
110 IEEE JOURNAL OF ROBOTlCS AND AUTOMATION, VOL. RA-2, NO. 2, JUNE 1986

Fig. 8. Input-output characteristic.

Fig. 9. Input-output characteristic.

Rotation
Due to the rotation property of the two-dimensional Fourier

transform rotation of f (x , y) through an angle & also rotates the
spectrum by the same amount. It is also well known that the Fourier
spectrum (modulus) is invariant to translation.

Now, suppose that we scan the Fourier spectrum IF,(along a
circle centered at the origin. If circular sampling of 1 F,I * is used,
then by taking the Fourier transform of these samples, extracting the
Fourier phase, and subtracting this phase from the reference phase,
the rotation angle q50 can be obtained. In general, few circles may be
required to obtain unique and accurate value for the rotation angle.
The number of circles can be minimized if the radius and the
corresponding samples are properly selected. The method can be
summarized as follows.

Step I : For each specific choice of radius pi, extract K proper
samples over the circle centered at the origin with radius pi, where

p , = (U * + U 2) ” 2 .

Each sample is identified by the radius and its angle q5,, where
V

+J = arctan ; .
This gives

F:(j)=/FsCoi, dJ)l2? j = 1 , 2 , ‘ 1 .) k.

Step 2: The phase method can be used to determine the rotation
angle 40. By taking the Fourier transform of the sequence

F f (j) , j = 1 , 2, . . * , k

for each circle. The corresponding phase Oqi can be extracted.

phases, the rotation angle do can be determined.
Step 3: By comparing (subtracting) the incoming and the reference

This approach has a potential of being useful in several important
ways: 1) only a few circles may be required to obtain an accurate
value for the rotation angle; 2) the same concept can be extended to
take into account the dilation and identification problem; and 3) it is
clear that the method is computationally simple and inexpensive.

IV. CONCLUSION

An attempt has been made to treat an image processor, which is
used to locate an object, as a transducer. This includes a situation
where the object is in motion or stationary object with moving
camera.

A Fourier-phase method has been described. This method continu-
ously and automatically produces signals related to the control, which
are a function of the incoming image position with respect to the
reference image position. The idea of the input-output characteristic
is applicable to two-dimensional translation, rotation, and dilation.

Using projection yields one-dimensional characteristics with simi-
lar forms (almost) to accomodate motions in two-dimensional scenes.

REFERENCES
[l] R. J. Grommes and C. J. Yi, “Analysis and simulation of a video

tracking svstem,” in Proc. 1974 IEEE Svst., Man, Cvbern. Conf.,
1974, ip.-93-98.

. .

121 A. L. Gilbert. L. Alton. M. K. Giles, G. M. Flachs, R. B. Rogers, and > . ~ u. Y. H. “A real-time video tracking system,” IEEE Trans. Putt.
Anal. Mach. Intell., vol. PAMI-2, pp. 41-56, Jan. 1980.

[3] T. Uno, M. Ejinu, and T. Tokunaga, “A method of real-time
recognition of moving objects and its application,” Putt. Recognition,

[4] C. A. Winsor and F. J. Thomas, “TVAC-A television area
correlation tracking system,” in 25th Annual Southwestern Conf.
Exhibition Record, 1973, pp. 501-504.

[5] R. J. Schalkoff and E. S. McVey, “A model and tracking algorithm for
a class of video targets,” IEEE Trans. Putt. Anal. Mach. Intell., vol.
PA”, pp. 2-10, Jan. 1982.

[6] R. M. Inigo and E. S. McVey, “CCD implementation of a three-
dimensional video tracking algorithm,” IEEE Trans. Putt. Anal.
Mach. Intell., vol. PAMI-3, pp. 230-240, Mar. 1981.

[7] E. S. McVey and W. B. Wooland, “A perturbation method for
obtaining control signals in an image tracking system,” in Proc. 1979
Joint Automatic Control Conf.

[8] M. R. Kabuka and E. S. McVey, “A position sensing method using
images”, in Proc. IEEE Southeastern Sympo. Syst. Theory, 1982.

[9] J. J. Pearson, D. C. Hines, Jr. , S. Golosman, and C. D. Kuglin,
“Video-rate image correlation processor,” SPIE, vol. 119, pp. 197-
205, 1977.

[lo] W. K. Pratt, Digital Image Processing. New York: John Wiley,
1978.

