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A Study of the Gait  Control of a Quadruped 
Walking Vehicle 

TSU-TIAN  LEE AND CHING-LONG  SHIH 

Abstract-Some of the fundamental problems of the gait control of a 
quadruped walking vehicle are addressed. It is shown that the product of 
the duty factor and the stride length is equal to the length of the boundary 
of the reachable area of the leg. Furthermore, the mathematical 
expression representing the relationship between the stability margin, the 
stride length and duty factor are also  formulated.  These  equations are 
expressed in terms of quantities that specify the configuration  of the 
quadruped walking vehicle. Based on the derived results, a graphical 
approach to determine the required stride length and the duty factor that 
corresponding to a regular gait with a prescribed static stability margin is 
presented. This graphical approach is then adopted  to determine the 
regular gait of a quadruped walking vehicle, and the results agree with the 
analytic approach. 

I. INTRODUCTION 

C URSORIAL animals are considered  to have  high off-road 
capability superior to that of the conventional  wheeled or 

track vehicles. This fact has  motivated considerable  attempts 
to  develop the multilegged  walking vehicles. During the past 
several years, the generalized walking  vehicle  with multiple 
degrees-of-freedom was considered, and  the computer-coordi- 
nated control of legs to  complete the “walk” by suitably 
choosing the sequence for lifting legs was investigated. As a 
result, the first multilegged vehicle ever designed to walk 
autonomously under full computer control is a  four-legged 
vehicle called “phoney  pony” built by McGhee  and Frank [l] ,  
[2].  Since then, various multilegged  walking  machines  have 
been built. In particular, a one-legged hopping  machine  was 
built by Raibert [22]. This hopping  machine  must hop 
continually in order to maintain balance. A series of computer- 
controlled bipeds  have  been developed by Kato [29], Miura 
and Shimoyama [15], independently  and individually. These 
bipeds could  climb stairs under the control of an operator. A 
four-legged walking  machine  called  PVII  was  built by Hirose 
and  Umetani [lo], [ 111. The PVII  can  maintain a horizontal 
body orientation and  has contact sensor on each foot to detect 
contact with obstacles in its path or with  the ground.  The OSU 
Hexapod,  a six-legged walking machine, was  built by McGhee 
et al. [5] at the Ohio State University in 1977.  The OSU 
Hexapod, built primarily to study control algorithms for a 
walking machine,  has been continuously  improved by adding 
sensors  systems and vision systems.  A self-contained, terrian- 
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adaptive walking machine, known as adaptive  suspension 
vehicle (ASV), is being developed at the Ohio State Univer- 
sity. 

In 1983,  another six-legged vehicle was  built by Raibert and 
Sutherland 1241. This  machine was the first self-contained 
walking vehicle controlled by an  onboard  microcomputer. 

Observing all these developed walking vehicles, we notice 
that, in general, the basic control problems that  all the walking 
vehicles confront  are 1) how to generate the trajectory and  the 
average speed; 2)  how  to determine the best sequence for 
lifting and placing the feet; 3) what the suitable distance that 
each leg transfer in order to maintain the prescribed stability 
is; 4) how to control the body’s inclination  and heigl ; and 5 )  
how to develop a measurement system  and  inft rmation 
processing method to support the motion planning. The 
problem  of choosing the best sequence for lifting and  placing 
the feet of a walking vehicle is the gait-selection problem.  Gait 
was originally studied by zoologists attempting to understand 
animal  locomotion. It has not  been  studied  in systematically by 
researchers for the past  twenty years. In the following, we 
shall briefly review previous  works on  gait study. 

In 1968,  McGhee [l] gave a strong mathematical base for 
the analysis of  walking gaits. He  defined the  basic terminolo- 
gies such as stride length, duty factor, phase ... etc. 
Furthermore, McGhee  and Frank [2] used longitudinal stabil- 
ity margins to study statically stable walking gaits of a 
quadruped.  They  proved mathematically  that there is a unique 
optimum  gait  which  maximizes  the  longitudinal stability 
margin  of a  quadruped.  The resultant gait stability margin is P 
- 3/4, where /3 is the duty factor or ratio of the contact phase 
time  to  the stride period. 

