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摘要 
 
視覺密碼學(Visual Cryptography)是一種將秘密的影像加密成數張分享片(Shares)
的方法。如此一來只要疊足夠數量的分享片，便能解開那秘密影像。分享片通常

以投影片做成，每位參予者(Participant)擁有一片投影片。之前大部分的研究，主

要集中在增進兩種參數，像素擴展(Pixel Expansion)及對比(Contrast)。 
傳統視覺密碼學定義，要求解開的秘密影像必須比背景黑。然而我們觀察這

並不是必要條件，特別是應用在文字影像時，因此我們提出一個較佳的定義。根

據這個新定義，我們發現許多傳統視覺密碼方法及其應用，都是可以精進的。根

據我們的研究，對傳統視覺密碼學，我們做了以下的貢獻： 
1. 我們利用這新定義，研究新視覺密碼學的特質及其界限(Bound)，並提

出數個比傳統密碼學較佳的方法。 
2. 我們展示三種欺騙的方法，並應用它們來攻擊視覺密碼學。也提出了一

種很有效率的方法，將所有視覺密碼學方法轉換成具防欺騙的功能。 
3. 根據這新定義，我們提出了一個新方法來完成反轉視覺密碼方法(Visual 

Cryptography Scheme with Reversing)。跟之前的方法比較，我們的方法

僅要求每一位使用者儲存兩張投影片。 
4. 我們提出一種新的 2 out of n 的延伸視覺密碼方法(Extended Visual 

Cryptography Scheme)，雖然這個方法的影像，沒有那麼漂亮，但比起

之前的方法則有較佳的對比。 
關鍵字：視覺密碼學， 視覺秘密分享法， 存取結構， 偽冒防制， 反轉， 

最佳對比， 像素擴展。 
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Abstract

Visual Cryptography (VC) is a method of encrypting a secret image into shares

such that stacking a sufficient number of shares reveals the secret image. Shares are

usually presented in transparencies. Each participant holds a transparency. Most

of the previous research work on VC focuses on improving two parameters: pixel

expansion and contrast.

The conventional definition requires that the revealed secret images are always

darker than the backgrounds. We observed that this is not necessary, in particular,

for the textual images. Therefore, we proposed an improved definition for visual

cryptography based on our observation, in which the revealed images may be darker

or lighter than the backgrounds. Based on the new definition, we find that many

extensions of the original Visual Cryptography Schemes (VCSs) are improvable.

According to our study, we improve the results of the original VCSs including the

following contributions:

• We studied properties and obtained bounds for visual cryptography schemes

based on the new definition. We proposed methods to construct visual cryp-

tography schemes based on the new definition.

• We presented three cheating methods and applied them on attacking exis-

tent VC or Extended VC (EVC) schemes. We improved one cheat-preventing

scheme. We proposed a generic method that converts a VCS to another VCS

that has the property of cheating prevention.

• Based on the new definition, we propose a new ideal VCS with reversing which

is compatible and requires fewer stacking and reversing operations, compared

to all previous schemes. Each participant is required to store only two trans-

parencies .

• We propose a (2,n)-EVCS scheme based on the new definition. Although the

image of this construction is not ”smooth”, it has better contrast than previous

results.
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Chapter 1

Introduction

Following the remarkable advance of computer technology, the theory and applica-

tions of computer security are also making progress at a tremendous pace. Powerful

cryptographic algorithms and protocols are designed to meet security requirements

of various applications. However, using a computer to decrypt secrets is infeasible

in some situations. For example, a security guard checks the badge of an employee

or a secret agent recovers an urgent secret at some place where no electronic devices

are available. In these situations the human visual system is one of the most con-

venient and reliable tools to do checking and secret recovery. Therefore, Naor and

Shamir [20] invented the Visual Cryptography (VC) in which a secret image (printed

text, picture, etc) is encrypted in a perfectly secure way such that the secret can be

decoded directly by the human visual system.

VC is a method of encrypting a secret image into shares such that stacking a

sufficient number of shares reveals the secret image. Shares are usually presented in

transparencies. Each participant holds a transparency (share). Unlike conventional

cryptographic methods, VC needs no complicated computation for recovering the

secret image. The act of decryption is to stack shares and view the image that ap-

pears on the stacked shares simply. A (k, n)-Visual Cryptography Scheme (denoted

as (k, n)-VCS) is a visual secret sharing scheme [23, 24] such that stacking any k or

more shares reveals the secret image, but stacking fewer than k shares reveals not

any information about the secret image.

A VCS would be helpful if the shares are meaningful or identifiable to every

participant. A VCS with this extended characteristic is called Extended VCS

(EVCS) [2, 20]. A (k, n)-EVCS is like a (k, n)-VCS except that each share dis-

plays a meaningful image, which will be called share image hereafter. In order to

identify the transparencies (shares), some images or symbols are needed to appear
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on the transparencies. Different shares may have different share images.

A VCS is called perfect black (white resp.) if all the subpixels associated to a

black (white resp.) pixel is black (white resp.). An image with optimal contrast

is called ideal contrast. That is all the subpixels associated to a black and white

pixels are perfect reconstructed. Let h (l resp.) be the number of white subpixels

in a white (black resp.) pixel. Then, an image is of ideal contrast if h = m and

l = 0. A VCS is perfect black if the value l of the reconstructed image is 0. For the

characteristic of contrast, the equation m ≥ h > l ≥ 0 must be satisfied if one should

identify the secret image. The most concerned issue for the reconstructed image is

contrast [20]. Since the share held by each participant should consist of same number

of white subpixels and black subpixels (for the reason of computationally secure), it

is impossible to recover a secret image with ideal contrast in VC. Therefore, Viet and

Kurosawa [27] proposed a VCS, called VCS with Reversing (VCSR), which adopted

a simple tool (copy machine) to improve the contrast of the reconstructed image.

For most copy machines nowadays, to reverse black and white pixels in a paper is

already a fundamental function.

There are quite many new results and extensions of the original work [1, 2, 4, 5,

6, 7, 9, 11, 14, 19, 21]. We briefly describe them as follows.

1.1 Previous Works

Naor and Shamir [20] defined visual cryptography formally and proposed an optimal

visual cryptography scheme for the (n, n)-threshold access structure. They also ex-

tended the work for the (k, n)-threshold access structures. Many improvements and

extensions follows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 25, 26, 27, 29]. For

example, Ateniese, et al. [1] proposed an elegant VCS for general access structures

based on the cumulative array method. They analyzed structures of visual cryptog-

raphy schemes and proved bounds for the size of the shares. Hofmeister, et al. [11]

proposed a visual cryptography scheme for (k, n)-threshold access structures, which

achieves the best contrast by solving a simple linear program. Visual cryptography

schemes for color images were given in [18, 22].

Extended visual cryptography defines that each share shows an image, but

their combinations show the real secret image. Naor and Shamir [20] proposed

an extended visual cryptography scheme for the (2, 2)-threshold access structure.

Droste [9] proposed a very general method to construct an extended visual cryptog-

raphy scheme for an arbitrary access structure, which is not necessarily monotonic.
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Ateniese, et al. [2] proposed a hyper-coloring technique to construct extended visual

cryptography schemes. It is possible that each share shows a different image initially

and a different combination of shares shows a different secret image. Kim, et al. [15]

discussed negative images for access structures.

Viet and Kurosawa [27] proposed a VCS with reversing, with which the re-

constructed secret image obtains almost ideal contrast. They adopted a tool (copy

machine) to improve the contrast of the reconstructed image. Before long, S. Cimato

et al. [8] proposed two elegant schemes to construct VCSs with reversing. In their

first scheme, each participant stores m transparencies, where m is the pixel expan-

sion (the number of subpixels in each pixel). They proposed another VCS, using

as a building block a binary secret sharing scheme (BSS). This scheme reduces the

number of transparencies held by each participant to r, where r is the number of

bits in the binary representation of the largest share. Yang et al. [31] applied a

cyclic shift operation of subpixels to the Viet and Kurosawa’s scheme and obtain a

new efficient VCSR.

Naor and Pinkas [19] showed some methods of authentication and identification

for VC. Yang and Laih [30] proposed two cheat-preventing methods. Their first

method needs an on-line TA (Trusted Authority) to verify the shares of participants.

Horng also et al. [12] proposed a cheating method against some VC schemes.

1.2 Motivations

For the interesting characteristic, Visual Cryptography is a quite improvable topic

to study. Our improvements on Visual Cryptography include proposing a new def-

inition, studying the cheating behaviors on VC, and doing some improvements on

EVCS and VCS with Reversing. We describe the motivations of these works as

follows.

The previous work we mentioned above, use the definition of Naor and Shamir,

i.e., when recovered, the secret image is darker than the background. However, in

many situations, what the human visual system cares about is ”contrast”, no matter

whether the image is darker or lighter than the background. For example, we can get

the textual secret image ”5” from either Ä or Î. Therefore, we give a new definition

for visual cryptography based on the above observation.

VC has been studied intensively since the pioneer work [20] of Noar and Shamir [5,

6, 8, 10, 11, 17, 26]. In these cases, all participants who hold shares are assumed

to be semi-honest, that is, they won’t present false or fake shares during the phase

3



of recovering the secret image. Thus, the image shown on the stacking of shares

is considered as the real secret image. Nevertheless, cryptography is supposed to

guarantee security even under the attack of malicious adversaries who may deviate

from the scheme in any way. We have seen that it is possible to cheat [12, 19, 28, 30]

in VC, though it seems hard to imagine. For cheating, a cheater presents some

fake shares such that the stacking of fake and genuine shares together reveals a

fake image. With the property of unconditional security, VC is suitable for sending

to highly-classified orders to a secret agent when computing devices may not be

available. The secret agent carried some shares, each with a pre-determined order,

when departing to the hostile country. When the headquarter decides to execute a

specific order, it can simply send another share to the agent so that the agent can

recover what the order is. We can see that it would be terrible if the dispatched

share cannot be verified due to a cheater’s attack.

At first glance, it seems very difficult to cheat in EVCS because the cheater does

not know the share images that appear on the genuine shares and, thus, has no

information about the distributions of black and white pixels of the share images.

This information is crucial for cheating in VC. However, we show that it is still

possible to cheat in EVC.

A VCS with reversing (VCSR) [27] is a VCS where every participant is allowed to

change black pixels on the transparency into white pixels and vice-versa. A practical

material for constructing VC is the transparency. However, due to the contiguous

black and white pixels on each transparency, the reconstructed secret image will

become much more ambiguous after every stacking if the transparencies are not

superimposed precisely. As a result, reducing the stacking and reversing operations

is important for VCSs with reversing. Therefore, we propose a compatible ideal

contrast VCSR with only two runs. In other words, each participant only need to

use two shares in the reconstruction phase.

Extended Visual Cryptography [2, 20] stipulates that each share shows an image,

and their combinations show the real secret image. Based on the new definition, we

find that the pixel expansion of a (2,n)-EVCS can be reduced to a smaller number

than that of a (2,n)-EVCS based on the original definition.
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1.3 Our Contributions

1.3.1 A More General and Efficient Definition

With the more general definition, we propose various visual cryptographic schemes.

Our schemes have better pixel expansion than previous results in some cases. In

Chapter 3, we obtain the following results:

• We propose an improved definition for visual cryptography.

• We study properties and obtain bounds for visual cryptography schemes based

on the new definition.

• We propose methods to construct visual cryptography schemes based on the

new definition. The experiment results show that our constructions provide

better pixel expansion in average.

1.3.2 Cheating Behaviors and Prevention

In Chapter 4, we study the cheating problem in VC and EVC. We present three

cheating methods and apply them on existent VC or EVC schemes. Our attacks are

to reveal fake images to cheat honest participants.

We propose a generic method that converts a VCS to another VCS that has the

property of cheating prevention (also called cheat-preventing VCS). The overhead

of the conversion is near optimal. Our contributions are summarized as follows:

• We propose three cheating methods against VC or EVC schemes. The first

two methods are applied to attack VC schemes and the third one is applied to

attack EVC schemes. These three methods are easy to implement and satisfy

the cheating definition for cheating traditional secret sharing schemes.

• We review some previously proposed cheat-preventing VC or EVC schemes and

demonstrate that those schemes are either not robust enough (still cheatable)

or improvable.

• We propose some necessary criteria for a VCS to be secure against cheating

robustly. By these criteria, we propose a generic method that converts any

VCS to another VCS with the property of cheating prevention. Our conversion

is very efficient and incurs little overhead compared with the original VCS. The

degression in contrast of the converted VCS is almost optimal. For each pixel
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of the secret image, we add two additional subpixels to the encoded subpixels

only, no matter how many the encoded subpixels are.

1.3.3 More Efficient Compatible VCSs with Reversing Based

on the New Definition

In Chapter 5, we show how to

• construct three ideal contrast VCSs with fewer reversing and stacking opera-

tions while maintaining compatibility.

• reduce the number of transparencies held by each participant to two. It is an

improvement on all properties when compared to the schemes of S. Cimato et

al [8], except for the property of pixel expansion.

1.3.4 EVCS Based on the New Definition

With the new definition, we propose a new (2, n)-EVCS. Our schemes have much

better contrast than previous results in some cases. In Chapter 6, we show our

contributions including:

• an improved definition for extended visual cryptography.

• a new (2, n)-EVCS scheme that has better contrast than the scheme based on

the new definition.
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Chapter 2

Preliminaries

2.1 Model and Notation

Access structure. We consider arbitrary access structures. Let P = {1, 2, . . . , n}
be a set of participants. Γ = (P, Q, F ) is an access structure if both Q and F are

subsets of 2P and Q∩F = ∅. Each X ∈ Q is a qualified set of participants and each

Y ∈ F is a forbidden (non-qualified) set of participants. We call (P, Q, F ) complete

if F = 2P − Q, which is denoted by (P, Q) in short. (P, Q) is a (k, n)-threshold

access structure if all k- or more-element subsets of P are in Q. Q is monotonically

increasing if X ∈ Q implies that for all X ′ ⊇ X, X ′ ∈ Q. F is monotonically

decreasing if X ∈ F implies that for all X ′ ⊆ X, X ′ ∈ F . We say that Γ = (P, Q, F )

is monotonic if Q is monotonically increasing and F is monotonically decreasing. We

remark that Q is not necessarily monotonically increasing and F is not necessarily

monotonically decreasing for an arbitrary access structure (P, Q, F ).

Notation. Let B be a Boolean matrix and Bi be the ith row vector of B. Let

Bi + Bj be the bit-wise OR of vectors Bi and Bj. Let X be a subset {i1, i2, . . . , iq)
of a participant set P . We define OR(B, X), AND(B, X) and XOR(B, X) to

be the vector of ”OR”, ”AND” and ”XOR” resp. of rows i1, i2, . . . , iq of B. Let

GREY(GP )= |black subpixels| /m be the grey level of a white (or black) pixel, where

m is the pixel expansion of the pixel. That is, OR(B, X) = Bi1 + Bi2 + · · · + Biq .

Let w(v) be the Hamming weight of row vector v. For brevity, we let w(B, X) =

w(OR(B, X)). Let A||B denote the concatenation of two matrices A and B of the

same number of rows. Let |X| be the number of elements in set X.

Bit Operations. We use ”Si + Sj” to denote ”the stacking of shares Si and Sj”.

The ”stacking” corresponds to the bitwise-OR operation ”+” of subpixels in shares

Si and Sj. Let S ′
i denote the complement share (transparency) of Si for participant

i, in other words, we obtain S ′
i by computing one reversing operation on Si. Let
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Si+Sj, Si×Sj and Si⊕Sj be the bit-wise OR, AND, and XOR of the corresponding

supixels on transparencies Si and Sj.

