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Reactive Phenomenon between Molten Ti and
Al,05/Y,05/ZrO, Composites

Student : Po-Chi Chen Advisor : Chien-Cheng Lin

Department of Material Science and Engineering
National Chiao Tung University

Abstract

Various Al,05/Y,05/ZrO, as sintering sample was reacted with titanium
at 1700 °C/2 hr in argon. Analyzing the microstructure of the reaction
interface was characterized with XRD, SEM/EDS, and TEM/EDS after

reaction.

There were forming TiAl Alloys on Ti side after diffusion reaction, and
the reactions were more violent with the Al,O; content-increase, so the
phase transited to Ti,ZrAl by Zr took Ti place. So many compounds be
observed, including ZrO,, TiAl, Y;Al;0,,(YAG), YAIO;, Y,03, Al;Zr, etc.
When Al,O; content exceed the-percolation threshold, the interconnecting
network would be formed. Due to Ti diffused into the ceramics deeply by

this network, the microstructure different from the other specimens.

In four groups with the titanium melt diffusion reaction, the reaction in
the diffusion process that YAG has an important role, it will be
specifically discussed YAG and Ti melt diffusion reaction with the same

temperature and time.
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R R TE B BE(1668C) 0 AN AR 0 BRERIEY P RGN

o #% ,(};}’@E 5@/” FZ 4T

\\—
K2

e

1. 77 & B4 Fig. 3-3 #7717 » Bdsde 3 » T M FP - & T

A% >~ 10mm x 10 mm x 5 mmz f4 %, > ﬁx%éﬁ;‘;’]:%cﬁ,—k,ﬂ[:z?g

o
2
i

s TSRS BB LR -
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2. Begt MR R % P (Model No. 4156, Centorr Inc., Nashua, New
Hampshire, UK)

3P BAEZAEF I 100 8 0 i » & § (argon)E - < F R o

4, £ Hh==+ % B R LEAERE N F § BRI MY > 2 80°C/min
1§x<’§i%1:'114’3;"’f » 278 3 1700°C o

5. & 1700 C T4 E 3 -] pF{ > 12 5C/min 4 73 1000C 1S » £ 4

IFR I RAPFICT R o

35 #PEG
i % {8 i *» 2|4 (Low Speed Saw, ISOMET BUEHLER){r4¢7 7

o B ALOS/ Yo03/ ZrO [ i 5 s in FL e M2 & s i w

S o B £ 3RS A ul T SEM - XRD - TEM &% -

1. SEM 2 5 @i B-ALO:/ Y05/ ZrOy4F £ [ Z A F > 358 5 10 mm
x 10 mm x Smm> " RE EAp2ARS iR T L G * YT F) WA e
LA T ] pm

2. XRD @7 #l# t 22 Fvt e SEM 2% > ¥ P £ 6 A2
T s Y X R L B o

3. TEM# 2 @l #2225 3 mx 3 mmx lmm> &% 477
BAEZ 1lum T8 > 12 AB W% Gl 33 #38 # ARRE>Y 2 o x 1

mmZ- 4% &+ > £ J1* 3 5 F 48 (Precision Ion Polishing System)#+

14



T F ey o Ea ®WiTEE

3.6 AHRE
3.6.1 X-ray 3% 4 +7(XRD)

¢ * X-Ray # % 3%+ %k (Model M18XHF, Mac Science, Japan)#£
3o TRK ZS0KV > F w200 mA 0 4k ¥e 2. Cuky(h = 1.5406 A) &
4 2. X ks Nifilter gk 6 0 2@ P £ % 2757 -90"2 0/20 i
F R e E R 2 /ming £ 20=0.01"(Sampling = 0.01°) p # eéx
X-ray % & o ¥ ALO3/ Y205/ ZrO, 1§ 38 & (R SE s A 47 1 F 2 % fo 4P >

B-Frde ) K epeak £ 2 JCPDs =+ 4p 3 vh¥ o [ Egp w o

3.6.2 #H T+ HAKESEM/EDS)

i BHE R 0w T B st (FESEM, JSM-6500F, JEOL Ltd.,
Tokyo, Japan)z_ % & 478+ + S i(BED® = = 7 + = {(SEI)> 1 ¥ iF
TR 5 20kVEE ALOY/ Y 05/ ZrOyi H 24X £ 7 6 /i & MBS

#2 EDS 2 X-ray mapping #Z3E 5 P L ApE s A F el T E A 4T o

<

Fleii b @9 PBIFATED LT LA RRREIFE

Y

4 ®JF A% T (charging) > ¥ 3k3E P AL > S % * Jon coater i

s
=1
|

~ K4 TS 20mA v REEFER 120 4

\m

ER; 3

% 5Pa-
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3.3 7 # ;' T 3 BE(TEM/EDS)

