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Fig. 8. Input-output  characteristic. 

Fig. 9. Input-output  characteristic. 

Rotation 
Due  to  the  rotation  property  of  the  two-dimensional  Fourier 

transform  rotation  of f ( x ,  y )  through  an  angle & also  rotates  the 
spectrum by the  same  amount. It is  also  well  known  that  the  Fourier 
spectrum  (modulus) is invariant to  translation. 

Now, suppose  that  we  scan  the Fourier  spectrum IF,( along  a 
circle  centered  at  the  origin. If circular  sampling of 1 F,I * is used, 
then by taking  the Fourier  transform  of  these  samples,  extracting  the 
Fourier  phase,  and  subtracting  this  phase  from  the  reference  phase, 
the  rotation  angle q50 can  be  obtained.  In  general,  few  circles  may  be 
required to obtain  unique  and  accurate  value for  the  rotation  angle. 
The  number  of  circles  can  be  minimized if the  radius  and  the 
corresponding  samples  are  properly  selected.  The  method  can  be 
summarized  as  follows. 

Step I :  For each  specific  choice of radius pi,  extract K proper 
samples  over the  circle  centered  at  the  origin  with  radius pi, where 

p , = ( U * + U 2 ) ” 2 .  

Each  sample is identified by the  radius  and its angle q5,, where 
V 

+J = arctan ; . 
This  gives 

F:(j)=/FsCoi, dJ)l2? j = 1 ,  2 ,  ‘ 1 . )  k.  

Step 2: The  phase method  can be used to  determine  the  rotation 
angle 40. By taking  the Fourier  transform of the  sequence 

F f ( j ) ,  j = 1 ,  2, . . * ,  k 

for  each  circle. The  corresponding  phase Oqi can be  extracted. 

phases,  the  rotation  angle do can be  determined. 
Step 3: By comparing  (subtracting)  the  incoming  and  the  reference 

This  approach  has  a  potential  of  being  useful  in  several  important 
ways: 1) only  a  few  circles  may be  required  to  obtain  an  accurate 
value for the  rotation  angle; 2) the  same concept  can be extended to 
take  into  account  the  dilation  and  identification  problem;  and 3 )  it is 
clear  that  the  method is computationally  simple  and  inexpensive. 

IV. CONCLUSION 

An attempt  has  been  made  to  treat  an  image  processor,  which is 
used to  locate  an  object,  as  a  transducer.  This  includes  a  situation 
where  the  object is in  motion or stationary  object  with  moving 
camera. 

A Fourier-phase  method  has  been  described.  This  method  continu- 
ously  and  automatically  produces  signals  related to  the  control,  which 
are  a function  of  the  incoming  image  position  with  respect to the 
reference  image  position.  The  idea  of  the  input-output  characteristic 
is  applicable to two-dimensional  translation,  rotation, and dilation. 

Using  projection  yields  one-dimensional  characteristics  with  simi- 
lar  forms  (almost)  to  accomodate  motions  in  two-dimensional  scenes. 
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Abstract-A multi-microprocessor-based  structure for controlling  the 
manipulator motion in Cartesian  space is presented.  The  objective is to 
investigate  the feasibility of implementing  hand-based control  laws using 
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present day microprocessors. Computational complexity  analysis  indi- 
cates that  the  control schemes  involving full inverse-kinematics and 
inverse-dynamics computations can be  realized  using the proposed 
control  structure. 