It is well known that any Boolean operation can be performed solely by the

combination of OR and NOT gates. Therefore, using a VCS with reversing we

can denote more bit operations than in a traditional VCS. For example, an XOR

operation is equal to four NOT and three OR operations, i.e. four reversing and

three stacking operations.

Si ⊕ Sj = OR((OR(S ′
i, Sj))

′, (OR(Si, S
′
j))

′)

Probabilistic VCS. Let pb(S) = w(v)/m, where v is a black pixel in share S and

m is the dimension of v. Similarly, pw(S) = w(v)/m, where v is a white pixel in

share S. Note that all white (or black) pixels in a share have the same Hamming

weight.

2.2 Visual Cryptography Scheme

In visual cryptography, a secret image consists of a collection of black and white

pixels. Each pixel in the image is considered separately. A pixel is divided into pixel

shares. Each pixel share consists of m subpixels and is given to a participant such

that a qualified set of participants can recover the pixel by stacking their pixel shares

and a set of forbidden participants cannot get any information about the pixel, that

is, the subpixel patterns of the pixel shares of the black pixel are the same as those

of the white pixel. An image share (or share) of an image consists of all the pixel

shares of its pixels.

To construct n shares of an image for n participants, we need to prepare two

collections C0 and C1, which consist of n×m Boolean matrices. A row in a matrix

in C0 and C1 corresponds to m subpixels of a pixel, where 0 denotes the white

subpixel and 1 denotes the black subpixel. For a white (or black) pixel in the image,

we randomly choose a matrix M from C0 (or C1, resp.) and assign row i of M to

the corresponding position of share Si, 1 ≤ i ≤ n. Each pixel of the original image

will be encoded into n pixels, each of which consists of m subpixels on each share.

Since a matrix in C0 and C1 constitutes only one pixel for each share. For security,

the number of matrices in C0 and C1 must be huge. For succinct description and

easier realization of the VC construction, we do not construct C0 and C1 directly.

Instead, we construct two n×m basis matrices S0 and S1 and then let C0 and C1

be the set of all matrices obtained by permuting columns of S0 and S1, respectively.
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The resultant shares need satisfy the properties of visual cryptography. The

conventional definition for VCS [1] is as follows.

Definition 2.2.1. Let Γ = (P, Q, F ) be an access structure. Two collections (multisets)

C0 and C1 of n×m Boolean matrices constitute a (Γ, m)-VCS if there exist a value

α(m) > 0 and a set {(X, tX)}X∈Q satisfying:

1. Any qualified set X = {i1, i2, . . . , iq} ∈ Q can recover the secret image by

stacking their shares. Formally, for any M ∈ C0, w(M, X) ≤ tX −α(m)×m;

whereas, for any M ′ ∈ C1, w(M ′, X) ≥ tX .

2. Any forbidden set Y = {i1, i2, ..., iq} ∈ F has no information on the secret

image. Formally, the two collections C t, t ∈ {0, 1}, of q×m matrices obtained

by restricting each n × m matrix in M ∈ C t to rows i1, i2, ..., iq, are indis-

tinguishable in the sense that they contain the same matrices with the same

frequencies.

The value m is called pixel expansion, which is the number of subpixels that

each pixel of the secret image is encoded into in each share. The value α(m) ≥ 0

is called contrast. The higher the contrast is, the more visible by human eyes the

secret image is. The first property (contrast) ensures that the recovered image

shows difference between the white pixels and the black pixels. The second property

(security) ensures that nothing about the image can be recovered from the shares

of participants in a forbidden set.

The following shows an example of VC.

Example 2.2.1. Let P = {1, 2, 3}, Q = {(1, 2), (2, 3), (1, 2, 3)} and then F =

{1, 2, 3, (1, 3), ()}. The two basis matrices

S0 =





1 1 0 0
1 1 1 0
1 1 1 0



 and S1 =





1 1 0 0
1 0 1 1
1 1 1 0





form a (Γ, 4)-VCS with contrast α(m) = 1/4. The shares S1, S2 and S3, and the

stackings of them are given in Figure 2.1.

In the above example, each pixel of the secret image is encoded as four subpixels

in each share. To encode a white (or black) pixel, we assign row i of S0 (or S1,

resp.) to share Si, 1 ≤ i ≤ n. In order to ensure security, the order of the subpixels

of a pixel is randomly permuted (simultaneously permuted for all shares). This is

equivalent to randomly choosing a matrix M from C0 (or C1, respectively).

An extended VCS is a VCS such that each share has a meaningful share image.
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white 
pixels

black 
pixels

 S1  S1+S2

 S1+S3  S2+S3

 S2

 S3

+ =

+ =

Figure 2.1: A (Γ, 4)-VCS and the structures of subpixels.

S1 S2 S3

S1  + S3 S1 + S2 S2 + S3

Figure 2.2: A (Γ, 4)-EVCS.

Example 2.2.2. Figure 2.2 shows an EVCS for the access structure Γ of Exam-

ple 2.2.1. The share images of S1, S2 and S3 are A, B and C, respectively. Note

that S1 + S3 shows no information about the secret S.

We consider general access structures. An access structure is non-monotonic if

some forbidden set contains a qualified set. Non-monotonic access structures have

some applications. For example, it may be that a participant x has the right to

veto the decision of a qualified set X, such that X ∪ {x} is a forbidden set. We

point out that the participants may not know Q and F . When some participants

come together, all they do is to stack their shares and get the image revealed by

their stacked shares. Therefore, non-monotonic access structures have some physical

meaning.

We observe that by the definition only monotonic access structures have visual

cryptography schemes. To see this, assume that a forbidden set X ∈ F contains a

qualified set Y ∈ Q. Then, X’s corresponding D0 and D1 are distinguishable by
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observing the matrices of D0 and D1 restricted to the rows of Y .

We can see that by Definition 2.2.1, recovered images are always darker than

backgrounds. As explained above, we give a new definition for visual cryptography

that stresses ”contrast”. That is, some recovered images are darker than back-

grounds and some are lighter than backgrounds.

Definition 2.2.2. Let Γ = (P, Q, F ) be an access structure. Two collections (multi-

sets) C0 and C1 of n×m Boolean matrices constitute a visual cryptography scheme

(Γ, m)-VCS if there exist value α(m) > 0 and the set {(X, tX)}X∈Q satisfying:

1. Any qualified set X = {i1, i2, . . . , iq} ∈ Q can recover the shared image by

stacking their shares. Formally, for any M ∈ C0, w(M, X) = tX ; whereas, for

any M ′ ∈ C1, w(M ′, X) ≥ tX + α(m) ·m or for any M ′ ∈ C1, w(M ′, X) ≤
tX − α(m) ·m.

2. Any forbidden set X = {i1, i2, . . . , iq} ∈ F has no information on the shared

image. Formally, let Dt, t ∈ {0, 1}, be two collections of q × m matrices

obtained by restricting each n×m matrix in M ∈ C t to rows i1, i2, . . . , iq, such

that

(a) If X does not contain any qualified set in Q, D0 and D1 are indistin-

guishable in the sense that they contain the same matrices with the same

frequencies.

(b) If X contains a qualified set in Q, the two collections V t, t ∈ {0, 1}, of

1 × m vectors obtained by OR-ing all rows of each q × m matrix in Dt

are indistinguishable in the sense that they contain the same vectors with

the same frequencies.

Our definition changes the property of contrast, in which the revealed images

may be darker or lighter than backgrounds. We fix the threshold associated to

M ∈ C0 and adjust the threshold associated to M ∈ C1. In defining security, 2(b)

deals with the case of non-monotonic access structures. We require that the ”stacked

shares” (the OR vector of the corresponding rows) reveal no information about the

image.

We shall use VCS1 for a VCS based on Definition 2.2.1 and VCS2 for a VCS based

on Definition 2.2.2. We give an example in Appendix to show that this definition may

reduce the pixel expansion rate. We can see that the secret image ”CRYPTOLOGY”

is either darker or lighter than the background. The basis matrices of our V CS2
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construction have m = 4 and α(m) = 1/4. However, by the previous definition, any

V CS1 for the access structure needs at least m = 12 and α(m) = 1/12.

2.3 Visual Cryptography Schemes with Reversing

With the extra reversing operation, we slightly modify the definition for VCS [1] to

meet the requirements of VCS with reversing as follows.

Definition 2.3.1. Let Γ = (P, Q, F ) be an access structure. Two collections (multisets)

C0 and C1 of n×m Boolean matrices constitute a (Γ, m)-VCS with reversing if there

exist a value α(m) > 0 and a set {(X, tX)}X∈Q satisfying:

1. Any qualified set X = {i1, i2, ..., iq} ∈ Q can recover the shared image by stack-

ing or reversing their transparencies. Formally, for any M ∈ C0, w(M, X) ≤
tX − α(m)×m; whereas, for any M ′ ∈ C1, w(M ′, X) ≥ tX .

2. Any forbidden set X = {i1, i2, ..., iq} ∈ F has no information on the shared

image. Formally, the two collections C t, t ∈ {0, 1}, of q×m matrices obtained

by restricting each n × m matrix in M ∈ C t to rows i1, i2, ..., iq, are indis-

tinguishable in the sense that they contain the same matrices with the same

frequencies.

2.4 Extended Visual Cryptography Schemes

We follow in the footsteps of the work of Ateniese et al. [2]. An (ΓQual, ΓForb, m)-

EVCS, with pixel expansion m, for an access structure (ΓQual, ΓForb) on a set of

n participants, is similar to VCS except for every share must show some innocent

looking image. The quantities αF and αS measure the contrast of the reconstructed

image and the contrast of the shares respectively. We will refer to the color of a

white (black) pixel as a w pixel (b pixel). Let CC1...Cn

C , where c, c1, ..., cn ∈ {b, w},
be the collection of matrices from which the dealer chooses a matrix to encode, for

i = 1, ..., n, a ci pixel in the image associated to participants i in order to obtain a c

pixel when the shares associated to a set X ∈ ΓQual are stacked together. Therefore,

in order to implement an EVCS we must construct 2n pairs of such collections

(Cc1...cn
w , Cc1...cn

b ), one for each possible combination of white and black pixels in the

n original images.

The conventional definition for EVCS consists of the following properties.
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Definition 2.4.1. [2] Let (ΓQual, ΓForb) be an access structure on a set of n par-

ticipants. A family of 2n pairs of collections (multisets) of n ×m boolean matrices

{(Cc1...cn
w , Cc1...cn

b )}c1,...,cn∈{b,w} constitute a weak (ΓQual, ΓForb, m)-EVCS if there exist

values α(m) and {tX}X∈ΓQual
satisfying:

1. Any (qualified) set X ∈ ΓQua can recover the shared image.

Formally, for any X ∈ ΓQua and for any c1, ..., cn ∈ {b, w} the threshold tX

and the relative difference α(m) are such that for any M ∈ Cc1...cn
w we have

that w(MX) ≤ tX − α(m) ×m; whereas, for any M ∈ Cc1...cn

b it results that

w(MX) ≥ tX .

2. Any (forbidden) set X = {i1...ip} ∈ ΓForb has no information on the shared

image. Formally, for any ci1, ..., cip ∈ {b, w} the pair of collections ∪i∈{1,...,n}\X

∪Ci∈{b,w} Dc1,...,cn

t with t = {b, w}, where Dc1,...,cn

t is obtained by restricting

each n × m matrix in Cc1,...,cn

t to rows i1, ..., ip , are indistinguishable in the

sense that they contain the same matrices with the same frequencies.

3. After the original innocent looking images are encoded they are still meaning-

ful, that is, any user will recognize the image on his transparency.

Formally, for any i ∈ {1, ..., n} and any c1, ..., ci−1, ci+1, ..., cn ∈ {b, w}, it re-

sults that

minM∈Mb
w(Mi) > maxM∈Mw

w(Mi)

where Mb = ∪c1,...,ci−1,ci+1,...,cn∈{b,w}C
c1...ci−1bci+1...cn
w

and Mw = ∪c1,...,ci−1,ci+1,...,cn∈{b,w}C
c1...ci−1wci+1...cn
w .

The first property is called contrast. It ensures that the image can be seen

when the transparencies of a qualified set are stacked. The second property, called

security, ensures that nothing can be recovered when stacking the transparencies

of a set in ΓForb. Finally, the third property called identification implies that after

encoding the n original innocent looking images by using the 2n pairs of collections

(CC1...Cn
w , CC1...Cn

b ), where c1, ..., cn ∈ {b, w}, any user will recognize the image on his

share.
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Chapter 3

Improvements on the Original
VCS

In this chapter, we studied properties and obtained bounds for visual cryptography

schemes based on the new definition. We proposed methods to construct visual cryp-

tography schemes based on the new definition. The experiments showed that visual

cryptography schemes based on our definition indeed have better pixel expansion in

average.

3.1 Properties of VCS2

In this section, we study properties about V CS2 and show how to construct a V CS2

from smaller V CS2.

Since V CS2 is a generalization of V CS1, any V CS1 is a V CS2.

Theorem 3.1.1. Let Γ = (P, Q, F ) be an access structure. Any (Γ, m)-V CS1 is a

(Γ, m)-V CS2.

Proof. This is trivial since V CS1 is a special case of V CS2.

If basis matrices S0 and S1 have a common column, we can delete it from S0

and S1 to reduce pixel expansion.

Theorem 3.1.2 (Deletion). Let Γ = (P, Q, F ) be an access structure. If S0 and S1

are basis matrices for a (Γ, m)-V CS2, S ′0 and S ′1 are basis matrices for a (Γ, m−
k)-V CS2, where S ′0 and S ′1 are obtained from S0 and S1 by deleting the same k

columns.

Proof. Assume that b1, b2, . . . , bk are the columns deleted from S0 and S1. Let

B = b1||b2|| · · · ||bk. For X ∈ Q, w(S ′0, X) = w(S0, X)− w(B, X) = tX − w(B, X)
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and w(S ′1, X) = w(S1, X) − w(B, X) ≥ tX + m · α(m) − w(B, X) or w(S ′1, X) =

w(S1, X)−w(B, X) ≤ tX−m ·α(m)−w(B, X). Let t′X = tX−w(B, X), m′ = m−k

and α(m′) = m · α(m)/m′. Then, S ′0 and S ′1 meets the contrast requirement of

V CS2.

For X ∈ F , after deleting the same columns, S ′0 and S ′1 still meet the security

requirements of V CS2. Therefore,S ′0 and S ′1 are basis matrices for a (Γ, m′)-V CS2.

We can exchange the roles of S0 and S1 in a V CS2. Therefore, if we find a V CS2

for an access structure, we have another one immediately.

Theorem 3.1.3 (Inverse). Let Γ = (P, Q, F ) be an access structure. If S0 and S1

are basis matrices for a (Γ, m)-V CS2, S ′0 and S ′1 are basis matrices for a (Γ, m)-

V CS2, where S ′0 = S1 and S ′1 = S0.

Proof. For each X ∈ Q, we set t′X to be tX + m · α(m) if w(S1, X) ≥ tX + m · α(m)

and to be tX − m · α(m) if w(S1, X) ≤ tX − m · α(m). Then, for each X ∈ Q,

w(S ′1, X) = w(S0, X) ≤ t′X −m · α(m) or w(S ′1, X) = w(S0, X) ≥ t′X −m · α(m).

The security requirements are not affected by exchanging S0 and S1.

We can add a participant such that Q is augmented.

Theorem 3.1.4. Let Γ = (P, Q, F ) be an access structure and x 6∈ P . If there

exists a (Γ, m)-V CS2 with bases, there exists a (Γ′, m)-V CS2 with bases, where

Γ′ = (P ∪ {x}, Q ∪ {{x}}, F ).

Proof. Without loss of generality, let x be the (n + 1)-th element in P ∪ {x}. Let

S0 and S1 be the basis matrices for a (Γ, m)-V CS2. It is easy to see that

S ′0 =

[

S0

0 · · · 0

]

and S ′1 =

[

S1

1 · · · 1

]

are basis matrices for a (Γ′, m)-V CS2.

