, public key encryption, forward se-
curity, threshold, CRLs, certificate, authentication, time synchronization.

iv

Ðá

ílø�d.#%Þí�f£\ d º¿Âë c 2×ÇA0í¶3��¤, [®úF
bí21Dâ<, èFbÊÙ5Ñ�GBb�²A�5�, ÿd¥��dí|0, 6uv
`TØ®½, Ûb s�¥<�Ø�
|>áíÿuBíNû`¤{d�4�, Î7ÊNûç3,G|rÖí-¦; Ê�ÿ

,, 4�6w§7rÖ, ��ÛbV-BD.Dà-, �³�Äe5r� ÊB¨tv, 4
�£¨tãºb#B�Ö<c, D¨ñBí.�, éBí�dy�kê¾� FJÊ¤ú
¨tãºø9_á�
yVb>á�fÖ�Ví¨ñ, ��Á�ÊÕÌ¶��f}R, 7AÐí�ñÕ�,

�u|I�fV-í� ´�ðAíÉ-D2¥, AÑB�ªí���
QOb>á�£/lÞ, f|íd ¶3� c éB)�Uì� ÊBUìÕ�|Ïív

`, AÞ|QI� ;b[Jív`, �£/lÞf|í�¶, éB½LUìD]-, éB
��­./êAç��
´�>áBí°9z~¸��çc, Fb÷=� 2¥D6�, éB`zªJß�, 6

éBç3Ì(è5R� ´�®Içc, Z�ÜBÞ�ïëD¡�¶3�`�û3, éB
Þ·�7�~�
|(>áü�£õð�íAº: Aì� �p� ��� ¯á¸î=Úíç!, Fbí6

�éB¨t?Dß�, �d?DêA�
b>áíAØÖ7, Ê¤úF�6�DÉ-¬Bíf¤ø9_á! áá!

{/Á 2006/07/27

v

vi

Contents

2d¿b i

Ld¿b iii

Ðá v

ñ� vi

Çñ� ix

1 Introduction 1
1.1 Motivations . 1
1.2 Contribution of this thesis . 3
1.3 Related works . 4

1.3.1 Forward-secure signature schemes 4
1.3.2 Key-evolving encryption schemes 7
1.3.3 Threshold cryptography 8
1.3.4 Proactive security . 9
1.3.5 Certificate Revocation List 9
1.3.6 Time synchronization . 10

2 Preliminaries and Security Models 13
2.1 Hardness assumptions . 13
2.2 Security models . 15

2.2.1 Security against passive adversaries 15
2.2.2 Security against adaptive chosen ciphertext attack 16

2.3 Definition . 17

3 Key-Evolving Public Key Encryption Schemes 21
3.1 Ke-Enc against passive adversaries 21

3.1.1 Security analysis . 23
3.2 Ke-Enc against adaptive chosen ciphertext attack 25

3.2.1 Under the random oracle model 25
3.2.2 Security analysis . 26
3.2.3 Under the standard model 29
3.2.4 Security analysis . 30

vii

4 Distributed and Proactive Key-Evolving Encryption 41
4.1 Key evolving with TA . 41

4.1.1 Distributing TA’s secret 41
4.1.2 Security analysis . 43
4.1.3 Proactivizing TA’s shares 44
4.1.4 Security analysis . 45

4.2 Distributed Ke-Enc schemes 46
4.3 Distributed Ke-Enc with proactive security 47

5 Threshold Forward-Secure Signature Schemes 49
5.1 Building blocks . 51
5.2 Threshold forward-secure signature scheme 57
5.3 Security analysis . 59
5.4 Discussion . 64

6 Applications to key-evolving public key certificate-based au-
thentication protocol 65
6.1 Key-evolving public key certificate-based authentication protocol 67
6.2 Extension . 69
6.3 Security . 69
6.4 Implementation . 69

7 Conclusion and Future Work 73
7.1 Conclusion . 73
7.2 Future work . 74

Bibliography 75

Appendix 89

viii

List of Figures

3.1 KeEncBasic(part1) – discrete logarithm based key-evolving
encryption scheme with z-resilience and semantic security
against passive adversaries. 23

3.2 KeEncBasic(part2) – discrete logarithm based key-evolving
encryption scheme with z-resilience and semantic security
against passive adversaries. 24

3.3 KeEncROM – discrete logarithm based key-evolving encryp-
tion scheme with z-resilience and semantic security against the
adaptive chosen ciphertext attack under the random oracle model. 38

3.4 KeEncSTM (part 1)– discrete logarithm based key-evolving
scheme with z-resilience and semantic security against the adap-
tive chosen ciphertext attack under the standard model. 39

3.5 KeEncSTM (part 2) – discrete logarithm based key-evolving
encryption scheme with z-resilience and semantic security
against the adaptive chosen ciphertext attack under the stan-
dard model. 40

6.1 A key-evolving certificate-based authentication protocol 67

7.1 Bellare and Miner’s forward-secure signature scheme is based
on the hardness of the square root problem. (part 1) 90

7.2 Bellare and Miner’s forward-secure signature scheme is based
on the hardness of the square root problem. (part 2) 91

7.3 Abdalla and Reyzin’s forward-secure signature scheme is based
the hardness of the 2l-th root problem. 94

7.4 Itkis and Reyzin’s forward-secure signature scheme is based on
GQ signature.(part 1) . 95

7.5 Itkis and Reyzin’s forward-secure signature scheme is based on
GQ signature.(part 2) . 96

7.6 Canetti et al’s binary tree encryption scheme is based on bilinear
Diffie-Hellman assumption.(part 1) 97

7.7 Canetti et al’s binary tree encryption scheme is based on bilinear
Diffie-Hellman assumption.(part 2) 98

ix

Chapter 1

Introduction

1.1 Motivations

In a public-key cryptosystem the secret key is used to decrypt or sign mes-

sages until the lifetime of the secret key is over. The security of public-key

cryptosystems is based on the security of the secret key. Once the secret key is

disclosed or compromised, the adversary behaving as the key owner can sign or

decrypt any messages in the past. The fact that the secret key is fixed during

the lifetime is the risk of the current public-key cryptosystem. An adversary

can record the history of sent messages and then get useful messages after

getting the secret key. For example, the sender Alice sends a message m to

the decryptor Bob with Bob’s public key PK. Although an attacker Carol does

not know Bob’s private key SK at present time, he can eavesdrop and record

the ciphertext c = E(PK,m). Later on, Carol manages to get Bob’s private

key SK, she can get the message m no matter how much time has elapsed.

The message m may carry information that is useful for a long period of time.

There are several ways to resolve the problem. One way is that Bob replaces

his public key when his private key is exposed. But, in this case every user has

to update Bob’s public key in its database when Bob upgrades his public key.

This is quite costly. Furthermore, it may not be practical since Bob may not

be aware of the disclosure of his private key. Another way is to protect Bob’s

1

private key via a smart card so that key exposure is not possible. Another way

is to share SK to n trusted agents (TA’s) in a k-out-of-n threshold scheme such

that at least k trusted agents can fully recover SK. After receiving a ciphertext

c, Bob uses the TA’s to decrypt c in a distributed way. To protect TA’s shares

of SK for a long time, we can further proactivize TA’s shares. In this case

TA’s not only bear heavy load of computation, but also should stay on-line

always to provide decryption service. There are of course other solutions. In

the thesis, we propose the key-evolving public-key encryption scheme to han-

dle the key exposure of the public-key encryption scheme. We concentrate on

designing key-evolving public-key encryption schemes.

The concept of key-evolving encryption schemes comes from the forward-

secure digital signature scheme. In the key-evolving public-key cryptosystem

the time is divided into time periods. When the time period transfers from j

to j + 1, the secret key SKj is updated to SKj+1. Given SKj, one can not

derive the previous secret key SKj−1. Thus, an adversary who obtains the

key of the time period j does not compute any key before the time period j.

Therefore, the messages before the time period j is not disclosed even though

an adversary gets the secret key of the time period j, SKj. The key-evolving

cryptosystem is more secure in the sense that it allows many times of key

exposure. In our encryption schemes, we assume that there exists TA. Thus,

a decryptor can evolve his secret key by the aid of the TA. The TA may be a

secure device.

We further enhance the security of the key-evolving encryption scheme

by considering that the threshold key-evolving cryptosystem. The threshold

key-evolving cryptosystem is that the secret key is shared to n servers in a dis-

tributed way such that t out of them can recover the secret key. However, less

than t servers can not obtain any message about the secret key. Furthermore,

we combine the threshold cryptosystem with proactive security to protect the

secret key. At first, the secret key is shared to a group of servers in a t-out-of-n

scheme. Each server has a share. When the time makes a transit, the secret

2

key and the shares held by the servers are updated. Thus, if an adversary

obtains less than t shares, it cannot derive the secret key and compute new

shares at a new time period. These shares held by the adversary will become

invalid at the new time period.

1.2 Contribution of this thesis

In the thesis, we propose the first key-evolving paradigm to deal with the

key exposure problem of public-key encryption schemes. We present how key-

evolving with TAs does. Then, we describe our threshold forward-secure sig-

nature scheme based on the forward-secure signature scheme of Abadalla and

Reyzin [4]. Finally, we show an application for the key-evolving encryption

scheme. In the following, we summarize our results.

1. We propose three simple key-evolving encryption schemes that are z-

resilient public-key encryption schemes such that z times of key expo-

sures do not release any information pertinent to ciphertexts that are

encrypted with non-exposed private keys. We assume that there exists

a secure device (or TA). The basic key-evolving encryption scheme is

semantically secure against passive adversaries. Furthermore, we mod-

ify the basic scheme to achieve semantically secure against the chosen

ciphertext attack under the random oracle model. Another modifica-

tion of the basic scheme achieves semantically secure against the chosen

ciphertext attack under the standard model. The size of a public key

is independent of the total number of time periods, but dependent on

resilience. On the other hand, the size of a private key is a constant.

Without counting the pre-computation time for each time period, both

encryption and decryption operations take 2 modular exponentiations.

The pre-computation time is independent of time period, but dependent

on resilience.

2. We present how key-evolving with TAs does. The decryptor can evolve

3

the secret key by the aid of TAs in a secure distributed way. We also

consider the case of distributed key-evolving encryption scheme. Further-

more, we combine the distributed methods with proactive mechanism to

enhance the security of TAs.

3. We also propose a threshold forward-secure signature scheme based on

the forward-secure signature scheme of Abadalla and Reyzin [4]. The

security of the threshold forward-secure signature scheme is based on

the 2l-th root problem. We show that the security of the forward-secure

threshold scheme based on that of the single-user scheme.

4. We propose a key-evolving encryption certificate-based authentication

protocol. In the encryption certificate-based authentication protocol, the

key-evolving encryption scheme can make the authentication protocol

achieve forward and backward secrecy. To revoke a subscriber, CRL is

used to save the certificate of the revoked subscriber. In such a protocol,

the storage cost of CRLs can be reduced when times make a transit from

j to j + 1. Since CRLs of the time period j does not maintain at the

time period j + 1, the size of the CRLs is reset to zero at the beginning

of time period j + 1. Thus, the storage cost is reduced. In addition, we

discuss time synchronization in our application.

1.3 Related works

We survey the related results on forward-secure signature schemes, key-

evolving encryption schemes, threshold cryptography, proactive security, cer-

tificate revocation list and time synchronization.

1.3.1 Forward-secure signature schemes

In traditional signature schemes a signature is independent of time. If the

secret signing key is exposed, one can sign arbitrary messages. Comparison

4

to the traditional signature scheme, in a forward-secure signature scheme, the

signing key depends on time periods. When time transits from time j to j +1,

the signing key is updated from SKj to SKj+1 and SKj is deleted immediately.

However, the public key is the same during the entire lifetime. If an adversary

gets the signing key SKt of time period t, he can fake the signatures after the

time period t, but cannot fake the signatures prior to the time period t.

Bellare and Miner [13] proposed the first forward-secure signature scheme

based on difficulty of computing the square roots modulo a Blum integer. The

scheme is actually converted from Fiat and Shamir’s identification scheme [36].

To achieve security strength of level l, their scheme uses l public keys and l

secret keys. The computation time of a signature depends on the largest time

period T .

Afterward, Abdalla and Reyzin [4] proposed an improvement based on the

2l-th root problem [43, 64, 76, 75]. With the same level of security strength,

their scheme uses one public key and one secret key only. However, the com-

putation time of a signature also depends on the large time period T .

Krawczyk [54] proposed a simple transformation from any signature scheme

to a forward-secure signature scheme. They assume that a forward-secure

pseudorandom generator exists and the base signature scheme (e.g., DSA,

RSA) is secure. Their scheme uses an initial seed to generate all key pairs

and related certificates. Therefore, the time of key generation is related the

largest time period T . Their scheme uses the base signature scheme to sign a

message. A signature consists of certt and SIGNSKt(M), where SIGNSKt(M)

is the signature of M at time period t, which is signed by the base signature

scheme.

Itkis and Reyzin [49] proposed a new scheme based on GQ signature

scheme [42]. The security of the scheme is based on e-th root problem. The

new scheme optimizes the procedures of signing and verifying. That is, the

procedures of signing and verifying is independent of the largest time period

T . However, the procedure of key updating depends on T . Afterwards, Itkis

5

and Reyzin [50] proposed a signer-base intrusion-resilient signatures. The sig-

nature scheme combines both notions of forward-secure and key-insulated sig-

nature schemes. The user has two modules, signer and home base. Their

scheme remains secure if the intruder does not compromise of both modules

simultaneously. The signer-base intrusion-resilient signatures are still based

on GQ signature. Their schemes are provably secure in the random oracle

model based on the strong RSA assumption. Nicolás et al. [74] proposed a

(N − 1, N)-key-insulated signature scheme. This scheme is more efficient than

previous proposals and whose key length is constant and independent of the

number of time periods. The security of the scheme also is based on the strong

RSA assumption in the random oracle model. The strong RSA assumption is:

given a number n that is the product of two prime numbers and a value γ, it is

computationally infeasible to find β ∈ Z∗
n and υ > 1 such that βυ = γ mod n.

More key-insulated signature scheme have proposed in the literature [25, 26].

A hierarchical key-insulated signature scheme is discussed in the literature [60].

Kim and Kim [55] proposed an intrusion-resilient key-evolving Schnorr signa-

ture. In their scheme, if secret keys of all periods are not compromised, it

is not possible to forge signatures relating to non-exposed secret keys. More

forward-secure signature schemes have proposed in much literature [1, 52, 69].

In addition, Bellare et al.[15] constructed forward-secure pseudorandom

number generators and added forward security to the private-key cryptosys-

tems. They give a rigorous analysis of a forward-secure pseudorandom number

generator.

Abadalla et al. has proactivized the Bellare-Miner forward-secure signature

scheme [3]. They proposed two threshold signature schemes in proactivizing

Bellare-Miner forward-secure signature scheme. One scheme uses multiplica-

tive secret sharing and the other uses polynomial secret sharing. We propose

a robust forward-secure digital signature based on the scheme of Abadalla and

Reyzin (see chapter 5). Our scheme uses the both techniques of the multi-

plicative secret sharing and the polynomial secret sharing.

6

1.3.2 Key-evolving encryption schemes

The concept of key-evolving encryption schemes comes from the forward-secure

digital signature scheme. Concurrently, Dodis et al. proposed the notion of

key-insulated security [25]. They constructed a (t, N)-key-insulated encryption

scheme based on any standard public-key encryption scheme. Their schemes

achieve forward and backward security under the disclosure of t keys at most.

The secret key stored on the insecure device is updated at discrete time pe-

riod via the help of the physically-secure device. Under the DDH assumption,

they proposed a semantically-secure key-updating encryption scheme. Then,

they modify the basic scheme to be a chosen-ciphertext-secure key-updating

encryption scheme. We describe their scheme as follows. Let Gq denote a

group with a prime order q. Let g, h be the generators in Gq. The de-

cryptor selects two polynomials with degree t. The public key contains g,

h and Pedersen commitments [81] {z∗0 , · · · , z∗t } to the coefficients of the two

polynomials. Let the coefficients of the two polynomials be {x∗0, · · · , x∗t} and

{y∗0, · · · , y∗t }. The decryptor holds the secret {x∗0, y∗0} and the remaining coef-

ficients are saved by the secure device. To encrypt M during time period i,

the encryptor computes the public key zi =
∏t

j=0(z
∗
j)

ij , and then computes a

ciphertext C = 〈i, (ga, ha, za
i M)〉 for a random a ∈ Zq. Since zi = gfx(i)hfy(i),

the decryptor who has the secret key SKi = (fx(i), fy(i)) can decrypt C to ob-

tain M . As for key evolution, the device transmits partial key SK ′
i = (x′i, y

′
i)

to the decryptor at time period i. Note that x′i = fx(i) − fx(i − 1) and

y′i = fy(i) − fy(i − 1). Since the decryptor has SKi−1, he can compute SKi.

At this point, the decryptor erases SKi−1. In addition, Bellare and Palacio

proposed a key-insulated encryption with optimal threshold [14].

Canetti et al. proposed a forward-secure public-key encryption scheme

based on the bilinear Diffie-Hellman assumption in the random oracle

model [21]. The bilinear Diffie-Hellman (BDH) problem is formalized by Boneh

and Franklin [10]. We describe it briefly as follows. Given (G1,G2, ê) for ran-

dom P, aP, bP, cP ∈ G1, no probabilistic polynomial time algorithm for com-

7

puting ê(P, P)abc. Their forward-secure encryption schemes are constructed

by any BTE(binary tree encryption) scheme. Their scheme are based on the

hierarchical identity-based encryption scheme as well [8, 45, 48, 87, 97].

Lu and Shieh [59] consider the key-evolving protocols in the secret-key set-

ting. They concentrate on the security and efficiency of key-evolving protocols.

They proposed two key-evolving protocols. One protocol uses the Feldman’s

technique. The other uses the Manurer-Yacobi scheme [72]. Manurer and Ya-

cobi showed that every square modulo has a discrete logarithm to the base

of g. The knowledge of factoring of n is the trapdoor for solving the discrete

logarithm problem; that is, given PKi, with the trapdoor knowledge of the

factoring n, he can compute SKi = logg(PKi), where PKi ∈ QRn. How-

ever, they only consider the case that the adversary cannot fully determine an

un-exposed secret key.

1.3.3 Threshold cryptography

Consider the situation that a centralized system is attacked such that the

master secret is disclosed. This results in that the system manager must pay

the quite cost for reconstructing the system or server. The centralized scheme

is less flexible than the distributed one since only an adversary who successfully

controls the system once or one server can destroy the system. To avoid the

single server’s failure, we use the distributed system with multiple servers to

replace the centralized system with one server. A familiar distributed scheme

is a t-out-of-n threshold scheme. Threshold scheme has the spirit of secret

sharing [6, 88], where the shared secret is distributed to several servers such

that each server owns a share. In a t-out-of-n scheme, at least t servers can

recover the shared secret but less than t servers can not obtain any information

of the secret key. For security, an adversary cannot obtain any message if he

controls less than t servers. Threshold cryptosystems have proposed in much

literature [24, 37, 51, 80].

8

1.3.4 Proactive security

Ostrovsky and Yung [77] first proposed security and availability in the presence

of a mobile adversary. To secure long-lived cryptographic keys that cannot be

replaced easily, proactive mechanism can deal with the increasing number of

threats to local and international network domains. For proactive security,

the share in each party is refreshed at the end of each time period, but the

signing secret key is unchanged at all time. A proactive cryptosystem remains

secure as long as the adversary does not corrupt more than t parties in each

time period. The shares of corrupted parties become useless when time enters

the next time period. A number of very useful cryptographic functions have

efficiently proactivized, e.g., pseudorandomness, secret sharing and public key

schemes [19, 24, 38, 47, 46, 77]. Proactive mechanism can incorporate with

threshold cryptosystems to protect against a mobile adversary. The added

advantage of proactivization is that in the proactive systems an adversary has

only a short period of time to break into any t-out-of-n servers, while in the

long-lived threshold systems the adversary has a long time to break into any

t servers. The adversary obtained any m(< t) shares in the old time periods,

which are invalid shares in the new time periods. Thus, proactive mechanism

enhances the security of the threshold schemes. There is much literature about

proactive cryptosystems [2, 20, 39, 32, 33, 85, 35].

