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Chapter One Introduction 

Given a partial differential equation, if the boundary is allowed to move with time, then 

we call the problem a Stefan problem. The classical Stefan problem has been modeled to 

describe the phenomena of melting ice [1]. In this thesis, we get into a Stefan-type problem 

which describes a liquid contained in a one-dimensional horizontal pipe with a freely moving 

piston (see [2], [3], [4], [5], [6], [7], [8]). Hence, we can consider the problem as the heat 

equation with a particular free boundary condition. 

Here, we investigate the discontinuous Galerkin approximation of the Stefan-type 

problem. For that purpose, we apply a coordinate transformation to transform the problem in a 

fixed domain [9]. Then, we use the semidiscrete scheme and the fully discrete scheme for the 

problem. We perform the error analysis of the semidiscrete scheme and the fully discrete 

schemes using the symmetric interior penalty Galerkin (SIPG) method and the optimal orders 

of convergence in 2L -norm are given. Finally, we test two model problems [2], [3] by using 

the three types of fully discontinuous Galerkin methods (Nonsymmetric Interior Penalty 

Galerkin (NIPG) method, Incomplete Interior Penalty Galerkin (IIPG) method and SIPG 

method). Numerical results given by three types of methods all match our theoretical results. 

However, the analysis of error estimates for NIPG and IIPG methods will be studied 

elsewhere. 
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The rest of the thesis are the followings: in Chapter 2, we introduce the formulation of 

the Stefan-type problem based on a Landau-type transformation. In Chapter 3, we define the 

discontinuous Galerkin approximation for the Stefan-type problem. In Chapter 4, the 

semidiscrete case and a fully discrete discontinuous Galerkin method are given. In Chapter 5, 

the theoretical error estimates and the numerical experiments are put together to confirm our 

approach. Finally, the summary and some remarks are given in Chapter 6. 
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Chapter Two Stefan Problem 

In this chapter, we consider the following Stefan-type problem: to find a pair of solutions 

{( , ) : ( , ), ( )}U S U U x t S S t′ ′ ′= =  satisfying  

2

2 ( , )U U f x t
t x

∂ ∂ ′ ′= +
′ ′∂ ∂

, 0 ( )x S t′ ′< < , 0 t T′< < ,                                  (1) 

with the following initial conditions 

0

( ,0) ( ), (0, (0)),
   

(0) 1, (0) ,

U x g x x S
dSS S
dt

′ ′ ′= ∈

 = = ′

                                             (2) 

and with the following boundary conditions 

2

2

(0, ) 0, 0,

( ( ), ) ( ( ( ), )),  0,

0,( ( ), ) ( ),

U t t

U S t t F U S t t t
x

d S tU S t t H S
dt


′ ′= ≥


∂ ′ ′ ′ ′ ′= ≥ ′∂


′ ≥′ ′ = + ′

                                       (3) 

where 0S  is a given constant and the functions f , g , F  and H  are assumed to be 

smooth enough to be satisfied by our subsequent error analysis. 

Here we use a Landau-type coordinate transformation [9] to fix the free boundary and set  

( )
xx

S t
′

=
′

, t t′= .                                                           (4) 

Then, the problem (1)-(3) is transformed into the following one: to find a pair of solutions 

{( , ) : ( ( ), ), ( )}u s u U xS t t s S t= =  satisfying  

2
2 2

2 ( , )u u ds us s x s f x t
t x dt x

∂ ∂ ∂
− − =

∂ ∂ ∂
, (0,1)x I∈ = , 0 t T< < ,                        (5) 
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with the following initial conditions  

0

( ,0) ( ), ,
   

(0) 1, (0) ,

u x g x x I
dss S
dt

= ∈

 = =

                                               (6) 

and with the following boundary conditions  

2

2

(0, ) 0, 0,

(1, ) ( (1, )),  0,

0.(1, ) ( ),

u t t

u t sF u t t
x

d s tu t H s
dt


= ≥


∂

= ≥∂


≥= −


                                               (7) 

For computation, we rewrite (5) in the conservative form as follows: 

2
2 2

2 ( ) ( , )u u ds dss s xu s u s f x t
t x dt x dt

∂ ∂ ∂
− − + =

∂ ∂ ∂
.                                    (8) 

In the thesis, c  is a generic constant and is different at different occurrences. 
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Chapter Three Discontinuous Galerkin Method 

To solve the problem (6)-(8), we define the discontinuous Galerkin method. For that 

purpose, let 0{ }J
h j jxε ==  be a partition of the interval I  such that  

0 1 20 1Jx x x x= < < < < = . 

Let 1j j jh x x+= − , max jj
h h=  and 1[ , ]j j jI x x +=  for 0,..., 1j J= − . 

Consider ( )r jP I , the space of polynomials of degree less than or equal to r  on each 

interval j hI ε∈ . Then the discontinuous finite element space can be defined as  

2{ ( ) |   | ( ), 0,1,..., 1}
jh h h I r jV v L I v P I j J= ∈ ∈ = − . 

For the discontinuous setting, we define the jump and average for 1( )hv H ε∈  as follows:  

[ ( )] ( ) ( )j j jv x v x v x− += − , 
( ) ( )

{ ( )}
2

j j
j

v x v x
v x

− ++
= , 1,...,  - 1j J= . 

As for 0j =  and j J= , we define the jump and average as follows:  

0 0[ ( )] ( )v x v x+= − , 0 0{ ( )} ( )v x v x+= , [ ( )] ( )J Jv x v x−= , { ( )} ( )J Jv x v x−= , 

where ( ) lim ( )
j

j x x
v x v x

+

+

→
= , ( ) lim ( )

j
j x x

v x v x
−

−

→
= . 

Now, we introduce the bilinear form 0
0 ( , )J v wσ  which is to penalize the jump of the 

function by setting  

0

1
0

0
0

( , ) [ ( )][ ( )]
J

j j
j j

J v w v x w x
h

σ σ−

=

=∑ , 

where the parameter 0σ  is a nonnegative real number. 

Due to the technical reasons, we did not introduce the penalized term at the boundary 1x = , 

which is different from the usual discontinuous Galerkin method. 
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Also, we define the discontinuous Galerkin form ( , )A v wε  to construct a weak 

formulation for the model problem by setting  

1
0

1 1 1

0
0 0 0

( , ) { ( )}[ ( )] { ( )}[ ( )] ( , )j

j

J J Jx

j j j jx
j j j

v w v wA v w dx x w x x v x J v w
x x x x

σ
ε ε+

− − −

= = =

∂ ∂ ∂ ∂
= − + +

∂ ∂ ∂ ∂∑ ∑ ∑∫ . 

Here, the parameter ε  in Aε  may take on real values. Notice that for a fixed number 0σ , 

the bilinear form Aε  is symmetric if 1ε = −  and nonsymmetric otherwise. With different 

values of the parameter ε , the discontinuous Galerkin method is referred to SIPG ( 1ε = − ), 

NIPG ( 1ε = ) or IIPG ( 0ε = ). In this thesis, we carry out the analysis for the case of SIPG. 

However, we perform numerical experiments using three types of the discontinuous Galerkin 

methods in Chapter 5. 

Meanwhile, we introduce the bilinear form ( , )B v w  with the convective term 

approximated by using a numerical flux ( , ( ), ( ))j j jQ x v x v x− +  which is applied from the finite 

volume method by setting  

1
1 1

0 0
( , ) ( , ( ), ( ))[ ( )]j

j

J Jx

j j j jx
j j

wB v w xv dx Q x v x v x w x
x

+
− −

− +

= =

∂
= − +

∂∑ ∑∫ . 