F i N7 B s (Philips TECAIL 20) 4 47 F i amg B o 1
7% (Bright Field Image, BFI)ELZ 4/ & s & % YEBT ]2 (Selected
Area Diffraction Pattern, SADP) i® & 7% % A4p W] ey T BLE AT 7 -
>R %5 s B A A7k 3 R (Eenrgy Dispersive Spectrometer, EDS) 2. Z {4

2L g o ET L BipaES LF R LG o
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Fry BEEUES
AE L R T T RS T R F AR R
i RF B A E > ¥t ¥ TEM/EDS i - # 4 45 o
10A/90YZ ~ 20A/80YZ % 30A/70YZ 2 % fhyf4c s s & 3 3%
40A/60YZ > = 4RI 2 s YAG dficF Rérdrimend & 5 Flpta
H-4E 3T YAG ¥ b Ti g e F o F (S REE 4 6 Ao

Fleend St 7 R AR ET 2 i E R ] -

41 Rk F 2 ¥ A XRD A4

Fig. 4-1 5o& Faa e 2 il x B (10A/90YZ ~ 20A/80YZ -
30A/70YZ ~ 40A/60YZ) » fod A 22455 B IHHcF Baen X ok ¥t @)
A% BT ML B B chis B 5 20 5-30.6550.7460.5 =% 512 JCPDs

+ B o7 4 & c-ZrO, 5 YAG %.cubic . %1 ;M ALO; 7 thombohedral 5

H(0-ALOy) ©

rleE P BB ApALRER 0 LW E s F A ALO
i B o0 K= ~ApBIEE T [Fig. 3-2] » & 4 #-40A/60YZ i & A &7
2% 48, EdEF M EEZE L 40 vol% 0 F o 22 ko & XRD
B ALO  BHEAPHIR S 5 F 2 & 10A/90YZ T 0 § 1 4ER 3

10 vol % » “4 @ S14p 4 £ 4% i -



z 22 4 (10A/90YZ — 40A/60YZ) . ZrO,-Y,05-Al,0; = = 4p B
= fF — B Gibbs triangle > ¢ 4p B] ¥ iv 5 ¢-ZrO,~ YAG ~ ALO; 22 >
T XRD S RET T 2R 5 24P 0 SR B AP
;oo Q[;J\-ﬁ‘*}éﬁi L 422 4p % v 47 [Fig. 2-5]% > ZrO, 8% 3
cubic S A Fr3 ¥R & € 4P % 1° 2 monoclinic FiE & L YE5F]

7 £ peaks §7 B ¢-ZrO; HI > BT BT mE R X L Ak

Fig. 4-2 & & 2 Ti % 5 F 65> 10A/90YZ20A/80YZ30A/70YZ
40A/60YZ &% 142 3 J5-thermal etching(1300°C /2 hr)z # w $c 54§
+ ) H(BED MBS Bl & ¢ % B g SEM/EDS ¥ £ 4 457 1 47 Y,0;

i3t ZrOy et 5] (O 1 62 at% ~ Al 2 at% ~ Y : 10 at%~ Zr : 26 at%) °

[}

TEP 2 TF b gaderE o F b iz XRD 4 494 5 cubic
Zr0,; @ 8 % 5 SEM/EDS %.& 4~ 17(0:60at%~Al:33 at%~Y:1 at% -
Zr: 6 at%) > £ e & XRD anB %W 7 A5 a-ALOy L A R
SEM/EDS Z_ & # 17(0 : 62 at% ~ Al : 23 at% ~ Y : 13 at% ~ Zr : 2 at%)

¢1 XRD et % 57 0 7 8725 YAG(Y3ALO)) ©

* XRD % SEM/EDS &4 4518 » ’FQ%#B Bl&g o+ 2 Fig.4-2> d 4p
B ¥ v YAG 3 & & d level rule 345 2% > & 10A/90YZ 5 9

mol% ~ 7 20A/80YZ % 10 mol% ~ 7 30A/70YZ % 11 mol% > @

18



40A/60YZ % 11.5mol% > = & YAG ' 5| £ B & % £ 3 2.5mol% > £

10A/90YZ teAp B2 ¥ 5 1 ens § 1t 42(85 mol%) - § 487 § §
> (6 mol%) » 4 Fig. 4-2(a)¥ BRI D% % (ALO;) " 3 & » # & 4P
Bl hie &5 5 o Fig. 4-2(b)SEM/BEI %5 20A/80YZ 2. #4 28 &
FTOUERE R TG I 10A/90YZ Rt do ApHIRD 0 F 28 R IMA
v 10A/90YZ #75 3| il 5o =~ 4p R AT 0 * level rule 3+ & 4p =
At B G ZrO, 76 mol%-~>-Al,Q; 14 mol% » it 3P« Fig. 4-2(b)% % &