Later, McGhee  and Jain [3] defined  another  mathematical 
description of a gait, the “event  sequence.” They  showed  that 
the 5040 theoretically possible connected  quadruped gaits can 
be  reduced into 45 equivalence classes. 

In 1973, Bessonov  and  Umnov [30] showed by numerical 
experimentation that a regular and symmetric hexapod  gait 
with the following  phase relationships maximizes the longitu- 
dinal stability margin of  all periodic gaits of a hexapod: 

43 =P 
$ 5 ~ 2 0 -  1, P 2 0 . 5  (1) 

where & is the phase of leg n and /3 is the  duty factor. Phase  is 
measured as the ratio of  the time footfall of leg n lags behind 
that of leg 1 to the stride period. 

In 1974, Sun  [31] developed a computer  program to 
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calculate the longitudinal stability margins of  six-.legged 
regular: anJ symmetric gaits. From the results of  his program, 
he also found that the gait defined IJY (1) ma.ximizes the gait 
stability margin of hexapod gaits. 

Ira 1979 a nonperiodic gait, termed free gait, was intro- 
duced by McGhee and Iswandhi [4]. Algorithms of free gait 
have been implemented into sirx~ulated coordination programs 
and vehicle motion displayed on graphic terrninals. This 
preliminary study has shown tbe practicality of this algorithm 
for a walking vehicle. 

In 1383, Tsai successfully implemented a follow-the-leader 
gait into a computer program on the OSU Hexapod 1321. In a 
follow-the-leader mode on each side of the body, the front leg 
steps on a selected foothold, and the middle leg steps in the 
footprints of the front leg. The rear leg steps in the footprints 
of the middle leg. 

More recently, a simple analytical approach using the 
concept of leg local phase to calculate the stability margin of 
periodic gaits was developed by Song [33]. The continuous 
follow-the-leader gait propgsed by Song [33] provides the 
vehicle with a means of walking in rough terrian at a 
reasonably high speed. 

Thus far, most of gait studies are mainly  aimed at forward 
straight-line locomotion with a notable exception of the paper 
by Hixose [141, in which the crab walk  was defined and the 
standard gait for the crab walk of a quadruped walking vehicle 
was derived. Although tlle gait of quadruped walking vehicle 
is well studied by the pioneering work of McGhee [I], 121 and 
recently by Hirose [14], the following problems remain 
unanswered. 

1) What is the mathematical relation between the stability 
margin and stride length? 

2) Observing most of the periodic gaits, m e  notices that in 
general the duty factor decreases while the stride length 
increase, and vice versa. It is natural to ask,  “is the product of 
the duty factor and the stride length equal to a constant?” If 
yes, does this constant have some physical meaning related to 
the configurations and structure of the quadruped walking 
vehicle‘?” 

3) Is there any relationship between the sta,tic stability 
margin, the height, and the distmce from foothold positions to 
the boundary of the reachable area? 

4) VVhat is the distance that the body should move during a 
complete leg cycle in order to  rnain.tain the prescribed static 
stabil.ity margin? 

This paper studies these problems, and some solutions to 
these problems are presented. To be more precisely, it will  be 
shown that the product of the duty factor and the stride length 
is equal to the length of boundary of th.e reachable area of the 
leg. Furthermore, the mathematical equations relating static 
st&ility margin, duty factor, and stride length are derived. It 
will also be shown that the derived results fit in with McGhee’s 
results [a ] ,  [/a] (see also Remarks 5-‘7). Based on the results, a 
graphical method to determine the regular gaits of a quadruped 
walking vehicle with specified static stability margin on even 
terrian or on constmt slope terrian is hresented. We show that 
once the figure that graphicA1y shows the relations between 

the stability margin, the stride length, and the duty factor has 
been constructed, various physically realizable gaits with 
specified static stability margin on terrains with different slope 
angle can be obtained from the same figure. This graphical 
method turns out to  be very useful for the design and control of 
a quadruped walking vehicle. 

11. I)ESCRIPTION OF A QUADRUPED WALKING VEHICLE 

Fig.  1 shows a quadruped walking vehicle constructed at the 
National Chiao Tung University (NCTU). It is referred to as 
NCTU Quadruped-1. The NCTU Quadruped-1 has a total 
weight of 50 kg  and leg length of 0.6 m. The detailed 
dimensions are shown in Fig. 2. Each of the four legs contains 
three dc servo motors. There  are eight tactile sensors installed 
at the bottom as well as the side of each leg. A balanced sensor 
for posture detection of the body  is  placed in the middle of the 
quadruped vehicle. 