Theorem 3.1.5. Let Γ = (P, Q) be a complete access structure and x 6∈ P . If

there exists a (Γ, m)-V CS2 with bases, there exists a (Γ′, m)-V CS2 with bases, where

Γ′ = (P ∪ {x}, Q ∪ {X ∪ {x}|X ∈ Q}).

Proof. Without loss of generality, let x be the (n+1)-th participant in P ∪{x}. Let

S0 and S1 be the basis matrices for a (Γ, m)-V CS2. It is easy to see that

S ′0 =

[

S0

0 · · · 0

]

and S ′1 =

[

S1

0 · · · 0

]

are basis matrices for a (Γ′, m)-V CS2.
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Theorem 3.1.6. Let Γ = (P, Q, F ) be an access structure and x 6∈ P . If there

exists a (Γ, m)-V CS2 with bases, there exists a (Γ′, m + 1)-V CS2 with bases, where

Γ′ = (P ∪ {x}, Q ∪ {X ∪ {x}|X ⊆ P}, F ).

Proof. Without loss of generality, let x be the (n + 1)-th element in P ∪ {x}. Let

S0 and S1 be the basis matrices for a (Γ, m)-V CS2. Let

S ′0 =











0

S0 ...
0

1 · · · 1 0











, S ′1 =











0

S1 ...
0

1 · · · 1 1











and α(m + 1) = 1/(m + 1).

For every X ∈ Q′ = Q∪{X∪{x}|X ⊆ P}, if X ∈ Q, we have w(S ′0, X) = w(S0, X)

and w(S ′1, X) = w(S1, X). If x ∈ X, we have w(S ′0, X) = m and w(S ′1, X) = m+1,

where tX = m. Thus, S ′0 and S ′1 meet the contrast property. Since all forbidden

sets are in F , S ′0 and S ′1 meet the security requirement. Therefore, S ′0 and S ′1 are

basis matrices for a (Γ′, m + 1)-V CS2.

We can construct a V CS2 for Γ′ from a V CS2 for Γ when Γ′ is obtained by adding

an additional participant x to Γ such that some sets containing x are forbidden.

Theorem 3.1.7. Let Γ = (P, Q, F ) be an access structure and x 6∈ P . If there

exists a (Γ, m)-V CS2 with bases, there exists a (Γ′, m)-V CS2 with bases, where

Γ′ = (P ∪ {x}, Q, F ∪ {X ∪ {x}|X ∈ F}).

Proof. Without loss of generality, let x be the (n + 1)-th element in P ∪ {x}. Let

S0 and S1 be the basis matrices for a (Γ, m)-V CS2. It is easy to see that

S ′0 =

[

S0

1 · · · 1

]

and S ′1 =

[

S1

1 · · · 1

]

are basis matrices for a (Γ′, m)-V CS2.

Corollary 3.1.1. Let Γ = (P, Q, F ) be an access structure and x 6∈ P . If there exists

a (Γ, m)-V CS2 with bases, there exist a (Γ′, m)-V CS2 with bases and a (Γ′′, m)-

V CS2 with bases, where Γ′ = (P ∪ {x}, Q, F ∪ {{x}}), and Γ′′ = (P ∪ {x}, Q, F ).

We can concatenate the basis matrices of two V CS2’s if their access structures

satisfy some conditions.

Theorem 3.1.8 (Composition). Let Γ1 = (P, Q1, F1) and Γ2 = (P, Q2, F2) be two

access structures. Assume that Q1 ∩ Q2 = ∅. If there exist a (Γ1, m1)-V CS2 with

bases and a (Γ2, m2)-V CS2 with bases, there exists a (Γ, m1 +m2)-V CS2 with bases,

where Γ = (P, Q1 ∪Q2, F1 ∩ F2).
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Proof. Let S0
1 and S1

1 be basis matrices for a (Γ1, m1)-V CS2 and S0
2 and S1

2 be basis

matrices for a (Γ2, m2)-V CS2. We show that S0 = S0
1 ||S0

2 and S1 = S1
1 ||S1

2 with

m = m1 +m2 and α(m) = min{m1 ·α(m1), m2 ·α(m2)}/(m1+m2) are basis matrices

for a (Γ, m)-V CS2.

Let Q = Q1 ∪Q2 and F = F1 ∩ F2. For X ∈ Q, if X ∈ Q1 ∩ F2, we have

|w(S0, X)− w(S1, X)| = |w(S0
1 , X) + w(S0

2 , X)− w(S1
1 , X)− w(S1

2 , X)|
≥ |w(S0

1 , X)− w(S1
1 , X)|

≥ m · α(m);

if X ∈ F1 ∩Q2, we have

|w(S0, X)− w(S1, X)| = |w(S0
1 , X) + w(S0

2 , X)− w(S1
1 , X)− w(S1

2 , X)|
≥ |w(S0

2 , X)− w(S1
2 , X)|

≥ m · α(m).

Thus, S0 and S1 meet the contrast requirement.

For X ∈ F , since X ∈ F1 ∩ F2, the matrix obtained by restricting St to rows

of X is that obtained by restricting St
1 and St

2 to rows of X, t ∈ {0, 1}. Since S0
1

and S1
1 (S0

2 and S1
2) meet the security requirement, S0 and S1 meet the security

requirement.

Even if the participant sets are not the same, we can modify the basis matrices

a bit and concatenate them.

Corollary 3.1.2. Let Γ1 = (P1, Q1, F1) and Γ2 = (P2, Q2, F2) be two access struc-

tures. Assume that Q1 ∩ Q2 = ∅. If there exist a (Γ1, m1)-V CS2 with bases and

a (Γ2, m2)-V CS2 with bases, there exists a (Γ, m1 + m2)-V CS2 with bases, where

Γ = (P1 ∪ P2, Q1 ∪Q2, F1 ∩ F2).

Proof. By Theorem 3.1.7, we can construct basis matrices for (Γ′
1, m1)-V CS2 and

(Γ′
2, m2)-V CS2, where Γ′

1 = (P1 ∪ P2, Q1, F1) and Γ′
2 = (P1 ∪ P2, Q2, F2). Then, by

Theorem 3.1.8, we concatenate the basis matrices of (Γ′
1, m1)-V CS2 and (Γ′

2, m2)-

V CS2.

3.2 Some Results

We now present some results that are useful for constructing V CS2 for general access

structures.
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3.2.1 Optimal VCS2 for (n, n)-Threshold Access structure

Let S0 be the n× 2n−1 matrix whose columns are those that have exactly an even

number of 1′s and S1 be the n × 2n−1 matrix whose columns are those that have

exactly an odd number of 1′s. Then, S0 and S1 are the optimal basis matrices for

a V CS1 for the (n, n)-threshold access structure. This construction is optimal for

V CS2, too, that is, any V CS2 with bases must have n × m basis matrices with

m ≥ 2n−1 and α(m) ≤ 1/2n−1.

Theorem 3.2.1. [20] Any V CS2 with bases for the (n, n)-threshold access structure

must have m ≥ 2n−1 and α(m) ≤ 1/2n−1.

3.2.2 Q with a Single Qualified Set

Let Γ = (P, Q) be a complete access structure such that Q contains a single set

X = {i1, i2, . . . , iq} only. We construct n× 2q−1 matrices S0 and S1 for a (Γ, 2q−1)-

V CS2 from a V CS2 for the (q, q)-threshold access structure.

Theorem 3.2.2. Let Γ = (P, {X}) be a complete access structure with X =

{i1, i2, . . . , iq}. There exist basis matrices for a (Γ, 2q−1)-V CS2.

Proof. Let PX be the set of participants in X. Γ′ = (PX , {X}) is a (q, q)-threshold

access structure. Let S ′0 and S ′1 be the optimal basis matrices for a (Γ′, 2q−1)-V CS2,

as shown in Section 3.2.1. By Theorem 3.1.7, we add the participants of P − PX

to the participant set one by one and get n × 2q−1 basis matrices S0 and S1 for a

(Γ, 2q−1)-V CS2, where the ijth row of St is the jth row of S ′t, 1 ≤ j ≤ q, and all

other rows are 1’s, t ∈ {0, 1}.

3.2.3 The Cumulative Array Method

We review the cumulative array method that constructs a V CS1 for a complete

monotonic access structure Γ = (P, Q) [1, 24]. Assume that P = {1, 2, . . . , n}. We

define ZMF to be the collection of the maximal forbidden sets in F = 2P −Q, i.e.,

ZMF = {B ∈ F |B ∪ {i} ∈ Q for all i ∈ P\B}.

Assume that ZMF = {z1, z2, . . . , zm}. We define the n×m Boolean matrix

CAZMF
= [ai,j]n×m, where ai,j = 0 if and only if participant i ∈ zj.

Let Ai = {j|ai,j = 1, 1 ≤ j ≤ m}, 1 ≤ i ≤ n. Let S ′0 and S ′1 be the optimal

m×2m−1 basis matrices for a V CS1 of the (m, m)-threshold access structure. Then,

S0 and S1 constitute basis matrices for a VCS1 for Γ, where
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the ith row of St is OR(S ′t, Ai),

for 1 ≤ i ≤ n and t ∈ {0, 1}.

3.2.4 An Upper Bound for 2-out-n Access Structure

We now give an upper bound for pixel expansion of any V CS2 for the special 2-

out-n access structures. Γ = (P, Q) is the 2-out-n access structure if |P | = n and

Q = {X ⊆ P : |X| = 2}. We present a V CS2 with bases for the 2-out-n access

structure.

Theorem 3.2.3. There is a V CS2 with pixel expansion m(n) and contrast 1/m(n)

for the 2-out-n access structure such that

m(n) =

{

(n−1)(n+3)
4

if n is odd
n(n+2)

4
if n is even

Proof. Let bi,j be the n-dimensional column vector whose ith and jth entries are

0 and all other entries are 1, 1 ≤ i < j ≤ n. Let ci be the n-dimensional column

vector whose ith entry is 0 and all other entries are 1. Let ~1 be the n-dimensional

vector of all entries being 1.

For the case n = 2m + 1, we let S0 contain all bi,j’s with i + j=odd and S1

contain all bi,j’s with i + j=even. Furthermore, we add 2 copies of ci to S1 for even

i, 1 ≤ i ≤ n, and m copies of ~1 to S0. For example, the following are basis matrices

of a V CS2 for the 2-out-5 access structure:

S0 =













00111111
01001111
11010111
10110011
11101011













, S1 =













00111111
11010011
01101111
11011100
10101111













There are m2 + 2m, which is (n− 1)(n + 3)/4, columns in S0 and S1.

We now consider the contrast and security properties of this construction. Since

there is only one bi,j column in either S0 or S1, for any two participants i and j, we

have |w(S0, {i, j})−w(S1, {i, j})| = 1. For any X containing 3 or more participants

i1, i2, . . . , ik, k ≥ 3, we have w(S0, {i1, i2, . . . , ik}) = w(S1, {i1, i2, . . . , ik}) = m(n)

since each column has at most two 0’s. For any X containing only one participant

i, row i of S0 contains m 0’s if i is odd and m + 1 0’s if i is even. This holds for S1

also. Therefore, any single participant computes absolutely no information about

the secret from his share.
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For the case n = 2m, we let S0 contain all bi,j’s with i + j=odd and S1 contain

all bi,j’s with i + j=even. Furthermore, we add a copy of ci to S1, 1 ≤ i ≤ n, and m

copies of ~1 to S0. For example, the following are basis matrices of a V CS2 for the

2-out-4 access structure:

S0 =









001111
010111
110011
101011









, S1 =









010111
101011
101101
011110









There are m2 + m, which is n(n + 2)/4, columns in S0 and S1.

We can discuss the contrast and security properties for this construction similarly.

This completes the proof.

Droste’s V CS1 construction for the 2-out-n access structure has the pixel expan-

sion m = Cn
2 ·

∑n

i=1(2
i·Cn

i ) [9]. By the cumulative array method, the V CS1 construc-

tion for the 2-out-n access structure has pixel expansion m = 2 · Cn
2 . We are aware

that there are (2,n)-threshold V CS1 that have pixel expansion m = 2dlog ne [1].

However, the 2-out-n access structure is different from the (2, n)-threshold access

structure. The later one allows more than two participants to reveal the secret,

while the former one does not.

3.3 Partition of Access Structures

For a given access structure Γ = (P, Q, F ), we can decompose it into smaller access

structures Γ1 = (P, Q1, F1), Γ2 = (P, Q2, F2), . . . , Γk = (P, Qk, Fk) such that

1. Q1 ∪Q2 ∪ · · · ∪Qk = Q;

2. Qi ∩Qj = ∅ for 1 ≤ i 6= j ≤ k;

3. F1 ∩ F2 ∩ · · · ∩ Fk = F .

We call such decomposition as a partition of Γ. By generalizing Theorem 3.1.8,

we can concatenate the smaller basis matrices for (Γi, mi)-V CS2’s to form basis

matrices for a (Γ, m)-V CS2.

Theorem 3.3.1 (Partition). Let Γ1, Γ2, . . . , Γk be a partition of the access struc-

ture Γ. Assume that S0
i and S1

i are basis matrices for a (Γi, mi)-V CS2. Then,

S0
1 ||S0

2 || · · · ||S0
k and S1

1 ||S1
2 || · · · ||S1

k are basis matrices for a (Γ,
∑k

i=1 mi)-V CS2.

Proof. This is proved by induction on k, k ≥ 2. The induction basis holds by

Theorem 3.1.8. The induction step follows easily.
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3.3.1 An Upper Bound for General Access Structures

By the results in Theorems 3.2.2 and 3.3.1, we give an upper bound on pixel expan-

sion for any access structure.

Theorem 3.3.2. Let Γ = (P, Q, F ) be an access structure. There exists a (Γ, m)-

V CS2 with bases, where m =
∑

X∈Q 2|X|−1.

Proof. Let Q be {X1, X2, . . . , Xk} and Γ′ = (P, Q). Since any (Γ, m)-V CS2 is

a (Γ′, m)-V CS2, we consider only Γ′ = (P, Q). We partition Γ′ = (P, Q) into

(P, {X1}), (P, {X2}), . . . , (P, {Xk}). For each Γi = (P, {Xi}), we construct n×2|Xi|−1

basis matrices for a V CS2 of Γi. Since 2P −Q =
⋂k

i=1 2P −{Xi}, by Theorem 3.3.1

we concatenate these basis matrices to get basis matrices for a (Γ′, m)-V CS2, where

m =
∑k

i=1 2|Xi|−1.

3.4 VCS2 Construction for General Access Struc-

ture

We present two methods of constructing basis matrices for a V CS2 of an arbitrary

access structure. Without loss of generality, we consider a complete access structure

Γ = (P, Q), where P = {1, 2, . . . , n} is the set of participants. In case that the input

access structure is not complete, we add the ”don’t care” participant sets into F

and form a complete access structure.

3.4.1 Top-Down Approach

The idea of our first construction is to partition Q into maximal monotonic subsets

Qi, 1 ≤ i ≤ k, and use the methods in Sections 3.2.2 and 3.2.3 to construct the basis

matrices for these access structures (P, Qi). Then, by Theorem 3.3.1, we concatenate

these basis matrices for a (Γ, m)-V CS2.

Our algorithm A1 is in Figure 3.1. We first pick a qualified set X with a maximum

number of participants and incorporate as many qualified sets under X as possible.