I. INTRODUCTION 
The motion  control  of  mechanical  manipulators  in  Cartesian  space 

(or task-oriented  space)  has  been  a  subject  of  intensive  research  in 
recent  years.  The  needs  for  controlling  manipulator  motion  in 
Cartesian  coordinates  can be found  in  various  manufacturing  tasks 
such  as  conveyor-belt  tracking,  arc  welding,  spray  painting,  assem- 
bly,  and  many  others.  These  tasks  are  carried  out by precisely 
controlling  the  linear  and  angular  position,  velocity,  and/or  accelera- 
tion  of  the  hand  of  a  manipulator  along  a  preplanned  path  in  Cartesian 
space.  Many  schemes  have  been  proposed for  controlling  the 
manipulator  motion  in  Cartesian  space [ 11-[5]. To  achieve  the  control 
of  a  desired  path  along  which  the  hand  of  a  manipulator  travels, 
feedback  control  loops at  either  the  joint  or hand  level  are  required.  In 
either  case  the  real-time  transformation  of  a  Cartesian  trajectory  into 
the  corresponding  joint  trajectories,  the so called  inverse-kinematics 
problem [6] is needed.  Once the inverse-kinematics  computation  is 
completed,  the  next  issue  is  the  on-line  computation  of  control 
algorithms at the  joint  level.  One  of  the  more sophisticated 
approaches  to  joint-coordinate  control  is  the  “inverse  problem” or 
“computed  torque”  technique [5], [7]. The method  takes  into 
account  the  nonlinear  interaction  effects  among  the  joints.  Assuming 
that there  are no  modeling errors,  the resultant  control  action  will 
lead to  asymptotic  zero  tracking  errors  for all joints.  Although  the 
efficient  Newton-Euler  algorithm [SI for  computing  the  inverse 
dynamics  has  been  proposed  for  sometime,  a  great  amount  of  on-line 
computation  is  still  needed  during  the  motion.  The  combined  inverse- 
kinematics  and  inverse-dynamics  computational  costs are so prohibi- 
tive  that  neither the computed-torque  method  nor  its  variants [3]-[5] 
have  been  successfully  implemented on  general-purpose  six-degree- 
of-freedom  manipulators  using  present-day  microprocessors. 

Recently,  several  efficient  algorithms [9]-[l l] concerning  the 
computation  of  either  the  inverse-kinematics or inverse-dynamics  of 
the  manipulator  have  been  proposed. The  algorithms utilize the fact 
that  most  industrial  manipulators  have  relatively  simple  geometric 
structures  and  have  only  a  few  practical  configurations.  For  general- 
purpose  manipulators  with  six  degrees-of-freedom,  the  first-three- 
link  models  are usually  the  Puma or the  Standford  manipulator  type; 
the  last-three-link  models (i.e.,  the wrists) are usually  designed to be 
spherical-i.e.,  each  wrist  with three intersecting  axes  of  rotation. 
Featherstone [9] first  took  the  advantage  of  the  spherical-wrist 
configuration  and  proposed  an  efficient  method  for  computing  the 
inverse  kinematic  positions  and  velocities  of  the  manipulator. 
Hollerbach  and  Sahar [IO] extended  Featherstone’s  results to  include 
the  computation  of  the  inverse  kinematic  accelerations  of  the 
manipulator.  The  algorithms  allow  one  to  compute  the  complete 
inverse  kinematic  positions,  velocities,  and  accelerations of the 
manipulator.  The  efficiency  for  computing  the  inverse  dynamics  of 
the  manipulator  has  recently  been  improved by a  technique  proposed 
by Horak [l I]. His  scheme  simplifies  the  inverse-dynamics  computa- 
tion by symbolic  manipulation.  When  implemented  on  a  single 
microprocessor,  Horak’s  scheme  is  about  five  times  faster  than  the 
Newton-Euler  algorithms. 

The  efficient  algorithms  proposed  by  Featherstone,  Hollerbach- 
Sahar, and Horak  spur  our  interest  in investigating  the  feasibility  of 
designing  hand-based  control laws that  involve full inverse-kine- 
matics  and  inverse-dynamics  computations.  Furthermore,  the  control 
laws  are  aimed  at implementing on present  day  microprocessors. 
Specifically,  the  six-degree-of-freedom  Stanford  manipulator [6], [7] 
is chosen  for  the  study.  Though  the  major  results  presented  in  this 

paper  will  be  limited  to  the  Stanford  manipulator,  the  approach  is 
general  enough  to be applicable  to  other  general-purpose six-axis 
industrial  manipulators  with  spherical  wrists. 

11. INVERSE KINEMATICS 

In  applying  Featherstone  and  Hollerbach-Sahar’s  methods,  it  is 
necessary to  solve  the  inverse  kinematic  positions,  velocities,  and 
accelerations  of the  Stanford  manipulator  in  a  consecutive  manner. 
For each  of the  inverse  kinematic  computation,  four  steps are 
executed  that  systematically  compute the  joint  positions,  velocities, 
or  accelerations.  Since  the  detailed  procedures  for  formulating  the 
inverse  kinematic  equations  of  six-axis  manipulators  with  spherical 
wrists  have  been  well  documented  in [9] ,  [lo],  the  equations  for  the 
Stanford  manipulator  will  not  be  repeated  here.  Instead,  the 
computational  complexity  of  the  derived  scheme  is  evaluated  and  is 
tabulated  in Table I. This  is  obtained by counting  the  number  of 
required  mathematical  multiplication  and  addition  operations.  Table I 
clearly  indicates  the  efficiency  of  the  scheme  as  compared  with  the 
conventional  inverse-kinematics  computations  that  involve  comput- 
ing  the  Jacobian  matrix for  the  manipulator. 

