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產權市場短期套利的探討 

 

學生 : 吳國禎                      指導教授 : 許元春   

 

國立交通大學應用數學系數學建模與科學計算碩士班 

 

摘   要 

 

 

    我們給予了一個在任意短期時間內，以及任意產權市場

會存在套利的充分條件。相較於 Banner 和 Fernholz 在 2008

年所提出的充分條件，我們給的條件更具一般性，然而，另

一方面，我們給的條件也比較難去驗證。儘管如此，我們給

出了一類的財務模型，它們可能不會滿足 Banner 和 Fernholz 

所給出的充分條件，可是卻滿足我們這篇論文所給出的條

件。  
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Some Remarks on Short-term Relative Arbitrage in 

Equity Markets 

 

Student : Guo-Jhen Wu         Advisor : Yuan-Chung Sheu 

 

Institute of Mathematical and Scientific Computing 

National Chiao Tung University 

Hsinchu, Taiwan, R.O.C. 

 

Abstract 

 

We provide a sufficient condition for the existence of relative 

arbitrage over arbitrarily short time horizon in equity markets. 

Compared with the sufficient condition given in Banner & 

Fernholz(2008), our condition is much general, but, on the other 

hand, it is more difficult to check. However, we give a family of  

abstract models which do not satisfy the criteria in Banner &  

Fernholz (2008) but satisfy the criteria here. 
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1 Introduction

In a financial market, there are three major topics for study, that is arbitrage, pricing and
hedging. Arbitrage, in some sense, is to make money without any cost. Simply speaking, if
there are two objects in the market with the same price today, and assume we are very sure
about that which one of them will be cheaper than the other some specific day in the future,
then we can sell the will-be-cheaper one and buy another one today, also, buy the cheaper
one and sell another in the future, in this way, we will earn the price difference between these
two objects without any cost today. Obviously, many people are really interesting about
finding arbitrages in equity markets. Therefore, we may ask that do there exist arbitrages
in any equity market? If not, then under what kind of equity markets do arbitrages exist?
If arbitrages really exist in some equity markets, then we want to know more about how
long can we achieve these arbitrages? a month? or a year? and how can we make these
arbitrages? that is, by what combination of stocks in equity markets?

Pricing is another topic about how to price a derivative financial product with some sort
of function. For example, futures contracts, if I have a deal with you that I will give you
1000 ipad2s next month but you want to pay me right now for some reasons, then how much
should I charge for those ipad2s? Or from your point of view, how much money should you
pay for those ipad2s? Such questions are highly related to another topic — hedging. Since
no matter much money I get from you today, I still have the risk to lose money next month.
For a relative conservative person as me, we don’t want to take a chance on it. Hence, we
would like to ask that whether there some products which are highly correlated to ipad2 so
that we can buy an appropriate combination of them to reduce the possible-loss. In other
words, use the money I have today to make enough money at least to cover the possible-loss
in the future. Furthermore, we may like to know that what are the best combination among
all of them?

There are many theories for the three topics above, the most well-known one is Dynamic
Asset Pricing Theory. In this theory, the market structure is analyzed under strong norma-
tive assumptions with respect to the behavior of market participants. This theory is based
on a market model with existence of equivalent martingale measure(s) and the absence of
arbitrage, so we can only use this theory to answer the topics about pricing and hedging.
Black-Scholes Option Pricing Formula is one of the most famous results among Dynamic
Asset Pricing Theory.

Another recently-developed theory is Stochastic Portfolio Theory. This is a theory con-
structed on a rather general setting. It uses the class of semi-martingales to describe the
stocks in the real markets, and by making some descriptive assumptions to study arbi-
trage, pricing and hedging. The differences between Dynamic Asset Pricing Theory and
Stochastic Portfolio Theory is that the assumptions made in Stochastic Portfolio Theory
are usually some observable properties of the markets, while the assumptions in Dynamic
Asset Pricing Theory are usually made for technical concerns. One of the most powerful
tools of Stochastic Portfolio Theory is portfolio generating function, it is a tool developed
by Fernholz, R.(1999). With this tool and another powerful tool in stochastic analysis —
Itô’s formula, we can construct a class of bounded portfolios whose returns can be decom-
posed into several components with proper characteristics. Also, we can use these portfolios
to investigate the issue of arbitrage for time large enough, or even better, for arbitrarily
time-horizon. Moreover, we can use such tools to understand that what kind of portfolios
can achieve arbitrage. Recently, there are a few works which concerns about arbitrage, and
the conditions from those works may be present in actual market and the corresponding

1



portfolio can be implemented in practical. This theory has been the basis of successful
equity investment strategies for a decade.

The most significant concern of this paper is that under what conditions, we can have
strong arbitrage over any time-horizon. In section 2, we proceed with an introduction to the
standard equity market model that we use, and then we introduce the concepts of investment
strategies, portfolios and arbitrage in an equity market. Also, we mention a few important
quantities corresponding to portfolios which are related to existence of arbitrages. At the
end of this section, we also give some examples which exist an arbitrage opportunity for
time large enough. Then, we introduce a powerful tool for Stochastic Portfolio Theory—
portfolio generating functions, in section 3. With portfolio generating function, we can
derive the master formula, we also give a simple example to show how to use the master
formula to achieve arbitrage. Moreover, we mention some properties of concave functions
in the same section for the later use. Section 4 is the main work of this paper, we gives
a sufficient condition for arbitrarily strong arbitrage, and weaken the sufficient condition
in Banner and Fernholz (2008). As for section 5, we propose an abstract model which
may satisfy the condition for arbitrage given in section 4 but may not satisfy the sufficient
condition in Banner and Fernholz (2008) .

