第二章 文獻回顧

2.1 高密度分波多工系統(DWDM)

隨著光纖網路的發展,頻寬的需求大量的增加,而多工系統可以 在同一個工作時間內,提供數個頻道訊號,增大傳輸容量與速度,使 得傳輸資訊能更有效率。高密度多波分工系統(DWDM)即是在可用頻 帶內以不同的波長為不同的波道作傳輸,每一個波道都代表一個頻 率,頻道數目越多,傳輸容量越大。

DWDM 的波道密度定義各有不同,目前朝向波道間隔 0.2nm 以 下發展[7]。國際通訊標準協會(International Telecom Union,ITU)所訂 定之標準以 193.1THz(1552.52nm)為標準波長,頻率間隔 50GHz(≒ 0.39nm),涵蓋在全 C-Band(1530nm~1565nm),使得在 C-Band 中可獲 得 80 個波道以上,波道分佈如表 2.1 所示。

高密度波長分波元件之設計技術目前可以分為四種[8]:一、光 學濾光片(採用多層鍍膜技術),二、光纖光柵,三、光纖偶合器,四、 光波導元件。前三種技術都有商品化之規格推出,而光波導元件除了 低通道數有少量商品化之外,大部分仍處於實驗室研發階段,但卻是 未來最被看好的技術。

光波導型波長分光元件一般可分成兩類:一、凹面型微光柵,二、 陣列型波導光柵(arrayed waveguide grating,AWG)。AWG 因為面積較 大,所以限制了往更高通道密度發展的潛力,而在同樣規格下,凹面 型微光柵相較於AWG,元件面積約為其八分之一,而系統穩定性所 需的功率約為其五分之一。更有文獻指出,凹面型微光柵元件在矽晶 圓上積體化後,可形成波長解多工器,再結合光感測器可形成光柵型 光譜分析儀,結合主動增益材料則形成可調波長雷射等,因此凹面型 微光柵之應用領域非常廣泛,堪稱為下一世代光通訊DWDM 或微光 機電系統的核心技術[9]。表 2.2 為凹面型微光柵與陣列型波導光柵之 比較。

2.2 凹面型微光柵(micro concave grating)

2.2.1 反射型光栅分光的基本原理

光柵分光粗略概分有兩種形式,一種是穿透式光柵,另一種是反 射式光柵。反射式光柵可視為一種光反射面有週期變化的結構,也可 分為兩種[10]:一、振幅型光柵,分光原理是利用反射率的變化;二、 相位型光柵,其分光原理是利用光程差的變化。因為振幅型光柵在繞 射情況發生時,部份的光能量會被吸收,使其反射率並非百分之百, 所以降低了光學傳輸效率及品質,於是我們僅就繞射效率較高的相位 光栅作討論。

當一道入射光波照射到相位光栅時,因為光栅的尺寸有限,會使

得反射的光波受到绕射與干涉兩種作用的疊加,而在成像屏幕上呈現 疏密等間隔的週期性亮暗變化的光分佈。绕射的產生是因為每一個光 柵齒上的光束受到一sin函數強弱變化的影響,也就是說在屏幕上分 佈的多階繞射光點,是由光柵上各齒所提供的調變光波條紋,在屏幕 上所作的疊加,繞射第零階的光強度通常佔總強度的八成以上,所以 繞射第零階是最容易觀察的繞射階數。而對於一個傳統的平面光柵而 言,第零階的位置,通常是反射角等於入射角所成立的位置。 若是入射的光源內含有許多不同波長的成分,經由光柵的干涉效應, 可以將入射光源內含有的各個不同波長成分的光予以分離開,而讓不 同波長的光波繞射到不同角度上,產生分光的效果,應用此原理,可 應用於光譜儀或光通訊分光元件等等儀器中。