LL /]}ljig%t},%‘l;:;c o

R@m 30A/70YZ > 7% levelrule 3-8 2 % » F %1 ALO; 5 26
mol % z & 3t witd =4 0 k2. ZrO; = 63 mol% - ¥ Fig. 4-2(c)

i o TERITIE S T R H AR & a7 B 15 40A/60YZ fAn L -

-

o LL

(%é

J# levelrule 1 4r% 1“4 5 50.5mol% > & f“48&0t 6] 5 2790 3
#oo R 538mol% > i w2 b0 £ Fig 42 kBREE £

7T

WHE e RS E D SAPBZFER o

AN

3]
-

42 M BEF R 2 B RBREHE
B RIRACF BUTHR Y RO R R SRR A W 5 1700C 2 2
hro F R B2 8 » B A o-Ti( T, = 1668C)%% v 0 % % i 4%
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EFEAAEERLERIFEY P F REFEFL > F0td Fig. 437
BERDIF R ERFF 500 pm 2o 2@ o2 10A/90YZ[Fig. 4-3(a)]
22 YAG[Fig. 4-3(e)| &% B3 picinr A ERw 4 2 5 RF]5
Frdl PO S R anAp HRF - F 2 40A/60YZ[Fig. 4-3(d)]d *+§ 1

SEehg B e RIGF O BB IEPF G B G Frilsamik
B

Fig. 4-3(a) 5 Ti £ 10A90YZ Ha ik > F wigstn + ik
ML FHR - @ M AR R o35 &SR 2R RE 4 5 3K -
FRA T iT4ci] ) a4 FHis 5 ERR R £ HRREN 5 v
B3] o-Ti » £ Chang and Lin® ?)‘HL oo T LR ER o-Ti -

TiZrO % 2 % #+5 4 EH B TeAl S &5 7 kT i 57 4

AR FGRZAMC AT RSB AF BT > FwdA) R

R S 2 RS R

Fig. 4-3 (b) & Ti £2 20A/80YZ /i & #4cF B ¥ w78 T + B2 ik
BLAHER 0 MBS Rk A PR BRI HE RS A S 3
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i:’\"ﬁ'é‘i’f"_’}_ jﬁgﬁm Iﬁpﬁﬁz'aTl’p}%"&pl‘iﬂt‘Lﬁb
TR P B F K I Fig 44 (@3 F > 2 84

FTH R RIEE 0 FUR 25T 10A/90YZ -

Fig. 4-3 (c) 5 Ti 22 30A/70YZ /i & #4cF B4 w4047+ B ik
BB o d BELBIAR O RA 71674 5 3 & 0 &/ & e ¥ fael?
5 ThAlL & £ > RIRHA G ) BT o-Tio R4S 6 97 feh
F ok 133145 ] BB 3] THAISZrOy ~ TisZrAl 4 = 4 5 F gk 11
I 82 3 i 5T LD Bt d BARIT » (LB - g L7 & A4
o AFIEIAG N I0E TRk A2 B0 R SR AR T D AR TR ACR

ot 4 EE Rk E o

Fig. 4-3 (d) 5 Ti#240A/60YZ 4 & Fic Ao w4084 T 3+ B i
HELEHR o d = RIT L RE kA s 11 7k 1T RiT4c0R
FRA I BT R &ie kgl d R0l TAL &5

RIEEEEA G A BB a-Ti R4 o F BA 1ehing > o

PR o

Fig. 4-3(a) - ()443 % “ 483 4 S B A 5] 0 § (L4830 4x 3
RIE feA4%p 7] - 22 02 Ti 22 40A/60YZ F Jis 5 B - BB F R
e K RN E B Z e B F SR R AHATTIEE P IRER G R
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3N

10A/90YZ % 30A/70YZ > A~ ciiclic WA 22~ > I R 2 3

<

& 1ok R 0 = ~Ap BI[Fig. 3-1]% 5 point 1 -5 & & 5 # & &
G F Jgwoens & o @ At Gibbs triangle #2573 7R iEA 5 ALO; 30
vol%i= % » gt = &) 5 percolation threshold =¥ - B % percolation 2

Bd T A

7

i 44 percolation theory™ » L kb3 1 M F 2L fmsh ohs B
$FAB> § AB SR ESF ANE B 13 A 5 30 vol%!
PR MR ROEE I RTH BRI 2 AR 40 B s A
3| 30 vol%p* vk RsE BB £ A chg A o B R F L B vk A 30
vol% b pF > @ i3 percolation threshold > ¥ ® & % A p 38452 p
R REETEFHIE ) LT P ERE T q TR R 7
T BB bl AiE 30 vol%I{ &2 ) SN il iE o f T B Bl

o TR A A G050 o PRIEERE Y N E T S AT

AR A B T

iz ¥5 percolation theory » % 5 #F 40A/60YZ %t Ti e 5 i » § 1 4F
7 & © A2 percolation threshold » if ¢ ffg LAZA) = p i B > T 4K
HE MRDF 2 g T E s M R TR R B