2 Preliminaries

2.1 The Model

On a filtered probability space (Ω,F ,P,F), F = {F(t)}0≤t<∞ with the usual conditions, that
is, right-continuity and augmentation by P-negligible sets. Also, we assume F(0) = {∅,Ω}
modulo P. Consider the following market model :

d logXi(t) = γi(t)dt+
n∑
k=1

σik(t)dWk(t) , i = 1, · · · , n . (1)

Here the vector-valued process γ(t) = (γ1(t), ..., γn(t)) is the growth rates process for the
stocks, and the matrix-valued process σ(t) = [σik(t)]1≤i,k≤n is called the volatility of the
stocks in the market. The covariance process of the stocks in the market is the matrix-valued
process α(t) = σ(t)σ′(t) with elements

αij(t) =
n∑
k=1

σik(t)σjk(t) =
d

dt
〈logXi, logXj〉 (t), 1 ≤ i, j ≤ n. (2)

By Itô’s formula, the market model can be formulated as

dXi(t) = Xi(t)

(
βi(t)dt+

n∑
k=1

σik(t)dWk(t)

)
, i = 1, · · · , n (3)

where

βi(t) = γi(t) +
1

2
αii(t), for all t > 0 (4)

is the mean rate of return for the stock i, for each i = 1, · · · , n.
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Remark 1. (A)A special case of (1) is the so-called volatility-stabilized market given by

d logXi(t) =
δ

2µi(t)
dt+

1√
µi(t)

dWi(t) , i = 1, · · · , n (5)

where δ ≥ 0 is a constant and µi(t) = Xi(t)/
∑n

j=1Xj(t), 1 ≤ i ≤ n.
This model captures the property in real markets that the smaller stocks are more likely
to have greater growth rates and volatilities than the larger stocks. Therefore, it is not
surprising that each stock in such market fluctuates heavily. See Fernholz and Karatzas
(2005) for details.
(B)Another case of (1) is called Atlas model given by

d logXi(t) = ng1{Xi(t)=Xpt(n)(t)}
+ σdWi(t) , i = 1, · · · , n (6)

where g > 0 and σ are constants. (Here pk(t) is the name of stock which rank kth position
of all stocks at time t; If there are stocks with the same value, then sort them by their
indexes.) This model captures the characteristic in the real market that smaller stocks
should have higher growth rates, by assigning zero growth rate to all the stocks except the
smallest one.(For details, see Banner, Fernholz and Karatzas(2005). )

2.2 Investment Strategies and Portfolios

Now, consider a model with a money-market dB(t) = B(t)r(t)dt, B(0) = 1, and consider
a small investor whose actions in the market cannot affect market prices. This investor
decides, at each time t, that proportion πi(t) of current wealth Z(t) to invest in the ith
stock, i = 1, · · · , n; the proportion π0(t) := 1 −

∑n
i=1 πi(t) gets invested in the money

market. Thus, given a strategy π(·) and initial capital z ∈ (0,∞), the corresponding wealth
process Zz,π(·) for this strategy satisfies :

dZz,π(t)

Zz,π(t)
=

n∑
i=1

πi(t)
dXi(t)

Xi(t)
+ π0(t)

dB(t)

B(t)
= π′(t)[(β(t) + r(t))dt+ σ(t)dW (t)] .

Zz,π(0) = z

(7)

We shall say π(·) is an investment strategy, and write π(·) ∈ H, if π : [0,∞)× Ω→ Rn
is a F-progressively measurable process which satisfies for each T ∈ (0,∞)∫ T

0

(
|π′(t)(β(t) + r(t))|+ π′(t)α(t)π(t)

)
dt <∞ , a.s. (8)

An investment strategy π(·) ∈ H with
∑n

i=1 πi(t, ω) = 1 for all (t, ω) ∈ [0,∞) × Ω will
be called a portfolio. A portfolio never invests in the money market and never borrows from
it. And we shall say a portfolio π(·) is bounded if there exist a constant M > 0 such that
||π(t)|| ≤ M , for all (t, ω) ∈ [0,∞)× Ω. We shall call a portfolio long-only, if it never sells
any stock short. Clearly, a long-only portfolio is also bounded.

Remark 2. We will write Zπ(t) for Zz,π(t), if Zz,π(0) = 1.

Remark 3. An important long-only portfolio is the market portfolio; this invests in all
stocks in proportion to their relative weights,

µi(t) =
Xi(t)

X(t)
, 1 ≤ i ≤ n, (9)
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where X(t) := X1(t) + · · ·+Xn(t).Clearly, we have Zz,µ(·) = zX(·)/X(0) and the resulting
vector process µ(·) = (µ1(·), · · · , µn(·)) of market weights takes values in the positive simplex

∆n = {x ∈ Rn : x1 + · · ·+ xn = 1; 0 < xi < 1, i = 1 · · · , n} .

For a portfolio π(·) with initial capital z > 0, since a portfolio never invests in the
money market and never borrows from it( i.e. π0(·) ≡ 0 ), we can find by (7) that the
corresponding wealth process for this portfolio is the solution of the following SDE :

dZz,π(t)

Zz,π(t)
=

n∑
i=1

πi(t)
dXi(t)

Xi(t)
= π′(t)[β(t)dt+ σ(t)dW (t)] .

Zz,π(0) = z

(10)

or, equivalently,

Zz,π(t) = z exp

{∫ t

0

(
π′(s)β(s)− 1

2
π′(s)α(s)π(s)

)
ds+

∫ t

0
π′(s)σ(s)dW (s)

}
. (11)

By analogy with (1) we can write the SDE (10) as

d logZz,π(t) = γπ(t)dt+
n∑
k=1

σπk(t)dWk(t) , Zz,π(0) = z , (12)

or, equivalently,

Zz,π(t) = z exp

{∫ t

0
γπ(s)ds+

n∑
k=1

∫ t

0
σπk(s)dWk(s)

}
, 0 ≤ t <∞. (13)

Here

σπk(t) :=
n∑
i=1

πi(t)σik(t) for k = 1, · · · , n (14)

are the volatility coefficients associated with the portfolio π(·), and

γπ(t) :=

n∑
i=1

πi(t)γi(t) + γ∗π(t) (15)

is the growth rate of the portfolio π(·), where

γ∗π(t) :=
1

2

 n∑
i=1

πi(t)αii(t)−
n∑
i=1

n∑
j=1

πi(t)αij(t)πj(t)

 (16)

is the excess growth rate of the portfolio π(·).