圖2.1顯示一個炫耀型光栅,兩入射光到達光柵平面會有一個光 程差出現,使得反射光會有干涉的現象產生,光程差如下表示: $\Delta = d(\sin\theta_i + \sin\theta_d)$ (1) 當光程差 Δ 為波長 λ 的整數倍時,會產生建設性干涉。 $\Delta = m\lambda$ (2) 於是繞射公式可寫為下式: $d(\sin\theta_i + \sin\theta_d) = m\lambda$ (3) (d:光柵週期、 θ_i :入射角度、 θ_d :反射角度、m:繞射階數、 λ :光波波長)

而判斷光柵的性能有二個主要因素,即色散 (dispersion)和分辨 能力(resolving power)。現分述如下:

1.色散

光柵與稜鏡的色散作用相似,可以使不同波長的光在不同的位置 產生各自的譜線,所以光柵也是產生色散的元件。對於一微小的波長 來量度色散。因此,我們定義角色散為

$$D_{\theta} = \frac{\Delta \theta}{\Delta \lambda} \tag{4}$$

線色散為

線色散為

$$D_l = \frac{\Delta l}{\Delta \lambda} = f' D_{\theta}$$
(5)
我們可推得光柵的角色散是
(5)

$$D_{\theta} = \frac{m}{d\cos\theta} \tag{6}$$

線色散是

$$D_l = \frac{f'm}{d\cos\theta} \tag{7}$$

上面結果顯示,光柵的角色散與柵線週期d成反比,與干涉級數 m成正比,而與縫數無關;此外,線色散還與焦距f'成正比。因此, 為了增大角色散,近代光栅的缝很密,每毫米有幾百條到上千條,代 表光栅周期約分布在 10-2到 10-3毫米之間。

2.分辨能力

色散還不能完全說明光柵性能的好壞,分光儀器最重要的性能是 分辨二相鄰近波長譜線的能力。按照Rayleigh判斷,波長為λ和λ+Δλ 的二線譜的角間隔Δθ等於該級譜線與其相鄰的最小值之間的角距離 Δθ₁時,則該二譜線恰可被分辨開。定義R=λ/Δλ 為光柵的分辨能力, 則可得

$$R = \frac{\lambda}{\Delta \lambda} = mN \tag{8}$$

其中N為縫數,m是干涉級數;光柵的分辨能力等於總縫數N與干 涉級數m的乘積,而與柵線間距無關。

若雙重線的波長分別為 $\lambda_1 和 \lambda_2$,則當mN > $\lambda/(\lambda_2 - \lambda_1)$ 時,光柵能把雙重線分開;當mN= $\lambda/(\lambda_2 - \lambda_1)$ 時,恰能分辨開雙重線;mN < $\lambda/(\lambda_2 - \lambda_1)$ 時,不能分辨開雙重線。

2.2.2 凹面型光栅分光的基本原理

一般平面光栅分光時,入射光與繞射光均為平面波,因此通常在 光學系統中需要額外加入兩個凹面鏡來作聚焦的功能達成分光的目 的,如圖 2.2a[10]所示,西元 1882 年由 H.A.Rowland 提出凹面型光 柵的概念[1],即一個元件裡面結合了光柵分光和凹面鏡成像的功 能,如圖 2.2b[10]所示,這樣不但可以減少在反射過程中光能量的損 耗,而且因為不需要預留凹面鏡焦距的長度,使得所佔的空間也可以 大幅減少,這樣對於光學系統而言,不但可以降低系統的複雜度,而 且所需的元件減少了,所以也可以降低成本,因此可以做成一高解析 度且易於整合的分光元件[10]。

圖 2.3[10]為一典型的凹面型光柵分光示意圖,C 點是光柵的曲率 中心,波長為λ的光源置於 P 點,而光經由光柵聚焦於 Q 點,於是 在 A 點的繞射情況可以利用光柵方程式來作分析:

$$d\left(\sin\alpha + \sin\beta\right) = m\lambda \tag{9}$$

對上式微分:

$$\cos \alpha \delta \alpha + \cos \beta \delta \beta = 0$$
 (10)
假如考慮三角形 ACX 以及三角形 PBX,我們可以得到下式:
 $\alpha + \delta \gamma = \alpha + \delta \alpha + \delta \sigma \Rightarrow \delta \alpha = \delta \gamma - \delta \sigma$ (11)

