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Abstract

Visual Cryptography (VC) is a method of encrypting a secret image into shares
such that stacking a sufficient number of shares reveals the secret image. Shares are
usually presented in transparencies. Each participant holds a transparency. Most
of the previous research work on VC focuses on improving two parameters: pixel
expansion and contrast.

The conventional definition requires that the revealed secret images are always
darker than the backgrounds. We observed that this is not necessary, in particular,
for the textual images. Therefore, we proposed an improved definition for visual
cryptography based on our observation, in which the revealed images may be darker
or lighter than the backgrounds. Based on the new definition, we find that many
extensions of the original Visual Cryptography Schemes (VCSs) are improvable.
According to our study, we improve the results of the original VCSs including the

following contributions:

e We studied properties and-0btainéd- bounds for visual cryptography schemes
based on the new definition. "We propesed methods to construct visual cryp-

tography schemes based on themew definition.

e We presented three cheating methods and applied them on attacking exis-
tent VC or Extended VC (EVC) schemes. We improved one cheat-preventing
scheme. We proposed a generic method that converts a VCS to another VCS
that has the property of cheating prevention.

e Based on the new definition, we propose a new ideal VCS with reversing which
is compatible and requires fewer stacking and reversing operations, compared
to all previous schemes. Each participant is required to store only two trans-

parencies .

e We propose a (2,n)-EVCS scheme based on the new definition. Although the
image of this construction is not "smooth”, it has better contrast than previous

results.
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Chapter 1

Introduction

Following the remarkable advance of computer technology, the theory and applica-
tions of computer security are also making progress at a tremendous pace. Powerful
cryptographic algorithms and protocols are designed to meet security requirements
of various applications. However, using a computer to decrypt secrets is infeasible
in some situations. For example, a security guard checks the badge of an employee
or a secret agent recovers an urgent secret at some place where no electronic devices
are available. In these situations the_humian: visual system is one of the most con-
venient and reliable tools to do checkinggand secret recovery. Therefore, Naor and
Shamir [20] invented the Visual Cryptography (VC) in which a secret image (printed
text, picture, etc) is encrypted im a perfectly secure way such that the secret can be
decoded directly by the human visual systeni:

VC is a method of encrypting a+secret zmage into shares such that stacking a
sufficient number of shares reveals the secret image. Shares are usually presented in
transparencies. Each participant holds a transparency (share). Unlike conventional
cryptographic methods, VC needs no complicated computation for recovering the
secret image. The act of decryption is to stack shares and view the image that ap-
pears on the stacked shares simply. A (k,n)-Visual Cryptography Scheme (denoted
as (k,n)-VCS) is a visual secret sharing scheme [23, 24] such that stacking any k or
more shares reveals the secret image, but stacking fewer than k£ shares reveals not
any information about the secret image.

A VCS would be helpful if the shares are meaningful or identifiable to every
participant. A VCS with this extended characteristic is called Extended VCS
(EVCS) [2, 20]. A (k,n)-EVCS is like a (k,n)-VCS except that each share dis-
plays a meaningful image, which will be called share image hereafter. In order to

identify the transparencies (shares), some images or symbols are needed to appear



on the transparencies. Different shares may have different share images.

A VCS is called perfect black (white resp.) if all the subpixels associated to a
black (white resp.) pixel is black (white resp.). An image with optimal contrast
is called ideal contrast. That is all the subpixels associated to a black and white
pixels are perfect reconstructed. Let h (I resp.) be the number of white subpixels
in a white (black resp.) pixel. Then, an image is of ideal contrast if h = m and
[ =0. A VCS is perfect black if the value [ of the reconstructed image is 0. For the
characteristic of contrast, the equation m > h > [ > 0 must be satisfied if one should
identify the secret image. The most concerned issue for the reconstructed image is
contrast [20]. Since the share held by each participant should consist of same number
of white subpixels and black subpixels (for the reason of computationally secure), it
is impossible to recover a secret image with ideal contrast in VC. Therefore, Viet and
Kurosawa [27] proposed a VCS, called VCS with Reversing (VCSR), which adopted
a simple tool (copy machine) to improve the contrast of the reconstructed image.
For most copy machines nowadays, to reverse black and white pixels in a paper is
already a fundamental function.

There are quite many new results andléxtensions of the original work [1, 2, 4, 5,
6, 7,9, 11, 14, 19, 21]. We briefly describe,them a8 follows.

1.1 Previous Works

Naor and Shamir [20] defined visualieryptography formally and proposed an optimal
visual cryptography scheme for the (n,n)-threshold access structure. They also ex-
tended the work for the (k, n)-threshold access structures. Many improvements and
extensions follows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 25, 26, 27, 29]. For
example, Ateniese, et al. [1] proposed an elegant VCS for general access structures
based on the cumulative array method. They analyzed structures of visual cryptog-
raphy schemes and proved bounds for the size of the shares. Hofmeister, et al. [11]
proposed a visual cryptography scheme for (k, n)-threshold access structures, which
achieves the best contrast by solving a simple linear program. Visual cryptography
schemes for color images were given in [18, 22].

Extended visual cryptography defines that each share shows an image, but
their combinations show the real secret image. Naor and Shamir [20] proposed
an extended visual cryptography scheme for the (2,2)-threshold access structure.
Droste [9] proposed a very general method to construct an extended visual cryptog-

raphy scheme for an arbitrary access structure, which is not necessarily monotonic.



Ateniese, et al. [2] proposed a hyper-coloring technique to construct extended visual
cryptography schemes. It is possible that each share shows a different image initially
and a different combination of shares shows a different secret image. Kim, et al. [15]
discussed negative images for access structures.

Viet and Kurosawa [27] proposed a VCS with reversing, with which the re-
constructed secret image obtains almost ideal contrast. They adopted a tool (copy
machine) to improve the contrast of the reconstructed image. Before long, S. Cimato
et al. [8] proposed two elegant schemes to construct VCSs with reversing. In their
first scheme, each participant stores m transparencies, where m is the pixel expan-
sion (the number of subpixels in each pixel). They proposed another VCS, using
as a building block a binary secret sharing scheme (BSS). This scheme reduces the
number of transparencies held by each participant to r, where r is the number of
bits in the binary representation of the largest share. Yang et al. [31] applied a
cyclic shift operation of subpixels to the Viet and Kurosawa’s scheme and obtain a
new efficient VCSR.

Naor and Pinkas [19] showed some methods of authentication and identification
for VC. Yang and Laih [30] proposedst#6’¢heat-preventing methods. Their first
method needs an on-line TA (Trusted Autherity) t6-verify the shares of participants.

Horng also et al. [12] proposed a’cheating method against some VC schemes.

1.2 Motivations

For the interesting characteristic, Visual Cryptography is a quite improvable topic
to study. Our improvements on Visual Cryptography include proposing a new def-
inition, studying the cheating behaviors on VC, and doing some improvements on
EVCS and VCS with Reversing. We describe the motivations of these works as
follows.

The previous work we mentioned above, use the definition of Naor and Shamir,
i.e., when recovered, the secret image is darker than the background. However, in
many situations, what the human visual system cares about is ”contrast”, no matter
whether the image is darker or lighter than the background. For example, we can get
the textual secret image 75" from either ® or @. Therefore, we give a new definition
for visual cryptography based on the above observation.

VC has been studied intensively since the pioneer work [20] of Noar and Shamir [5,
6, 8, 10, 11, 17, 26]. In these cases, all participants who hold shares are assumed

to be semi-honest, that is, they won'’t present false or fake shares during the phase



of recovering the secret image. Thus, the image shown on the stacking of shares
is considered as the real secret image. Nevertheless, cryptography is supposed to
guarantee security even under the attack of malicious adversaries who may deviate
from the scheme in any way. We have seen that it is possible to cheat [12, 19, 28, 30|
in VC, though it seems hard to imagine. For cheating, a cheater presents some
fake shares such that the stacking of fake and genuine shares together reveals a
fake image. With the property of unconditional security, VC is suitable for sending
to highly-classified orders to a secret agent when computing devices may not be
available. The secret agent carried some shares, each with a pre-determined order,
when departing to the hostile country. When the headquarter decides to execute a
specific order, it can simply send another share to the agent so that the agent can
recover what the order is. We can see that it would be terrible if the dispatched
share cannot be verified due to a cheater’s attack.

At first glance, it seems very difficult to cheat in EVCS because the cheater does
not know the share images that appear on the genuine shares and, thus, has no
information about the distributions of black and white pixels of the share images.
This information is crucial for cheatinglin'VC, However, we show that it is still
possible to cheat in EVC.

A VCS with reversing (VCSR) [27] is @a"VCS where every participant is allowed to
change black pixels on the transparency into white pixels and vice-versa. A practical
material for constructing VC is the transparency.. However, due to the contiguous
black and white pixels on each tramsparency; the reconstructed secret image will
become much more ambiguous after every stacking if the transparencies are not
superimposed precisely. As a result, reducing the stacking and reversing operations
is important for VCSs with reversing. Therefore, we propose a compatible ideal
contrast VCSR with only two runs. In other words, each participant only need to
use two shares in the reconstruction phase.

Extended Visual Cryptography [2, 20] stipulates that each share shows an image,
and their combinations show the real secret image. Based on the new definition, we
find that the pixel expansion of a (2,n)-EVCS can be reduced to a smaller number
than that of a (2,n)-EVCS based on the original definition.



1.3 Owur Contributions

1.3.1 A More General and Efficient Definition

With the more general definition, we propose various visual cryptographic schemes.
Our schemes have better pixel expansion than previous results in some cases. In

Chapter 3, we obtain the following results:
e We propose an improved definition for visual cryptography.

e We study properties and obtain bounds for visual cryptography schemes based

on the new definition.

e We propose methods to construct visual cryptography schemes based on the
new definition. The experiment results show that our constructions provide

better pixel expansion in average.

1.3.2 Cheating Behaviors and Prevention

In Chapter 4, we study the cheating problem _in VC and EVC. We present three
cheating methods and apply them on existent VO or EVC schemes. Our attacks are
to reveal fake images to cheat honest participants.

We propose a generic method that converts a VCS to another VCS that has the
property of cheating prevention (alsq calledi-¢heat-preventing VCS). The overhead

of the conversion is near optimal. Our contributions are summarized as follows:

e We propose three cheating methods against VC or EVC schemes. The first
two methods are applied to attack VC schemes and the third one is applied to
attack EVC schemes. These three methods are easy to implement and satisfy

the cheating definition for cheating traditional secret sharing schemes.

e We review some previously proposed cheat-preventing VC or EVC schemes and
demonstrate that those schemes are either not robust enough (still cheatable)

or improvable.

e We propose some necessary criteria for a VCS to be secure against cheating
robustly. By these criteria, we propose a generic method that converts any
VCS to another VCS with the property of cheating prevention. Our conversion
is very efficient and incurs little overhead compared with the original VCS. The

degression in contrast of the converted VCS is almost optimal. For each pixel



of the secret image, we add two additional subpixels to the encoded subpixels

only, no matter how many the encoded subpixels are.

1.3.3 More Efficient Compatible VCSs with Reversing Based
on the New Definition

In Chapter 5, we show how to

e construct three ideal contrast VCSs with fewer reversing and stacking opera-

tions while maintaining compatibility.

e reduce the number of transparencies held by each participant to two. It is an
improvement on all properties when compared to the schemes of S. Cimato et

al [8], except for the property of pixel expansion.

1.3.4 EVCS Based on the New Definition

With the new definition, we propose a new (2, n)-EVCS. Our schemes have much
better contrast than previous results in some cases. In Chapter 6, we show our

contributions including;:
e an improved definition for.extended visual eryptography.

e anew (2, n)-EVCS scheme-thatihas-better contrast than the scheme based on

the new definition.



Chapter 2

Preliminaries

2.1 Model and Notation

Access structure. We consider arbitrary access structures. Let P = {1,2,...,n}
be a set of participants. ' = (P, @, F’) is an access structure if both () and F' are
subsets of 28 and QN F = (). Each X € Q is a qualified set of participants and each
Y € F'is a forbidden (non-qualified) set of participants. We call (P, @, F') complete
if I =2F — @, which is denoted by (P;@) in short. (P,Q) is a (k,n)-threshold
access structure if all k- or more-element subsets of P are in ). () is monotonically
increasing if X € @ implies that forall=X! "D . X - X' € Q. F is monotonically
decreasing if X € F implies thatforall X" € X X’ & F. We say that I' = (P, Q, F)
is monotonic if () is monotonically increasifigrand F!'is monotonically decreasing. We
remark that () is not necessarily monetonically increasing and F' is not necessarily
monotonically decreasing for an arbitrary access structure (P, Q, F').

Notation. Let B be a Boolean matrix and B; be the ith row vector of B. Let
B, + B; be the bit-wise OR of vectors B; and B;. Let X be a subset {i1, s, ...,1,)
of a participant set P. We define OR(B,X), AND(B,X) and XOR(B, X) to
be the vector of "OR”, "AND” and "XOR” resp. of rows i1,1s,...,%, of B. Let
GREY(GP)= |black subpixels| /m be the grey level of a white (or black) pixel, where
m is the pizel expansion of the pixel. That is, OR(B,X) = B;, + By, +---+ B;,.
Let w(v) be the Hamming weight of row vector v. For brevity, we let w(B, X) =
w(OR(B,X)). Let A||B denote the concatenation of two matrices A and B of the
same number of rows. Let | X| be the number of elements in set X.

Bit Operations. We use ”.S; +.S;” to denote "the stacking of shares S; and S;”.
The ”stacking” corresponds to the bitwise-OR operation ”+” of subpixels in shares
S; and S;. Let S} denote the complement share (transparency) of S; for participant

i, in other words, we obtain S! by computing one reversing operation on S;. Let

7



Si+S;, ;xS and S;®S; be the bit-wise OR, AND, and XOR of the corresponding
supixels on transparencies S; and S;.

It is well known that any Boolean operation can be performed solely by the
combination of OR and NOT gates. Therefore, using a VCS with reversing we
can denote more bit operations than in a traditional VCS. For example, an XOR
operation is equal to four NOT and three OR operations, i.e. four reversing and

three stacking operations.
S; & S; = OR((OR(S;, 55))', (OR(S;, S5))')

Probabilistic VCS. Let p,y(S) = w(v)/m, where v is a black pixel in share S and
m is the dimension of v. Similarly, p,,(S) = w(v)/m, where v is a white pixel in
share S. Note that all white (or black) pixels in a share have the same Hamming

weight.