PYRERRITHI AR R 2ok £ 5 & 10A/90YZ & 30A/70YZ > d %
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§gEenE B2 N LB B B A AL T
10A/90YZ % 30A/70YZ ¥t4xcndfsck B iv X3 drdiscdk o @ 7 Hg

BRARDE -

Fig. 4-3 (e)5 Ti 22 YAG /i & #47F & > ¥ w3784+ B o
BHE o FREE A G AK > B2 RIW R AE oTi(ALO) K &2 & 2
Fens fipdg o & BEI T 7 BRI REH  F A 1L RS A&

 ARILIR X RVR F BAR ) (Ra) R F) B JuiT 45 RIH YAG F Ry
Pl a6 AW PN Ao b F 2 RBRE R - A 2L 4R §
VAR TR B B Y05 R RIRACE AR AR T i T
BRIV ARA T B R AN E N B AR ALK VS F R BN

BEBT S RA G BE B [ Hun 5 dofEE s o

43 ALOs ¥ Ti # 7 Mk 840
BRI E B2 E e R ek 1AM o Fig 44 3 Ti &

10A/90YZ §(a)1700°C/2 hr *§ myhicF &is > i & MBS~ F

(BED) » ¥ LI & fs 7 RBIESE KR > % 5 Z10, ~ 55 % 30

A% TizAl; Fig. 4-40b) - (DA S 5 Ti ~Y O~ Al~Zr = % 2 X-ray
< £

mapping * Ti #cE HITE > M Z T8 0 d 3 Ti & ALO; #71F%* » &

1Al b JFETIE M 4K B S S ANEE S £ TiAl 4p > BB 0F
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b prd] Zr Aritb e PAT 0 Zr BT A BB EHITFR O ZrE Y
SRRt A § 4% o 1395 Fig. 4-5 Murray #% 112 Ti-Y 4p B » & 4v4e
XA Rl i B B FAL A O G H|ETERE B L R4S B oD
% > deHEE AT 0 B s = 2 (20A/80YZ ~ 30A/70YZ - 2 40A/60YZ)
SR PR G F AR R R 0 B A B P 10A0YZ B i

TR d RETTRAI 0 R

3% Lin and Lin'>#2 3 Tis ZrO, JH4c1s 1 #4082 5 1550°C #
L 0 3 IRART G RS RLEE S £ 60 Zr & (59025-30.7 at%Zr)

s T A s o-Tiv @ &£ % > g% orthorhombic ﬁm B -Ti(Zr,

O) ; Lin and Lin®%= 3 Ti & Zr0, 5 1750°C %5 £ Juts > ™ & hi &
s AR AT A & TEM # 2 3 o-Ti(Zr, 0)» 45k o-Ti & % Mt
atP 45 & & k¥ o v Ti-6Al-4V & Ti-Cr s %® o e j& Fig. 4-4 ¢ >
TR FRRIERFAZ X BDZr ~F o A& e R A o-Ti 7

RS SN FEL EEI S ER EIE R

Fig. 46 5 Ti #(a)l0A/90YZ ~ (b)20A/80YZ ~ (c)30A/70YZ -
(d)40A/60YZ 37 1700°C/2 hr » % B4R EcF s ts » & Mok 1B 1
(BED) © 4 & & & @25 cha § % % Zr0, 3 10A/90YZ ~ 20A/80YZ ~

% 30A/70YZ #7BL% 3 e % 5 TizAl > @ 40A/60YZ % % % TiAl ;
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R 2SS 7 & 20A/80YZ 2 30A/70YZ A 4 > 2 TEM/EDS