That is, for each picked X, we find the maximum monotonic collection ZMMQ of

qualified sets under X:

ZMMQ(X, Q)

= {X ′|X ′ ∈ Q, there is no Y ∈ 2PX −Q such that X ′ ⊂ Y ⊂ X}.
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Input: Γ = (P, Q), where F = 2P −Q.
1. if Q = ∅, return S0 = 0n×1 and S1 = 0n×1;
2. A← Q; i← 0;
3. while A 6= ∅ do
4. i← i + 1;
5. let Xi be the maximum set in A; (break tie randomly)
6. Zi ← ZMMQ(Xi, A);
7. A← A− Zi;
8. k ← i;
9. construct basis matrices S0

i and S1
i for Γi = (PXi

, Zi)
and extend them to T 0

i and T 1
i for Γ′

i = (P, Zi), 1 ≤ i ≤ k;
10. return S0 = T 0

1 ||T 0
2 || · · · ||T 0

k and S1 = T 1
1 ||T 1

2 || · · · ||T 1
k .

Figure 3.1: A1: Partition Q and find basis matrices.

Let Γ1 = (PX , ZMMQ(X, Q)). Note that by our definition, Γ1 is monotonic. We

then subtract ZMMQ(X, Q) from Q and continue to find Γ2, and so on. This process

does not stop until Q becomes empty.

We give an example to illustrate this partition. Let P = {1, 2, 3, 4, 5}, Q =

{{1, 3}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}} and

F = 2P − Q. First, we choose the maximum set X1 = {1, 2, 3, 4, 5} and set Z1 =

ZMMQ(X1, Q) = {{1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}. Therefore, Γ1 = (PX1
, Z1).

Then, we subtract Z1 from Q. Q becomes {{1, 3}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3}}.
We select X2 = {1, 2, 3} and set Z2 = ZMMQ(X2, Q) = {{1, 3}, {2, 3}, {1, 2, 3}}.
Therefore, Γ2 = (PX2

, Z2). This process continues and we get Γ3 = (PX3
, Z3) and

Γ4 = (PX4
, Z4), where X3 = {3, 4}, X4 = {4, 5}, Z3 = {{3, 4}} and Z4 = {{4, 5}}.

After finding a partition Γi, 1 ≤ i ≤ k, of Γ, we construct a V CS2 for each

Γi = (PXi
, Zi). If Zi contains only a single qualified set Xi, we use the method

in Section 3.2.2 to construct basis matrices S0
i and S1

i for a (Γi, mi)-V CS2, where

mi = 2|Xi|−1. If Zi contains two or more qualified sets, we use the cumulative

method in Section 3.2.3 to construct S0
i and S1

i for a (Γi, mi)-V CS2, where mi is

the parameter implied by the cumulative method. By Theorem 3.1.7, we extend S0
i

and S1
i to basis matrices T 0

i and T 1
i for a (Γ′

i, mi)-V CS2, where Γ′
i = (P, Zi). Note

that Γi and Γ′
i differ on the participant set.
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We continue the example and compute

T 0
1 =













00010111
00010111
00101011
01001101
01110001













, T 1
1 =













00010111
00010111
00101011
01001101
10001110













, T 0
2 =













10
10
10
11
11













, T 1
2 =













10
10
01
11
11













,

T 0
3 =













11
11
10
10
11













, T 1
3 =













11
11
10
01
11













, T 0
4 =













11
11
11
10
10













, and T 1
4 =













11
11
11
10
01













.

By concatenating these basis matrices, we get basis matrices S0 and S1 for a (Γ, m)-

V CS2 with m = 14, α(m) = 1/14,

S0 =













00010111101111
00010111101111
00101011101011
01001101111010
01110001111110













and S1 =













00010111101111
00010111101111
00101011011011
01001101110110
10001110111101













.

If we use Droste’s method [9] directly to construct basis matrices for a (Γ, m)-

V CS1, we get m = 44 and α(m) = 1/44. In the next section, we apply the techniques

implied in Theorems 3.1.2 and 3.1.3 to improve this m and α(m) to 6 and 1/6,

respectively.

We now show correctness of our construction.

Theorem 3.4.1. The algorithm A1 in Figure 3.1 outputs basis matrices for a (Γ, m)-

V CS2.

Proof. We only have to show that Γ′
1, Γ

′
2, . . . , Γ

′
k form a partition of Γ = (P, Q) and

T 0
i and T 1

i are the basis matrices for a (Γ′
i, m)-V CS2. The later one holds by the

constructions in Sections 3.2.2 and 3.2.3. For the former one, by the definition of

ZMMQ(X, Q), Γi = (PX , ZMMQ(X, Q) is a complete access structure over PX . By

the algorithm, the next Γi+1 is computed from Q′, where Q′ = Q − ZMMQ(X, Q).

Therefore, Γ′
i, 1 ≤ i ≤ k, form a partition for Γ.

3.4.2 Further Improvement

By Theorem 3.1.3, if S0 and S1 are basis matrices for a (Γ, m)-V CS2, S ′0 and S ′1 are

also basis matrices for a (Γ, m)-V CS2, where S ′0 = S1 and S ′1 = S0. In Step 9 of A1

in Figure 3.1, for each Γ′
i, we actually have two V CS2’s with bases: one is (T 0

i , T 1
i )
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and the other is (T ′0
i , T ′1

i ), where T ′0
i = T 1

i and T ′1
i = T 0

i . Therefore, we have 2k

(Γ, m)-V CS2’s in total. By searching among these schemes and removing redundant

columns, we can find a V CS2 with better contrast. For example, continuing the

example of the previous section, we let

S0 = T 1
1 ||T 0

2 ||T 1
3 ||T 0

4 =













00010111101111
00010111101111
00101011101011
01001101110110
10001110111110













and

S1 = T 0
1 ||T 1

2 ||T 0
3 ||T 1

4 =













00010111101111
00010111101111
00101011011011
01001101111010
01110001111101













.

By Theorem 3.1.2, we delete equal columns from S0 and S1 and get

S ′0 =













000111
000111
001010
010001
100011













and S ′1 =













001011
001011
010100
000110
011001













,

which have m = 6 and α(m) = 1/6.

Lemma 3.4.1. Any S0 = T t1
1 ||T t2

2 || · · · ||T tk
k and S1 = T t̄1

1 ||T t̄2
2 || · · · ||T t̄k

k are basis

matrices for a (Γ, m)-V CS2, where ti ∈ {0, 1} and t̄i is the complement of ti, 1 ≤
i ≤ k.

Proof. By Theorem 3.1.3, (T 0
i , T 1

i ) and (T 1
i , T 0

i ) are both basis matrix pair for a

(Γ′
i, mi)-V CS2, 1 ≤ i ≤ k. By Theorem 3.3.1 for composition of a partition, this

lemma holds.

Though to find S0 and S1 with minimal pixel expansion among the 2k V CS2’s

is NP-complete, we provide a dynamic programming-type heuristic method to find

a reasonable one.

We assume a canonical order b1, b2, · · · , b2n for n-dimensional Boolean vectors.

Let f t
i = (i1, i2, . . . , i2n) be the column spectrum of T t

i , t ∈ {0, 1}, 1 ≤ i ≤ k, such

that ij is the number of bj in columns of T t
i . For example, if

T 0
i =





000011
010001
010001



 ,
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Input: T 0
i , T 1

i , 1 ≤ i ≤ k;
1. compute f 0

i and f 1
i , 1 ≤ i ≤ k;

2. for z = 0 to k − 1 do
3. for i = 1 to k − z do
4. compute m(i, i + z) and record tl, i ≤ l ≤ i + z;
5. let tl, 1 ≤ l ≤ k, be the indices by which m(1, k) is computed;

6. return S0 = T t1
1 ||T t2

2 || · · · ||T tk
k and S1 = T t̄1

1 ||T t̄2
2 || · · · ||T t̄k

k .

Figure 3.2: Search a V CS2 with better pixel expansion.

then f 0
i = (3, 1, 0, 0, 0, 0, 1, 1) is its column spectrum, where b1 = [0 0 0]T , b2 =

[1 0 0]T , etc. For a spectrum f = (i1, i2, . . . , i2n), let |f | =
∑2n

j=1 |ij|. Let m(i, j)

denote the differential column spectrum between

S0
i,j = T ti

i ||T
ti+1

i+1 || · · · ||T
tj
j and S1

i,j = T t̄i
i ||T

t̄i+1

i+1 || · · · ||T
t̄j
j

for some tl ∈ {0, 1}, i ≤ l ≤ j, where m(i, j) is defined recursively as follows:

m(i, j) =

{

f 0
i − f 1

i if i = j

mini≤l≤j{m(i, l) + m(l + 1, j)m(i, l)−m(l + 1, j)} if i > j,

where min{v1, v2, . . . , vr} = vi if |vi| ≤ |vj| for all j, 1 ≤ j ≤ r (we break tie

randomly). That is, m(i, j) is the difference of the column spectrums of S0
i,j and

S1
i,j. We can see that the smaller |m(i, j)| is, the smaller the pixel expansion S0

i,j

and S1
i,j have after deleting equal columns. Our goal is to find smaller |m(1, k)|.

The search algorithm is shown in Figure 3.2. During computing m(i, i+ z), we keep

track the choice of tl, i ≤ l ≤ i + z, in order to compute the indices for m(1, k).

3.4.3 Bottom-Up Approach

Our second method uses the bottom-up approach. For a qualified set X ∈ Q, we

define the collection of the qualified sets Y that contain X such that all sets between

X and Y are qualified:

M(X, Q) = {Y |X ⊆ Y, for all X ′ ⊆ Y −X, X ∪X ′ ∈ Q}.

M(X, Q) is not empty since X ∈ M(X, Q). For any Y ∈ M(X, Q), let B(X, Y ) =

{X ′|X ⊆ X ′ ⊆ Y }.
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Input: Γ = (P, Q), where F = 2P −Q.
1. if Q = ∅, return S0 = 0n×1 and S1 = 0n×1;
2. A← Q; i← 0;
3. while A 6= ∅ do
4. i← i + 1;
5. let Xi be the minimum set in A; (break tie randomly)
6. let Yi be the maximum set in M(Xi, A); (break tie randomly)
7. A← A−Q(Xi, Yi);
8. k ← i;
9. construct basis matrices S0

i and S1
i for Γi = (P, Q(Xi, Yi)),

as shown in Lemma 3.4.2;
10. return S0 = S0

1 ||S0
2 || · · · ||S0

k and S1 = S1
1 ||S1

2 || · · · ||S1
k.

Figure 3.3: A2: Bottom-up partition Q and find basis matrices.

Lemma 3.4.2. Γ′ = (P, B(X, Y )) have a V CS2 with n × 2|X|−1 basis matrices S0

and S1, where the rows of S0 (S1) for X is the S ′0 (S ′1) of the optimal (|X|, |X|)-
V CS1, the rows of S0 (S1) for Y −X are all 0 and the rows of S0 (S1) for P − Y

are all 1.

Proof. By Theorem 3.1.5, we extend Γ′ = (PX , {X}) to Γ′′ = (PY , B(X, Y )) and

by Theorem 3.1.7, we extend Γ′′ = (PY , B(X, Y )) to Γ = (P, B(X, Y )). The basis

matrices S0 and S1 are constructed accordingly.

For example, for Γ = ({1, 2, 3, 4}, {{2, 3}, {1, 2, 3}, {2, 4}}) and X = {2, 3},
M(X) = {{1, 2, 3}} and Γ′ = ({1, 2, 3, 4}, {{2, 3}, {1, 2, 3}}) has a V CS2 with

S0 =









00
01
01
11









and S1 =









00
10
01
11









.

The algorithm A2 based on bottom-up partition is shown in Figure 3.3. We

reduce the pixel expansion by applying the algorithm in Figure 3.2.

3.5 Experiments and Comparison

We compare the results of our two methods on random access structures with those

of the Droste’s method, which is the most efficient method of constructing V CS1 for

arbitrary access structures. The experimental results show that our V CS2’s indeed

have better pixel expansion (contrast) in average.
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We implement A1, A2 and the Droste’s method for arbitrary access structures.

The columns of the basis matrices produced by A1 and A2 are reduced by the

search algorithm in Figure 3.2. We also remove redundant columns in basis matrices

produced by the Droste’s method. For a particular number of participants, we run

these algorithms on a number of randomly chosen access structures. The results

are shown in Tables 3.1, 3.2 and 3.3. In Table 3.1, we randomly choose access

structures with |Q| ≈ 2n−1. In Table 3.2, we randomly choose access structures with

|Q| ≈ 2n/3. For both cases, the average pixel expansion of our V CS2 for a random

access structure is only one half of that of the VCS produced by the Droste’s method.

In Table 3.3 for monotonic access structures, the A1 algorithm takes the whole Q as

a partition and produces the same result as that of the Droste’s method. But, the

A2 algorithm produces V CS2 with much better pixel expansion. Table 3.4 shows

two access structures that have better pixel expansion based on our definition.

the number n the number of average pixel expansion m
of participants random Γ A1 A2 Droste’s

3 50 2.1 2.0 2.8
4 100 3.9 4.2 6.6
5 150 8.2 8.8 15.9
6 200 17.2 18.5 38.8
7 300 39.0 41.1 93.9
8 400 87.6 92.1 224.4
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Table 3.1: Comparison of three methods with |Q| ≈ 2n−1.
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the number n the number of average pixel expansion m
of participants random Γ A1 A2 Droste’s

3 50 1.9 2.0 2.6
4 100 3.8 4.0 6.1
5 150 8.2 8.7 15.7
6 200 17.2 18.9 38.5
7 300 38.5 41.9 93.3
8 400 88.2 101.9 230.1
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Table 3.2: Comparison of three methods with |Q| ≈ 2n/3.

the number n the number of average pixel expansion m
of participants random Γ A1 A2 Droste’s

3 50 2.0 2.0 2.0
4 100 4.1 3.9 4.1
5 150 10.0 7.8 10.0
6 200 25.1 15.5 25.1
7 300 64.4 31.7 64.4
8 400 187.3 73.5 187.3
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Table 3.3: Comparison of three methods with monotonic Γ.
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P = {1, 2, 3},
Q = ({1}, {2, 3}, {1, 2, 3}), F = 2P −Q

Our V CS2 S0 =





01
01
01



, S1 =





00
10
01





Droste’s V CS S0 =





000
101
101



, S1 =





001
011
101





P = {1, 2, 3, 4}, F = 2P −Q
Q = ({1, 2}, {1, 3}, {2, 3}, {2, 4}, {1, 3, 4}, {1, 2, 3, 4})

Our V CS2 S0 =









0011
0100
0100
0011









, S1 =









0011
0001
1000
0101









Droste’s V CS S0 =









01111100011101
01101000101011
11101101110001
11111001000111









, S1 =









10111110100011
01100111000101
11111100010110
11011001001111









Table 3.4: Two examples of comparing our methods with Droste’s.
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Chapter 4

Cheating Prevention in VC

In this chapter we studied the cheating problem in VC and extended VC. We con-

sidered the attacks of malicious adversaries who may deviate from the scheme in any

way. We presented three cheating methods and applied them on attacking existent

VC or EVC schemes. We improved one cheat-preventing scheme. We proposed a

generic method that converts a VCS to another VCS that has the property of cheat-

ing prevention. The overhead of the conversion is near optimal in both contrast

degression and pixel expansion.

4.1 Cheating in VC

There are two types of cheaters in our scenario. One is a malicious participant (MP)

who is also a legitimate participant, namely, MP ∈ P , and the other is a malicious

outsider (MO), where MO /∈ P . In this paper, we show that not only an MP can

cheat, but also an MO can cheat under some circumstances.

A cheating process against a VCS consists of the following two phases.

1. Fake share construction phase: the cheater generates the fake shares.

2. Image reconstruction phase: the fake image appears on the stacking of genuine

shares and fake shares.