2.2 Visual Cryptography Scheme

In visual cryptography, a secret image,gonsists of a collection of black and white
pixels. Each pixel in the image is considered separately. A pixel is divided into pixel
shares. Each pixel share consists of m subpixelsiand is given to a participant such
that a qualified set of participants can recover the pixel by stacking their pixel shares
and a set of forbidden participants cannot getiany information about the pixel, that
is, the subpixel patterns of the pixel shares of the*black pixel are the same as those
of the white pixel. An image share (or share) of an image consists of all the pixel
shares of its pixels.

To construct n shares of an image for n participants, we need to prepare two
collections C° and C', which consist of n x m Boolean matrices. A row in a matrix
in C° and C' corresponds to m subpixels of a pixel, where 0 denotes the white
subpixel and 1 denotes the black subpixel. For a white (or black) pixel in the image,
we randomly choose a matrix M from C° (or C', resp.) and assign row i of M to
the corresponding position of share S;,1 < i < n. Each pixel of the original image
will be encoded into n pixels, each of which consists of m subpixels on each share.
Since a matrix in C° and C* constitutes only one pixel for each share. For security,
the number of matrices in C° and C!' must be huge. For succinct description and
easier realization of the VC construction, we do not construct C° and C! directly.
Instead, we construct two n x m basis matrices S° and S* and then let C° and C*

be the set of all matrices obtained by permuting columns of S° and S*, respectively.



The resultant shares need satisfy the properties of visual cryptography. The

conventional definition for VCS [1] is as follows.

Definition 2.2.1. LetT' = (P, Q, F) be an access structure. Two collections (multisets)
C° and C' of n x m Boolean matrices constitute a (I';m)-VCS if there exist a value

a(m) >0 and a set {(X,tx)}xeq satisfying:

1. Any qualified set X = {iy,ia,...,7,} € Q can recover the secret image by
stacking their shares. Formally, for any M € C°, w(M,X) <tx —a(m) x m;
whereas, for any M' € Ct w(M', X) > ty.

2. Any forbidden set Y = {iy,ia,...,7,} € F has no information on the secret
image. Formally, the two collections C*,t € {0,1}, of ¢ x m matrices obtained
by restricting each n X m matriz in M € C* to rows iy,ia, ...,i, are indis-
tinguishable in the sense that they contain the same matrices with the same

frequencies.

The value m is called pizel expansion, which is the number of subpixels that
each pixel of the secret image is encoded into in each share. The value a(m) > 0
is called contrast. The higher the centrast is, the more visible by human eyes the
secret image is. The first propérty(contrast), ensures that the recovered image
shows difference between the white pixels and the black pixels. The second property
(security) ensures that nothing about the“image cam be recovered from the shares
of participants in a forbidden set.

The following shows an example of VC.

Example 2.2.1. Let P = {1,2,3},Q = {(1,2),(2,3),(1,2,3)} and then F =
{1,2,3,(1,3),()}. The two basis matrices

1 100 1 100
=11 110 and S'=|1 0 1 1
1 110 1 110
form a (I',4)-VCS with contrast a(m) = 1/4. The shares S1, So and Sz, and the

stackings of them are given in Figure 2.1.

In the above example, each pixel of the secret image is encoded as four subpixels
in each share. To encode a white (or black) pixel, we assign row i of S° (or S1,
resp.) to share S;; 1 <1i < n. In order to ensure security, the order of the subpixels
of a pixel is randomly permuted (simultaneously permuted for all shares). This is
equivalent to randomly choosing a matrix M from C° (or C, respectively).

An extended VCS is a VCS such that each share has a meaningful share image.

9



Ss S1+Ss S2+Ss

Figure 2.1: A (I',4)-VCS and the structures of subpixels.

S1.+ 82 S2 + Ss3

Figure 2.2: A (I';4)-EVCS.

Example 2.2.2. Figure 2.2 shows an BEVCS. for the access structure I' of Exam-
ple 2.2.1. The share images of S1, S and Ss are A, B and C, respectively. Note

that Sy + S35 shows no information about the secret S.

We consider general access structures. An access structure is non-monotonic if
some forbidden set contains a qualified set. Non-monotonic access structures have
some applications. For example, it may be that a participant x has the right to
veto the decision of a qualified set X, such that X U {z} is a forbidden set. We
point out that the participants may not know ) and F. When some participants
come together, all they do is to stack their shares and get the image revealed by
their stacked shares. Therefore, non-monotonic access structures have some physical
meaning.

We observe that by the definition only monotonic access structures have visual
cryptography schemes. To see this, assume that a forbidden set X € F' contains a

qualified set Y € Q. Then, X’s corresponding D° and D! are distinguishable by

10



observing the matrices of DY and D! restricted to the rows of Y.

We can see that by Definition 2.2.1, recovered images are always darker than
backgrounds. As explained above, we give a new definition for visual cryptography
that stresses ”contrast”. That is, some recovered images are darker than back-

grounds and some are lighter than backgrounds.

Definition 2.2.2. Let ' = (P, Q, F') be an access structure. Two collections (multi-
sets) C° and C' of n x m Boolean matrices constitute a visual cryptography scheme
(I',m)-VCOS if there exist value a(m) > 0 and the set {(X,tx)}xeq satisfying:

1. Any qualified set X = {iy,ia,...,1,} € Q can recover the shared image by
stacking their shares. Formally, for any M € C°, w(M, X) = tx; whereas, for
any M' € C', w(M',X) > tx + a(m) -m or for any M’ € C', w(M', X) <

tx —a(m)-m.

2. Any forbidden set X = {iy,ia,...,i,} € F' has no information on the shared
image. Formally, let D't € {0,1}, be two collections of ¢ X m matrices
obtained by restricting each n x m matriz in M € C* to rows i1, s, . . ., i4, such
that

(a) If X does not contaii any qualified set in Q, D° and D' are indistin-
guishable in the sense that they contain the same matrices with the same

frequencies.

(b) If X contains a qualified set in @, the two collections V' t € {0,1}, of
1 x m wvectors obtained by OR-ing all rows of each q X m matriz in D*
are indistinguishable in the sense that they contain the same vectors with

the same frequencies.

Our definition changes the property of contrast, in which the revealed images
may be darker or lighter than backgrounds. We fix the threshold associated to
M € C° and adjust the threshold associated to M € C!. In defining security, 2(b)
deals with the case of non-monotonic access structures. We require that the ”stacked
shares” (the OR vector of the corresponding rows) reveal no information about the
image.

We shall use VCS; for a VCS based on Definition 2.2.1 and VCS, for a VCS based
on Definition 2.2.2. We give an example in Appendix to show that this definition may
reduce the pixel expansion rate. We can see that the secret image ”CRYPTOLOGY”
is either darker or lighter than the background. The basis matrices of our VC'S,

11



construction have m = 4 and a(m) = 1/4. However, by the previous definition, any

VC'S, for the access structure needs at least m = 12 and a(m) = 1/12.

2.3 Visual Cryptography Schemes with Reversing

With the extra reversing operation, we slightly modify the definition for VCS [1] to

meet the requirements of VCS with reversing as follows.

Definition 2.3.1. LetT' = (P, Q, F) be an access structure. Two collections (multisets)
C° and C' of n xm Boolean matrices constitute a (I', m)-VCS with reversing if there

exist a value a(m) > 0 and a set {(X,tx)}xeq satisfying:

1. Any qualified set X = {i1, i, ...,1,} € Q can recover the shared image by stack-
ing or reversing their transparencies. Formally, for any M € C°, w(M, X) <
tx — a(m) x m; whereas, for any M' € C*, w(M', X) > tx.

2. Any forbidden set X = {iy,is,...,i;} € F has no information on the shared
image. Formally, the two collections C*,t € {0,1}, of ¢ x m matrices obtained
by restricting each n X m mattiz in M & C* to rows iy,is, ...,i,, are indis-
tinguishable in the sense that they contain the same matrices with the same

frequencies.

2.4 Extended Visual Cryptography Schemes

We follow in the footsteps of the work of Ateniese et al. [2]. An (Uguar, I'rors, m)-
EVCS, with pixel expansion m, for an access structure (I'guar, ['rorp) on a set of
n participants, is similar to VCS except for every share must show some innocent
looking image. The quantities ar and ag measure the contrast of the reconstructed
image and the contrast of the shares respectively. We will refer to the color of a
white (black) pixel as a w pixel (b pixel). Let C’gl"'o”, where ¢, ¢y, ..., ¢, € {b,w},
be the collection of matrices from which the dealer chooses a matrix to encode, for
1=1,...,n, a ¢ pixel in the image associated to participants ¢ in order to obtain a ¢
pixel when the shares associated to a set X € I'g,q are stacked together. Therefore,
in order to implement an EVCS we must construct 2" pairs of such collections
(Ccren Cyrm), one for each possible combination of white and black pixels in the
n original images.

The conventional definition for EVCS consists of the following properties.
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Definition 2.4.1. [2] Let (I'guai, I'rors) be an access structure on a set of n par-
ticipants. A family of 2" pairs of collections (multisets) of n x m boolean matrices
(O CP ) Yerene by constitute a weak (I guar, I pory, m)-EVCS if there exist

values a(m) and {tx}xerg,., satisfying:

1. Any (qualified) set X € T'gyq can recover the shared image.
Formally, for any X € I'g,, and for any ci,...,c, € {b,w} the threshold ty
and the relative difference a(m) are such that for any M € C$“ we have
that w(Mx) < tx — a(m) x m; whereas, for any M € C;'~" it results that
w(Mx) > tx .

2. Any (forbidden) set X = {iy...i,} € I'porp has no information on the shared
image. Formally, for any ¢;,, ...,c;, € {b,w} the pair of collections Use1,.. np\x
Ucieqpwy Dy with ¢ = {b,w}, where D;""™ is obtained by restricting
each n x m matrix in C;""7" to rows iy, ...,4, , are indistinguishable in the

sense that they contain the same matrices with the same frequencies.

3. After the original innocent looking images are encoded they are still meaning-
ful, that is, any user will recognize the image on his transparency.
Formally, for any i € {1,.5n} and-any ¢y, -25¢i 1, Ciy1, .., Cn € {b,w}, it re-
sults that
min e, WM ) =>-max e v, w(M;)
C1eCie bl . .Cn

where Mb = Ucl7---702'717Ci+17---7(3n€{baw}cw

o C1...C;—1WCj41...CN
and M, = Ucl7---7Ci717Ci+17---7cne{bvw}cw :

The first property is called contrast. It ensures that the image can be seen
when the transparencies of a qualified set are stacked. The second property, called
security, ensures that nothing can be recovered when stacking the transparencies
of a set in I'pyrp. Finally, the third property called identification implies that after
encoding the n original innocent looking images by using the 2" pairs of collections
(CC1-+Cn, C’bcl“‘c”), where ¢, ..., ¢, € {b,w}, any user will recognize the image on his

share.

13



Chapter 3

Improvements on the Original

VCS

In this chapter, we studied properties and obtained bounds for visual cryptography
schemes based on the new definition. We proposed methods to construct visual cryp-
tography schemes based on the new definition. The experiments showed that visual
cryptography schemes based on our definition indeed have better pixel expansion in

average.

3.1 Properties of VCS5

In this section, we study properties about-VC'S, and show how to construct a VC'S,
from smaller VC'S,.
Since V' C'Sy is a generalization of VI@'S1,any VS, is a VC'S,.

Theorem 3.1.1. Let I' = (P, Q, F) be an access structure. Any (I',m)-VCS; is a
(F, m) —VCSQ.

Proof. This is trivial since V('S is a special case of VC9s. O

If basis matrices S and S! have a common column, we can delete it from S°

and S* to reduce pixel expansion.

Theorem 3.1.2 (Deletion). Let ' = (P, Q, F) be an access structure. If S° and S*
are basis matrices for a (I',m)-VCS,y, S and S™ are basis matrices for a (I';m —
k)-VCSy, where S and S™ are obtained from S° and S' by deleting the same k

columnes.

Proof. Assume that by, by, ..., b, are the columns deleted from S° and S!'. Let
B = bi[|bo|| -+ ||bg. For X € Q, w(S*, X) = w(S°, X) —w(B,X) =tx —w(B, X)
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and w(S", X) = w(SY, X) —w(B,X) > tx + m-a(m) —w(B,X) or w(S", X) =
w(SH, X)—w(B,X) <tx—m-a(m)—w(B, X). Let ty =tx—w(B,X), m' =m—k
and a(m’) = m - a(m)/m’. Then, S and S* meets the contrast requirement of
VC9S,.

For X € F, after deleting the same columns, S™ and S still meet the security
requirements of VCS,. Therefore, S and S’ are basis matrices for a (I, m/)-V CS,.

O

We can exchange the roles of S° and S! in a VCS,. Therefore, if we find a VC'S,

for an access structure, we have another one immediately.

Theorem 3.1.3 (Inverse). Let I' = (P,Q, F) be an access structure. If S° and S*
are basis matrices for a (I';m)-VCSy, S and S™ are basis matrices for a (I',m)-
VCS,, where S = S* and S = S°.

Proof. For each X € Q, we set t’y to be tx +m-a(m) if w(S', X) > tx +m-a(m)
and to be tx — m - a(m) if w(S', X) < tx —m - a(m). Then, for each X € Q,
w(S™", X) =w(S% X) <ty —m-a(m) or w(S", X)=w(S° X) >ty —m-alm).

The security requirements are not, affécted: by exchanging S° and S*. O

We can add a participant such that -is augmented.

Theorem 3.1.4. Let I' = (P, Q. F') be an access structure and v ¢ P. If there
exists a (I',m)-VCSy with basés,. thereveristsna (F',m)-VCSy with bases, where

I"=(PU{z},QuU{{z}}, F).
Proof. Without loss of generality, let z be the (n + 1)-th element in P U {z}. Let
S% and S! be the basis matrices for a (I',m)-VCS,. Tt is easy to see that

S0 St
0 __ n __

are basis matrices for a (I, m)-V CS,. O

Theorem 3.1.5. Let I' = (P,Q) be a complete access structure and v ¢ P. If
there exists a (I', m)-V CSy with bases, there exists a (I",m)-V CSy with bases, where

I"=(PU{z},QU{X U{z}[X € Q}).