111. INVERSE DYNAMICS 

The  Lagrange-Euler  equations  of  motion  for  the  Stanford  manipu- 
lator,  excluding  the  actuator  dynamics,  gear  friction  and  backlash, 
and  external  loading  effect,  can  be  expressed  as [7] 

D(qM+ C(q,  4 )  + G ( q )  = 7 (1) 

where D(q) is  the 6 X 6 symmetric  nonsingular  moment  of  inertia 
matrix; C(q, q )  is  the 6 X 1 vector  specifying  centrifugal  and 
Coriolis  effects; G(q) is the 6 X 1 vector  specifying the gravity 
effects; 7 is  the 6 X 1 vector  of  input  generalized  forces;  and q 
represents 6 X 1 joint position  vector. The inverse-dynamics 
problem  is  to  compute  the input  generalized  forces  required  for 
producing  the  given joint  positions,  velocities,  and  accelerations. 

Hollerbach [12] showed  that  the  most  efficient  inverse  dynamic 
computational  scheme  was  the  recursive  Newton-Euler  algorithm. 
The Newton-Euler  algorithm  is  a  general  formulation  and can handle 
manipulators  with  any  number  of  links  and  any  configuration. 
However, by taking  into  account  the  practical  configurations  of 
present  day  industrial  manipulators,  especially  those  with  spherical 
wrists,  Horak [ll] proposed  a  scheme  that  partitions  the  inverse- 
dynamics  computation  into  two  parts:  the  first  part  computes  the 
inverse  dynamics  of  the  first  three  links  using  the  Lagrange-Euler 
equations  expressed  in  symbolic  form  and  the  second  part  computes 
the  inverse  dynamics  of  the  wrist  (i.e.,  the last three links)  using the 
Newton-Euler  algorithm,  also  in  symbolic  form.  The  resultant 
generalized forces  are  the  combination of  the two. Application  of 
Horak’s  scheme  to  computing  inverse  dynamics  of  the  Stanford 
manipulator is summarized  as  follows. 

Step I: Compute  the  (partial)  input  generalized  forces  of the first 
three  links,  which  are  denoted  by 7{, 71, and T;, respectively. By 
setting 4i, c j i ,  and 4i for i = 4, 5 ,  6, equal. to zero  and  expanding (I) ,  
r ; ,  71, and 7; can  be  computed. 

Step 2: Find  the  linear  and  angular  velocities  of  the  third  link  in its 
own  coordinates. 

Step 3: Compute  the  input  generalized  forces, (r4, r5, r6) for  links 
4, 5 ,  and 6. The  computation  utilizes  the  results of Step  2.  The  force 
and  the  torque  that  the  second  part  of  the  manipulator  applies  on  link 
3 can also be computed. 

Step 4: Add the  contributions  due  to the force and  the  torque  that 
the  second  part  of  the  manipulator  applies  on  link 3 to 71 for i = 1,2,  
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TABLE 1 
COMPUTATIONAL  COMPLEXITY OF THE  INVERSE  KINEMATICS 

_ _ _ _ ~ _ ~ _ _ _  __-_ .. ~ 

Inverse-Kinematics  Computations Multiplications Additions 
__ - .- - __ 

Inverse-Kinematic  Positions 58 36 
Inverse-Kinematic Velocities 37 28 
Inverse-Kinematic  Accelerations 56 47 

Total  151  111 
- ~ ______ 

3. The  results are the  input  generalized  forces T ~ ,  T ~ ,  and -r3 of  the  first 
three  links. 

The  computational  complexity  of  this  scheme,  when  imple- 
mented on  the  Stanford  manipulator, is summarized  in  Table 11. The 
major  factor  that  contributes to the  overall  computational  efficiency 
of  Horak’s  scheme is the  use of closed  form  solutions  in  symbolic 
form that  reduces the  number of required  arithmetic  operations. As 
the  symbolic  manipulation  languages  such  as  MACSYMA are 
becoming  available,  the  work  of  expressing  part of the  Lagrange- 
Euler or Newton-Euler  equations  in  symbolic  form  will be  simple. 
The  total  number  of  mathematical  operations for the  Stanford 
manipulator  listed  in  Table I1 is less  than  the  one  given  in [ I  11, which 
requires  361  multiplications  and  256  additions.  This  further  reduction 
results from the  fact  that  the  link  inertias for  the  Stanford  manipulator 
contain  the  axial  moments  of  inertia  only,  while  the  off-diagonal 
cross  products  of  inertia  are  all  set  equal  to  zero [6], [7]. 