For an arbitrary portfolio π(·), and with ei denoting the ith unit vector in Rn, let us
introduce the quantities

τπij(t) :=

n∑
k=1

(σik(t)− σπk(t))(σjk(t)− σπk(t)) (17)

= (π(t)− ei)′α(t)(π(t)− ej) = αij(t)− απi(t)− απj(t) + αππ(t) (18)
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for 1 ≤ i, j ≤ n, and set

απi(t) :=
n∑
j=1

αij(t)πj(t) , αππ(t) :=
n∑
i=1

n∑
j=1

αij(t)πi(t)πj(t) . (19)

We shall call the matrix-valued process τπ(·) = (τπij(·))1≤i,j≤n the process of individual
stocks’ covariance relative to the portfolio π(·). In fact, we have

τπij(t) =
d

dt

〈
log

Xi

ZXi(0),π
, log

Xj

ZXj(0),π

〉
(t), 1 ≤ i, j ≤ n. (20)

It satisfies the equations

n∑
j=1

τπij(t)πj(t) = 0, i = 1, · · · , n. (21)

Also we have

γ∗π(t) =
1

2

 n∑
i=1

πi(t)τ
η
ii(t)−

n∑
i=1

n∑
j=1

πi(t)πj(t)τ
η
ij(t)

 , (22)

for any portfolio η. In particular, when η = π, we have

γ∗π(t) =
1

2

n∑
i=1

πi(t)τ
π
ii(t). (23)

Remark 4. Since
〈
log(Xi/ZXi(0),π)

〉
(t) is a.s. nondecreasing,

τπii(t) ≥ 0, t ∈ [0,∞), a.s.

2.3 Relative Arbitrage

Given any two investment strategies π and ρ, we shall say that π is an arbitrage relative to
ρ over [0, T ], if we have

P (Z1,π(T ) ≥ Z1,ρ(T )) = 1 and P (Z1,π(T ) > Z1,ρ(T )) > 0. (24)

We call such relative arbitrage strong, if

P (Z1,π(T ) > Z1,ρ(T )) = 1. (25)

Existence of Arbitrage Relative to the Market Portfolio.

(A) If there exists a real constant h > 0 such that

γ∗µ(t) =
1

2

 n∑
i=1

µi(t)αii(t)−
n∑
i=1

n∑
j=1

µi(t)µj(t)αij(t)

 ≥ h, ∀ 0 ≤ t <∞ (26)

holds almost surely, it can be shown that, for a sufficiently large constant c > 0, the long-
only portfolio

πi(t) =
µi(t)(c− logµi(t))∑n
j=1 µj(t)(c− logµj(t))

, i = 1, · · · , n (27)
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is a strong arbitrage relative to the market portfolio µ over any time-horizon [0, T ] with
T > (2 log n)/h. (See Fernholz and Karatzas (2009) Example 11.1 for a proof.) Note also
that if the market is nondegenerate and diverse, then (26) holds. (Proposition 2.2.2 of
Fernholz (2002).)

(B) If there exists a real constant h > 0 such that

(µ1(t) · · ·µn(t))1/n

 n∑
i=1

αii(t)−
1

n

n∑
i=1

n∑
j=1

αij(t)

 ≥ h, ∀ 0 ≤ t <∞, (28)

holds almost surely, then for a sufficiently large constant c > 0, the long-only portfolio

πi(t) =
c

c+ (µ1(t) · · ·µn(t))1/n
1

n
+

(µ1(t) · · ·µn(t))1/n

c+ (µ1(t) · · ·µn(t))1/n
µi(t) (29)

is a strong arbitrage relative to the market portfolio µ over any time-horizon [0, T ] with
T > 2n1−(1/n)/h. (See Fernholz and Karatzas (2009) Example 11.2 for a proof, we will also
give a proof in latter context.)

(C) Suppose there exists a continuous, strictly increasing function Γ : [0,∞)→ [0,∞) with
Γ(0) = 0, Γ(∞) =∞ and such that

Γ(t) ≤
∫ t

0
γ∗µ(s)ds <∞, for all 0 ≤ t ≤ ∞ (30)

holds almost surely, then, for a sufficiently large constant c > 0, the portfolio

πi(t) =
cµi(t)− µi(t) logµi(t)

c−
∑n

j=1 µj(t) logµj(t)
, i = 1, · · · , n (31)

is a strong arbitrage relative to the market portfolio µ over any time-horizon [0, T ] with
T > T ∗, where

T ∗ := Γ−1

− n∑
j=1

µj(0) logµj(0)

 . (32)

(See Fernholz and Karatzas (2009) Remark 11.4 .)
Open Question: Does any one of the sufficient condition above guarantee the existence of
strong relative arbitrage opportunities over arbitrary time-horizons?

3 Some Useful Properties

3.1 Relative Return Process

It is frequently of interest to measure the performance of stocks or portfolios relative to a
given benchmark in the market portfolio, consisting of all the shares of all the stocks in the
market.

For any two portfolios π and η, the relative return process of π versus η is defined by

log

(
Zπ(t)

Zη(t)

)
, t ∈ [0,∞).

6



Then, by (1) and (12), we have

d logZπ(t) =
n∑
i=1

πi(t)d logXi(t) + γ∗π(t)dt, a.s., (33)

for t ∈ [0,∞), so we also have

d log

(
Zπ(t)

Zη(t)

)
=

n∑
i=1

πi(t)d log

(
Xi(t)

Zη(t)

)
+ γ∗π(t)dt, a.s., (34)

for t ∈ [0,∞).

In particular, when η = µ, the market portfolio, this equation can be expressed in an
especially useful form :

d log

(
Zπ(t)

Zµ(t)

)
=

n∑
i=1

πi(t)d logµi(t) + γ∗π(t)dt, a.s., (35)

for t ∈ [0,∞).

3.2 Portfolio Generating Functions

Functionally generated portfolios were introduced by Fernholz, in Fernholz (1999). For this
class of portfolios one can derive a decomposition of their relative return which proves useful
in the construction and study of arbitrages relative to the market. This decomposition is
so powerful because it does not involve stochastic integrals, and opens the possibility for
making probability-one comparisons over given fixed time-horizon.