Proof. Without loss of generality, let « be the (n+ 1)-th participant in PU{z}. Let
SY and S be the basis matrices for a (I', m)-VCS,. Tt is easy to see that

S0 St
0 1
o], =], %

are basis matrices for a (I, m)-V CS,. O
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Theorem 3.1.6. Let I' = (P,Q, F) be an access structure and x ¢ P. If there
exists a (I',m)-V CSy with bases, there exists a (I'',m + 1)-VCSy with bases, where
I"=(PU{z},QU{X U{z}|X C P}, F).

Proof. Without loss of generality, let z be the (n + 1)-th element in P U {z}. Let
S% and S! be the basis matrices for a (T, m)-VCS,. Let

0 0
so=| S L= 5 andatm 1) =1/ + 1)
1 - 10 1 - 11

For every X € Q' = QU{X U{z}|X C P}, if X € Q, we have w(S"°, X) = w(S°, X)
and w(S™, X) = w(S1, X). If r € X, we have w(S”, X) = m and w(S", X) = m+1,
where txy = m. Thus, S and S’ meet the contrast property. Since all forbidden
sets are in I, S° and S"! meet the security requirement. Therefore, S and S’ are
basis matrices for a (I'V, m + 1)-VC9S5. O

We can construct a VCS; for IV from a V' C'S; for I when I is obtained by adding

an additional participant x to I'" such thatsome sets containing x are forbidden.

Theorem 3.1.7. Let I' = (P, QyF) belan access structure and x ¢ P. If there
exists a (I',m)-VCSy with bases, ithere exists a-(IY, m)-VCSy with bases, where
I"=(PU{z},Q, FU{X U{z}|X € B}).

Proof. Without loss of generality, let.x be the (n.4 1)-th element in P U {z}. Let
SY and S* be the basis matrices for a (T',m)3V CS,. Tt is easy to see that

S0 St
0 1
ool =] %

are basis matrices for a (I, m)-V CS,. O

Corollary 3.1.1. LetT' = (P, Q, F) be an access structure and x ¢ P. If there exists
a (I',m)-VCSy with bases, there exist a (I",m)-VCSy with bases and a (I'';m)-
VCSy with bases, where I'' = (P U{z},Q, FU{{x}}), and I = (PU{z},Q, F).

We can concatenate the basis matrices of two V(CSy’s if their access structures

satisfy some conditions.

Theorem 3.1.8 (Composition). Let I'y = (P, Qq, F1) and T'y = (P, Qa, Fy) be two
access structures. Assume that Q1 N Qo = (. If there exist a (I'1,my)-VCSy with
bases and a (T'y, mo)-V C'Sy with bases, there exists a (I, my +ms)-V CSy with bases,
where I' = (P, Q1 U Q, F1 N Fy).
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Proof. Let S{ and S} be basis matrices for a (I'y,m;)-VCS; and S§ and S be basis
matrices for a (I'y,ma)-VCS;. We show that S° = S9||SY and S' = S}|]S3 with
m = myi+ms and a(m) = min{my -a(my), my-a(ms)}/(my,+my) are basis matrices
for a (I', m)-VCS,.

Let Q=Q1UQq and F = F1 N F,. For X € Q, if X € Q; N Fy, we have

w(S%, X) —w(S", X)| = [w(S}, X) +w(Sy, X) — w(S), X) —w(Sy, X))
> |w (S, X) —w(Sy, X))

>m - a(m);
if X € F1 NQ-, we have

(8%, X) —w(S, X)| = [w(SY, X) + w(S3, X) — w(S}, X) — w(Sy, X))
> |w(S3, X) — w(Sy, X))

>m - a(m).

Thus, S° and S! meet the contrast requirement.

For X € F, since X € F| N F;, the,matrix obtained by restricting S* to rows
of X is that obtained by restricting 5% and S%%6-rows of X, t € {0,1}. Since S?
and S} (S9 and S3) meet the séeurity réquirement, S° and S' meet the security

requirement. ]

Even if the participant sets are not<the same, we can modify the basis matrices

a bit and concatenate them.

Corollary 3.1.2. Let I'y = (P, Q1, F1) and T'y = (P, Q2, F») be two access struc-
tures. Assume that Q1 N Qy = (0. If there exist a (T'y,m1)-VCSy with bases and
a (g, mq)-VCSy with bases, there exists a (I',my + mg)-VCSy with bases, where
=(PUPQ1UQy FINF,).

Proof. By Theorem 3.1.7, we can construct basis matrices for (I}, m;)-VCSy and
(I, m2)-VCSy, where I} = (Py U Py, Q1, F1) and T, = (P; U P, Qo, F»). Then, by
Theorem 3.1.8, we concatenate the basis matrices of (I}, m1)-VCSs and (I, my)-
VCSs. O

3.2 Some Results

We now present some results that are useful for constructing V' C'S; for general access

structures.
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3.2.1 Optimal VCS, for (n,n)-Threshold Access structure

Let S° be the n x 27! matrix whose columns are those that have exactly an even
number of 1’s and S* be the n x 277! matrix whose columns are those that have
exactly an odd number of 1’s. Then, S° and S! are the optimal basis matrices for
a VCS; for the (n,n)-threshold access structure. This construction is optimal for
V(CS,, too, that is, any VCSy with bases must have n x m basis matrices with
m > 2" and a(m) < 1/2"1

Theorem 3.2.1. [20] Any VCSy with bases for the (n,n)-threshold access structure
must have m > 2" and a(m) < 1/2"71.

3.2.2 (Q with a Single Qualified Set

Let I' = (P,Q) be a complete access structure such that () contains a single set
X = {iy,4q,...,i,} only. We construct n x 277! matrices S° and S* for a (T, 2¢71)-
VS, from a V'S, for the (g, g)-threshold access structure.

Theorem 3.2.2. Let I' = (P, {X}) be a complete access structure with X =
{i1,49,...,i4}. There exist basis matrices forw (I',2771)-VCS,.

Proof. Let Px be the set of participantsin X. "= (Px,{X}) is a (¢, ¢)-threshold
access structure. Let S0 and S" beithe optimal basis matrices for a (I, 2771)-VCS,,
as shown in Section 3.2.1. By FPheorem™3.1.7,-we add the participants of P — Py
to the participant set one by onevand get n x 2% Y basis matrices S and S* for a
(T',2971)-V CSy, where the i;th row of §%i8 the jth row of S, 1 < j < ¢, and all
other rows are 1’s, t € {0, 1}. O

3.2.3 The Cumulative Array Method

We review the cumulative array method that constructs a VCS; for a complete
monotonic access structure I' = (P, @) [1, 24]. Assume that P = {1,2,...,n}. We

define Zy;r to be the collection of the maximal forbidden sets in F' = 2 — Q, i.e.,
Zyr ={B € FIBU{i} € Q for all i € P\B}.
Assume that Zyp = {21, 29,..., 2m}. We define the n x m Boolean matrix
CAyz,,» = @i jlnxm, where a; ; = 0 if and only if participant ¢ € z;.

Let A; = {jlai; = 1,1 < j <m}, 1 <i <n. Let S and S" be the optimal
m x 2™~1 basis matrices for a VCS; of the (m, m)-threshold access structure. Then,

S and S! constitute basis matrices for a VCS; for I', where
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the ith row of S* is OR(S", A;),

for 1 <i<mnandte{0,1}.

3.2.4 An Upper Bound for 2-out-n Access Structure

We now give an upper bound for pixel expansion of any VCS, for the special 2-
out-n access structures. I' = (P, Q) is the 2-out-n access structure if |P| = n and
Q ={X CP:|X| =2} Wepresent a VCS,; with bases for the 2-out-n access

structure.

Theorem 3.2.3. There is a VCSy with pizel expansion m(n) and contrast 1/m(n)

for the 2-out-n access structure such that

(n—1)(n+3)  p. -
m(n) = {74 if n is odd

n(n+2) . .
- if n is even

Proof. Let b; ; be the n-dimensional column vector whose ith and jth entries are
0 and all other entries are 1, 1 < i < j < n. Let ¢; be the n-dimensional column
vector whose ith entry is 0 and all other entries are 1. Let 1 be the n-dimensional
vector of all entries being 1.

For the case n = 2m + 1, we let S contain all b; ;’s with i + j=odd and S*
contain all b; ;’s with ¢ + j=even, Furthermore, we add 2 copies of ¢; to S* for even
i, 1 <i<n,and m copies of 1 t6-8°.~Eor example, the following are basis matrices

of a VC'S, for the 2-out-5 access structure:

00111111 00111111
01001111 11010011
S0 = |11010111 |, S' = |01101111
10110011 11011100
11101011 10101111

There are m? + 2m, which is (n — 1)(n + 3) /4, columns in S° and S*.

We now consider the contrast and security properties of this construction. Since
there is only one b; ; column in either S° or S*, for any two participants i and j, we
have |w(S°, {i,7}) —w(S*, {i,5})| = 1. For any X containing 3 or more participants
i1,09, ..., 0, k > 3, we have w(S°, {iy,1a,...,1x}) = w(SY, {i1,d,...,9x}) = m(n)
since each column has at most two 0’s. For any X containing only one participant
i, row i of SY contains m 0’s if 7 is odd and m + 1 0’s if 4 is even. This holds for S*
also. Therefore, any single participant computes absolutely no information about

the secret from his share.
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For the case n = 2m, we let S° contain all b; ;’s with 7 + j=odd and S* contain
all b; ;’s with i + j=even. Furthermore, we add a copy of ¢; to S*, 1 <i < n, and m
copies of T to S°. For example, the following are basis matrices of a VCS, for the

2-out-4 access structure:

001111 010111
g0 010111 gl 101011
110011~ 101101
101011 011110

There are m? + m, which is n(n + 2)/4, columns in S° and S*.
We can discuss the contrast and security properties for this construction similarly.

This completes the proof. O

Droste’s V 'Sy construction for the 2-out-n access structure has the pixel expan-
sionm = Cy->"" [ (2°-C") [9]. By the cumulative array method, the VC'S; construc-
tion for the 2-out-n access structure has pixel expansion m = 2 - C§. We are aware
that there are (2,n)-threshold VCS; that have pixel expansion m = 2[logn]| [1].
However, the 2-out-n access structure is different from the (2, n)-threshold access
structure. The later one allows more than:two participants to reveal the secret,

while the former one does not.

3.3 Partition of Access Structures
For a given access structure I' = (P;@, F'), we can‘decompose it into smaller access
structures I'y = (P, Q1, F1), [y = (P, Q2,'F5), V1. T = (P, Q, F}) such that

L QrUQU---UQ =0

2.QiNQ;=0for 1 <i#j<k

3. iNF,N---NF,=F.

We call such decomposition as a partition of I'. By generalizing Theorem 3.1.8,
we can concatenate the smaller basis matrices for (I';, m;)-VCSy’s to form basis
matrices for a (I, m)-VCS,.

Theorem 3.3.1 (Partition). Let 'y, Ty, ..., [y be a partition of the access struc-
ture T.  Assume that S? and S} are basis matrices for a (I';,;m;)-VCSy. Then,
SOUSY|-- - 1159 and S}|S3||---||SE are basis matrices for a (T, Y5 m;)-VCS,.

Proof. This is proved by induction on k, & > 2. The induction basis holds by
Theorem 3.1.8. The induction step follows easily. U
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3.3.1 An Upper Bound for General Access Structures

By the results in Theorems 3.2.2 and 3.3.1, we give an upper bound on pixel expan-

sion for any access structure.

Theorem 3.3.2. Let I' = (P,Q, F') be an access structure. There exists a (I';m)-
VS, with bases, where m =37 o 2171,

Proof. Let Q be {X;,Xs,..., X;} and I' = (P,Q). Since any (I',m)-VCS, is
a (I",;m)-VCS,, we consider only IV = (P,Q). We partition IV = (P,Q) into
(P,{X1}), (P, {X2}),...,(P,{X}}). ForeachT; = (P, {X;}), we construct nx2X:=1
basis matrices for a VS, of Ty, Since 2 — Q = Y, 2P — {X,}, by Theorem 3.3.1

we concatenate these basis matrices to get basis matrices for a (I'V, m)-V CS,, where
m =% 2lXil-L, O

3.4 VCS,; Construction for General Access Struc-
ture

We present two methods of constructing basis matrices for a VCSy of an arbitrary
access structure. Without loss of generality, we consider a complete access structure
I'=(P,Q), where P ={1,2,...:n}is the set'of participants. In case that the input
access structure is not complete, we add the *don’t' care” participant sets into F

and form a complete access structure.

3.4.1 Top-Down Approach

The idea of our first construction is to partition () into maximal monotonic subsets
Qi, 1 <1i <k, and use the methods in Sections 3.2.2 and 3.2.3 to construct the basis
matrices for these access structures (P, @;). Then, by Theorem 3.3.1, we concatenate
these basis matrices for a (I', m)-VCSs.

Our algorithm Al is in Figure 3.1. We first pick a qualified set X with a maximum
number of participants and incorporate as many qualified sets under X as possible.
That is, for each picked X, we find the maximum monotonic collection Zspq of

qualified sets under X:

= {X'|X'€Q, thereisno Y € 2" — Q such that X' C Y C X}.
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Input: I' = (P, Q), where F' =2F — Q.

1. ifQ =0, return S° = 0,,; and S* = 0,,,1;

2. A—Q;1+0;

3.  while A # () do

4. 1— i+ 1;

5. let X; be the maximum set in A; (break tie randomly)
7 A—A—-7;

8. k<«

9. construct basis matrices S? and S} for T'; = (Px,, Z;)

and extend them to T and T} for ', = (P, Z;), 1 <i < k;
10. return S° = TP||TP|| - - - ||T? and S* = TH|TH] - - || T}

Figure 3.1: Al: Partition () and find basis matrices.

Let I't = (Px, Zumo(X,Q)). Note that by our definition, I'y is monotonic. We
then subtract Zypo(X, @) from @ and continue to find I'y, and so on. This process
does not stop until () becomes empty.

