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 I 

中文摘要 
 

電子在石墨烯(Graphene)材料上擁有獨特的介觀傳輸性質，其色散關係(energy dispersion 

relation)在接近費米能量時呈線性關係，因此電子在這個能量區域的性質如同無質量的狄拉克

費米子(massless Dirac fermions)。由相對論的量子理論，無質量的粒子，具有 Klein 穿隧效應

(Klein tunneling)，即粒子無法被一時間穩定的位能障 (time-independent potential barrier)所束

縛。 

 

本論文分析在石墨烯上電子向時變位能(time-dependent)區垂直入射的傳輸行為，並透過緊束縛

模型(tight-binding model)使得本結果涵蓋非線性色散區域。在低能量區域本結果獲得與前人使

用有效哈密頓(effective Hamitonian)的預測一致：Klein 穿隧效應在時變位能作用下時仍然成

立，時變的位能亦無法束縛粒子；另外，分析不同位能寬度的傳輸行為，我們發現了一奇特現

象─中央帶再聚集(central band refocusing)效應，即在某些特定的時變位能寬度時，電子只能

從中央帶穿隧。在高能量區域我們觀察到不同能谷(inter-valley)之間的散射：電導驟降(dip 

structure)、旁帶(sideband)特性以及非典型 Fabry-Perot 干涉特性。 

 

我們也探討時變位能對具有能隙的石墨烯 (gapped graphene)傳輸的影響，發現同能谷

(intra-valley)散射亦能產生電導驟降以及非典型 Fabry-Perot 干涉特性。 
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Abstract 
 

Electron in graphene has a unique mesoscopic transport property due to its linear dispersion 

relation when the Fermi energy falls within the low energy regime. The electron behaves as a 

massless Dirac fermion. Most well-known characteristic of a massless Dirac fermion is the 

Klein-tunneling, where the particle cannot be blocked or trapped by static barriers.  

 

This thesis focuses on the transport property, in general, and the Klein-tunneling characteristics, in 

particular, for a graphene acted upon by a time-modulated potential. For the clarity of the physics 

involved, our consideration is limited to the case of normal incidence. We use tight-binding model 

for the description of the graphene so that our results cover nonlinear dispersion regime for the 

electrons. In the low energy regime, we reproduce the Klein-tunneling results in a time-modulating 

potential case, which has been predicted by Tahir et.al. recently. In addition, we find an exotic 

central band refocusing phenomenon, where the transmission will be dominated by the central band 

(the elastic channel) at specific values of the length L of the time-modulated region. This L- periodic 

phenomenon is explained by a peculiar interference condition that is made possible by the linear 

energy dispersion relation and the chirality of the particle. Furthermore, we find dip structures in the 

total transmission in both the high-energy region, and in the low-energy regime of a gapped 

graphene. These dip structures signify the breakdown of the Klein-tunneling, and is shown to result 

from coherent hopping to or from the band edge via the emitting or absorbing of photons provided 

by the time-modulated potential. The band edge has a singular effective density of states as long as 

the transverse momentum is conserved.    Finally, by staying on the dip structures, the total 

transmission is found to exhibit another L-periodic phenomenon which we can identify as a 

non-typical Fabry-Perot resonance. 
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contrary to K related wave vector if xk  is negative then we name it K’-related wave 

vector. And we define right-going wave vector as p  left-going wave vector as q . Here 
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A.2 Left: Plot momentum ( )1p  in real(Blue circle) and imaginary(Red cross) part. Fix 

yk  at 0.2K. Right: Energy dispersion, which used to compare with the left figure. The 
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vector as q  respectively. Here the valley index was accompany with momentum ( )p τ , 

we define ( )1p , ( )1q ( ( )2p , ( )2q ) as K ( )'K valley. X-axis is momentum xk  in unit of 
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Chapter 1  
Introduction 

 
Recently, a new kind of material, called graphene has attracted much attention. People did not 

believe the existence of a single atom thick membrane due to both finite temperature and quantum 

fluctuations destroy the stability of this material. Not until 2004, did a group from the University of 

Manchester led by A.K. Geim successfully fabricate this 2D material [1]. Since then, graphene has 

become a big star in mesoscopic physics. Because of the high electron mobility at room 

temperature[2] , and the remarkably breaking strength which experimentalists has showed graphene 

is 200 times greater than steel[3], graphene has been expecting to replace silicon in microelectronic 

devices. 