V O ~ . 8, pp. 201-208, 1976.

Multi-Microprocessor-Based Cartesian-Space Control
Techniques for a Mechanical Manipulator

CHANG-HUAN LIU, MEMBER, IEEE, AND YEN-MING CHEN

Abstract-A multi-microprocessor-based structure for controlling the
manipulator motion in Cartesian space is presented. The objective is to
investigate the feasibility of implementing hand-based control laws using

Manuscript revised February 3, 1986.
C.-H. Liu is with the Department of Electrical Engineering and Technol-

Y.-M. Chen is with the Department of Control Engineering, National

IEEE Log Number 8608268.

ogy, National Taiwan Institute of Technology, Taipei, Taiwan.

Chiao-Tung University, Hsin-Tsu, Taiwan.

0882-4967/86/0600-0110$01.00 0 1986 IEEE

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 2, JUNE 1986 111

present day microprocessors. Computational complexity analysis indi-
cates that the control schemes involving full inverse-kinematics and
inverse-dynamics computations can be realized using the proposed
control structure.

I. INTRODUCTION
The motion control of mechanical manipulators in Cartesian space

(or task-oriented space) has been a subject of intensive research in
recent years. The needs for controlling manipulator motion in
Cartesian coordinates can be found in various manufacturing tasks
such as conveyor-belt tracking, arc welding, spray painting, assem-
bly, and many others. These tasks are carried out by precisely
controlling the linear and angular position, velocity, and/or accelera-
tion of the hand of a manipulator along a preplanned path in Cartesian
space. Many schemes have been proposed for controlling the
manipulator motion in Cartesian space [11-[5]. To achieve the control
of a desired path along which the hand of a manipulator travels,
feedback control loops at either the joint or hand level are required. In
either case the real-time transformation of a Cartesian trajectory into
the corresponding joint trajectories, the so called inverse-kinematics
problem [6] is needed. Once the inverse-kinematics computation is
completed, the next issue is the on-line computation of control
algorithms at the joint level. One of the more sophisticated
approaches to joint-coordinate control is the “inverse problem” or
“computed torque” technique [5], [7]. The method takes into
account the nonlinear interaction effects among the joints. Assuming
that there are no modeling errors, the resultant control action will
lead to asymptotic zero tracking errors for all joints. Although the
efficient Newton-Euler algorithm [SI for computing the inverse
dynamics has been proposed for sometime, a great amount of on-line
computation is still needed during the motion. The combined inverse-
kinematics and inverse-dynamics computational costs are so prohibi-
tive that neither the computed-torque method nor its variants [3]-[5]
have been successfully implemented on general-purpose six-degree-
of-freedom manipulators using present-day microprocessors.

Recently, several efficient algorithms [9]-[l l] concerning the
computation of either the inverse-kinematics or inverse-dynamics of
the manipulator have been proposed. The algorithms utilize the fact
that most industrial manipulators have relatively simple geometric
structures and have only a few practical configurations. For general-
purpose manipulators with six degrees-of-freedom, the first-three-
link models are usually the Puma or the Standford manipulator type;
the last-three-link models (i.e., the wrists) are usually designed to be
spherical-i.e., each wrist with three intersecting axes of rotation.
Featherstone [9] first took the advantage of the spherical-wrist
configuration and proposed an efficient method for computing the
inverse kinematic positions and velocities of the manipulator.
Hollerbach and Sahar [IO] extended Featherstone’s results to include
the computation of the inverse kinematic accelerations of the
manipulator. The algorithms allow one to compute the complete
inverse kinematic positions, velocities, and accelerations of the
manipulator. The efficiency for computing the inverse dynamics of
the manipulator has recently been improved by a technique proposed
by Horak [l I]. His scheme simplifies the inverse-dynamics computa-
tion by symbolic manipulation. When implemented on a single
microprocessor, Horak’s scheme is about five times faster than the
Newton-Euler algorithms.

The efficient algorithms proposed by Featherstone, Hollerbach-
Sahar, and Horak spur our interest in investigating the feasibility of
designing hand-based control laws that involve full inverse-kine-
matics and inverse-dynamics computations. Furthermore, the control
laws are aimed at implementing on present day microprocessors.
Specifically, the six-degree-of-freedom Stanford manipulator [6], [7]
is chosen for the study. Though the major results presented in this

paper will be limited to the Stanford manipulator, the approach is
general enough to be applicable to other general-purpose six-axis
industrial manipulators with spherical wrists.