We give an example to illustrate this partitien. Let P = {1,2,3,4,5}, @ =
{{1,3}, {2,3}, {3,4}, {4,5}, {82, 8L1{1, 83,45} {2,3,4,5}, {1,2,3,4,5}} and
F = 2P — Q. First, we choose the maximur set Xi = {1,2,3,4,5} and set Z; =
Zumo(X1, Q) = {{1,3,4,5}, {2:3, 405}, {1523, 4,5} }. Therefore, I'y = (Px,, Z1).
Then, we subtract Z; from Q. @ becomes {{1,3},6{2,3},{3,4},{4,5},{1,2,3}}.
We select Xy = {1,2,3} and set Zy ="Zynq(Xe, Q) = {{1,3},{2,3},{1,2,3}}.
Therefore, I'y = (Px,, Z2). This process continues and we get I's = (Px,, Z3) and
'y = (Px,, Zy), where X3 = {3,4}, Xy, = {4,5}, Z3 = {{3,4}} and Z, = {{4,5}}.

After finding a partition I';, 1 < ¢ < k, of I, we construct a VCS, for each
Iy = (Px,,Z;). If Z; contains only a single qualified set X;, we use the method
in Section 3.2.2 to construct basis matrices SY and S} for a (T';, m;)-V 'Sy, where
m; = 21%l=1 If Z, contains two or more qualified sets, we use the cumulative
method in Section 3.2.3 to construct S? and S} for a (T';,m;)-VCS,, where m; is
the parameter implied by the cumulative method. By Theorem 3.1.7, we extend S?
and S} to basis matrices T and T} for a (I}, m;)-V CSy, where I, = (P, Z;). Note
that I'; and I}, differ on the participant set.
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We continue the example and compute

[00010111] [00010111] [10] [10]
00010111 00010111 10 10
0 = |00101011|, 7} = |00101011|, T3 = 10|, Ty = |01},

01001101 01001101 11 11
01110001 10001110 11 11

11 11 11 117

11 11 11 11

)= |10, T4y= 10|, TQ=|11|, and Tj = |11

10 01 10 10

11 11 10 01

By concatenating these basis matrices, we get basis matrices S and S* for a (T, m)-
VCSy with m = 14, a(m) = 1/14,

00010111101111 00010111101111
00010111101111 00010111101111
S% = [00101011101011 and S'= [00101011011011
01001101111010 01001101110110
01110001111110 10001110111101

If we use Droste’s method [9] directly to comstruct basis matrices for a (I', m)-
VS, we get m = 44 and «(m) = 1/44. In/the next section, we apply the techniques
implied in Theorems 3.1.2 and-3.1.3 to improve this m and «a(m) to 6 and 1/6,
respectively.

We now show correctness of our. construction:

Theorem 3.4.1. The algorithm A1 in Figure 3.1 outputs basis matrices for a (I';m)-
VCS,.

Proof. We only have to show that I}, T%, ..., I"} form a partition of I' = (P, Q)) and
T? and T} are the basis matrices for a (I}, m)-V(CS,. The later one holds by the
constructions in Sections 3.2.2 and 3.2.3. For the former one, by the definition of
Zumo(X,Q), I'i = (Px, Zyumo(X, Q) is a complete access structure over Pyx. By
the algorithm, the next I';;; is computed from @', where Q' = Q — Zyno(X, Q).

Therefore, I}, 1 <1i < k, form a partition for I'. O

3.4.2 Further Improvement

By Theorem 3.1.3, if S° and S! are basis matrices for a (I', m)-V Sy, S and S™ are
also basis matrices for a (I, m)-VCS,, where S = S! and S = S°. In Step 9 of Al
in Figure 3.1, for each '}, we actually have two VC'Sy’s with bases: one is (77, T})

7
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and the other is (T7°,T/'), where T/° = T} and T* = T?. Therefore, we have 2*

(2

(I',m)-VCSy’s in total. By searching among these schemes and removing redundant
columns, we can find a VCS; with better contrast. For example, continuing the

example of the previous section, we let

00010111101111
00010111101111
SO = TH| T3 || T = |00101011101011
01001101110110
10001110111110

and
00010111101111

00010111101111
St =TTy ||| T = |00101011011011
01001101111010
01110001111101

By Theorem 3.1.2, we delete equal columns from S° and S! and get

000111 001011
000111 001011
S0 = 1001010 |, and 8%t = |010100] ,
010001 000110
100011 011001

which have m = 6 and a(m) = L/6.

Lemma 3.4.1. Any S° = T1||F2|| >+ ||T* and/S' = T!||T2||--- ||T,§’c are basis
matrices for a (I',m)-VCS,y, where ;1€ 4051} and t; is the complement of t;, 1 <
1 < k.

Proof. By Theorem 3.1.3, (T2, T}) and (T}, T?) are both basis matrix pair for a
(I, m;)-VCSy, 1 < i < k. By Theorem 3.3.1 for composition of a partition, this
lemma holds. 0

Though to find S° and S! with minimal pixel expansion among the 2% V(S5’s
is NP-complete, we provide a dynamic programming-type heuristic method to find
a reasonable one.

We assume a canonical order by, by, - -, byn for n-dimensional Boolean vectors.
Let fI = (iy,49,...,i2:) be the column spectrum of T}, t € {0,1},1 < ¢ < k, such
that ¢; is the number of b; in columns of T}. For example, if

000011

TP = [010001] ,
010001
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Input: 70, T4 1 < i < k;

1. compute f? and f!, 1 <i<Fk;

2. forz=0tok—1do

3 fori=1tok—zdo

4. compute m(i,i + z) and record t;, i <1 < i+ z;

5. let t;,1 <1 <k, be the indices by which m(1, k) is computed;
6. return SO = T{M||T2*||---||T}* and S* = T{*||T2|| - - - || T}

Figure 3.2: Search a V'S, with better pixel expansion.

then f? = (3,1,0,0,0,0,1,1) is its column spectrum, where b; = [0 0 0]7, by =
[1 0 0], etc. For a spectrum f = (iy,is,...,im), let |f| = 2311 |i;]. Let m(i, j)
denote the differential column spectrum between

. t; t; T t; i
Sty =TT - 175 and S;; = TP\ T - |17

for some t; € {0,1},7 <1 < j, where m(i, j) is defined recursively as follows:

i) 2= ft ifi=7
m(i,j) =
" min;<;<; {m (i, )+ ml L 7)m(s,l) —m(l+1,7)} ifi>j,

where min{vy, vo,...,v,} = v; df |v;] | < Ayj| for all-j, 1 < j < r (we break tie
randomly). That is, m(i, j) is the differencelof the column spectrums of S?; and
St;. We can see that the smaller [mifé;j)| isythe smaller the pixel expansion Sp;
and S}, have after deleting equal columns. Our goal is to find smaller [m(1, k)|.
The search algorithm is shown in Figure 3.2. During computing m(i,7 + z), we keep

track the choice of ¢;, 7 <1 < i+ z, in order to compute the indices for m(1, k).

3.4.3 Bottom-Up Approach

Our second method uses the bottom-up approach. For a qualified set X € @), we
define the collection of the qualified sets Y that contain X such that all sets between
X and Y are qualified:

M(X,Q)={Y|XCVY, forall X' CY — X, X UX € Q}.

M (X, Q) is not empty since X € M(X,Q). Forany Y € M(X,Q), let B(X,Y) =
(XX C X' CY).
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Input: I' = (P, Q), where F' =2F — Q.

1. ifQ =0, return S° = 0,,; and S* = 0,,,1;

2. A—Q;1+0;

3.  while A # () do

4. 1— i+ 1;

5. let X; be the minimum set in A; (break tie randomly)

6 let Y; be the maximum set in M (X;, A); (break tie randomly)
T Ae— A-Q(X,,Y);

8. k<«

9. construct basis matrices S? and S} for T'; = (P, Q(X;,Y:)),

as shown in Lemma 3.4.2;

10. return S° = SY||SY||---||SY and S' = S}||S4]|---||S}.

Figure 3.3: A2: Bottom-up partition () and find basis matrices.

Lemma 3.4.2. IV = (P, B(X,Y)) have a VCSy with n x 2XI=1 basis matrices S°
and S*, where the rows of S° (S) for X is the S (S™) of the optimal (| X/, |X])-
VCSy, the rows of S° (SY) for Y — X are all 0 and the rows of S° (S1) for P —Y

are all 1.

Proof. By Theorem 3.1.5, we extend T =Py, {X}) to I'" = (Py,B(X,Y)) and
by Theorem 3.1.7, we extend I' = (Py, B{X,Y)) to: ' = (P, B(X,Y)). The basis

matrices SY and S! are constructed acecordingly. O

For example, for I' = ({1,2,3,4},{{2,3},{1,2,3},{2,4}}) and X = {2,3},
M(X)={{1,2,3}} and I'" = ({1, 2,3,4},{{2, 3}, {1, 2,3}}) has a VCS, with

00 00
01 10

0 _ 1
SY = 01 and S* = 01
11 11

The algorithm A2 based on bottom-up partition is shown in Figure 3.3. We
reduce the pixel expansion by applying the algorithm in Figure 3.2.

3.5 Experiments and Comparison

We compare the results of our two methods on random access structures with those
of the Droste’s method, which is the most efficient method of constructing V' C'S; for
arbitrary access structures. The experimental results show that our V' (C'Sy’s indeed

have better pixel expansion (contrast) in average.
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We implement A1, A2 and the Droste’s method for arbitrary access structures.
The columns of the basis matrices produced by Al and A2 are reduced by the
search algorithm in Figure 3.2. We also remove redundant columns in basis matrices
produced by the Droste’s method. For a particular number of participants, we run
these algorithms on a number of randomly chosen access structures. The results
are shown in Tables 3.1, 3.2 and 3.3. In Table 3.1, we randomly choose access
structures with |@Q| = 2"~!. In Table 3.2, we randomly choose access structures with
|@Q| = 2" /3. For both cases, the average pixel expansion of our V' CS; for a random
access structure is only one half of that of the VCS produced by the Droste’s method.
In Table 3.3 for monotonic access structures, the Al algorithm takes the whole @) as
a partition and produces the same result as that of the Droste’s method. But, the
A2 algorithm produces VCS; with much better pixel expansion. Table 3.4 shows

two access structures that have better pixel expansion based on our definition.

the number n | the number of | average pixel expansion m
of participants random I’ Al | A2 | Droste’s

3 50 2.1 | 2.0 2.8

4 100 3.9 | 4.2 6.6

5 150 8.24. 8.8 15.9

6 200 17.2 [118.5 38.8

7 300 39.0 § 41.1 93.9

8 400 87.6" 92.1 224.4

250.0 )

200.0

150.0 /| [

m —— A2

100.0 // —@— Droste's
50.0
0.0 ‘ n

Table 3.1: Comparison of three methods with |Q| =~ 2"~ 1.
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the number n | the number of | average pixel expansion m
of participants random I’ Al ‘ A2 ‘ Droste’s

3 50 1.9 | 2.0 2.6

4 100 3.8 | 4.0 6.1

5 150 82 | 87 15.7

6 200 17.2 | 18.9 38.5

7 300 38.5 | 41.9 93.3

8 400 88.2 | 101.9 230.1

250.0

200.0 )

150.0 / Al
m —— A2
100.0 —@— Droste's
50.0

0.0 n

Table 3.2: Comparison of three methods with |Q| = 2" /3.

the number n | the number of |“average pixel expansion m
of participants random T° Al ‘ A2 ‘ Droste’s
3 50 20420 2.0
4 100 471 3.9 4.1
5 150 10.0 | 7.8 10.0
6 200 25.1 | 15.5 25.1
7 300 64.4 | 31.7 64.4
8 400 187.3 | 73.5 187.3
200.0
150.0 /
——Al
m 100.0 —— A2
/ /. —@— Droste's
50.0
00 B 4.-—.4&./ n

Table 3.3: Comparison of three methods with monotonic I'.
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P—11,23],
Q= ({1}7 {27 3}7 {17 273})7 F=2F— Q

01 00

Our VC9, SO =101, S*= |10
01 01
000 001
Droste’s VC'S S0 = (101, St = |011
101 101

P={1,2:3,4}, F =2 —Q
Q= ({1,2541,3}, {2, 3},42,4},{1,3,4},{1,2,3,4})

0oLl 0011
Our VCS, _ 2 Sl e
0011 0101

O1TT1100011101 T0T11110100011

0110100010101 0110011000101

Droste’s VCS

11101101110001
11111001000111

11111100010110
11011001001111

Table 3.4: Two examples of comparing our methods with Droste’s.
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Chapter 4

Cheating Prevention in VC

In this chapter we studied the cheating problem in VC and extended VC. We con-
sidered the attacks of malicious adversaries who may deviate from the scheme in any
way. We presented three cheating methods and applied them on attacking existent
VC or EVC schemes. We improved one cheat-preventing scheme. We proposed a
generic method that converts a VCS to another VCS that has the property of cheat-
ing prevention. The overhead of the conversion is near optimal in both contrast

degression and pixel expansion.

4.1 Cheating in VC

There are two types of cheaters irour s€¢emariorOne is a malicious participant (MP)
who is also a legitimate participantynamely, MP. € P, and the other is a malicious
outsider (MO), where MO ¢ P. In this paper, we show that not only an MP can
cheat, but also an MO can cheat under some circumstances.

A cheating process against a VCS consists of the following two phases.
1. Fake share construction phase: the cheater generates the fake shares.

2. Image reconstruction phase: the fake image appears on the stacking of genuine

shares and fake shares.

In order to cheat successfully, honest participants who present their shares for
recovering the secret image should not be able to distinguish fake shares from gen-
uine shares. A reconstructed image is perfect black if the subpixels associated to a
black pixel of the secret image are all black. Most proposed VC schemes have the
property of perfect blackness. For example, the reconstructed secret images S in

Example 2.2.1 are all perfect black.

30



St + Se © S1+FS St + So+ FS

Figure 4.1: An example of cheating a (2,2)-VCS.

We only consider to cheat the participants who together do not constitute a
qualified set. Since all participants together in a qualified set can recover the real

secret image in perfect blackness already, it is not possible to cheat them.

Example 4.1.1. Figure 4.1 shows how to cheat participants in a (2,2)-VCS. Since
S1+ F'S reveals the fake image F1, Participant 1(Py for short, hereafter) is cheated
to believe that the secret image is FI. Although S1+ Ss + F'S successfully reveals the
fake image, the real secret image S alsowappears on S+ So+ F'.S due to the property
of perfect blackness for secret images. Thesparticipants of a qualified set, (1,2) in

this example, cannot be cheated.