 

The transport properties of graphene has paid more and more attention by both theorists and 

experimentalists, because of the exotic phenomenon , occurred around the corner of Brillouin zone 

(Dirac cone), Klein paradox[4] which was proposed by M.I. Katsnelson[5]. The reason of existence 

of this property is due to conservation of chirality.  

 

M. Tahir et al [6], who considered the effect of a time-periodic potential on a monolayer graphene 

and showed that the Klein paradox still holds around Dirac cone. This is due, again, to the 

conservation of chirality in the presence of the ac field. Using the effective Hamiltonian, this work is 

limited to the energy regime 00.2E t , where  is the hopping energy between neighboring 

atoms.  

0t

 

My fundamental idea of this paper is based on the concept which we employ tight-binding 

Hamiltonian instead of effective Hamiltonian. The purpose to do so is to discuss the energy level 

where effective Hamiltonian is not appropriate to use. Furthermore by employing tight-binding 

Hamiltonian we also can make a discussion about valleytronics which effective Hamiltonian can’t 

tell. We hope there are still some interesting physics within the higher energy level, including 

inter-valley scattering, Klein paradox breaking, and resonance behavior according to the width of 

barrier. 

 

Not only employ effective tight-binding Hamiltonian, we also open a global gap right on the Dirac 

cone to observe the tunneling property in low energy level.  

 

In this work, we have established our formulation systematically. We try this out successfully for 

 1
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the case of one dimensional tight-binding system in Chapter 2. In Chapter 3 we present the 

tight-binding model for graphene and establish the conventions and notations to be used in this work. 

This includes our choice of the primitive lattice vectors that will be most convenient for our wave 

function matching in Chapter 4, AB site identification, and energy spectra as well as tight-binding 

Hamiltonian, and then we have a brief derivation of effective Hamiltonian. In the end of Chapter 3, 

we have a discussion of Klein tunneling by employing effective Hamiltonian.  

Then we will discuss the tunneling property in armchair-edge graphene in Chapter 4 by using the 

same way we do in Chapter 2. Chapter 5 gives the results and analyze of the transport property in 

our system and in the end of this chapter, we will make a conclusion of our work.  

 

Interestingly by using the tight-binding Hamiltonian, Klein paradox still exist while we consider a 

normal incident wave which the energy is not linear to momentum space. 

 



Chapter 2  
Time dependent transport in one-dimensional 
tight-binding model 
 
  In this chapter, we establish, for the tight-binding model, the boundary condition for the 

time-dependent case. Along this line, we have derived the continuity equation, the current operator, 

and the conservation of current for the time-dependent case.  

 

2-1 One dimensional time-dependent tight-binding Hamiltonian  

In this section, one-dimensional (1D) tight-binding model (TBM) is utilized to discussed the 

Tien-Gorden model[7]. The system we consider is a 1D chain of atoms (let a be the spacing between 

two nearest atoms) with a time-dependent potential (but spatially-independent),  0 cosV t , in the 

whole background. The time-dependent Schrödinger equation (with 1 henceforward)  is  

 ˆ
tH i    (2.1) 

with 

    0 0 0
ˆ ˆ ˆ ( ) 1 1 cos

n n

H H V t t n n n n V t n n         . 

The general solutions to Eqn. (2.1) is expanded by the eigen-states of  with the corresponding 

eigen-energy 

0Ĥ

02 cos( )kE t k  : a

 ( ) kiE t
k

k

C t e k   (2.2) 

, where 

1 ikna

N
n

k e n .  

Due to the presence of time-dependent potential, the expanding coefficients, , in Eqn. (2.2) 

 

( )kC t

also depend on time. By Eqn. (2.1), ( )kC t  can be further deduced: 
0

0sin( )( ) ( )
Vi t V im t

k k k mC t c e c J e  

m


     (2.3) 

m. Combining Eqns. (2.2) and 

.3): 

, where means the 1st-kind of Bessel functions of integer order mJ  

(2
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  0

,

( ) ki E m tV
k m

k m

c J e k
   . (2.4) 

Eqn. (2.4) is the solution to Tien-Gorden model [7] in 1D TBM.  