同理可得:

 $\delta\beta = \delta\gamma - \delta\rho \tag{12}$

若考慮δα、δβ、δσ、δρ都符合近軸近似,由幾何關係我們可以得到:

$$\delta\gamma = \frac{\overline{AB}}{R} \quad \delta\sigma = \frac{\overline{AB}\cos\alpha}{r} \quad \delta\rho = \frac{\overline{AB}\cos\beta}{r_1} \tag{13}$$

其中,R為線段AC的長度,且為光柵的曲率半徑,r為AP的長度且為 入射光元到A點距離,r₁為AQ的長度且A點到繞射光點Q的距離。將 式(11)、(12)、(13)帶入式(10),則我們可以得到:

$$\frac{\cos\alpha}{R} - \frac{\cos^2\alpha}{r} + \frac{\cos\beta}{R} - \frac{\cos^2\beta}{r_1} = 0$$
(14)

想要解出入射角 α 和繞射角度 β,其中一個方法為將前兩項和後兩向 各自令為零,我們可以得到:

$$\frac{\cos\alpha}{R} = \frac{\cos^2\alpha}{r} \qquad \frac{\cos\beta}{R} = \frac{\cos^2\beta}{r_1}$$
(15)

所以,可以得到入射光點與繞射光點的位置關係如下:

$$r = R\cos\alpha \qquad r_1 = R\cos\beta \qquad (16)$$

因此,這個特殊解代表一個特別的意義,如圖 2.4[10]所示,其入射 光點和繞射光點都位在一直徑為 R 的圓上,一般稱此圓為羅倫圓, 其特性是當一入射點光源位在羅倫圓上,則經由凹面鏡光柵的干涉作 用,最後所分離開來的不同波長的光一定會聚焦在同一個圓上。

2.2.3 凹面型光栅製程要求 1896

因為設計凹面型光栅最終目的是要可分出 0.2nm 波長的光,所以 光柵週期需要很小,大概在微米等級,又因為要考慮光纖置入的高 度,於是製程深度要與光纖等高,約為 125 微米,所以製程需要高深 寬比達到 40 以上,且因為應用於光學通訊領域,所以反射面的表面 粗操度要求相當嚴苛,在種種環境要求下,需要精度很高的高深寬比 製程才能達到品質符合的光學凹面型微光柵。在後面幾節將會介紹高 深寬比精密製程。

2.3 深刻電鑄模造製程技術(LIGA Process)

2.3.1 LIGA Process 簡介

LIGA(in German: Lithographie, Galvanoformung, Abformung)是 由微光刻(Lithography)、電鑄(Electroforming)、以及模造成型(Molding) 三種製程技術所組成,最初是在 1982 年由德國卡爾斯魯核能中心 (Karlsruche Nuclear Research Center)將X-ray深光刻術與電鍍技術,再 結合模造技術,成為可批量生產,降低成本的LIGA製程[11],LIGA 的標準製程如圖 2.5 所示[12]。其發展是為了製作如圖 2.6 的高深寬 比微質量分離噴嘴(nozzle)結構[13,14],此結構可以處理核能鈾料分 離的問題。這種基於流體力學計算所設計之複雜形狀噴嘴,可將輕水 式核能反應爐用之U²³⁵燃料,從自然界 0.7%的含量有效率地濃縮成 3%。

由於LIGA 技術是以 X 光、深紫外線、雷射或反應離子蝕刻製造 光刻模具,與 IC 製程相同,都是利用光刻將圖案轉移到光阻上,因 此在與 IC 電路的整合方面較無困難。並且因為利用電鑄及模造技 術,使得微結構得以批量翻造大量生產。目前已實際應用於微致動 器、微熱交換器、微幫浦、微感測器、微光學系統等元件的製作。其 製程的主要特色[15]:

1. 可製造高精確度 3D 微結構與零組件。厚度方面達 1000µm,

横向精度 0.25μm, 表面粗糙度介於 0.03~0.05μm。

2. 可製造深寬比超過100以上的微結構。

3. 與積體電路製程整合性良好。

4. 材料選擇自由度大。如塑膠、金屬、陶瓷及壓電材料等。

5. 可批次製造,降低成本。

2.3.2 同步輻射光源 X-ray

同步輻射是二十世紀以來科技研究最重要的光源之一,科學家藉 由同步輻射可從事物理、化學、生物、材料、化工、環保、能源、機 械、電子、資訊等基礎與應用科學研究。目前全球供實驗用的同步輻 射加速器超過七十座,同步輻射設施建造已成為各國高科技能力的指 標之一[16]。

光一向是人類觀察及研究大自然不可或缺的工具。廣義地說,所 有電磁波都可以稱為光。同步輻射也是電磁波的一份子,為一連續波 段的電磁波,涵蓋紅外線、可見光、紫外線及X光等,如圖2.7[12]。 根據電磁學的理論,帶電粒子的運動速度或方向改變時會放射出電磁 波。當電子以接近光速飛行,受到磁場的作用而發生偏轉時,會因相 對論效應沿著偏轉的切線方向,放射出薄片狀的電磁波,這就是同步 輻射光,如圖2.8 所示[12]。同步輻射具有下列特性[16]: 1. 強度極高。

2. 波長連續。

3. 準直性佳。

4. 光束截面積小。

5. 具有時間脈波性。

6. 具有偏振性。

若以 X 光為例,同步輻射在這個波段的亮度比傳統 X 光機還要 強百萬倍以上,過去需要幾個月才能完成的實驗,現在只需幾分鐘便 能得到結果。以往因實驗光源亮度不夠而無法探測的結構,現在藉由 同步輻射,都可分析得一清二楚,亦可做為探測物質的幾何、電子、 化學或磁性微觀結構,應用在生化解析、醫療用途以及微加工技術 上。因此於近年內許多嶄新的研究領域得以開發,是先進科學研究的 利器[16]。

2.3.3 X-ray 光刻術

LIGA 製程的第一個步驟就是利用 X-ray 來進行微影製程,是影響決定整個製程最小線寬及精度的主要步驟。X-ray 光刻術所使用的 光源是同步輻射 X-ray,將電子高速圓周運動在切線方向產生的同步 輻射光,接到沿著儲存環切線方向建立的光束線(beam line)上,可以 把此同步輻射光導引到曝光站使用,其相對位置的配置如圖 2.9[12] 所示。因為光束線寬而薄,故曝光站設計成可上下移動掃瞄,如圖 2.10 所示[12]。一方面可以使曝光面積增加,另一方面也可以使曝光 劑量均勻分佈於整個試片。另外,因為同步輻射光能量會隨著時間而 遞減的特性,計算光阻所接受的劑量時須使用微電腦積分求得。

X-ray 光刻術的光罩製作也與積體電路製程上所使用的紫外光光 罩不同。由於同步輻射 X-ray 的穿透力遠比紫外光強許多,所以在光 罩的結構、材料以及製作方式上都比較困難且費時,圖 2.11 為傳統 X-ray 光罩的製程示意圖[12]。因此,X-ray 光刻術的光罩價格大約在 2~3 萬美金左右,約為紫外光光罩價格的 100 倍左右[17]。

X-ray 光刻術所使用的光阻,與一般積體電路製程上所使用的光 阻有許多不同的地方。其最大不同之處,在於光阻的厚度。LIGA 製 程中所使用的光阻厚度,根據所製造的微結構需要,範圍從數十微米 至數千微米,厚度上遠大於積體電路製程上的光阻,所以在光阻層的 準備、光阻的性質要求上,與積體電路製程上有許多差異之處。