A successful cheat against a VCSpis“defined as follows. By the general practice
for security analysis, the cheater is'required to sudeeed with a significant probability

only.

Definition 4.1.1. For a (I',m)-VCS with basis matrices S° and S*, an MP or an
MO cheats successfully if it finds a fake image and generates fake shares satisfying
the following:

1. For'Y = {iy,ia,...,1,} & Q, the stacking of their shares and the fake shares

reveals the fake image. If the cheater is an MP, some i; is the cheater, 1 <

J<q.

2. The fake shares cannot be distinguished from the genuine shares. Formally,
for each fake share FS, there is a share S; such that the subpizels of F'S are
tdentically distributed as those of S;.

31



Input: share S;. (Wlog, we assume that the cheater is P;)

Fake share construction phase:

Assume that each pixel of S; has = black and y white subpixels.
Then, P, chooses a fake image and prepares 7 = [2] —1 fake shares
FS,FS,, ..., FS, as follows:

1. For each white pixel of the fake image, copy the corresponding
subpixels of the pixel in S; to each fake share.

2. For each black pixel of the fake image, randomly assign x
black and y white subpixels to each fake share such that the
pixel in the stacking of these fake shares and S, is perfect
black.

Image reconstruction phase (the fake image):

Let Y = {1,iy,i2,...,%,} be a set of participants. If Y ¢ @,
the stacking of genuine shares S1,S;,, Si,,...,S;, and fake shares
FSy, FS,, ..., FS, shall reveal the fake image.

Figure 4.2: Cheating method CA-1, initiated by an MP.

4.2 Three Cheating Meéthods

Our first cheating method is initiated by an M P, .while the second cheating method
is initiated by an MO. Both of them applies to attack VC. Our third cheating
method is initiated by an MP and appliesitoiattack EVC.

4.2.1 Cheating a VCS by an " MP

The cheating method CA-1, depicted in Figure 4.2, applies to attack any VCS.
Without loss of generality, we assume that P; is the cheater. Since the cheater is an
MP, he uses his genuine share as a template to construct a set of fake shares which
are indistinguishable from its genuine share. The stacking of these fake shares and S
reveals the fake image of perfect blackness. We see that, for Y = {1,41,40,...,0,} ¢
@ the stacking of their shares reveals no images. Thus, the stacking of their shares

and the fake shares reveals the fake image due to perfect blackness of the fake image.

Example 4.2.1. Figure 4.3 shows how to cheat the participants in a (4,4)-VCS.
There are four shares Sy, So, S and Sy in the (4,4)-VCS. Py is assumed to be the
MP. By CA-1, one fake share F'Sy is generated. SinceY = (1,3,4) (or (1,2)) ¢ Q,
we see that S1+ FS1+ S5+ Sy (or S;+ FS1 4+ Sy) reveals the fake image FI. Thus,
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FS S1+FS+$; S1+F8+5;+S, Si+ $+S:+5;

Figure 4.3: An example of cheating a (4,4)-VCS by an MP.

P3 and Py (or Py) are cheated to believe that F1 is the secret image.

For some prominent (n,n)- and (k,n)-VCS’s [5, 6, 20], the numbers of black and
white subpixels in a pixel are almost equal. The cheater needs only r = [2] -1 = 1

fake share to cheat successfully.
Theorem 4.2.1. The MP in CA-1 successfully cheats any VCS.

Proof. Contrast. Let S° and S* beythe basis matrices of a VCS and the pixel
expansion is m. For, Y = {1,igts, i} & Qiaw(S%Y) = w(S',Y). By the
construction of CA-1, for a white pixel of the fake:image, the weight of the OR-
vector of OR(SY,Y") and the fake shares isequal to w(S° Y) =ty —a(m) x m < m.
For a black pixel of the fake image; the weight of the OR-vector of OR(S',Y) and
the fake shares is equal to m. Thus, the econtrast property is satisfied and the fake
image appears.

Indistinguishability. The fake shares are generated according to S;. Each pixel
in the fake shares has the same number of white and black subpixels as those in 5.
Also, those subpixels are randomly distributed for each fake share. Thus, the fake

shares are indistinguishable from S;. O

4.2.2 Cheating a VCS by an MO

Our second cheating method CA-2, depicted in Figure 4.4, demonstrates that an
MO can cheat even without any genuine share at hand. The idea is as follows. We
use the optimal (2,2)-VCS to construct the fake shares for the fake image. Then,
we tune the size of fake shares so that they can be stacked with genuine shares.
Now, the only problem is to have the right share size for the fake shares. Our

solution is to try all possible share sizes. In case that the MO gets one genuine
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Input: none.
Fake share construction phase:
The MO chooses a fake image and does the following:

1. Encode the fake image into two fake shares F'S; and F'Sy with
the optimal (2,2)-VCS.

2. Generate enough pairs of fake shares F'S;; and F'Sy; with
various sizes and subpixel distributions, 1 <+¢ < r for some 7.

Image reconstruction phase (the fake image):

Let Y = {i1,42,...,7q} ¢ Q. The stacking of S;,,S;,,...,95;, and
two fake shares ['S) . and F'S; . shows the fake image for some c,
1<e<r.

Figure 4.4: Cheating method CA-2, initiated by an MO.

share, there will be no such problem. It may seem difficult to have fake shares of the
same size as that of the genuine shares. We give a reason to show the possibility.
The shares of a VCS are usually printed in transparencies. We assume that this is
done by a standard printer or copier which dceepts only a few standard sizes, such
as A4, A3, etc. Therefore, the size of genuine-shares is a fraction, such as 1/4, of a
standard size. We can simply have the fake ishares'of these sizes. Furthermore, it was
suggested to have a solid frame to align shares [20] in order to solve the alignment
problem during the image reconStruction phase. Fhe MO can simply choose the
size of the solid frame for the fake shares. Therefore, it is possible for the MO to
have the right size for the fake shares.

Example 4.2.2. Figure 4.5 shows that an MO cheats a (4,4)-VCS. The four gen-
wine shares Si, Ss, S3, and Sy are those in Figure 4.3 and the two fake shares are
F'Sy and FSy. For clarity, we put Sy here to demonstrate that the fake shares are
indistinguishable from the genuine shares. We see that the stacking of fewer than

four genuine shares and two fake shares shows the fake image FI.

Theorem 4.2.2. The MO in CA-2 successfully cheats a VCS if the right share

size 1s obtained.

Proof. Contrast. For Y = {i1,12,...,iq} ¢ Q, let Zy = S;; + S;, +---+ S;,. Since
FS; and F'S; are two shares of the optimal (2,2)-VCS, py(F'S; + FS3) = 1 and
Puw(FS1+ FS3) = 1/2. By CA-2, the distribution of subpixels of the genuine shares
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FS1 FS2

1+ 2+F1+Sz S1+ 2+3+ 4

Figure 4.5: An example of cheating a (4,4)-VCS by an MO.

are random and independent of that of the fake shares. For the white pixel in

Zy + F'S1 + FSs, we have, with high probability,
Pw(Zy + FS1+ FSy) =1—(1—pu(Zy))(1—1/2) =1/2+ p,(Zy)/2 < 1.

Also, due to the perfect black property in recovering the fake image, we have p,(Zy +
FS; + FSy) = 1. Thus, the contrast property in Zy + F'S; + F'S, is satisfied and
the fake image appears.

Indistinguishability. We assumesthat the sizeéof F'S; . and F'Sy . is correct. By
the construction of CA-2; the fake shares .are indistinguishable from the genuine

ones. O

4.2.3 Cheating an EVCS by an MP

In the definition of VC, it only requires the contrast be non-zero. Nevertheless,
we observe that if the contrast is too small, it is hard to ”"see” the image. Based
upon this observation, we demonstrate the third cheating method CA-3, depicted
in Figure 4.6, against an EVCS. The idea of CA-3 is to use the fake shares to reduce
the contrast between the share images and the background. Simultaneously, the fake
image in the stacking of fake shares has enough contrast against the background since
the fake image is recovered in perfect blackness.

Let € be the threshold for contrast that human eyes distinguish the image from
the background. The value € varies for different sizes, contrasts and types of share
images. We do some experiments to obtain € empirically. We consider four types of
pictures (in Figure 4.7) with four different sizes (Z; : 200 x 100 pixels, Z5 : 200 x 200
pixels, Z3 : 400 x 200 pixels, and Z, : 400 x 400 pixels) and four different contrasts
(1/4,1/9, 1/16, and 1/25). The values (em) in Table 4.1 represent the number of

black subpixels which we should add for each pixel of the fake shares in order to

35



Input: share S;. (Wlog, we assume that the cheater is P;.)
Fake share construction phase:
P, chooses a fake image and does the following:

1. Create S}, which is S, but without the share image. The
share image of S; is removed by changing d black subpixels
into white subpixels in each black pixel, where d is the differ-
ence between the numbers of black subpixels of a black and
a white pixel.

2. Create r = [Z] — 1 temporary,fake shares F'Sj, 1 <i <r, by
using S| according toyCA-1.

3. Randomly change=~d white subpixels'into black subpixels of
each pixel of the share image in F'S], < i <r.

4. Construct F'S; by. randomly adding em black subpixels
(changing from white subpixels) toeach pixel in F'S!, 1 <
1 < r. The threshold value em, like those in Table 4.1, is
obtained by experiments.

Image reconstruction phase (the fake image):
Same as in CA-1.

Figure 4.6: Cheating method CA-3 against an EVCS.
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Cheating test
in EVCS

@ b © @

Figure 4.7: Four different types of pictures.

(a) (b) () (d)

contrast | Z1 Zdo L3 Ly | L1 Loy dg Ly | 2Ly Zdoy L3 Ly | L1 Loy L3 2y

1/4 120 22 23 24|10 13 16 19|15 20 22 24|15 17 18 21

1/9 (17 21 21 23 T 8 14 17|14 20 21 22|13 16 17 19

/16| 5 7 5 7 2 2 2 3| 2 4 6 9| 4 4 3 6

/25 4 6 4 6| 1 1 1 2 13 5 8| 2 2 1 4

Table 4.1: The number of added black subpixels for the pictures in Figure 4.7 with
different sizes and contrasts.

reduce the contrast between the background and the share images to be fewer than
€. The larger the size and contrast of the image are, the more black subpixels we
need to add to the fake shares. Most EVCS’s don’t have a large contrast, we can
easily cheat them by adding a smalltsnumber of black subpixels to the pixels of the

share images in the fake shares.

Example 4.2.3. Figure 4.8 shows the results of cheating a (I',m)-EVCS, where
P =A{1, 2, 3}, and Q = {(1,2), (2,3), {1,2;3}}. In'this example, Py is the cheater
who constructs a fake share F'Sy withyshare image B in substitute for Py to cheat
Ps. S1 + FSy + S3 reveals the fake image FI1.

Theorem 4.2.3. The MP in CA-3 successfully cheats an EVCS by producing fake

shares with meaningful share images if the € is correct.

Proof. By Step 3 in CA-3, the share image appears on the fake share.

Contrast. Since the fake shares are constructed by the same way of CA-1,
the recovered fake image in perfect blackness appears on the stacking of shares.
Furthermore, the share images of the fake shares are invisible since we have added
an enough number of black subpixels to blur them.

Indistinguishability. The proof is the same as that of Theorem 4.2.1 except that
we have to show that honest participants cannot identify fake shares. Since share
images are used for identification, honest participants will not know the exact shapes

of share images. They care only about the content of share images. Therefore, the
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FS2 S1+S2 S1+Ss

S2+Ss3 S1+S2+S3 FS2+S1+ S3

Figure 4.8: An example of cheating a (I', m)-EVCS.

cheater who is a legitimate participant can create reasonable share images on fake

shares according to his own share to cheat other participants. O

4.3 Attacks and Improvement on Previous Cheat-
Preventing Methods

There are two types of cheat-préventing meshods' [30]. The first type is to have a
Trusted Authority (TA) to verify the, shares of-participants. The second type is to
have each participant to verify the shares of other participants. In this section we

present attacks and improvement on four;existent cheat-preventing methods.

4.3.1 Attack on Yang and Laih’s First Cheat-Preventing
Method

The first cheat-preventing method of Yang and Laih [30] needs a TA to hold the spe-

cial verification share for detecting fake shares. It generates n+1 shares V' .S, 51,5, ...

where V'S is the verification share. If V.S 4 S; shows the verification image that is
known to all participants, the share S; is genuine. Let S° and S* be the basis ma-
trices of a (I', m)-VCS. They assign pixels to shares by four sets C*° %1 C10 Ol
which are the sets of all (n + 1) x (m + 2)-matrices obtained by permuting the

columns of
10/0 ... 0 10/0 ... 0
goo_ | 10 g _ | 10
I I L I R - ’
10 10
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Input: shares S; and S;. (Wlog, we assume that P, and P, are
cheaters.)

Fake share construction phase: P, and P, choose a fake image
that has no overlapping with the verification image and then create
the fake share F'S as follows:

1. For a white pixel in the fake image, assign the corresponding
pixel of S; to F'S.

2. For a black pixel in the fake image, we assign its m+2 subpix-
els in F'S as follows. Let (r, s) be the pair of the correspond-
ing subpixels in S and S, respectively. We consider two such
pairs (r1, s1) and (rq, so). If (r1,s1)=(1,0) and (rs, s)=(0,0),
we assign 0 and 1 to the corresponding subpixels in F'S. The
above step is repeated till no more assignments to F'S are
possible.

3. For the rest of unassigned subpixels in FS, copy those from

Si.

Share verification phase: P; and P, submit S; and F'S to TA.
TA checks the validity of S; and F'S.

Image reconstruction phase!(the fake image): For YV =
{1,2,’i1,’i2,...,iq) ¢ Q, Sl + FS + Si1 £ Siz + -+ Siq reveals
the fake image.

Figure 4.9: Cheat against Yang-and -Laih’s cheat-preventing method.

10/0 ... 0 10/0 ... 0
go_ | 01 gn_ |0

: S ’ : st ’

01 01

respectively. Pixels are assigned to shares by a random matrix in C®*2, where b,
indicates the pixel in the verification image and b, indicates the pixel in the secret
image. We see that the verification image shall appear on V'S + .5; if the share S; is
genuine since the first two subpixels reveals the verification image.

Our attack, depicted in Figure 4.9, involves two malicious participants. Without
loss of generality, we assume that they are P; and P,. P; and P, together constructs
a fake share F'S such that F'S + V'S reveals the verification image and F'S cheats
other participants.