11. INVERSE KINEMATICS

In applying Featherstone and Hollerbach-Sahar’s methods, it is
necessary to solve the inverse kinematic positions, velocities, and
accelerations of the Stanford manipulator in a consecutive manner.
For each of the inverse kinematic computation, four steps are
executed that systematically compute the joint positions, velocities,
or accelerations. Since the detailed procedures for formulating the
inverse kinematic equations of six-axis manipulators with spherical
wrists have been well documented in [9] , [lo], the equations for the
Stanford manipulator will not be repeated here. Instead, the
computational complexity of the derived scheme is evaluated and is
tabulated in Table I. This is obtained by counting the number of
required mathematical multiplication and addition operations. Table I
clearly indicates the efficiency of the scheme as compared with the
conventional inverse-kinematics computations that involve comput-
ing the Jacobian matrix for the manipulator.

111. INVERSE DYNAMICS

The Lagrange-Euler equations of motion for the Stanford manipu-
lator, excluding the actuator dynamics, gear friction and backlash,
and external loading effect, can be expressed as [7]

D(qM+ C(q, 4) + G (q) = 7 (1)

where D(q) is the 6 X 6 symmetric nonsingular moment of inertia
matrix; C(q, q) is the 6 X 1 vector specifying centrifugal and
Coriolis effects; G(q) is the 6 X 1 vector specifying the gravity
effects; 7 is the 6 X 1 vector of input generalized forces; and q
represents 6 X 1 joint position vector. The inverse-dynamics
problem is to compute the input generalized forces required for
producing the given joint positions, velocities, and accelerations.

Hollerbach [12] showed that the most efficient inverse dynamic
computational scheme was the recursive Newton-Euler algorithm.
The Newton-Euler algorithm is a general formulation and can handle
manipulators with any number of links and any configuration.
However, by taking into account the practical configurations of
present day industrial manipulators, especially those with spherical
wrists, Horak [ll] proposed a scheme that partitions the inverse-
dynamics computation into two parts: the first part computes the
inverse dynamics of the first three links using the Lagrange-Euler
equations expressed in symbolic form and the second part computes
the inverse dynamics of the wrist (i.e., the last three links) using the
Newton-Euler algorithm, also in symbolic form. The resultant
generalized forces are the combination of the two. Application of
Horak’s scheme to computing inverse dynamics of the Stanford
manipulator is summarized as follows.

Step I: Compute the (partial) input generalized forces of the first
three links, which are denoted by 7{, 71, and T;, respectively. By
setting 4i, c j i , and 4i for i = 4, 5 , 6, equal. to zero and expanding (I) ,
r ; , 71, and 7; can be computed.

Step 2: Find the linear and angular velocities of the third link in its
own coordinates.

Step 3: Compute the input generalized forces, (r4, r5, r6) for links
4, 5 , and 6. The computation utilizes the results of Step 2. The force
and the torque that the second part of the manipulator applies on link
3 can also be computed.

Step 4: Add the contributions due to the force and the torque that
the second part of the manipulator applies on link 3 to 71 for i = 1,2,

112 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 2, JUNE 1986

TABLE 1
COMPUTATIONAL COMPLEXITY OF THE INVERSE KINEMATICS

_ _ _ _ ~ _ ~ _ _ _ __-_ .. ~

Inverse-Kinematics Computations Multiplications Additions
__ - .- - __

Inverse-Kinematic Positions 58 36
Inverse-Kinematic Velocities 37 28
Inverse-Kinematic Accelerations 56 47

Total 151 111
- ~ ______

3. The results are the input generalized forces T ~ , T ~ , and -r3 of the first
three links.

The computational complexity of this scheme, when imple-
mented on the Stanford manipulator, is summarized in Table 11. The
major factor that contributes to the overall computational efficiency
of Horak’s scheme is the use of closed form solutions in symbolic
form that reduces the number of required arithmetic operations. As
the symbolic manipulation languages such as MACSYMA are
becoming available, the work of expressing part of the Lagrange-
Euler or Newton-Euler equations in symbolic form will be simple.
The total number of mathematical operations for the Stanford
manipulator listed in Table I1 is less than the one given in [I 11, which
requires 361 multiplications and 256 additions. This further reduction
results from the fact that the link inertias for the Stanford manipulator
contain the axial moments of inertia only, while the off-diagonal
cross products of inertia are all set equal to zero [6], [7].