As seen from the  description  of  Horak’s  scheme,  Step 1 and  Steps 
2 and  3 are independent  of  each  other  and  can  be  executed  in  parallel 
using  two  microprocessors.  The  computation  of  Step 4 is executed by 
either  microprocessor.  The  advantage  of  this  approach is that  no 
special  scheduling  algorithms are  required.  The  computational 
efficiency of Horak’s  scheme  for  the  Stanford  manipulator is in  part 
due  to  the  prismatic  structure  of  the  third  link.  When  implemented  on 
a  rotary  manipulatory,  such  as  the  Puma,  the  scheme  becomes  less 
efficient  and  requires  between  500 to  450  arithmetic  operations [ 1 11. 

IV. CONTROL LAW FORMULATIOKS 

The problem  of  controlling  manipulator  motion  in  Cartesian  space 
can  be  viewed  as  a  tracking  problem,  where  the  control  law is 
designed  to  drive  the  hand of the  manipulator to track  a  desired 
Cartesian  trajectory.  The  trajectory  specifies  the  hand  positions  (and 
orientations),  velocities, and accelerations.  Since  the  actual  motion 
control of the  manipulator is done  at  the  joint  level,  feedback  control 
loops at either  the  joint or hand  level are  required. In  either  case,  a 
hand-based  control  law  must  execute  fairly  complicated  inverse 
kinematic  and  dynamic  algorithms in real  time. In fact  most of the 
hand-based  control  laws  proposed up to  now  must  rely  on  large  mini- 
computers  to  meet  the  performance  requirement  of  the  manipulator. 
The  key  objective  in  this  paper is to  demonstrate  that, by using  the 
multi-microprocessor  approach,  some of the  existing  hand-based 
control  laws  can  be  implemented  using  present-day  microprocessors. 

Specifically,  three  existing  control  methods  that  employ full 
inverse  kinematic  and  dynamic  computations are developed.  The 
methods  include  the  computed  torque  technique [5], the  resolved- 
acceleration  control [3], and  an  adaptive  control  strategy  [13]. 
Among  the  three  proposed,  the  first  and  the  third  control  laws  have 
feedback  loops at the  joint  level,  the  second  closes  the  feedback  loop 
around  the  hand. The efficient  algorithms  discussed  in  Sections I1 and 
111 are applied to implementing  these  control  laws. A summary of the 
proposed  control  methods  is  given  as  follows. 

TABLE I1 
COMPUTATIONAL  COMPLEXITY OF THE  INVERSE  DYNAMICS 

~ ~ _ _ _ ~ ~ ~ ~  -. 
~ . 

Step  Multiplications  Additions 

1  39 26 
2  14  11 
3  121  103 
4  14  19 

Total  188  159 

A .  Computed Torque Technique 

In  the  computed  torque  technique,  the  required  input  generalized 
force  vector T is computed from 

T = a ( q ) i i : +  Cc(q, 4 )  + G c ( q )  (2) 

9 2  = i id+Kv(9d-4)+Kp(qd-q); (3) 

4, 4 measured  joint  position  and  velocity  vectors; 

where 

q d ,  Cj,, g d  desired  joint  position,  velocity, and acceleration 

K, , Kp gain  matrices; 
vectors; 

and Dc(q), Cc(q, d ) ,  and G,(q) are the  computed  counterparts of 
D(q), C(q,  q ) ,  and G(q). If  the  computed  elements are exactly  equal 
to their  actual  counterparts  (Le.,  exact  manipulator  model),  then 
substituting (2)-(3) into (1) yields 

~ ( 4 ) { 4 d - i i + K , [ 4 b - 4 ] + K p [ q d - 4 1 ) = o .  (4) 