Here, we shall assume that the numerical flux Q  satisfies the Lipschitz continuity, that is,  

( , , ) ( , , ) ( )Q x v w Q x v w c v v w w∗ ∗ ∗ ∗− ≤ − + − , for x I∈ , ,, , ,v w v w∗ ∗ ∈ IR,  

and the consistency with convective fluxes, namely,  

( , , )Q x v v xv=  for x I∈ , and v∈ IR. 

Note that when 0j =  or J , we define the numerical flux Q  as  

0 0 0 0 0( , ( ), ( )) ( )Q x v x v x x v x− + += , ( , ( ), ( )) ( )J J J J JQ x v x v x x v x− + −= . 
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Then, we can write down the weak formulation for the problem as follows: to find 

1( ) ( )hu t H ε∈  satisfying  

2 ( )( , ) ( ( ), ) ( ( ), ) ( (1)) (1)u t dss v A u t v s B u t v sF u v
t dtε

∂
+ − +

∂
 

2(1) (1) ( ( ), ) ( )ds dss u v s b u t v s v
dt dt

− + =   for 1( )hv H ε∈                              (9) 

where  

1
1

0
( ( ), ) :  j

j

J x

x
j

b u t v uv dx+
−

=

= ∑∫ , 

and 

1
1

0
( ) : ( , )  j

j

J x

x
j

v f x t v dx+
−

=

= ∑∫ . 
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Chapter Four Numerical Schemes 

Since 1( )h hV H ε⊂ , we define the semidiscrete approximation solution ( )h hu t V∈  and 

hs  satisfying the identities:  

2 ( )( , ) ( ( ), ) ( ( ), ) ( (1, )) (1)h h
h h h h h h h h h h

u t dss v A u t v s B u t v s F u t v
t dtε

∂
+ − +

∂
 

2(1) (1) ( ( ), ) ( )h h
n h h h h h h h

ds dss u v s b u t v s v
dt dt

− + =   for h hv V∈ , [0, ]t T∈ ,               (10) 

and  

2

2 (1) ( )h
h h

d s u H s
dt

= + , [0, ]t T∈ ,                                              (11) 

with  

0

(0) ,
   

(0) 1, (0) .

h

h
h

u g
dss S
dt

= Π

 = =

                                                (12) 

where Π  is some projection which will be defined later. 

Later on, as for the fully discrete discontinuous Galerkin approximation to the problem 

(6)-(8), we use the modified backward Euler method in time. Let /t T N∆ =  be the size of 

time step where N  is the number of time step and also set nt n t= ∆  for 0,1,...,n N= . 

We define the approximation of u  at nt t=  as n
hu  and the approximation of s  at nt t=  

as n
hs . 

Now, given ( , )n n
h hu s , where n

h hu V∈ , we are looking for 1 1( , )n n
h hu s+ +  where 1n

h hu V+ ∈ , 

the solutions of  
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1 1
1 2 1 1 1( ) ( , ) ( ( ), ) ( , )

n n n n
n n n nh h h h
h h h h h h h

u u s ss v A u t v s B u v
t tε

+ +
+ + + +− −

+ −
∆ ∆

 

1
1 1(1) (1)

n n
n nh h
h h h

s ss u v
t

+
+ +−

−
∆

1 ( (1)) (1)n n
h h hs F u v++

1
1 1( , )

n n
n nh h
h h h

s ss b u v
t

+
+ +−

+
∆

1 2( ) ( )n
h hs v+=  ,    (27) 

for h hv V∈ , 0n ≥  with  

0
h hu Q g= ,                                                               (28) 

and  

1 1

2

2 (1) ( )
( )

n n n
n nh h h
h h

s s s u H s
t

+ −− +
= −

∆
, 1n ≥ ,                                        (29) 

with 

0 1hs = , 
1 0

0
s s S

t
−

=
∆

.                                                       (30) 

Note that we define hQ  as the elliptic projection such that hQ u u≡  . 
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Chapter Five Theoretical and Numerical Results 

We denote errors for ( , )u s  at nt  by ( )n n
h n he u t u= −  and ( )n n

s n he s t s= − . Similarly, for 

the semidiscrete scheme, we set ( ) ( )n
h n nu t u tη = −  and ( )n n

h h nu u tξ = −  . Then we have the 

following error estimates for n
hξ  and n

se :  

Theorem 1 

There exists a constant c  such that for 0M ≥   

( )( )2

212 2 2 11 1 2

( )
0

( )
M M M

rM ns s
h hL I

n

e e t c t h
t ε

ξ ξ
+

++ +

=

−
+ + ∆ ≤ ∆ +

∆ ∑ , 1r ≥ . 

Now, as in the semidiscrete case, we define the discrete-time discontinuous Galerkin 

approximation for the pair of solutions { , }U S  as  

1
1 1

1 1
1

( , ) ( , ),
( ) ,

n
h h n h n
n n
h h n h

U U x t u x t
S S t s

+
+ +

+ +
+

 ′= =


= =
 

where 1n
hx xs +′ = . Then, the error estimates for 1

1( ) n
n hU t U +
+ −  and 1

1( ) n
n hS t S +
+ −  can be 

stated as follows:  

Theorem 2 

There exists a constant c  and 1r ≥ , 0n ≥  such that  

( ) ( ) ( )2
1

1
11 1

1 ( ( ))

( ) ( )
( )

n

n n
n h n hn r

n h L I t

S t S S t S
U t U c t h

t+

+
++ +

+

− − −
− + ≤ ∆ +

∆
. 

For the proof of Theorems 1 and 2, we refer to see [10]. 

Here, we illustrate the rates of convergence of our modified backward Euler method 

developed in Chapter 4 with 1ε = − , 0  and 1. In numerical experiments, we consider the 
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uniform meshes in space and denote h  the size of the meshes. Two different degrees ( 1r =  

or 2 ) of the approximate functions in hV  are used. Here, the corresponding basis is chosen 

to be ,{ }j iφ , 0,..., 1j J= −  and 1,..., 1i r= + . For 1r = , ,j iφ  is of the form  

0,1( ) 0xφ = , 0,2 ( )x xφ = ,  

and  

( )( )

( )
,

1 1 , 1, 1,...,  - 1,
 

1 , 2, 1,...,  - 1.
j i

x j h i j J
h

x jh i j J
h

φ

 − − = == 
− − = =


 

As for 2r = , ,j iφ  is of the form  

0,1( ) 0xφ = , ( )( )0 1
0,2

0 1 0 1
0 1

( )

2 2

x x x x
x

x x x xx x
φ

− −
=

+ +  − −  
  

,  

( )

( )

0 1
0

0,3
0 1

1 0 1

2( )

2

x xx x x
x

x xx x x
φ

+ − − 
 =

+ − − 
 

,  

and  

( )

( )

( )( )

( )

( )

1
1

1
1

1
,

1 1
1

1

1
1 1

2
, 1, 2,...,  - 1,

2

( ) , 2, 2,...,  - 1,

2 2

2
, 3, 2,...,  -

2

j j
j

j j
j j j

j j
j i

j j j j
j j

j j
j

j j
j j j

x x
x x x

i j J
x x

x x x

x x x x
x i j J

x x x x
x x

x x
x x x

i j J
x x

x x x

φ

+
+

+
+

+

+ +
+

+

+
+ +

+ 
− − 

  = =
+ 

− − 
 

− −
= = =

+ +  
− −  

  

+ 
− − 

  = =
+ 

− − 
 

 1.
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For numerical fluxes ( , ( ), ( ))j j jQ x v x v x− + , we use the following one  

1
1

1
1

( ) ( )( ) if ( ) 0,
( , ( ), ( ))  

( ) ( )( ) if ( ) 0.

n n
n h h

j j h

j j j n n
n h h

j j h

s t s tx v x s t
tQ x v x v x

s t s tx v x s t
t

+
− +

− +
+

+ +

 −
− > ∆= 

− − ≤ ∆

 

Note that the numerical fluxes depend on the sign of ds s
dt

− . We approximate ds s
dt

−  by 

the term 
1

1 ( ) ( )( )
n n

n h h
h

s t s ts t
t

+
+ −

−
∆

. Moreover, the defined numerical fluxes Q  satisfy the 

Lipschitz continuity and the consistency. 