  

  Before entering next section, it is worth to cast Eqn. (2.1) into a more convenient form. First of all, 

 

Eqn. (2.4) is rewritten as 
   0 01 

, , ,
k m k m nN

k m k m n n
 

Project Eqn. (2.1) to the n

( ) ( ) ( )k ki E m t i E m tV V iknac J e k c J e e n f t n           (2.5) 

-th orbital, n , we arrive 

    0 1 1 0 cosn n n tt f f V t f i f  n      (2.6) 

n nf , to those of its nearest neighbor, 1nf Eqn. (2.6) relates the amplitude of the -th orbital,  and 

1nf  . Via Eqn. (2.6), the current, continuous equation, and boundary 

following sections. 

2-2 Continuity equation and current  
Here, two different approaches are used to obtain the expression for the expectation value of the 

te follows the continuity equation from the Schrödinger equation in Eqn. (2.6). 

he current and its divergence for tight-binding Hamiltonian are identified. On the other hand, the 

 the velocity operators. The expectation value 

 first approach. 

 

conditions are discussed in the 

 

current. The first rou

T

current operator can be defined through the density and

of this current operator is consistent with that from the

Route I. From continuity equation 

The probability density on site-n is given by * /n nf f a . Therefore, from Eqn. (2.6), the continuity 

equation is  

     

 
   

 

 

*

* * * *0
1 1 1 1

1 1 1
t n n n t n

n

n n n n n n n n

n

f f f f
a

it

* *
t n nf f

a a

* * *0 0
1 1 1 1n n n n n

it
f f f f f     f

a a

it
f f f f f f f f

a

j

   

  

  



 
    
 
 

 

   

 

 (2.7) 

The RHS of Eqn. (2.7) is identified as the current divergence,  n j , in TBM. There are arrows 
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*
1n nf f , below each term in Eqn. 2.7 to indicate the direction of density flux. For example, the term, 

indicates flux from n to n-1 and thus a left arrow is attached below. From these arrows,  n j  is 

proportional to flux out of site-n.  

  From  n j , it is inspired that the current on site-n is related to right going flux: 

  1 1 1 1n n n n n n n n n
* * * *j f f f f f f f f   

  
 
 
   (2.8) 

To inspect this conjecture, the current in the long-wavelength limit is derived. In this lim

amplitude,

 
    

it, the 

f 1n , is expanded at as 

    
2

2
1 ( )n n x xn n

a

2
f f na a f a f f         

Therefore,  

(2.9) 

      0
* *

n x n x x nn n
j it a f f f f         (2.10) 

Eqn. (2.10) demonstrates the current form in the long wavelength limit: 

   

   



0
1 1 1 1

0

* * *

2 n n n n n nf f f f f f

it 

0

1 1 1

*

1

*

* * * *

2

n x n n x nn

n n n n n n n n

j it a f f f

it

f f f f f f f

f

f   

     

  

1) confirms the conjecture from Eqn. (2.8). 

ent operator 
The current operator is defined as 

   
     



 (2.11)  

Eqn. (2.1

 

Route II. From curr

ˆ ˆˆ ˆˆ 
2nj

n nv v  


, where 

 (2.12) 

ˆn  and are the density and velocity operators, respectively. The density operator is 

related to probability density on site-n and has the form: 

 

v̂  

1
ˆ n n

a
    

The velocity operator is derived from the time derivative of position operator, 

(2.13) 

ˆ
n

a n n  n : x

 0

ˆˆ,x H ˆ
ˆ 1 1

n

atdx
v n n n n

i
         (2.14)   

dt i
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Th luated via the Hamiltonian defined in Eqn. (2.1): e commutator in Eqn. (2.14) is eva

 10
ˆˆ, 1

n

x H at n n      n n     

Therefore, the current operator is reached: 

 0ˆ 1 1 1 1
it

n n n         
2nj n n n n n   (2.15) 

tation value of  with ( )n
n

f t n ˆ
njThe expec , recovers Eqn. (2.11). This ensures the two 

 

routes are consistent.  