We see how the attack works.

1. 'S 4+ VS reveals the verification image. The reason is that the first two
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subpixels (before permutation) of F'S and S; are the same. The first two
subpixels of F'S+ V'S are the same as those of S; +V'S. Thus, the verification
image appears on F.S + V' S. The details are as follows.

For the white pixel of the verification image, the first two pairs of subpixels
in S; and Sy are (1,1) and (0,0) by S% and S%, the corresponding subpixels
in F'S are the same as those in S; by Step 2 in the fake share construction
phase. Thus, the pixel of F'S 4+ VS is white since S; + V'S shows whiteness in
the pixel. For the black pixel of the verification image, the first two pairs of
subpixels in S; and S are (0,0) and (1,1) by S and S, the corresponding
subpixels in F'S are the same as those in S;. Thus, the pixel of F'S 4+ VS is
black since S7 + V'S shows blackness in the pixel.

For Y = {1,2,dy,is,...,i4) € Q, S1 + FS + S;, + Si, +--- + 5;, reveals the
fake image. For the white pixel of the fake image, the pixel in F'S is the same
as that in S; by Step 1. Thus, the pixel in S; + F'S is white. For the black
pixel of the fake image, the subpixels 1 and 0 of S; is changed to 0 and 1 in
F'S (see Step 2). Thus, the white _pixel, containing subpixels

[l 0 [ Ompms =10 ],

of S; 4+ 95 is changed to a:black pixel,-containing subpixels
[--1---0-- oy PEOEEEE J=[-1---1---],

in S + F'S. Thus, the fake image appears on S; + FS + S;, +---+ .5,

. 'S are indistinguishable by other participants. For each pixel, the numbers
of black and white subpixels in the pixels of F'S and S are the same since the
only change is to swap subpixels b and w in S; to w and b in F'S. Thus, F'S

and S; look the same and other participants cannot distinguish them.

Example 4.3.1. Figure 4.10 shows the results of cheating a (3,3)-VCS of Yang
and Laih. We see that all shares including the fake share F'S pass verification by

revealing the correct verification image V. Since S1 + F'S + S3 reveals a fake image
FI, Pj5 is cheated.

4.3.2 Attacks on Horng et al.’s Cheat-Preventing Methods

In the first cheat-preventing method of Horng et al. [12], each P; has a verification

share V;. The shares S;’s are generated as usual. Each V; is divided into n — 1
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S1+VS Sa2+ VS Ss+ VS

FS+ VS S1 +FS+S2 S1 +FS+Ss S1+S2+Ss3

Figure 4.10: An example of cheating the cheat-preventing (3, 3)-VCS of Yang and
Laih.

regions R; ;,1 < j <n, j #1i. Eachregion R, ; of V; is designated for verifying share
S;. The region R;; of V; + S, shall reveal the verification image for P; verifying
the share S; of P;. The verification image in R;; is constructed by a (2,2)-VCS.
Although the method requires that the verification image be confidential, we show
that it is still possible to cheat.

Assume that P; knows the regions of.the verification share V;. P, generates a
fake share F'S; to cheat P; as follows. Thie pixels of F'S; in the region R;; are the
same as those in S;. The rest pixels of F'Sy(outside the region R; ;) are constructed
by CA-1. As a result, the correct verification-image appears on the region R;; of
F'S1+V; and P; believes that F'S; isa genuineshare. By CA-1, the stacking of 'Sy
and other genuine shares reveals a reasonable fake image. Moreover, even the cheater
does not know the verification region assigned to a participant, the attack is still
possible. Since the verification share is divided into n — 1 regions, each verification
region is small for a fairly large n. We choose a simple fake image. The probability
that no overlapping between the fake image and the region R;; occurs is high. By
setting the background pixels in F'S; from S;, F'.S; + V; shows the verification image
in the verification region R;; of V;.

By our proposed attacks, we conclude the following principle on using verification

images:

Essential principle: The verification images should be confidential and spread

over the whole region of a share.

Horng et al.’s second cheat-preventing method uses the approach of redun-

dancy [12]. It uses a (2,n + [)-VCS to implement a (2,n)-VCS cheat-preventing
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scheme. The scheme needs no on-line TA for verifying shares. The scheme gener-
ates n + [ shares by the (2,n +1)-VCS for some integer [ > 0, but distributes only n
shares to the participants. The rest of shares are destroyed. They reason that since
the cheater does not know the exact basis matrices even with all shares, the cheater
cannot succeed. However, our three cheating methods do not need to use the basis

matrices. Any of our cheating methods can cheat this cheat-preventing approach.

4.3.3 Improvement on Yang and Laih’s Second Cheat-Preventing
Method

The second cheat-preventing method of Yang and Laih [30] is a transformation of a
(I',m)-VCS (but not a (2,n)-VCS) to another cheat-preventing (I',m + n(n — 1))-
VCS. The stacking of any two shares reveals the verification image. This is how
share verification is done.

Let SY and S! be the basis matrices of a (I', m)-VCS. Their method constructs
four sets C%0 C%1 OO0 OV of n x (m + n(n — 1))-matrices obtained by permuting

the columns of the following four matrices respectively:

(1010 ... 11 1010 11
101 1 11 101 1 11

" 1110 1 ]9 3| 110 1 1|8t

ST=1111 1 11 e =1 1 1 11 :
: 1 0 : 10

(1111 10 ] 1111 10 |

(1. 01 0 11 i (1 01 0 11 i
011 1 11 01 1 1 11

o 1101 1 1]8° . 1101 1 1|8t
ST=11111 11 ST =11111 11
: : 1 0 : : ... 10

(1111 0 1 | (1111 ...01 |

The pixel expansion of this construction is m’ = m + n(n — 1) and contrast is
a(m’) = (1 4+ (a(m) x m))/m’, where a(m) is the contrast of the original VCS
without cheating prevention.

By the new definition, what the human eyes care about is contrast, no matter
whether the image is darker or lighter than the background. Our improvements
are applicable to Yang and Laih’s cheat-preventing method. It reduces the pixel
expansion to m + n(n — 1)/2. Moreover, since the verification image can be made
public to all participants, we can let the verification image appear on the shares.

By this, we can further reduce the pixel expansion to m + n(n — 1)/4.
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Our improvement is based on the following three theorems, which are proved in
Chapter 3.

Theorem 4.3.1. (Composition property) Let I'y = (P, Q1, F1) and 'y = (P, Q2, F3)
be two access structures. Assume that Q1 N Qo = 0. If there exist a (I'y, m1)-VCS,
and a (I'y, mo)-VCS,, there exist a (I'; my +my)-VCSs, where I' = (P, Q1 UQ2, F1 N
Fy). VOS, is a visual cryptography scheme based on the new definition proposed.

Theorem 4.3.2. (Deletion property) Let I' = (P,Q, F) be an access structure. If
SO and S* are basis matrices for a (I',m)-VCS,, S and SV are basis matrices for
a (I,m — k)-VOS,, where S and S* are obtained from S° and S* by deleting the

same k columns.

Theorem 4.3.3. (Inverse property) Let T = (P,Q, F) be an access structure. If S°
and S* are basis matrices for a (I',m)-VCS,, S® and S are basis matrices for a
(T, m)-VCS,, where S = S* and S* = S°.

We denote the left appended matrices in S*%2 as n(n — 1)/2 sub-matrices Sp'*?,
where 1 < k < n(n — 1)/2, by, by, €340,4%s, Each sub-matrix S2'* consists of
two columns counting from left to rightzyBased on Theorems 4.3.1-4.3.3, we can
exchange the roles of S’ and S3°,.and also~SP*. and S{', and delete n(n — 1)/2
common columns. Furthermorewe deleté all columiis having one ”0” only for the
case that the verification image may not appear on-the shares. By these steps, the
pixel expansion of the appended matrices.is-reduced to n(n — 1) /4.

Let P = {1,2,3,4}. The basis matrices for a cheat-preventing (I", m)-VCS using

Yang and Laih’s cheat-preventing method are as follows:

101010111111

oo _ 101111101011
~]l]111011101110}[8°]}
111110111010 |
(1 01 010111111 ]

Go1 _ 101111101011

“ /1 11011101110[S]|
111110111010 |
(1 01 010111111 ]

510_011111101011

“ /1101110111108
111101110101 |
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S1+S2 S2+Ss3 S1+Ss . S1+S2+S3 .

Figure 4.11: An improved (3, 3)-VCS; for Yang and Laih’s cheat-preventing method.

101010111111
Gu_[01 1111101011
/110111011 110]St
111101110101
We reduce the pixel expansion of the left appended matrices from 12 to 3 as follows:
[0 0 1 i [0 0 1 i
010 010
00 __ 01 _
5T = 11 1]8° | 57 = 11 18|
| 1.0 0 | | 1.0 0 |
[0 1 1 3 01 1 1
1 0 1 150 1
10 _ e
ST = 00 OfS° 1" iy 00 0|5t
| 110 X 110 |

Example 4.3.2. Figure 4.11 shows the results of the improved cheat-preventing
(3,3)-VCS,. We see that the stacking of any two shares reveals the verification
image V. S1+ 53 reveals the reversed verification image and Sy shows the verification

1mage.

4.3.4 A Generic Transformation for Cheating Prevention

By the attacks and improvement in previous sections, we propose that an efficient

and robust cheat-preventing method should have the following properties.

1. Tt does not rely on the help of an on-line TA. Since VC emphasizes on easy
decryption with human eyes only, we should not have a TA to verify validity

of shares.

2. The increase to pixel expansion should be as small as possible.
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3. Each participant verifies the shares of other participants. This is somewhat

necessary because each participant is a potential cheater.

4. The verification image of each participant is different and confidential. It
spreads over the whole region of the share. We have shown that this is neces-

sary for avoiding the described attacks.

5. The contrast of the secret image in the stacking of shares is not reduced sig-

nificantly in order to keep the quality of VC.
6. A cheat-preventing method should be applicable to any VCS.

We now present a generic transformation from a VCS to another cheat-preventing
VCS. The resultant cheat-preventing VCS meets all the above requirements. The
idea is similar to the first cheat-preventing method of Yang and Laih [30]. But, we
let each participant hold a verification share. Our cheat-preventing scheme needs
no help from an on-line TA. The verification image for each participant is different
and known to the participant only.

Our transformation is quite efficient and?almost optimal as it adds only two
subpixels for each pixel of the original inmage:That.is, if the pixel expansion of the
VCS is m, the pixel expansion of the transformed VCS is m + 2. The contrast is
slightly reduced from a(m) to a(m’) =|(afim) X m+1L)/(m+2). Our transformation
is depicted in Figure 4.12. It generates:two-shares for each participant. One is the
secret share and the other is the verification'share. Let S° and S!' be the n x m
basis matrices of a (I',m)-VCS. At first, we create two n x (m + 2)-dimensional
basis matrices 7% and T". The transformed (T',m + 2)-VCS uses T° and T" as the
basis matrices to generate shares for the participants as usual. Then, for each P;,
it generates a verification share V; for a chosen verification image. For each white
pixel in the verification image, it puts the pixel of (m+ 2)-dimensional [1 0 0 --- 0]
to V; (after corresponding permutation as for the share S;). For each black pixel in
the verification image, it puts the pixel of (m+ 2)-dimensional [0 1 0 0 --- 0] to V;
(after corresponding permutation as for the share ;). We see that the verification
image is encoded into the first two subpixels. If P; wants to verify the share S; of

P;, he checks whether V; +.S; shows his verification image.

Example 4.3.3. Figure /.18 shows a transformed (I';m + 2)-VCS with cheating
prevention, where P = {1,2,3} and Q = {(1,2),(2,3),(1,2,3)}. The verification
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Input: S° and S* of a (I',m)-VCS.
Shares construction phase:

1. Let

10 10
T = : S0 and T'= : St
10 10

2. Use TY and T as the basis matrices for generating shares .S;,
1 <i<n,of (I'm+ 2)-VCS.

3. For each P;, 1 < i < n, choose a verification image and
generate a verificationsshare V5 as follows:

(a) For each white pixel in the verification image, put the

pixel of (m +2)zdimensiorial [I 0-0 --- 0] (subpixels)
to V; (after corresponding permutation as for the share
Si).

(b) For each black pixel in the verification image, put the
pixel of (m+ 2)-dimensional [0 1 0 0 --- 0] (subpixels)
to V; (after corresponding permutation as for the share

Share verification phase:
Before stacking their shares, each P; checks whether V; + S; shows
his verification image, where P; is another participant.

Figure 4.12: Our generic transformation for VCS with cheating prevention.
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V2+S1 V2+Ss3 V3+S1 V3+S2

S1+S2 S1+Ss3 S2+Ss3 S1+S2+S3

Figure 4.13: An example of a transformed VCS with cheating prevention.

images for Py, Py and Py are A, B and C, respectively. Note that the simple verifica-
tion images are for demonstration only. By our proposed principle in Section 4.3.2,

we should use more complicated verification images.

Theorem 4.3.4. The algorithm:in_Figure 4.12 transforms any (I',m)-VCS to an-
other (I',m')-VCS with cheating prevention; where mt= m+2 and a(m’) = (a(m) x

m+1)/m'.

Proof. Since the first two subpixels are‘all"the same for all pixels in all shares of
(I, m')-VCS, the secret image is not affected except that the contrast is slightly
reduced to a(m’) = (a(m) x m+1)/m’. Thus, the transformation produces another
(', m + 2)-VCS.

For P; verifying the share S; of P;, we see how the verification image appears
on V; +.5;. For each black pixel of the verification image, the first two subpixels of
Vi+S;1is [0 1]+[1 0] = [1 1]. For each white pixel of the verification image, the first
two subpixels of V; +S; is [1 0]+ [1 0] = [1 0]. Thus, the black and white pixels of
the verification image have a positive contrast and P; can see the verification image
in V; 4+ 5;.

Each participant has his own private verification image, which is not known to
other participants. Since the first two subpixels [1 0] (before permutation) of all
shares are the same, a P; even with all shares cannot know the positions of black

pixels of the verification image of P;, j # . Therefore, P, cannot produce a fake
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share F'S; such that F'S; + V; shows the verification image of P;. P; cannot cheat
P; for © # j. Furthermore, we see that collaboration of some participants cannot

succeed to cheat, either. O
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Chapter 5

Improvements on VCSs with
Reversing

In this chapter we propose three new ideal contrast VCS with reversing which is
compatible and requires fewer stacking and reversing operations, compared to all
previous schemes. One is based on VCS,, the others is based on VCS;. Each partici-
pant is required to store only two transparencies and obtain the ideal reconstruction

image in only two runs.