Because the task of motion planning and execution involved 
computation that must  be accomplished in realtime, work has 
been initiated-to partition both tasks so that it may  be executed 
on dual single board computer (SBC) 86/12. One SBC 86/12 is 
responsible €or motion planning and gait control, the other 
SBC 86/12 controls 12 dc servo motors so that the resultant 
motions are as planned. 

For the ease of presentation, the NCTU Quadruped-1 with 
its reachable region of the leg is modeled  as  shown in Fig. 3. 
The notations appeared on Fig. 3 will be defined in the next 
section. 

111. GAIT CONTROL 

In this section, we establish a general framework for gait 
control problems. Results will  be generated that quantitatively 
characterize the stability margin for the regular gait of a 
quadruped. The following definitions are required for the 
developments to be followed [2]. 

A. Definition and Notation 
Definition I :  The support state of a k-legged locomotion 

system  is a binary  row vector Y(t), such that at any time Y,(t) 
= 1 if leg i is  in contact with the supporting surface; Yl(t) = 0 
otherwise. 

Definition 2: The support pattern associate with a given 
support state is the convex hull of the point  set  in a horizontal 
plane which contains the area of the vertical projections of all 
supporting feets. 

Definition 3: Consider any supporting state sequence with 
4(t) the location of the vertical projection of the vehicle center 
of gravity. Then the support pattern is statically stable at time t 
if and  only if q(t) is contained in  its interior. 

Definition 4: The stride length of a gait  with stability 
margin S is the distance h(s) by which the body of a 
locomotion machine is translated in order to provide stability 
margin S during a complete leg cycle. 

Definition 5: The duty factor of a gait with stability margin 
S ,  denoted by pi@), is the fraction of time that leg i is in 
contact with supporting surface during one complete cycle of 
locomotion in  which the quadruped has static stability margin 
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Fig, 1 .  Quadruped  walking  vehicle, NCTU Quadruped- I .  

Fig. 2 .  Configuration  and dimensions of NCTU Quadruped-1. 

M , =  10 kg, A 4 5  =h.5 kg 

M2=1.35 kg IL.I,=0.41 kg 

and 

/,=0.2475 m, /,=0.235 rn, l2=O.40 rn, 13=0.60 tn, /,=0.053 m. 

bC”JnhrM“\,ter boundarv 
inner 

Fig. 3.  ReachabIe region of quadruped walking robot in horizontal plane. 

S. Note  that a gait is regular if  the duty factor of every leg is 
the same as that of every other leg. 

In order  to exploit the mathematical  expression of the 
properties of the quadruped walking vehicle, the following 
notations, which appears in Fig. 3 ,  are defined as following: 

Definition 6: The  symbol Ri is the radius of reachable 
sector of leg i in the horizontal plane. 

Definition 7: The  symbol Pi(Qi) is the distance on the x- 
axis (y-axis) between q(t) and the origin of the sector i. 

Dejinition 8: The  symbol Ei is the distance between the 
boundaries of reachable area of leg i in  the direction of motion. 

Definition 9: The symbol Wi i s  the distance from  foothold i 
to reachable  inner  boundary of leg i in the vertical motion 
direction. 

Definition IO: Let S+(t)(%(t)) be  defined  as the length of 
a vector  pointing in the direction of motion (opposite direction 
of motion) to the intersection with  the boundary of support 
pattern (see Fig. 3). 

Definition 11: Let B;(t)( Fi(t))  be defined as the  length  of a 
vector  opposite  (toward) motion from the current foothold i to 
an intersection with the reachable  area boundary i. 

Definition 12: The stability margin S is defined as the 
shortest distance from q(t) to the nearest boundary along the 
direction of motion during  one  complete  cycle of locomotion. 

Definition 13: A(S, 8) is defined as the distance that  the 
body moves, in order to provide  a stability margin S on a 
constant slope plane with slope angle 8, while a leg is  in the 
transfer state and  the other three legs are in  the supporting 
state. When 8 = 0, i.e., on  the even terrian, the  notation A(s) 
= A(S, 0) is used. Furthermore, A(0) denotes the distance 
that  the  body  moves  with zero stability margin while a leg is  in 
the transfer state. 