1.3.5 Certificate Revocation List

Public key certificates are widely used to guarantee the authenticity of com-

mercial web-sites, to secure the privacy of personal communication, or to au-

thenticate the identity of a subscriber, etc. Certificate revocation is taken to

deal with the secret key compromise or loss prior to the expiration date. The

standard of certificate revocation is proposed in X.509 directory framework [96]

and the Internet draft standard Public Key Infrastructure [5]. When a sub-

scriber wants to revoke his certificate, he sends SP a revocation notice, which

9

is a signed message identifying the certificate to be revoked.

Storage cost and communication cost are two primary measures in the

strategies of certificate revocation. Kocher’s certificate revocation tree [53] is

to reduce these two costs. The methods proposed by Cooper and McDaniel and

Jamin [16, 68] reduces server’s load. Wright et al [91] proposed a fault-tolerant

method for distribution of revocations and certificate updates. The method

is to reduce the communication cost. Rivest [82] proposed to eliminate CRLs

and suggested a two-level staged expiration. However, this leads to the more

complex system for handling the case of key compromise. Furthermore, one

can limit the lifetime of certificates to eliminate CRLs, but this increases the

load of server since new certificates are issued and distributed more frequently.

McDaniel and Rubin [71] think that CRLs still is a necessary part of any

PKI. Other more discussions for certificate revocation can be found in the

literature [34, 66, 67, 73].

1.3.6 Time synchronization

Our proposals are dependent on ”time”. In physical applications, time syn-

chronization is not easy. For a personal computer, neither the software or

hardware clock is suitable for accurate timekeeping. If your computer can ac-

cess to the Internet, you can synchronize its time clock to an Internet time

server. Currently, time protocol [79], daytime protocol [78], network time pro-

tocol [63] and simple network time protocol [65] are four major timing protocols

used in Internet. Many synchronization protocols [56, 62, 89] are proposed.

Most of them share a basic design: a server periodically sends a message con-

taining its current clock value to a client. However, in the ad hoc network,

neither logical time [57, 61] nor classical physical clock synchronization algo-

rithms [58, 84] can be used to solve temporal ordering and other real-time issues

in such environments. Römer [83] presents a time synchronization protocol in

the sparse ad hoc networks. Elson et al. [29] discussed time synchronization in

low-cost and low-power devices. They proposed reference-broadcast synchro-

10

nization protocol in which nodes send reference beacons to their neighbors

using physical-layer broadcasts. Maroti et al. [70] proposed the flooding time

synchronization protocol in the wireless sensor network. Their protocol uses

low communication bandwidth and it is robust against node and link failures.

The flooding time synchronization protocol achieves its robustness by utilizing

periodic flooding of synchronization messages, and implicit dynamic topology

update. There are many protocols proposed for sensor networks in much lit-

erature [28, 40, 93].

11

12

Chapter 2

Preliminaries and Security

Models

If Alice wants to securely send messages to Bob over an insecure channel,

a public-key encryption serves the purpose. In the chapter, we consider the

security of a public key encryption scheme. We consider two attacks: One is

a passive attack. The other is an active attack. A passive attack is that an

adversary who only eavesdrops the sent messages does not actively send forged

or modified messages to attack the sender or receiver. An active attack is that

an adversary can forge a message, forge a signature or do whatever to make the

protocol goal fail. In an active attack, we further consider the adaptive chosen

ciphertext attack under the random oracle model and the standard model.

We gives the formal definitions of the public-key encryption schemes under

various security models. In addition, we will state the cryptographic hardness

assumptions related to our schemes. Finally, we give the formal definition of

the key-evolving public key encryption scheme.

2.1 Hardness assumptions

We describe some cryptographic assumptions as follows.

13

Discrete logarithm assumption. The discrete logarithm problem is that,

given a prime p, a generator g of Z∗
p , and an element y ∈ Z∗

p , finding the integer

x, 0 ≤ x ≤ p− 2 satisfying gx ≡ y mod p is difficult. That is, we assume that

for any probabilistic polynomial time algorithm A, for any enough prime n,

for any k > 0,

Prp∈Sn,g,y∈Gq [A(y, g, p) = loggy mod p] ≤ 1/nk,

where Sn denotes the set of n-bit prime p, where p = 2q + 1.

The Decisional Diffie-Hellman assumption. We need a standard assump-

tion of solving the decisional Diffie-Hellman (DDH) problem [7]. Breaking our

schemes is reduced to solving the DDH problem. Let G be a group of a large

prime order q. Consider the following two distribution ensembles R and D:

- R = (g1, g2, u1, u2) ∈ G4, where g1 and g2 are generators of Gq;

- D = (g1, g2, u1, u2), where g1 and g2 are generators of Gq and u1 = gr
1

and u2 = gr
2 for r ∈ Zq.

The DDH problem is to distinguish the distribution ensembles R and D. That

is, we would like to find a probabilistic polynomial-time algorithm A such that

|Pr[A(Rn) = 1]− Pr[A(Dn) = 1] | = ε(n)

is non-negligible, where Rn and Dn are the size-n distributions of R and D,

respectively.

A trapdoor one-way permutation is a probabilistic polynomial-time algo-

rithm G that takes as input 1n and outputs a triple of algorithms (f, f−1, d),

where f and f−1 are inverses of each other and deterministic polynomial-time

algorithms and d is a probabilistic polynomial-time algorithm. The range of

d(1n) is a subset of {0, 1}k and f and f−1 on the range of d(1n) are permuta-

tions. Furthermore, for any probabilistic polynomial-time algorithm A,

ε(n) = Pr[G(1n) → (f, f−1, d); d(1n) → x; f(x) → y :

14

A(f, d, y) = x]

is negligible. For convenience, we shall call f , not G, a ”trapdoor one-way”

permutation.

2.2 Security models

We consider security against passive adversaries and the adaptive chosen ci-

phertext under the random oracle model and the standard model. An en-

cryption scheme is secure against the passive attack if the encryption scheme

achieves the semantic security. Given a public key and two different messages

m0 and m1, a passive adversary cannot distinguish that a ciphertext c is an

encryption form of m0 or m1 in the polynomial time. In the random oracle

model, we assume that a hash function is a random function. To compute a

hash value, we query the result to the hash oracle. Comparison to the stan-

dard model, we only assume the well-known cryptographic assumptions, such

as DDH assumption but do not assume that a hash function is a random

function.

2.2.1 Security against passive adversaries

Assume that an adversary A consists of two probabilistic polynomial-time

algorithms A1 and A2. A1 takes as input a public key PK and outputs two

different messages m0 and m1. A2 takes as input a public key PK and a

ciphertext c of mb (b = 0 or 1) and outputs a bit b′. b′ is a guess of the

plaintext source of c. Let KG, E and D be the key generation, encryption and

decryption algorithms of a public key encryption scheme. Let PK and SK be

the public and private keys, respectively.

Definition 1 A public key encryption scheme (KG, E, D) is semantically se-

cure against passive adversaries if a passive adversary A, which is probabilistic

polynomial-time, cannot distinguish the ciphertexts of any two messages m0

15

and m1 [41]. That is, for any passive adversary A,

Pr[KG(1n) → (PK, SK) : A(PK,E(PK,mb)) = b] = 1/2 + ε(n),

where ε(n) is negligible and the probability is taken over b and the random coin

tosses of KG, E and A.

2.2.2 Security against adaptive chosen ciphertext attack

The adversary A has two probabilistic polynomial-time algorithms A1 and A2,

as described above. Comparison to the passive adversary, the active adversary

can access the decryption oracle DO. The attack is non-adaptive if only A1 can

access DO. In the active attack, both A1 and A2 can access DO. The adaptive

chosen ciphertext attack on an encryption scheme works as follows [86]. An

adversary A of the attack has two probabilistic polynomial-time algorithms A1

and A2. A1 takes as input PK, makes some queries to the decryption oracle

DO adaptively, and outputs two messages m0 and m1. Then, the encryption

oracle randomly chooses a bit b and encrypts mb as c = E(PK,mb). A2 takes

as input PK, c, m0 and m1, makes some queries to the decryption oracle DO

in an adaptive way, and outputs b′. The decryption oracle DO takes as an

input a ciphertext c′, other than c, and returns its corresponding plaintext m′.

If c′ is invalid, DO outputs ’?’.

Definition 2 A public key encryption scheme (KG, E, D) is semantically

secure against the adaptive chosen ciphertext attack if, for any adversary

A = (A1, A2),

Pr[KG(1n) → (PK, SK); ADO
1 (PK) → (m0, m1) :

ADO
2 (PK,E(PK,mb)) = b] = 1/2 + ε(n),

where ε(n) is negligible and the probability is taken over b and all coin tosses

of KG, E, A1 and A2.

16

Random oracle model vs. Stand model

Random oracle model. The random oracle model assumes that hash functions

used in a scheme are ”truly random” hash functions. Usually, protocols using

collision-resistant hash functions h are hard to be proven secure, so we assume

that h behaves like a ”truly random function”. This is a standard approach in

cryptography fields [12]. A truly random hash function takes as input a value

and outputs a random value. This assumption is called as the random oracle

model. Under the random oracle model, we cannot compute the hash value

h(v) of a value v, but we can query the result of h(v) to the random oracle.

Furthermore, since the output is random, one only can guess the correct result

for an input with the probability 1/2n if the output is n-bit long. Note that the

queried results should be consistency, i.e., for the same input the oracle should

output the same value. Although security under the random oracle model is

not rigid, it does provide satisfactory security argument to a scheme in most

cases [18]. Since there exist signature and encryption schemes which are secure

in the random oracle model, but for which any implementation of the random

oracle results is insecure schemes [18].

Standard model. In the standard model [23], we do not assume that the

hash function h is random. Let the hash function h is a collision-resistant

hash function. The security in the standard model is based on the well-known

cryptographic assumptions, such as the hardness of the factoring problem, the

hardness of the discrete logarithm problem, the hardness of DH problem and

DDH assumption, etc.

2.3 Definition

We provide definitions for a key-evolving public-key encryption scheme. In the

definition, we assume that there exists a secure device, which saves updating

information of secret key for the decryptor.

Definition 3 A key-evolving public key encryption scheme Ke-Enc consists

17

of four algorithms 〈KG, UPD,E,D〉:

1. Key generation algorithm KG: it is a probabilistic polynomial-time al-

gorithm that takes as input a security parameter n and possibly other

parameters and returns a base public key PK and corresponding base

private key SK0. That is, KG(1n) = (PK, SK0, s), where s is the sys-

tem secret (trapdoor). If TA is involved, KG distributes s to it; otherwise,

KG simply discards s.

2. Private key update algorithm UPD: it takes an input the public key PK,

the private key SKj−1 of time period j − 1, j ≥ 1, and outputs the new

private key SKj of time period j. That is, UPD(PK, SKj−1, j) = SKj.

If TA is involved, UPD interacts with TA to compute SKj.

3. Encryption algorithm E: it takes as input the base public key PK, a mes-

sage m, and the time-period indicator j and outputs the ciphertext c of m

at time period j. We use E(PK,m, j) = 〈j, c〉 to denote the encryption.

E might be probabilistic.

4. Decryption algorithm D: it takes as input the ciphertext 〈j, c〉 of time

period j and the private key SKj′ of time period j′ and outputs m if and

only if j = j′. That is, D(SKj, E(PK,m, j)) = m.

We set no limit on the number of time periods. Key evolving can continue

till the limit set by the security parameter n. The maximum number of time

periods is 2n.

We assume a single TA for simplicity. In practicality, we distribute trust to

multiple trusted agents such that each TAi holds a share si of the system secret

s. The decryptor with private key SKj−1 and the TA’s together can compute

SKj in a secure way, such as, through the secure multi-party computation.

Note that the time period is part of the ciphertext. When the decryptor

gets 〈j, c〉, he uses his private key SKj to decrypt the ciphertext. It may be that

the decryptor gets 〈j, c〉 at time period j′, j′ > j. In this case, the decryptor

18

cannot decrypt it. Therefore, Ke-Enc is better used for applications that

need on-line decryption.

The key-evolving scheme cannot guarantee the desired security if the de-

cryptor does not delete the old private key after getting the new one. It would

be better to ensure erasure of old private keys by some system mechanism.

In addition, we consider the security of the scheme after the attacker gets

some private keys additionally. Our schemes achieve the z-resilient property,

that is, an adversary who gets z private keys does not obtain any information

about a ciphertext.

Definition 4 (Resilience) Assume a security model for public-key encryp-

tion scheme. A key-evolving public-key encryption scheme Ke-Enc=(KG,

UPD, E, D) is z-resilient if the attacker cannot break the encryption scheme

under the assumed security model even if he gets z private keys SKj1, SKj2,. . .,

SKjz .

Since the attacker gets z private keys, breaking does not include obtaining

the corresponding plaintext of a ciphertext that is encrypted with any of the

private keys.

19

20

Chapter 3

Key-Evolving Public Key

Encryption Schemes

In the chapter, we present three key-evolving encryption schemes. The first

Ke-Enc scheme is based on the discrete logarithm problem, which is z-resilient

and semantically secure against passive adversaries. We then modify the first

scheme to become semantically secure against the adaptive chosen ciphertext

attack under the random oracle model. Finally, we present the key-evolving

encryption scheme under the standard model. Before describing the encryption

schemes, we list notations used in this chapter in next section.

3.1 Ke-Enc against passive adversaries

Our first scheme KeEncBasic is shown in Figure 3.1 and 3.2. The scheme

consists of four algorithms: the key generation (KG) algorithm, the key

update (UPD) algorithm, the encryption (E) algorithm and the decryption

(D) algorithm. Let f(x) denote a polynomial function with z degrees, says

f(x) =
∑i=z

i=0 aix
i. We also assume that there are z TAs. The main idea is to

treat f(j) as the secret key of time period j. The public key of time period

j, gf(j), is computed from PK and time j. Initially, a decryptor randomly

selects a z-degree polynomial function. The decryptor keeps f(x) secretly and

21

publishes the base public key PK = 〈ga0 , ga1 , . . ., gaz〉. Then, the decryptor

holds the secret key f(0) and distributes f(xj) to TAj for 1 ≤ j ≤ z. When

time transfers from j−1 to j, the decryptor updates his secret key from SKj−1

to SKj with the help of the TAs and deletes SKj−1, immediately. We use the

ElGamal-like [27] encryption scheme for encryption and decryption. When an

encryptor wants to send a message to the decryptor at the time period j, the

encryptor first computes PKj from the base public key. Then, he computes

ciphertext c = 〈j′, α, s〉 (refer to Figure 3.2) and sends c to the decryptor.

The decryptor with SKj can decrypt it if j′ = j; otherwise, he discards the

message. Note that p = 2q + 1, where p, q are primes. Then Gq = QRp =

{g2 mod p|g ∈ G}. That is, all elements in Gq are quadratic residues. Since

Gq’s order is prime, each element in Gq is a generator except 1. One cannot

get one-bit information of quadratic residuosity.

Correctness. The correctness of decryption follows easily since

s/αf(j) = m ·
z∏

i=0

(gai)kji

/gkf(j) = m · gkf(j)/gkf(j) = m.

Efficiency. In each time period j, we can pre-compute

z∏
i=0

(gai)ji

= ga0(ga1(ga2(· · ·)j)j)j = gf(j).

It needs z + 1 modular exponentiations and z modular multiplications, which

is independent of the time period j. After pre-computation, each encryption

takes 2 modular exponentiations and 1 modular multiplication only. Each de-

cryption takes one modular exponentiation and one modular division. There-

fore, our scheme is very efficient in computation.

The public key consists of (z + 1) n-bit values and the private key consists

of one n-bit value only, which are both independent of the total number of

time periods. The number of time periods can be as large as 2n.

22

1. Algorithm KG(1n, z):

(a) Randomly an n-bit prime p = 2q + 1, where q is also a prime. All

operations work over Zp except being stated otherwise. Let Gq be

the subgroup of order q in Z∗
p and g be a generator of Gq.

(b) Randomly select a degree-z polynomial f(x) =
∑z

i=0 aix
i mod q.

(c) Set the public key and base private key as

PK = 〈ga0 , ga1 , . . . , gaz〉 and SK0 = 〈f(0)〉.

(d) Let TA hold f(xj), for some random xj ∈ Zq, 1 ≤ j ≤ z.

2. Algorithm UPD(PK, SKj−1): the decryptor Bob and TA together com-

pute SKj = f(j) from their shares in a secure distributed way.

Figure 3.1: KeEncBasic(part1) – discrete logarithm based key-evolving en-

cryption scheme with z-resilience and semantic security against passive adver-

saries.

3.1.1 Security analysis

We now show that KeEncBasic is semantically secure against passive ad-

versaries even the z decryption keys are disclosed. Let the z decryption

keys be disclosed at time period j1, · · · , jz. Our scheme achieves forward

and backward securities since an adversary cannot find two messages m0 and

m1 whose ciphertexts are polynomially distinguishable at any time period j,

j 6= jl, 1 ≤ l ≤ z. That is, an adversary cannot get more information at any

other time period, except time period j1, · · · , jz. This property guarantees our

scheme with forward and backward securities.

Theorem 5 Assume that the DDH problem is hard. For KeEncBasic, given

public key PK=〈ga0 , ga1 , . . . , gaz〉 and z private keys SKj1 , SKj2 , . . . , SKjz , no

23

1. Algorithm E(PK,m, j): randomly select k ∈ Zq, m ∈ Gq and compute

α = gk, s = m ·
z∏

i=0

(gai)kji

= m · gkf(j)

and return the ciphertext 〈j, α, s〉.

2. Algorithm D(SKj, 〈j, α, s〉): compute and return m = s/αf(j), where

SKj = f(j).

Figure 3.2: KeEncBasic(part2) – discrete logarithm based key-evolving en-

cryption scheme with z-resilience and semantic security against passive adver-

saries.

probabilistic polynomial-time adversary can distinguish the ciphertexts of any

two messages m0 and m1 ∈ Gq at time period j, j 6= jl, 1 ≤ l ≤ z.

Proof. We reduce the DDH problem to the distinguishing problem of m0

and m1 at time period j. Assume that m0 and m1 are distinguishable with a

non-negligible advantage ε(n) by a probabilistic polynomial-time adversary A.

We construct another probabilistic polynomial-time adversary B to solve the

DDH problem (with a non-negligible advantage ε(n)).

Let 〈g1, g2, u1, u2〉 be the input to the DDH problem. We let a = logg1
g2 and

randomly select bj1 , bj2 , . . . , bjz ∈ Zq. There is a degree-z polynomial f ′(x) =∑z
i=0 a′ix

i mod q that passes k + 1 points (j, a), (j1, bj1), (j2, bj2), . . . , (jz, bjz).

Note that a = f ′(j). Although we don’t know a, we can compute ga′i ,

0 ≤ i ≤ z, by Lagrange’s interpolation method. We set the public key

PK = 〈ga′0 , ga′1 , . . . , ga′z〉 with the base generator g1 and z private keys

SKji
= 〈bji

〉, 1 ≤ i ≤ z. To pose a ciphertext challenge to A, the encryp-

tion oracle randomly selects a bit b and computes the ciphertext 〈j, u1, mbu2〉

of mb. The adversary B outputs 1 for the input (g1, g2, u1, u2) if and only

if A’s output is equal to b for the challenge (j, u1, mbu2). We can see that

24

if (g1, g2, u1, u2) = (g1, g2, g
r
1, g

r
2), r ∈ Zq, the ciphertext outputted by the

encryption oracle has the right distribution for each m0 and m1. That is,

Pr[A(PK, 〈j, u1, mbu2〉) = b] = 1/2 + ε(n). If (g1, g2, u1, u2) = (g1, g2, g
r1
1 , gr2

2),

r1, r2 ∈ Zq, the distributions of ciphertexts for m0 and m1 are equal. Thus,

Pr[A(PK, 〈j, u1, mbu2〉) = b] = 1/2. Therefore, B solves the DDH problem

with a non-negligible advantage ε(n). 2

3.2 Ke-Enc against adaptive chosen cipher-

text attack

We propose two secure public key encryption schemes under the random oracle

model and the standard model.

3.2.1 Under the random oracle model

We modify KeEncBasic to be semantically secure against the adaptive cho-

sen ciphertext attack under the random oracle model. The scheme also consists

of four algorithms: KG, UPD, E and D. The modified scheme,KeEncROM,

is shown in Figure 3.3. Let f(x) =
∑i=z

i=0 aix
i. We treat f(j) as the secret key

and gf(j) the public key of time period j. The KG and UPD are similar to

these of the KeEncBasic , but the public key contains three additional hash

functions H1, H2 and H3 in which H1, H2, H3 are random oracle hash functions

with output length dependent on n. The idea is to use randomness of hash

functions. In encryption algorithm, we construct a (probabilistic) trapdoor

one-way permutation

hj,y(r) = (gk, r · yk, k ⊕H(j, r))

for time period j, where y = gf(j) and the trapdoor is f(j). The message is en-

crypted with one-time pad H2(j, r, k). The hash value H3(j, r, k, m) forces the

querist to be aware of m. The ciphertext c is 〈j, α, β1, β2, s, h〉 (see Figure 3.3

25

for detail). When the decyrptor wants to decrypt the ciphertext c, he checks

whether α = gk and h = H3(j, r, k, m) in which r, k and m refers to Figure 3.3.