Specifically speaking, given S a positive C2 function defined on some open neighborhood
U of ∆n such that for all i = 1, · · · , n, x 7→ xiDi logS(x) is bounded on U . Consider also
the portfolio π(·) with weights

πi(t) =

Di logS(µ(t)) + 1−
n∑
j=1

µj(t)Dj logS(µ(t))

µi(t), 1 ≤ i ≤ n. (36)

We call this the portfolio generated by S(·). It can be shown that the relative wealth process
of the portfolio, with respect to the market, is given by the master formula

log

(
Zπ(T )

Zµ(T )

)
= log

(
S(µ(T ))

S(µ(0))

)
+

∫ T

0
Θ(t)dt 0 ≤ T <∞, (37)

where the so-called drift process Θ(·) is given by

Θ(t) =
−1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τ
µ
ij(t). (38)

(For a proof, see Fernholz(2002) p.46)

Remark 5. The generated portfolio weights depend only on the market weights µ1(t), · · · , µn(t),
not on the covariance structure of the market. Hence, such portfolio can be implemented
easily.
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Remark 6. Suppose the function S(·) is concave, or, more precisely, its Hessian D2S(x) =
(D2

ijS(x))1≤i,j≤n has at most one positive eigenvalue for each x ∈ U and, if a positive
eigenvalue exists, the corresponding eigenvector is orthogonal to ∆n. Then the generated
portfolio corresponding to this S is long-only with the drift term Θ(·) being non-negative; if
rank(D2S(x)) > 1 holds for each x ∈ U , then Θ(·) is positive.

Here are a few examples of simple generating functions and the portfolios they generate.

1. S(x) ≡ w, a positive constant, generates the market portfolio with Θ(·) ≡ 0;

2. S(x) = w1x1 + · · ·+wnxn generates the passive portfolio that buys at time t = 0, and
holds up until time t = T , a fixed number of shares wi in each stock i = 1, · · · , n( the
market portfolio corresponds to the special case w1 = · · · = wn = w of equal numbers
of shares across assets );

3. S(x) = xp11 · · ·x
pn
n , where p1, · · · , pn are constants and p1 + · · ·+pn = 1, generates the

constant-weighted portfolio with weights πi(t) = pi and dΘ(t) = γ∗π(t)dt. Indeed, for
this generating function, we have

logS(x) =
n∑
i=1

pi log xi ⇒ Di logS(x) =
pi
xi
⇒

n∑
j=1

µj(t)Dj logS(µ(t)) =
n∑
j=1

pj = 1

and

DiS(x) =
pi
xi
S(x), DiiS(x) =

pi(pi − 1)

x2i
S(x), DijS(x) =

pipj
xixj

S(x), for i 6= j.

Therefore,

πi(t) =

(
pi
µi(t)

+ 1− 1

)
µi(t) = pi,

and

dΘ(t) =
−1

2S(µ(t))

 n∑
i=1

pi(pi − 1)S(µ(t))τµii(t) +
∑

1≤i,j≤n,i6=j
pipjS(µ(t))τµij(t)

 dt

=
−1

2

 n∑
i=1

n∑
j=1

pipjτ
µ
ij(t)−

n∑
i=1

piτ
µ
ii(t)

 dt

=
1

2

 n∑
i=1

πiτ
µ
ii(t)−

n∑
i=1

n∑
j=1

πiπjτ
µ
ij(t)

 dt = γ∗π(t)dt.

(In the last line, we use equation (22).)

4. The modified entropy function Hc(x) = c −
∑n

i=1 xi log xi generates the portfolio in
(31). The drift process for this portfolio is dΘ(t) = γ∗µ(t)/Hc(µ(t))dt. Since c <
Hc(x) ≤ c + log n, for x ∈ ∆n, similar argument as in 3 show that the portfolio is a
relative arbitrage to the market portfolio over sufficiently large time.
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Proof of (B) in section 2.3 : Consider the equally weighted portfolio ϕi(·) ≡ 1/n,
i = 1 · · · , n, then condition (28) can be written as

(µi(t) · · ·µn(t))1/nγ∗ϕ(t) ≥ h

2n
.

From 3 above, we know this portfolio is generated by S(x) = (x1 . . . xn)1/n. For this S(·)
and any c > 0, consider another portfolio

ϕci (t) =
S(µ(t))

c+ S(µ(t))
· 1

n
+

c

c+ S(µ(t))
· µi(t), i = 1, · · · , n.

It is not hard to see that this portfolio is generated by Sc(x) = c+ S(x), and with n−1/n ≥
S(x) ≥ 0, we can derive the following equation

log

(
Zϕc(T )

Zµ(T )

)
= log

(
c+ S(µ(T ))

c+ S(µ(0))

)
+

∫ T

0

S(µ(t))γ∗ϕ(t)

c+ S(µ(t))
dt

≥ log

(
c

c+ n−1/n

)
+

hT

2n(c+ n−1/n)

Moreover,

log

(
c

c+ n−1/n

)
+

hT

2n(c+ n−1/n)
> 0⇐⇒ T >

2n

h
(c+ n−1/n) log

(
c+ n−1/n

c

)
,

and

lim
c→∞

(c+ n−1/n) log

(
c+ n−1/n

c

)
= lim

c→∞

log
(
c+n−1/n

c

)
1

c+n−1/n

= lim
c→∞

c
c+n−1/n · (−n

−1/n

c2
)

−1
(c+n−1/n)2

= lim
c→∞

n−1/n(c+ n−1/n)

c
= n−1/n.

Thus, if T > 2n1−(1/n)/h, then there exists a c > 0 large enough such that the corresponding
portfolio ϕc is a strong arbitrage relative to the market.

�

3.3 Concave Functions

We list some important results here which will be used in the later context.

Lemma 1. If f is concave on [A,B], and a1, · · · , am ∈ [A,B], then

m∑
i=1

f(ai) ≤ mf(
1

m

m∑
i=1

ai). (39)

Proof. Since f is concave on [A,B], for any λ ∈ (0, 1) and a1, a2 ∈ [A,B],

(1− λ)f(a1) + λf(a2) ≤ f ((1− λ)a1 + λa2) , (40)

9



by induction, we have

m∑
i=1

wif(ai) ≤ f

(
m∑
i=1

wiai

)
, (41)

where ai ∈ [A,B] for all i = 1, · · · , n and w = (w1, · · · , wn) ∈ ∆n.
Finally, replace wi with 1

m for each i, it follows the result.