2.4 X-ray 光阻

2.4.1 X-ray 光阻介紹

目前做為 X-ray 深刻術的光阻材料有 PMMA[4,18-21]、

Poly(MMA-co-MAA)[22] 、 Poly(lactides)[23] 、 Polyimide[24] 以及 Novolac resin[25]。由於 PMMA(poly(methylmethacrylate)) 可提供高解 析及優異的光刻側壁表面品質,因此長久以來一直是 X-ray 光刻最普 遍採用的光阻材料。

目前已發展的 PMMA 厚膜光阻[4,18-21],與一般的 IC 光阻不同 的地方,在於光阻層的製備不是採用旋轉塗佈的方式,而是利用壓鑄 的方式,將 PMMA 厚膜光阻在基材上直接聚合而得到的,如此光阻 層的厚度可從數十微米至數千微米。PMMA 厚膜光阻經過 X-ray 曝光 之後,分子量會顯著地下降,再利用顯影液顯影,即可將微結構製作 出來。

然而 PMMA 的感光度極低,需要很長的曝光時間以及其抗應力 腐蝕(stress corrosion)能力不佳,導致光刻結構的良率降低,尤其 PMMA 的感光對比性也不高,致使 X 光光罩的製備上,一直無法有 效提升解析力與精度的表現,這些都是該光阻有待克服的問題。早期 德國研究單位雖曾積極開發新的 X-ray 光阻材料,然而似乎並無重大 的突破發展。

但最近幾年發現負型光阻 SU-8,卻有著許多符合 X-ray 光刻需 求的特性,諸如光敏感性、對比性、以及抗腐蝕性等等。

2.4.2 SU-8 光阻特性

SU-8 是由美國光阻公司Microlithography Chemical Corp., MMC 所推出的一種負型厚膜光阻,商品名稱為NANOTMXP SU-8。此光阻 的上市可以說打破了原本高深寬比微系統技術(High-Aspect-Ratio Microsystem Technology, HARMST)在紫外光類LIGA製程應用的極限 (300µm)。也就是說在此之前,甚至到了今日,幾乎沒有任何紫外光 厚膜光阻,即使在多次旋轉塗佈後,可以達到厚度 300µm且仍能維持 微結構的完整性。

SU-8 為環氧型態負光阻,其本身屬於化學增幅放大型光阻,具 有極優越的敏感度和高深寬比性,故經常用於製造高精度的微結構, 此種光阻主要的特性有下列幾點[26]:

- 在近UV光譜下具有非常低的光吸收性。也就是穿透率極高, 所以它容易在沒有散射的情況下曝的更深,讓整個厚度的光 阻,得到均匀的曝光劑量,有助於尺寸的控制和垂直的側壁。
- 2. 單次旋轉塗佈膜厚可達 200µm。
- 具有極佳的熱和化學穩定性,常被應用於製造高深寬比微結構、封裝、生醫方面。
- 具有低分子量,能均匀的散佈在有機溶劑中,形成高濃度的
 混合物。

SU-8 厚膜光阻是由三種主要成分構成[27,28]:樹脂(epoxy novolak resin)、溶劑(GBL)以及感光劑(triaryl sulfonium salt):光活性 化合物(photoactive compound),簡稱為 PAC。圖 2.12 為其組成成分 [12]。Microlithography Chemical Corp.依照不同的膜厚需求,推出了 SU-8 一系列不同序號的光阻,在成分及含量上有所差異。以本研究 使用的 SU-8 2050 光阻而言,其主要成分如表 2.3 所示[29]。

SU-8 光阻之所以適合厚膜製程的應用,首先歸功於它具有低分 子量(即分子鏈較短),但又可以成膜的能力。分子鏈較短的結構容易 被溶劑滲入而加以溶解,故SU-8 高分子可均匀分散在溶劑中,形成 高含量的光阻溶液(72~85wt%)。其次是在紫外光範圍中,SU-8 光阻 具有極低的光學吸收及良好的光學穿透性,可讓具有相當厚度的光阻 得到均匀的曝光劑量。這也將有助於獲得垂直側壁的光阻微結構,且 易於精確地控制光阻厚度方向的尺寸。