5.1 Brief Review of Previous VCSs with Revers-
ing

In this section, we review three existing VCSs with reversing. The first scheme is
proposed by Viet and Kurosawa [27]. Their scheme generates ¢ shares (for some c)
for each participant by performing the original VCS ¢ times independently.
Suppose that there exists a (k,n)-VCS of perfect reconstruction of black pixels.
The ”c-runs (k,n)-VCS with reversing of Viet and Kurosawa” is constructed as

follows.
1. Let (S14, 5%, ..., Sni) be the set of shares in the i-th run for i =1, ..., c.
2. The transparencies of participants i; are Sj 1,952, ..., 5. for j =1,...,n.
3. Any k participants in () reconstruct the secret image by:

e superimposing their transparencies and obtain
ﬂ == thi -+ SjQ’i + ...+ Sjk,i y where 7 = 1, ..., C.
e computing U = (T{ + ... + T7)’

e U, which is the reconstructed secret image.
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We can see that a series of Boolean operations performed in this scheme is exactly
equal to ¢ — 1 AND operations performed on the transparencies 17, ..., T..

The First Scheme of S. Cimato et al. [8] encodes the secret image pixel by pixel.
Each pixel is considered independently on the others. Their construction requires
each participant to store m transparencies, each size are same as the original image.

The scheme is constructed as follows.

1. Let (S° S') be the basis matrices constituting a VCS of perfect reconstruction

of black pixels.
2. The dealer randomly chooses a matrix C° = [¢; ;] from S° (C* from S*, resp.).

3. For each participant ¢, consider the m bits ¢; 1, ¢; 2, ..., ¢, composing the i-th
row of C° and C!, for each j = 1,...,m, put a white (black, resp.) pixel on

the transparency S;; if ¢;; =0 (¢;; = 1, resp.).
4. Any k participants in () reconstruct the secret image by computing:

[ ,—TJ = OR(SZ'IJ', "'7Sik,j)7 fOI‘j = 1, ., m.
o U= (OR(T{ +..+T),))

e U, which is the reconstructed: secret image.

The Second Scheme of S. Cimato et al. [8} reduce the number of transparencies by
using as a building block a binary.secret sharmgscheme (BSS). A BSS consists of two
collections B® and B! of distribution functions. A distribution function f € B°UB! is
a function associating each participant i to the share f(7). The scheme is constructed

as follows.

1. The dealer randomly chooses a distribution function f € B° (f € (31, resp.),
where B and B! are the collections of distribution functions realizing a BSS [7]
for (P,Q, F).

2. For each participant ¢, consider the binary representation c; i, ..., ¢;, of share
f(i) and, for each j = 1,...,7, where r is the size of the shares distributed by
the BSS [7], put a white (black, resp.) pixel on the transparency S, ; if ¢; ; =0

(¢;j =1, resp.).

3. Any k participants in () reconstruct the secret image by the sequence of revers-
ing and stacking operations on their transparencies in parallel Rec(f(i1), ..., f(ix)),
and Rec() is a reconstruction algorithm which on inputs the shares and outputs

the secret.
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S, S; S. AND S,
0 0 0

0 1 0

1 0 0

1 1 1

Table 5.1: The truth table of S; AND S;.

5.2 A Compatible Ideal Contrast (2,2)-VCS with
Reversing in Two Runs

The basic idea of Viet and Kurosawa’s scheme is to perform AND operations on two
transparencies. Performing an AND operation on two pixels reveals a black pixel
only while two pixels are both black (see the truth table of the AND operation in
Table 1). Because the reconstructed secret image in Viet and Kurosawa’s VCS is
of perfect reconstruction of black pixels, the black pixels will stay black no matter
how many AND operations are performed. Viet and Kurosawa’s scheme performs
AND operations as many times as possible, on the stacked transparencies generated
by a perfect black VCS. As a result; the secret images (black pixels) stay black and
the background (white pixels) will increasingly. become whiter.

We show how to construct an ideal eontrast (2,2)-VCS in two runs by comput-
ing OR and AND operations only.in; Figure=5:1. Compared to the scheme of Viet
and Kurosawa, ours chooses the complement transparencies S}, ¢ € {1,2}, to be
the shares of the second run while theirs chooses other transparencies randomly.
Our scheme achieves ideal contrast in two runs and requires each participant to
store only one transparency. With same stacking operations we achieve ideal con-
trast GREY (white)=0 while their scheme achieves GREY (white)=1 in addition to
GREY (black)=1.

Figure 5.2 shows an example of comparing the results Viet and Kurosawa’s
scheme and ours. We see that the reconstructed image of our scheme has better

contrast.

Theorem 5.2.1. The scheme in Figure 5.1 is a two runs ideal contrast (2,2)-VCS

with reversing.

Proof. Step 3 in the reconstruction phase computes an AND operation on 7" and T",
ie. ((T) + (T")) is equal to T" AND T". Suppose that a pixel P is black (the secret
image). Then the pixel P on T and 7" is always black since Naor-Shamir (2, 2)-
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Input.
1. A (2,2) access structure (P, Q, F').

2. Let CY and C! be the set of all matrices obtained by permut-
ing columns of S° and S! matrices constituting a Naor-Shamir
(2,2)-VCS in all possible ways.

Distribution phase.

1. Let (S1,.52) denote the transparencies generated by the basis
matrices S° and S! for participants 1 and 2 .

Reconstruction phase.

1. Two participants 1,2 obtain S} and S} by reversing S and
Sy respectively.

2. They superimpose Sy, S5 and S7, S} separately, and obtain T
and 7", where T'= S; 4+ S and T" = S} + 5.

3. Two participants reverse T, T separately, superimpose them
together and obtain U = ((T")" + (T")')'.

Output. U, which is the reconstructed secret image.

Figure 5.1: A construction:for ideal:contrast' (2, 2)-VCS with reversing.

VCS and the reverse of Naor-Shamir (2;2)-VCS are.all perfect black reconstruction,
namely GREY (black)= 1.

On the other hand, suppose that P is a white pixel (the background). Then
the color of P corresponding to T" and 1" is exactly opposite to each other, and the
return pixel on U is always white. So, this scheme reveals an ideal contrast image
U, where GREY (white)=0 in addition to GREY (black)=1. O

Same as in Viet and Kurosawa’s scheme, the bit operation of AND is used in this
scheme. We conclude that a compatible VCS with reversing can obtain ideal contrast
by computing an AND operation in two runs, only if the following requirements are
satisfied.

1. The VCS should be perfect black reconstruction, since the black pixels should

remain black after computing an AND operation.

2. The GREY (white)> 1, since the white pixels should become GREY (white)=0

in two runs.
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S |

Original image

S

VK's Scheme Ours

Figure 5.2: The images reconstructed in two runs by Viet and Kurosawa’s scheme
and ours.

3. The columns of elements of basis matrix S° should be either all 0’s or 1’s,
since the white pixels in the reconstructed transparencies 7" and T” should be

exactly opposite.

By the above requirements, our construction in this section is only applicable to
(2,2)-VCS. In the next section, we propose two construction for VCS with reversing

with general access structures.

5.3 Two Constructions for Compatible Ideal Con-
trast VCSs with Reversing

In this section we describe two%eonstructions-of compatible VCSs with reversing
which reveal an ideal contrast image for any access'structure in only two runs. The
first construction is based on the traditional definition of VC [20]. The second one

is based on new definition we proposed.

5.3.1 An Ideal VCS with Reversing for General Access Struc-
ture

Before introducing our approach, we describe a VCS for general minimal access
structure I'g, which was proposed in [1] and [9], that will be used in our approach.
Then we show how to construct another basis matrix to generate Auxiliary Trans-
parencies (AT) for each participant. These ATs are generated for our VCS with

reversing to reconstruct an ideal contrast secret image.

5.3.2 A VCS for Minimal Access Structure I'j

This VCS employs Naor-Shamir (k, k)-VCS as a basis unit for constructing a VCS for
minimal access structure I'g. Suppose 'y = {Q1, ..., @y}, by employing the optimal

53



(k, k)-VCS, the basis matrices L° and L' are constructed as follows.

Suppose that @, = {i1,...,%,} and k, = |@,|. For 1 < r < b, construct an
n x 2k~ matrix E¢, i € {0,1}, with the following steps:

The p; row of E? is the i-th row of the basis matrix S° of the optimal (k,, k,)-

VCS. The elements of other rows of E? are all 1’s. Then L° = EY || ... | EY. The
construction of E! is similar to E? except that we replace the p; row of E! from the
basis matrix S* of the optimal (k,, k,)-VCS instead of S°. Then L' = E} || ... || E}.

Lemma 5.3.1. L° and L' are a pair of basis matrices of a perfect black VCS for
[y such that the pizel expansion m = 21@U=1 4 4 21@l=1 4nd GREY(white) =
1— L [27].

For 1 < r < b, an n x 2%~! matrix F, is constructed as follows. The elements
in p; row of F, are all 0’s. The other rows of F,. are all 1’s. Then an auxiliary basis
matrix A° = Fi|...|F,. In other words, AY is the same matrix as L° except that we
replace all the elements of the (k,, k,)-VCS with ”0”. We regard all the pixels on
transparencies constituted by A® as white pixels. Therefore, we only need a basis
matrix to generate the transparencies.

For example, for I'g = {(1, 2), (2,3, 4) pandsP = {1, 2, 3,4}, then

1

0

L°=EY | B = = 1

1
0
0
1
1

e
== O O
O OO
O~
[ e T
— s b N
— =R
S O = =
S = O =
_ o O =

A =F | R =

_= = O @
SO O
S O O
SO O =
SO O =

— = = O

5.3.3 Our Construction

The construction is depicted in Figure 5.3. We encode the secret image into n
transparencies. Instead of only encoding one secret image into n shares, we divide
every share (transparency) into || blocks and every block has one secret image. It
implies that there are |['g| secret images in the reconstructed transparency and that

each secret image can be reconstructed by one qualified set.

Lemma 5.3.2. The optimal (k,k)-VCS proposed by Naor and Shamir [20] is a
compatible ideal contrast (k,k)-VCS with reversing.
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Input.
1. A minimal access structure I'y on a set P of n participants.

2. Let C°, C!, and C"? be the collection of basis matrices E?,
E! and F, resp., where 1 <r < |['o| and .

Distribution phase.

The dealer encodes each transparency t; as |['g| sub-transparencies
S;» and each sub-block consists of one secret image. For 1 < r <
ITo|, each white (black pixel) on sub-block of transparency S, is
encoded using a n x 2~ matrice E? (E! resp.). To share a white
(black, resp.) pixel, the dealer,

1. randomly chooses a matrix SO = [s; ;] in C? (S} in C}! resp.),
and a matrix A% = [a;,] in C"2.

2. For each participant i, put a white (black, resp.) pixel on the
sub-block of transparency S;, if s;,; =0 (s;; = 1, resp.).

3. For each participant i, put a white (black, resp.) pixel on the
sub-block of transparency AS,, if a;; =0 (a;; = 1, resp.).

Reconstruction phase.
Participants in (), reconstruuet the secret’image by,

1. XORing all the shares |S; and stacking-all the transparencies
AS; for v =1, ..., k, and obtain 7" and A respectively.

2. computing U = (T4 A) @ A.

Output. U, which is the reconstructed secret image.

Figure 5.3: A construction for ideal contrast VCS with reversing.

Proof. We show that Naor and Shamir’s (k,k)-VCS with reversing is compatible

and ideal contrast by the following:

Compatible. This VCS has been proven optimal since in any (k, k)-VCS, the

pixel expansion has to be at least 2¥7! and contrast can be at most 5= [20].

Ideal contrast. Naor and Shamir’s (k,k)-VCS is obtained by means of the con-
struction of the basis matrices S°, S*. S is the matrix whose columns are all the
Boolean k-vectors having an even number of 1’s; whereas, S! is the matrix whose
columns are all the Boolean k-vectors having an odd number of 1’s. In order to
obtain the ideal contrast secret image, k participants compute S; ® Sy @ ... B Si on

the k transparencies. It is easy to see that the white pixels are all white since S°
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has an even number of 1’s; whereas the black pixels are all black since S! has an
odd number of 1’s. O

Theorem 5.3.1. Let I' = (P, Q, F) be an access structure on a set P of n partici-
pants. The basis matrices S°, S' and A° constitute a compatible ideal contrast VCS

with reversing in two runs.

Proof. Compatible. The basis matrices S and S have been proven constituting a
VCS in [27], i.e. the secret image can be reconstructed by directly superimposing
the transparencies of any qualified set. As for the property of security, it is obvious
that a VCS is as secure as a VCS with reversing [1]. The basis matrix A° reveals no
information about the secret image since no secret is encoded into the shares At;.

Ideal contrast. Let LY = EY || ... | EY, L' = E} | ... || E{ and A =Fy || ... | F,
be the basis matrices for a VCS with reversing, constructed using the previously
described technique. Without loss of generality, let I'g = {Q1, ..., @} and X = @4,
X be a subset of qualified participants. Since the secret image is reconstructed
by computing (T + A) @ A, we have to show that L° L' and A° are the basis
matrices of a VCS with reversing forsthe general access structure I' = (P, Q, F)
having ideal contrast, i.e. w((EY #F)) GeFiph= 0, w((E} + F}) ® Fy) = 2/91=! and
w(E:4+ F) @ F,)=0,r¢e€{2,a.,]/} and.i € {0:1}. It results that

(
= w((BL+0)®0)
= w(EY®0)
= w(BY) = (according to Lemma 5.3.2)
and
w((E} + F) & Fy)
= w((Ef+0)®0)
= w(Ef ®0)
= w(B}) = 2lel-! (according to Lemma 5.3.2)
whereas,
w(EL+ F.)@F,) for re{2,...,]Ty|} and i € {0,1}
= w((El4+1)®1)
w(lel)
= 0

O

Example 5.3.1. Let P = {1,2,3,4} and I'y = {(1,2),(2,3,4)}. Then the basis

matrices L°, L' and A° are constructed as follows.
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T A T+ A (T+A)a A
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 0
Table 5.2: The truth table of (T'+ A) @ A.
101111 1011 11 001111
100110 011100 00000 O
L°_110101L1_111010A°_110000
110011 111001 110000

There are two secret images encoded into four shares, one is in block 1 for {1,2}
and the other is in block 2 for {2,3,4}. Let Q2 = {2,3,4}, then T = XOR (XOR
(S52,53),54) and A = OR (OR (S2,S3),S4). From the truth table of (T'+ A) & A
in Table 5.2, we see that the outcome of U = (T'+ A) @ A is 1 only while 7" = 1
and A = 0. Therefore, all the black pixelsswill,be reconstructed as the perfect black

pixels.