The lengths of the three hash functions are not the same. The length of H1 is

the same to |k| where |k| denotes the bit-length of k. The length of H2 is the

same to |m| where |m| deontes the bit-length of m.

Correctness. We can see that

β1/α
f(j) = r · gkf(j)/gkf(j) = r,

β2 ⊕H1(j, r) = (k ⊕H1(j, r))⊕H1(j, r) = k, and

s⊕H2(j, r, k) = (m⊕H2(j, r, k))⊕H2(j, r, k) = m.

Efficiency. Encryption and decryption computation time is similar to that

of KeEncBasic. After pre-computation, each encryption takes 2 modular ex-

ponentiations, 1 modular multiplication and 3 hash operations. Each decryp-

tion takes 1 modular exponentiation, 1 modular division and 3 hash operations.

Again, computation time is independent of the time period j. Therefore, this

scheme is as efficient as KeEncBasic.

Again, KeEncROM’s public key consists of (z+1) n-bit values and private

key consists of only one n-bit value, which are both independent of the total

number of time periods.

3.2.2 Security analysis

Assume the random oracle model, which postulates that H1, H2 and H3 are

”truly random” hash functions. We show that KeEncROM is semantically

secure against the adaptive chosen ciphertext attack. As KeEncBasic stated,

assume that an adversary can get z decryption keys in advance. Let the z de-

cryption keys be disclosed at time period j1, · · · , jz. Since an adversary cannot

find two messages m0 and m1 whose ciphertexts are polynomially distinguish-

able at any time period j, j 6= jl, 1 ≤ l ≤ z such that our scheme achieves

forward and backward securities.

26

Theorem 6 Assume the random oracle model and that the discrete logarithm

problem is hard. For KeEncROM, given public key PK = 〈ga0 , ga1 , . . . , gaz〉

and z private keys SKj1 , SKj2 , . . . , SKjz , no probabilistic polynomial-time ad-

versary with access to the decryption oracle is able to find m0 and m1 in Gq

such that their ciphertexts at time period j, j 6= jl, 1 ≤ l ≤ z, are distinguish-

able.

Proof. Let n be the security parameter (or complexity measure). Let an

adversary A that can distinguish the ciphertexts of two messages m0 and m1

with a non-negligible probability even knowing z private keys and being able

to query the decryption oracle adaptively. A consists of two probabilistic

polynomial-time procedures A1 and A2. A1 takes as input the public key PK

and z private keys, makes some queries to the decryption and hash oracles,

and outputs two messages m0 and m1. A2 takes as input the public key PK, z

private keys, m0, m1, and the ciphertext E(PK,mb, j), queries the decryption

and hash oracles adaptively, and outputs b′, where b is a random bit. We say

that A attacks the scheme successfully if Pr[b = b′] = 1/2+ ε(n) for some non-

negligible function ε(n), where the probability is taken over b and the internal

coin tosses of A1, A2, KG and z private keys. We show that we can construct

a probabilistic polynomial-time algorithm B to solve the discrete logarithm

problem with a non-negligible probability by using A.

By the random oracle paradigm, one cannot get hash results without query-

ing the hash oracles H1, H2 and H3 except with a negligible probability. It

means that one has to know the input to the hash oracles. Therefore, one has

to know r and k, and thus can solve the discrete logarithm problem, which

contradicts to the assumption.

Assume that A makes qd queries to the decryption oracle and qh queries to

the hash oracles within time bound t(n) and gains an ε(n) advantage. Without

loss of generality, let the hash results of H1, H2 and H3 be of length n. Our

simulation for the hash and decryption oracles is as follows. The simulator S

maintains a table T for the random oracles for consistency. When A makes a

27

hash query (j′, r′) to H1, S checks whether (j′, r′) is already in T . If (j′, r′) is in

T , it returns the hash result in T ; otherwise, it returns a random value c′ and

puts 〈(j′, r′), c′〉 into T . When A makes a hash query (j′, r′, k′) to H2, S checks

whether the query in T . If yes, S returns the hash result t′ to A; otherwise, he

randomly selects t′ and adds 〈(j′, r′, k′), t′〉 to T and returns t′ to A. The same

is done for the queries to H3. If (j′, r′, k′, m′) is queried in T , S returns the hash

result h′ to A. Otherwise, S selects a random value h′, adds 〈(j′, r′, k′, m′), h′〉

to T , and returns h′ to A. For the decryption oracle, if (j′, α′, β′
1, β

′
2, s

′, h′)

is queried, S checks whether (j′, r′), (j′, r′, k′), and (j′, r′, k′, m′) with α′ =

gk′ have been asked. If either one of them is not asked, S returns ”invalid

ciphertext”. Otherwise, we can verify (j′, α′, β′
1, β

′
2, s

′, h′) by checking α′ = gk′ ,

β′
1 = r′ · (gf(j′))k′ , β′

2 = k′ ⊕ c1, s′ = m′ ⊕ c2 and h′ = c3 where c1 = h1(j
′, r′),

c2 = h2(j
′, r′, k′) and c3 = h3(j

′, r′, k′, m′) are in T and m′ is the corresponding

plaintext. If it is so, it returns m′; otherwise, it returns ’?’, which means

that the input ciphertext is invalid. Note that S may be wrong on returning

’?’ since (j′, α′, β′
1, β

′
2, s

′, h′) may be valid. But, this occurs with probability

1/23n only due to the random oracle model. Now, S constructs a ciphertext

E(PK,mb, j
′) = (j′, α′, β′

1, β
′
2, s

′, h′) such that s′ = mb⊕h2(j
′, r′, k′) and b = 0,

or 1, then S runs AH1,H2,H3,DH1,H2,H3

2 (PK, SK ′s, m0, m1, E(PK,mb, j)) as it did

to A1.

Let E1 be the event that A does make a query (j, r) to the H1 hash oracle,

or a query (j, r, k) to the H2 hash oracle, or a query (j, r, k, m) to the H3

hash oracle. Let E2 be the event that A makes a correct decryption query

(j′, α′, β′
1, β

′
2, s

′, h′), but without querying appropriate hash queries. We have

Pr[E2] ≤ qd2
−3n ≤ t(n)2−3n.

Since without querying the hash oracles on proper r, k and m, A has no

advantage in distinguishing m0 from m1. Thus, we have

Pr[A2(PK, SK ′s, m0, m1, E(PK,mb, j)) = b|¬(E1 ∨ E2)] = 1/2.

28

Since A has ε(n) advantage in guessing b, we have

1/2 + ε(n) = Pr[A2(PK, SK ′s, m0, m1, E(PK,mb, j)) = b]

= Pr[A2(·) = b|E2] Pr[E2]

+ Pr[A2(·) = b|Ē2 ∧ E1] · Pr[E1 ∧ Ē2]

+ Pr[A2(·) = b|Ē2 ∧ Ē1] · Pr[Ē1 ∧ Ē2]

≤ t(n)2−3n + Pr[E1] + (1/2) Pr[Ē1].

This implies that Pr[E1] ≥ 2ε(n)− t(n)2−3n+1.

The algorithm B of solving the discrete logarithm problem works as fol-

lows. On input (g, y), it randomly selects a degree-z polynomial f ′(x) =∑z
i=0 aix

i mod q. It sets the decryption key SKj of time period j as f ′(j) and

SKji
= f ′(ji) as the given exposed decryption key of time periods ji, 1 ≤ i ≤ z.

B calls A1(g
a0 , ga1 , . . . , gaz , SKj1 , SKj2 , . . . , SKjz) to find m0 and m1 with the

simulator S to answer queries. It then randomly selects r, c1, c2 and c3 and

feeds the ciphertext 〈j, c〉= 〈j, y, rySKj , c1, c2, c3〉 to A2, where c1, c2 and c3 are

randomly chosen and consistent with S’s answers to hash queries. Finally, B

outputs k if (j, r), (j, r, k), or (j, r, k, m) have been queried to the hash oracles

and gk = y, where k is either queried in (j, r, k) or (j, r, k, m), or is equal to

c1 ⊕H1(j, r).

By the above argument, A2 queries (j, r), (j, r, k) or (j, r, k, m) of appro-

priate form with probability Pr[E1] = 2ε(n)− t(n)23n+1. Therefore, the prob-

ability of gk = y is 2ε(n)− t(n)2−3n+1 at least, which is non-negligible. 2

3.2.3 Under the standard model

Now, we modify KeEncBasic to achieve the security against the adaptive

chosen ciphertext attack under the standard model. The scheme is shown in

Figure 3.4 and Figure 3.5. Comparison to KeEncROM, we assume that a

hash function H is collision-resistant but not random. For such a function H,

it is infeasible to find two distinct inputs v1 and v2 such that H(v1) = H(v2).

A hash function H is chosen from the collision-resistant hash family H.

29

At first, we choose five z-degree polynomial functions at random,

fa0(x), fa1(x), fb1(x), fa2(x), fb2(x), where faj
(x) =

∑z
i=0 aj,ix

i for 0 ≤ j ≤ 2

and fbj
(x) =

∑z
i=0 bj,ix

i for 1 ≤ j ≤ 2. The decryptor saves the constant term

of each of polynomial functions as the initial secret key SK0. The decryptor

and TA compute the secret key SKj of time period j in a secure way. The

public key consists of g, h, q, p, H and commitments of the coefficients of these

polynomials.

To encrypt a message m at time period j, the encryptor computes

the following value 〈j, α, β, s, δ〉, where α = gk, β = hk, s = m ·

gkfa0 (j), δ = gkfa1 (j)hkfb1
(j)(gkfa2 (j)hkfb2

(j))υ and υ = H(j, α, β, s) for

a random k ∈ Zq. The decryptor can decrypt as long as he has

SKj = {fa0(j), fa1(j), fb1(j), fa2(j), fb2(j)}. The decryptor computes υ′ =

H(j, α, β, s) and checks if αfa1 (j)+fa2 (j)υ′βfb1
(j)+fb2

(j)υ′ = δ. If so, he decrypts

and obtains m.

Correctness. Let SKj = {fa0(j), fa1(j), fb1(j), fa2(j), fb2(j)} and a cipher-

text of m is 〈j, α, β, s, δ〉. If υ = H(j, α, β, s), then αfa1 (j)+fa2 (j)υβfb1
(j)+fb2

(j)υ =

gkfa1 (j)gkfa2 (j)·υhkfb1
(j)hkfb2

(j)·υ = gkfa1 (j)hkfb1
(j)(gkfa2 (j)υhkfb2

(j)υ) = δ. We can

obtain the message m by computing s/αfa0 (j) = m · gkfa0 (j)/αfa0 (j) = m.

Efficiency. After pre-computation, each encryption takes 5 modular expo-

nentiations, 2 modular multiplications and 1 hash operations. Each decryption

takes 3 modular exponentiations, 1 modular division, 2 modular multiplica-

tions and 1 hash operations. Computation time is independent of the time

period j. Therefore, this scheme is as efficient as KeEncBasic.

Again, KeEncSTM’s public key consists of 3(z + 1) n-bit values and pri-

vate key consists of only one 5n-bit value, which are both independent of the

total number of time periods.

3.2.4 Security analysis

Assume the DDH assumption. We show that KeEncSTM is semantically se-

cure against the adaptive chosen ciphertext attack. For time period j, the

30

decryption key SKj doesn’t be disclosed, an adversary cannot distinguish

E(PK,m0, j) from E(PK,m1, j). Therefore, our scheme has forward and

backward securities.

Theorem 7 Assume the DDH problem is hard. For KeEncSTM, given pub-

lic key PK = 〈g, h, q,H, {wi, ci, di}0≤i≤z〉 and z private keys SK∗
ji
, 1 ≤ i ≤ z,

no probabilistic polynomial-time adversary with access to the decryption oracle

is able to find m0 and m1 in Gq such that their ciphertexts at time period j,

j 6= jl, 1 ≤ l ≤ z, are distinguishable.

Proof. Assume that the scheme does not have the desired properties. There

is an adversary A that can distinguish the ciphertexts of the two messages

m0 and m1 with a non-negligible probability even knowing z private keys

and being able to query the decryption oracle (DO) adaptively. A has two

probabilistic polynomial-time procedures A1 and A2. A1 takes as input the

public key and z private keys, makes some chosen-ciphertext queries to (DO),

and outputs two messages m0 and m1. A2 takes as input the public key

PK, z private keys, m0, m1, and the ciphertext E(PK,mb, j), queries (DO)

adaptively, and outputs b′, where b is a random bit. We say that A attacks the

scheme successfully if Pr[b = b′] = 1/2 + ε(n) for some non-negligible function

ε(n), where the probability is taken over b and the internal coin tosses of

A1, A2, KG and z private keys. We show that we can use A to construct a

probabilistic polynomial-time algorithm B for solving the DDH problem with

a non-negligible probability.

Let the input of DDH be 〈g1, g2, u1, u2〉. We construct a simulator S that

simulates A′s view in its attack on the algorithm. The simulator S contains

an encryption oracle EO and a decryption oracle DO. We will show that the

simulation of A’s view will be nearly perfect if the quadruple is from D and A’s

advantage is negligible if the quadruple is from R. We construct the simulator

S as follows.

1. Key setup. The public key is constructed as follows.

31

(a) Randomly select aj1 , · · · , ajz bj1 , · · · , bjz over Zq.

(b) There is a z-degree polynomial function f ′′
a0

(x) =
∑z

i=0 a′′0,ix
i

mod q that passes z+1 points (j, a), (j1, aj1), · · · , (jz, ajz), where

a = loggh is unknown. Randomly select z +1 points (j, e · a), (j1, e ·

bj1), · · · , (jz, e · bjz) and letf ′′
b0

(x) =
∑z

i=0 b′′0,ix
i mod q passes these

points. Let w′
i = ga′′0,ihb′′0,i for 0 ≤ i ≤ z. Although a is unknown,

we can compute w′
i for 0 ≤ i ≤ z by Lagrange interpolation. Thus

f ′
a0

(x) =
∑z

i=0 (a′′0,i + ab′′0,i)x
i mod q. Now, we construct c′i and

d′i as follows. Let f ′
a1

(x) =
∑z

i=0 a′1,ix
i mod q that passes z+1

points (j, a + r1,1), (j1, r1,2), · · · , (jz, r1,z+1), f ′
a2

(x) =
∑z

i=0 a′2,ix
i

mod q that passes z+1 points (j, a + r2,1), (j1, r2,2), · · · , (jz, r2,z+1),

f ′
b1

(x) =
∑z

i=0 b′1,ix
i mod q that passes z+1 points (j, a +

r3,1), (j1, r3,2), · · · , (jz, r3,z+1) and f ′
b2

(x) =
∑z

i=0 b′2,ix
i mod q that

passes z+1 points (j, a+r4,1), (j1, r4,2), · · · , (jz, r4,z+1), where ri,j ∈R

Gq for 1 ≤ i ≤ 4, 1 ≤ j ≤ z + 1. Then, c′i = ga′1,ihb′1,i and d′i =

ga′2,ihb′2,i for 0 ≤ i ≤ z by Lagrange interpolation. We can fix e = 0.

(c) Then we set the public key as follows.

PK = 〈g, h, q,H, {w′
i, c

′
i, d

′
i}0≤i≤z〉,

where H is a family of collision-resistant hash functions, g = g1 and

h = g2.

The key generation is a bit different from the actual cryptosystem; how-

ever, the effect is the same.

2. Challenge. Feed the public key PK and the z private keys SK ′
j =

{bji−1
, ebji−1

, r1,i, r2,i, r3,i, r4,i}, 2 ≤ i ≤ z +1, to A1 and get two messages

m0 and m1 in Gq.

3. Encryption. Randomly select a bit b ∈R {0, 1} and compute

α′ = u1, β
′ = u2, s′ = mb · u

f ′′a0
(j)

1 u
f ′′b0

(j)

2 , and

32

δ′ = u
f ′a1

(j)

1 u
f ′b1

(j)

2 (u
f ′a2

(j)

1 u
f ′b2

(j)

2)υ′ ,

where υ′ = H(j, α′, β′, s′). Then, the encryptor returns the ciphertext c

= 〈j, α′, β′, s′, δ′〉.

4. Decryption. Given the ciphertext c, DO checks if c is valid by verifying

u
f ′a1

(j)+f ′a2
(j)υ′

1 u
f ′b1

(j)+f ′b2
(j)υ′

2 = δ′.

If it is not valid, the oracle rejects it. Otherwise, DO returns

m = s′/u
f ′′a0

(j)

1 u
f ′′b0

(j)

2 .

This completes the description of S. The adversary B takes as input

(g1, g2, u1, u2) and outputs 1 if b = A2(s
′). To complete the proof, we show:

1. If (g1, g2, u1, u2) is from D, the joint distribution of the adversary’s view

and the hidden bit b is statically indistinguishable from that in the actual

attack.

2. If (g1, g2, u1, u2) comes from R, the distribution of the hidden bit b is

independent of the adversary’s view.

The theorem follows immediately from the following two lemmas.

Lemma 8 If the S’s input (g1, g2, u1, u2) is from D, the joint distribution of

the adversary’s view and the hidden bit b is statically indistinguishable from

that in the actual attack.

We need argue two things. One is that the output of DO and EO has the

right distribution. The other is that DO rejects all invalid ciphertexts except

with a negligible probability. Since the input comes from D, we have that u1

= gr
1 and u2 = gr

2 for some r. Thus, α′ = u1, β′ = u2, s′ = mb · u
f ′′a0

(j)

1 u
f ′′b0

(j)

2

and δ′ = u
f ′a1

(j)

1 u
f ′b1

(j)

2 (u
f ′a2

(j)

1 u
f ′b2

(j)

2)υ′ , where s′ and δ′ can be computed by

the Lagrange interpolation and υ′ = H(j, α′, β′, s′). Hence, the output of

33

the encryption oracle EO has the right distribution. In addition, the cipher-

text c = 〈j, α′, β′, s′, δ′〉 is an valid ciphertext. Therefore, DO outputs mb =

s′/u
f ′′a0

(j)

1 u
f ′′b0

(j)

2 .

Moreover, we will show that DO rejects all invalid ciphertexts, except with

a negligible probability. Consider that the invalid ciphertext 〈j, α′, β′, s′, δ′〉.

Since the adversary knows at most z values of f ′′
a0

(·), f ′′
b0

(·), f ′
a1

(·), f ′
b1

(·), f ′
a2

(·)

and f ′
b2

(·) other than j. Let log denote logg, log h = a, cj = gf ′a1
(j)hf ′b1

(j) and

dj = gf ′a2
(j)hf ′b2

(j). From the public key cj and dj, we obtain two equations:

log cj = f ′
a1

(j) + af ′
b1

(j), (3.1)

log dj = f ′
a2

(j) + af ′
b2

(j). (3.2)

From the output of the EO, we obtain another equation:

log δ′ = r · f ′
a1

(j) + ra · f ′
b1

(j) + υ′r · f ′
a2

(j) + υ′ra · f ′
b2

(j). (3.3)

If the adversary submits an invalid ciphertext (j, α∗, β∗, s∗, δ∗) to DO, ie.,

r1 = logu1 6= logg2u2 = r2. DO will reject, unless the point P

(f ′
a1

(j), f ′
a2

(j), f ′
b1

(j), f ′
b2

(j)) lies on the hyperplane H defined by

log δ∗ = r1 · f ′
a1

(j) + r2a · f ′
b1

(j) + υ∗r1 · f ′
a2

(j) + υ∗r2a · f ′
b2

(j)), , (3.4)

where υ∗ = H(j, α∗, β∗, s∗). Since Equations 3.1, 3.2 and 3.3 are linearly

independent, the hyperplane H intersects P at a line.

The first time the DO rejects an invalid ciphertext, except with probability

1/q. However, the ith query will be rejected, except with the probability at

least 1/(q − i + 1). Following the result above, DO will rejects all invalid

ciphertext, except with negligible probability.

Lemma 9 If the S’s input (g1, g2, u1, u2) is from R, the distribution of the

hidden bit b is independent of the adversary’s view.