In order to cheat successfully, honest participants who present their shares for

recovering the secret image should not be able to distinguish fake shares from gen-

uine shares. A reconstructed image is perfect black if the subpixels associated to a

black pixel of the secret image are all black. Most proposed VC schemes have the

property of perfect blackness. For example, the reconstructed secret images S in

Example 2.2.1 are all perfect black.
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S1 S2 FS

S1  + S2 S1 + FS S1 + S2 + FS

Figure 4.1: An example of cheating a (2, 2)-VCS.

We only consider to cheat the participants who together do not constitute a

qualified set. Since all participants together in a qualified set can recover the real

secret image in perfect blackness already, it is not possible to cheat them.

Example 4.1.1. Figure 4.1 shows how to cheat participants in a (2, 2)-VCS. Since

S1 + FS reveals the fake image FI, Participant 1(P1 for short, hereafter) is cheated

to believe that the secret image is FI. Although S1 +S2 +FS successfully reveals the

fake image, the real secret image S also appears on S1 +S2 +FS due to the property

of perfect blackness for secret images. The participants of a qualified set, (1, 2) in

this example, cannot be cheated.

A successful cheat against a VCS is defined as follows. By the general practice

for security analysis, the cheater is required to succeed with a significant probability

only.

Definition 4.1.1. For a (Γ, m)-VCS with basis matrices S0 and S1, an MP or an

MO cheats successfully if it finds a fake image and generates fake shares satisfying

the following:

1. For Y = {i1, i2, . . . , iq} /∈ Q, the stacking of their shares and the fake shares

reveals the fake image. If the cheater is an MP, some ij is the cheater, 1 ≤
j ≤ q.

2. The fake shares cannot be distinguished from the genuine shares. Formally,

for each fake share FS, there is a share Si such that the subpixels of FS are

identically distributed as those of Si.
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Input: share S1. (Wlog, we assume that the cheater is P1)
Fake share construction phase:
Assume that each pixel of S1 has x black and y white subpixels.
Then, P1 chooses a fake image and prepares r = dm

x
e−1 fake shares

FS1, FS2, . . . , FSr as follows:

1. For each white pixel of the fake image, copy the corresponding
subpixels of the pixel in S1 to each fake share.

2. For each black pixel of the fake image, randomly assign x
black and y white subpixels to each fake share such that the
pixel in the stacking of these fake shares and S1 is perfect
black.

Image reconstruction phase (the fake image):
Let Y = {1, i1, i2, . . . , iq} be a set of participants. If Y /∈ Q,
the stacking of genuine shares S1, Si1 , Si2, . . . , Siq and fake shares
FS1, FS2, . . . , FSr shall reveal the fake image.

Figure 4.2: Cheating method CA-1, initiated by an MP.

4.2 Three Cheating Methods

Our first cheating method is initiated by an MP, while the second cheating method

is initiated by an MO. Both of them applies to attack VC. Our third cheating

method is initiated by an MP and applies to attack EVC.

4.2.1 Cheating a VCS by an MP

The cheating method CA-1, depicted in Figure 4.2, applies to attack any VCS.

Without loss of generality, we assume that P1 is the cheater. Since the cheater is an

MP, he uses his genuine share as a template to construct a set of fake shares which

are indistinguishable from its genuine share. The stacking of these fake shares and S1

reveals the fake image of perfect blackness. We see that, for Y = {1, i1, i2, . . . , iq} /∈
Q the stacking of their shares reveals no images. Thus, the stacking of their shares

and the fake shares reveals the fake image due to perfect blackness of the fake image.

Example 4.2.1. Figure 4.3 shows how to cheat the participants in a (4, 4)-VCS.

There are four shares S1, S2, S3 and S4 in the (4, 4)-VCS. P1 is assumed to be the

MP. By CA-1, one fake share FS1 is generated. Since Y = (1, 3, 4) (or (1, 2)) /∈ Q,

we see that S1 + FS1 + S3 + S4 (or S1 + FS1 + S2) reveals the fake image FI. Thus,
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 S1

 
FS

 S2  S3  S4

 S1+FS+S2          S1+ S2+S3+S4                 S1+FS+S3+S4

Figure 4.3: An example of cheating a (4, 4)-VCS by an MP.

P3 and P4 (or P2) are cheated to believe that FI is the secret image.

For some prominent (n, n)- and (k, n)-VCS’s [5, 6, 20], the numbers of black and

white subpixels in a pixel are almost equal. The cheater needs only r = dm
x
e−1 = 1

fake share to cheat successfully.

Theorem 4.2.1. The MP in CA-1 successfully cheats any VCS.

Proof. Contrast. Let S0 and S1 be the basis matrices of a VCS and the pixel

expansion is m. For, Y = {1, i1, i2, . . . , iq} /∈ Q, w(S0, Y ) = w(S1, Y ). By the

construction of CA-1, for a white pixel of the fake image, the weight of the OR-

vector of OR(S0, Y ) and the fake shares is equal to w(S0, Y ) = tY −α(m)×m < m.

For a black pixel of the fake image, the weight of the OR-vector of OR(S1, Y ) and

the fake shares is equal to m. Thus, the contrast property is satisfied and the fake

image appears.

Indistinguishability. The fake shares are generated according to S1. Each pixel

in the fake shares has the same number of white and black subpixels as those in S1.

Also, those subpixels are randomly distributed for each fake share. Thus, the fake

shares are indistinguishable from S1.

4.2.2 Cheating a VCS by an MO

Our second cheating method CA-2, depicted in Figure 4.4, demonstrates that an

MO can cheat even without any genuine share at hand. The idea is as follows. We

use the optimal (2, 2)-VCS to construct the fake shares for the fake image. Then,

we tune the size of fake shares so that they can be stacked with genuine shares.

Now, the only problem is to have the right share size for the fake shares. Our

solution is to try all possible share sizes. In case that the MO gets one genuine
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Input: none.
Fake share construction phase:
The MO chooses a fake image and does the following:

1. Encode the fake image into two fake shares FS1 and FS2 with
the optimal (2, 2)-VCS.

2. Generate enough pairs of fake shares FS1,i and FS2,i with
various sizes and subpixel distributions, 1 ≤ i ≤ r for some r.

Image reconstruction phase (the fake image):
Let Y = {i1, i2, . . . , iq} /∈ Q. The stacking of Si1 , Si2, . . . , Siq and
two fake shares FS1,c and FS2,c shows the fake image for some c,
1 ≤ c ≤ r.

Figure 4.4: Cheating method CA-2, initiated by an MO.

share, there will be no such problem. It may seem difficult to have fake shares of the

same size as that of the genuine shares. We give a reason to show the possibility.

The shares of a VCS are usually printed in transparencies. We assume that this is

done by a standard printer or copier which accepts only a few standard sizes, such

as A4, A3, etc. Therefore, the size of genuine shares is a fraction, such as 1/4, of a

standard size. We can simply have the fake shares of these sizes. Furthermore, it was

suggested to have a solid frame to align shares [20] in order to solve the alignment

problem during the image reconstruction phase. The MO can simply choose the

size of the solid frame for the fake shares. Therefore, it is possible for the MO to

have the right size for the fake shares.

Example 4.2.2. Figure 4.5 shows that an MO cheats a (4, 4)-VCS. The four gen-

uine shares S1, S2, S3, and S4 are those in Figure 4.3 and the two fake shares are

FS1 and FS2. For clarity, we put S1 here to demonstrate that the fake shares are

indistinguishable from the genuine shares. We see that the stacking of fewer than

four genuine shares and two fake shares shows the fake image FI.

Theorem 4.2.2. The MO in CA-2 successfully cheats a VCS if the right share

size is obtained.

Proof. Contrast. For Y = {i1, i2, . . . , iq} /∈ Q, let ZY = Si1 + Si2 + · · ·+ Siq . Since

FS1 and FS2 are two shares of the optimal (2, 2)-VCS, pb(FS1 + FS2) = 1 and

pw(FS1 +FS2) = 1/2. By CA-2, the distribution of subpixels of the genuine shares
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           S1                                   FS1                                  FS2

               
  S1+FS1+FS2                  S1+S2+FS1+FS2                S1+S2+S3+S4

Figure 4.5: An example of cheating a (4, 4)-VCS by an MO.

are random and independent of that of the fake shares. For the white pixel in

ZY + FS1 + FS2, we have, with high probability,

pw(ZY + FS1 + FS2) = 1− (1− pw(ZY ))(1− 1/2) = 1/2 + pw(ZY )/2 < 1.

Also, due to the perfect black property in recovering the fake image, we have pb(ZY +

FS1 + FS2) = 1. Thus, the contrast property in ZY + FS1 + FS2 is satisfied and

the fake image appears.

Indistinguishability. We assume that the size of FS1,c and FS2,c is correct. By

the construction of CA-2, the fake shares are indistinguishable from the genuine

ones.

4.2.3 Cheating an EVCS by an MP

In the definition of VC, it only requires the contrast be non-zero. Nevertheless,

we observe that if the contrast is too small, it is hard to ”see” the image. Based

upon this observation, we demonstrate the third cheating method CA-3, depicted

in Figure 4.6, against an EVCS. The idea of CA-3 is to use the fake shares to reduce

the contrast between the share images and the background. Simultaneously, the fake

image in the stacking of fake shares has enough contrast against the background since

the fake image is recovered in perfect blackness.

Let ε be the threshold for contrast that human eyes distinguish the image from

the background. The value ε varies for different sizes, contrasts and types of share

images. We do some experiments to obtain ε empirically. We consider four types of

pictures (in Figure 4.7) with four different sizes (Z1 : 200×100 pixels, Z2 : 200×200

pixels, Z3 : 400× 200 pixels, and Z4 : 400× 400 pixels) and four different contrasts

(1/4, 1/9, 1/16, and 1/25). The values (εm) in Table 4.1 represent the number of

black subpixels which we should add for each pixel of the fake shares in order to
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Input: share S1. (Wlog, we assume that the cheater is P1.)
Fake share construction phase:
P1 chooses a fake image and does the following:

1. Create S ′
1, which is S1, but without the share image. The

share image of S1 is removed by changing d black subpixels
into white subpixels in each black pixel, where d is the differ-
ence between the numbers of black subpixels of a black and
a white pixel.

2. Create r = dm
x
e− 1 temporary fake shares FS ′

i, 1 ≤ i ≤ r, by
using S ′

1 according to CA-1.

3. Randomly change d white subpixels into black subpixels of
each pixel of the share image in FS ′

i, 1 ≤ i ≤ r.

4. Construct FSi by randomly adding εm black subpixels
(changing from white subpixels) to each pixel in FS ′

i, 1 ≤
i ≤ r. The threshold value εm, like those in Table 4.1, is
obtained by experiments.

Image reconstruction phase (the fake image):
Same as in CA-1.

Figure 4.6: Cheating method CA-3 against an EVCS.
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(a)                             (b)                               (c)                              (d)

Figure 4.7: Four different types of pictures.

(a) (b) (c) (d)
contrast Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4

1/4 20 22 23 24 10 13 16 19 15 20 22 24 15 17 18 21

1/9 17 21 21 23 7 8 14 17 14 20 21 22 13 16 17 19

1/16 5 7 5 7 2 2 2 3 2 4 6 9 4 4 3 6

1/25 4 6 4 6 1 1 1 2 1 3 5 8 2 2 1 4

Table 4.1: The number of added black subpixels for the pictures in Figure 4.7 with
different sizes and contrasts.

reduce the contrast between the background and the share images to be fewer than

ε. The larger the size and contrast of the image are, the more black subpixels we

need to add to the fake shares. Most EVCS’s don’t have a large contrast, we can

easily cheat them by adding a small number of black subpixels to the pixels of the

share images in the fake shares.

Example 4.2.3. Figure 4.8 shows the results of cheating a (Γ, m)-EVCS, where

P = {1, 2, 3}, and Q = {(1, 2), (2, 3), (1, 2, 3)}. In this example, P1 is the cheater

who constructs a fake share FS2 with share image B in substitute for P2 to cheat

P3. S1 + FS2 + S3 reveals the fake image FI.

Theorem 4.2.3. The MP in CA-3 successfully cheats an EVCS by producing fake

shares with meaningful share images if the ε is correct.

Proof. By Step 3 in CA-3, the share image appears on the fake share.

Contrast. Since the fake shares are constructed by the same way of CA-1,

the recovered fake image in perfect blackness appears on the stacking of shares.

Furthermore, the share images of the fake shares are invisible since we have added

an enough number of black subpixels to blur them.

Indistinguishability. The proof is the same as that of Theorem 4.2.1 except that

we have to show that honest participants cannot identify fake shares. Since share

images are used for identification, honest participants will not know the exact shapes

of share images. They care only about the content of share images. Therefore, the
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            S1                                  S2                                     S3

               

           FS2                               S1+S2                            S1+S3

               

          S2+S3                          S1+S2+S3                      FS2+S1+ S3

Figure 4.8: An example of cheating a (Γ, m)-EVCS.

cheater who is a legitimate participant can create reasonable share images on fake

shares according to his own share to cheat other participants.

4.3 Attacks and Improvement on Previous Cheat-

Preventing Methods

There are two types of cheat-preventing methods [30]. The first type is to have a

Trusted Authority (TA) to verify the shares of participants. The second type is to

have each participant to verify the shares of other participants. In this section we

present attacks and improvement on four existent cheat-preventing methods.

4.3.1 Attack on Yang and Laih’s First Cheat-Preventing

Method

The first cheat-preventing method of Yang and Laih [30] needs a TA to hold the spe-

cial verification share for detecting fake shares. It generates n+1 shares V S, S1, S2, . . . , Sn,

where V S is the verification share. If V S + Si shows the verification image that is

known to all participants, the share Si is genuine. Let S0 and S1 be the basis ma-

trices of a (Γ, m)-VCS. They assign pixels to shares by four sets C0,0, C0,1, C1,0, C1,1

which are the sets of all (n + 1) × (m + 2)-matrices obtained by permuting the

columns of

S00 =











10 0 . . . 0
10
... S0

10











, S01 =











10 0 . . . 0
10
... S1

10











,
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Input: shares S1 and S2. (Wlog, we assume that P1 and P2 are
cheaters.)
Fake share construction phase: P1 and P2 choose a fake image
that has no overlapping with the verification image and then create
the fake share FS as follows:

1. For a white pixel in the fake image, assign the corresponding
pixel of S1 to FS.

2. For a black pixel in the fake image, we assign its m+2 subpix-
els in FS as follows. Let (r, s) be the pair of the correspond-
ing subpixels in S1 and S2, respectively. We consider two such
pairs (r1, s1) and (r2, s2). If (r1, s1)=(1,0) and (r2, s2)=(0,0),
we assign 0 and 1 to the corresponding subpixels in FS. The
above step is repeated till no more assignments to FS are
possible.

3. For the rest of unassigned subpixels in FS, copy those from
S1.

Share verification phase: P1 and P2 submit S1 and FS to TA.
TA checks the validity of S1 and FS.
Image reconstruction phase (the fake image): For Y =
{1, 2, i1, i2, . . . , iq) /∈ Q, S1 + FS + Si1 + Si2 + · · · + Siq reveals
the fake image.

Figure 4.9: Cheat against Yang and Laih’s cheat-preventing method.

S10 =











10 0 . . . 0
01
... S0

01











, S11 =











10 0 . . . 0
01
... S1

01











,

respectively. Pixels are assigned to shares by a random matrix in C b1,b2 , where b1

indicates the pixel in the verification image and b2 indicates the pixel in the secret

image. We see that the verification image shall appear on V S + Si if the share Si is

genuine since the first two subpixels reveals the verification image.

Our attack, depicted in Figure 4.9, involves two malicious participants. Without

loss of generality, we assume that they are P1 and P2. P1 and P2 together constructs

a fake share FS such that FS + V S reveals the verification image and FS cheats

other participants.

We see how the attack works.