 0
1 1 1

* * * *ˆ
2n n n n n n n n

it
j f f f f f f f         1nf  (2.16) 

With the preliminary in Secs. 2-1 and 2-2, it is ready for the  of a time-dependent potential 

barriers in a 1D atomic chain. Fig. 2.1 displays the system that the barrier separates the space into 

 the region II with 

 

2-3 Boundary conditions and scattering states 
 system

0 n L   three regions. The potential is presence in as shown in Fig. 2.1. The 

oundary conditions between the wave functions in different regions ar

 

 
ce from site-0 to 

 I (

b e discussed in this section. 

Fig. 2.1 The time-dependent potential barrier is presen
site-L. The system is divided into three regions: Region 1n   ), Region II 

), and Region III (( 0 n L  L n ). 
 

 

  For the presence of potential barrier, the Schrödinger equation (Eqn. (2.6)) is separated into three 

equations:  

 0 1 1( ) ( ) ( ) 1n n t nt f t f t i f t n       (2.17 a) 

 

 

   0 1 1 0( ) ( ) cos ( ) ( ) 0n n n t nt f t f t V t f t i f t n L         (2.17 b) 

  0 1 1( ) ( ) ( ) 1n n t nt f t f t i f t n L        (2.17 c) 

Note the constraints imposed in each equation in Eqn. (2.17). For example, Eqn. (2.17 a) holds only 
for those . To derive the boundary conditions, the auxiliary functions, ,  and1n   ( )IFn

( ) ( )II
nF t  

1n   0 L 1L  0( ) cosV t V t

Region 



I II Region IIIRegion 
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( ) ( )III
nF t  a ut any spatial constraint: 

I  (2.18 a) 

re introduced by the following Schrödinger equations witho

 ( ) ( ) ( )
0 1 1

I I
n n t nt F F i F     

   ( ) ( ) ( ) ( )
0 1 1 0 cosII II II II

n n n t nt F F V t F i F       (2.18 b) 

 (2.18 

 (2.17) and (2.18), the auxiliary functions are further required that 

L  (2.19) 

1

 c)  ( ) ( ) ( )
0 1 1

III III III
n n t nt F F i F    

By Eqns.

 

At bound

( )

( )

1

0

I
n n

II
n n

F f n

F f n

  

 
( ) 1III

n nF f n L  

ary 1n   , Eqns. (2.17 a) and (2.18 a) read: 

 0 0 2 tt f f i f     , (2.20) 

I

 

 ( ) ( ) ( )
0 0 2 1

I I
tt F F i F      (2.21) 

are with Eqns. (2.19), (2.20), and (2.21) leads to the boundary condition for the auxiliary 

 in regions I and II at 

(2.22 a) 

ilar procedures will lead to other boundary conditions and they are listed below with derivations 

1  (2.22 b) 

 (2.22 

1  (2.22 

Comp

nctions

Sim

mitted: 

 

0n  : fu

 ( ) ( )
0 0 0

I IIF f F   

o

( ) ( )
1 1
II IF f F   

 c) ( ) ( )III II
L L LF f F 

 d) ( ) ( )
1 1

II III
L L LF f F   

  For the auxiliary functions and the boundary conditions between them, the wave function, ( )nf t , 

is ready to be solved. It usually takes two steps: write down the general forms of the auxiliary 
functions from Eqns. (2.18) ind allividu y, then impose the boundary conditions from Eqn. (2.22) that 

( )nf t  

 

.5): 

 

is the combination of  and 

age, the general forms for  and are inspired by Eqns. (2.4) and 

( )I
nF , ( )II

nF ( )III
nF  in three regions.  