Let e, = qd - q be  the  joint  position  error  vector.  Since  the  inertia 
matrix D(q) is nonsingular, (4) becomes 

eq + Kueq i- K,e, = 0. (5) 

By properly  selecting K, and K p ,  e4 approaches  zero  asymptotically. 
A hand-based  control  law  based  on  the  computed  torque  technique 

can  be  realized for  the  Stanford  manipulator  using  the  inverse- 
kinematics  and  inverse-dynamics  computational  schemes  discussed 
previously.  The  realization is formulated by a  multi-microprocessor 
structure  in  which  the  first  microprocessor  computes  the  inverse- 
kinematics  scheme  and  the  second  and  third  microprocessors 
compute  the  inverse-dynamics  scheme.  Computational  complexity of 
the  proposed  approach is summarized  in  Table 111. 

B. Resolved-Acceleration Control 

The  resolved-acceleration  control  closes  the  feedback  loop  around 
the  hand.  Let pd(t) ,  j d ( t ) ,  and j d ( t )  be the 3 X 1 desired  position, 
velocity,  and  acceleration  vectors of the hand  in base  coordinates, 
respectively.  Using  the  measured  joint  positions,  the  actual  rotation 
matrix Ah and  position  vector P h  of the  hand  can  be  computed.  Define 
further Ah A [nh, sh, a h ] ,  where nh, sh and are  3 X 1 column 
vectors  of A h .  Assume  that  the  desired  rotation  matrix of the hand is 
denoted by Ad 6 [nd, sd,  ad],  where n d ,  sd,  and ad are all 3 X 1 
column  vectors  of A d .  Let ~ d ( t )  and ojd(t) be  the  desired 3 X 1 
angular  velocity  and  angular  acceleration  vectors  of  the  hand in base 
coordinates.  Then  the  linear  feedback  control is given by 

~ . , * ( t ) = j d ( t ) + k l [ P d ( t ) - d h ( t ) l + k Z [ p d ( t ) - P h ( t ) l  (6) 

and  the  angular  feedback  control is given by 

; . , * ( t ) = c j , ( t ) + k , [ ~ ~ ( t ) - ~ ~ ( t ) l + k ~ e ~ ( t )  (7) 
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TABLE  I11 
COMPUTATIONAL  COMPLEXITY OF THE COMPUTED  TORQUE  TECHNIQUE 

__ 

Microprocessor  Functions  Multiplications  Additions 

1 Inverse-kinematics  computations:  Table  I 151 111  
2 Inverse-dynamics  computations:  Table II, Steps 1 and 4, and (3) 59 57 

3 Inverse-dynamic  computations:  Table  111,  Steps 2 and 3, and (3)  141 126 
(Joints: 1, 2, 3) 

(Joints: 4,  5 ,  6) 

TABLE IV 
COMPUTATIONAL COMPLEXITY OF THE RESOLVED-ACCELERATION CONTROL 

_______ 

Microprocessor  Functions  Multiplications  Additions 

1 Resolved-acceleration:  joint-to-hand  transformation, (6)-(8), 174 154 

2 Inverse-dynamics  computations:  Table  I1  and  Steps 1 and 4, 53  45 
Table I, and  inverse  kinematic  acceleration for computing (9) 

(Joints: 1, 2, 3) 
3 Inverse-dynamics  computations:  Table  I1  and  Steps 2 and 3  135  114 

(Joints:. 4, 5 ,  6) ~ 

where kl and kz are  scalar  gain  constants, (4 is the actual  angular 
velocity  of the hand  in  base  coordinates,  and the  orientation  error eo is 
determined  as 

where J(q) is the  Jacobian  matrix.  The  input  generalized  forces  for 
the  Stanford  manipulator  are  computed  using (2). 

Applying  the  multi-microprocessor-based  approach,  the  computa- 
tional  complexity  of  the  resolved-acceleration  control  is  tabulated  in 
Table  IV.  The  most time-saving  part  in the computation  is  the 
application  of  Hollerbach  and  Sahar’s  inverse  kinematic  acceleration 
scheme  for  computing (9). 