We should show that if DO rejects all invalid ciphertexts, the distribution

of the hidden bit b is independent of the adversary’s view. Let r1 = logu1

34

and r2 = logg2u2. Assume that r1 6= r2. The public key wj = gf ′′a0
(j)hf ′′b0

(j)

determines the equation:

log wj = f ′′
a0

(j) + af ′′
b0

(j). (3.5)

Moreover, if the DO only decrypts valid ciphertexts (〈j, α′, β′, s′, δ′〉), then

the adversary obtains only linearly dependent relation r′ log wj = r′f ′′
a0

(j) +

r′af ′′
b0

(j), where r′ = logu1. Thus, no further information about (f ′′
a0

(j), f ′′
b0

(j))

is leaked.

Consider that the output of EO, we have s′ = mb · u
f ′′a0

(j)

1 u
f ′′b0

(j)

2 . Let τ =

u
f ′′a0

(j)

1 u
f ′′b0

(j)

2

log τ = r1f
′′
a0

(j) + r2af ′′
b0

(j). (3.6)

Equations 3.5 and 3.6 are linearly independent. We can view τ as a one-time

pad. As a result the bit b is independent of the adversary’s view.

Next, we prove that DO will reject all invalid ciphertexts, except with a

negligible probability. Based on the adversary’s view, we examine the distri-

bution of P = (f ′
a1

(j), f ′
a2

(j), f ′
b1

(j), f ′
b2

(j)) ∈ Z4
q. From the output of EO, we

get the following equation:

log δ′ = r1 · f ′
a1

(j) + r2a · f ′
b1

(j) + υ′r1 · f ′
a2

(j) + υ′r2a · f ′
b2

(j)). (3.7)

From the adversary’s view, P is a random point on the line L formed by

intersecting the hyperplane of Equations 3.1, 3.2 and 3.7. Let r′1 = logu′1 and

r′2 = logg2u
′
2. If the submitted ciphertext (〈j, α′, β′, s′, δ′〉) is invalid, there are

three cases to consider:

1. Case I. (α′, β′, s′) = (α, β, s). Since δ′ 6= δ, the decryption oracle still

rejects.

2. Case II. (α′, β′, s′) 6= (α, β, s) but the hash value is the same. This im-

mediately violates the collision-resistance of our hash function. There-

fore, this cannot occur with non-negligible probability.

35

3. Case III. (α′, β′, s′) 6= (α, β, s) and the hash value is not the same.

Unless the point P satisfies the hyperplane logδ′. Otherwise, DO will

reject. Moreover, Equations 3.1, 3.2, 3.4 and 3.7 are linearly indepen-

dent when α′ 6= α∗, r1 6= r′1 and r2 6= r′2. It follows that the decryption

oracle rejects, except with a negligible probability.

Now, we consider the case that

when t 6= j, the tuple (f ′
a1

(j), f ′
a2

(j), f ′
b1

(j), f ′
b2

(j), f ′
a1

(t), f ′
a2

(t), f ′
b1

(t), f ′
b2

(t))

is uniformly distributed subject to several constraints. At first, we have Equa-

tions 3.1, 3.2 and 3.7. Next, we have the two equations from the public key:

From the public key ct and dt, we obtain two equations:

log ct = f ′
a1

(t) + af ′
b1

(t), (3.8)

log dt = f ′
a2

(t) + af ′
b2

(t). (3.9)

Since the adversary could have z secret keys other than j and t, he can knows

z values of each of f ′
a1

(·), f ′
b1

(·), f ′
a2

(·) and f ′
b2

(·). Therefore, the following

relations hold:

f ′
a1

(j) + λf ′
a1

(t) = s1 (3.10)

f ′
a2

(j) + λf ′
a2

(t) = s2 (3.11)

f ′
b1

(j) + λf ′
b1

(t) = s3 (3.12)

f ′
b2

(j) + λf ′
b2

(t) = s4 (3.13)

where λ is the Lagrange coefficient λ = (j − j1)(j − j2) · · · (j − jz)/(t− j1)(t−

j2) · · · (t − jz). Now we have more equations than unknowns. However, it is

easy to see that Equation 3.12 is linearly dependent on Equations 3.1, 3.2 and

3.10 while Equation 3.13 is linearly dependent on Equations 3.8, 3.9 and 3.11.

Thus, there are 7 linearly independent equations and 8 unknowns. Consider

that the ciphertext (〈t, α′′, β′′, s′′, δ′′〉) submitted by the adversary is invalid.

DO will rejects unless

log δ′′ = r1 · f ′
a1

(t) + r2a · f ′
b1

(t) + υ′′r1 · f ′
a2

(t) + υ′′r2a · f ′
b2

(t), (3.14)

36

Looking at all 8 Equations 3.1, 3.2, 3.7- 3.11 and 3.14, we see that they are

linearly independent when the following three conditions hold:

1. logu1 6= logg2u2. This is true since (g1, g2, u1, u2) is a random tuple.

2. logα′′ 6= logg2β
′′. This is true since the ciphertext (〈t, α′′, β′′, s′′, δ′′〉) is

invalid.

3. H(j, α′, β′, s′) 6= H(t, α′′, β′′, s′′). This is true since j 6= t and H is chosen

from a family of collision resistant functions. The collision resistance

of H is necessary since the adversary’s choice of j, t is not known in

advance.

Therefore, the ciphertxet is rejected except with negligible probability at most

1/q. The ith query except with probability at most 1/(q−i+1). This completes

the proof. 2

37

1. Algorithm KG(1n, z):

(a) Randomly select an n-bit prime p = 2q +1, where q is also a prime.

Let Gq be the subgroup of order q in Z∗
p and g be a generator of Gq.

(b) Randomly select a degree-z polynomial f(x) =
∑z

i=0 aix
i mod q.

(c) H1, H2, H3 are random oracle hash functions.

(d) Set the public key and base private key as

PK = 〈ga0 , ga1 , . . . , gaz , p, H1, H2, H3〉 and SK0 = 〈f(0)〉.

(e) Let TA hold f(xj), xj ∈ Zq, 1 ≤ j ≤ z.

2. Algorithm UPD(PK, SKj−1): the decryptor Bob and TA together com-

pute SKj = 〈f(j)〉 from their shares in a secure distributed way.

3. Algorithm EH1,H2,H3(PK,m, j): randomly select k ∈ Zq and r ∈ Gq,

compute

α = gk, β1 = r · (
z∏

i=0

(gai)ji

)k = r · gf(j)·k,

β2 = k ⊕H1(j, r), s = m⊕H2(j, r, k), h = H3(j, r, k, m),

and return the ciphertext 〈j, α, β1, β2, s, h〉.

4. Algorithm DH1,H2,H3(SKj, 〈j, α, β1, β2, s, h〉):

(a) Compute r = β1/α
f(j), k = β2 ⊕H1(j, r) and m = s⊕H2(j, r, k).

(b) Check whether α = gk and h = H3(j, r, k, m). If it is so, return m;

otherwise, return ’?’.

Figure 3.3: KeEncROM – discrete logarithm based key-evolving encryption

scheme with z-resilience and semantic security against the adaptive chosen

ciphertext attack under the random oracle model.

38

1. Algorithm KG(1n, z): let H be a collision-resistant hash function selected

from a family of collision-resistant hash functions.

(a) Randomly select an n-bit prime p = 2q +1, where q is also a prime.

All operations work over Zp except being stated otherwise. Let Gq

be the subgroup of order q in Z∗
p and g be a generator of Gq.

(b) Randomly select five degree-z polynomial functions faj
(x) =∑z

i=0 aj,ix
i for 0 ≤ j ≤ 2 and fbj

(x) =
∑z

i=0 bj,ix
i for 1 ≤ j ≤ 2.

(c) Set w∗
i = ga0,i , c∗i = ga1,ihb1,i and d∗i = ga2,ihb2,i for 0 ≤ i ≤ z.

(d) Set the public key and base private key as

PK = 〈g, h, q,H, {w∗
i , c

∗
i , d

∗
i }0≤i≤z〉

and

SK0 = {fa0(0), fa1(0), fb1(0), fa2(0), fb2(0)}.

(e) Let TA hold {fa0(xj), fa1(xj), fb1(xj), fa2(xj), fb2(xj)}, xj ∈ Zq, 1 ≤

j ≤ z.

Figure 3.4: KeEncSTM (part 1)– discrete logarithm based key-evolving

scheme with z-resilience and semantic security against the adaptive chosen

ciphertext attack under the standard model.

39

1. Algorithm UPD(PK, SKj−1): the decryptor Bob and TA together com-

pute SKj = 〈fa0(j), fa1(j), fb1(j), fa2(j), fb2(j)〉 from their shares in a

secure distributed way.

2. Algorithm E(PK,m, j): randomly select k ∈ Zq, compute

α = gk, β = hk, s = m ·
z∏

i=0

(w∗
i)

kji

= m · gkfa0 (j), and

δ =
z∏

i=0

(c∗i)
kji · (

z∏
i=0

(d∗i)
kji

)υ = gkfa1 (j)hkfb1
(j)(gkfa2 (j)hkfb2

(j))υ,

where υ
def
= H(j, α, β, s). Then, the encryptor returns the ciphertext C

= 〈j, α, β, s, δ〉.

3. Algorithm D(SK∗
j , 〈j, α, β, s, δ〉).

(a) Compute υ = H(j, α, β, s).

(b) Check if αfa1 (j)+fa2 (j)υβfb1
(j)+fb2

(j)υ = δ.

(c) If so, compute and return m = s/αfa0 (j).

Figure 3.5: KeEncSTM (part 2) – discrete logarithm based key-evolving

encryption scheme with z-resilience and semantic security against the adaptive

chosen ciphertext attack under the standard model.

40

Chapter 4

Distributed and Proactive

Key-Evolving Encryption

In this chapter, we describe the procedure for a key evolving with TA. Then,

we use the proactive mechanism to protect the TAs. Furthermore, we propose

a key-evolving encryption in a distributed way. Multiple decryptors decrypts

encrypted messages via distributed computing. Finally, we present how the

proactive mechanism protects the secret of the decryptors. We assume that

involved n parties are connected by a broadcast channel and any two parties

are connected by a private channel such that a third party cannot get messages

sent over the private channel.

4.1 Key evolving with TA

We propose two protocols for key evolving with TA. One is for distributing

TA’s secret. The other is for proactivizing TA’s shares.

4.1.1 Distributing TA’s secret

Assume that there exist z TA’s and each TAi holds a share f(xi), 1 ≤ i ≤ z,

where xi’s are distinct and large enough so that the maximum time period

never reaches them. At time period j − 1, the decryptor Bob holds SKj−1 =

41

f(j − 1). Via the aid of TA’s, Bob would like to compute SKj = f(j), which

shall be known to Bob only. Assume that each pair of Bob and TA’s share a

private channel by which secret information can be passed between them.

We treat Bob as TA0 and let x0 = j − 1. By the Lagrange interpolation

method, the polynomial that passes the shares of Bob and TA’s is

f(x) =
z∑

k=0

(f(xk) ·
∏

0≤i6=k≤z

x− xi

xk − xi

).

TAk can compute sk = f(xk) ·
∏

0≤i6=k≤z
j−xi

xk−xi
, 0 ≤ k ≤ z. Therefore,

f(j) =
∑z

k=0 sk. Our goal is that TA’s together compute f(j) and only TA0

knows f(j). Moreover, each TAi does not reveal any information about its

share f(xi). Note that x0, x1, . . . , xz are known to all TA’s. We describe the

distributed protocol D-Upd for computing f(j) securely as follows.

1. First, each TAl, 1 ≤ l ≤ z, selects a degree-z polynomial hl(x) =∑z
i=1 al,ix

i + sl over Zq and sends hl(xi) to TAi, 0 ≤ i ≤ z, via the

private channel between them. Let F (x) =
∑z

i=1 hi(x).

2. Then, each TAl, 0 ≤ l ≤ z, computes its share F (xl) =
∑z

i=1 hi(xl).

3. Afterwards, each TAl, 1 ≤ l ≤ z, sends F (xl) to TA0 via the private

channel between them.

4. TA0 then computes the constant coefficient
∑z

i=1 si of F (x) from F (x0),

F (x1),. . ., F (xz) by the Lagrange interpolation method and his private

key SKj = f(j) = s0 +
∑z

i=1 si at time period j.

Correctness. Following the protocol, D-Upd correctly computes the secret

key SKj. In the protocol, each TAi does not have any information about

another TAj’s share f(xj).

We can make the computation verifiable by letting each TAl publish gal,0 ,

gal,1 ,. . ., gal,z [30]. Each TAi, 0 ≤ i ≤ z, verifies whether he receives the right

share hl(xi) from TAl, 1 ≤ l ≤ z, by checking ghl(xi) =
∏z

k=0 gal,kxi
k
.

42

4.1.2 Security analysis

We show that D-Upd is semantically secure against passive adversaries even

z shares are disclosed.

Theorem 10 Assume that the private channel exists. For D-Upd, given pub-

lic key PK=〈ga0 , ga1 , . . . , gaz〉 and z private keys SKj1 , SKj2 , . . . , SKjz , no prob-

abilistic polynomial-time adversary can compute another share SKj in which

j 6= jl, 1 ≤ l ≤ z.

Proof. We construct a simulator to simulate the procedure. If one can com-

pute useful information from the transcripts of the real run, he can compute

useful information from the transcripts of the simulation. Since the simulation

does not disclose any useful information, an adversary can not compute any

useful information from the real run. The simulation is described as follows.

Input: the shares s1, s2, · · · , st, , the PK = 〈ga0 , ga1 , . . . , gaz〉 and let B =

{B1, B2, · · · , Bt} denote the corrupted set.

1. Each Bi ∈ B, we select a degree-z polynomial hi(x) =
∑z

j=1 ai,jx
j + si

over Zq. Then, Bi sends hl(xi) to Bj, 0 ≤ j ≤ z.

2. Each Bj /∈ B, we randomly selects hj(x0), · · · , hj(xj−1), hj(xj+1), · · · ,

hj(xz+1) over Zq. Then, Bj send Bi hj(xi).

3. Then each Bi ∈ B computes the share F (xi) =
∑z

l=1 hl(xi) and send it

to B0.

For Bi ∈ B, since the transcript (h1(xi), · · · , hz(xi)) in the simulation con-

sists of Z + 1 random values that are selected from Zq, the transcript in the

simulation is identical to that in the real run. Since the simulation carries

no more useful information, the real procedure also does not disclose useful

information. This completes the proof. 2

43

4.1.3 Proactivizing TA’s shares

To protect TA’s shares, We use proactive cryptography further. Let PSi, 1 ≤

i ≤ n, be n proactive servers. In practicality, we can make TA’s as proactive

servers. We proactivize each TAi’s share f(xi) into PSi’s. by the proactive

(t, n)-secret sharing scheme [47]. Each evolving time period j − 1 is divided

into sub-periods p1, p2, . . . , pb, where p1, p2, . . . , pb−1 are refresh sub-periods in

which the shares of f(x1), f(x2), . . . , f(xz) are refreshed among PSi’s. In the

last sub-period pb, f(j − 1) of the decryptor is updated to f(j).

For simplicity, we let t = n. Let ri(x) be a degree-(n− 1) polynomial over

Zq with constant coefficient f(xi), 1 ≤ i ≤ z. Each PSj, 1 ≤ j ≤ n, holds a

share ri(j) for the share f(xi), 1 ≤ i ≤ z, and refreshes them in every sub-time

period pi, 1 ≤ i ≤ b− 1, as follows.

1. Each PSl, 1 ≤ l ≤ n, selects n degree-(n-1) polynomials rl,i(x) over

Zq, 1 ≤ i ≤ n, whose constant coefficients are all 0. PSl sends rl,i(j),

1 ≤ i ≤ n, to PSj, 1 ≤ j ≤ n, via the private channel between them.

2. After receiving shares from other proactive servers, PSl, 1 ≤ l ≤ n,

updates its shares to r′i(l) = ri(l) +
∑n

j=1 rj,i(l).

To update the decryptor Bob’s decryption key f(j− 1), we assume Bob as

PS0 and x0 = j − 1. Let

ρj,k =
∏

0≤i6=k≤z

j − xi

xk − xi

and λl =
∏

1≤i6=l≤n

−i

l − i
,

where 0 ≤ k ≤ z and 1 ≤ l ≤ n. We have

f(j) =
z∑

k=0

ρj,kf(xk) =
z∑

k=1

n∑
l=1

ρj,kλlrk(l) + ρj,0f(x0)

=
n∑

l=1

(
z∑

k=1

ρj,kλlrk(l)) + ρj,0f(x0).

Let sl =
∑z

k=1 ρj,kλlrk(l), which can be computed by PSl, 1 ≤ l ≤ n. Our

proactive key update scheme P-Upd for computing SKj = f(j) in the sub-

period pb of time period j is as follows.

44

1. Each PSl, 1 ≤ l ≤ n, selects a degree-n polynomial hl(x) =
∑n

i=1 al,ix
i +

sl over Zq and sends hl(xi) to PSi, 0 ≤ i ≤ n, via the private channel

between them. Let F (x) =
∑n

i=1 hi(x).

2. Each PSl, 0 ≤ l ≤ n, computes its share F (xl) =
∑n

i=1 hi(xl).

3. Each PSl, 1 ≤ l ≤ n, sends F (xl) to PS0 via the private channel between

them.

4. PS0 then computes the constant coefficient
∑n

l=1 sl of F (x) from F (x0),

F (x1),. . ., F (xn) by the Lagrange interpolation method and his private

key SKj = f(j) = ρj,0f(x0) +
∑n

l=1 sl.

Correctness follows the above equations. Again, PSi does not have any

information about another PSj’s shares r1(j), r2(j), . . . , rz(j). We can also

make the computation verifiable by the verifiable secret sharing method as

that in Section 4.1.1.

4.1.4 Security analysis

We show that P-Upd is semantically secure against passive adversaries even

z shares are disclosed.

Theorem 11 Assume that the private channel exists. For P-Upd, given

public key PK=〈ga0 , ga1 , . . . , gaz〉 and z private keys SKj1 , SKj2 , . . . , SKjz , no

probabilistic polynomial-time adversary can compute the share SKj in which

j 6= jl, 1 ≤ l ≤ z.

Proof. We construct a simulator to simulate the procedure. If one can com-

pute useful information from the transcripts of the real run, he can compute

useful information from the transcripts of the simulation. Since the simulation

does not disclose any useful information, an adversary can not compute any

useful information from the real run. The simulation is described as follows.

Input: the shares s1, s2, · · · , sn, and let B = {PS1, PS2, · · · , PSn} denote the

corrupted set.

45

1. Each PSi ∈ B, we select a degree-n polynomial hi(x) =
∑z

j=1 ai,jx
j + si

over Zq.

2. For PSj /∈ B, we randomly select z numbers hj(x0), · · · , hj(xj−1)

,hj(xj+1), · · · , hj(xz+1) over Zq. Then, PSj send PSi hj(xi).

3. Each PSi ∈ B computes its share F (xi) =
∑n

l=1 hl(xi).

For PSi ∈ B, since the transcript (h1(xi), · · · , hn(xi)) is randomly selected

over Zq in the simulation, the transcript of the simulation and that in the real

run are identical. Because the simulation carries no useful information, the

real procedure also does not disclose useful information. This completes the

proof. 2

4.2 Distributed Ke-Enc schemes

It is sometimes desirable to have distributed decryption in which the decryption

key is shared among a set of decryptors Bi, 1 ≤ i ≤ n. Each decryptor holds

a share si of the decryption key k. For decryption, each decryptor computes

a partial plaintext mi = D(si, c) such that any one can combine these partial

plaintexts to form the full plaintext m, where c = E(k, m). We can easily

make the decryption algorithms of our schemes work in a ”distributive” way.

We assume that each decryptor Bi holds a share si of the secret key SKj =

f(j) via a polynomial t(x) =
∑z

k=1 aix
i + f(j) mod q such that si = t(i).

For KeEncBasic, on receiving a ciphertext (j, α, s), Bi computes the partial

plaintext mi = αsi mod p. With z + 1 partial plaintexts mi1 , mi2 , . . . ,miz+1 ,

one can computes the plaintext

m = s/

z+1∏
k=1

(mik)
λk mod p = s/αf(j) mod p,

where λk’s are appropriate Lagrange coefficients.

Correctness. Following the procedure, the correctness is easily verified.

46

Security analysis. Assume that the DDH problem is hard. If the single-user

scheme KeEncBasic is secure, the distributed Ke-Enc scheme is semanti-

cally secure against passive adversaries even z shares are disclosed.