For  the  ease of presentation in the following, we  assume 
that  the quadruped walking  vehicle  moves either in & X  

direction or in +y direction only, and  the quadruped  has  a 
symmetric structure (P = Q, R ;  = R ,  Ei = E,  and W; = W >  
and regular gait (Pi = 0) (for i = 0, 1, 2, 3). 

The  following lemma  is  useful  in order to determine 
whether the center of gravity q(t) is inside the support pattern. 

Lemma 1: The gait is said to have the static stability margin 
S ,  S > 0, if  and only if  min (min S-(t) ,  min S+(I) )  = S .  

Proof (Necessity): From the definition of K ( t ] ,  S,(t) 



64 IEEE JOURNAL OF ROBOTICS  AND  AUTOMATION, VOL. RA-2, NO. 2, JUNE 1986 

and Definition 12, it is clear that the quadruped is stable (i.e., 
q(t) is inside support pattern) if and only if S ,  X S-  > 0. 
Furthermore, min (min S _ ( t ) ,  min S+(t ) )  = S.  

Froof (sufficiency): If min (min S - ( t ) ,  min S+( t ) )  = S ,  
then certainly the shortest distance from q(t) to the nearest 
boundary during one complete cycle of locomotion is S ,  hence 
the static stability margin is S. 

Remark I :  The leg  which  has minimum value of B should 
be chosen as the transfer leg, other legs are support legs. 

Remark 2: In the stable locomotion cycle, the distance of 
transfer provided by the transfer leg i should be equal to the 
total distance that the body moves while leg i is in support state 
within one locomotion cycle, and this amount should be equal 
to E. 

Remark 3: The regular gait is symmetry. Each leg is 
equally important while it is in the supporting state and each 
leg transfers the same distance while it is in transfer state. 
Note that the symmetry means there is a symmetric pair that 
have the same duty factor and the same characteristics. 

Corollary I :  The regular gait of the quadruped walking 
robot has zero stability margin when each leg has the stride 
length and duty factor of 

h = 4 4 0 )  

p= 3/4 (2) 

respectively, where 

E 
3 

A(Q)=- . 

Proof: Consider the sequence of the support states as 
shown in Fig. 4 for the craw gait moving  in the + X  direction. 
Assume that the initial foothold positions of leg 0 is at “0,” 
leg 1 is at “ I , ”  leg 2 is at “3,” and leg 3 is at “2,” as shown 
in the Fig. 4. Since 82 = 0, it follows that leg 2 is the transfer 
leg. After lifting leg 2 (phase I), the body  moves a distance 
A(Q) while leg 2 swings from the location “3” to the location 
“0.” At this stage B3 = 0. Therefore leg 3 is lifted and  moved 
from position “3” to position “0” while the body moves a 
distance A(0). This procedure is repeated similarly for leg 1 
and leg 0. Therefore, the stride length X = 4A(O) and duty 
factor 

Q.E.D 

Phase 1 Phase 2 

Phase 3 Phase 4 

Fig. 4. Foothold position-support states sequence of the quadruped walking 
robot having zero stability margin.  The dashed line denotes the initial 
support pattern when each leg is at  its specified initial foothold position. 

has the following values for the stride length, duty factor, and 
maximum value of S 

X(S) = 4A(S) + 4s (4) 

3E 3 
P ( 4  = ~ 

4(E-S) 4 
2- 

E 
SI,,, = - 4 

respectively. 
Pro08 From Fig. 5 ,  we have 

E= 3A(S) + 4s 
or 

Note  that Corollary 1 implies that in order to obtain a zero E -  4S 
static stability margin gait,  the body will transfer a distance A(S)=- . 
A(0) = E/3 while a leg is in motion. Furthermore, at  any 
moment there is only one leg in motion  at one time; the other Substituting (3) into (8) yeilds 
three legs are in support state. Therefore, the duty factor p = 

3 

3/4 is the smallest one that the quadruped can possibly have. 4 
In the following, we  will show that the regular gait of 3 
quadruped with static stability margin S(S > 0) requires that 
all the legs will be support legs during sometimes in the Therefore, the stride length 
locomotion cycle. 

vehicle that provides stability margin S requires that each leg 

A(S)=A(O)- -  S .  (9) 

Corollary 2: The regular gait of the quadruped walking X ( S ) = ~ A ( S ) + ~ S = ~ A ( O ) - -  4 S 
3 (10) 
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leg 1 

Y 

.*/ x - motion direction 

I I 

leg 2 leg 3 

Note. " X "  denotes that  all a r e   s u m r t   l e a s  

follows. From (7), h/3 = E = 3A(s) + 4S, it follows that 

S=A/3-3(A(s)+S)=X p- -  ( :> 
using the relation X(s) = 4A(s) + 4s. 