The choice of the time step t∆  is 1( )rx +∆  to verify the theoretical results. The 

parameter 0σ  is also chosen suitably to stabilize the numerical schemes. Now, two model 

problems (Problem 1 and Problem 2) [3] are considered respectively. 

Problem 1: We choose the exact solutions 1 1{ ( , ) , ( ) 1}t x tU x t e e S t t′ ′ ′− + +′ ′ ′ ′= − = +  with 

setting the data 1 1( ) xg x e e′− +′ = − , ( ) 1 xH x e ′′ = − , ( ) 1F U = −  and 0 1S = . The 

corresponding right-hand side ( , )f x t′ ′  is 1te ′+ . 

Tables 1-12 show the errors in the solutions and free boundaries for different degree of 

the approximation r  ( 1=  or 2 ) and different values of ε  indicating SIPG ( 1ε = − ), IIPG 

( 0ε = ) and NIPG ( 1ε = ) methods, respectively. Here, we compute the errors between the 

exact solutions and approximate solutions defined in the fixed domain. The order of 

convergence is calculated using the following formula:  

1

2

( )
2

( )

( ) log
p

p

h L I

h L I

u u
O h

u u

 −
 =
 −
 

, 2,p = ∞ . 
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In addition, the graphs of errors in 2L - and L∞ -norms against the mesh size h  for the 

solutions of Problem 1 with different degrees and methods are shown in Figures 1-12. As for 

the free boundary, the graphs of errors in 2L - and L∞ -norms against the mesh size h  with 

different degrees and methods are shown in Figures 13-18. 

Problem 2: We choose the exact solutions 1 1{ ( , ) , ( ) 1 }x t tU x t e e S t t′ ′ ′+ − −′ ′ ′ ′= − = −  with 

setting the data 1 1( ) xg x e e′− −′ = − , ( ) 1 xH x e ′−′ = − , ( ) 1F U =  and 0 1S = − . The 

corresponding right-hand side ( , )f x t′ ′  is 1te ′− . Note that Problem 2 becomes a singular one 

as the time t  approaches to the value 1. Therefore, the numerical simulations are chosen 

just before the time 1t = . 

As we did in Problem 1, Tables 13-24 show the errors in the solutions and free 

boundaries for Problem 2 with different degrees and methods. Also, the graphs of errors in 

2L - and L∞ -norms against the mesh size h  for the solutions and the free boundaries of 

Problem 2 with different degrees and methods are presented in Figures 19-37. 
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6. Summary and Concluding Remarks 

For both Problem 1 and Problem 2, we observe that the orders of convergence for the 

2L - and L∞ -norm errors in the solutions and free boundaries are approximately 2  if 

piecewise linear polynomials are used and 3  if piecewise quadratic polynomials are used, 

which confirm our theoretical results derived in Chpater 4. However, we carry out our 

2L -norm analysis in the case of using SIPG methods. For L∞ -norm analysis and two other 

approaches (IIPG and NIPG) which give us similar numerical results as well, these analyses 

will be studied somewhere else. 

Compared with numerical results which were solved by continuous Galerkin finite 

element methods in [2], we observe that thanks to more basis applied, discontinuous Galerkin 

methods give us more accurate solutions when using the same degree of polynomial 

approximation. However, the optimal orders of convergence for both methods are the same. 

For the future work, we will extend this work to deal with higher dimension. Stefan 

problems are more complicated and close to the problems in the real world applications. 
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Table 1 The order of convergence for the errors in the solutions  
for Problem 1 with 1r =  for 0 3σ =  and 1ε = − . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  9.810386E-03 1.965093E+00 2.201044E-02 1.774466E+00 

  1/8  2.512662E-03 1.988602E+00 6.433706E-03 1.880291E+00 

  1/16  6.331480E-04 1.996687E+00 1.747581E-03 1.939073E+00 

    1/32   1.586509E-04   4.557410E-04   

t = 0.25  1/4  1.674047E-02 1.964284E+00 3.249520E-02 1.909893E+00 

  1/8  4.290020E-03 1.988603E+00 8.647373E-03 1.850595E+00 

  1/16  1.081011E-03 1.996773E+00 2.397725E-03 1.924999E+00 

    1/32   2.708580E-04   6.314180E-04   

t = 0.375  1/4  2.598312E-02 1.973342E+00 4.964502E-02 2.027333E+00 

  1/8  6.616922E-03 1.991152E+00 1.217832E-02 1.905478E+00 

  1/16  1.664407E-03 1.997456E+00 3.250735E-03 1.916840E+00 

    1/32   4.168361E-04   8.609047E-04   

t = 0.50  1/4  3.636488E-02 1.977693E+00 6.783391E-02 2.032588E+00 

  1/8  9.232877E-03 1.992292E+00 1.657971E-02 1.928732E+00 

  1/16  2.320585E-03 1.997738E+00 4.354826E-03 1.912068E+00 

  1/32  5.810568E-04   1.157127E-03   

t = 0.625   1/4   4.758006E-02 1.977434E+00 8.685748E-02 2.035785E+00 

  1/8  1.208253E-02 1.992124E+00 2.118239E-02 1.875999E+00 

  1/16  3.037168E-03 1.997661E+00 5.770892E-03 1.909541E+00 

    1/32   7.605238E-04   1.536080E-03   

t = 0.75   1/4   5.937505E-02 1.972853E+00 1.061515E-01 1.990738E+00 

  1/8  1.512572E-02 1.990764E+00 2.670880E-02 1.817961E+00 

  1/16  3.805717E-03 1.997260E+00 7.575192E-03 1.908739E+00 

    1/32   9.532377E-04   2.017464E-03   

t = 0.875   1/4   7.144345E-02 1.963728E+00 1.246542E-01 1.839859E+00 

  1/8  1.831562E-02 1.988180E+00 3.482202E-02 1.819779E+00 

  1/16  4.616575E-03 1.996526E+00 9.863836E-03 1.909495E+00 

    1/32   1.156926E-03   2.625613E-03   

t = 1.00  1/4  8.354916E-02 1.949789E+00 1.430040E-01 1.661398E+00 

  1/8  2.162705E-02 1.984337E+00 4.520822E-02 1.824996E+00 

  1/16  5.465780E-03 1.995451E+00 1.275965E-02 1.911887E+00 

    1/32   1.370761E-03   3.390810E-03   
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Table 2 The order of convergence for the errors in the solutions  
for Problem 1 with 1r =  for 0 3σ =  and 1ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  9.914113E-03 1.951722E+00 2.301094E-02 1.808966E+00 