Lemma 2. Suppose that f is concave on [A,B], and a1, · · · , am ∈ [A,B] are chosen such
that

∑m
i=1 ai − (m− 1)A ≤ B. Then

(m− 1)f(A) + f

(
m∑
i=1

ai − (m− 1)A

)
≤

m∑
i=1

f(ai). (42)

Proof. For any a1, · · · , am ∈ [A,B] with
∑m

i=1 ai − (m− 1)A ≤ B, define

λj =
aj −A∑m

i=1 ai −mA
=

aj −A
(a1 −A) + · · ·+ (am −A)

It is straightforward to check that 0 ≤ λj ≤ 1 and that

(1− λj)A+ λj

(
m∑
i=1

ai − (m− 1)A

)
= aj .

Since
∑m

i=1 ai − (m− 1)A ∈ [A,B] and f is concave, we have

(1−λj)f(A)+λjf

(
m∑
i=1

ai − (m− 1)A

)
≤ f

(
(1− λj)A+ λj

(
m∑
i=1

ai − (m− 1)A

))
= f(aj).

Summing these inequalities form j = 1 to j = m gives

(m− 1)f(A) + f

(
m∑
i=1

ai − (m− 1)A

)
≤

m∑
i=1

f(ai).

Lemma 3. Suppose that f is concave on [0, 1]. For x = (x1, · · · , xn) ∈ ∆n, we have

(n− 1)f(0) + f(1) ≤ (n− 1)f
(
x(n)

)
+ f

(
1− (n− 1)x(n)

)
≤

n∑
i=1

f(xi), (43)

and

n∑
i=1

f(xi) ≤ f
(
x(n)

)
+ (n− 1)f

(
1− x(n)
n− 1

)
≤ nf

(
1

n

)
. (44)

where x(n) = min{x1, · · · , xn}.
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Proof. For x = (x1, · · · , xn) ∈ ∆n, without loss of generality, we may assume x(n) = xn.
By Lemma 1 with A = 0, B = 1, m = n− 1 and ai = xi for i = 1, · · · ,m , we have

n∑
i=1

f(xi) = f (xn)+
n−1∑
i=1

f(xi) ≤ f (xn)+(n−1)f

(
1

n− 1

n−1∑
i=1

xi

)
= f (xn)+(n−1)f

(
1− xn
n− 1

)
.

Reapplying Lemma 1, with m = n, a1 = · · · = an−1 = 1−xn
n−1 , and an = xn, then we have

f (xn) + (n− 1)f

(
1

n− 1

n−1∑
i=1

xi

)
≤ nf

(
1

n

[
xn + (n− 1)

1

n− 1

n−1∑
i=1

xi

])
= nf

(
1

n

)
.

Hence,

n∑
i=1

f(xi) ≤ f (xn) + (n− 1)f

(
1− xn
n− 1

)
≤ nf

(
1

n

)
. (45)

On the other hand, by Lemma 2 with m = n, A = xn, B = 1, and ai = xi, for
i = 1, · · · , n, we find

(n− 1)f (xn) + f (1− (n− 1)xn) = (n− 1)f (xn) + f

(
n∑
i=1

xi − (n− 1)xn

)
≤

n∑
i=1

f(xi).

Reapplying Lemma 2 with A = 0, B = 1, m = n, a1 = · · · = an−1 = xn and an =
1− (n− 1)xn,then

(n− 1)f(0) + f(1) ≤ (n− 1)f (xn) + f (1− (n− 1)xn) .

Hence,

(n− 1)f(0) + f(1) ≤ (n− 1)f (xn) + f (1− (n− 1)xn) ≤
n∑
i=1

f(xi). (46)

Remark 7. For any r ∈ (0, 1/n], obviously, 1 − (n − 1)r ≥ r, then choose x = (1 − (n −
1)r, r, · · · , r) ∈ ∆n, x(n) = r and by Lemma 3, we have

(n− 1)f(0) + f(1) ≤ (n− 1)f(r) + f (1− (n− 1)r) ≤
n∑
i=1

f(xi).

and
n∑
i=1

f(xi) ≤ f (r) + (n− 1)f

(
1− r
n− 1

)
≤ nf

(
1

n

)
.

4 Main Results

We say that a bounded portfolio π is a strong relative arbitrage opportunity over the time
horizon [0, T ], if

P (Z1,π(T ) > Z1,µ(T )) = 1.
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Proposition 1. There exists a strong relative arbitrage opportunity over any time horizon
[0, T ] in any market model of the form (1) satisfying the following conditions :

(A) There exists a positive differentiable function l defined on [0, 1n ], such that

τµm(t)m(t)(t) ≥ l(µm(t)(t)), for all t ≥ 0

almost surely, where m(t) denotes the index of the stock of minimum weights at time t,
namely, µm(t)(t) = min{µ1(t), · · · , µn(t)}.

(B) For this l(·), there exists a family of C3 functions F = {fα}α∈I , where I is some
nonempty index set, such that
(a) fα(x) > 0, ∀x ∈ (0, 1] and fα(0) = 0 for any α ∈ I.
(b) xf ′α(x) is bounded on (0, 1) for each α ∈ I.
(c) f ′α(x) ≥ 0 for all x ∈ (0, 1) and α ∈ I.
(d) f ′′α(x) < 0 for all x ∈ (0, 1) and α ∈ I.
(e) d

dx [−f ′′α(x)x2l(x)] ≤ 0 for all x ∈ (0, 1/n) and α ∈ I.
(f) For each T > 0, there exist β ∈ I, such that∫ 1

n

0

f ′β(x)

−f ′′β (x)x2l(x)
dx ≤ T.

Proof. Given any T > 0, we want to find a strong relative arbitrage to the market portfolio

over the time horizon [0, T ], that is, find a bounded portfolio π, such that log
(
Zπ(T )
Zµ(T )

)
> 0

almost surely.

Consider S(x) = S(x1, · · · , xn) = f(x1)+ · · ·+f(xn) with f ∈ F . Since f satisfies (B.a)
and (B.b) so that S satisfies the statements in section 3.2. Apply the master formula to
this S, it follows that

log

(
Zπ(T )

Zµ(T )

)
= logS(µ(T ))− logS(µ(0)) +

∫ T

0

1

2S(µ(s))

n∑
i=1

−f ′′(µi(s))µ2i (s)τ
µ
ii(s)ds (47)

The reason we consider S(x) = f(x1) + · · · + f(xn) is that with S being this form, we
can have DijS(·) = 0, for i 6= j. If DijS(·) 6= 0 for some i 6= j, then we have to deal with
the term τµij(t), for i 6= j — which may be both positive and negative. It will make the
whole estimation much harder.