As seen from the description of Horak’s scheme, Step 1 and Steps
2 and 3 are independent of each other and can be executed in parallel
using two microprocessors. The computation of Step 4 is executed by
either microprocessor. The advantage of this approach is that no
special scheduling algorithms are required. The computational
efficiency of Horak’s scheme for the Stanford manipulator is in part
due to the prismatic structure of the third link. When implemented on
a rotary manipulatory, such as the Puma, the scheme becomes less
efficient and requires between 500 to 450 arithmetic operations [1 11.

IV. CONTROL LAW FORMULATIOKS

The problem of controlling manipulator motion in Cartesian space
can be viewed as a tracking problem, where the control law is
designed to drive the hand of the manipulator to track a desired
Cartesian trajectory. The trajectory specifies the hand positions (and
orientations), velocities, and accelerations. Since the actual motion
control of the manipulator is done at the joint level, feedback control
loops at either the joint or hand level are required. In either case, a
hand-based control law must execute fairly complicated inverse
kinematic and dynamic algorithms in real time. In fact most of the
hand-based control laws proposed up to now must rely on large mini-
computers to meet the performance requirement of the manipulator.
The key objective in this paper is to demonstrate that, by using the
multi-microprocessor approach, some of the existing hand-based
control laws can be implemented using present-day microprocessors.

Specifically, three existing control methods that employ full
inverse kinematic and dynamic computations are developed. The
methods include the computed torque technique [5], the resolved-
acceleration control [3], and an adaptive control strategy [13].
Among the three proposed, the first and the third control laws have
feedback loops at the joint level, the second closes the feedback loop
around the hand. The efficient algorithms discussed in Sections I1 and
111 are applied to implementing these control laws. A summary of the
proposed control methods is given as follows.

TABLE I1
COMPUTATIONAL COMPLEXITY OF THE INVERSE DYNAMICS

~ ~ _ _ _ ~ ~ ~ ~ -.
~ .

Step Multiplications Additions

1 39 26
2 14 11
3 121 103
4 14 19

Total 188 159

A . Computed Torque Technique

In the computed torque technique, the required input generalized
force vector T is computed from

T = a (q) i i : + Cc(q, 4) + G c (q) (2)

9 2 = i id+Kv(9d-4)+Kp(qd-q); (3)

4, 4 measured joint position and velocity vectors;

where

q d , Cj,, g d desired joint position, velocity, and acceleration

K, , Kp gain matrices;
vectors;

and Dc(q), Cc(q, d) , and G,(q) are the computed counterparts of
D(q), C(q, q) , and G(q). If the computed elements are exactly equal
to their actual counterparts (Le., exact manipulator model), then
substituting (2)-(3) into (1) yields

~ (4) { 4 d - i i + K , [4 b - 4] + K p [q d - 4 1) = o . (4)

Let e, = qd - q be the joint position error vector. Since the inertia
matrix D(q) is nonsingular, (4) becomes

eq + Kueq i- K,e, = 0. (5)

By properly selecting K, and K p , e4 approaches zero asymptotically.
A hand-based control law based on the computed torque technique

can be realized for the Stanford manipulator using the inverse-
kinematics and inverse-dynamics computational schemes discussed
previously. The realization is formulated by a multi-microprocessor
structure in which the first microprocessor computes the inverse-
kinematics scheme and the second and third microprocessors
compute the inverse-dynamics scheme. Computational complexity of
the proposed approach is summarized in Table 111.

B. Resolved-Acceleration Control

The resolved-acceleration control closes the feedback loop around
the hand. Let pd(t) , j d (t) , and j d (t) be the 3 X 1 desired position,
velocity, and acceleration vectors of the hand in base coordinates,
respectively. Using the measured joint positions, the actual rotation
matrix Ah and position vector P h of the hand can be computed. Define
further Ah A [nh, sh, a h] , where nh, sh and are 3 X 1 column
vectors of A h . Assume that the desired rotation matrix of the hand is
denoted by Ad 6 [nd, sd, ad], where n d , sd, and ad are all 3 X 1
column vectors of A d . Let ~ d (t) and ojd(t) be the desired 3 X 1
angular velocity and angular acceleration vectors of the hand in base
coordinates. Then the linear feedback control is given by