L7t % 5 TiZrAl -

" Fig. 4-7(2)10A/90YZ 7 Jefs 1 2 & 847 & W37 » F Bk

Il{tr—gmfﬁ é’;ﬁﬁfﬁﬁl%%i‘pﬁ *,Li—&" g,;}:ﬁg_},;)@’po

BTz MAc4 42 Ot aTi ¥ ehdldcdaliag < & Zro, @ P 7

F R B BACD g0 o

ALO; 5 | £ 44t & 4 (Stoichiometric_ compound) > % 7 3 # % §2

ﬁ:&i%wgg,uﬁigqt ,ﬁﬁ;)ﬁ,_*%tﬁﬂ;{m ,*q% };J(# 4,[3133 , 4@

1=

R 800K » 47 otk e it § LAt it s iR s e

tf i 1400K B > 48 BAS AT (B0 § B gk chdRdc i > 1K

b

- R o 4RTR AT FliE - B B R R AR g2

G4F L £ R4 6 ALK Bddcd Ti R17) & ThALS ® 43955 i

> }:F’FJC:}% E'J [31-33] y 1 ﬁ?‘ %$ ‘l; I’J_ ),4’2‘_ —

b AR R o B

SEM/EDS % 45 % # % = 4 (O : 5 at% ~ Al 30 at% ~ Ti : 61 at% ~

Zr:4 at%) i TizAl; & % 3% 4 5 SEM/EDS 4 #7(0:63 at%~Al: 1 at% -

Ti:2at% ~ Y : 10 at% ~ Zr : 24 at%) 5 ZrO, °

Fig. 4-7(b)(c) > 20A/80YZ ~ 30A/70YZ F fi /s 1 24 & 457 &
B 0 7 b F182 5 it £ B 3 4245 Ravi et al 60 § 4 2109
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b THAL B 2 R > Zr € 2 Ti 2 24 ¥ #3535 Ti,ZrAl - %

4

FE BRI F R L ez d N Zr e Ti g A2 B 3D
TR HHIT NG s Zr0, F B4R T € B Hie ~ TiAL> 24
(TiZr)3AIPY o (2 d SEM/EDS A 47 A F 2 4 (0 : 60 at% ~ Y

12 at% ~ Zr : 28 at%) ~ 2 (0O : 62 at% ~ Y : 11 at% ~ Zr : 27 at%) ¢ &
c-ZrO, ; B H 'y 5 TiAl; @ A d % 5 (TiZr)Al §iEiE— #H F T

i¢ > d TEM/EDS 12 2 SADP 2 %7 »» @ ufE T A 4 4 = TipZrAl -

Fig. 4-7(d)F J& Ay 1 =48 4e7n & BE T @ 3 & 40A/60YZ =
ALO; W ] e F4giF 30.vol% > % TidFicEr 33 ~ R\ Ipdp P
Bz TR RS BILF I 2 ALOE T &F i wld 3
PR R EAT R o {5 Al RS B > TiAl - G
SEM/EDS 4 478 & 3] % & %.Zr0,(0 : 62.at% > Al: 2 at%~Ti: 3 at% ~
Y @11 at% ~ Zr 2 22 at%) ~ % % & TiAl(O : 6 at% ~ Al : 48 at% ~ Ti :
38 at% ~ Zr : 8 at%) > Ti &8 Z RI9TF BE N w FHITEPE- > A
TiAl @ 22 Ti;Al(4cchz 2 1) > ¥ Ti @ ;ﬁ—d MRS PR R R

Fp Ti o A AR R

LR fRASSF V42 F Rk o Fig. 4-8 3 Ti 2 10A/90YZ &

(2)1700°C/2 hr % FeA4cF B » A & MBS+ F(BFI) - 7 12
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Ma Il o A %53 3 B4p 0 Fig. 4-8(b)5d SADP &2 ZrO, % 1
% cubic Gd FEz S¥F #ici: 5.09A 0 zoneaxis : [111] 0 2 4 Fig.
4-8()TEM/EDS %% 4 4554 % % O : 62.01 at% ~ Ti : 12.02 at% - Zr :

2597 at% » WA Y ,0; 0B E ¢ 23 2% T3 DR &7 {

So kg TA_c-ZrO; o

Fig. 4-8 (c).5 ¢ # % ¥E4(SADP)#F T Ti;Al % 5 hexagonal - 3+
Bz Bt lci: a=58T715Ac=4.638 A ¢t a i 0.803 ]
1.633 > #& % & % 2 hep »zoneaxis : [1102] 5 /£, Murray $% ! Ti-Al 4p
®l[Fig. 4-9]% -~ @40 TisAl Fa & & 20-50 at% Al - 4 Fig.
4-8(e)TEM/EDS'spectrum % ® &4 7.8 % 5 Al:32.29at% ~Ti: 61.32
at% ~ Zr : 6.40 at% » k5 & TisAl B3RP e e P re i & fes

F e TihAL & 20m & EAL B3 A Tis o

%ﬂﬁiirﬁégk[ " ZrO, 6§ 2 TiA A F o> BEBE AR Zr &2 O
7% 73T primary o-Ti v 3 = /i & ¥ (metastable):f ¢ {1 0-Ti(Zr,0) 7
A B grangAR T > o-Ti B3 e Zr fo O £33 91 14> TihZiO §
< d £ 17 (cutectoid) F /B4 fr o-Ti @ 47 01 o @ £ AR %5+ Tl
Wh o ABRDRFAeT 18R ZI0, ¢ Ti ¢ 5 > 2 E T ¢ L1