1. FS + V S reveals the verification image. The reason is that the first two
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subpixels (before permutation) of FS and S1 are the same. The first two

subpixels of FS +V S are the same as those of S1 +V S. Thus, the verification

image appears on FS + V S. The details are as follows.

For the white pixel of the verification image, the first two pairs of subpixels

in S1 and S2 are (1, 1) and (0, 0) by S00 and S01, the corresponding subpixels

in FS are the same as those in S1 by Step 2 in the fake share construction

phase. Thus, the pixel of FS + V S is white since S1 + V S shows whiteness in

the pixel. For the black pixel of the verification image, the first two pairs of

subpixels in S1 and S2 are (0, 0) and (1, 1) by S10 and S11, the corresponding

subpixels in FS are the same as those in S1. Thus, the pixel of FS + V S is

black since S1 + V S shows blackness in the pixel.

2. For Y = {1, 2, i1, i2, . . . , iq) /∈ Q, S1 + FS + Si1 + Si2 + · · · + Siq reveals the

fake image. For the white pixel of the fake image, the pixel in FS is the same

as that in S1 by Step 1. Thus, the pixel in S1 + FS is white. For the black

pixel of the fake image, the subpixels 1 and 0 of S1 is changed to 0 and 1 in

FS (see Step 2). Thus, the white pixel, containing subpixels

[· · · 1 · · ·0 · · · ] + [· · · 0 · · ·0 · · · ] = [· · ·1 · · · 0 · · · ],

of S1 + S2 is changed to a black pixel, containing subpixels

[· · · 1 · · ·0 · · · ] + [· · · 0 · · ·1 · · · ] = [· · ·1 · · · 1 · · · ],

in S1 + FS. Thus, the fake image appears on S1 + FS + Si1 + · · ·+ Siq .

3. FS are indistinguishable by other participants. For each pixel, the numbers

of black and white subpixels in the pixels of FS and S1 are the same since the

only change is to swap subpixels b and w in S1 to w and b in FS. Thus, FS

and S1 look the same and other participants cannot distinguish them.

Example 4.3.1. Figure 4.10 shows the results of cheating a (3, 3)-VCS of Yang

and Laih. We see that all shares including the fake share FS pass verification by

revealing the correct verification image V. Since S1 + FS + S3 reveals a fake image

FI, P3 is cheated.

4.3.2 Attacks on Horng et al.’s Cheat-Preventing Methods

In the first cheat-preventing method of Horng et al. [12], each Pi has a verification

share Vi. The shares Si’s are generated as usual. Each Vi is divided into n − 1
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     S1                                    S2                                   S3                                    VS

       

    FS                                S1+VS                            S2+ VS                             S3+ VS

       

FS+ VS                        S1 +FS+S2                       S1 +FS+S3                       S1+S2+S3  

Figure 4.10: An example of cheating the cheat-preventing (3, 3)-VCS of Yang and
Laih.

regions Ri,j, 1 ≤ j ≤ n, j 6= i. Each region Ri,j of Vi is designated for verifying share

Sj. The region Ri,j of Vi + Sj shall reveal the verification image for Pi verifying

the share Sj of Pj. The verification image in Ri,j is constructed by a (2, 2)-VCS.

Although the method requires that the verification image be confidential, we show

that it is still possible to cheat.

Assume that P1 knows the regions of the verification share Vi. P1 generates a

fake share FS1 to cheat Pi as follows. The pixels of FS1 in the region Ri,1 are the

same as those in S1. The rest pixels of FS1 (outside the region Ri,1) are constructed

by CA-1. As a result, the correct verification image appears on the region Ri,1 of

FS1 +Vi and Pi believes that FS1 is a genuine share. By CA-1, the stacking of FS1

and other genuine shares reveals a reasonable fake image. Moreover, even the cheater

does not know the verification region assigned to a participant, the attack is still

possible. Since the verification share is divided into n− 1 regions, each verification

region is small for a fairly large n. We choose a simple fake image. The probability

that no overlapping between the fake image and the region Ri,1 occurs is high. By

setting the background pixels in FS1 from S1, FS1 +Vi shows the verification image

in the verification region Ri,1 of Vi.

By our proposed attacks, we conclude the following principle on using verification

images:

Essential principle: The verification images should be confidential and spread

over the whole region of a share.

Horng et al.’s second cheat-preventing method uses the approach of redun-

dancy [12]. It uses a (2, n + l)-VCS to implement a (2, n)-VCS cheat-preventing
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scheme. The scheme needs no on-line TA for verifying shares. The scheme gener-

ates n + l shares by the (2, n+ l)-VCS for some integer l > 0, but distributes only n

shares to the participants. The rest of shares are destroyed. They reason that since

the cheater does not know the exact basis matrices even with all shares, the cheater

cannot succeed. However, our three cheating methods do not need to use the basis

matrices. Any of our cheating methods can cheat this cheat-preventing approach.

4.3.3 Improvement on Yang and Laih’s Second Cheat-Preventing
Method

The second cheat-preventing method of Yang and Laih [30] is a transformation of a

(Γ, m)-VCS (but not a (2, n)-VCS) to another cheat-preventing (Γ, m + n(n − 1))-

VCS. The stacking of any two shares reveals the verification image. This is how

share verification is done.

Let S0 and S1 be the basis matrices of a (Γ, m)-VCS. Their method constructs

four sets C0,0, C0,1, C1,0, C1,1 of n× (m + n(n− 1))-matrices obtained by permuting

the columns of the following four matrices respectively:

S00 =



















1 0 1 0 . . . 1 1
1 0 1 1 . . . 1 1
1 1 1 0 . . . 1 1 S0

1 1 1 1 . . . 1 1
...

... . . . 1 0
1 1 1 1 . . . 1 0



















, S01 =



















1 0 1 0 . . . 1 1
1 0 1 1 . . . 1 1
1 1 1 0 . . . 1 1 S1

1 1 1 1 . . . 1 1
...

... . . . 1 0
1 1 1 1 . . . 1 0



















,

S10 =



















1 0 1 0 . . . 1 1
0 1 1 1 . . . 1 1
1 1 0 1 . . . 1 1 S0

1 1 1 1 . . . 1 1
...

... . . . 1 0
1 1 1 1 . . . 0 1



















, S11 =



















1 0 1 0 . . . 1 1
0 1 1 1 . . . 1 1
1 1 0 1 . . . 1 1 S1

1 1 1 1 . . . 1 1
...

... . . . 1 0
1 1 1 1 . . . 0 1



















.

The pixel expansion of this construction is m′ = m + n(n − 1) and contrast is

α(m′) = (1 + (α(m) × m))/m′, where α(m) is the contrast of the original VCS

without cheating prevention.

By the new definition, what the human eyes care about is contrast, no matter

whether the image is darker or lighter than the background. Our improvements

are applicable to Yang and Laih’s cheat-preventing method. It reduces the pixel

expansion to m + n(n − 1)/2. Moreover, since the verification image can be made

public to all participants, we can let the verification image appear on the shares.

By this, we can further reduce the pixel expansion to m + n(n− 1)/4.

42



Our improvement is based on the following three theorems, which are proved in

Chapter 3.

Theorem 4.3.1. (Composition property) Let Γ1 = (P, Q1, F1) and Γ2 = (P, Q2, F2)

be two access structures. Assume that Q1 ∩Q2 = ∅. If there exist a (Γ1, m1)-VCS2

and a (Γ2, m2)-VCS2, there exist a (Γ, m1 + m2)-VCS2, where Γ = (P, Q1 ∪Q2, F1 ∩
F2). VCS2 is a visual cryptography scheme based on the new definition proposed.

Theorem 4.3.2. (Deletion property) Let Γ = (P, Q, F ) be an access structure. If

S0 and S1 are basis matrices for a (Γ, m)-VCS2, S0′ and S1′ are basis matrices for

a (Γ, m− k)-VCS2, where S0′ and S1′ are obtained from S0 and S1 by deleting the

same k columns.

Theorem 4.3.3. (Inverse property) Let Γ = (P, Q, F ) be an access structure. If S0

and S1 are basis matrices for a (Γ, m)-VCS2, S0′ and S1′ are basis matrices for a

(Γ, m)-VCS2, where S0′ = S1 and S1′ = S0.

We denote the left appended matrices in Sb1b2 as n(n− 1)/2 sub-matrices Sb1b2
k ,

where 1 ≤ k ≤ n(n − 1)/2, b1, b2 ∈ {0, 1}. Each sub-matrix Sb1b2
k consists of

two columns counting from left to right. Based on Theorems 4.3.1-4.3.3, we can

exchange the roles of S00
k and S10

k , and also S01
k and S11

k , and delete n(n − 1)/2

common columns. Furthermore, we delete all columns having one ”0” only for the

case that the verification image may not appear on the shares. By these steps, the

pixel expansion of the appended matrices is reduced to n(n− 1)/4.

Let P = {1, 2, 3, 4}. The basis matrices for a cheat-preventing (Γ, m)-VCS using

Yang and Laih’s cheat-preventing method are as follows:

S00 =









1 0 1 0 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 0 1 0 1 1
1 1 1 0 1 1 1 0 1 1 1 0 S0

1 1 1 1 1 0 1 1 1 0 1 0









,

S01 =









1 0 1 0 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 0 1 0 1 1
1 1 1 0 1 1 1 0 1 1 1 0 S1

1 1 1 1 1 0 1 1 1 0 1 0









,

S10 =









1 0 1 0 1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 0 1 0 1 1
1 1 0 1 1 1 0 1 1 1 1 0 S0

1 1 1 1 0 1 1 1 0 1 0 1









,
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S1+S2                              S2+S3                              S1+S3                           S1+S2+S3

S1                                     S2                                   S3

Figure 4.11: An improved (3, 3)-VCS2 for Yang and Laih’s cheat-preventing method.

S11 =









1 0 1 0 1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 0 1 0 1 1
1 1 0 1 1 1 0 1 1 1 1 0 S1

1 1 1 1 0 1 1 1 0 1 0 1









.

We reduce the pixel expansion of the left appended matrices from 12 to 3 as follows:

S00 =









0 0 1
0 1 0
1 1 1 S0

1 0 0









, S01 =









0 0 1
0 1 0
1 1 1 S1

1 0 0









,

S10 =









0 1 1
1 0 1
0 0 0 S0

1 1 0









, S11 =









0 1 1
1 0 1
0 0 0 S1

1 1 0









.

Example 4.3.2. Figure 4.11 shows the results of the improved cheat-preventing

(3, 3)-VCS2. We see that the stacking of any two shares reveals the verification

image V. S1+S3 reveals the reversed verification image and S2 shows the verification

image.

4.3.4 A Generic Transformation for Cheating Prevention

By the attacks and improvement in previous sections, we propose that an efficient

and robust cheat-preventing method should have the following properties.

1. It does not rely on the help of an on-line TA. Since VC emphasizes on easy

decryption with human eyes only, we should not have a TA to verify validity

of shares.

2. The increase to pixel expansion should be as small as possible.
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3. Each participant verifies the shares of other participants. This is somewhat

necessary because each participant is a potential cheater.

4. The verification image of each participant is different and confidential. It

spreads over the whole region of the share. We have shown that this is neces-

sary for avoiding the described attacks.

5. The contrast of the secret image in the stacking of shares is not reduced sig-

nificantly in order to keep the quality of VC.

6. A cheat-preventing method should be applicable to any VCS.

We now present a generic transformation from a VCS to another cheat-preventing

VCS. The resultant cheat-preventing VCS meets all the above requirements. The

idea is similar to the first cheat-preventing method of Yang and Laih [30]. But, we

let each participant hold a verification share. Our cheat-preventing scheme needs

no help from an on-line TA. The verification image for each participant is different

and known to the participant only.

Our transformation is quite efficient and almost optimal as it adds only two

subpixels for each pixel of the original image. That is, if the pixel expansion of the

VCS is m, the pixel expansion of the transformed VCS is m + 2. The contrast is

slightly reduced from α(m) to α(m′) = (α(m)×m+1)/(m+2). Our transformation

is depicted in Figure 4.12. It generates two shares for each participant. One is the

secret share and the other is the verification share. Let S0 and S1 be the n × m

basis matrices of a (Γ, m)-VCS. At first, we create two n × (m + 2)-dimensional

basis matrices T 0 and T 1. The transformed (Γ, m + 2)-VCS uses T 0 and T 1 as the

basis matrices to generate shares for the participants as usual. Then, for each Pi,

it generates a verification share Vi for a chosen verification image. For each white

pixel in the verification image, it puts the pixel of (m+2)-dimensional [1 0 0 · · · 0]

to Vi (after corresponding permutation as for the share Si). For each black pixel in

the verification image, it puts the pixel of (m+2)-dimensional [0 1 0 0 · · · 0] to Vi

(after corresponding permutation as for the share Si). We see that the verification

image is encoded into the first two subpixels. If Pi wants to verify the share Sj of

Pj, he checks whether Vi + Sj shows his verification image.

Example 4.3.3. Figure 4.13 shows a transformed (Γ, m + 2)-VCS with cheating

prevention, where P = {1, 2, 3} and Q = {(1, 2), (2, 3), (1, 2, 3)}. The verification
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Input: S0 and S1 of a (Γ, m)-VCS.
Shares construction phase:

1. Let

T 0 =







10
... S0

10






and T 1 =







10
... S1

10






.

2. Use T 0 and T 1 as the basis matrices for generating shares Si,
1 ≤ i ≤ n, of (Γ, m + 2)-VCS.

3. For each Pi, 1 ≤ i ≤ n, choose a verification image and
generate a verification share Vi as follows:

(a) For each white pixel in the verification image, put the
pixel of (m + 2)-dimensional [1 0 0 · · · 0] (subpixels)
to Vi (after corresponding permutation as for the share
Si).

(b) For each black pixel in the verification image, put the
pixel of (m+2)-dimensional [0 1 0 0 · · · 0] (subpixels)
to Vi (after corresponding permutation as for the share
Si).

Share verification phase:
Before stacking their shares, each Pi checks whether Vi + Sj shows
his verification image, where Pj is another participant.

Figure 4.12: Our generic transformation for VCS with cheating prevention.
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  S1                                    S2                                   S3                                     V1

       

   V2                                   V3                                V1+S2                               V1+S3

       

V2+S1                             V2+S3                             V3+S1                              V3+S2

       

S1+S2                             S1+S3                              S2+S3                           S1+S2+S3

Figure 4.13: An example of a transformed VCS with cheating prevention.

images for P1, P2 and P3 are A, B and C, respectively. Note that the simple verifica-

tion images are for demonstration only. By our proposed principle in Section 4.3.2,

we should use more complicated verification images.

Theorem 4.3.4. The algorithm in Figure 4.12 transforms any (Γ, m)-VCS to an-

other (Γ, m′)-VCS with cheating prevention, where m′ = m+2 and α(m′) = (α(m)×
m + 1)/m′.

Proof. Since the first two subpixels are all the same for all pixels in all shares of

(Γ, m′)-VCS, the secret image is not affected except that the contrast is slightly

reduced to α(m′) = (α(m)×m+1)/m′. Thus, the transformation produces another

(Γ, m + 2)-VCS.

For Pi verifying the share Sj of Pj, we see how the verification image appears

on Vi + Sj. For each black pixel of the verification image, the first two subpixels of

Vi +Sj is [0 1]+[1 0] = [1 1]. For each white pixel of the verification image, the first

two subpixels of Vi + Sj is [1 0] + [1 0] = [1 0]. Thus, the black and white pixels of

the verification image have a positive contrast and Pi can see the verification image

in Vi + Sj.