~ . , * (t) = j d (t) + k l [P d (t) - d h (t) l + k Z [p d (t) - P h (t) l (6)

and the angular feedback control is given by

; . , * (t) = c j , (t) + k , [~ ~ (t) - ~ ~ (t) l + k ~ e ~ (t) (7)

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 2, JUNE 1986 113

TABLE I11
COMPUTATIONAL COMPLEXITY OF THE COMPUTED TORQUE TECHNIQUE

__

Microprocessor Functions Multiplications Additions

1 Inverse-kinematics computations: Table I 151 111
2 Inverse-dynamics computations: Table II, Steps 1 and 4, and (3) 59 57

3 Inverse-dynamic computations: Table 111, Steps 2 and 3, and (3) 141 126
(Joints: 1, 2, 3)

(Joints: 4, 5 , 6)

TABLE IV
COMPUTATIONAL COMPLEXITY OF THE RESOLVED-ACCELERATION CONTROL

Microprocessor Functions Multiplications Additions

1 Resolved-acceleration: joint-to-hand transformation, (6)-(8), 174 154

2 Inverse-dynamics computations: Table I1 and Steps 1 and 4, 53 45
Table I, and inverse kinematic acceleration for computing (9)

(Joints: 1, 2, 3)
3 Inverse-dynamics computations: Table I1 and Steps 2 and 3 135 114

(Joints:. 4, 5 , 6) ~

where kl and kz are scalar gain constants, (4 is the actual angular
velocity of the hand in base coordinates, and the orientation error eo is
determined as

where J(q) is the Jacobian matrix. The input generalized forces for
the Stanford manipulator are computed using (2).

Applying the multi-microprocessor-based approach, the computa-
tional complexity of the resolved-acceleration control is tabulated in
Table IV. The most time-saving part in the computation is the
application of Hollerbach and Sahar’s inverse kinematic acceleration
scheme for computing (9).

C. Adaptive Control

Recently various adaptive control techniques [13]-[16] have been
proposed. For the purpose of comparison, an adaptive control
strategy presented in [13] is summarized as follows. The control
algorithm consists of two parts: a feedforward nominal control
component and a variational control component computed via self-
tuning adaptive joint controllers. The control structure is similar to
the one proposed in [16]. Let 7, be the 6 X 1 vector with entries rni
for i = 1, . . * , 6 representing the nominal control component. It is
computed by feeding the desired joint trajectories (q d , q d , q d) into the
inverse-dynamics computational routines. The variational control
component is denoted by a 6 X 1 vector u with entries ui, for i = 1,
. . . , 6. It is assumed that, for each joint, the nominal control rni can
compensate partially the nonlinear coupling effects acting on the
joint. The compensated joint dynamics is regarded as linear in the
vicinity of the desired trajectories and, in discrete-time, is repre-
sented by a second-order autoregressive moving average (ARMA)
model:

q;(k)=a~q;(k- l)+azq~(k-2)+b,U;(k- l)+b~u;(k-2) (10)

for k z 2, where the subscript i denotes the ith joint; q;(k) is the ith
joint velocity at step k; vi@) is the variational control for the ith joint
at step k; and (a l , az, bl, bz) are unknown parameters to be identified
using input-output data. The unknown joint parameters are deter-
mined by using the standard recursive least-squares identification
routine. ui(k) is determined from an one-step optimal performance
criterion and is given by [13]:

u;(k) = - pi61(k) [ri1(k)4;(k)+ri2(k)Q;(k- 1)
pi6;(k) + E ;

+6*(k)q(k- l) - q g k + 1)1 (11)

where pi and E ; are the scalar constants; dl(k), &(k), &(k) and &(k)
are the estimated parameters;

qi(k)=ri,(k)g,(k- l)+&(k)q i (k-2)

+61(k)u;(k-l)+b^z(k)u;(k-2)

and

dZi(k+ l)=&;(k+ l)+(Yi[Qdi(k-- l) - q ; (k - l)]

+ P ; [q d i (k - l) -q i (k- 1)1

with a; and Pi representing the velocity and position regulation
constants, respectively.

The computational complexity of the proposed adaptive control
strategy, if realized by multi-microprocessors, is tabulated in Table
V.