Al F Jigm 252 Ti;Al & TiAlL > $+3 3 R APHRFE > > @ = Zr0, ¥
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L3 ¢ FlE B Aol o FI R EGR a-Zr 47 0

IRy

=
&
=
e
ey
ey
13

4

Fig. 4-11 5 Ti £ 30A/70YZ 5(a)1700°C/2 hr %5 m#h4cF Bis
F sk 1R < BI(BFD) » A 47 B¢ ¥4 4p > Fig. 4-11(b)5 o
SADP # % Ti,ZrAl %4 % hexagonal> 53+ 8 & ¥ #ic: a=5.961 A »
c=4793A> H ¢ a®mi 0804 * 1.633 > gt hep $HR T &
c/a 22 TizAl 25§ £17 » zone axis : [0001] ; ® ¢ (d)TEM/EDS z_#
¥ EE L O 470 at% ~ Al - 2321at% ~ Ti: 40.56 at% ~ Zr - 31.53
at% > i3 wpL R (Ti+ Zr) : Al &2 A #3731 1 & Spring Handbook"*!
4 3 (T Zeg)sAl > 2 Y-ZrO, + Ti €5 o-Zr & & & A7 7 3

% o Zr s~ TAL B T Befe % > 7 ThZrAl o & {50k

‘m\“\

MRS S S ES R IR S S & I & NUIVARE - E

BB 7 4 TZrAl » Fp Sr et 2 % o

4-11(c)5 9 # % ¥E5(SADP)FZ_Ti;Al %15 5 hexagonal» 5 34¥
Bt #ci:a=5793Ac=4639A > H ¢t a @i 0.800 ]3I
& 1.633 » zone axis : [1103] ; %_Ti-Al 4 B] » ¥ & & TisAl Hi% 4
Bl 5 20 - 50 at% Al > 4 Fig. 4-11(¢)TEM/EDS spectrum % Z_& 4 17.%
% 5 01573 at% ~ Al 36.56 at% ~ Ti : 46.88 at% ~ Zr : 10.83 at% -

Al § (AL +Ti) 6] 5 43 at% » & 5% & TiAl BB P o
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Fig. 4-11 Ti £ 30A/70YZ 5.(a)1700°C/2 hr %} it F & F Ik
B LR HE2c < MI(BED > &% 5 ZrOy~ 4 d % 5 ThZrAl ~ @ 5
%3R4 5 Ti Al ¥ LR T TiZrAl & TR ¥F Ti;Al £ ZrO, ; Fig.
4-11(b) - ()& %] = Ti ~Y ~ O~ Al ~ Zr =~ % 2. X-ray mapping > ~ %
Y LS A B(a)R R A m TiFEACEr F A [ 2 ABLEET 4w
TEARBRZRI Al A Z N AR EE AH IR VL REFLR
R ZrWELA R AR R ® BE RSV RRICE i

Mapping %% & EDSAF# & > ¥ d Zr en~ R EELEPIET § § 1t 4F

R ARF R TR AEERF BTG LEF

44 ALO;HHWAF BA T
441 F Bk I

Fig. 4-12 Ti ¥ (2)10A/90YZ ~ (b)20A/80YZ -~ (c)30A/70YZ ~ (d)
40A/60Y ‘5 1700°C/2 hr 3 mamicr e » & Bk 11 2 ARG 1R
(BEI) © Fig 4-12(a)3 ¥ 10A/90YZ ¥ BL 3| % % & ZrO, ; % F 15 3%
A5 TIALY o d B ALZr 55 RA5% 0 & ¢ 25 A TIAL % 5 @ &
BRI s YAG R e g olF o de s dR - F R
frie s iR A A ) 0 £ 4 2 Y-AL-O compounds(YAG, YAP, YAM
) PARFT UEPIDN G EER S K B 0 o AETH
F & > 10A/90YZ 3 5 p 9 Y-Al-O compounds #2 > & 7 B & F eh 5
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Y203\:'(_7; ¢ Tk ET7,—.1~ YAP(YAIO3) M B /é] W \?KA'\ 3l T‘P\YAG °

Fig 4-12(b):#& & 20A/80YZ #TELZ T e4p » 2 % (7 £_Z10, 5 |
WA R AR A A u L TIAL s ALZr > ALZr 3557 k2t 10A/90YZ
B ’“ﬁ‘f?'bgﬁ"'gﬁ%ﬂ » R ’?‘1 |5 AR50 @@ %R R A