  1/8  2.562872E-03 1.966497E+00 6.567218E-03 1.895929E+00 

  1/16  6.557713E-04 1.980217E+00 1.764615E-03 1.946181E+00 

    1/32   1.662063E-04   4.579217E-04   

t = 0.25  1/4  1.306867E-02 1.985050E+00 2.941344E-02 1.741807E+00 

  1/8  3.301199E-03 1.987998E+00 8.794473E-03 1.863770E+00 

  1/16  8.321943E-04 1.992398E+00 2.416345E-03 1.930819E+00 

    1/32   2.091478E-04   6.337595E-04   

t = 0.375  1/4  1.997807E-02 1.999365E+00 3.822957E-02 1.701883E+00 

  1/8  4.996716E-03 1.998136E+00 1.175119E-02 1.845055E+00 

  1/16  1.250794E-03 1.998485E+00 3.270881E-03 1.921618E+00 

    1/32   3.130272E-04   8.633765E-04   

t = 0.50  1/4  2.850906E-02 2.002233E+00 5.016254E-02 1.685666E+00 

  1/8  7.116243E-03 1.999896E+00 1.559349E-02 1.833518E+00 

  1/16  1.779189E-03 1.999499E+00 4.375216E-03 1.915822E+00 

  1/32  4.449517E-04   1.159523E-03   

t = 0.625   1/4   3.810652E-02 1.999392E+00 6.571815E-02 1.678383E+00 

  1/8  9.530647E-03 1.998221E+00 2.053249E-02 1.826641E+00 

  1/16  2.385601E-03 1.998547E+00 5.788525E-03 1.912191E+00 

    1/32   5.970012E-04   1.537947E-03   

t = 0.75   1/4   4.859254E-02 1.992056E+00 8.479122E-02 1.659759E+00 

  1/8  1.221522E-02 1.994319E+00 2.683574E-02 1.823080E+00 

  1/16  3.065852E-03 1.996432E+00 7.584236E-03 1.910122E+00 

    1/32   7.683608E-04   2.017937E-03   

t = 0.875   1/4   5.987974E-02 1.980217E+00 1.101610E-01 1.660614E+00 

  1/8  1.517662E-02 1.988386E+00 3.484443E-02 1.822200E+00 

  1/16  3.824824E-03 1.993311E+00 9.853633E-03 1.909365E+00 

    1/32   9.606494E-04   2.623133E-03   

t = 1.00  1/4  7.200886E-02 1.963782E+00 1.429388E-01 1.667178E+00 

  1/8  1.845987E-02 1.980458E+00 4.500695E-02 1.824042E+00 

  1/16  4.677905E-03 1.989228E+00 1.271125E-02 1.909894E+00 

    1/32   1.178241E-03   3.382619E-03   
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Table 3 The order of convergence for the errors in the solutions  
for Problem 1 with 1r =  for 0 3σ =  and 0ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  9.510817E-03 1.966667E+00 2.261961E-02 1.795877E+00 

  1/8  2.433281E-03 1.977756E+00 6.514368E-03 1.889819E+00 

  1/16  6.177723E-04 1.986958E+00 1.757843E-03 1.943398E+00 

    1/32   1.558456E-04   4.570451E-04   

t = 0.25  1/4  1.412342E-02 1.989579E+00 2.896180E-02 1.729379E+00 

  1/8  3.556453E-03 1.995003E+00 8.734348E-03 1.858556E+00 

  1/16  8.921981E-04 1.997538E+00 2.408515E-03 1.928433E+00 

    1/32   2.234305E-04   6.327515E-04   

t = 0.375  1/4  2.196422E-02 1.998779E+00 4.044871E-02 1.791919E+00 

  1/8  5.495704E-03 2.000492E+00 1.168109E-02 1.840435E+00 

  1/16  1.373458E-03 2.000683E+00 3.261799E-03 1.919548E+00 

    1/32   3.432019E-04   8.622153E-04   

t = 0.50  1/4  3.119178E-02 2.000741E+00 5.655420E-02 1.866041E+00 

  1/8  7.793941E-03 2.001071E+00 1.551424E-02 1.829525E+00 

  1/16  1.947040E-03 2.000874E+00 4.365044E-03 1.914067E+00 

  1/32  4.864651E-04   1.158236E-03   

t = 0.625   1/4   4.137553E-02 1.998095E+00 7.335573E-02 1.842911E+00 

  1/8  1.035755E-02 1.999442E+00 2.044855E-02 1.823375E+00 

  1/16  2.590389E-03 1.999930E+00 5.777928E-03 1.910781E+00 

    1/32   6.476285E-04   1.536631E-03   

t = 0.75   1/4   5.232210E-02 1.991254E+00 9.043519E-02 1.757032E+00 

  1/8  1.316006E-02 1.996090E+00 2.675582E-02 1.820584E+00 

  1/16  3.298944E-03 1.998183E+00 7.574743E-03 1.909119E+00 

    1/32   8.257751E-04   2.016814E-03   

t = 0.875   1/4   6.386943E-02 1.979914E+00 1.095916E-01 1.655485E+00 

  1/8  1.619122E-02 1.990955E+00 3.478777E-02 1.820635E+00 

  1/16  4.073263E-03 1.995623E+00 9.848293E-03 1.908856E+00 

    1/32   1.021410E-03   2.622635E-03   

t = 1.00  1/4  7.596027E-02 1.963750E+00 1.426922E-01 1.664584E+00 

  1/8  1.947326E-02 1.983908E+00 4.501016E-02 1.823630E+00 

  1/16  4.922921E-03 1.992183E+00 1.271579E-02 1.910007E+00 

    1/32   1.237417E-03   3.383560E-03   
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Table 4 The order of convergence for the errors in the free boundary  
for Problem 1 with 1r =  for 0 3σ =  and 1ε = − . 

h   L
2
 O(h) L ∞  O(h) 

1/4  1.149604E-02 2.141289E+00 2.905908E-02 2.013944E+00 

1/8  2.605890E-03 2.040143E+00 7.194892E-03 2.006745E+00 

1/16  6.335951E-04 2.010523E+00 1.790333E-03 2.002074E+00 

1/32   1.572477E-04   4.469402E-04   

 
Table 5 The order of convergence for the errors in the free boundary  

for Problem 1 with 1r =  for 0 3σ =  and 1ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  7.733118E-03 2.259352E+00 1.989212E-02 2.114252E+00 

1/8  1.615183E-03 2.112140E+00 4.594389E-03 2.069748E+00 

1/16  3.735977E-04 2.050115E+00 1.094388E-03 2.037543E+00 

1/32   9.021070E-05   2.665693E-04   

 
Table 6 The order of convergence for the errors in the free boundary  

for Problem 1 with 1r =  for 0 3σ =  and 0ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  9.095028E-03 2.214414E+00 2.321142E-02 2.077303E+00 

1/8  1.959743E-03 2.084216E+00 5.500107E-03 2.046019E+00 

1/16  4.621548E-04 2.034770E+00 1.331858E-03 2.024183E+00 

1/32   1.127874E-04   3.274299E-04   
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Figure 1 The graph of the 2L -errors against the space step h  for solutions of  

Problem 1 with 1r =  for 0 3σ =  and 1ε = − . 
 

 
Figure 2 The graph of the 2L -errors against the space step h  for solutions of  

Problem 1 with 1r =  for 0 3σ =  and 1ε = . 
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Figure 3 The graph of the 2L -errors against the space step h  for solutions of  

Problem 1 with 1r =  for 0 3σ =  and 0ε = . 
 

 
Figure 4 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 1 with 1r =  for 0 3σ =  and 1ε = − . 
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Figure 5 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 1 with 1r =  for 0 3σ =  and 1ε = . 
 