V. MICROPROCESSOR IMPLEMENTATION

In order to evaluate the feasibility of implementing the three hand-
based control laws using present-day microprocessors, a computing
time comparison of the control laws based on three microprocessors
is conducted. The specifications of the microprocessors are summa-
rized in Table VI. It is assumed that all the computations are carried
out using floating-point arithmetic. The Intel 80287 serves as a
floating-point coprocessor to the 16-bit 80286. The MC 68881 also
functions as a coprocessor and is designed specifically to operate with
the 32-bit MC68020. It can also be used as a memory-map peripheral

114 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 2 , JUNE 1986

TABLE V
COMPUTATIONAL COMPLEXITY OF THE ADAPTIVE CONTROL STRATEGY

Microprocessor Functions Multiplications Additions

1 Inverse-kinematics computations: Table I 151 111
2 Inverse-dynamics computations: Table I1 and Steps 1 and 4, 53 45

3 Inverse-dynamics computations: Table I1 and Steps 2 and 3 135 114
(Joints: 1, 2, 3)

(Joints: 4, 5, 6)
Joint Microprocessor
Controller (adaptive Parameter identification (RLS routine) and control law 81 58
control only) computation (1 1)

TABLE VI
SPECIFICATIONS OF THE MICROPROCESSORS

Multiplication Addition
(Single (32-bit) (Single (32-bit)

Microprocessor Precision) Precision)

Intel 80286180287
(8-MHz Clock) 11.8 p s 8.75 ps

Motorola
MC680001MC68881
(12.5-MHz Clock) 7.9 ps' 7.6 ps'

Motorola
MC680201MC68881
(12.5-MHz Clock) 3.1 ps 2.8 ps

I Estimated value.

TABLE VI1
MULTI-MICROPROCESSOR-BASED EXECUTION TIME COMPARISON

. _ _ _ _ _ _ _ _ _ ~ _____..-__._~. ____ ____
_ _ _ _ _ ~ _ ~ . . _ _ _ _ . ~ _ _ _ ~ _ _ _ _ _ _

~-_____~

Control Law

Computed Torque Resolved-Acceleration Adaptive Control

Intel Motorola Motorola Intel Motorola Motorola Intel
802861 MC680001 MC680201 802861 MC680001 MC680201 802861 MC680001 MC680201

Motorola Motorola

80287 MC68881 MC68881 80287 MC68881 MC68881 80287 MC68881 MC68881
Microprocessor (8 MHz) (12.5 MHz) (12.5 MHz) (8 MHz) (12.5 MHz) (12.5 MHz) (8 MHz) (12.5 MHz) (12.5 MHz)

~~ ~~~

1 2.8 ms 2.04 ms 0.8 ms 3.4 ms 2.55 ms 0.97 ms 2.8 ms 2.01 ms 0.8 ms
2 1.2 ms 0.9 ms 0.35 ms 1.02 ms 0.76 ms 0.30 ms 1.02 ms 0.76 ms 0.3 ms
3 2.8 ms 2.07 ms 0.8 ms 2.6 ms 1.93 ms 0.14 ms 2.6 ms 1.93 ms 0.74 ms

processor to any M68000 family processors such as a 16-bit
MC68000, but with some performance degradation. In Table VI, the
execution times of the MC68000/MC68881 are estimated values; it is
assumed that, for each multiplication and addition operation, two
memory fetches are required. The microprocessor execution times
for the proposed three control methods are tabulated in Table YII.

An evaluation of the execution-time performance must be based on
the selection of sampling rate for the Stanford manipulator. Since the
servo system for the manipulator is configured to be a sampled-data
type, the servo rate must be at least 15 times the link structural
frequency. In the case of the Stanford manipulator, the sampling rate
would be 300 Hz, or a sampling period of 3.3 ms [6, pp. 211-2121.
Based on the 3.3-111s sampling-period upperbound, it appears that all
three control methods can be implemented using the microprocessors
listed in Table VI, except the number one microprocessor for the
resolved-acceleration control that uses the Intel 80286180287. How-
ever, execution times given in Table VI1 do not include other

floating-point operations such as sine, cosine, arctangent, division,
and square root. This additional execution time for the number one
microprocessor is about 0.1 ms using MC68020/MC68881 and 0.63
rns using MC68000iMC68881, respectively. The Intel 80286/80287
is expected to execute longer. The additional execution times for the
number two and the number three microprocessors are negligible as
compared with the values given in Table YH. Thus in order to
successfully implement the three proposed control methods based on
the 3.3-ms criterion, the MC680201MC68881 and MC680001
MC68881 microprocessors can be selected.