YAG > 12 2 ¥ YAG } 7 & &7 Y-Al-O compounds °

Fig 4-12(c):# & 30A/70YZ #rps i) enjp o —ﬂ: R i S R NT
B F i B YAG B g2 7 5 LR BRI A 4 2 TR gt s
@ Y-Al-O compounds b=z T o AELER | R A (] iBrsrerpt b o
Fig 4-12(d) 5 3= % 40A/60YZ F Js & ML » #1225 ent % 5 Z10, 0 %
Wi G4 B F o TIALIASEE S £ 5 B % ®38 4 5 YAG
F R YAG > » TI.%{Y-AI—O compounds i 40A/60YZ = &= T > —F:] il

e o H e o

2 Fig. 4-13(a) 3 10A/90YZ F Jo ks 11 # & 8457 L WA 7 » %
Ti fhdcie » 5 Bk I pF o SEFF 487 enF SEF B0 B T
ALO; Z AWt EF > § 7 3 3 pRU4cTE* pF o "g2 €5 2 BAER
SRR A AR R S € BR TIRATE ~ gk o d AR

FRAPH S NF A 1 AR %ER 1700CH 7535 @ik G 0 EFE

%

Arrm B A TiAl
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Ao g B fd agrp 1700C 5 % ik 0 F €8 Zt0, A2 F i 0
Leverkoehne ef al.ty 11P% > # i § it 4pr § R % > 4o » £/
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40A/60YZ 5 1700°C/2 hr 3 pe 4k 47 Mets » 18 3 Rl 2 MBS - BI(BEI) -
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Table 1 & 483X h 42 5x 48 Bl B

EY: BE FE 48 AR, 3 Hfa R Yo sk gt gk | 4G 4
! ) > & i | R T E XRD phase
2 A5 (vol%) (mol% ) " m P
| L1oamoyz|  10%A105+90% | 10%AL0sH5% Y205 | | soiecum | 0800 o
(30%Y203+70%Z103 ) +75%Z10; e /0 c-ngxljou
> Laonssoyz|  20%ALO0s80% | 19%ALOs14%Y205 || oo | o o O
(30%Y203+70%Zr0; ) +67%Z10; f 070 C-YszAlen
3 lsoarovz | 30%AROsH70% [ 20%ALOSH12%Y205 || sooociane | 96.79% O
(30%Y203+70%Z10; ) +59%Z10; T Y ALOn
4 |aoasoyz|  40%ALO0s60% | 40%ALOS+H10%Y205 | sooeciane| 97004 O
(30%Y203+70%ZrO> ) +50%Z1O2 70 C_Y32153012
5| YAG | 49%ALOs+51%Y205 [62.5%A105+37.5%Y203|  none 99.8% | c-Y3AlsOn
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Table 2 £&1700°C/2 hr#E R 1% » &@RX R M @RIELE R

YAG 10A/90YZ 20A/80YZ 30A/70YZ 40A/60YZ
Ti Ti Ti Ti
o fm | b o |m | o lm o m ||
side side side side

o-Ti(ALO) | e X X X ° X X X ° X X X ° X X X ° X X

TizAl X ° ° ° ° ° X X ° . X X ° ° X X X X X

TiAl X X X X X X ° X X X ° X X X X X X . °

TixZrAl X X X X X X X X X ° X X X ° X X X X X

ZrO; X X X X X ° ° ° X ° ° ° X ° ° ° X ° °

Y3Als012 X X X ° X X ° ° X X ° ° X X ° ° X X °

YAIO; X X X X X X ° ° X X ° ° X X ° ° X X X

Y203 ° ° X X X X ° ° X X ° ° X X ° ° X X X
Y3Als012

(worm-like) X X X X X X X X X X X X X X ° X X X X

AlsZr

(worm-like) X X X X X X X ° X X ° . X X ° ° X X X

AlsZr X X X X X X ° X X X ° X X X ° X X X X

Y5Al13012 X X ° X X X X X X X X X X X X X X X X

e, observed ; X, none
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[From Structure and Properties of Engineering Material AMEd.,
by R.Brick, A. W. Pense and R. B. Gordon Copyright.1997 By
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Used with the permission of McGraw-Hill Book Company]
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1450°C

100

ZFOZ YZOB

Fig. 3-1 System ZrO;-Y203-Al203 at 1450°C. C = cubic ZrO; solid solution; Y =
Y203; A= ADLO3; YAG =Y3Al5012 (point 5); T = tetragonal ZrO».