Remark 7: It can be  shown  that the maximum stability 
margin  of four-legged  animals with a gait stability margin 
given by (13) is Smx = E/4. In fact, when ,f? = 1 the 
maximum stability margin is S,,, = 1/4h. However, /3 = 1 
implies E = X. Therefore S,,, = E/4, which agrees with 
Corollary 2. 

In the above discussions, we  all assume that  the quadruped 
is  walking on  an  even terrian. Now let us  consider the case that 
the quadruped is walking  on a constant slope terrian as shown 
in Fig. 6. It is  easy to see that the center of gravity projected on 
the constant slope  plane will be located A(8) = h tan 8 away 
from its location on the horizontal plane, where 8 is the slope 
angle and h is  the height  between q(t) and the slope plane. 
Therefore, the regular gait of a  quadruped walking vehicle that 
provides a static stability margin S on a  constant slope plane 

Fig. 5 .  Foothold positions and  state  table of the quadruped walking robot 
can be derived by substituting S' = S + A(8) into the gait  of 

with a S ,  longitudinal stability margin and S ,  lateral stability margin. that On even terrian. Thus is an extention Of 

and  duty factor 

previous results. 
Corollary 3: The regular gait of the quadruped walking 

vehicle  that provides  a stability margin S on a constant slope 
plane with slope  angle 8 requires that each leg has the stride 

3A (s) + 4 s  E 3 E  3 length 
P(s) = 

- - 
X (4  

- _ -  - 
4 4 E - S  4 

2- .  (11) 

4 4 0 )  - - S 
3 x(8, s)=4A(8,  S)+4S+A(8),  0<8<; (14) 

n 

Moreover, the S,,, occurs at A(S)  = 0. Hence,  from (8) and the duty factor 

E 
4 

s,,, = - . 

Q.E.D where A(8) = h tan 8 and 

Remark 4: Corollary 2 points  out a very interesting 
property that X(s)p(s) = E,  i.e.,  the product of duty factor and 
stride length is a constant. While stride length  is maximum, 
the  duty factor is minimum, and  vice versa. Furthermore, the 
maximum stride length is X,,, = A(0) = 4A(O). Hence Pmin 
= p(0) = 3/4.  The maximum static stability margin  occurs at 

= 1. Hence hmin = X(S,,,) = E = 3A(O). 
Remark 5: McGhee and  Sun [4] have shown  that  if a 

vehicle  has K legs (K 2 4), then static stability  margin implies 
1 3/K,  where is the duty factor. Similarly, Corollary 2 

shows  that p(s) 2 3/4, which agrees with McGhee's result for 
K = 4. 

Remark 6: McGhee and Frank [2] have proved mathemati- 
cally that there is a unique optimal gait that  maximizes  the 
static stability of a four-legged  animal.  The resultant gait 
stability margin S is 

Proof: The proof, which follows directly from Fig. 7, is 
similar to Corollary 2 ,  and therefore, is omitted. 

It is interesting to note  that (16) reveals that A(8, S )  
decreases  as 8 increases. Hence there is a plane with  maximum 
slope angle 8, called e,,,, that the quadruped walking vehicle 
can  possibly  walk  with regular gait without  causing instability. 
The  following corollary answers this problem. 

Corollary 4: The  quadruped walking vehicle is climbing  up 
(walking down) a hill  on a plane of constant slope angle 8. The 
maximum 8 that the quadruped  can walk without  causing 
instability is 

e,:, = tan-' (i) . 

Proof: The maximum 8 occurs, when A(8, S)l,=, = 0. 
Therefore,  from  (16), it follows that e,,, = tan-'(E/4h). 