C.  Adaptive  Control 

Recently  various  adaptive  control  techniques [13]-[16] have  been 
proposed.  For the purpose  of  comparison,  an  adaptive  control 
strategy  presented  in  [13]  is  summarized as follows. The  control 
algorithm  consists  of  two  parts:  a  feedforward  nominal  control 
component  and  a  variational  control  component  computed  via  self- 
tuning  adaptive  joint  controllers.  The  control  structure  is  similar  to 
the  one  proposed  in [16]. Let 7, be  the  6 X 1 vector  with  entries rni 
for i = 1, . . * , 6  representing  the  nominal  control  component. It is 
computed by feeding  the  desired joint  trajectories ( q d ,  q d ,  q d )  into  the 
inverse-dynamics  computational  routines.  The  variational  control 
component  is  denoted by a  6 X 1 vector u with  entries ui, for i = 1, 
. . . , 6. It is  assumed that,  for  each  joint, the  nominal  control rni can 
compensate  partially  the  nonlinear  coupling  effects  acting on the 
joint.  The  compensated joint  dynamics  is  regarded  as  linear  in  the 
vicinity of the  desired  trajectories  and,  in  discrete-time,  is  repre- 
sented by a  second-order  autoregressive  moving  average  (ARMA) 
model: 

q;(k)=a~q;(k- l )+azq~(k-2)+b,U;(k- l )+b~u;(k-2)  (10) 

for k z 2, where  the  subscript i denotes  the  ith  joint; q;(k) is  the  ith 
joint  velocity  at  step k; vi@) is  the  variational  control  for  the ith joint 
at step k; and (a l ,  az, bl,  bz) are  unknown  parameters  to  be identified 
using  input-output  data. The  unknown  joint  parameters  are  deter- 
mined by using  the  standard  recursive  least-squares  identification 
routine.  ui(k) is determined  from  an one-step  optimal  performance 
criterion  and  is  given by  [13]: 

u;( k )  = - pi61(k) [ri1(k)4;(k)+ri2(k)Q;(k- 1) 
pi6;(k) + E ;  

+6*(k)q(k-  l ) - q g k +  1)1 (11) 

where pi  and E ;  are  the  scalar  constants; dl(k),  &(k), &(k)  and &(k) 
are  the  estimated  parameters; 

qi(k)=ri,(k)g,(k- l )+&(k)q i (k-2)  

+61(k)u;(k-l)+b^z(k)u;(k-2) 

and 

dZi(k+ l)=&;(k+ l)+(Yi[Qdi(k-- l ) - q ; ( k -  l)] 

+ P ; [ q d i ( k -  l ) -q i (k-  1)1 

with a; and Pi representing  the  velocity  and  position  regulation 
constants,  respectively. 

The  computational  complexity  of  the  proposed  adaptive  control 
strategy, if realized by multi-microprocessors,  is  tabulated  in  Table 
V. 

V. MICROPROCESSOR IMPLEMENTATION 

In  order to evaluate  the  feasibility  of  implementing  the  three  hand- 
based  control  laws  using  present-day  microprocessors,  a  computing 
time  comparison  of  the  control  laws  based  on  three  microprocessors 
is  conducted.  The  specifications  of  the  microprocessors  are  summa- 
rized  in  Table VI.  It is assumed  that  all  the  computations are  carried 
out  using  floating-point  arithmetic.  The  Intel  80287  serves  as  a 
floating-point  coprocessor to the  16-bit  80286. The  MC  68881  also 
functions  as  a  coprocessor  and  is  designed  specifically to operate  with 
the  32-bit  MC68020. It can  also  be  used  as  a  memory-map  peripheral 
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TABLE  V 
COMPUTATIONAL  COMPLEXITY OF THE  ADAPTIVE  CONTROL  STRATEGY 

Microprocessor  Functions  Multiplications  Additions 

1 Inverse-kinematics  computations:  Table I 151  111 
2  Inverse-dynamics  computations:  Table  I1  and  Steps 1 and 4, 53 45 

3  Inverse-dynamics  computations:  Table  I1  and  Steps  2  and 3 135  114 
(Joints: 1,  2, 3) 

(Joints: 4,  5, 6) 
Joint  Microprocessor 
Controller  (adaptive  Parameter  identification (RLS routine)  and  control  law 81 58 
control only) computation  (1 1) 

TABLE  VI 
SPECIFICATIONS  OF  THE  MICROPROCESSORS 

Multiplication  Addition 
(Single  (32-bit)  (Single  (32-bit) 

Microprocessor  Precision)  Precision) 

Intel  80286180287 
(8-MHz  Clock) 11.8 p s  8.75 ps 

Motorola 
MC680001MC68881 
(12.5-MHz  Clock) 7.9 ps' 7.6 ps' 

Motorola 
MC680201MC68881 
(12.5-MHz  Clock) 3.1 ps 2.8 ps 

I Estimated  value. 