In the above comparison, we have adopted the multiple micropro-
cessor-based structure for implementing the control algorithms. The
number one microprocessor executes the complete inverse-kine-
matics algorithm by receiving Cartesian trajectory commands from a
host system. The number two and number three microprocessors
execute the complete inverse-dynamics algorithm by using the
desired and the feedback joint information. During on-line operation,

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 2, JUNE 1986 115

microprocessor 1 and microprocessors 2 and 3 can be executed in
parallel, since Cartesian trajectory segments may be computed one
step ahead of the current desired joint set positions, velocities, and
accelerations. The multiprocessor system is operated under uniform
sampling rate. The estimated execution times of the microprocessors
given in Table VI1 do not include overhead time such as memory
management for loading and storing data and system management for
bus arbitration. However, the proposed inverse kinematic and
dynamic algorithms have already been simplified symbolically. They
are straightforward flow algorithms that contain no subroutines or
loops. Thus Table VI1 gives reasonable estimated execution times.

There are other multiprocessor systems that have been proposed
for computing the inverse dynamics of manipulators; they usually
require special scheduling routines to achieve parallel computation
[17]-[19]. Microprocessors 2 and 3 in our proposed multiple
microprocessor-based structure can be reconfigured to adapt to these
parallel processing algorithms, though further computational com-
plexity analysis is needed in order to meet the sampling period
requirement. Recently, several authors have also proposed parallel or
pipeline algorithms for computing the inverse dynamics and the
Jacobian matrix, which are implementable using very large-scale
integration (VLSI) devices [20], [21]. Their approach is quite general
and is applicable to various types of manipulators. Still, it would take
sometime for VLSI robotic control chips to become commercially
available. The approach presented in this paper can be readily
implemented for a class of industrial manipulators with spherical
wrists using currently available microprocessors.

One may note that the total execution times for the three control
methods using only one MC68020/MC68881 are 1.95 ms, 2.01 ms,
and 1.84 ms, respectively. This indicates that one Me680201
MC68881 is fast enough to execute the Cartesian-based control
algorithms and satisfies the 3.3-ms sampling period requirement. But
this conclusion is only valid for the Stanford manipulator considered
in this paper, since the algorithms are symbolically simplified by
taking the advantages of the spherical wrist and diagonal link inertias
of the manipulator. The complexity for computing the inverse
dynamics of general-purpose six-axis manipulators is quite high [22],
thus necessitating the use of multiprocessing architecture so as to
satisfy the sampling period requirement. With the rapid advancement
of VLSI technology, it can be expected that the 32-bit microproces-
sors are better suited for robotic control applications when speed and
performance are considered. Though only one 32-bit microprocessor
is used for performance evaluation, other 32-bit microprocessors are
also available for applications and their performance has constantly
being improved [23]. For example, the recently announced 16.67-
MHz MC68020/MC68881 or the Intel 80386/80387 should ensure
the implementation of hand-based control laws with complete
inverse-kinematic and inverse-dynamic computations.

VI. CONCLUSION

In this paper the design of Cartesian space control techniques for a
mechanical manipulator, the Stanford manipulator, has been ‘pre-
sented. The key objective is to implement hand-based control laws
using present day microprocessors. By applying the efficient inverse-
kinematic and inverse-dynamic computational algorithms proposed
recently, three existing control methods are shown to be implement-
able using currently available 16-bit and 32-bit microprocessors.
Computational complexity analysis of the control laws indicates that
the Cartesian-based schemes can be executed within the required
sampling period. The multi-microprocessor-based approach pre-
sented in this paper can be applied to the Cartesian motion control of

a class of six-axis well-structured (i.e., with spherical wrists)
industrial manipulators.

r221

r231

REFERENCES
D. E. Whitney, “Resolved motion rate control of manipulator and
human prostheses,” IEEE Trans. Man-Mach. Syst., vol. MMS-IO,
pp. 47-53, June 1969.