Theorem 12 Assume that the DDH problem is hard. The distributed Ke-

Enc scheme is semantically secure against passive adversaries if the single-

user scheme KeEncBasic is secure.

Proof. Since the encryption procedure in the distributed Ke-Enc scheme is

the same as that in the single-user scheme KeEncBasic. Thus, the encryption

procedure in the distributed Ke-Enc scheme is semantically secure against the

passive adversaries.

Furthermore, we need to prove that the transcript 〈mi1 , mi2 , . . . ,miz+1〉

disclose no useful information for the passive adversaries. Assume that DDH

problem is hard. Given 〈g, gs1 , · · · , gsz+1〉, then the following two transcripts

are polynomial time indistinguishable.

1. D = 〈(g, gk), (gs1 , gks1), · · · , (gsz+1 , gksz+1)〉.

2. R = 〈(g, gk), (gs1 , gc1), · · · , (gsz+1 , gcz+1)〉.

Since the passive adversaries cannot get more information from the transcript

R, then the passive adversaries cannot get no more information from the de-

cryption transcript D. This completes the proof. 2

4.3 Distributed Ke-Enc with proactive secu-

rity

The proactive key update scheme P-Upd of Section 4.1.3 can be easily adapted

to the distributed case. Let Dp-Upd denote the scheme. We treat proactive

servers as decryptors B1, B2, . . . Bn. The only amendment is to distributed the

decryption key f(j) of TA0 among all decryptors. Let Bi, 1 ≤ i ≤ n, be the

47

set of decryptors. At period j − 1, each of f(j − 1), f(x1), f(x2), . . . , f(xz) is

shared among Bi’s. Each evolving time period j is divided into sub-periods

p1, p2, . . . , pb, where p1, p2, . . . , pb−1 are refresh sub-periods in which the shares

of f(j − 1), f(x1), f(x2), . . . , f(xz) are refreshed. In the last sub-period pb,

shares of f(j − 1) are updated to shares of f(j) and then time enters the

period j.

Theorem 13 Assume that the private channel exists. For Dp-Upd, an ad-

versary A can corrupt z TAs at most and obtain all secrets held by z TAs.

The new share f(j) is still unknown to the passive adversary A.

Proof. We construct a simulation as follows. Let B = {B1, B2, . . . , Bt}

denote the corrupted set. Let the secret f(i) held by Bi. Each Bi holds the

shares {s0,i, · · · , sz,i}. Each Bi ∈ B, 1 ≤ i ≤ t, selects z degree-z polynomials

hi,c(x) =
∑z

k=1 ai,kx
i + si,c over Zq for c = 1, · · · , z and sends {hi,1(t), · · · ,

hi,z(t)} to Bt, 0 ≤ t ≤ z, via the private channel between them. For Bj /∈ B, we

randomly selects hj,c(x0), · · · , hj,c(xj−1), hj,c(xj+1), · · · , hj,c(xz+1) over Zq for

c = 1, · · · , z. Then, Bj sends Bi {hj,1(xi), · · · , hj,z(xi)} via the private channel

between them. Let Hi,c(x) =
∑z

i=0 hi,c(x). The new share held by Bj is si,j

= Hi,j(xj) for i = 1, · · · , z. For Bj ∈ B, since the transcripts {hj,1(xj), · · · ,

hj,z(xj)} for j = 1, · · · , z are randomly selected, the shares si,j for j = 1, · · · , z

are random values. Thus, the distribution of real run is indistinguishable from

the distribution of the simulation. If one can compute any useful information

from the outputs of the simulation, he can obtain any useful information from

the real run. However, since the transcripts of simulation cannot have any

useful information, that of the real run also cannot have any useful information.

2

48

Chapter 5

Threshold Forward-Secure

Signature Schemes

In this chapter, we propose one threshold forward-secure signature scheme.

Our scheme is the modification of the forward-secure signature scheme of

Abadalla and Reyzin [4]. We discuss how to achieve to threshold forward-

secure signature scheme and the security of our scheme.

Proactive cryptography combines the concepts of ”distributing the secret”

and ”refreshing the shares” to provide security against the mobile adversary,

who attacks the parties of a distributed cryptosystem dynamically. For an

adversary, we cannot assume that it cannot break into a particular party, who

holds a share of the secret, during the party’s lifetime. However, we can assume

that the adversary can break into at most t parties during a short period of

time, say an hour. Based on this observation, the proactive cryptography

”refreshes” each party’s share periodically. It divides the time into several

time periods, starting at 0. At the end of each time period, there is a ”refresh

phase” during which each party refreshes its share, but the secret they share

remains intact. We assume that the mobile adversary can corrupt all parties

during the lifetime of the cryptosystem; nevertheless, it can corrupt at most t

parties during a time period. The proactive mechanism provides a high level

of security for cryptosystems so that we would like to proactivize important

49

cryptographic primitives.

In the chapter we propose a protocol that proactivizes the forward-secure

signature scheme of Abadalla and Reyzin [4]. The Abadalla and Reyzin’s

forward-secure signature scheme is an improvement of the Bellare-Miner

scheme [13] with a shorter public key. Abadalla, et. al. has proactivized the

Bellare-Miner forward-secure signature scheme [3]. They proposed two thresh-

old signature schemes in proactivizing Bellare-Miner forward-secure signature

scheme. One scheme uses multiplicative secret sharing and the other uses poly-

nomial secret sharing. In our scheme, we combine both secret sharing schemes

for efficiency. The trick of multiplicative secret sharing is used to sign a mes-

sage in a distributed way and polynomial secret sharing is used to share the

signing secret. Our scheme is not only robust, but also efficient.

It is worth mentioning that we propose a new scheme for multiplying two

secrets that are shared among parties [11, 17, 44]. Our multiplication scheme

is efficient since it uses the public channel and the private channel once only.

Communication model. We assume that the involved n parties are con-

nected by a broadcast channel such that the messages over the channel cannot

be blocked, delayed or altered. Nevertheless, one can inject false messages.

Any two parties are connected by a private channel such that a third party

cannot get messages sent over the private channel. We also assume that the

communication channel is synchronous by rounds, that is, all parties send

messages simultaneously in a round.

Time. There is a universal clock such that each party knows the absolute

time. Therefore, we can divide time into time periods, starting at 0. Each

time period has two phases: the execution phase and the refresh phase. The

refresh phase follows the execution phase. The parties sign messages during

the execution phase. During the refresh phase, all parties together run the

share refresh algorithm to refresh their shares.

Adversary. We consider the static adversary who chooses corrupted parties

at the beginning of each time period. The adversary runs three phases: the

50

chosen message attack phase (cma), the break-in phase (breakin), and the

forgery phase (forge). The breakin phase for the threshold signature scheme

is equivalent to the overthreshold phase of [3].

In the cma phase, the adversary can corrupt at most t parties for any

period of time. The adversary gets all information in the corrupted parties,

including their shares, random bits, etc. The adversary can query the signing

oracle Sx, where x is the secret signing key. Since we assume the random

oracle model [12], the adversary is allowed to query the random oracle H

corresponding to the collision-resistant hash function used in the scheme. At

the end of the cma phase, the adversary can stay in the current phase or

enter the next breakin phase. In the breakin phase, the adversary can

corrupt more than t parties. Let c be the period that the adversary enters the

breakin phase and corrupts more than t users. In this phase, the adversary

can compute the master secret (the signing key) of period c from the shares of

corrupted parties. Then, the adversary enters the forge phase, during which

the adversary outputs a forged signature of a new message which has not been

queried to the signing oracle. We say that the adversary succeeds in attacking

the scheme if it outputs a forged signature for a prior time period c′, c′ < c,

with non-negligible probability.

5.1 Building blocks

The following system setting is used throughout the rest of the chapter.

• Let p=4p′q′ + 1 be a prime, where p′ and q′ are large primes and p′ ≡

q′ ≡ 3 (mod 4).

• Let N = p′q′ and g a generator of the order-N subgroup of Z∗
p . All

operations hereafter will be over the order-N subgroup, unless stated

otherwise.

• The involved parties are dealers Di, 1 ≤ i ≤ n.

51

(t, n)-VSS procedure. If dealer Di wants to share a random secret with

other dealers, it runs the following steps.

1. Select a random polynomial fi(x) of degree t over Z∗
N . The constant

coefficient of fi(x) is the random secret.

2. Send share fi(j) to dealer Dj, j 6= i via the private channel.

3. Publish the verification values 〈gai,0 , . . . , gai,t〉.

4. Dealer Dj verifies validity of its received share fi(j) by
∏k=t

k=0 gai,kjk
=

gfi(j).

If the verification fails, Dj requests Di to publish fi(j). If Di does not cooperate

or posts an inconsistent fi(j), Di is disqualified.

Recovery procedure. We use Lagrange’s interpolation method to re-

cover the secret with at least t + 1 shares.

Proof-SS procedure. Given (g, t, N, F, T), prover P wants to convince

verifier V two things: (1) a = logg F mod p = T 1/t mod N and (2) it knows

this a. This is a combination of proofs of membership and knowledge.

1. The prover P selects random w ∈ Z∗
N and sends H = Fw and B =

wt mod N to V .

2. The verifier V selects a random challenge c ∈ {0, 1} and sends it to P .

3. The prover P sends r = acw mod N to V .

4. The verifier V checks (1) H = F r and B = rt mod N if c = 0; and (2)

H = gr and B = rt/T mod N if c = 1.

We use Proof-SS(g, t, ga, at) to denote the above interactive proof system.

Theorem 14 Proof-SS is complete, sound and zero-knowledge.

Proof. The completeness property can be verified easily. For soundness of

proof of knowledge, if any prover P ∗ can convince V with a non-negligible

52

probability ε, P ∗ and V together can compute a with an overwhelming prob-

ability. Let (W, C, R) denote the random variables for the real view. Then,

Pr(W, C, R) ≥ ε. By a probabilistic argument, there is a subset Λ of W of

probability ε/2, that is, Prw∈Λ(w, C, R) ≥ ε/2. Also, P ∗ can answer two differ-

ent challenges c1 and c2 with probability ε/2. That is, Prw∈Λ(w, c1, r1) ≥ ε/2

and Prw∈Λ(w, c2, r2) ≥ ε/2 where c1, c2 ∈ C and r1, r2 ∈ R. Therefore, we

can get two responses r1 = ac1w mod N and r2 = ac2w mod N for the same

commitments H and B. We can compute a = r2/r1 mod N assuming, without

loss of generality, c1 = 0 and c2 = 1. For soundness of proof of membership,

we can easily show that if F and T are not of right form, the probability that

P ∗ can cheat V is 0.5 (and is negligible after a polynomial number of rounds.)

For zero-knowledge, we construct a simulator S to simulate the view of any

verifier V ∗. M first selects c′ ∈ {0, 1} and r ∈ Z∗
N randomly and computes

H = F r and B = rt mod N if c′ = 0 and H = gr and B = rt/T mod

N if c′ = 1. S then simulates V ∗(H, B) to get c. If c = c′, M outputs

(H, B, c, r); otherwise M outputs ⊥. The output of M conditioned on that

the output is not ⊥ and the view of V ∗ are statistically indistinguishable.

Since V ∗ does not know M ’s selection c′, Pr[C ′′ = c] = 1/2 where C ′′ denote

the random variable in simulation.Let {〈P, V ∗〉(H, B, C,R)} denote the real

view and {MV ∗(H, B, C,R)} denote the view of the simulator M . With the

constraints h0 = F r(1−c) ·grc and b0 = rt/T c mod N , for any fixed h0, b0, c0, r0,

we have

Pr[(H, B, C,R) = (h0, b0, c0, r0)] =
Pr[Ṽ (h0, b0) = c0]

p′ · q′

Let (H ′, B′, C ′, R′) denote the random variables for the simulated view pro-

duced by M∗. For the above (h0, b0, c0, r0), we have

Pr[m∗(V ∗, (g, t, N, F, T)) = ((g, t, N, F, T), h0, b0, c0, r0)]

= Pr[(H ′, B′, C ′, R′) = (h0, b0, c0, r0)|M∗(V ∗, (g, t, N, F, T)) 6=⊥]

=
Pr[Ṽ (h0, b0) = c0, C

′′ = c0, M
∗(V ∗, (g, t, N, F, T)) 6=⊥]

p′ · q′ · Pr[M∗(V ∗, (g, t, N, F, T)) 6=⊥]

53

=
Pr[Ṽ (h0, b0) = c0, C

′′ = c0]

p′ · q′ · (1/2)

=
Pr[Ṽ (h0, b0) = c0] · Pr[C ′′ = c0]

p′ · q′ · (1/2)

=
Pr[Ṽ (h0, b0) = c0]

p′ · q′

Therefore, Proof-SS is zero-knowledge. 2

We convert Proof-SS into a non-interactive version by using a collision-

resistant hash function H : {0, 1}∗ → {0, 1}l to replace V [31, 86], where

l be the security parameter. The message (c, r1, · · · , rl) sent by P for non-

interactive Proof-SS, denoted by NIProof-SS, satisfies

c = H(t||g||N ||F ||T ||H1||B1|| · · · ||Hl||Bl),

where || is the concatenation operator of strings. Let ci denote the i-th bit

of c. If ci is 1, Hi = gri and Bi = rt
i/T mod N ; otherwise Hi = F ri and

Bi = rt
i mod N . P can compute (c, r1, · · · , rl) by choosing wi ∈ Z∗

N for i =

1, · · · , l, computing c = H(t||g||N ||F ||T ||Fw1||w1
t|| · · · ||Fwl||wl

t), and setting

ri = aciwi mod N . NIProof-SS releases no useful information under the

random oracle model assuming hardness of discrete logarithm and factoring.

Proof-DH procedure. Given (g,H, F) and the prover P wants to con-

vince V that H = gs and F = gs2
are of right form and it knows the secret s.

The interactive proof system is as follows [22].

1. P randomly selects w ∈ Z∗
N and sends A = gw and B = Hw to V .

2. V sends a random challenge c ∈ {0, · · · , 2k − 1} to P .

3. P sends the response r = w + cs mod N to V .

4. V checks gr = A ·Hc and Hr = B · F c.

The above Proof-DH procedure is complete, sound, and zero knowledge.

We use NIProof-DH to denote its non-interactive version.

54

SQ procedure. Let h(x) be a degree-t polynomial over Z∗
N with h(0) = s

and shared by the dealers Di, 1 ≤ i ≤ n. SQ’s goal is to make the dealers share

a degree-t polynomial h′(x) over Z∗
N with h′(0) = s2 mod N . SQ procedure is

as follows.

1. Dealer Di selects two degree-t polynomials fi(x) and ei(x) over Z∗
N at

random, where ei(0)=0. It sends shares fi(j) and ei(j) to Dj via the

private channel, 1 ≤ j ≤ n. Using (t, n)-VSS procedure, Dj checks

if the received shares are correct. If so, all dealers share two degree-t

polynomial F (x) =
∑n

i=1 fi(x) mod N and E(x) =
∑n

i=1 ei(x) mod N .

Each dealer Di holds shares F (i) and E(i).

2. Each dealer Di publishes ui = h(i)2 + F (i) mod N and NIProof-

DH(g, gh(i), gh(i)2) and checks validity of the published values of other

dealers by checking guj = gh(j)2 ·
∏t

k=0 gAkjk
, where gA0 , gA1 , . . . , gAt ,

computed from the verification values of fi(x)’s, are the verification val-

ues of F (x).

3. Each dealer Di computes the degree-2t polynomial T (x)=h(x)2+F (x) =∑2t
k=0 tkx

k over ZN from uj, 1 ≤ j ≤ n. Let T ′′(x) =
∑t

k=0 tkx
k, which

is h′′(x) + F (x) mod N for some degree-t polynomial h′′(x). Note that

h′′(0) = h(0)2 mod N .

4. Each dealer Di computes its share h′′(i) = T ′′(i) − F (i) mod N and

randomizes it to become h′(i) = h′′(i) + E(i). The hidden polynomial

becomes h′(x) = h′′(x) + E(x) mod N whose constant coefficient is still

s2 mod N .

We use SQ(C, h(x), h′(x)) to denote the above procedure, where C is the

dealer set, h(x) is the shared polynomial initially and h′(x) is the shared poly-

nomial at the end.

Theorem 15 SQ procedure is correct, robust and secure if there are at

most n/3 corrupted dealers.

55

Proof. We can check correctness easily. Since there are at most t corrupted

dealers, t < n/3, honest dealers can smoothly finish the procedure. This is

guaranteed by the (t, n)-VSS procedure.

We present a simulator to show that a malicious adversary, who corrupts

at most t dealers, gets no information. Let B be the corrupted set of dealers.

Input: 〈gs, ga1 , · · · , gat〉, h(i) for every dealer Di ∈ B, where h(x) =

s +
∑t

k=1 akx
k;

1. Randomly select degree-t polynomials f̂i(x) and êi(x) with êi(0) = 0,

1 ≤ i ≤ n. Let F̂ (x) =
∑n

i=1 f̂i(x) and Ê(x) =
∑n

i=1 êi(x).

2. Run (t, n)-VSS procedure.

3. For each Di 6∈ B, randomly select ûi over Z∗
N , compute gh(i)2 = gûi/gF̂ (i),

and simulate NIProof-DH(g, gh(i), gh(i)2), where gh(i) = gs ·
∏t

j=1 gajij .

4. For each Di ∈ B, publish ui = h(i)2 + F̂ (i) mod N and simulate

NIProof-DH(g, gh(i), gh(i)2).

In the real run, the transcripts among dealers include 2n degree-t polynomi-

als, uis and NIProof −DHs. In the simulator, the transcripts also include 2n

degree-t polynomials randomly selected over Z∗
N that is identical to that in the

real. Since in the simulator uis is randomized by a random number F̂ (i), the

distribution of uis is also identical to that in the real. For NIProof −DHs, in

the simulator except the status of failures the distribution of NIProof −DHs

is the identical to that in the real. The above simulation produces a distribu-

tion computationally indistinguishable from that of the real run. 2

Assume that the dealers share two degree-t polynomial h1(x) and h2(x)

initially. We can modify the SQ procedure so that the dealers share a degree-t

polynomial h′(x) whose constant coefficient is h1(0)h2(0) mod N at the end.

Let Mult(C, h1(x), h2(x), h′(x)) denote the procedure of sharing a degree-t

polynomial h′(x) whose constant coefficient is h1(0)h2(0) mod N .

56

5.2 Threshold forward-secure signature

scheme

Our threshold forward-secure signature scheme, denoted by TFSS, is a key-

evolving (t, s, n)-threshold signature scheme that consists of four procedures:

TFSS.key, TFSS.update, TFSS.sign, and TFSS.verify, where t is the

maximum number of corrupted dealers, s is the minimum number of alive

dealers so that signature computation is possible, and n is the total number of

dealers. In our scheme, we set s = t + 1 and n ≥ 2t + 1. There is a manager

presiding the scheme.

TFSS.key. It takes as input a security parameter l and outputs the

public key and initial secret-key share Si,0 and public-key share PKi,0 of the

dealer Di’s.

1. Select N as that in the system setting.

2. The manager randomly selects Si,0 ∈ Z∗
N , 1 ≤ i ≤ n and computes Ui,0 =

1/S2l(T+1)

i,0 mod N , S0 =
∏n

i=1 Si,0 mod N , and U = 1/S2l(T+1)

0 mod N .

3. The system’s initial secret key is SK0=(N, T, 0, S0) and the public key

PK = (N, U, T).

4. Each dealer Di’s initial secret-key share is SKi,0 = (N, T, 0, Si,0) and

public-key share is PKi,0 = (N, Ui,0, T).

5. Each dealer Di shares its Si,0 with other dealers by the (t, n)-VSS pro-

cedure.

TFSS.update. At the end of time period j, all dealers take part in the pro-

cedure to update their shares. Each dealer updates its secret-key and public-

key shares from Si,j and PKi,j to Si,j+1 and PKi,j+1.

1. Each dealer Di randomly selects n − 1 numbers si,1, si,2, . . . , si,n−1 over

Z∗
N and computes si,n = Si,j/

∏n−1
k=1 si,k mod N .

57

2. Each dealer Di sends si,k to Dk privately and publishes ŝi,k =

1/s2l(T+1−j)

i,k mod N , 1 ≤ k ≤ n.

3. Each dealer Dk checks validity of the published values by Ui,j =∏n
r=1 ŝi,r mod N , 1 ≤ i ≤ n, i 6= k. Dealer Dk also checks validity of

its received secret si,k by 1/s2l(T+1−j)

i,k mod N = ŝi,k. If one of the checks

fails, all other dealers recover the secret Si,j by Recovery procedure.