在反應機制方面如圖 2.13 所示[12]。SU-8 光阻經由紫外光照射後,首先感光劑產生光分解反應釋放出質子酸,而 SU-8 樹酯上的環氧基在酸催化下而開環形成帶有氫氧基的羰根陽離子(carbonium ion) 中間體,此中間體會與另一個環氧基反應形成新的鍵結,也就起始了 環氧基的交聯反應(cross-linking);而新形成的羰根離子又會再向下個

帶有環氧基的 SU-8 樹酯進行交聯...。因此在很短的時間內,原本是 小分子的 SU-8 樹酯因為照光及曝後烤熱擴散的作用,成為高度交聯 不易溶解的巨大分子結構。

2.5 簡型 X-ray 鼓膜光罩

由於傳統的X光光阻材料PMMA,感光敏感度及對比性均不佳, 因此其光罩本身需提供足夠的曝光對比。傳統的X-ray光罩示意圖如 圖 2.14a所示,鼓膜鼓膜(membrane)必須使用原子序較低的材料(如 Si₃N₄、Be),同時厚度僅可能薄至~2µm。至於光罩的吸收體(absorber), 則必須使用原子序較高且高密度的材料(如Au、W),厚度需大於 3µm,而所需的吸收體的厚度越厚將會大幅增加光罩製作的困難與複 雜性。光罩吸收體一般是以電子束(e-beam writing)配合鍍金技術製 作。然而一般電子束的穿透深度小於 2µm,若此厚度無法提供足夠的 曝光對比,則必須藉助軟X光光刻翻製中間光罩以製作較深之光罩結 構,因此長久以來,這些複雜且困難的光罩製程一直是進行高解析度 X光光刻技術最大的挑戰。

相對地,如圖 2.15[6]所示,SU-8 光阻因本身的感光對比極高,因此對光罩上的要求便相對的降低,配合 SU-8 光阻特性,可用較厚的鼓膜與較薄的吸收體製作新式鼓膜光罩,如圖 2.14b 所示;亦或是

可用較薄的吸收體搭配厚度不變的鼓膜,製作簡化型 X 光光罩,如 圖 2.14c。如此設計的光罩結構不但可使製程良率大幅提升,複雜性 降低,同時較薄的金吸收體厚度可提升光罩的解析度、精度,並且降 低製作的成本。

有研究指出,利用 0.8μm 的金吸收體搭配 1.5μm 的氮化矽鼓膜的 X-ray 光罩,在線寬 1μm 的情況下,可達到 17μm 的曝光深度,此研 究顯示 SU-8 光阻的確可以利用簡型 X-ray 光罩進行 X 光光刻,並能 達到過去無法表現的曝光要求,諸如曝光線寬等等。