TABLE  VI1 
MULTI-MICROPROCESSOR-BASED  EXECUTION  TIME  COMPARISON 

. _ _ _ _ _ _ _ _ _ ~  _____..-__._~. ____ ____ 
_ _ _ _ _ ~ _ ~ . . _ _ _ _  . ~ _ _ _ ~ _ _ _ _ _ _  

~-_____~ 

Control  Law 

Computed  Torque  Resolved-Acceleration  Adaptive  Control 

Intel  Motorola  Motorola  Intel  Motorola  Motorola  Intel 
802861  MC680001  MC680201  802861  MC680001  MC680201  802861  MC680001  MC680201 

Motorola  Motorola 

80287  MC68881  MC68881  80287  MC68881  MC68881  80287  MC68881  MC68881 
Microprocessor (8 MHz)  (12.5  MHz) (12.5 MHz) (8 MHz)  (12.5  MHz)  (12.5  MHz) (8 MHz)  (12.5  MHz)  (12.5  MHz) 

~~ ~~~ 

1 2.8 ms 2.04 ms 0.8 ms 3.4  ms 2.55 ms 0.97 ms 2.8  ms 2.01  ms 0.8 ms 
2  1.2 ms 0.9 ms 0.35 ms 1.02  ms 0.76 ms 0.30 ms 1.02  ms 0.76 ms 0.3 ms 
3 2.8 ms 2.07  ms 0.8 ms 2.6 ms 1.93  ms 0.14 ms 2.6  ms 1.93 ms 0.74 ms 

processor  to  any  M68000  family  processors  such  as  a  16-bit 
MC68000,  but  with  some  performance  degradation. In Table  VI,  the 
execution  times  of  the  MC68000/MC68881 are estimated  values;  it is 
assumed  that, for each  multiplication  and  addition  operation,  two 
memory  fetches are  required.  The  microprocessor execution  times 
for  the  proposed three  control  methods  are  tabulated  in  Table  YII. 

An evaluation of the  execution-time  performance  must  be  based on 
the  selection of sampling  rate  for  the  Stanford  manipulator.  Since  the 
servo  system for the  manipulator is configured  to be a  sampled-data 
type,  the  servo  rate  must  be at least  15  times  the  link  structural 
frequency. In the  case of  the  Stanford  manipulator,  the  sampling  rate 
would be 300 Hz, or a  sampling  period  of 3.3 ms [6,  pp. 211-2121. 
Based  on  the 3.3-111s sampling-period  upperbound,  it  appears  that all 
three  control  methods  can  be  implemented  using  the  microprocessors 
listed  in  Table VI, except  the  number  one  microprocessor for the 
resolved-acceleration  control  that  uses  the  Intel  80286180287.  How- 
ever, execution  times  given  in  Table VI1 do  not  include  other 

floating-point  operations  such  as  sine,  cosine,  arctangent,  division, 
and square  root.  This  additional  execution  time  for  the  number  one 
microprocessor  is  about 0.1 ms  using  MC68020/MC68881  and  0.63 
rns using  MC68000iMC68881,  respectively.  The  Intel  80286/80287 
is expected to  execute  longer.  The  additional  execution  times  for  the 
number  two  and  the  number  three  microprocessors are negligible  as 
compared  with  the  values  given  in  Table YH. Thus  in  order  to 
successfully  implement  the  three  proposed  control  methods  based  on 
the  3.3-ms  criterion,  the  MC680201MC68881  and  MC680001 
MC68881  microprocessors  can  be  selected. 