 
Figure 6 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 1 with 1r =  for 0 3σ =  and 0ε = . 
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Figure 7 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 1 with 1r =  for 0 3σ =  and 1ε = − . 
 

 
Figure 8 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 1 with 1r =  for 0 3σ =  and 1ε = . 
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Figure 9 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 1 with 1r =  for 0 3σ =  and 0ε = . 
 
 
Table 7 The order of convergence for the errors in the solutions  

for Problem 1 with 2r =  for 0 3σ =  and 1ε = − . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  2.014879E-03 2.984121E+00 3.610391E-03 3.020235E+00 

  1/8  2.546472E-04 2.998771E+00 4.450131E-04 3.014743E+00 

  1/16  3.185802E-05  5.506108E-05  

t = 0.25  1/4  3.980470E-03 2.991156E+00 6.585879E-03 3.007972E+00 

  1/8  5.006181E-04 2.999720E+00 8.186982E-04 3.010853E+00 

  1/16  6.258943E-05  1.015703E-04  

t = 0.375  1/4  6.042610E-03 2.994299E+00 9.789750E-03 3.010256E+00 

  1/8  7.583170E-04 3.000391E+00 1.215050E-03 3.011926E+00 

  1/16  9.476396E-05  1.506309E-04  

t = 0.50  1/4  8.229399E-03 2.995714E+00 1.328618E-02 3.016942E+00 

  1/8  1.031735E-03 3.000845E+00 1.641384E-03 3.014745E+00 

  1/16  1.288914E-04  2.030867E-04  

t = 0.625   1/4   1.052773E-02 2.995886E+00 1.708876E-02 3.025659E+00 

  1/8  1.319724E-03 3.001158E+00 2.098439E-03 3.018573E+00 

  1/16  1.648332E-04  2.589497E-04  
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t = 0.75   1/4   1.287855E-02 2.994805E+00 2.115928E-02 3.034845E+00 

  1/8  1.615626E-03 3.001355E+00 2.581794E-03 3.023963E+00 

  1/16  2.017636E-04  3.174081E-04  

t = 0.875   1/4   1.516058E-02 2.992077E+00 2.538950E-02 2.989195E+00 

  1/8  1.905509E-03 3.001434E+00 3.197547E-03 2.960818E+00 

  1/16  2.379521E-04  4.106973E-04  

t = 1.00  1/4  1.716064E-02 2.986707E+00 3.067436E-02 2.887242E+00 

  1/8  2.164936E-03 3.001364E+00 4.145998E-03 2.919990E+00 

  1/16  2.703612E-04  5.478032E-04  

 
Table 8 The order of convergence for the errors in the solutions  

for Problem 1 with 2r =  for 0 50σ =  and 1ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  2.187381E-03 2.837308E+00 3.105560E-03 2.820629E+00 

  1/8  3.060623E-04 2.727505E+00 4.395880E-04 2.704028E+00 

  1/16  4.621138E-05  6.746092E-05 #DIV/0! 

t = 0.25  1/4  4.173314E-03 2.896330E+00 5.858830E-03 2.882484E+00 

  1/8  5.605300E-04 2.818599E+00 7.945050E-04 2.798452E+00 

  1/16  7.945406E-05  1.142033E-04 #DIV/0! 

t = 0.375  1/4  6.251520E-03 2.917358E+00 8.736922E-03 2.905374E+00 

  1/8  8.275105E-04 2.851896E+00 1.166148E-03 2.833834E+00 

  1/16  1.146218E-04  1.635628E-04 #DIV/0! 

t = 0.50  1/4  8.449661E-03 2.927851E+00 1.177859E-02 2.917308E+00 

  1/8  1.110371E-03 2.868525E+00 1.559179E-03 2.851864E+00 

  1/16  1.520394E-04 #DIV/0! 2.159729E-04 #DIV/0! 

t = 0.625   1/4   1.074927E-02 2.934131E+00 1.497220E-02 2.924904E+00 

  1/8  1.406429E-03 2.878606E+00 1.971522E-03 2.863024E+00 

  1/16  1.912367E-04 #DIV/0! 2.709852E-04 #DIV/0! 

t = 0.75   1/4   1.308268E-02 2.938545E+00 1.825295E-02 2.930621E+00 

  1/8  1.706501E-03 2.886006E+00 2.394022E-03 2.871306E+00 

  1/16  2.308512E-04 #DIV/0! 3.271740E-04 #DIV/0! 

t = 0.875   1/4   1.531473E-02 2.942308E+00 2.148598E-02 2.935756E+00 

  1/8  1.992445E-03 2.892833E+00 2.808049E-03 2.878725E+00 

  1/16  2.682606E-04 #DIV/0! 3.817877E-04 #DIV/0! 

t = 1.00  1/4  1.720819E-02 2.946338E+00 2.443028E-02 2.941165E+00 

  1/8  2.232540E-03 2.900887E+00 3.180896E-03 2.886287E+00 

  1/16  2.989132E-04 #DIV/0! 4.302198E-04 #DIV/0! 
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Table 9 The order of convergence for the errors in the solutions  
for Problem 1 with 2r =  for 0 50σ =  and 0ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  2.096240E-03 2.908489E+00 2.959613E-03 2.897519E+00 

  1/8  2.791892E-04 2.841872E+00 3.971868E-04 2.825107E+00 

  1/16  3.894126E-05 #DIV/0! 5.604704E-05 #DIV/0! 

t = 0.25  1/4  4.066364E-03 2.942519E+00 5.685857E-03 2.933446E+00 

  1/8  5.289562E-04 2.899172E+00 7.442877E-04 2.886138E+00 

  1/16  7.090584E-05 #DIV/0! 1.006762E-04 #DIV/0! 

t = 0.375  1/4  6.125053E-03 2.954693E+00 8.530144E-03 2.946943E+00 

  1/8  7.900573E-04 2.918944E+00 1.106211E-03 2.907679E+00 

  1/16  1.044646E-04 #DIV/0! 1.474143E-04 #DIV/0! 

t = 0.50  1/4  8.300963E-03 2.960824E+00 1.153285E-02 2.954166E+00 

  1/8  1.066182E-03 2.928610E+00 1.488141E-03 2.918468E+00 

  1/16  1.400335E-04 #DIV/0! 1.968329E-04 #DIV/0! 

t = 0.625   1/4   1.057703E-02 2.964475E+00 1.468414E-02 2.958895E+00 

  1/8  1.355090E-03 2.934414E+00 1.888567E-03 2.925134E+00 

  1/16  1.772643E-04 #DIV/0! 2.486447E-04 #DIV/0! 

t = 0.75   1/4   1.288766E-02 2.966963E+00 1.792180E-02 2.962553E+00 

  1/8  1.648274E-03 2.938658E+00 2.299134E-03 2.930109E+00 

  1/16  2.149835E-04 #DIV/0! 3.016571E-04 #DIV/0! 

t = 0.875   1/4   1.510091E-02 2.968954E+00 2.111499E-02 2.965837E+00 

  1/8  1.928675E-03 2.942564E+00 2.702620E-03 2.932350E+00 

  1/16  2.508759E-04 #DIV/0! 3.540460E-04 #DIV/0! 

t = 1.00  1/4  1.698427E-02 2.970902E+00 2.402912E-02 2.964690E+00 

  1/8  2.166288E-03 2.947149E+00 3.078061E-03 2.937845E+00 

  1/16  2.808898E-04 #DIV/0! 4.016962E-04 #DIV/0! 