4. Dealer Di’s new secret-key share is Si,j+1 = (
∏n

k=1 sk,i)
2l

mod N and the

corresponding public-key share is Ui,j+1 =
∏n

k=1 ŝk,i mod N .

5. Dealer Di shares Si,j+1 with other dealers by (t, n)-VSS procedure.

We use NIProof-SS(g, t, gSi,j+1 , St
i,j+1) to verify whether Di’s action is

correct, where t = −2l(T−j) and St
i,j+1 = Ui,j+1. If the proof is correct and

(t, n)-VSS procedure succeeds, all dealers delete their old secret-key

shares; otherwise, the secret of Di is reconstructed.

TFSS.sign: at time period j, all dealers sign a messages M in a distributed

way with the following steps.

1. Each dealer Di selects Ri ∈ Z∗
N randomly and publishes Yi =

R2l(T+1−j)

i mod N and NIProof-SS(g, 2l(T+1−j), gRi , Yi). Then, it shares

Ri to other dealers via (t, n)-VSS procedure with polynomial fi(x).

If NIProof-SS or (t, n)-VSS procedure fails, set Ri = 1 and run

Recovery procedure to recover the secret-key share Si,j of Di.

2. Each dealer Di computes Y =
∏n

i=1 Yi and σ = H(j, Y, M) and publishes

its partial signature Zi = RiS
σ
i,j mod N .

3. Each dealer Di verifies validity of another dealer Dk’s partial signature

by computing

Y ′
i = Z2l(T+1−j)

i Uσ
i,j mod N

and checking whether Y ′
i and Yi are equal. If the verification fails, all

other alive dealers run Recovery procedure to recover the secret-key

share Sk,j and Rk of Dk and compute the partial signature Zk.

58

4. Combine all partial signatures as a signature (j, Z, σ) for M at time j,

where Z =
∏n

i=1 Zi mod N . All dealers erase their Ri’s.

TFSS.verify: We can use the public key PK = (N, U, T) of the system

to verify validity of a signature (j, Z, σ) for M .

1. If Z = 0, return ’0’.

2. Otherwise, compute Y ′ = Z2l(T+1−j)
Uσ mod N and output ’1’ if and only

if σ = H(j, Y ′, M).

5.3 Security analysis

In this section, we show the correctness and security of our proposed scheme.

Theorem 16 (Correctness) Assume that SKj = (N, T, j, Sj) and PK =

(N, U, T) are key pairs of the system at time period j. Each dealer

Di holds the secret-key share SKi,j = (N, T, j, Si,j) and public-key share

PKi,j = (N, Ui,j, T). If (j, Z, σ) is generated by TFSS.sign for M ,

TFSS.verify(PK, j, Z, σ)) = 1.

Proof. We have Sj =
∏n

i=1 Si,j mod N , U =
∏n

i=1 Ui,j mod N =∏n
i=1 S−2l(T+1−j)

i,j mod N , Y =
∏n

i=1 R2l(T+1−j)

i mod N =
∏n

i=1 Yi mod N and

Z =
∏n

i=1 Zi mod N =
∏n

i=1 RiS
σ
i,j mod N . Since

Y ′ = Z2l(T+1−j)

Uσ mod N =
n∏

i=1

(RiS
σ
i,j)

2l(T+1−j)
n∏

i=1

Uσ
i,j mod N

=
n∏

i=1

[R2l(T+1−j)

i Sσ2l(T+1−j)

i,j Uσ
i,j] mod N =

n∏
i=1

R2l(T+1−j)

i mod N

=
n∏

i=1

Yi mod N = Y,

we have H(j, Y ′, M) = H(j, Y, M) = σ. 2

Theorem 17 Assume that 2l-th square root problem is diffi-

cult. TFSS.update procedure is secure against malicious adversaries even

malicious adversaries know t shares, sbi
for 1 ≤ i ≤ t.

59

Proof. Given t shares, if there exists a malicious adversary A can compute

any useful information from the transcripts among the dealers. We can con-

struct a simulator S to simulate the procedure such that we can use A and the

outputs of the simulator to compute useful information. Since the distribution

of the simulator and that in the real run are polynomial indistinguishable, if

the adversary A can compute any information from that in the real run, he can

compute any useful information from the outputs of the simulator. Because

the output of simulator carries no information, the output of the real run also

carries no information. We construct a simulator S to simulate TFSS.update

procedure assuming existence of malicious adversaries. Let B = {Db1 , . . . , Dbt}

be the set of corrupted servers at current time j. For simplicity, the secrets of

corrupted dealers are treated as inputs. S simulates each dealer Di’s behavior

as follows.

Input: PK = (N, U, T), secret keys Sbk,j, 1 ≤ k ≤ t, shares

f̂k(bi), 1 ≤ i ≤ t, 1 ≤ k ≤ n,, PKi,j = (N, Ui,j, T), 1 ≤ i ≤ n, and

〈gSi,j , gai,1 · · · , gai,t〉, 1 ≤ i ≤ n;

1. Randomly select ŝi,1, . . . , ŝi,(i−1), ŝi,(i+1), . . . , ŝi,n−1 from Z∗
N , compute

1/(ŝ2l(T+1−j)

i,i) = Ui,j/

n∏
k=1,k 6=i

1/(ŝ2l(T+1−j)

i,k) mod N,

and publish Ŝi,k = 1/(ŝ2l(T+1−j)

i,k) mod N for k = 1, . . . , n. Note that we

do not know the value ŝi,i for Di /∈ B.

2. Randomly select polynomial ĥi(x) over Z∗
N . Let ĥi(0) = S ′

i,j+1,

which is a random value in Z∗
N for Di /∈ B. Simulate NIProof-

SS(g,−2l(T−j)), gS′
i,j+1 , Ui,j+1), where Ui,j+1 =

∏n
k=1 Ŝk,i mod N .

3. For Di ∈ B, compute its new secret-key share Sbk,j+1 by
∏n

i=1 ŝ2l

i,bk
mod

N and simulate NIProof-SS(g,−2l(T+1−(j+1)), gSbk,j+1 , Ubk,j+1), where

Ubk,j+1 =
∏n

i=1 Ŝi,bk
mod N .

60

4. Simulate (t, n)-VSS procedure. For Di /∈ B, since S ′
i,j of gS′

i,j is un-

known, we can randomly selects S ′
i,k ∈R Z∗

N , b1 ≤ k ≤ bt. Then, (j, S ′
i,j),

(b1, S
′
i,b1

), · · · , (bt, S
′
i,bt

) can construct a polynomial function with degree-t

even S ′
i,j is unknown. We can do it by the method of Lagarange inter-

polation in exponentiation. We send each S ′
i,bi

to the corrupted dealer

Dbi
.

If Dj forces Di to disclose ŝi,j, since Dj has it, we can simulate ŝi,j.

We consider that the distribution of the outputs for the simulator. In the

step one, each ŝi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, is randomly selected from Z∗
N such

that the distribution of that is identical to that in the real run. In the step

two, if the Di ∈ B, the distribution of the transcripts of Di is the same as

that in the real one. If the Di /∈ B, except the failure,i.e.,⊥, the distribution

of the transcripts of Di is identical to that in the real one. In the step three,

(t, n)-VSS procedure outputs the transcripts of the n polynomial functions.

The distribution of the transcripts is identical to that of the transcripts in the

real run since each coefficient of polynomial functions is randomly selected over

Z∗
N . Therefore, the distribution of the outputs for the simulator is polynomial

indistinguishable to the distribution of that in the real run. Since the outputs of

simulation gives no information, that in the real run also gives no information.

The adversary cannot get useful information. This completes the proof. 2

Theorem 18 The TFSS scheme is a key-evolving (t, s, n)-threshold signature

scheme for s = t + 1 and n = 2t + 1.

Proof. Since there are at most t corrupted servers, their secret-key shares

are not sufficient to recover the secret-key shares of honest dealers. The others

follow the scheme. 2

Theorem 19 (Forward secrecy) Let FS-DS denote the single-user signa-

ture scheme in [4]. TFSS is a threshold forward-secure signature scheme as

long as FS-DS is a forward-secure signature scheme in the single-user sense.

61

Proof. Let F be the adversary who attacks TFSS successfully by forging

a signature (c′, Z, α). We construct an algorithm A that uses this F to forge

a signature for the single-user FS-DS. As stated, the attacking procedure

contains three phases: cma, breakin, and forge. The algorithm A contains

the signing oracle S and the hashing oracle H, which can be allowed to query

and provide the signing key if necessary. In the cma phase, F can query

signatures and hash values from the signing oracle S and the hashing oracle

H. Given a signature, we can simulate the transcripts as that in the real

view. In the breakin phase, the singing oracle provides F with the secret key

SKj such that F can forge a signature σ of the time period t, t < j in the

forge phase. Algorithm A outputs F ’s output σ as the forged signature of

the single-user scheme. We simulate the procedure as follows.

In the cma phase, F guesses a particular time period c during which F

breaks more than t dealers and gets the secret Sc. Let U = 1/v2l(T+1−c)
and

PK = (N, U, T), where v = Sc. We randomly select Ui,0, · · · , Un−1,0 ∈R Z∗
N

and compute public-key share Un,0 = U/
∏n−1

i=1 Ui,0 mod N . The public key is

PKi,0 = (N, Ui,0, T), 1 ≤ i ≤ n. We simulate F by choosing a random tape

for F , feeding all public keys to F , and running F in the cma phase. F can

corrupt at most t dealers at any time period except the time period c. Since F

can corrupt at most t dealers at any time period except at time period c, we

simply give all necessary secret-key shares and exchanged shares as F ’s input.

F decides either to stay at the cma phase or to switch to the breakin phase,

and then enter the forge phase.

We now we simulate the views of corrupted dealers during the key update

phase. Let B = {Db1 , · · · , Dbt} be the set of corrupted dealers at time period

j. The simulation is the same as that of Theorem 17, which simulates the key

update procedure. Note that the set of corrupted servers is decided in advance.

We can simulate the hash and signing oracles of F . For each query (j, Y, M)

made by F , we query H on the same input and return the answer to F . We

simulate the signing oracle of F by using S. Let M be the message queried to

62

S. We give the direct answer (j, Z, σ) of S to F .

Now, we simulate F ’s view of the signing procedure. The input consists

of all secrets of the corrupted dealers and public information. For the input

M and its signature (j, Z, σ)) seen by F , we construct the same probability

distribution of F ’s real view as follows.

1. For Di ∈ B, we directly choose Ri ∈ Z∗
N and publish Yi = R2l(T+1−j)

i mod

N and NIProof-SS(g, 2l(T+1−j), gRi , Yi). Then, we simulate (t, n)-VSS

procedure to share Ri with other dealers. Furthermore, we computes

the partial signature Zi = RiS
σ
i,j mod N .

2. For Di 6∈ B, we computes its partial signature as follows. Let Z ′ =

Z/
∏t

i=1 Zi mod N . We randomly select n− t−1 numbers from Z∗
N , says

Zc1 , . . . , Zcn−t−1 . We compute Zcn−t = Z ′/
∏n−t−1

i=1 Zci
mod N .

3. We compute Yci
= Z2l(T+1−j)

ci
Uσ

ci,j
mod N for 1 ≤ i ≤ n − t, and ran-

domly select (n − t) numbers from Z∗
N , says Rc1 , · · · , Rcn−t . We simu-

late NIProof-SS(g, 2l(T+1−j), gRci , R2l(T+1−j)

ci
) and run (t, n)-VSS pro-

cedure to share Rci
, 1 ≤ i ≤ n− t, with other dealers.

4. Finally, we compute Y =
∏t

i=1 Ybi

∏n−t
j=1 Ycj

mod N and sets

H(j, Y, M) = σ.

The above simulated view is identical to the real view. If the real view

discloses any information, the adversary can simulate the real run to get infor-

mation. Since the view of the simulator gives no useful information, the real

view also provides no useful information.

Obtaining a forgery. Let c be the time period that F switches to the

breakin phase. We provide the secret key Sc to F and run F to output

a forged signature (c′, Z, α) for M ′, where c′ < c. The (c′, Z, α) is a forged

signature for the single-user FS-DS. Since the single-user scheme FS-DS is

secure, our distributed scheme TFSS is secure. This completes the proof. 2

63

5.4 Discussion

Proactive security. We can easily add the proactive mechanism to

TFSS.update. The only difference is to compute ŝi,k = 1/s2l(T−j)

i,k in step 2,

instead of ŝi,k = 1/s2l(T−j+1)

i,k , and new secret-key share S ′
i,j =

∏n
k=1 sk,i mod N

in the refresh phase. Furthermore, si,k can be encrypted and sent to dealer Dk

using Dk’s public-key share Pk,j. This saves the private channel.

New construction. We can use polynomial secret sharing in our scheme,

though it is less efficient. Our new construction is as follows. Initial setting is

a bit different from that in Section 5.2. Let f(x) be a degree-t polynomial with

f(0) = S0 and shared by all dealers by (t, n)-VSS procedure. To update the

key Sj to Sj+1, all dealers compute the multiplication of two secrets for l times,

where l is the security parameter. The robustness property is achieved by our

SQ procedure. SQ procedure uses a proof to show that a dealer is honest.

To compute a signature for a message, all dealers compute l(T +1− j)+ log2 σ

times of distributed multiplication of secrets for Y = R2l(T+1−j)
mod N and

Z = RSσ
j mod N .

Efficiency. In our new construction based on polynomial secret sharing,

dealers perform l multiplications of shares to update the key. That is, they

exchange messages l times and compute l proofs for Mult procedure. To

compute a signature, dealers exchange l(T + 1 − j) + log2 σ messages and

compute l(T + 1 − j) + log2 σ proofs. As we can see, the computation and

communication costs are quite expensive.

In our main scheme in Section 5.2, we combine the techniques of polynomial

secret sharing and multiplicative secret sharing to reduce the cost. Each dealer

exchanges messages twice in the key update stage, and once in the signing

message stage. Each dealer needs to compute one proof in both key update

and signing message stages. Therefore, our main scheme is quite efficient.

64

Chapter 6

Applications to key-evolving

public key certificate-based

authentication protocol

Certificates have been used in many applications, such as electronic commerce,

accessing Internet resources, and personal communications services, etc. Cer-

tificates have an expiration date; however, a certificate may become invalid

prior to the expiration date. Consider the case that a subscriber subscribes

services from a service provider (SP). When a subscriber requests the services,

SP has to identify the identity of the subscriber. Usually, the subscriber con-

vinces SP of his secret key issued by SP. However, the secret key may have been

compromised or lost. Once a subscriber knows that his secret key is disclosed,

he informs SP to add his certificate to CRLs for securing the subscriber’s right

and protecting the system. After receiving the identified notification from a

subscriber, SP adds subscriber’s certificate to CRLs. If the lifetime of a certifi-

cate is two years, the certificate is listed in the CRLs two years at most. This

is a quite cost for SP. Furthermore, a subscriber may not know that his secret

key was compromised already. To save the cost of CRLs for SP and secure

subscriber’s right, we provide a solution to reduce these costs.

The detailed format of a certificate defined in X.509 [96] contains the user’s

65

public key and other information and a signature signed by CA (Certificate

Authority). For simplicity, we consider that a traditional public key certificate

as follows.

CertUi
= {IDUi

, KUUi
, DateUi

, LUi
, (IDUi

, KUUi
, DateUi

, LUi
)KRSP

}

where CertUi
represents the certificate of Ui, in which IDx means the identity

of entity X, KUx is the public key of entity X, Datex is the issue date of the

certificate to X, KRx denotes the private key of entity X and Lx is the life time.

The key-evolving public key certificate is a bit difference from the traditional

public key certificate. The later one contains a base public key KUUi,0, the

length of a time period It and the most large time period T .

CertUi
= {IDUi

, KUUi,0, DateUi
, LUi

, It, T, (IDUi
, KUUi,0, DateUi

, LUi
, It, T,)KRSP

}

SP uses CRL to save the revoked certificates. Many strategies of certificate

revocation have proposed in much literature. Storage cost and communication

cost are two primary measures in the strategies of certificate revocation. Here,

we concentrate on reducing the storage cost. To reduce the cost for saving re-

voked certificates, we introduce the key-evolving public key encryption scheme

to the public key certificate-based protocols. We stress that only the public key

encryption certificate-based protocols are considered. Such certificate-based

protocols split time into time periods. Let the lifetime of public key certificate

is divided into time periods, says T. At time period j, a subscriber convinces

SP of his secret key SKj and so does SP. At time period j, if an encryptor

wants to send M to the subscriber, he computes a ciphertext C = E(PKj, M)

of M , where PKj is the public key at time period j. The subscriber uses SKj

of time period j to decrypt C and obtains M . When time makes a transit

from j to j + 1, the secret key SKj becomes invalid. It is worth to note that

the key-evolving public key certificate is invariant during the lifetime of the

certificate. As a result, the server need not frequently issue certificate and

distribute certificate. Since the last secret key is automatically revoked in the

new time period, CRLs of time period j need not be maintained at time period

66

1. U → SP: EPKS,j
(c1), G(c1)⊕ CertU

2. SP → U: EPKU,j
(c1||c2)

3. U → SP: c2

Figure 6.1: A key-evolving certificate-based authentication protocol

j + 1. At the beginning of each time period, CRLs are reset to zero so that

the storage cost of CRLs is reduced. Additional cost for a subscriber is key

update. A subscriber need to update his secret key SKj to SKj+1 when time

makes a transit from j to j + 1.

First, we describe a simple and concrete encryption certificate-based au-

thentication protocol. Then, we extend to other applications. Furthermore,

we discuss the relevant issues of implementation.

6.1 Key-evolving public key certificate-based

authentication protocol

Assume that SP provides the various Internet services. When a user wishes to

subscribe the services, he need register his identity to the SP. After registration,

SP gives the subscriber two smart cards. One card saves a certificate, system’s

certificate and other information. The other saves all secret keys except initial

secret key. The subscriber’s certificate contains a key-evolving public key PK

and other information. The current time period, says j, is known to the

subscriber and SP. Assume that G is an pseudorandom number generator,

which takes as input a seed and outputs random bits with enough length. Let

U denote the subscriber, E the key-evolving encryption scheme, CertU the

certificate of U, PKU,j the public key of U and PKS,j the public key of SP at

time period j. A simple and concrete authentication procedure as shown in

Figure 6.1.

67

This is an encryption certificate-based protocol. First, a subscriber U sends

his key-evolving public key certificate and a random number c1 encrypted by

PKS,j to SP as a request. SP checks if U is in CRL. If so, SP then rejects

the request. Otherwise, SP selects a random number c2, and sends U the

ciphertext of (c1||c2) encrypted by PKU,j as a challenge. Finally, U decrypts

the ciphertext by using SKj and obtains (c′1||c′2). If c′1 is equal to c1, he returns

c′2 as the response. Otherwise, U stops the authentication procedure. After

receiving the response c′2, SP checks if c′2 is equal to c2. If so, SP allows U

to access the resources. Otherwise, he rejects U’s request. One can develop

authentication protocols satisfying his requirements. Further discussion is as

follows.

Key agreement. To protect the content of communication hereafter, SP

and U needs to establish a common session key after running authentication

procedure. The protocol provides the function of key agreement. The common

session key may be c1 ⊕ c2.

Key update. At the beginning of each time period, U needs to update his

secret key by the UPD algorithm (described in Chapter 3). By the aid of the

second smart card, U updates the secret key.

Reducing the storage cost of CRLs. For SP, key-evolving encryption

certificate-based authentication protocols can reduce the storage cost of CRLs

and no additional cost for certificate issue and distribution is added since

1. A disclosed secret key SKj becomes invalid at time period j + 1 so that

CRLs of time period j cannot be maintained at time period j +1. Thus,

the size of CRLs is reset to zero at the beginning of next new time period.

2. The key-evolving public key certificate is invariant during the lifetime

of the certificate. This fact results in that SP does not issue a new

certificate to the user and thus certificate update and distribution.

For extreme case, if the time period is very shorter, e.g. one day, then

CRLs may be eliminated. Since time period is very short, the possibility of

68

the disclosure of secret key is very small so that SP cannot maintains CRLs.

However, the subscriber need more frequently to update his secret key.

6.2 Extension

We extend to other applications, such as, encryption certificate-based key ex-

change and electronic commerce. Unlike conventional public key certificate,

we use the key-evolving public key certificate in these protocols. Thus, a sub-

scriber and the server who own the secret key of the current time period can

finish the transaction. Since an old secret key is invalid at new time period,

the server merely need to maintain CRLs of the current time period. Even

a subscriber loses his current secret key, his right is protected at new time

period. A thief obtaining the secret key SKj of a subscriber can convince the

server at time period j only.