manipulators,” J. Dynamic Syst. Measurement, Contr., Trans.
ASME, vol. 94, pp. 303-309, Dec. 1972.
J. Y. S . Luh, M. W. Walker, and R. P. C. Paul, “Resolved-
acceleration control of mechanical manipulators,” IEEE Trans.
Automat. Contr., vol. AC-25, pp. 468-474, June 1980.
C. S. G. Lee and B. H. Lee, “Resolved motion adaptive control for
mechanical manipulators,” J. Dynamic Syst. Measurement, Contr.,
Trans. ASME, vol. 106, pp. 134-141, June 1984.
E. G. Gilbert and I. J. Ha, “An approach to nonlinear feedback control
with applications to robotics,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-14, pp. 879-884, NovJDec. 1984.
R. P. Paul, Robot Manipulators: Mathematics, Programming, and
Control. Cambridge, MA: M.I.T., 1981.
A. K. Bejczy, “Robot arm dynamics and control,” Jet Propulsion
Lab., tech. memo. 33-669, Feb. 1974.
J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line
computational scheme for mechanical manipulators,” J . Dynamic
Syst. Measurement, Contr., Trans. ASME, vol. 102, pp. 69-76,
June 1980.
R. Featherstone, “Position and velocity transformations between robot
end-effector coordinates and joint angles,” Znt. J. Robotics Res., vol.
2, pp. 35-45, Summer 1983.
J. M. Hollerbach and G. Sahar, “Wrist-partitioned, inverse kinematic
accelerations and manipulator dynamics,” Znt. J. Robotics Res., vol.
2, pp. 67-76, Winter 1983.
D. T. Horak, “A simplified modeling and computational scheme for
manipulator dynamics,” J. Dynamic Syst. Measurement, Contr.,
Trans. ASME, vol. 106, pp. 350-353, Dec. 1984.
J . M. Hollerbach, “A recursive Lagrangian formulation of manipulator
dynamics and a comparative study of dynamics formulation complex-
ity,” IEEE Trans. Syst. Man, Cybern., vol. SMC-10, pp. 730-736,
Nov. 1980.
C.-H. Liu, “A comparison of controller design and simulation for an
industrial manipulator,” IEEE Trans. Ind. Electron., vol. E-33, pp.
59-65, Feb. 1986.
S. Dubowsky and D. T. Des Forges, “The application of model
referenced adaptive control to robotic manipulators,” J. Dynamic
Syst. Measurement, Contr., Trans. ASME, vol. 101, pp. 193-200,
Sept. 1979.
A. J. Koivo and T.-H. Guo, “Adaptive linear controller for robotic
manipulators,” ZEEE Trans. Automat. Contr., vol. AC-28, pp, 162-
171, Feb. 1983.
C. S. G. Lee and M. J. Chung, “An adaptive control strategy for
mechanical manipulators,” IEEE Trans. Automat. Contr., vol. AC-
29, pp. 837-840, Sept. 1984.
J. Y. S. Luh and C. S. Lin, “Scheduling of parallel computation for a
computer-controlled mechanical manipulator,” ZEEE Trans. Syst.,
Man, Cybern.. vol. SMC-12, pp. 214-234, Mar. 1982.
H. Kasahara and S. Narita, “Parallel processing of robot-arm control
computation on a multimicroprocessor system,” IEEE J. Robotics
Automat., vol. RA-I, pp. 104-113, June 1985.
R. Nigam and C. S. G. Lee, “A multiprocessor-based controller for the
control of mechanical manipulators,” in Proc. 1985 IEEE Znt. Con$
Robotics Automat., 1985, pp. 815-821.
R. H. Lathrop, “Parallelism in manipulator dynamics,” Int. J.
Robotics Res., vol. 4, pp. 80-102, Summer 1985.
D. E. Orin, H. H. Chao, K. W. Olson, and W. W. Schrader,
“Pipeline/parallel algorithms for the Jacobian and inverse dynamics
computations,” in Proc. 1985 ZEEE Znt. Con$ Robotics Automat.,

P. K. Khosla and C. P. Neuman, “Comoutational reauirements of

__ , “The mathematics of coordinated control of prosthetic arms and

1985, pp. 785-789.

customized Newton-Euler algorithms,” J. kobotic Sysi., vol. 2, pp.
309-327, Fall 1985.
G. Zorpette, “The beauty of 32 bits,” IEEE Spectrum, vol. 22, pp.
65-71, Sept. 1985.