Again, this equation  can  be  derived  from  Corollary 2 as Q. E. D. 
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Fig. 6 .  Quadruped vehicle walks down  or climbs up a constant slope plane. 

L C g  1 leg 0 

Note . " X "  denotes that all are support legs 

Fig. 7. The foothold positions and state table of the regular gait for a 
quadruped walking robot that provides  a stability margin S on a plane 
constant of slope with slope  angle 8. 

Note  that since the regular gaits on the constant slope plane 
can be  obtained by substituting S' = S + A(@ into the gait of 
that  on  even terrian. Therefore, without loss of generality, in 
the  following  we consider only  the regular gait  on  even 
terrian. Thus far only  the static longitudinal stability is 
considered.  However, in some cases, the quadruped with 
longitudinal stability margin S, > 0 cannot  guarantee that the 
quadruped is statically stable. This is shown as follows. 
Assume  the quadruped is moving  in  the +x direction (Fig. 5) ,  
in this case, the longitudinal stability margin S, is reduced, 
and meanwhile, the distance between q(t) to the boundary  of 
supported pattern measured in + y direction (denoted S,) is 
also reduced. It is possible that S, < 0 occurs even  when S, 
1 0, and thus causing static stability problem.  Therefore, it is 
necessary to define and  study the static lateral stability. 

Definition 15: The lateral stability margin S ,  is  defined as 
the distance from q(t) to the boundary of support pattern in  the 
vertical motion direction. 

Definition 16: The stability factor 01 is  defined as the ratio 
of the lateral stability margin to the longitudinal stability 
margin.. 

Corollary 5: The  optimal  value of stability factor of a 

quadruped walking  robot for maximum  stability  margin is a 
equal to one. 

Proof: The distance from q(t) to the nearest boundary  in 
the direction of motion and to the vertical direction are always 
proportional, and according to Definition 16 this value  equals 
a. If a < 1, then S, < S,, therefore, this result is  not 
desired. If a > 1, then S ,  < S,. In general, a > 1 implies 
that W becomes larger (proportional to a), and according to 

E =  (R2- w)1'2 (1 8) 

it follows that E becomes smaller. From (6), S,,, is also 
smaller. Therefore, 01 = 1 is the optimal value of maximizing 
static stability margin of the quardruped. Q. E. D. 

Remark 8: Note that Corollary 5 implies that  in order to 
obtain a static stability margin S with  stabi;ity factor 01 = 1, it 
is necessary to place the foothold  positions  at  some specific 
points. In deed,  Corollary 5 indicates that  in order to 
maximizes stability margin,  it is necessary  that: 1) while  leg 0 
is the transfer leg, the foothold positions of leg 1 and leg 3 are 
on the straight line y = -X + S, where S is the desired static 
stability margin ( S  = S ,  = SL); 2) while leg 2 is  the transfer 
leg, the foothold positions of leg 1 and leg 3 should be on  the 
straight line y = - x  - S; 3) while leg 1 is  the transfer leg, 
the foothold positions  of leg 0 and leg 2 should  be  on the 
straight line y = x + S; and 4) while leg 3 is  the transfer leg, 
the foothold positions  of leg 0 and leg 2 should  be  on  the 
straight line y = x - S. 

Although Corollary 5 characterizes the relation between 
foothold positions that guarantee the  stability margin, this 
relation is  not sufficient to uniquely determine the  exact 
foothold  positions for the supported legs. Since for different W 
(i.e., different lines parallel to the x-axis), one obtains 
different foothold positions. Therefore, it is  necessary to 
formulate the relations between the stability margin S and W, 
the distance in y direction from foothold to reachable inner 
boundary of the leg in  the y direction. Following corollary 
gives the result. 

Corollary 6: The  optimal W that  maximizes static stability 
margin of a quadruped vehicle, which has symmetry structure 
is W = (E - S ) / 3 .  

Proof: Consider the case that  the quadruped is  moving in 
+x direction. Assume leg 0 is the transfer leg.  The stability 
margin S occurs when footholds of leg 1 and leg 3 are at the 
positions 

I x, = - P - A ( s )  X3 = P+A(s) + 2S 
Y l = Q +  W Y3= - Q -  w. and 

respectively. The stability margin  is 

S, =(X, +X3)/2 = S 

and 

Y3Xl-  Y1x3 ( Q  + W ) S  
S, = - - x,  -x, P + A ( S )  + S * 

For 01 = 1, i.e., S, = S ,  = S, it follows that 

Q+ W = P + A ( S ) + S .  
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If P = Q, i.e., symmetry structure, then 

E - S  
3 

W = A ( S ) + S = - .  