Each participant has his own private verification image, which is not known to

other participants. Since the first two subpixels [1 0] (before permutation) of all

shares are the same, a Pi even with all shares cannot know the positions of black

pixels of the verification image of Pj, j 6= i. Therefore, Pi cannot produce a fake
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share FSi such that FSi + Vj shows the verification image of Pj. Pi cannot cheat

Pj for i 6= j. Furthermore, we see that collaboration of some participants cannot

succeed to cheat, either.
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Chapter 5

Improvements on VCSs with
Reversing

In this chapter we propose three new ideal contrast VCS with reversing which is

compatible and requires fewer stacking and reversing operations, compared to all

previous schemes. One is based on VCS2, the others is based on VCS1. Each partici-

pant is required to store only two transparencies and obtain the ideal reconstruction

image in only two runs.

5.1 Brief Review of Previous VCSs with Revers-

ing

In this section, we review three existing VCSs with reversing. The first scheme is

proposed by Viet and Kurosawa [27]. Their scheme generates c shares (for some c)

for each participant by performing the original VCS c times independently.

Suppose that there exists a (k, n)-VCS of perfect reconstruction of black pixels.

The ”c-runs (k, n)-VCS with reversing of Viet and Kurosawa” is constructed as

follows.

1. Let (S1,i, S2,i, ..., Sn,i) be the set of shares in the i-th run for i = 1, ..., c.

2. The transparencies of participants ij are Sj,1, Sj,2, ..., Sj,c for j = 1, ..., n.

3. Any k participants in Q reconstruct the secret image by:

• superimposing their transparencies and obtain

Ti = Sj1,i + Sj2,i + ... + Sjk,i , where i = 1, ..., c.

• computing U = (T ′
1 + ... + T ′

c)
′

• U , which is the reconstructed secret image.
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We can see that a series of Boolean operations performed in this scheme is exactly

equal to c− 1 AND operations performed on the transparencies T1, ..., Tc.

The First Scheme of S. Cimato et al. [8] encodes the secret image pixel by pixel.

Each pixel is considered independently on the others. Their construction requires

each participant to store m transparencies, each size are same as the original image.

The scheme is constructed as follows.

1. Let (S0, S1) be the basis matrices constituting a VCS of perfect reconstruction

of black pixels.

2. The dealer randomly chooses a matrix C0 = [ci,j] from S0 (C1 from S1, resp.).

3. For each participant i, consider the m bits ci,1, ci,2, ..., ci,m composing the i-th

row of C0 and C1, for each j = 1, ..., m, put a white (black, resp.) pixel on

the transparency Si,j if ci,j = 0 (ci,j = 1, resp.).

4. Any k participants in Q reconstruct the secret image by computing:

• Tj = OR(Si1,j, ..., Sik,j), for j = 1, ..., m.

• U = (OR(T ′
1 + ... + T ′

m))′

• U , which is the reconstructed secret image.

The Second Scheme of S. Cimato et al. [8] reduce the number of transparencies by

using as a building block a binary secret sharing scheme (BSS). A BSS consists of two

collections B0 and B1 of distribution functions. A distribution function f ∈ B0∪B1 is

a function associating each participant i to the share f(i). The scheme is constructed

as follows.

1. The dealer randomly chooses a distribution function f ∈ B0 (f ∈ β1, resp.),

where B0 and B1 are the collections of distribution functions realizing a BSS [7]

for (P, Q, F ).

2. For each participant i, consider the binary representation ci,1, ..., ci,r of share

f(i) and, for each j = 1, ..., r, where r is the size of the shares distributed by

the BSS [7], put a white (black, resp.) pixel on the transparency Si,j if ci,j = 0

(ci,j = 1, resp.).

3. Any k participants in Q reconstruct the secret image by the sequence of revers-

ing and stacking operations on their transparencies in parallel Rec(f(i1), ..., f(ik)),

and Rec() is a reconstruction algorithm which on inputs the shares and outputs

the secret.
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Si Sj Si AND Sj

0 0 0
0 1 0
1 0 0
1 1 1

Table 5.1: The truth table of Si AND Sj.

5.2 A Compatible Ideal Contrast (2, 2)-VCS with

Reversing in Two Runs

The basic idea of Viet and Kurosawa’s scheme is to perform AND operations on two

transparencies. Performing an AND operation on two pixels reveals a black pixel

only while two pixels are both black (see the truth table of the AND operation in

Table 1). Because the reconstructed secret image in Viet and Kurosawa’s VCS is

of perfect reconstruction of black pixels, the black pixels will stay black no matter

how many AND operations are performed. Viet and Kurosawa’s scheme performs

AND operations as many times as possible on the stacked transparencies generated

by a perfect black VCS. As a result, the secret images (black pixels) stay black and

the background (white pixels) will increasingly become whiter.

We show how to construct an ideal contrast (2, 2)-VCS in two runs by comput-

ing OR and AND operations only in Figure 5.1. Compared to the scheme of Viet

and Kurosawa, ours chooses the complement transparencies S ′
i, i ∈ {1, 2}, to be

the shares of the second run while theirs chooses other transparencies randomly.

Our scheme achieves ideal contrast in two runs and requires each participant to

store only one transparency. With same stacking operations we achieve ideal con-

trast GREY(white)=0 while their scheme achieves GREY(white)= 1
4

in addition to

GREY(black)=1.

Figure 5.2 shows an example of comparing the results Viet and Kurosawa’s

scheme and ours. We see that the reconstructed image of our scheme has better

contrast.

Theorem 5.2.1. The scheme in Figure 5.1 is a two runs ideal contrast (2, 2)-VCS

with reversing.

Proof. Step 3 in the reconstruction phase computes an AND operation on T and T ′,

i.e. ((T )′ + (T ′)′)′ is equal to T AND T ′. Suppose that a pixel P is black (the secret

image). Then the pixel P on T and T ′ is always black since Naor-Shamir (2, 2)-
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Input.

1. A (2, 2) access structure (P, Q, F ).

2. Let C0 and C1 be the set of all matrices obtained by permut-
ing columns of S0 and S1 matrices constituting a Naor-Shamir
(2, 2)-VCS in all possible ways.

Distribution phase.

1. Let (S1, S2) denote the transparencies generated by the basis
matrices S0 and S1 for participants 1 and 2 .

Reconstruction phase.

1. Two participants 1, 2 obtain S ′
1 and S ′

2 by reversing S1 and
S2 respectively.

2. They superimpose S1, S2 and S ′
1, S

′
2 separately, and obtain T

and T ′, where T = S1 + S2 and T ′ = S ′
1 + S ′

2.

3. Two participants reverse T, T ′ separately, superimpose them
together and obtain U = ((T )′ + (T ′)′)′.

Output. U , which is the reconstructed secret image.

Figure 5.1: A construction for ideal contrast (2, 2)-VCS with reversing.

VCS and the reverse of Naor-Shamir (2, 2)-VCS are all perfect black reconstruction,

namely GREY(black)= 1.

On the other hand, suppose that P is a white pixel (the background). Then

the color of P corresponding to T and T ′ is exactly opposite to each other, and the

return pixel on U is always white. So, this scheme reveals an ideal contrast image

U , where GREY(white)=0 in addition to GREY(black)=1.

Same as in Viet and Kurosawa’s scheme, the bit operation of AND is used in this

scheme. We conclude that a compatible VCS with reversing can obtain ideal contrast

by computing an AND operation in two runs, only if the following requirements are

satisfied.

1. The VCS should be perfect black reconstruction, since the black pixels should

remain black after computing an AND operation.

2. The GREY(white)≥ 1
2
, since the white pixels should become GREY(white)=0

in two runs.
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VK's Scheme Ours

Original image

Figure 5.2: The images reconstructed in two runs by Viet and Kurosawa’s scheme
and ours.

3. The columns of elements of basis matrix S0 should be either all 0’s or 1’s,

since the white pixels in the reconstructed transparencies T and T ′ should be

exactly opposite.

By the above requirements, our construction in this section is only applicable to

(2, 2)-VCS. In the next section, we propose two construction for VCS with reversing

with general access structures.

5.3 Two Constructions for Compatible Ideal Con-

trast VCSs with Reversing

In this section we describe two constructions of compatible VCSs with reversing

which reveal an ideal contrast image for any access structure in only two runs. The

first construction is based on the traditional definition of VC [20]. The second one

is based on new definition we proposed.

5.3.1 An Ideal VCS with Reversing for General Access Struc-
ture

Before introducing our approach, we describe a VCS for general minimal access

structure Γ0, which was proposed in [1] and [9], that will be used in our approach.

Then we show how to construct another basis matrix to generate Auxiliary Trans-

parencies (AT) for each participant. These ATs are generated for our VCS with

reversing to reconstruct an ideal contrast secret image.

5.3.2 A VCS for Minimal Access Structure Γ0

This VCS employs Naor-Shamir (k, k)-VCS as a basis unit for constructing a VCS for

minimal access structure Γ0. Suppose Γ0 = {Q1, ..., Qb}, by employing the optimal
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(k, k)-VCS, the basis matrices L0 and L1 are constructed as follows.

Suppose that Qr = {i1, ..., ikp
} and kp = |Qr|. For 1 ≤ r ≤ b, construct an

n× 2kp−1 matrix Ei
r, i ∈ {0, 1}, with the following steps:

The pi row of E0
r is the i-th row of the basis matrix S0 of the optimal (kp, kp)-

VCS. The elements of other rows of E0
r are all 1’s. Then L0 = E0

1 ‖ ... ‖ E0
b . The

construction of E1
r is similar to E0

r except that we replace the pi row of E1
r from the

basis matrix S1 of the optimal (kp, kp)-VCS instead of S0. Then L1 = E1
1 ‖ ... ‖ E1

b .

Lemma 5.3.1. L0 and L1 are a pair of basis matrices of a perfect black VCS for

Γ0 such that the pixel expansion m = 2|Q1|−1 + ... + 2|Qb|−1 and GREY(white) =

1− 1
m

[27].

For 1 ≤ r ≤ b, an n × 2kp−1 matrix Fr is constructed as follows. The elements

in pi row of Fr are all 0’s. The other rows of Fr are all 1’s. Then an auxiliary basis

matrix A0 = F1|...|Fb. In other words, A0 is the same matrix as L0 except that we

replace all the elements of the (kp, kp)-VCS with ”0”. We regard all the pixels on

transparencies constituted by A0 as white pixels. Therefore, we only need a basis

matrix to generate the transparencies.

For example, for Γ0 = {(1, 2), (2, 3, 4)} and P = {1, 2, 3, 4}, then

L0 = E0
1 ‖ E0

2 =









1 0 1 1 1 1
1 0 0 1 1 0
1 1 0 1 0 1
1 1 0 0 1 1









, L1 =









1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1









,

A0 = F1 ‖ F2 =









0 0 1 1 1 1
0 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0









5.3.3 Our Construction

The construction is depicted in Figure 5.3. We encode the secret image into n

transparencies. Instead of only encoding one secret image into n shares, we divide

every share (transparency) into |Γ0| blocks and every block has one secret image. It

implies that there are |Γ0| secret images in the reconstructed transparency and that

each secret image can be reconstructed by one qualified set.

Lemma 5.3.2. The optimal (k, k)-VCS proposed by Naor and Shamir [20] is a

compatible ideal contrast (k, k)-VCS with reversing.

54



Input.

1. A minimal access structure Γ0 on a set P of n participants.

2. Let C0
r , C1

r , and C ′0
r be the collection of basis matrices E0

r ,
E1

r and Fr resp., where 1 ≤ r ≤ |Γ0| and .

Distribution phase.
The dealer encodes each transparency ti as |Γ0| sub-transparencies
Si,r and each sub-block consists of one secret image. For 1 ≤ r ≤
|Γ0|, each white (black pixel) on sub-block of transparency Si,r is
encoded using a n× 2kp−1 matrice E0

r (E1
r resp.). To share a white

(black, resp.) pixel, the dealer,

1. randomly chooses a matrix S0
r = [si,j] in C0

r (S1
r in C1

r resp.),
and a matrix A0

r = [ai,j] in C ′0
r.

2. For each participant i, put a white (black, resp.) pixel on the
sub-block of transparency Si,r if si,j = 0 (si,j = 1, resp.).

3. For each participant i, put a white (black, resp.) pixel on the
sub-block of transparency ASi,r if ai,j = 0 (ai,j = 1, resp.).

Reconstruction phase.
Participants in Qp reconstruct the secret image by,

1. XORing all the shares Si and stacking all the transparencies
ASi for i = 1, ..., kp and obtain T and A respectively.

2. computing U = (T + A)⊕ A.

Output. U , which is the reconstructed secret image.

Figure 5.3: A construction for ideal contrast VCS with reversing.

Proof. We show that Naor and Shamir’s (k, k)-VCS with reversing is compatible

and ideal contrast by the following:

Compatible. This VCS has been proven optimal since in any (k, k)-VCS, the

pixel expansion has to be at least 2k−1 and contrast can be at most 1
2k−1 [20].

Ideal contrast. Naor and Shamir’s (k, k)-VCS is obtained by means of the con-

struction of the basis matrices S0, S1. S0 is the matrix whose columns are all the

Boolean k-vectors having an even number of 1’s; whereas, S1 is the matrix whose

columns are all the Boolean k-vectors having an odd number of 1’s. In order to

obtain the ideal contrast secret image, k participants compute S1 ⊕ S2 ⊕ ...⊕ Sk on

the k transparencies. It is easy to see that the white pixels are all white since S0
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has an even number of 1’s; whereas the black pixels are all black since S1 has an

odd number of 1’s.

Theorem 5.3.1. Let Γ = (P, Q, F ) be an access structure on a set P of n partici-

pants. The basis matrices S0, S1 and A0 constitute a compatible ideal contrast VCS

with reversing in two runs.

Proof. Compatible. The basis matrices S0 and S1 have been proven constituting a

VCS in [27], i.e. the secret image can be reconstructed by directly superimposing

the transparencies of any qualified set. As for the property of security, it is obvious

that a VCS is as secure as a VCS with reversing [1]. The basis matrix A0 reveals no

information about the secret image since no secret is encoded into the shares Ati.

Ideal contrast. Let L0 = E0
1 ‖ ... ‖ E0

b , L1 = E1
1 ‖ ... ‖ E1

b and A0 = F1 ‖ ... ‖ Fb

be the basis matrices for a VCS with reversing, constructed using the previously

described technique. Without loss of generality, let Γ0 = {Q1, ..., Qb} and X = Q1,

X be a subset of qualified participants. Since the secret image is reconstructed

by computing (T + A) ⊕ A, we have to show that L0, L1 and A0 are the basis

matrices of a VCS with reversing for the general access structure Γ = (P, Q, F )

having ideal contrast, i.e. w((E0
1 + F1)⊕ F1) = 0, w((E1

1 + F1)⊕ F1) = 2|Q1|−1 and

w((Ei
r + Fr)⊕ Fr) = 0 , r ∈ {2, . . . , |Γ0|} and i ∈ {0, 1}. It results that

w((E0
1 + F1)⊕ F1)

= w((E0
1 + 0)⊕ 0)

= w(E0
1 ⊕ 0)

= w(E0
1) = 0 (according to Lemma 5.3.2)

and
w((E1

1 + F1)⊕ F1)
= w((E1

1 + 0)⊕ 0)
= w(E1

1 ⊕ 0)
= w(E1

1) = 2|Q1|−1 (according to Lemma 5.3.2)

whereas,
w((Ei

r + Fr)⊕ Fr) for r ∈ {2, . . . , |Γ0|} and i ∈ {0, 1}
= w((Ei

r + 1)⊕ 1)
= w(1⊕ 1)
= 0

Example 5.3.1. Let P = {1, 2, 3, 4} and Γ0 = {(1, 2), (2, 3, 4)}. Then the basis

matrices L0, L1 and A0 are constructed as follows.
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T A T + A (T + A)⊕ A
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 0

Table 5.2: The truth table of (T + A)⊕ A.