 
Table 10 The order of convergence for the errors in the free boundary  

for Problem 1 with 2r =  for 0 3σ =  and 1ε = − . 

h   L
2
 O(h) L ∞  O(h) 

1/4  1.738071E-03 3.046281E+00 4.801854E-03 3.007609E+00 

1/8  2.103999E-04 3.010627E+00 5.970744E-04 3.005858E+00 

1/16  2.610698E-05  7.433187E-05  
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Table 11 The order of convergence for the errors in the free boundary  
for Problem 1 with 2r =  for 0 50σ =  and 1ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  1.788841E-03 2.908554E+00 4.919621E-03 2.876211E+00 

1/8  2.382373E-04 2.792906E+00 6.700479E-04 2.798867E+00 

1/16  3.437647E-05  9.628594E-05  

 
Table 12 The order of convergence for the errors in the free boundary  

for Problem 1 with 2r =  for 0 50σ =  and 0ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  1.738644E-03 2.962499E+00 4.789736E-03 2.927023E+00 

1/8  2.230538E-04 2.883459E+00 6.297816E-04 2.885124E+00 

1/16  3.022748E-05  8.524739E-05  

 
 

 
Figure 10 The graph of the 2L -errors against the space step h  for solutions of  

Problem 1 with 2r =  for 0 3σ =  and 1ε = − . 
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Figure 11 The graph of the 2L -errors against the space step h  for solutions of  

Problem 1 with 2r =  for 0 50σ =  and 1ε = . 
 

 
Figure 12 The graph of the 2L -errors against the space step h  for solutions of  

Problem 1 with 2r =  for 0 50σ =  and 0ε = . 
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Figure 13 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 1 with 2r =  for 0 3σ =  and 1ε = − . 
 

 
Figure 14 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 1 with 2r =  for 0 50σ =  and 1ε = . 
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Figure 15 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 1 with 2r =  for 0 50σ =  and 0ε = . 
 

 
Figure 16 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 1 with 2r =  for 0 3σ =  and 1ε = − . 
 
 



 

 30 

 
Figure 17 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 1 with 2r =  for 0 50σ =  and 1ε = . 
 

 
Figure 18 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 1 with 2r =  for 0 50σ =  and 0ε = . 
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Table 13 The order of convergence for the errors in the solutions  
for Problem 2 with 1r =  for 0 50σ =  and 1ε = − . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  3.090489E-03 1.990089E+00 5.752849E-03 1.883131E+00 

  1/8  7.779482E-04 1.997335E+00 1.559567E-03 1.941227E+00 

  1/16  1.948467E-04 1.999320E+00 4.061031E-04 1.970355E+00 

    1/32   4.873464E-05   1.036336E-04   

t = 0.25  1/4  2.297792E-03 1.993417E+00 4.164902E-03 1.901001E+00 

  1/8  5.770751E-04 1.998131E+00 1.115184E-03 1.948969E+00 

  1/16  1.444558E-04 1.999516E+00 2.888340E-04 1.973929E+00 

    1/32   3.612606E-05   7.352524E-05   

t = 0.375  1/4  1.483469E-03 2.010337E+00 2.608350E-03 1.924430E+00 

  1/8  3.682194E-04 2.002721E+00 6.871549E-04 1.956055E+00 

  1/16  9.188143E-05 2.000687E+00 1.771020E-04 1.976288E+00 

    1/32   2.295942E-05   4.500922E-05   

t = 0.50  1/4  7.892418E-04 2.050255E+00 1.298335E-03 1.975981E+00 

  1/8  1.905556E-04 2.014003E+00 3.300329E-04 1.967623E+00 

  1/16  4.717875E-05 2.003599E+00 8.438082E-05 1.977917E+00 

  1/32  1.176530E-05   2.142059E-05   

t = 0.625   1/4   3.582272E-04 2.045254E+00 6.608046E-04 1.915909E+00 

  1/8  8.679119E-05 2.009080E+00 1.751165E-04 1.947288E+00 

  1/16  2.156166E-05 2.002065E+00 4.540827E-05 1.972431E+00 

    1/32   5.382704E-06   1.157109E-05   

t = 0.75   1/4   1.758967E-04 1.950792E+00 4.430670E-04 1.920419E+00 

  1/8  4.549994E-05 1.985941E+00 1.170485E-04 1.986118E+00 

  1/16  1.148638E-05 1.996423E+00 2.954504E-05 1.995281E+00 

    1/32   2.878724E-06   7.410462E-06   

t = 0.875   1/4   5.122326E-05 2.070880E+00 1.254917E-04 2.073944E+00 

  1/8  1.219187E-05 2.019604E+00 2.980546E-05 2.029551E+00 

  1/16  3.006831E-06 2.004963E+00 7.300288E-06 2.008259E+00 

    1/32   7.491259E-07   1.814654E-06   

t = 1.00  1/4  1.885642E-05 1.315722E+00 3.266041E-05 1.315725E+00 

  1/8  7.575085E-06 1.863137E+00 1.312045E-05 1.863139E+00 

  1/16  2.082223E-06 1.967274E+00 3.606518E-06 1.967275E+00 

    1/32   5.324989E-07   9.223152E-07   
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Table 14 The order of convergence for the errors in the solutions  
for Problem 2 with 1r =  for 0 3σ =  and 1ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  2.118910E-03 2.040764E+00 3.607428E-03 1.966634E+00 

  1/8  5.149693E-04 2.018550E+00 9.229576E-04 1.976403E+00 

  1/16  1.270976E-04 2.008884E+00 2.345444E-04 1.986164E+00 

    1/32   3.157933E-05   5.920114E-05   

t = 0.25  1/4  1.542377E-03 2.042627E+00 2.485132E-03 1.988495E+00 

  1/8  3.743679E-04 2.017122E+00 6.262571E-04 1.982889E+00 

  1/16  9.248780E-05 2.007674E+00 1.584322E-04 1.988355E+00 

    1/32   2.299929E-05   3.992904E-05   

t = 0.375  1/4  9.923820E-04 2.054447E+00 1.603250E-03 1.988478E+00 

  1/8  2.389068E-04 2.019794E+00 4.040264E-04 1.957422E+00 

  1/16  5.891285E-05 2.008226E+00 1.040320E-04 1.984149E+00 

    1/32   1.464447E-05   2.629532E-05   

t = 0.50  1/4  5.941513E-04 2.013905E+00 1.362532E-03 1.855424E+00 

  1/8  1.471130E-04 2.001845E+00 3.765375E-04 1.945183E+00 

  1/16  3.673124E-05 2.001166E+00 9.777996E-05 1.977384E+00 

  1/32  9.175391E-06   2.483122E-05   

t = 0.625   1/4   4.205135E-04 1.864274E+00 1.184071E-03 1.854669E+00 

  1/8  1.154988E-04 1.951441E+00 3.273910E-04 1.947887E+00 

  1/16  2.986312E-05 1.982312E+00 8.485833E-05 1.979192E+00 

    1/32   7.557877E-06   2.152278E-05   

t = 0.75   1/4   3.473091E-04 1.798275E+00 8.782589E-04 1.843796E+00 

  1/8  9.985769E-05 1.929246E+00 2.446721E-04 1.941917E+00 

  1/16  2.621927E-05 1.971826E+00 6.368091E-05 1.975820E+00 

    1/32   6.684080E-06   1.618930E-05   

t = 0.875   1/4   3.038105E-04 1.749007E+00 6.156142E-04 1.777412E+00 

  1/8  9.038560E-05 1.904877E+00 1.795785E-04 1.913696E+00 

  1/16  2.413649E-05 1.959865E+00 4.766224E-05 1.963229E+00 

    1/32   6.204347E-06   1.222317E-05   

t = 1.00  1/4  3.602265E-04 1.720697E+00 6.238840E-04 1.720623E+00 

  1/8  1.092935E-04 1.893277E+00 1.892975E-04 1.893252E+00 

  1/16  2.942126E-05 1.954776E+00 5.095880E-05 1.954769E+00 

    1/32   7.589534E-06   1.314544E-05   
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Table 15 The order of convergence for the errors in the solutions  
for Problem 2 with 1r =  for 0 3σ =  and 0ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  2.429108E-03 2.028140E+00 4.302955E-03 1.927626E+00 