6.3 Security

Since the encryption certificate-based authentication protocols use the key-

evolving encryption scheme, the security is concerned. Assume that the orig-

inal certificate-based protocols and the key-evolving public key encryption

scheme are secure. The new certificate-based protocols are still secure since

the new protocols merely use the key-evolving public key encryption scheme

to replace the conventional public key encryption scheme. The security of the

key-evolving encryption scheme is discussed in Chapter 3.

6.4 Implementation

We discuss relevant issues for implementing the encryption certificate-based

authentication protocol.

69

Registration. When subscribing the service from SP, SP gives two smart

cards to the subscriber. One card saves subscriber’s certificate, the first secret

key f(1), and SP’s certificate, etc. The other card saves other secret keys

{SK2, · · · , SKT}, time period 1 and physical time. For a certificate with the

lifetime of two years, the time period may be one month or two month and

thus T = 24 or 12. We can map the time T=1 to the current date, e.g.

29/07/2002, and thus the first secret key is f(20020729). In addition, SP need

record current time period and physical time of each subscriber.

Time synchronization. In the protocol, if the subscriber loses synchroniza-

tion with SP, authentication protocol will fail. To avoid losing synchronization,

before key updating, SP need send all subscriber a message consisting of the

command of key updating, current time period, next time period and physical

time. After receiving the command of key update, a subscriber can do key

update. After finished, the subscriber send an acknowledge to SP. SP checks

if the acknowledge is correct. If yes, SP updates subscriber’s record of new

time period and physical time to his database. If the subscriber cannot send

an acknowledge to SP after three notifications of key updating, SP disables

the service of the subscriber and contacts him by phone.

Key update. When updating key, via a computer, a smart card and related

softwares (KUD algorithm), a subscriber can easily upgrade his secret key. The

procedure of key update does not involve any trusted third party so that our

schemes is very practical. The first card is carried outside and viewed as an

on-line device. We stress that an on-line card is possibly carried to anywhere

and used. Thus, the card is easily cracked by malicious adversaries and the

secret key is disclosed. Another card that saves the information of key update

is an off-line device. The off-line device is seldom used and merely used to

upgrade the secret key at home . We view the card as a secure device.

Hash function. The scheme KeEncROM needs three hash functions. Cur-

rently, hash functions MD5 and SHA-1 [95] are used in a large variety of pop-

ular security applications and protocols such as TLS, SSL, PGP, SSH and

70

IPSec etc. However, MD5 can be found collisions in a powerful attack [94].

Wang and Yu call this kind of differential attack as a modular differential at-

tack. Biham et al. [9] uses a generic mutli-block technique to find collisions.

They use this technique to find a four-block collision of SHA-0 with complex-

ity 251. Also, this technique allows us to find collisions of reduced versions

of SHA-1. Wang et al. [95] show that collisions of SHA-1 can be found with

complexity less than 269 hash operations such that the full 80-step SHA-1 with

complexity less than the 280 theoretical bound. Although, the recent research

on MD5 collision should have little impact on the use of MD5, MD5 is still

secure against a brute force attack [90]. A collision of MD5 can only be pro-

duced using very specific input blocks. In the real world, these types of input

blocks do not occur. So, you can use MD5, SHA-1 and the family of SHA-2 to

implement hash functions. SHA-224, SHA-256, SHA-384, and SHA-512 that

are referred to as SHA-2. You can choose appropriate one to implement H1,

H2 and H3. Collisions found in MD5 and SHA-1 do not affect the security of

our scheme. You can recall the encryption algorithm that outputs a ciphertext

= 〈j, α, β1, β2, s, h〉, where α = gk, β1 = r · (
∏z

i=0(g
ai)ji

)k = r · gf(j)·k, β2 =

k⊕H1(j, r), s = m⊕H2(j, r, k), h = H3(j, r, k, m). Give α, β1 and β2, then r

and k are fixed. At time period j, H1(j, r) and H2(j, r, k) are fixed such that m

is fixed. So, H3(j, r, k, m) also is fixed. Even though you can find m′ satisfying

H3(j, r, k, m′) = H3(j, r, k, m), this does not affect the security of our scheme.

The key point is that (j, r, k) are fixed and can be verified by checking α, β1

and β2. So, an attacker cannot arbitrarily modify a ciphertext unless he knows

(r, k,m). Furthermore, an attacker cannot get more information except he has

known already.

71

72

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have proposed three Ke-Enc schemes to deal with the key exposure prob-

lem of public key cryptosystems. Our schemes are the first key-evolving public

key encryption schemes. Our schemes achieve z-resilience so that compro-

mise of z private keys does not affect confidentiality of messages encrypted

in other time periods. In these schemes, a ciphertext has the concept of the

time stamp. The basic scheme is semantically secure against passive adver-

saries under standard cryptographic assumptions. The modification of the

basic scheme can achieve the adaptive chosen ciphertext attack under the ran-

dom oracle model. The third scheme achieves the adaptive chosen ciphertext

attack under the standard model. These schemes are ElGamal-like public key

encryption schemes and very simple. Furthermore, our key-evolving encryp-

tion schemes have the property of the forward and backward securities. The

decryptor evolves his secret key via the aid of TA’s in a distributed way. Our

encryption scheme can be applied to public key certificate-based encryption

protocols to reduce the size of CRL and thus save the cost of storage for SP.

Finally, we discuss time synchronization among SP and all subscribers.

In addition, we have proposed a distributed threshold forward-secure signa-

ture to enhance the security of Abdalla and Reyzin’s forward-secure signature

73

scheme, which is based on the 2l-th root problem. Our scheme is robust and

efficient in terms of the number of rounds so that the amount of exchanged

messages among dealers is low. We prove that our scheme has the property

of forward secrecy as long as Abdalla and Reyzin’s scheme is a forward-secure

signature scheme.

7.2 Future work

We describe future works as follows.

1. Removing the trusted server. Our schemes need a trusted server or as-

sume that a secure device exists for key updating procedure. If the

security of the trusted server and secure device are not guaranteed, the

security of our schemes is also not guaranteed. In practical, the existence

of the trusted server will affect the efficiency of the our schemes. Further

research is to remove the trusted mechanism.

2. Beyond z-resilience. Our schemes are limited to the z-resilience. Once

an adversary obtains more than z keys, he can compute the master secret

key with the obtained keys. Thus, our encryption schemes are insecure.

Finding another style of a key-evolving encryption scheme that is not

limited to the z-resilience is also another research direction.

3. RSA-like key-evolving encryption schemes. In this thesis, we only design

the ElGamal-like pubic key encryption schemes. However, RSA is an

another very simple and popular public key cryptosystem. We can fo-

cus on another way to construct a new key-evolving encryption scheme.

RSA-like key-evolving encryption schemes are another research direction.

74

75

76

Bibliography

[1] M. Abdalla, J. An, M. Bellare, C. Namprempre, ”From identification to

signatures via the Fiat-Shamir transform: minimizing assumptions for se-

curity and forward-security.” Proceedings of Advances in Cryptology – Eu-

rocrypt 2002, Lecture Notes in Computer Science 1716, Springer-Verlag,

2002.

[2] N. Alon, Z. Galil, M. Yung, ”Dynamic-resharing verifiable secret shar-

ing”, European Symposium on Algorithms 95 (ESA 95), Lecture Notes in

Computer Science 979, pp.523-537, Springer-Verlag, 1995.

[3] M. Abdalla, S. Miner, C. Namprempre, ”Forward security in threshold

signature schemes”, Topics in Cryptology – CT-RSA 2001, Lecture Notes

in Computer Science 2020, pp. 441–456, Springer-Verlag, 2001.

[4] M. Abdalla, L. Reyzin, ”A new forward-secure digital signature scheme”,

Proceedings of Advances in Cryptology – Asiacrypt 2000, Lecture Notes

in Computer Science 1976, pp.116-129, Springer-Verlag, 2000.

[5] C. Adams, P. Sylvester, M. Zolotarev, R. Zuccherato, ”Internet X.509

public key infrastructure data validation and certification server proto-

cols”, RFC 3029, IETF PKIX Working Group, 2001.

[6] R. Blakley, ”Safeguarding cryptographic keys”, Proceedings of FIPS Con-

ference, pp.313-317, 1979.

77

[7] D. Boneh, ”The decision Diffie-Hellman problem”, Proceedings of the

Third Algorithmic Number Theory Symposium, Lecture Notes in Com-

puter Science 1423, pp.48-63, Springer-Verlag, 1998.

[8] D. Boneh, X. Boyen, E.J. Goh, ”Hierarchical identity based encryption

with constant size ciphertext”, Proceedings of Advances in Cryptology –

Eurocrypto 2005, Lecture Notes in Computer Science 3493, pp. 440-456,

Springer-Verlag, 2005.

[9] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby,

”Collisions of SHA-0 and Reduced SHA-1”, Proceedings of Advances in

Cryptology - EUROCRYPT 2005, Lecture Notes in Computer Science

3494, pp. 36-57, Springer-Verlag, 2005

[10] D. Boneh, M. Franklin, ”Identity based encryption from the Weil pairing”,

Proceedings of Advances in Cryptology – Crypto 2001, Lecture Notes in

Computer Science 2139, pp.213-229, Springer-Verlag, 2001.

[11] M. Ben-Or, S. Goldwasser, A. Wigderson, ”Completeness theorems for

non-cryptographic fault-tolerant distributed computations”, Proceedings

of the 20th ACM Symposium on Theory of Computing, pp.1-10, ACM,

1988.

[12] M. Bellare, P. Rogaway, ”Random oracles are practical: a paradigm for

designing efficient protocols”, Proceedings of the First ACM Conference

on Computer and Communications Security, pp.62-73, ACM, 1993.

[13] M. Bellare, S.K. Miner, ”A forward-secure digital signature scheme”, Pro-

ceedings of Advances in Cryptology – Crypto ’99, Lecture Notes in Com-

puter Science 1666, pp.431-448, Springer-Verlag, 1999.

[14] M. Bellare, A. Palacio, ”Protecting against key exposure:strongly key-

insulated encryption with optimal threshold”, Applicable Algebra in En-

78

gineering, Communication and Computing Vol.16 , Issue 6, pp.379-396,

2006.

[15] M. Bellare, B. Yee, ”Forward security in private-key cryptography”, Top-

ics in Cryptology – CT-RSA 03, Lecture Notes in Computer Science 2612,

Springer-Verlag, 2003.

[16] D. Cooper, ”A model of certificate revocation”, Proceedings of 15th An-

nual Computer Security Applications Conference, pp. 256-264, 1999.

[17] D. Chaum, C. Crepeau, I. Damgard, ”Multiparty unconditionally secure

protocols”, Proceedings of the 20th ACM Symposium on Theory of Com-

puting, pp.11-19, ACM, 1988.

[18] R. Canetti, O. Goldreich, S. Halevi, ”The random oracle methodology

revisited”, Proceedings of the 30th ACM Annual Symposium on Theory of

Computing, pp.209-218, ACM, 1998.

[19] R. Canetti, A. Herzberg, ”Maintaining security in the presence of tran-

sient faults”, Proceedings of Advances in Cryptology – Crypto ’94, Lecture

Notes in Computer Science 839, pp. 425-438, Springer-Verlag, 1994.

[20] R. Canetti, R. Gennaro, A. Herzberg, D. Naor, ”Proactive security: long-

term protection against break-ins”, CryptoBytes 3(1), 1997.

[21] R. Canetti, S. Halevi, J. Katz, ”A forward-secure public-key encryption

scheme”, Proceedings of Advances in Cryptology – Eurocrypt 2003, Lecture

Notes in Computer Science 2656, pp. 255-271, Springer-Verlag, 2003.

[22] D. Chaum, T. Pedersen, ”Wallet databases with observers”, Proceedings of

Advances in Cryptology – Crypto ’92, Lecture Notes in Computer Science

740, pp.89-105, Springer-Verlag, 1992.

[23] R. Cramer, V. Shoup, ”A practical public key cryptosystem provably se-

cure against adaptive chosen ciphertext attack”, Proceedings of Advances

79

in Cryptology – Crypto ’98, Lecture Notes in Computer Science 1462,

pp.13-25, Springer-Verlag, 1998.

[24] Y. Desmedt, Y. Frankel, ”Threshold cryptosystems”, Proceedings of Ad-

vances in Cryptology – Crypto ’89, Lecture Notes in Computer Science

435, pp.307-315, Springer-Verlag, 1989.

[25] Y. Dodis, J. Katz, S. Xu, M. Yung, ”Key-insulated public-key cryptosys-

tems”, Proceedings of Advances in Cryptology – Eurocrypt 2002, Lecture

Notes in Computer Science 2332 , pp.65-82, Springer-Verlag, 2002.

[26] Y. Dodis, J. Katz, S. Xu, M. Yung, ”Strong Key-insulated siganture

schemes”, Proceedings of 6th International Workshop on Practice and

Theory in Public Key Cryptosystems, PKC 2003, Lecture Notes in Com-

puter Science 2567, pp.130-144, Springer-Verlag, 2003.

[27] T. ElGamal, ”A public-key cryptosystem and a signature scheme based

on discrete logarithms”, IEEE Transactions on Information Theory 31(4),

pp.469-472, IEEE, 1985.

[28] J. Elson, D. Estrin, ”Time synchronization for wireless sensor networks”,

Proceedings of the 15th International Parallel and Distributed Processing

Symposium(IPDPS-01), IEEE Computer Society, 2001.

[29] J.E. Elson, L. Girod, D. Estrin, ”Fine-grained network time synchroniza-

tion using reference broadcasts”, Proceedings of the Fifth Symposium on

Operating Systems Design and Implementation(OSDI), pp.147-163, 2002.

[30] P. Feldman, ”A practical scheme for non-interactive verifiable secret shar-

ing”, Proceedings of the 28th IEEE Annual Symposium on the Foundations

of Computer Science, pp.427-437, IEEE, 1987.

[31] U. Feige, A. Fiat, A. Shamir, ”Zero-knowledge proof of identity”, Journal

of Cryptology, Vol.1, No.2, pp.77-94, Springer-Verlag, 1988.

80

[32] Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung, ”Optimal-resilience

proactive public-key cryptosystems”, Proceedings of 38th Annual Sympo-

sium on Foundations of Computer Science, pp.384-393, IEEE, 1997.

[33] Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung, ”Proactive RSA”, Pro-

ceedings of Advances in Cryptology – Crypto ’97, Lecture Notes in Com-

puter Science 1294, pp.440-454, Springer-Verlag, 1997.

[34] B. Fox, B. LaMacchia, ”Certificate Revocation: Mechanics and Meaning”,

Proceedings of the Second International Conference on Financial Cryp-

tography, Lecture Notes in Computer Science 1465, pp.158-164, Springer-

Verlag, 1998.

[35] Y. Frankel, P. MacKenzie, M. Yung, ”Adaptively-secure optimal-resilience

proactive RSA”, Proceedings of Advances in Cryptology – Asiacrypt ’99,

Lecture Notes in Computer Science 1716, pp.180-194, Springer-Verlag,

1999.

[36] A. Fiat, A. Shamir, ”How to prove yourself: practical solutions to identifi-

cation and signature problems”, Proceedings of Advances in Cryptology –

Crypto ’86, Lecture Notes in Computer Science 263, pp.186-194, Springer-

Verlag, 1986.

[37] P. Gemmel, ”An introduction to threshold cryptography”, CrytoBytes

Vol.2, No.7, 1997.

[38] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, ”Robust threshold DSS

dignatures”, Proceedings of Advances in Cryptology – Eurocrypt ’96, Lec-

ture Notes in Computer Science 1070, pp.354-371, Springer-Verlag, 1996.

[39] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, ”Robust and effi-

cient sharing of RSA functions”, Proceedings of Advances in Cryptol-

ogy – Crypto ’96, Lecture Notes in Computer Science 1109, pp.157-172,

Springer-Verlag, 1996.

81

[40] S. Ganeriwal, R. Kumar, M.B. Srivastava, ”Timing-sync protocol for sen-

sor networks”, Proceedings of the First ACM Conference on Embedded

Networked Sensor System(SenSys), pp. 138-149, ACM, 2003.

[41] S. Goldwasser, S. Micali, ”Probabilistic encryption”, Journal of Computer

and System Sciences 28, pp.270-299, 1984.

[42] L.C. Guillou, J. Quisquater, ”A ”paradoxical” identity-based signature

scheme resulting from zero-knowledge”, Proceedings of Advances in Cryp-

tology – Crypto ’88, Lecture Notes in Computer Science 403, pp.216-231,

Springer-Verlag, 1988.

[43] L. Guillou, J. Quisquater, ”A practical zero-knowledge protocol fitted

to security microprocessor minimizing both transmission and memory”,

Proceedings of Advances in Cryptology – Eurocrypt ’88, Lecture Notes in

Computer Science 330, pp.123-128, Springer-Verlag, 1988.

[44] R. Gennaro, M. Rabin, T. Rabin, ”Simplified VSS and fast-track multi-

party computations with applications to threshold cryptography”, Pro-

ceedings of the 17th ACM Symposium on Principles of Distributed Com-

puting (PODC), pp.101 - 111, ACM, 1998.

[45] C. Gentry, A. Silverberg, ”Hierarchical ID-based cryptogra-

phy”,Proceedings of Advances in Cryptology – Asiacrypt 2002, Lecture

Notes in Computer Science 2501, pp.548-566, Springer-Verlag, 2002.

[46] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung, ”Proactive

public key and signature systems”, Proceedings of the 4th ACM Sympo-

sium on Computer and Communication Security, pp.100-110, ACM, 1997.

[47] A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, ”Proactive secret sharing

or: how to cope with perpetual leakage”, Proceedings of Advances in Cryp-

tology – Crypto ’95, Lecture Notes in Computer Science 963, pp.339-352,

Springer-Verlag, 1995.

82

[48] J. Horwitz, B. Lynn, ”Toward hierarchical identity-based encryption.”

Proceedings of Advances in Cryptology – Eurocrypt 2002, Lecture Notes

in Computer Science 2332, pp. 466-481, Springer-Verlag, 2002.

[49] G. Itkis, L. Reyzin, ”Forward-Secure Signatures with optimal signing and

verifying”, Proceedings of Advances in Cryptology – Crypto 2001, Lecture

Notes in Computer Science 2139, pp. 332-354, Springer-Verlag, 2001.

[50] G. Itkis, L. Reyzin, ”SiBIR:signer-base intrusion-resilient signatures”,

Proceedings of Advances in Cryptology – Crypto 2002, Lecture Notes in

Computer Science 2442, pp. 18-22, Springer-Verlag, 2002.

[51] I. Ingemarsson, G.J. Simmons, ”A protocol to set up shared secret schemes

without the assistance of a mutualy trusted party”, Proceedings of Ad-

vances in Cryptology – Eurocrypt ’90, Lecture Notes in Computer Science

473, pp.266-282, Springer-Verlag, 1990.

[52] G. Itkis, P. Xie, ”Generalized key-evolving signature schemes or how to

foil an armed adversary”, The First MiAn International Conference on

Applied Cryptography and Network Security, Lecture Notes in Computer

Science 2846, pp. 151 - 168, Springer-Verlag, 2003.

[53] P. Kocher, ”On certificate revocation and validation”, Proceedings of

the Second International Conference on Financial Cryptography, Lecture

Notes in Computer Science 1465, pp. 172-177, Springer-Verlag, 1998.

[54] H. Krawczyk, ”Simple forward-secure signatures from any signature

scheme”, Proceedings of the Seventh ACM Conference on Computer and

Communication Security, pp. 108-115, ACM, 2000.

[55] J. Kim, K. Kim, ”Intrusion-resilient key-evolving schnorr signature”, Pro-

ceedings of Computer Security Symposium 2003, pp.379-384, 2003.

83

[56] H. Kopetz and W. Ochsenreiter, ”Clock synchronziation in distributed

real-time systems”, IEEE Transactions on Computers, C-36(8), pp.933-

939, IEEE, 1987.

[57] L. Lamport, ”Time, clocks, and the ordering of events in a distributed

system”, Communications of the ACM, 21(4), pp.558-565, ACM, 1978.

[58] L. Lamport, P.M. Melliar-Smith, ”Synchronizing clocks in the presence of

faults”, Journal of the ACM, 32(1), ACM, 1985.