[From point 1 to point 4 are 10A/90YZ, 20A/80YZ, 30A/70YZ, and 40A/60YZ
respectively. The line is 30 vol%Al>03 from Gibbs triangle of cubic ZrO2, YAG, and
Al>03.]
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Fig. 4-2 (a)l10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ kIEHLR I, &
thermal etching (1300°C/2 hr) M1 X R Rh 2B &4 0 L A% A1t4e s BA AL
& CAHYAG -
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) & N3 NG e . e - 3" " 30um

Fig. 4-3 Tif (a)10A/90YZ (b)20A/80YZ (¢)30A/70YZ (d)40A/60YZ (¢)YAG + & 1700°C/2hr 4 Ak 3 R FE 7% -
1 & Z PR 4 B (BEI)
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v Interface

‘ |
i

Fig. 4-4 Ti¥110A/90YZ#(a)1700°C/2 hr Jx kR R EZ @ - @ Z MR EHEAKEBED : b)EZEOKFATI~Y ~0~ Al #
Zr 7% Z X-ray mapping
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Fig. 4-6 Ti#Z(a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ #1700°C/2 hr
Vi mh iR AR B4R 0 RE & [ 4508 4 4% B (BE])
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y4{0))

Magnification 0120K 1000 nm

000y
ra

Full scale = 240 counts Cursor: 0.0075 keV Full scale = 1.38 k counts Cursor: 0.0075 keV

Fig. 4-8 10A/90YZ, (a)TEM bright-field image shows TisAl and ZrO; at the

interface after annealing at 1700°C/2 hr, (b) the SADP of ¢-ZrO», (c) the SADP of h-
TizAl, (d) EDX spectrum of ZrOz, O : 62.01 at % ~ Y : 12.02 at % ~ Zr : 25.97 at
%, (e) EDX spectrum of TizAl, Al : 32.29 at% ~ Ti : 61.32at% > Zr : 6.40 at %
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TixZrAl

[0001]

TizAl

Full scale = 6.00 k counts Cursor: -0.0725 keV

2
1 € scale 303 cts Cursor: 0.000 keVi

Fig. 4-10 30A/70YZ, (a) TEM bright-field image shows TizAl and Ti>2ZrAl at the
reaction layer I after annealing at 1700°C/2 hr, (b) the SADP of Ti2ZrAl, (c) the
SADP of TizAl, (d) EDX spectrum of Ti2ZrAl » O : 4.70 at % ~ Al : 23.21 at % »
Ti : 40.56 at % ~ Zr : 31.53 at %, (e) EDX spectrum of TizAl » O : 5.73 at % ~ Al :
36.56 at % ~ Ti : 46.88 at % ~ Zr : 10.83 at %
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Fig. 4-11 Ti#230A/70YZ%&1700°C/2 hrks @k 4k # R e 1% (a) R JE & 12 B & B (BED) s O)EORAATI~Y ~ O ~ Al¥Zr
7% % X-ray mapping
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Fig. 4-12 Ti#2(a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ #&1700°C/2
hr Y& ek 3R I R IEA%  ROE & T 4% #4545 B (BEI)

66



II 11

Ti + AlLO3 VAG YAP
Ti + AlLOs3 + ZrOs cooling
Y-Al-O compounds “ Y205 \‘ l #0
C-ZI‘OQ «— A13ZI'
TiAl
. O Al<Zr
Ti
11 11
Y203 YAP
Ti + ALO3 a
Ti + AlL,Os + ZrO» cooling 2
oomnes | vAG
Y-Al-O compounds V W <zo
c-Zr0O; .b ALZf
‘\TiAl
- (0] Al<Zr
Ti
11 II
Ti + ALOs 1\ ° »
heating Ti + AlLOs + ZrO» cooling AlZr '
Y-Al-O compounds v m& ' 710,
o c-Z1rOs *YAG ¥
- (0] Al<Zr
Ti
1I II
N YAG [ [ ZrOy :
| , :
heati Ti + AlLO3 y | ' “\/ o
(d) =28 Y-AL-O compounds =0ome ) W) v ~ Y drian
c-Zr0> e s
ALO3 \ 2 ‘7 J

Al

0O
. A\
T
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Fig. 4-14 Tif210A/90YZ£&1700°C/2 hriz k¥ #L R FE 1% (a) R E B I F MR & B (BED) » O ZOKRAFATi~Y ~ O ~ Al
Zr 7% Z X-ray mapping
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Fig. 4-15 Ti#Z(a)10A/90YZ (b)20A/80YZ (c)30A/70YZ #&1700°C/2 hr }& @3 EL K
JEt% > REJE I 8 4 # Bl (BE])
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Fig. 4-17 Ti#Z(a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ #&1700°C/2
hr 15 @k HLR B4R 8 R A8 X AR 45 45 Bl (BED
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v Interface

Fig. 4-18 Tif1 YAG#1700°C/2 hr)% @ #& 35 R e 1% () & R AR S A& B (BEI) 5 ZOKRAATi~Y ~ OLAILE X
X-ray mapping
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Fig. 4-19 Ti#1YAG#1700°C/2 hr #5 @k R &L > () RIERT (b)RIERI ()R
JERR I (d)R & IV Z 4R 4 4% B (BEI)
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Fig. 4-20 Ti¥LYAGZ&1700°C/2 hrix gtdE 2 T /4 - i
7N ks o N m" = & VA =
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