Moreover, even though logS(µ(T )) − logS(µ(0)) may be negative, but by Remark 4
τµii(t) > 0, for all t > 0, and we know f ′′ < 0 from (B.d); these facts ensure that the last
term of (47) is always positive, the question is that does this positive term large enough to
offset the negative part.

From (B.d), we also know that f is a convex function, with this observation, we can
use the convexity to give estimations to f(x1) + · · ·+ f(xn), or S(x). The upper bound is
well-known, as for the lower bound is a important step to this proof. Combine (47) with
upper bound (45) and lower bound (46), we have

log

(
Zπ(T )

Zµ(T )

)
≥ logS(µ(T ))− logS(µ(0)) +

∫ T

0

1

2S(µ(s))

(
−f ′′(ys)

)
τµm(s)m(s)(s)y

2
sds

≥ log [(n− 1)f(yT ) + f(1− (n− 1)yT )]− log

(
nf

(
1

n

))
+

∫ T

0

−f ′′(ys)τµm(s)m(s)(s)y
2
s

2
[
f(ys) + (n− 1)f

(
1−ys
n−1

)]ds,
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where ys = µ(n)(s).

From (A), we know that there exist a positive function l defined on [0, 1n ], such that

τµm(t)m(t)(t) ≥ l(µm(t)(t)) = l(yt), for all t ≥ 0

almost surely.

It follows that

log

(
Zπ(T )

Zµ(T )

)
≥ log [(n− 1)f(yT ) + f(1− (n− 1)yT )]−log

(
nf

(
1

n

))
+

∫ T

0

−f ′′(ys)l(ys)y2s
2
[
f(ys) + (n− 1)f

(
1−ys
n−1

)]ds

= S1(yT )− log

(
nf

(
1

n

))
+

∫ T

0
Θ1(ys)ds, (48)

where

S1(x) = log [(n− 1)f(x) + f(1− (n− 1)x)] ,

Θ1(x) =
−f ′′(x)l(x)x2

2
[
f(x) + (n− 1)f

(
1−x
n−1

)] .

Next, consider the question : given T > t0 > 0, and f as above, does there exist a
deterministic function h(·) such that, for all t ∈ [t0, T ],

S1(h(t)) +

∫ t

t0

Θ1(s)ds = log

(
nf

(
1

n

))
,

h(t0) =
1

n
.

(49)

If so, what is the connection between h(t) and yt ?

To answer these questions, we assume first that such a function h(·) exist, then, differ-
entiate the first equation of (49) with respect to t, we find

0 =
d

dt

[
S1(h(t)) +

∫ t

t0

Θ1(h(s))ds

]
= S′1(h(t))h′(t) + Θ1(h(t)) ,

Moreover, if the function h(t) is monotone, and let g(t) be the inverse function of h(t), then
by Inverse Function Theorem, we have

g′(h(t)) =
1

h′(t)
= − S

′
1(h(t))

Θ1(h(t))
⇒ g′(x) = − S

′
1(x)

Θ1(x)
, (50)

Combine with the initial condition h(t0) = 1
n , or g( 1

n) = t0, we can derive

g(x) = t0 +

∫ x

1
n

− S
′
1(r)

Θ1(r)
dr . (51)

Conversely, if g(·) is defined as above, and g is a continuous monotone function, then define
h = g−1, h will be a solution of (49). Therefore, here comes another question — when is g
monotone ? Since f ′′(x) < 0, f(x) > 0 and l(x) > 0, for x ∈ (0, 1/n], it is not hard to see
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that Θ1(x) > 0, and S′1(x) > 0, for x ∈ (0, 1/n], it follows that g(x) is decreasing on [0,1/n].
It remains to check g(0) <∞.

To see g(0) is well defined, note that by choosing f properly, (B.c), (B.f) and Remark
7 implies that

g(0) := t0 +

∫ 0

1
n

− S
′
1(r)

Θ1(r)
dr

= t0 +

∫ 1
n

0

(n− 1)f ′(r)− (n− 1)f ′(1− (n− 1)r)

(n− 1)f(r) + f(1− (n− 1)r)

2
(
f(r) + (n− 1)f

(
1−r
n−1

))
−f ′′(r)l(r)r2

dr

≤ t0 +

∫ 1
n

0

(n− 1)f ′(r)

f(1)

2nf
(
1
n

)
−f ′′(r)l(r)r2

dr

≤ t0 + 2n(n− 1)

∫ 1
n

0

f ′(r)

−f ′′(r)l(r)r2
dr <∞.

Hence, h is a continuous decreasing function defined on [t0, g(0)] with h(t0) = 1
n and

h(g(0)) = 0.

Now, given t0 = T/2, by (B.6), we may assume this f satisfies∫ 1
n

0

f ′(r)

−f ′′(r)l(r)r2
dr ≤ T

4n(n− 1)
.

This implies g(0) ≤ T . Then, define a stopping time η as

η = inf{t ≥ t0|yt > h(t)} , (52)

Note that t0 ≤ η ≤ g(0) ≤ T a.s., the fact is easy to observe from the path behavior, and
by the path continuity, we have yτ = h(τ).

With this stopping time η, define a corresponding portfolio π̃(·) by setting

π̃(t) =


π(t), t < η,

µ(t), t ≥ η.
(53)

(48)⇒ log

(
Zπ̃(T )

Zµ(T )

)
= log

(
Zπ(η)

Zµ(η)

)
≥ S1(yη)− log

(
nf

(
1

n

))
+

∫ η

0
Θ1(ys)ds

= S1(h(η))− log

(
nf

(
1

n

))
+

∫ t0

0
Θ1(ys)ds+

∫ η

t0

Θ1(ys)ds

It remains to connect h(t) with yt, the key step is to choose f such that Θ1(x) is
decreasing on [0, 1/n], if we can do this, then combine with (49), we have

log

(
Zπ̃(T )

Zµ(T )

)
= S1(h(η))− log

(
nf

(
1

n

))
+

∫ t0

0
Θ1(ys)ds+

∫ η

t0

Θ1(ys)ds

≥ S1(h(η))− log

(
nf

(
1

n

))
+

∫ t0

0
Θ1

(
1

n

)
ds+

∫ η

t0

Θ1(h(s))ds

= t0Θ1

(
1

n

)
=
T

2
Θ1

(
1

n

)
> 0.
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Hence, for any T > 0, a strong relative arbitrage opportunity exists over the time horizon
[0, T ].