L0 =









1 0 1 1 1 1
1 0 0 1 1 0
1 1 0 1 0 1
1 1 0 0 1 1









L1 =









1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1









A0 =









0 0 1 1 1 1
0 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0









There are two secret images encoded into four shares, one is in block 1 for {1, 2}
and the other is in block 2 for {2, 3, 4}. Let Q2 = {2, 3, 4}, then T = XOR (XOR

(S2, S3), S4) and A = OR (OR (S2, S3), S4). From the truth table of (T + A) ⊕ A

in Table 5.2, we see that the outcome of U = (T + A) ⊕ A is 1 only while T = 1

and A = 0. Therefore, all the black pixels will be reconstructed as the perfect black

pixels.

Example 5.3.2. The results of the construction for Γ0 = {(1, 4), (2, 3, 4)}, where

P = {1, 2, 3, 4}, are depicted in Figure 5.4. Shares At1 and At4 are omitted since

they are the transparencies with all white subpixels.

5.3.4 A Compatible Ideal Contrast VCS2 with Reversing for

General Access Structure

As we mentioned before, what the human eye cares about is contrast, no matter

whether the image is darker or lighter than the background. In this section, we

show a construction in Figure 5.5 for VCS2. It still recover the secret image with

ideal contrast, and remains compatible.

Theorem 5.3.2. The basis matrices S
′0, S

′1 and A0 in Figure 5.5 constitute a

compatible ideal contrast VCS2 with reversing in two runs.

Proof. Compatible. The basis matrices S
′0 and S

′1 have been proven constituting a

VCS2, in which the recovered image is either darker or lighter than the background.

As for the property of security, no information about the secret image will be revealed

since the basis matrix A0 is unchanged.
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Figure 5.4: The results of construction one for V CS1.

Ideal contrast. If the recovered secret image is darker than the background,

then the proof is the same as that in Theorem 5.3.1. Suppose that the recovered

secret image is reversed (the secret image is lighter than the background). Wlog, let

Γ0 = {Q1, ..., Qb} and X = Q1, X be a subset of qualified set. In order to prove the

contrast of the reversed secret image is ideal, we have to show that L0, L1 and A0 are

the basis matrices of a VCS with reversing for Γ = (P, Q, F ), having ideal contrast,

i.e. w(E0
1 + F1) = m, w(E1

1 + F1)) = 0 and w(Ei
r + Fr) = m for r ∈ {2, . . . , |Γ0|}
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Input.

1. A minimal access structure Γ0 on a set P of n participants.

Distribution phase.

1. The dealer uses the approaches a to generate S
′0, S

′1 accord-
ing to S0, S1, where the constructions of the basis matrices
S0, S1 and A0 remain the same as in Figure 5.3.

2. The transparencies Si and ASi, i = 1, ..., n, are constructed
as in Figure 5.3 except that the basis matrices S0, S1 for Si

are replaced with S
′0, S

′1.

Reconstruction phase.
Let Qr = {i1, ..., ikp

} be the minimal qualified set in Γ0, participants
in Qr reconstruct the secret image by,

1. XORing all the shares Si and stacking all the shares ASi for
i = 1, ..., kp and obtain T and A respectively.

2. Computing U = (T +A)⊕A, if the recovered image is darker
than the background else U = T + A.

Output. The transparency U , which is the secret image with deal
contrast.

aThe relative approaches and proofs can be found in Chapter 3

Figure 5.5: A construction for ideal contrast VCS2 with reversing.
.

and i ∈ {0, 1}, where m = 2|Q1|−1. It results that:

w(E0
1 + F1)

= w(E0
1 + 0)

= w(E0
1) = m

and,
w(E1

1 + F1)
= w(E1

1 + 0)
= w(E1

1) = 0

whereas,
w(Ei

r + Fi) for r ∈ {2, . . . , |Γ0|} and i ∈ {0, 1}
= w(Ei

r + 1)
= m
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Example 5.3.3. Let P = {1, 2, 3} and Γ0 = {(1, 2), (2, 3)}. We depict the results

of the images reconstructed by VCS2 with reversing in Figure 5.6.

Figure 5.6: The results of construction two for V CS2.

5.4 Discussions

5.4.1 Reducing Pixel Expansion And Improving Contrast

Every share in our schemes is divided into b = |Γ0| blocks. It implies that the pixel

expansion is reduced by b times compared with Viet and Kurosawa’s scheme. As a

result, the contrast of the recovered secret images will also improve b times compared

to Viet and Kurosawa’s scheme while revealing the secret image only with human

visual system.
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Ito et al. [13] proposed a size invariant VCS to encode the secret image into the

same size shares as the secret image, and the reconstructed image of the proposed

scheme has the same contrast as in the conventional scheme. Compared to tradi-

tional VCSs, the contrast of their VCS is defined as |p0−p1| where p0 and p1 are the

appearance probabilities of a black pixel on the background and the secret of the

reconstructed image respectively [13]. In other words, contrast is increased when

the probability of a black pixel appearing on the secret image becomes bigger, or the

probability of a black pixel on the background of the reconstructed image becomes

smaller.

Our VCSs with reversing can be applied to this method on each sub-block. It

reduces the number of pixel expansion of our VCSs with reversing to b.

5.4.2 A Comparison of Properties Among the VCSs with
Reversing in [27], [8] And Ours

Table 5.3 shows a comparison of properties between our scheme and previous VCSs

with reversing. We measure the efficiency of VCS with reversing by the following

seven factors:

• Compatibility

• Contrast of the reconstructed secret image with reversing

• Contrast of the reconstructed secret image with only stacking (to recover the

secret image without using a copy machine)

• Number of stacking operations

• Number of reversing operations

• Shares held by each participant

• Pixel expansion

Some variables used in Table 5.3 are denoted as follows.

• k : the number of participants in the qualified set Qi.

• c : the number of AND operations performed in Viet and Kurosawa’s scheme.

• b : the number of the blocks divided in each transparency.
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Properties
Viet and

Kurosawa’s

Cimato
et al.’s

(1)

Cimato
et al.’s

(2)
Ours

Compatible
√ × × √

Contrast with reversing Almost ideal Ideal Ideal Ideal

Contrast with only stacking 1
m

0 0 b
m

Number of stacking operations ck k(m + 1) 3r(k − 1) 4k − 1
Number of reversing operations 3(c− 1) m + 1 4r(k − 1) 4k
Shares held by each participant c m r 2

Pixel expansion m 1 1 m
b

Table 5.3: A comparison of properties among the previous VCSs with reversing and
ours.

• m : the pixel expansion of a VCS described in Section 5.3.1.

• r : the number of bits in the binary representation of the largest share.

Obviously, we hope that the scheme is compatible so that the secret image can still

be obtained even when there is no available copy machine. It will be better to achieve

ideal contrast in finite steps. Finally, we hope to minimize the numbers in the various

factors. As we can see in Table 5.3, our scheme achieves both compatibility and

ideal contrast. Compared to Viet and Kurosawa’s scheme, our scheme is better on

every property. To the first and second schemes of Cimato et al, we also have better

properties except for pixel expansion. The pixel expansion m in both schemes of Viet

and Kurosawa and ours is necessary in order to gain the property of compatibility.
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Chapter 6

Improvements on Extended VCSs

In this chapter by the new definition, we show that EVCSs may have better con-

trast than those based on the conventional definition. We propose a (2, n)-EVCS

scheme based on the new definition. Although the image of this construction is not

”smooth”, it has better contrast than previous results.

6.1 Optimal Contrast (k, k) Threshold EVCS

Theorem 6.1.1. [2] In any (k, k)-threshold EVCS with pixel expansion m the

relative differences αF (m) and αS(m) satisfy

2k−1αF (m) +
k

k − 1
αS(m) ≤ 1.

From the theorem above, we can calculate that a (2, 2) threshold EVCS cannot

have a better contrast of more than 1/4. But, based on our new definition, we can

improve the contrast to 1/3. Note that black and white pixel respectively in the

conventional definition is represented in Figure 6.1. The pixel expansion is four.

Black and white pixel respectively in the new definition is represented in Fig-

ure 6.2. The pixel expansion is three, which is better than that based on the original

definition.

Figure 6.1: Black and white pixel respectively in the conventional definition.
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Figure 2.
Figure 6.2: Black and white pixel respectively in the new definition.

6.2 (2, n)-EVCS Based on New Definition

In this section, we propose a construction that can solve a 2 out of n EVCS problems

based on the new definition.

Example 6.2.1 shows a (2, 2) EVC construction based on the new definition.

Example 6.2.1. Basis matrices of a (2, 2) EVCS base on the new definition

Sww
w =

[

0 0 1
0 1 0

]

and Sww
b =

[

0 0 1
0 0 1

]

Swb
w =

[

0 0 1
0 1 1

]

and Swb
b =

[

0 0 1
1 1 0

]

Sbw
w =

[

0 1 1
0 0 1

]

and Sbw
b =

[

1 1 0
0 0 1

]

Sbb
w =

[

0 1 1
0 1 1

]

and Sbb
b =

[

1 1 0
0 1 1

]

Theorem 6.2.1. The scheme in Figure 6.3 is a 2 out of n EVCS with parameters

m = n + 1, αs(m) = αF (m) = 1/n + 1.

Proof. Let {(CC1...Cn
w , CC1...Cn

b )}C1,...Cn
be a family of 2n pairs of collections con-

stituting a (2, n)-threshold EVCS. Without loss of generality, we assume that for

any choices of c1, ..., cn ∈ {b, w}, the pair of collections (CC1...Cn
w , CC1...Cn

b ) are ob-

tained by permuting, in all possible ways, the columns of the pair of basis matrices

(SC1...Cn
w , SC1...Cn

b ) .

Case1 : The Contrast of all shares:

According to the step1 and step 2 of ”generation phase”, we can know that for

every row i in basis matrices (SC1...Cn
w , SC1...Cn

b ) has only one ”0” if ci = b. In

contrast, every row i in basis matrices (SC1...Cn
w , SC1...Cn

b ) has exactly two ”0”

if ci = w. Therefore, αS(m) = n− (n− 1)/n + 1 = 1/n + 1.

Case2 : Contrast property:

When SC1...Cn
w and SC1...Cn

b are restricted to i rows , i > 1, SC1...Cn
w has exactly
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one column that contains only 0’s and SC1...Cn

b either has exactly two such

columns or no any such columns, So for any qualified set X ∈ ΓQual and for

any matrix M ∈ CC1...Cn
w , we have that w(MX) = n− 1 and M ′ ∈ CC1...Cn

b , we

have that w(M ′
X) = n or w(M ′

X) = n − 2. Therefore, αF (m) = 1/n + 1 and

the contrast property hold.

Case3 : Security property:

Any combination of shares of (2, n)-threshold EVCS must show the secret, so

the security property is not required here.

Example 6.2.2. Example 6.2.2 depicts an 2 out of 3 EVCS2. The contrast of the

example is 1/4 when the optimal contrast of original 2 out of 3 EVCS1 is 1/6.

Secret image

Share of participant 1 Share of participant 2Share of participant 1             Share of participant 2 

Share of participant 3Share of participant 3 

Image of participants 1 and 2 Image of participants 1 and 3Image of participants 1 and 2       Image of participants 1 and 3 

Image of participants 2 and 3 Image of participants 1, 2 and 3Image of participants 2 and 3       Image of participants 1, 2 and 

65



Input:

1. An (2, n) access structure (ΓQual, ΓForb) on a set P of n participants.

2. The colors c1, ..., cn ∈ {b, w} of the pixels in the original n images.

3. The colors c ∈ {b, w} of the pixel of the secret image the dealer
wants to share.

Generation of the n shares:

1. Construct an n× n + 1 matrix W as follows:
Set the first entry of all rows of W to 0.
j = 1
For i = 1 to n do

If ci = b then set all entries of row i of W to 1 except first entry.
else j = j + 1;

set entry (i, j) of W to 0 and set all remaining entries of row i to
1;
.

2. Construct an n× n + 1 matrix B as follows:
j = 1
For i = 1 to n do

If ci = w then set all entries of row i of W to 1 except first entry
and

second entry to 0.
else j = (j + 1 mod (n + 1)) + 1.

set entry (i, j) of W to 0 and set all remaining entries of row i to
1;

3. The collection Cc1...cn
c is constructed by considering the matrices

obtained by permuting, in all possible ways, the columns of the
matrix

Sc1...cn

c =

{

W if c = w
B if c = b

4. Let M be a matrix randomly chosen in Cc1...cn
c

Output: The matrix M

Figure 6.3: The protocol to generate the shares for EVCSs based on new definition.
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Chapter 7

Conclusion and Future Work

We have proposed a new definition for visual cryptography, in which the revealed

images may be lighter or darker than backgrounds. We have studied properties

about our new definition. The results show that our V CS2 indeed has better pixel

expansion (contrast).

In chapter 4, we have proposed three cheating methods against VCS and EVCS.

We examined previous cheat-preventing schemes and found that they are either not

robust enough or still improvable. We finally proposed an efficient transformation

of VCS for cheating prevention. It only added two subpixels for each pixel in the

image.

In chapter 5, we have proposed three compatible VCSs with reversing, in which

the contrast of the recovered image is ideal in only two runs. We also compared

several properties of all the previous VCSs with reversing with ours. We also propose

a method to construct a (2,n)-EVCS. Our (2, n)-EVCS2 has smaller subpixels and

better contrast than Droste’s result.

After doing these researches, we think that there still are many achievable im-

provements on VC. The most important issue we think is constructing a practical

VCS that is more efficient for every participant to recover the secret image. For

example, it is desirable to design a VCS with reversing which does not need to di-

vide the transparency into |Γ0| blocks and still has the same or better performance

on every property than ours. Moreover, it will be a dramatic improvement if we

can implement an efficient transformation of VCS for cheating prevention that only

added two subpixels for each pixel and each participant just need to hold one share,

instead of two. Besides, the new definition has been proposed. The more applica-

tions of the new definition on the extensions of VC may be an interesting topic to

explore.
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Appendix

Let Γ = (P, Q, F ), where P = {1, 2, 3, 4}, Q = {(1, 2), (1, 4), (2, 3), (2, 4), (1, 3, 4),

(1, 2, 3, 4)} and F = {(1, 3), (3, 4), (1, 2, 3), (1, 2, 4), (2, 3, 4)}. Any (Γ, m)-V CS1

has m = 12 at least. The basis matrices are:

S0 =









101011110110
101110100000
111110110101
111011100011









and S1 =









101011111100
011110100000
111101111010
110111011001









Our (Γ, m)-VCS2 has m = 4 and α(m) = 1/4. The basis matrices are

S0 =









0011
0100
0100
0011









and S1 =









0011
0001
1000
0101









.

The following shows the shares of all participants and images of the stacked shares

of participants of qualified and forbidden sets.
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LNMPO�Q�RTSVUXWPOYQ�Z\[^]�[�WPO�_VZa` LNMPO�Q�RTSVUXWPOYQ�Z\[^]�[�WPO�_VZ�b

LNMPO�Q�RTSVUXWPOYQ�Z\[^]�[�WPO�_VZXc LNMPO�Q�RTSVUXWPOYQ�Z\[^]�[�WPO�_VZ�d

egf O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlkm`nO�_Popb e\f O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlkm`nO�_Popd

egf O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlkm`nO�_Poqc e\f O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlkacpO�_Popd

egf O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlk�bqO�_Poqc e\f O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlk�bqO�_Popd

egf O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlkm`nO�_PopbrO�_Poqc egf O�hVRTSVUXWPOYQ�Z\[^]�[�WPO�_VZlkm`nO�_PopbqO�_Popd

egf O�hiRTSVUXWjO�Q�Z\[^]�[�WPO�_VZlkm`nO�_PoqcsO�_Popd egf O�hVRTSVUXWPOYQ�Z\[^]�[�WPO�_VZlkm`nO�_PopbqO�_PoqcpOY_Popd
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