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Reducing the Effects of Model Reduction on Stability 
Boundaries and Limit-Cycle Characteristics 

JIUM-MING LIN AND KUANG-WE1 HAN 

Abstract-In this note, the effects of  model  reduction on the  stability 
boundaries of control  systems  with  parameter  variations,  and  the  limit- 
cycle  characteristics of nonlinear  control  systems  are  investigated. In 
order to rednce  these effects, a  method  is used which  can  approximate  the 
original  transfer  function  at s = 0,  s = 03, and also match  some  selected 
points on the  frequency  response  curve of the  original  transfer  function. 
Examples are given,  and  comparisons to the  methods  given in  the  current 
literature  are  made 

I. INTRODUCTION 

In the current  literature, most of the methods for model reduction are 
based upon the assumption that the system has constant parameters and 
take care of the errors between the  ste input (or frequency) responses of 
the reduced models and the original tr nsfer function 111-[8]. Therefore, 
methods for reducing the effects of model reduction on either the stability 
boundaries of control systems with parameter variations [9],  [lo]  or the 
limit-cycle characteristics of nonlinear control systems are still needed. 
For example, the Pad6 approximations [1]-[5] consider at s = 0; and 
some  other methods consider approximations at both s = 0 and s = m (z 
= 1 and z = m), or at s = a(a = > 0) [6]-[8]. However, the response of 
the reduced model at intermediate frequency may  not  be matched well 
with that of  the original system: thus the stability boundaries of the 
parameters or the limit-cycle characteristics of a closed-loop system with 
the reduced model may deviate considerably from those of the original 
system. 

In the methods based on continued-fraction expansion, the high-order 
transfer function is expanded into the Cauer form [7], then the high-order 
terms are truncated, and finally the truncated continued fraction is 
converted into a rational low-order transfer function. In this note, the 
high-order terms are not truncated but equated to  some rational transfer 
functions, the coefficients of the  latter  are obtained by matching the 
frequency responses of the reduced model with those of the original one at 
some intermediate frequencies. Thus,  the reduced models obtained by the 
proposed method can approximate the original transfer function at s = 0, 
s = 03, and also match some selected points on  the frequency response 
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curve of the original transfer function. It will be shown later in this note 
that one can  take  the matching points to be the phase-crossover, gain- 
crossover, limit-cycle, or some other frequencies [lo]; then the effects of 
model reduction on the stability boundaries of control systems with 
parameter variations, and the limit-cycle characteristics of nonlinear 
control systems can be reduced. 

II. THE PROFQSED METHOD 

Let the original transfer function and the reduced model be 

and 
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respectively. In (2.2), r and r - 1 represent  the numbers of poles and 
zeros of R(s), respectively; i and j are the numbers of terms of the 
continued-fraction expansion of G(s) about s = 0 and s = 00, 
respectively; and w , ,  w, ., w, are the frequencies at which the 
frequency response of C(s) are matched by R(s). The procedure for 
tinding a reduced model is  as follows. 

Step 1: Expand G(s) about s = 0 with i (even number) terms, i.e., 

where 

and 

Step 2: Reverse  the polynomial sequences in (2.4) and (2.5), and 
continue to expand (2.3) about s = co with j (even number) terms, then 
one has 

where 

and 

Step 3: Replace F,,(s)/FD(s) in (2.6) by a low-order model defined as 

where 

Y m - l = l  (2.10) 

and m is the number of points on  the frequency response curve of a s )  to 
be matched by R(s). The 2m unknowns Y , - ~ ,  Y, -~ ,  . . . , y , ,  yo, x,, . . , 
xI, x. can be obtained by setting 

where rk and mP are the real part and the imaginary part of F,(s)/F&) 
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for s = j w k ,  respectively. Equating the real part and  the imaginary part in 
(2.11), one  can obtain a set of simultaneously independent equations. 
Therefore, the 2m unknowns ym-2, Y , -~ ,  . . , y, ,   yo,  x,, . a ,  xi, can 
be obtained by solving the 2m simultaneously independent equations. 

Step 4: Replace F.(s)/F& in (2.6) by (2.9) and invert the continued- 
fraction; the reduced model defined in (2.2) is obtained, Le., 

(ol, wzr .-., w,)R[r-l, rl;(s) 

The  order of the denominator of the reduced model R(s) is 

r=m+( i+j ) /2 .  