Example 5.3.2. The results of-the eonstruction-for 'y = {(1,4),(2,3,4)}, where
P ={1,2,3,4}, are depicted in-Eigure. 5.:4. Shares At; and Aty are omitted since

they are the transparencies with allwhite subpizels,

5.3.4 A Compatible Ideal Contrast VCS,; with Reversing for
General Access Structure

As we mentioned before, what the human eye cares about is contrast, no matter
whether the image is darker or lighter than the background. In this section, we
show a construction in Figure 5.5 for VCS,. It still recover the secret image with

ideal contrast, and remains compatible.

Theorem 5.3.2. The basis matrices S°, S'' and A° in Figure 5.5 constitute a

compatible ideal contrast VCSy with reversing in two runs.

Proof. Compatible. The basis matrices S'© and S'' have been proven constituting a
VCS,, in which the recovered image is either darker or lighter than the background.
As for the property of security, no information about the secret image will be revealed

since the basis matrix A" is unchanged.
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whares of participant 1 (S1) whares of participant 4 (Sy)

SotSatEy Wit stac kig

a1t with reversing Sotastig with reversing

Figure 5.4: The results.of construction one for VC'S;.

Ideal contrast. 1If the recovered secret image is darker than the background,
then the proof is the same as that in Theorem 5.3.1. Suppose that the recovered
secret image is reversed (the secret image is lighter than the background). Wlog, let
Lo ={Q1,...,Q} and X = @1, X be a subset of qualified set. In order to prove the
contrast of the reversed secret image is ideal, we have to show that L°, L' and A° are
the basis matrices of a VCS with reversing for I' = (P, @, F'), having ideal contrast,
ie. w(EY+ F) =m, wE} + F)) =0and w(E! + F,) =m for r € {2,...,|To|}
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Input.
1. A minimal access structure I'y on a set P of n participants.
Distribution phase.

1. The dealer uses the approaches ® to generate S, S'! accord-
ing to SY, S, where the constructions of the basis matrices
SY St and A° remain the same as in Figure 5.3.

2. The transparencies S; and AS;, i = 1,...,n, are constructed
as in Figure 5.3 except that the basis matrices S°, St for S;
are replaced with S0, S'!.

Reconstruction phase.
Let Q, = {i1, ..., i, } be the minimal qualified set in I'y, participants
in (), reconstruct the secret image by,

1. XORing all the shares S; and stacking all the shares AS; for
t=1,...,k, and obtain T" and A respectively.

2. Computing U = (T'+ A) @ A, if the recovered image is darker
than the background else U =T + A.

Output. The transparency U, which is the secret image with deal
contrast.

®The relative approaches-and proofs can be found in Chapter 3

Figure 5.5: A construction. for‘ideatrcontrast VCS, with reversing.

and i € {0, 1}, where m = 2/91=1 Tt results that:

= w(EY +0)
= w(EY) =m

and,

w(E} + Fy)
= w(FE{ +0)
=w(FE{)=0

whereas,
w(EL+ F;) for re{2,...,|T|} and i€ {0,1}
= w(E +1)
= m
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Example 5.3.3. Let P = {1,2,3} and I'y = {(1,2),(2,3)}. We depict the results
of the images reconstructed by VCSy with reversing in Figure 5.6.

Shatres of participant 1 (57 and A5

Shares of participant 2 (55 and A55)

wotas with stacking

5150 with reversing =otSs with reversings

Figure 5.6: The results of construction two for VCS,.

5.4 Discussions

5.4.1 Reducing Pixel Expansion And Improving Contrast

Every share in our schemes is divided into b = |I'y| blocks. It implies that the pixel
expansion is reduced by b times compared with Viet and Kurosawa’s scheme. As a
result, the contrast of the recovered secret images will also improve b times compared
to Viet and Kurosawa’s scheme while revealing the secret image only with human

visual system.
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Ito et al. [13] proposed a size invariant VCS to encode the secret image into the
same size shares as the secret image, and the reconstructed image of the proposed
scheme has the same contrast as in the conventional scheme. Compared to tradi-
tional VCSs, the contrast of their VCS is defined as |pg — p1| where py and p; are the
appearance probabilities of a black pixel on the background and the secret of the
reconstructed image respectively [13]. In other words, contrast is increased when
the probability of a black pixel appearing on the secret image becomes bigger, or the
probability of a black pixel on the background of the reconstructed image becomes
smaller.

Our VCSs with reversing can be applied to this method on each sub-block. It

reduces the number of pixel expansion of our VCSs with reversing to b.

5.4.2 A Comparison of Properties Among the VCSs with
Reversing in [27], [8] And Ours

Table 5.3 shows a comparison of properties between our scheme and previous VCSs
with reversing. We measure the efficiency of VCS with reversing by the following

seven factors:

e Compatibility

Contrast of the reconstructed secret’image with reversing

Contrast of the reconstructed’seeret image with only stacking (to recover the

secret image without using a copy machine)

Number of stacking operations

Number of reversing operations

Shares held by each participant

e Pixel expansion

Some variables used in Table 5.3 are denoted as follows.
e k : the number of participants in the qualified set @Q);.
e ¢ : the number of AND operations performed in Viet and Kurosawa’s scheme.

e b : the number of the blocks divided in each transparency.
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. Cimato Cimato
. Viet and X )
Properties Kurosawa’s et al.’s et al.’s Ours
(1) (2)
Compatible vV X X Vv
Contrast with reversing Almost ideal Ideal Ideal Ideal
Contrast with only stacking % 0 0 pos
Number of stacking operations ck kE(m+1) | 3r(k—1) | 4k —1
Number of reversing operations 3(c—1) m+1 |4r(k—1)| 4k
Shares held by each participant c m r 2
Pixel expansion m 1 1 v

Table 5.3: A comparison of properties among the previous VCSs with reversing and
ours.

e m : the pixel expansion of a VCS described in Section 5.3.1.
e 7 : the number of bits in the binary representation of the largest share.

Obviously, we hope that the scheme is compatible so that the secret image can still
be obtained even when there is no available copy machine. It will be better to achieve
ideal contrast in finite steps. Finallyywe hope tominimize the numbers in the various
factors. As we can see in Table=5.3] our-scheme ‘achieves both compatibility and
ideal contrast. Compared to Viet and Kurosawa’s scheme, our scheme is better on
every property. To the first and second schemes of Cimato et al, we also have better
properties except for pixel expansion. The pixel expansion m in both schemes of Viet

and Kurosawa and ours is necessary in‘order'to gain the property of compatibility.
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Chapter 6

Improvements on Extended VCSs

In this chapter by the new definition, we show that EVCSs may have better con-
trast than those based on the conventional definition. We propose a (2, n)-EVCS
scheme based on the new definition. Although the image of this construction is not

"smooth”, it has better contrast than previous results.

6.1 Optimal Contrast (k, k) Threshold EVCS

Theorem 6.1.1. /2] In any (k&k)-threshold " BVCS with pizel expansion m the

relative differences ap(m) and ag(m)-satisfy

k
< 1.
k_las(m) <1

From the theorem above, we can caleulate that a (2, 2) threshold EVCS cannot

2k_10ép(m) i

have a better contrast of more than 1/4. But, based on our new definition, we can

improve the contrast to 1/3. Note that black and white pixel respectively in the

conventional definition is represented in Figure 6.1. The pixel expansion is four.
Black and white pixel respectively in the new definition is represented in Fig-

ure 6.2. The pixel expansion is three, which is better than that based on the original

= o

Figure 6.1: Black and white pixel respectively in the conventional definition.

definition.
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Figure 6.2: Black and white pixel respectively in the new definition.

6.2 (2, n)-EVCS Based on New Definition

In this section, we propose a construction that can solve a 2 out of n EVCS problems

based on the new definition.
Example 6.2.1 shows a (2, 2) EVC construction based on the new definition.

Example 6.2.1. Basis matrices of a (2, 2) EVCS base on the new definition

sr= [0 Y o] ant se= 00 1]
S
SRR . AR
SRR N & T

Theorem 6.2.1. The scheme in"Figure 6.3 s a2-out of n EVCS with parameters
m=n+1, as(m) = ap(m) =1/n+1.

Proof. Let {(CS1+Cn C“ ), . be a family of 2" pairs of collections con-
stituting a (2, n)-threshold EVCS. Without loss of generality, we assume that for
any choices of ¢, ...,c, € {b,w}, the pair of collections (CS1n C1+Cm) are ob-
tained by permuting, in all possible ways, the columns of the pair of basis matrices

(Sgl...C7L7Sl)C’1--~Cn) . D

Casel : The Contrast of all shares:
According to the stepl and step 2 of ”generation phase”, we can know that for

every Tow i in basis matrices (S&1+Cn, Sbcl‘“C") has only one 70" if ¢; = b. In
contrast, every row 4 in basis matrices (S$1+Cn, Sbcl‘“c") has exactly two 707

if ¢; = w. Therefore, ag(m)=n—(n—1)/n+1=1/n+1.

Case2 : Contrast property:
When S5t and Sbol“‘c" are restricted to i rows , i > 1, S¢1+Cn has exactly
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one column that contains only 0’s and Sbc 1-Cn either has exactly two such
columns or no any such columns, So for any qualified set X € I'g,q and for
any matrix M € C$+Cn we have that w(Mx) =n—1and M’ € O we
have that w(MY%) = n or w(M%) = n — 2. Therefore, ap(m) = 1/n+ 1 and
the contrast property hold.

Case3 : Security property:
Any combination of shares of (2, n)-threshold EVCS must show the secret, so

the security property is not required here.

Example 6.2.2. Example 6.2.2 depicts an 2 out of 3 EVCSy. The contrast of the
example is 1/4 when the optimal contrast of original 2 out of 3 EVCS; is 1/6.

Secret image

Share of participant 1 Share of participant 2

i

Share of participant’3
Wl +Iy

Image of participants 1 and 2 Image of participants 1 and 3
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Input:
1. An (2, n) access structure (I'guar, I'rors) o0 aset P of n participants.
2. The colors ¢y, ..., ¢, € {b,w} of the pixels in the original n images.

3. The colors ¢ € {b,w} of the pixel of the secret image the dealer
wants to share.

Generation of the n shares:

1. Construct an n x n 4+ 1 matrix W as follows:
Set the first entry of all rows of W to 0.
j=1
For i =1ton do
If ¢; = b then set all entries of row ¢ of W to 1 except first entry.
else j =75 +1;
set entry (7,7) of W to 0 and set all remaining entries of row i to
L

2. Construct an n x n 4.1 matrix B as. follows:

j=1
For i =1ton do

If ¢; = w then set all entries of row ¢ of-WW to 1 except first entry
and

second entry to 0.

else j = (j+1mod (n+1)) + 1.

set entry (7,7) of W to 0 and set all remaining entries of row i to
L;

3. The collection C'$*“* is constructed by considering the matrices
obtained by permuting, in all possible ways, the columns of the

matrix
geren _ W if e=w
¢ ]l B if e¢=0b

4. Let M be a matrix randomly chosen in C¢t“

Output: The matrix M

Figure 6.3: The protocol to generate the shares for EVCSs based on new definition.
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Chapter 7

Conclusion and Future Work

We have proposed a new definition for visual cryptography, in which the revealed
images may be lighter or darker than backgrounds. We have studied properties
about our new definition. The results show that our V' C'S; indeed has better pixel
expansion (contrast).

In chapter 4, we have proposed three cheating methods against VCS and EVCS.
We examined previous cheat-preventing schemes and found that they are either not
robust enough or still improvable. We finally» proposed an efficient transformation
of VCS for cheating prevention. It only added twe subpixels for each pixel in the
image.

In chapter 5, we have proposed three eompatible VCSs with reversing, in which
the contrast of the recovered imfage is-ideal-in only two runs. We also compared
several properties of all the previous"VGSs withreversing with ours. We also propose
a method to construct a (2,n)-EVCS. Our (2,n)-EVCS, has smaller subpixels and
better contrast than Droste’s result.

After doing these researches, we think that there still are many achievable im-
provements on VC. The most important issue we think is constructing a practical
VCS that is more efficient for every participant to recover the secret image. For
example, it is desirable to design a VCS with reversing which does not need to di-
vide the transparency into || blocks and still has the same or better performance
on every property than ours. Moreover, it will be a dramatic improvement if we
can implement an efficient transformation of VCS for cheating prevention that only
added two subpixels for each pixel and each participant just need to hold one share,
instead of two. Besides, the new definition has been proposed. The more applica-
tions of the new definition on the extensions of VC may be an interesting topic to

explore.
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Appendix

Let I = (P,Q, F), where P = {1,2,3,4}, Q = {(1,2), (1,4), (2,3), (2,4), (1,3,4),
(1,2,3,4)} and F = {(1,3), (3,4), (1,2,3), (1,2,4), (2,3,4)}. Any (T,m)-VCS,

has m = 12 at least. The basis matrices are:

101011110110 101011111100
101110100000 011110100000

0 __ 1 _
ST = l1nottot01| 4 5 = 111101111010
111011100011 110111011001

Our (I'; m)-VCS;y has m = 4 and a(m) = 1/4. The basis matrices are

0011 0011
0100 0001

0 __ 4
ST = 10100 22d 5 =40 1000
0011 0101

The following shows the shares of all participants and images of the stacked shares

of participants of qualified and forbidden sets.
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Image of participants 1 and 2 Image of participants 1 and 4

Image of participants 1 and"3 Image of participants 3 and 4

Image of participants 2 and 3 Image of participants 2 and 4

Image of participants 1 and 2 and 3 Image of participants 1 and 2 and 4

Image of participants 1 and 3 and 4 Image of participants 1 and 2 and 3 and 4
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