Similarly, the same result can also be  derived when leg i (i = 
1,  2, 3) is the transfer leg. 

Remark 9: Intuitively, it may  seem  that  if the four origins 
of the reachable sectors are widely separated (Fig. 8(b)), then 
the quadruped will have  a larger static stability margin than 
that  with the origins of the reachable sector closer to the origin 
(Fig. 8(a)).  However, this is not true. In fact, Corollary 6 
reveals a very interesting property, that  both P and Q have  no 
effect on the stability margin and the stride length. That is to 
say  both Fig. 8(a) and Fig. 8(b) have the same static stability 
margin  and same stride length. This  property gives  the 
designer greater freedom  to  choose the origins of the reachable 
sectors of the leg that guarantee the stability margin and the 
stride length. Indeed, the  only constraints imposed  on the 
origins of the reachable sectors are the following: a) leg 0 (leg 
1) and leg 2 (leg 3) are  symmetrical  about the  point (x = 0, y 
= 0) and  b) leg 0 (leg 1) and leg 3 (leg  2) are  symmetrical 
about the x-axis. 

B. Relationship Between Stability Margin, Height and 
Width 

Given a quadruped walking  vehicle as  shown in Fig. 2, what 
is the relationship that the width W should satisfy in order to 
maximize the stability margin of the gait  subject  to  the 
constraint that each leg is moved within its reachable  region  as 
shown  in Fig. 3. 

Let R,,, denote the maximum radius of reachable sector for 
each  leg.  Then 

R,, = max (1; + 1; + 21213 sin O3 - H 2 )  = ( L  - H 2 )  
(23) 

where 

~ = l ; + l ; + 2 1 ~ 1 ~  sin 03max' (24) 

and 

E=(R2 - v)1 /2=(L-H2-  J 4 B ) 1 / 2 .  
max (25) 

According to Corollary 2, it shows that S,,, = E/4. 
Substituting (26) into (22) yields 

(27) 

Substituting (26) and (27) into (25), we  have 

4s,,, = ( L  - H2 - sia> 112. (28) 

Simple  manipulations yields 

From (25), it is easy to see that Rmin = W. Therefore 

Y 
Y 
4 

(a) (b) 
Fig. 8. Origins of reachable  Sectors. (a) Close to the  origin. (b) Further 

from the  origin.  These  figures  have  the  same  static stability margins  and 
stride  length  as  long as I ,  = I,. 

Equations (29) and (30) reveal how the maximum stability 
margin is related to the height H and  width W .  Intuitively, it 
follows  from (29) that S,,, occurs at H = 0. However, this is 
impossible. In fact, the correct S,,, can  only be  determined by 
taking  the  configuration of the quadruped  shown in Fig. 2 into 
account. Thus  one must seek Rmin and Hmin obtainable from 
the quadruped  to satisfy equations (29) and (30), respectively, 
the S,,, can then  be determined. 

From  Fig. 2, it is  easy to show that 

H =  l3 cos (e2+$,) -12 sin 02 (3 1) 

and 

R=13 sin ( 0 2 + 0 3 ) - 1 2  cos &. (32) 

For the NCTU  Quadruped-1, the dimensions are l3 = 60.0 
cm, l2 = 40.0 cm, lI = 23.5  cm, and e3,,,,, = 30". The 
reachable  values of H and R ,  given by (3 1) and (32), 
respectively, is shown in Fig. 9. The minimum values of R 
and H that satisfy (29)  and (30) can  be  obtained  from  Fig. 9. 
Observed that  in general, to  minimize N requires maximizing 
02, and to  minimize R requires maximizing 02 and  minimizing 
O3 at the same time. Therefore,  one  can start from the lower 
right corner point (0, = - 0.5 rad  and 02 = 0.5 rad) and 
moving along the bottom line of the Fig.  9 (the Rmi,  for H = 
const) to  search the suitable values of H and R that  satisfy (29) 
and (30). In this example, it can  be  found that  when Rmin = 
S,,, = W = 16.25 cm and H = 52 cm, (29) and (30) are 
satisfied. Now, it is  easy to find that the maximum 0 that  the 
quadruped  can  climb  up or walk down is 29.6'. 