  1/8  5.955465E-04 2.012590E+00 1.131080E-03 1.958176E+00 

  1/16  1.475930E-04 2.005988E+00 2.910875E-04 1.977335E+00 

    1/32   3.674543E-05   7.392418E-05   

t = 0.25  1/4  1.777987E-03 2.031921E+00 3.034776E-03 1.947544E+00 

  1/8  4.347697E-04 2.012316E+00 7.867875E-04 1.965208E+00 

  1/16  1.077684E-04 2.005353E+00 2.014981E-04 1.980158E+00 

    1/32   2.684234E-05   5.107214E-05   

t = 0.375  1/4  1.133508E-03 2.052345E+00 1.796892E-03 1.990129E+00 

  1/8  2.732795E-04 2.018217E+00 4.523072E-04 1.978195E+00 

  1/16  6.746262E-05 2.007070E+00 1.147988E-04 1.984354E+00 

    1/32   1.678320E-05   2.901266E-05   

t = 0.50  1/4  6.263876E-04 2.060393E+00 1.105826E-03 1.869123E+00 

  1/8  1.501769E-04 2.018135E+00 3.027086E-04 1.958637E+00 

  1/16  3.707524E-05 2.006617E+00 7.787826E-05 1.989697E+00 

  1/32  9.226395E-06   1.960911E-05   

t = 0.625   1/4   3.709502E-04 1.916795E+00 9.854351E-04 1.851855E+00 

  1/8  9.824329E-05 1.965769E+00 2.730009E-04 1.948124E+00 

  1/16  2.515056E-05 1.987496E+00 7.074902E-05 1.979786E+00 

    1/32   6.342371E-06   1.793682E-05   

t = 0.75   1/4   2.750849E-04 1.811621E+00 7.230944E-04 1.853169E+00 

  1/8  7.836362E-05 1.933254E+00 2.001408E-04 1.945375E+00 

  1/16  2.051856E-05 1.973476E+00 5.196599E-05 1.977181E+00 

    1/32   5.224822E-06   1.319862E-05   

t = 0.875   1/4   2.075124E-04 1.750750E+00 4.407968E-04 1.789042E+00 

  1/8  6.166173E-05 1.901167E+00 1.275508E-04 1.913646E+00 

  1/16  1.650849E-05 1.956941E+00 3.385464E-05 1.961843E+00 

    1/32   4.252160E-06   8.690497E-06   

t = 1.00  1/4  2.250686E-04 1.704014E+00 3.898121E-04 1.703968E+00 

  1/8  6.908055E-05 1.881061E+00 1.196492E-04 1.881045E+00 

  1/16  1.875426E-05 1.947905E+00 3.248321E-05 1.947901E+00 

    1/32   4.860960E-06   8.419421E-06   
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Table 16 The order of convergence for the errors in the free boundaries   
for Problem 2 with 1r =  for 0 50σ =  and 1ε = − . 

h   L
2
 O(h) L ∞  O(h) 

1/4  3.991214E-05 1.612093E+00 5.679100E-05 1.640215E+00 

1/8  1.305619E-05 1.913580E+00 1.821905E-05 1.916900E+00 

1/16  3.465546E-06 1.978946E+00 4.824822E-06 1.979516E+00 

1/32   8.791229E-07   1.223454E-06   

 
Table 17 The order of convergence for the errors in the free boundaries   

for Problem 2 with 1r =  for 0 3σ =  and 1ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  3.139523E-04 1.766554E+00 6.236846E-04 1.720299E+00 

1/8  9.227368E-05 1.901953E+00 1.892795E-04 1.893152E+00 

1/16  2.469068E-05 1.955576E+00 5.095749E-05 1.954742E+00 

1/32   6.365696E-06   1.314535E-05   

 
Table 18 The order of convergence for the errors in the free boundaries   

for Problem 2 with 1r =  for 0 3σ =  and 0ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  1.899253E-04 1.749905E+00 3.897342E-04 1.703766E+00 

1/8  5.646884E-05 1.887671E+00 1.196420E-04 1.880982E+00 

1/16  1.526030E-05 1.947245E+00 3.248268E-05 1.947884E+00 

1/32   3.957164E-06   8.419386E-06   
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Figure 19 The graph of the 2L -errors against the space step h  for solutions of  

Problem 2 with 1r =  for 0 50σ =  and 1ε = − . 
 

 
Figure 20 The graph of the 2L -errors against the space step h  for solutions of  

Problem 2 with 1r =  for 0 3σ =  and 1ε = . 
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Figure 21 The graph of the 2L -errors against the space step h  for solutions of  

Problem 2 with 1r =  for 0 3σ =  and 0ε = . 
 

 
Figure 22 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 2 with 1r =  for 0 50σ =  and 1ε = − . 
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Figure 23 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 2 with 1r =  for 0 3σ =  and 1ε = . 
 

 
Figure 24 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 2 with 1r =  for 0 3σ =  and 0ε = . 
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Figure 25 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 2 with 1r =  for 0 50σ =  and 1ε = − . 
 

 
Figure 26 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 2 with 1r =  for 0 3σ =  and 1ε = . 
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Figure 27 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of  

Problem 2 with 1r =  for 0 3σ =  and 0ε = . 
 
 
Table 19 The order of convergence for the errors in the solutions  

for Problem 2 with 2r =  for 0 3σ =  and 1ε = − . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  2.192610E-04 3.003292E+00 5.917580E-04 2.863377E+00 

  1/8  2.734515E-05 3.017400E+00 8.131711E-05 2.940259E+00 

  1/16  3.377166E-06  1.059439E-05  

t = 0.25  1/4  3.393073E-04 2.985250E+00 6.516272E-04 2.877784E+00 

  1/8  4.284927E-05 3.003171E+00 8.865431E-05 2.957831E+00 

  1/16  5.344398E-06  1.141048E-05  

t = 0.375  1/4  3.909493E-04 2.979828E+00 6.382409E-04 2.882467E+00 

  1/8  4.955674E-05 3.000002E+00 8.655170E-05 2.965629E+00 

  1/16  6.194583E-06  1.107981E-05  

t = 0.50  1/4  3.640103E-04 2.979520E+00 5.442463E-04 2.882668E+00 

  1/8  4.615183E-05 2.999069E+00 7.379482E-05 2.967670E+00 

  1/16  5.772702E-06  9.433396E-06  

t = 0.625   1/4   2.744209E-04 2.984971E+00 4.028435E-04 2.929613E+00 

  1/8  3.466182E-05 2.999411E+00 5.287313E-05 2.964271E+00 

  1/16  4.334496E-06  6.774863E-06  
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t = 0.75   1/4   1.687669E-04 2.992813E+00 2.587859E-04 2.991500E+00 