[59] C.F. Lu, S.W. Shieh, ”Secure key-evolving protocols for discrete logarithm

schemes.” Proceedings of CT-RSA 02, pp.300-310, 2002.

[60] Z. Le, Y. Ouyang, J. Ford, F. Makedon, ”A hierarchical key-insulated

signature scheme in the CA trust model”, Proceedings of Information

Security (ISC 2004), Lecture Notes in Computer Science 3225, pp. 280-

291. Springer-Verlag, 2004.

[61] F. Mattern, ”Virtual time and global states of distributed systems”, Pro-

ceedings of the International Workshop on Parallel and Distributed Algo-

rithms, 1988.

[62] D.L. Mills, ”Internet time synchronization: the network time protocol”,

IEEE Transactions on Communications COM 39 No.10, pp.1482-1493,

IEEE, 1991.

[63] D.L. Mills, ”Network time protocol (version 3) specification, implementa-

tion and analysis”, RFC 1305, IETF Network Working Group, 1992.

[64] S. Micali, ”A secure and efficient digital signature algorithm,” Technical

Report MIT/LCS/TM-501, Massachusetts Institute of Technology, Cam-

bridge, MA, 1994.

[65] D.L. Mills, ”Simple network time protocol (SNTP)”, RFC 1769, IETF

Network Working Group, 1995.

84

[66] S. Micali, ”Efficient certificate revocation”, Technical Report TM-542b,

MIT Laboratory for Computer Science, 1996.

[67] M. Myers, ”Revocation: options and challenges”, Proceedings of the Sec-

ond International Conference on Financial Cryptography, Lecture Notes

in Computer Science 1465, pp. 165-171, Springer-Verlag, 1998.

[68] P. McDaniel, S. Jamin, ”Windowed certificate revocation”, Proceedings

of the Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies, IEEE Infocom 2000, pp. 1406-1414, IEEE,

2000.

[69] T. Malkin, D. Micciancio, S. Miner, ”Efficient generic forward-secure sig-

natures with an unbounded number of time periods.” Proceedings of Ad-

vances in Cryptology – Eurocrypt 2002, Lecture Notes in Computer Sci-

ence 2332,pp.400 - 417, Springer-Verlag, 2002.

[70] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, ”The flooding time synchro-

nization protocol”, Proceedings of the Second ACM Conference on Em-

bedded Networked Sensor Systems (SenSys’04), pp. 39-49, ACM, 2004.

[71] P. McDaniel, A. Rubin, ”A response to ’Can we eliminate certificate re-

vocation lists?’”, Proceedings of the 4th International Conference on Fi-

nancial Cryptography Lecture Notes In Computer Science 1962, pp. 245 -

258, Springer-Verlag, 2000.

[72] U.M. Maurer, Y. Yacobi, ”A non-interactive public-key distribution sys-

tem”, Designs, Codes and Cryptography, Vol. 9, No.3, pp.305-316, 1996.

[73] M. Naor, K. Nissim, ”Certificate revocation and certificate update”, Pro-

ceedings of 7th USENIX Security Symposium, pp. 217-228, 1998.

[74] Nicolás G.D., Olivier M., Emmanuel D., ”A new key-insulated signature

scheme”, Proceedings of Sixth International Conference on Information

85

and Communications Security Lecture Notes In Computer Science 3269,

Springer-Verlag, 2004.

[75] H. Ong, C. Schnorr, ”Fast signature generation with a Fiat-Shamir like

scheme”, Proceedings of Advances in Cryptology – Eurocrypt ’90, Lecture

Notes in Computer Science 473, pp.432-440, Springer-Verlag, 1990.

[76] K. Ohta, T. Okamoto, ”A modification of the Fiat-Shamir scheme”, Pro-

ceedings of Advances in Cryptology – Crypto ’88, Lecture Notes in Com-

puter Science 403, pp.232-243, Springer-Verlag, 1988.

[77] R. Ostrovsky, M. Yung, ”How to withstand mobile virus attacks”, Pro-

ceedings of the 10th ACM Symposium on Principles of Distributed Com-

puting (PODC), pp. 51-61, ACM, 1991.

[78] J. Postel, ”Daytime protocol”, RFC 867, IETF Network Working Group,

1983.

[79] J. Postel , K. Harrenstien , ”Time protocol”, RFC 868, IETF Network

Working Group, 1983.

[80] T. Pedersen, ”A threshold cryptosystem without a trusted party”, Pro-

ceedings of Advances in Cryptology – Eurocrypt ’91, Lecture Notes in

Computer Science 547, pp.522-526, Springer-Verlag, 1991.

[81] T. Pedersen, ”Non-interactive and information-theoretic secure verifiable

secret sharing”, Proceedings of Advances in Cryptology – Crypto ’91, Lec-

ture Notes in Computer Science 576, pp.129-140, Springer-Verlag, 1991.

[82] R. Rivest, ”Can we eleminate certificate revocation lists?”, Proceedings of

the Second International Conference on Financial Cryptography, Lecture

Notes in Computer Science 1465, pp. 178-183, Springer-Verlag, 1998.

[83] K. Römer, ”Time synchronization in ad hoc networks”, Proceedings of

ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc

2001), ACM, 2001.

86

[84] P. Ramanathan, K.G. Shin, R.W. Butler, ”Fault-tolerant clock synchro-

nization in distributed systems”, IEEE Computer, vol.23, no.10, pp.33-42,

IEEE, 1990.

[85] T. Rabin, ”A simplified approach to threshold and proactive RSA”, Pro-

ceedings of Advances in Cryptology – Crypto ’98, Lecture Notes in Com-

puter Science 1462, pp.89-104, Springer-Verlag, 1998.

[86] C. Rackoff, D. Simon, ”Noninteractive zero-knowledge proof of knowledge

and chosen ciphertext attack”, Proceedings of Advances in Cryptology –

Crypto ’91, Lecture Notes in Computer Science 576, pp.433-444, Springer-

Verlag, 1991.

[87] A. Shamir, ”Identity-based cryptosystems and signature schemes”, Pro-

ceedings of Advances in Cryptology – Crypto ’84, Lecture Notes in Com-

puter Science 196, pp.47-53, Springer-Verlag, 1984.

[88] A. Shamir, ”How to share a secret”, Communications of the ACM 22(11),

pp.612-613, ACM, 1979.

[89] B. Simons, J. Welch, N. Lynch, ”An overview of clock synchronization”,

Technical Report RJ 6505, IBM Almaden Research Center, 1988.

[90] E. Thompson, ”MD5 collisions and the impact on computer forensics”

Digital Investigation, Vol.2, No.1, pp. 36-40, 2005.

[91] R.N. Wright, P.D. Lincoln, J.K. Millen, ”Efficient fault-tolerant certificate

revocation”, Proceedings of ACM Conference on Computer and Commu-

nications Security ’00, pp.19-24, ACM, 2000.

[92] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu, ”Cryptanalysis of the Hash

Functions MD4 and RIPEMD”, Proceedings of Advances in Cryptology -

EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pp. 1-18,

Springer-Verlag, 2005

87

[93] H. Wang, L. Yip, D. Maniezzo,J.C. Chen, R.E. Hudson, J. Elson, K. Yao,

”A wireless time-synchronized COTS sensor platform part II-applications

to beamforming”, Proceedings of IEEE CAS Workshop on Wireless Com-

munications and Networking, IEEE, 2002.

[94] X. Wang, H. Yu, ”How to Break MD5 and Other Hash Functions”, Pro-

ceedings of Advances in Cryptology - EUROCRYPT 2005, Lecture Notes

in Computer Science 3494, pp. 19-35, Springer-Verlag, 2005

[95] X. Wang, Y.L. Yin, H. Yu, ”Finding Collisions in the Full SHA-1”, Pro-

ceedings of Advances in Cryptology - CRYPTO 2005, Lecture Notes in

Computer Science 3621, pp.17-36, Springer-Verlag, 2005.

[96] CCITT Recommendation X.509, ”The Directory-Authentication Frame-

work”, 1993.

[97] D. Yao, N. Fazio, Y. Dodis, A. Lysyanskaya, ”ID-based encryption for

complex hierarchies with applications to forward security and broadcast

encryption”, Proceedings of the 11th ACM Conference on Computer and

Communications Security ’04, pp. 354–363, ACM, 2004.

88

Appendix A

In the following, we review well-known forward secure signature and encryption

schemes. These schemes contain Bellare and Miner’s, Abdalla and Reyzin’s,

Itkis and Reyzin’s and Canetti et al’s scheme.

Bellare and Miner’s forward-secure signature

scheme

Bellare and Miner proposed the first forward-secure signature scheme based

on the difficulty of computing the square roots modulus a Blum integer [13].

Their scheme consists of four procedures: key generation (Kg), key update

(Kud), signing (Sgn) and verification (Vf). Let k and l be security parameters

and T the largest time period. The scheme is shown in Figure 7.1 and 7.2.

Initially, a signer randomly selects l secret keys over Z∗
N as the initial secret

key SK0. Then, he computes the public key PK via the l secret keys and

T. When the time transits from j − 1 to j, the signer computes the secret

key Si,j = S2
i,j−1 mod N for i = 1, · · · , l. To sign a message M , the signer

selects a random R and computes Y = R2(T+1)
mod N , c1 · · · cl = H(j, Y, M)

and Z = R
∏l

i=1 Sci
i,j mod N . The signatue of M is 〈j, (Y, Z)〉. To verify a

signature 〈j, (Y, Z)〉 of M , the verifier computes c1 · · · cl = H(j, Y, M). and

checks if Z2(T+1−j)
= Y ·

∏l
i=1 U ci

i mod N .

89

1. Kg(k, l, T)

(a) Pick random, distinct k/2 primes p, q such that p ≡ q ≡ 3 mod 4.

(b) Let N = pq.

(c) Select S1,0, S2,0, · · · , Sl,0 ∈ Z∗
N at random.

(d) Set Ui = S2(T+1)

i,0 mod N for i = 1, · · · , l.

(e) Let SK0 = (N, T, 0, S1,0, S2,0, · · · , Sl,0) and PK =

(N, T, U1, · · · , Ul).

2. Kud(SKj−1) where SKj−1 = (N, T, j − 1, S1,j−1, S2,j−1, · · · , Sl,j−1) and

1 ≤ j ≤ T + 1.

(a) Set Si,j = S2
i,j−1 mod N for i = 1, · · · , l.

(b) Let SKj = (N, T, j, S1,j, S2,j, · · · , Sl,j)

Figure 7.1: Bellare and Miner’s forward-secure signature scheme is based on

the hardness of the square root problem. (part 1)

Abdalla and Reyzin’s forward-secure signature

scheme

Abdalla and Reyzin proposed an improvement of Bellare and Miner’s with a

shorter key [4]. The security of their scheme is based the hardness of computing

the 2l-th root problem. Their scheme shown in Figure 7.3 also contains four

procedures: Kg, Kud, Sgn and Vf. Initially, the signer randomly selects S0

over Z∗
N . Then, he sets the signing key SK0 = (N, T, 0, S0) and computes the

public key PK = (N, U, T), where U = 1/S2l(T+1)

0 mod N . For any time period

j, the secret key SKj = (N, T, j, S2l

j−1), i.e., Sj = S2l

j−1. To sign a message M,

the signer randomly selects R ∈ Z∗
N and computes (j, Z, σ), where Z = RSσ

j

90

1. Sgn(H, SKj, M) where SKj = (N, T, j, S1,j, S2,j, · · · , Sl,j) and H :

0, 1∗ → 0, 1l is a random-oracle hash-function.

(a) Select R ∈ Z∗
N at random.

(b) Set Y = R2(T+1)
mod N .

(c) Let c1 · · · cl = H(j, Y, M).

(d) Compute Z = R
∏l

i=1 Sci
i,j mod N .

(e) Return 〈j, (Y, Z)〉.

2. Vf(H, PK, M, 〈j, (Y, Z)〉 where PK = (N, T, U1, · · · , Ul).

(a) Compute c1 · · · cl = H(j, Y, M).

(b) Check if Z2(T+1−j)
= Y ·

∏l
i=1 U ci

i mod N . If so, return 1. Other-

wise, return 0.

Figure 7.2: Bellare and Miner’s forward-secure signature scheme is based on

the hardness of the square root problem. (part 2)

mod N , σ = H(j, Y, M) and Y = R2l(T+1−j)
mod N . To verify a signature

(j, Z, σ) of M, a verifier computes Y ′ = Z2l(T+1−j)
Uσ mod N and checks if σ =

H(j, Y ′, M).

Itkis and Reyzin’s forward-secure signature

scheme

Itkis and Reyzin proposed a forward-secure signature scheme based on the

GQ signature scheme [49]. The security of the scheme is based on e-th root

problem. This scheme optimizes the procedures of signing and verifying. Their

scheme also consists of four procedure: IR.Kg, IR.Kud, IR.Sgn and IR.Vf.

91

The scheme is shown in Figure 7.4 and 7.5. In the beginning, the signer selects

t1 ∈ Z∗
N and uses the seed to generate T primes e1, · · · , eT . Then, he sets

SK1 = (1, T, N, s1, t2, e1, seed) and PK = (n, v, T) as the first secret key and

the public key, where s1 = tf2

1 mod N , t2 = te1
1 mod N , v = 1/se1

1 mod N

and f2 = e2 · · · eT mod (φ(N)). When the time transits from j to j + 1, the

secret key is updated to be SKj+1 = (j + 1, T, N, sj+1, tj+2, ej+1, seed), where

sj+1 = t
ej+2···eT

j+1 mod N and tj+2 = t
ej+1

j+1 mod N . Remark that the seed is

used regenerate T prime ei. To sign a message M , the signer ranomly selects

R and computes the signature (z, σ, j, ej) of M , where z = rsσ
j mod N and

σ = H(j, ej, y, M) in which y = rej mod N . To verify a signature (z, σ, j, ej)

of M , a verifier checks if e ≥ 2l(1 + j/T) or e < 2l or e is even and σ =

H(j, e, y′, M) in which y′ = zevσ mod N .

Canetti et al.’s forward-secure public-key en-

cryption scheme

Canetti et al proposed forward-secure public-key encryption scheme based on

bilinear Diffie-Hellman assumption. They proposed forward-secure encryption

schemes from any BTE(binary tree encryption) scheme. The BTE scheme

is shown in Figure 7.6 and 7.7. Let ` denote the depth of the tree and

ω|i = ω1 · · ·ωi. In the scheme, they use a (2` + 1)-wise independent family

H of functions H : {0, 1}≤` → G1. Given elements x1, · · · , xk ∈ {0, 1}≤` and

g1, · · · , gk ∈ G1(with k ≤ 2` + 1), it is possible to efficiently sample a random

H ∈ H satisfying H(xi) = gi for i = 1, · · · , k.

To construct a forward-secure scheme with N = 2`+1 − 1 time periods, we

simply use a BTE of depth ` and associate the time period with all nodes of

the tree according to a pre-order traversal. The public key is simply the root

public key for the BTE scheme. The private key for period i consists of the

secret key for node ωi as well as those for all right siblings of the nodes on the

path from the root to ωi. To encrypt a message at time period i, the message

92

is encrypted for node ωi using the BTE scheme. The ciphertext at time period

i is simply decrypted by the secret key of ωi. The secret key is updated in the

following: if ωi is an internal node, then the secret keys for ωi+1 and its sibling

are derived; otherwise the secret key for node ωi+1 is already stored as part of

the secret key. In either case, the key for node ωi is then deleted.

93

1. Kg(k, l, T).

(a) Select two large primes p and q such that p ≡ q ≡ 3 (mod 4),

2k−1 ≤ (p− 1)(q − 1), and pq < 2k. Let N = pq.

(b) Randomly select S0 from Z∗
N and compute U = 1/S2l(T+1)

0 mod N .

(c) Set SK0 = (N, T, 0, S0) and PK = (N, U, T).

2. Kud(SKj) where SKj = (N, T, j, Sj).

(a) If j = T , set SKj = null; otherwise, set SKj+1 = (N, T, j +

1, S2l

j mod N).

3. Sgn(H, M, SKj) where H : {0, 1}∗ → {0, 1}l a collision-resistant hash

function.

(a) Randomly select R ∈ Z∗
N and compute Y = R2l(T+1−j)

mod N , σ =

H(j, Y, M), and Z = RSσ
j mod N .

(b) The signature is (j, Z, σ).

4. Vf(H, PK, (j, Z, σ), M) where PK = (N, U, T).

(a) If Z ≡ 0, return 0; otherwise, compute Y ′ = Z2l(T+1−j)
Uσ mod N .

(b) Output 1 if and only if σ = H(j, Y ′, M).

Figure 7.3: Abdalla and Reyzin’s forward-secure signature scheme is based the

hardness of the 2l-th root problem.

94

1. IR.Kg(k, l, T).

(a) Generate random dk/2e bits primes q1, q2 such that pi = 2qi +1 are

primes.

(b) Let N = p1p2.

(c) Select t1 ∈ Z∗
N at random.

(d) Generate primes ei using seed such that 2l(1 + (i − 1)/T) ≤ ei <

2l(1 + i/T) for i = 1, 2, · · · , T .

(e) Compute f2 = e2 · ... · eT mod (φ(N)), s1 = tf2

1 mod N , v = 1/se1
1

mod N and t2 = te1
1 mod N .

(f) Set SK1 = (1, T, N, s1, t2, e1, seed) and PK = (n, v, T).

2. IR.Kud(SKj) where SKj = (j, T, N, sj, tj+1, ej, seed).

(a) If j = T then return ε.

(b) Regenerate ej+1, · · · , eT using seed.

(c) Compute sj+1 = t
ej+2···eT

j+1 mod N and tj+2 = t
ej+1

j+1 mod N .

(d) Set SKj+1 = (j + 1, T, N, sj+1, tj+2, ej+1, seed).

Figure 7.4: Itkis and Reyzin’s forward-secure signature scheme is based on GQ

signature.(part 1)

95

1. IR.Sgn(M, H, SKj) where H : {0, 1}∗ → {0, 1}l a random oracle hash

function.

(a) Select r ∈ Z∗
N at random.

(b) Compute y = rej mod N , σ = H(j, ej, y, M) and z = rsσ
j mod N .

(c) Return (z, σ, j, ej).

2. IR.Vf(H, PK, M, (z, σ, j, e)), where PK = (N, v, T).

(a) If e ≥ 2l(1 + j/T) or e < 2l or e is even then return 0.

(b) If z ≡ 0 mod N then return 0.

(c) Compute y′ = zevσ mod N .

(d) If σ = H(j, e, y′, M) then return 1 else return 0.

Figure 7.5: Itkis and Reyzin’s forward-secure signature scheme is based on GQ

signature.(part 2)

96

1. Gen(1k, `)

(a) Run IG(1k) to generate groups G1, G2 with prime order q and

bilinear map ê.

(b) Randomly select a generator P ∈ G1 and α ∈ Zq.

(c) Set Q = αP .

(d) Choose a random function H ∈ H.

(e) The public key is PK = (G1,G2, ê, P,Q, `,H).

(f) The root secret key is SKε = αH(ε).

2. Der(PK,ω, SKω)

(a) Let ω = ω1 · · ·ωt.

(b) Parse SKω as (Rω|1, Rω|2, · · · , Rω|t−1, Rω, Sω).

(c) Randomly select ρω0, ρω1 ∈ Zq. Set Rω0 = ρω0P , Rω1 = ρω1P ,

Sω0 = Sω + ρω0H(ω0), and Sω1 = Sω + ρω1H(ω1).

(d) Output SKω0 = (Rω|1, Rω|2, · · · , Rω|t−1, Rω0, Sω0) and SKω1 =

(Rω|1, Rω|2, · · · , Rω|t−1, Rω1, Sω1).

Figure 7.6: Canetti et al’s binary tree encryption scheme is based on bilinear

Diffie-Hellman assumption.(part 1)

97

1. Enc(PK,ω,M)

(a) Let ω = ω1 · · ·ωt. Select a random number γ ∈ Zq.

(b) Output C = (γP, γH(ω|1), γH(ω|2), · · · , γH(ω), M · d), where d =

ê(Q,H(ε))γ.

2. Dec(PK,ω, SKω, C)

(a) Let ω = ω1 · · ·ωt, parse SKω as (Rω|1, · · · , Rω, Sω), and parse C as

(U0, U1, · · · , Ut, V).

(b) Output M = V/d, where d = ê(U0,Sω)∏t
i=1 ê(Rω|i,Ui)

.

Figure 7.7: Canetti et al’s binary tree encryption scheme is based on bilinear

Diffie-Hellman assumption.(part 2)

98