In  the  above  comparison,  we  have  adopted  the  multiple  micropro- 
cessor-based  structure for implementing  the  control  algorithms.  The 
number one  microprocessor  executes  the  complete  inverse-kine- 
matics  algorithm by receiving  Cartesian  trajectory  commands from a 
host  system.  The  number  two  and  number  three  microprocessors 
execute  the  complete  inverse-dynamics  algorithm by using  the 
desired  and  the  feedback  joint  information.  During  on-line  operation, 
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microprocessor 1 and  microprocessors  2  and 3 can be executed  in 
parallel,  since  Cartesian  trajectory  segments  may  be  computed  one 
step  ahead  of  the current  desired  joint  set  positions,  velocities,  and 
accelerations.  The  multiprocessor  system  is  operated  under  uniform 
sampling  rate.  The  estimated  execution  times  of  the  microprocessors 
given  in  Table VI1 do not  include  overhead  time  such  as  memory 
management for loading  and  storing  data  and  system  management for 
bus  arbitration.  However,  the  proposed  inverse  kinematic  and 
dynamic  algorithms  have  already  been  simplified  symbolically.  They 
are  straightforward flow  algorithms  that  contain  no  subroutines or 
loops.  Thus  Table VI1 gives  reasonable  estimated  execution  times. 

There  are  other  multiprocessor systems  that  have  been  proposed 
for  computing  the  inverse  dynamics  of  manipulators;  they  usually 
require  special  scheduling  routines to achieve  parallel  computation 
[17]-[19].  Microprocessors  2  and 3 in  our  proposed  multiple 
microprocessor-based  structure  can  be  reconfigured  to  adapt  to  these 
parallel  processing  algorithms,  though  further  computational  com- 
plexity  analysis  is  needed  in  order  to  meet  the  sampling  period 
requirement.  Recently,  several  authors  have  also  proposed  parallel  or 
pipeline  algorithms  for  computing  the  inverse  dynamics  and  the 
Jacobian  matrix,  which  are  implementable  using  very  large-scale 
integration  (VLSI)  devices  [20],  [21]. Their  approach  is  quite  general 
and is applicable  to  various  types  of  manipulators.  Still, it would  take 
sometime for  VLSI  robotic  control  chips  to  become commercially 
available. The  approach presented  in  this  paper  can be readily 
implemented for a  class  of  industrial  manipulators  with  spherical 
wrists  using  currently  available  microprocessors. 

One may  note  that  the  total  execution  times  for the three  control 
methods  using  only  one  MC68020/MC68881 are 1.95 ms,  2.01  ms, 
and  1.84  ms,  respectively.  This  indicates that one  Me680201 
MC68881 is fast  enough  to  execute  the  Cartesian-based  control 
algorithms  and  satisfies  the  3.3-ms  sampling  period  requirement.  But 
this  conclusion is only  valid  for  the  Stanford  manipulator  considered 
in  this  paper,  since  the  algorithms  are  symbolically  simplified by 
taking  the  advantages  of the spherical  wrist  and  diagonal  link  inertias 
of  the  manipulator.  The  complexity  for  computing  the  inverse 
dynamics  of  general-purpose  six-axis  manipulators  is  quite  high  [22], 
thus  necessitating  the  use  of  multiprocessing  architecture so as  to 
satisfy  the  sampling  period  requirement.  With  the  rapid  advancement 
of  VLSI  technology, it can  be  expected  that  the  32-bit  microproces- 
sors  are  better  suited  for  robotic  control  applications  when  speed  and 
performance  are  considered.  Though  only  one  32-bit  microprocessor 
is used for  performance  evaluation,  other  32-bit  microprocessors  are 
also  available  for  applications and  their  performance  has  constantly 
being  improved [23]. For  example,  the  recently  announced  16.67- 
MHz MC68020/MC68881 or the  Intel  80386/80387  should  ensure 
the  implementation  of  hand-based  control  laws  with  complete 
inverse-kinematic  and  inverse-dynamic  computations. 

VI.  CONCLUSION 

In  this  paper  the  design  of  Cartesian  space  control  techniques  for  a 
mechanical  manipulator,  the  Stanford  manipulator,  has  been  ‘pre- 
sented.  The key  objective  is to  implement  hand-based  control  laws 
using  present  day  microprocessors. By applying  the  efficient  inverse- 
kinematic  and  inverse-dynamic  computational  algorithms  proposed 
recently,  three  existing  control  methods  are  shown  to  be  implement- 
able using  currently  available  16-bit  and  32-bit  microprocessors. 
Computational  complexity  analysis  of  the  control  laws  indicates  that 
the Cartesian-based  schemes can be executed  within  the  required 
sampling  period. The multi-microprocessor-based  approach  pre- 
sented in this  paper  can  be  applied  to  the  Cartesian  motion  control  of 

a  class  of  six-axis  well-structured  (i.e.,  with  spherical  wrists) 
industrial  manipulators. 

r221 
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