  1/8  2.120122E-05 3.000585E+00 3.253938E-05 2.987341E+00 

  1/16  2.649078E-06  4.103270E-06  

t = 0.875   1/4   1.024747E-04 2.988200E+00 1.712626E-04 2.987245E+00 

  1/8  1.291454E-05 3.001088E+00 2.159794E-05 3.001091E+00 

  1/16  1.613100E-06  2.697700E-06  

t = 1.00  1/4  1.032030E-04 2.982928E+00 1.787488E-04 2.982900E+00 

  1/8  1.305393E-05 3.001323E+00 2.261001E-05 3.001319E+00 

  1/16  1.630246E-06  2.823668E-06  

 
Table 20 The order of convergence for the errors in the solutions  

for Problem 2 with 2r =  for 0 50σ =  and 1ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  1.543119E-04 3.485639E+00 2.708642E-04 3.437552E+00 

  1/8  1.377582E-05 3.986461E+00 2.500030E-05 3.204751E+00 

  1/16  8.691068E-07  2.711560E-06  

t = 0.25  1/4  2.927892E-04 3.176376E+00 4.402756E-04 3.160256E+00 

  1/8  3.238699E-05 3.525417E+00 4.924849E-05 3.528136E+00 

  1/16  2.812641E-06  4.268921E-06  

t = 0.375  1/4  3.582760E-04 3.090596E+00 5.130781E-04 3.061277E+00 

  1/8  4.205868E-05 3.274167E+00 6.146773E-05 3.305290E+00 

  1/16  4.347437E-06  6.218072E-06  

t = 0.50  1/4  3.429506E-04 3.055531E+00 4.927751E-04 3.052979E+00 

  1/8  4.125010E-05 3.179451E+00 5.937594E-05 3.204226E+00 

  1/16  4.553180E-06  6.442320E-06  

t = 0.625   1/4   2.615123E-04 3.050370E+00 3.815193E-04 3.069209E+00 

  1/8  3.156743E-05 3.150923E+00 4.545613E-05 3.172030E+00 

  1/16  3.553996E-06  5.043318E-06  

t = 0.75   1/4   1.588419E-04 3.087564E+00 2.411288E-04 3.109819E+00 

  1/8  1.868598E-05 3.220998E+00 2.793190E-05 3.277806E+00 

  1/16  2.004005E-06  2.879934E-06  

t = 0.875   1/4   9.069157E-05 3.204803E+00 1.502179E-04 3.223711E+00 

  1/8  9.836151E-06 3.588221E+00 1.608007E-05 3.662592E+00 

  1/16  8.178301E-07  1.269807E-06  

t = 1.00  1/4  8.688916E-05 3.306046E+00 1.504936E-04 3.306021E+00 

  1/8  8.785100E-06 4.061218E+00 1.521621E-05 4.061216E+00 

  1/16  5.262574E-07  9.115044E-07  
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Table 21 The order of convergence for the errors in the solutions  
for Problem 2 with 2r =  for 0 50σ =  and 0ε = . 

Time   h   L
2
 O(h) L ∞  O(h) 

t = 0.125  1/4  1.755908E-04 3.183526E+00 3.070850E-04 3.148829E+00 

  1/8  1.932702E-05 3.544446E+00 3.462315E-05 3.517901E+00 

  1/16  1.656458E-06  3.022547E-06  

t = 0.25  1/4  3.102978E-04 3.064264E+00 4.683958E-04 3.027963E+00 

  1/8  3.709739E-05 3.210462E+00 5.742559E-05 3.231248E+00 

  1/16  4.007727E-06  6.115089E-06  

t = 0.375  1/4  3.710514E-04 3.027417E+00 5.332798E-04 2.987075E+00 

  1/8  4.550831E-05 3.120289E+00 6.725986E-05 3.130046E+00 

  1/16  5.233476E-06  7.682777E-06  

t = 0.50  1/4  3.513064E-04 3.012874E+00 5.068426E-04 3.004679E+00 

  1/8  4.352318E-05 3.081682E+00 6.315016E-05 3.082522E+00 

  1/16  5.140934E-06  7.454918E-06  

t = 0.625   1/4   2.667270E-04 3.014312E+00 3.906637E-04 3.023337E+00 

  1/8  3.301175E-05 3.069963E+00 4.804941E-05 3.074861E+00 

  1/16  3.931132E-06  5.702467E-06  

t = 0.75   1/4   1.629831E-04 3.036003E+00 2.486927E-04 3.045680E+00 

  1/8  1.987076E-05 3.100636E+00 3.011772E-05 3.124692E+00 

  1/16  2.316487E-06  3.452996E-06  

t = 0.875   1/4   9.569751E-05 3.083021E+00 1.591889E-04 3.090060E+00 

  1/8  1.129324E-05 3.229779E+00 1.869443E-05 3.251100E+00 

  1/16  1.203811E-06  1.963512E-06  

t = 1.00  1/4  9.383623E-05 3.118149E+00 1.625258E-04 3.118123E+00 

  1/8  1.080723E-05 3.346361E+00 1.871862E-05 3.346358E+00 

  1/16  1.062574E-06  1.840432E-06  

 
Table 22 The order of convergence for the errors in the free boundaries   

for Problem 2 with 2r =  for 0 3σ =  and 1ε = − . 

h   L
2
 O(h) L ∞  O(h) 

1/4  8.223724E-05 3.006826E+00 1.787327E-04 2.982786E+00 

1/8  1.023113E-05 3.004805E+00 2.260976E-05 3.001305E+00 

1/16  1.274639E-06  2.823664E-06  
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Table 23 The order of convergence for the errors in the free boundaries   
for Problem 2 with 2r =  for 0 50σ =  and 1ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  6.781682E-05 3.381150E+00 1.504822E-04 3.305923E+00 

1/8  6.508935E-06 4.266261E+00 1.521610E-05 4.061205E+00 

1/16  3.382497E-07  9.115040E-07  

 
Table 24 The order of convergence for the errors in the free boundaries   

for Problem 2 with 2r =  for 0 50σ =  and 0ε = . 

h   L
2
 O(h) L ∞  O(h) 

1/4  7.394556E-05 3.161417E+00 1.625125E-04 3.118018E+00 

1/8  8.264769E-06 3.404395E+00 1.871845E-05 3.346346E+00 

1/16  7.805588E-07 #DIV/0! 1.840430E-06 #DIV/0! 

 

 
Figure 28 The graph of the 2L -errors against the space step h  for solutions of  

Problem 2 with 2r =  for 0 3σ =  and 1ε = − . 
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Figure 29 The graph of the 2L -errors against the space step h  for solutions of  

Problem 2 with 2r =  for 0 50σ =  and 1ε = . 
 

 
Figure 30 The graph of the 2L -errors against the space step h  for solutions of  

Problem 2 with 2r =  for 0 50σ =  and 0ε = . 
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Figure 31 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 2 with 2r =  for 0 3σ =  and 1ε = − . 
 

 
Figure 32 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 2 with 2r =  for 0 50σ =  and 1ε = . 
 
 



 

 45 

 
Figure 33 The graph of the L∞ -errors against the space step h  for solutions of  

Problem 2 with 2r =  for 0 50σ =  and 0ε = . 
 

 
Figure 34 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of 

Problem 2 with 2r =  for 0 3σ =  and 1ε = − . 
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Figure 35 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of 

Problem 2 with 2r =  for 0 50σ =  and 1ε = . 
 

 
Figure 36 The graph of the 2L - and L∞ -errors against the space step h  for free boundary of 

Problem 2 with 2r =  for 0 50σ =  and 0ε = . 
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