By use of (2.3) and (2.6), one has 

From (2.11),  (2.12), and (2.14) it can be seen that 

G(s)=(q, WZ, .-., w,)R[r-1, r]$s)  

for s = j w ,   k = l ,  2, -.., m. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Equation (2.15) indicates that the frequency response of G(s) and R(s) are 
matched at s = jw,,  k = 1 ,  2, . . . , m. Note that if both i and j are odd 
numbers, (2.3)-(2.6) may have some minor differences, but the proce- 
dure is the same. 

In comparison to the ori,&al continued-fraction methods [I], [6],  [7], 
[l l]  the advantage of the proposed method is due  to the fact that the 
remainders (&(s)/FD(s)) of the continued fraction, which are disre- 
garded in the continued-fraction methods, are now used to match some 
desirable points on the frequency response curve of the original transfer 
function. Thus,  the frequency response at low, intermediate, and high 
frequencies can be matched; and the effects of model reduction on the 
stability boundaries of control systems with parameter variations and the 
limit-cycle characteristics of nonlinear control systems can be reduced. 

Marshall [12] proposed a method of model reduction by retaining the 
dominant poles and  zeros of the ori,&al high-order transfer function first, 
and then cascading an adjustable timedelay and/or a lead-lag compensa- 
tor such that the frequency response of the system with the reduced model 
matches that of the original system at the phase-crossover or some other 
frequencies. If there  are no dominant poles or zeros, this method cannot 
be applied. However, the method proposed in this note is straightforward 
and clear,  i.e., one  can make the frequency response of the reduced model 
at s = 0 (or s = OJ) match much better with that of the original high-order 
transfer function just by choosing larger i (or j )  defined in (2.2). In 
addition, the number of points and frequencies to be matched can be 
arbitrarily chosen following the constraint defined by (2.13). 

III. APPLICATIONS OF THE PROPOSED METHOD 

The main purpose of  this section is to apply the proposed method to 
show that, when reduced models are used, the effects of model reduction 
on the stability boundaries of control systems with parameter variations 
and the limit-cycle characterstics of nonlinear control systems can be 
reduced. 

Example 1: Consider the  system shown in Fig. 1 where r = 0.3, the 
stability boundaries of the parameters a and j3 are  to be determined. The 
nonlinear elements N ,  and N2 are neglected for this example. The transfer 

Structure 

Fig. 1. Block diagram of a missile control system. 

functions are defined as follows [9]: 

7.21 
G R ( S ) = ( ~ +  1.6)(s- 1.48) 

2750 
Gs(s)=sZ+42.2s+2750 

(s2+70s+4000)(s2+22s+ 12800) 
GsF(s)=(s2+30s+5810) (s2+30s+ 12800) (3.3) 

and the structure T(s) is defined as 

T(s)=[0.686(s+53)(s-53)(s2- 152 .2~+  14500)(s2+ 153.8~+14500)] 

/ [ (~z+~+605)(~'+45.5~+2660)(s2+2.51s+3900) 

* (s2+3.99s+22980)]. (3.4) 

The proposed method is applied to reduce T(s) with frequency 
responses at wlp = 21.021 r ads  and w, = 54.844 rad/s to be matched by 
the reduced model, where wlp is the phase-crossover frequency of the 
open-loop transfer function Bo(s)/E(s) when the nonlinear elements N, 
and N2 are neglected and the parameters a, j3, and r a re  assumed to be 15, 
100, and 0.3, respectively; and wl is the frequency of the limit cycle for 
the parameters a, /3, and r assumed to be 18,90, and 0.3 in Example 2, 
respectively. The result is 

W d s ) = ( w , ,  wlp)R13, 51:(s) 

=[0.686(~+24.6442)(~-40.9717)(~+219.7768)]/[(~+28.5945) 
(sz+ 1.2351s+593.7862)(s2+10.~18S+3191.7797)1. (3.5) 

BY use of other methods, the reduced models of T(s) are found as 

I )  Continued-Fraction Method [lj: 
follows. 