Fig. 10  shows how the stride length, the stability margin, 
and the duty factor are related one  another as a function of 0, 
the slope angle of the terrian. From this figure, the required 
stride length and the duty factor that corresponds  to  a regular 
gait  with a specified stability margin  and terrian slope angle 0 
can be obtained. In particular, corresponding to the maximum 
stability margin with S,,, = 16.25 cm, the stride length and 
duty factor when 0 .  = 0" are h = 65  cm and 0 = 1 , 
respectively. 

Remark 10: These results can also be obtained from 
Corollary  2.  Indeed,  from (12), it follows that E = 4S,,, = 
65 cm, and  furthermore,  from (1 1) one obtains @(s) = 1. 
Therefore, A(s) = 0 and h(s) = 4Sma, = 65  cm.  This  shows 
that the graphical method to  determine the gait describing 
above  provides the correct results. 

Note that Figs. 9  and 10 provide a simple and straightfor- 
ward method to  derive regular gaits graphically. Basically, 
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02 

H.60 c o s ( 0 2 + 8 3 )  - 4 0  sine2  (cm) 

R.60 s i n ( e 2 * Q 3 ) + 4 0  case3  (cm) 

Fig. 9 .  The  reachable value of H and R of a leg 

Stride  length cm Stride  length cm 
15 ( 0  duty factor) 

-50(.8) 

0 5 10 15 

Stobiltty  margin  (cm) 

Fig, 10. The relation of  stride length and duty factor with stability margin 
and slope of  the travel plane. 

this graphical method  of deriving gait consists of  two steps: 

Step 1) Determine the maximal static stability margins 
that the quadruped is physicaily accessible. 

Step 2 )  Plot the stride length and  duty factor, given by 
(14) and (15), respectively, as a function of slope 
angle 8 for 0 < S < S,,,,,. 

Based  on the figure obtained from Step 2, the regular gait 
with  any specified static stability margin (in the range 0 < S 
5 S,,,,) for various slope angle can easily be observed. This 
figure is very useful for gait control problems and may turns 
out to  be useful for the leg design of a quadruped walking 
vehicle. The merits of this graphical method is that it 
summarizes all the informations relating the stability margin, 
the stride length, the duty factor, and the terrian slope angle 
into a series of curves. Once these curves has been set up, 
various physically realizable regular gaits can be obtained 
without any further calculations. 

IV. CONCLUSION 

In this paper some of the fundamental problems of gait 
control of a quadruped walking vehicle are discussed. In the 
course of the investigation, the configuration of the con- 
structed NCTU Quadruped-1 is fully taken into consideration. 
Some mathematical relations between the stability margin and 
the stride length are formulated. It is found that the product of 

the duty factor and stride length is equal to the length of the 
boundary of reachable area of the leg.  Thus, once the 
configuration of the quadruped is determined, the relation 
between stride length and duty factor is completely specified. 
Furthermore, the mathematical expression representing the 
relationship between the stability margin, the stride length, 
and duty factor are also formulated. Again, these equations are 
expressed in terms of quantities that specify the configuration 
of the quadruped walking vehicle. From these results, the 
mathematical equation that relates the stability margin, the 
height of the leg, and the width are derived. This result is the 
foundation for the gait selection and control, and  possibly for 
the design of any symmetric quadruped walking vehicle. 
Based  on the derived results, a graphical approach has been 
presented to determine the regular gaits of the quadruped. 
Indeed, by observing Fig. 10-which shows how the stability 
margin, the stride length, and the duty factor are related 
graphically-the regular gaits on even terrian, or the regular 
gaits on constant slope terrian can be obtained, respectively. 
Thus we may conclude that Figs. 9 and 10 summarize all the 
mathematical equations describing the regular gaits of the 
quadruped walking vehicle, and from the point of view  of 
applications, these two figures provide user a simple and 
straightforward way for determining the regular gaits. There- 
fore, this graphical method  may reduce the time required for 
engineers with little knowledge of the walking vehicles to 
understand the gait control problems and, more important, to 
determine with confidence a suitable gait of a quadruped 
walking vehicle. 
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