channel	Frequency	Wavelength	channel	Frequency	Wavelength	channel	Frequency	Wavelength
code	(THz)	(nm)	code	(THz)	(nm)	code	(THz)	(nm)
1	196.1	1528.77	28	194.75	1539.37	55	193.4	1550.12
2	196.05	1529.16	29	194.7	1539.77	56	193.35	1550.52
3	196	1529.55	30	194.65	1540.16	57	193.3	1550.92
4	195.95	1529.94	31	194.6	1540.56	58	193.25	1551.32
5	195.9	1530.33	32	194.55	1540.95	59	193.2	1551.72
6	195.85	1530.72	33	194.5	1541.35	60	193.15	1552.12
7	195.8	1531.12	34	194.45	1541.75	61	193.1	1552.52
8	195.75	1531.51	35	194.4	1542.14	62	193.05	1552.93
9	195.7	1531.9	36	194.35	1542.54	63	193	1553.33
10	195.65	1532.29	37	194.3	1542.94	64	192.95	1553.73
11	195.6	1532.68	38	194.25	1543.33	65	192.9	1554.13
12	195.55	1533.07	39	194.2	1543.73	66	192.85	1554.54
13	195.5	1533.47	40	194.15	1544.13	67	192.8	1554.94
14	195.45	1533.86	41	194.1	1544.53	68	192.75	1555.34
15	195.4	1534.25	42	194.05	1544.92	69	192.7	1555.75
16	195.35	1534.64	43	194	1545.32	70	192.65	1556.15
17	195.3	1535.04	44	193.95	1545.72	71	192.6	1556.55
18	195.25	1535.43	45	193.9	1546.12	72	192.55	1556.96
19	195.2	1535.82	46	193.85	1546.52	73	192.5	1557.36
20	195.15	1536.22	47	193.8	1546.92	74	192.45	1557.77
21	195.1	1536.61	48	193.75	1547.32	75	192.4	1558.17
22	195.05	1537	49	193.7	1547.72	76	192.35	1558.58
23	195	1537.4	50	193.65	1548.12	77	192.3	1558.98
24	194.95	1537.79	51	193.6	1548.51	78	192.25	1559.39
25	194.9	1538.19	52	193.55	1548.91	79	192.2	1559.79
26	194.85	1538.58	53	193.5	1549.32	80	192.15	1560.2
27	194.8	1538.98	54	193.45	1549.72	81	192.1	1560.61

表 2.1 ITU-T 國際組織訂定之各頻道之規格表

	凹面型微光柵	陣列型波導光柵
元件尺寸	大約1cm ² 一片6寸晶圓可容納約30 個元件	約為70*110mm ² 一片 6 时晶圓約可容納 4 個元件
高頻道數發展	容易製作超過160個頻道 數,且頻道間距很窄。	當頻道數越多時,元件尺 寸快速膨脹,不易整合。
製程技術	受限於高深寬比的側壁蝕 刻技術,要求品質高。	半導體製程,無須深蝕刻。

表 2.2 凹面型微光栅與陣列型波導光栅之比較

表 2.3 SU-8 2050 之主要成分[29]

Item	Chemical	wt%
Solvent	Gamma butyrolactone	~25
Resin	Epon SU-8	~65
PAC	mixed triarylsulfonium/hexafluoroantimaonate salt	~10

*PAC: photo active compound

圖 2.1 炫燿型光栅

圖 2.2 平面光柵與凹面光柵分光比較圖[10]

圖 2.3 凹面光栅聚焦角度關係圖[10]

圖 2.4 羅倫圓性質示意圖[10]

- 光刻(Lithography)
- 電鑄(Electroplating)

模造(Molding)

1.光刻

4.金屬模仁

3.電鑄

圖 2.5 深刻電鑄模造製程技術[12]

圖 2.7 同步輻射涵蓋的波長範圍[12]

圖 2.8 同步輻射產生的機制[12]

Synchrotron Radiation Research Center

Storage Ring

Maximum energy 1.5 GeV Maximum beam current, 240 mA Circumference 120 m Orbital period 400 ns RF 499.654 MHz Bending radius 3.495 m Critical photon energy 2.14 keV Bunch length 25 ps

Injector

Injection energy 1.3 GeV Booster circumference 72 m Injection cycle rate 10 Hz Booster RF 499.654 MHz Linac energy 50 MeV

圖 2.9 同步輻射設施的相對位置配置[12]

Fabrication Process of Membrane X-ray Mask

圖 2.11 傳統 X-ray 光罩製程示意圖[12]

圖 2.12 SU-8 光阻的組成成分[12]

圖 2.13 SU-8 光阻之反應機制[12]

圖 2.14 傳統與新式 X-ray 光罩在結構上比較之示意圖

圖 2.15 PMMA 與 SU-8 在特定的光罩結構下的感光對比圖[6]