C,(S)  = R [4,.  ~I;''(S) 

= [ - 2 . 4 4 ~ 1 0 ~ ~ ( ~ - 6 1 . 3 8 3 6 ) ( ~ - 6 7 . 5 1 6 4 ) ( ~ ~ + 8 1 . 5 o O O S  

+ 1748.6381)]/[(s+41.3000)(sz+0.97~s+605.9021) 
(s2+25.40O0s+2447.8O33)]. (3.6) 

2) Stability-Equation Method and Pad6 Approximation  Method 
[13]: 

BI(s)=[-2.3837X  10-2(~+38.1380)(~+ 130.4869)(s2-  101.2398s 

+2997.6391)]/[(s+72.5638)(s2+0.91s+602.1438) 

(s2+ 12.4262~+2902.0190)]. (3.7) 

3) Modified Pad6 Approximation  Method 161: 

Mds)=R[3, 51:(s) 

=[0.686(~-  111.3723)(~~+321.1828~+38950.873)] 

/[(s2+ 1.2982s+401.8666)(sz+  152.1748~+28159.032) 

. (s+ 107.7370)]. (3.8) 



n 

Fig. 2. Stability  boundaries  of  the  system  with T(s) and its  reduced  models. 

TABLE I 
LIMIT-CYCLE  CHARACTERISTICS  FOR THE SYSTEM  WITH T(s) AND ITS 

REDUCED MODELS 

Models 

Amplitudes 
Frequency 

A ;  A I  w, (radk) 

Original T(S)  0.6841 1.50256 54.844 
WIG 1 0.6841 1 SO256 54.844 
CI(S ) 0.401 1.64019 50.191 
B k S )  0.813 1.60078 51.782 
MI(S 1 0.7775 1.38277 18.513 
TdS ) 3.777 1.26043 61.32 

4) Routh Stability Array Method [14]: 

. (s- 157.0873)]/[(~+ 161.1435)(~~+0.7348~+611.5744) 

(s2+2.O104s+38O7.4562)]. (3.9) 

By use of the parameter space method [9], the stability boundaries of 
the original closed-loop system and the system with reduced models are 
plotted in the a versus a plane as shown in Fig. 2, where the stable 
regions are to the right-hand side of each of the boundaries along the arrow 
direction. It can be seen that the stable regions are reduced when Bl(s), 
M,(s), and TI@) are used. In other  words,  due to the effects of parameter 
variations, a stable system may become unstable if an improper reduced 
model is used.  However, when the reduced model Wl(s) is used, the 
stability boundary is very close  to that of the original system. This is due 
to the fact that the frequency response of T(s) at s = 0, s = m, and two 
intermediate frequencies are matched by the reduced model Wl(s). 

Example 2: Consider the system shown in Fig. 1 .  Let the parameters 
a, 8, and r be 18, 90, and 0.3, respectively. By use of the describing 
function method [9] and the  parameter space method, a limit cycle can be 
found. The amplitude and frequency of the limit cycle are at 

A ,  = 1 SO256  (3.10) 

A { = 0.6841  (3.11) 

and 
w, = 54.844 radls (3.12) 

respectively, where A I  and A are the amplitudes of the sinusoidal waves 
at the input terminals of Nl and N2, respectively. Replacing T(s) by 
models as defined from (3.6) to (3.9), the limit-cycle characteristics are 
obtained as shown in Table I. It can be seen that the limit-cycle 

characteristics are changed when the reduced models are used. In d e r  
words, the result of limit cycle analysis may be incorrect if an  improper 
reduced model is used. Note that both the amplitudes and the frequency of 
the limit cycle can be preserved by the system with the proposed model 
Wl(s) as also shown in Table I. This is due  to  the fact that the frequency 
response of W1(s) at the limit-cycle frequency is matched with that of 
m). 

CONCLUSIONS 

The effects of model reduction on the stability boundaries of control 
systems with parameter variations and the limit-cycle characteristics of 
nonlinear control systems have been investigated. Applications of the 
proposed method to reduce these effects have been presented. In 
comparison to the results obtained by the methods given in the  current 
literature, the proposed method can, in general,  give better results. 
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Path Controllability of Linear Input-Output Systems 

FELIX ALBRECHT, KEVIN A. GRASSE, AND NELSON WAX 

Abstract-The varied definitions used  in  four  studies of path conlrolla- 
bility of linear  input-output  systems  are given, their  similarities  and 
differences  examined,  and some of their  corresponding  results  compared 
and  discussed. 

INTRODUCTION 

It is often of interest, in studying input-output systems, to determine 
whether the output of the  system can be made to follow a preassigned 
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