To check that Θ1(·) is decreasing, observe that the denominator of Θ1(·) is increasing,
and by (B.e), the numerator of Θ1(·) is decreasing, then Θ1(·) is indeed decreasing.

Remark 8. η defined in (52) is a stopping time since yt = µ(n)(t) is a continuous adapted
process and h(t) is a deterministic continuous function, moreover, F is a right-continuous
filtration. With these facts, for each t ≥ 0, we have

{η < t} =
⋃

t0≤s<t,s∈Q
{ys > h(s)} ∈ F(t).

This implies that η is a stopping time. Furthermore, for the reason that η is a stopping
time, π̃ defined in (53) is indeed a portfolio.

Theorem 1. For any T > 0, a strong relative arbitrage opportunity exists over the time
horizon [0, T ] in any market of the form (1) satisfying the condition

τµm(t)m(t)(t) ≥
C

µpm(t)(t)
, for all t > 0 (54)

almost surely, where C > 0 is a constant and p is a constant with 0 < p ≤ 1.

Proof. Consider l(x) = Cx−p and the family of functions {fα(·)}α≥1 defined by the formula

fα(y) =


1

p

∫ ∞
−p log y

e−rrαdr, if 0 < y ≤ 1,

0, if y = 0.

Then we have
τµm(t)m(t)(t) ≥ l(µm(t)(t)), for all t ≥ 0

almost surely. Also,
(a) fα(x) > 0, for all x ∈ (0, 1] and fα(0) = 0, for any α ≥ 1.
(b) xf ′α(x) = xp(−p log x)α for all x ∈ (0, 1) and α ≥ 1
By L’Hôpital’s rule

lim
x→0

xp(− log x)α = lim
x→0

(− log x)α

x−p
= lim

x→0

α(− log x)α−1

px−p
= · · · = 0

Hence xf ′α(x) is bounded on (0, 1).
(c) f ′α(x) = xp−1(−p log x)α > 0, for all x ∈ (0, 1) and α ≥ 1. (d) For any α ≥ 1,

f ′′α(x) =
d

dx

[
xp−1(−p log x)α

]
= (p− 1)xp−2(−p log x)α + xp−1α(−p log x)α−1(−px−1)
= (p− 1)xp−2(−p log x)α − pxp−2α(−p log x)α−1 < 0, for all x ∈ (0, 1).

(e) For any α ≥ 1,

d

dx
[−f ′′α(x)x2l(x)] =

d

dx
[−f ′′α(x)Cx2−p]

=
d

dx

[
C(1− p)(−p log x)α + Cpα(−p log x)α−1

]
= −C(1− p)pαx−1(−p log x)α−1 − Cp2α(α− 1)x−1(−p log x)α−2 ≤ 0,
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for all x ∈ (0, 1).
(f) Observe that

−f ′′α(x)x2l(x) = C(1− p)(−p log x)α + Cpα(−p log x)α−1 ≥ Cpα(−p log x)α−1.

Also, f ′α(x) > 0 for all x ∈ (0, 1) and α ≥ 1, these imply

f ′α(x)

−f ′′α(x)x2l(x)
≤ f ′α(x)

Cpα(−p log x)α−1
=

xp−1(−p log x)α

Cpα(−p log x)α−1
=

1

Cpα
xp−1(−p log x),

for all x ∈ (0, 1).
Moreover, ∫ 1

n

0

f ′α(x)

−f ′′α(x)x2l(x)
dx ≤

∫ 1
n

0

1

Cpα
xp−1(−p log x)dx

let xp = y

=

∫ n−p

0

1

Cp2α
(− log y)dy

=
1

Cp2α
(−y log y + y)|n−p

0

=
1

Cp2α

p log n

np
.

Hence, for each T > 0, choose

β =

⌈
1

Cp2T

p log n

np

⌉
≥ 1,

then ∫ 1
n

0

f ′β(x)

−f ′′β (x)x2l(x)
dx ≤ T.

Remark 9. Propositions 3.1 and 3.8 of Fernholz and Karatzas (2005) state that strong
relative arbitrage opportunities exist over long enough time horizons in any market satisfying
the condition

Γ(t) ≤
∫ t

0
γ∗µ,p(s)ds <∞, a.s. (55)

for some p > 0 and continuous, strictly increasing function Γ : [0,∞) → [0,∞) with
Γ(0) = 0 and Γ(∞) = ∞, where γ∗µ,p(·) is the generalized excess growth rate of the market
and defined as

γ∗µ,p(t) =
1

2

n∑
i=1

(µi(t))
pτµii(t).

For markets that satisfying (54) for some p ∈ (0, 1], we have

γ∗µ,p(t) =
1

2

n∑
i=1

(µi(t))
pτµii(t) ≥

1

2
(µm(t)(t))

pτµm(t)m(t)(t) ≥
C

2
,

it follows that ∫ t

0
γ∗µ,p(s)ds ≥

Ct

2
, a.s.
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Hence, we have a long-term strong relative arbitrage.

Conversely, if we have the stronger condition

γ∗µ,p(t) ≥ C ∀ t, a.s., (56)

for some p ∈ (0, 1], then for n = 2, by (21) we have µ21(t)τ
µ
11(t) = µ22(t)τ

µ
22(t). Without loss

of generality, we may assume µ2(t) ≥ µ1(t), it follows that

µp1(t)τ
µ
11(t) ≥

1

2

[
µp1(t) +

(
µ1(t)

µ2(t)

)2−p
µp1(t)

]
τµ11(t) =

1

2
(µp1(t)τ

µ
11(t) + µp2(t)τ

µ
22(t)) ≥ C.

Therefore, the stronger condition (56) leads to short-term relative arbitrage for n = 2, but
we are still unable to show that short-term relative arbitrage exist for n ≥ 3 under condition
(56).

Remark 10. Our sufficient condition (54) is weaker than that in Banner and Fernholz
(2008). In fact in the next section, we provide a market model which may not satisfy the
sufficient condition in Banner and Fernholz (2008). However, it satisfies our sufficient
condition (54).

5 Generalized Volatility-Stabilized Market Model

We consider

d logXi(t) =
δ

2µpi (t)
dt+

1

µ
p/2
i (t)

dWi(t), i = 1, · · · , n, (57)

where δ ≥ 0 and p ∈ (0, 1] are both constants .
When p = 1, the theory developed by Bass and Perkins (2002) shows that the resulting
system of stochastic differential equations determines the distribution of the ∆n-valued
diffusion process (X1(t), · · · , Xn(t)) uniquely.

For this model, we have αij(t) = δijµ
−p
i (t), hence the relative variances τµii(·) are given

by

τµii(t) = αii(t)−
n∑
j=1

αij(t)µj(t)−
n∑
j=1

αij(t)µj(t) +
n∑
i=1

n∑
j=1

αij(t)µi(t)µj(t)

=
1

µpi (t)
− 1

µpi (t)
µi(t)−

1

µpi (t)
µi(t) +

n∑
j=1

1

µpj (t)
µ2j (t)

≥ 1

µpi (t)

(
1− 2µi(t) + µ2i (t)

)
=

1

µpi (t)
(1− µi(t))2 ,

for all i = 1, · · · , n and for all t > 0. Hence, for n ≥ 2, we obtain

τµm(t)m(t)(t) ≥
1

µpm(t)(t)

(
1− µm(t)(t)

)2 ≥ (n− 1

n

)2 1

µpm(t)(t)
, for all t > 0.

By Theorem 1, we have the following :

Theorem 2. Assume that n ≥ 2, then the generalized volatility-stabilized market as (57)
has a strong relative arbitrage opportunity over any time horizon [0, T ] for any T > 0.
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Remark 11. For generalized volatility-stabilized market with p ∈ (0, 1), the following may
not be true for any C > 0 :

τµm(t)m(t)(t) ≥
C

µm(t)(t)
, for all t ≥ 0 almost surely. (58)

Indeed, we have

µm(t)(t)τ
µ
m(t)m(t)(t) = µ1−pm(t)(t)

(
1− 2µm(t)(t)

)
+ µm(t)(t)

n∑
j=1

1

µpj (t)
µ2j (t)

≤ µ1−pm(t)(t) + nµm(t)(t) ≤ (n+ 1)µ1−pm(t)(t),

and if for any C > 0,

P
(
µ1−pm(t)(t) <

C

n+ 1
for some t ≥ 0

)
> 0, (59)

then

P
(
τµm(t)m(t)(t) ≥

C

µm(t)(t)
for all t ≥ 0

)
< 1, for any C > 0.

Therefore, these model may not satisfy the sufficient condition given in (58), however, we
give a weaker sufficient condition here to make sure short term arbitrage for any p ∈ (0, 1).

6 Some Related Results

6.1 Diffusion Models

1. In Fernholz and Karatzas(2010), the authors considered a diffusion model as the follow-
ing:

dXi(t) = Xi(t)

(
bi(X(t))dt+

n∑
k=1

sik(X(t))dWk(t)

)
, Xi(0) = xi > 0, i = 1, · · · , n, (60)

where X(t) := (X1(t), · · · , Xn(t)).
Let

aij(x) :=
n∑
k=1

sik(x)sjk(x) , ∀ 1 ≤ i, j ≤ n ,

and define

U(T, x) := inf

{
w > 0|∃π(·) ∈ H s.t Zwx,π(T ) ≥ X(T )

X(0)
x, a.s.

}
.

the smallest relative amount of initial capital x, starting with which one can match or exceed
the market portfolio at time T . (Note that if U(T, x) < 1, then it means that we can have
strong relative arbitrage (investment strategy) with respect to market portfolio µ at time
T .) Then, under some appropriate conditions, they showed U satisfies

∂U

∂τ
(τ, x) =

1

2

n∑
i=1

n∑
j=1

xixjaij(x)D2
ijU(τ, x) +

n∑
i=1

xi

 n∑
j=1

xjaij(x)

x1 + · · ·+ xn

DiU(τ, x) ,

U(0+, x) = 1 , x ∈ (0,∞)n .

(61)
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Moreover, under some further conditions, they proved that if

U(T, x) < 1 , for some (T, x) ∈ (0,∞)× (0,∞)n,

then
U(T, x) < 1 , ∀ (T, x) ∈ (0,∞)× (0,∞)n .

This shows the existence of long-term relative arbitrage implies the existence of short-term
arbitrage. It is worth noting that such an arbitrage opportunity may be made by an
investment strategy rather than a bounded portfolio.

6.2 Arbitrage and Diversity

In Fernholz and Karatzas (2009), they claimed that in weakly diverse markets, i.e.

1

T

∫ T

0
max
1≤i≤n

µi(t)dt ≤ 1− δ a.s. for some δ ∈ (0, 1),

which satisfy the strict non-degeneracy condition, that is

x′α(t)x ≥ ε‖x‖2 for all t ∈ [0,∞) and x ∈ Rn for some ε > 0,

one can construct simple long-only portfolios µ(p)(·), for some fixed p ∈ (0, 1), which lead
to strong arbitrage relative to the market portfolio over [0, T ], where

µ
(p)
i (t) :=

(µi(t))
p∑n

j=1(µj(t))
p
, ∀ i = 1, · · · , n and T ≥ 2

pεδ
log n.

Furthermore, under these same conditions, they can even construct long-only portfolios η(·),
which achieve strong relative arbitrage to the market over arbitrarily short time horizon,
where

ηi(t) :=
1

qV µ(t)
(µ1(0))q

− V π̂(t)

(
qV µ(t)

(µ1(0))q
− π̂(t)V π̂(t)

)
and

π̂(t) := qe1 + (1− q)µ(t), 0 ≤ t ≤ ∞ with q > 1 +
2

εδ2T
log

(
1

µ1(0)

)
.

Note that these portfolios may be unbounded, which makes such portfolios more difficult
for implementation in reality.
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