At the first st ( )I ( )II ( )III
nF , nF nF  

(2

 ( ) ( ) ( )1 1( ) kiE t ip na iq naI I ikna I
n k pN N

k

i tF t c e e c e R e 


e 




      (2.23 a) 
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     0( ) ( )1 1

, ,

( ) ( ) ki E m tVII II ikna
n k mN N

k m m

F t c J e e A 0( )V i m tip na iq na
me B e J e   

  
   (2.23 b) 



    

( ) ( )1 1( ) kiE t ip na i tT e eIII III ikna
n kN N

k

F t c e e 




  (2.23 c)  

 
Fig. 2.2 The dispersion of 1D TBM. The right/left-going wave vectors are 
illustrated by blacked/grayed circles individually.(at certain possible 

 

2

1.5

1

0.5

energy) 
 

Note the summation over k in Eqns. (2.23) are transformed into energy-sum which sum over all 

possible energy. The p  and q  are the right-going-k and left-going-k corresponding to energy, . 

 is the The right/left-going-k are in the sense that the group velocities are right/left-going. Fig. 2.2

dispersion of  tha0Ĥ t p  and q  is easily read out. The initial condition is already imposed that 

the waves are incident from region I. Hence, the right-going scattering states are looked for. In Fig. 
2.3, the scattering states composed by these right/left-going Bloch wave vectors, k are exhibited in 

individual regions. The procedures to determine these k are discussed in Appendix A.  

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-2

-1.5

-1

-0.5

0
0

kE
t

kE  
q p 

2
ka

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Fig. 2.3 The scattering states constituted by right/left-going states are also 
exhibited. The right-going states are shown with black color accompanied by 
black right arrows, while the left-going states are in gray color with gray left 
arrows. 

 

  For the 2nd stage, the boundary conditions require these auxiliary functions are equal for all time at 

the boundaries. For example, from Eqns. (2.22 a), (2.23 a) and (2.23 b): 

      0( )

,

( )V i mI i t
p m

m

c R e A B J e


t 
   

 

      (2.24) 

Let 0 s     with , and rearrange the summation as: 

 

s

       

   

0 00

0 0 00
0 0

( )( )

, , ,

( )
s

i s t i m s tVI
p s s s m

s m s

i s tV

c R e A B J e
 

00

0 0

0 , ,

( )m m s m
m s

A B J e

   
      

 

 



    
  

 

   
 

    


   
(2.25) 

Eqn. (2.25) means the states of two energies 1  and 2  are decoupled if   /    . 1 2

Therefore the summation over 0  can be omitted in Eqn. (2.25): 

     0

,0
,

( )s sVi t i t
s s m m s m

s m s

R e A B J e 
  

     (2.26 a) 

, with a short-hand notations that 0m m    , 
0s sR R  , etc. The coefficients 

0

( )

s

I
pc
 

 are also 

placed by re ,0s without losing any gen incident wave i

definite ener

erality. Therefore, the s a single state with a 

gy 0  and unity amplitude.  

 

1n  0 L 1L  0( ) cosV t V t

Region I Region II Region III

( )I i t
pc e p








 0

,

( )V i m t

m
mA J e p 

 


 

i tT e p


i tR e q
 



  0

,

( )V i m t
m

m

B J e q 
 



 





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Eqn. (2.26 a) contains a set of linear equations. The other sets of equations form the rest boundary 

conditions are list below without derivations: 

    0( )0
,0

,

s s m mip a iq a i t ip a iq a
s s m m s

s m s

e R e e A e B e J sV i t
m e 


  (2.26 b)      

   

   0

,

( )m s sip La ip La i t
m m

m sViq La i t
s m s

m s s

A e B e ee J T e     (2.26 c) 

  






0( 1) ( 1) ( 1)( )m m s s sVip L a iq L a i t ip L a i t
m m s m s

s,m s

A e B e J e T e e 


    
   (2.26 d) 

 



  The discussion above concludes that for the presence of time-dependent potential, the incident 

ave with a definite energy, , will be scattering into those states with energies 0sE s     . 0w

The energy, s , are referred to the s-th sideband (the 0-th sideband is denoted as the central 

sideband). The sideband structures for scattering states is determined numerically

ith a cut off

 by Eqns. (2.26) 

, ss Nw . 

2-4 Transmission dip structures 
In this section we have a brief introduction of the form of conductance and density of state in 

rder to explain the transmission dip structures. 

 

o

 +in T RJ J J  (2.28) 

inJ  TJ  RJ  is incident current, transmission current, reflection current, respectively

transmission by observing the current conservation. 

. 

By matching the boundary condition and getting the current in each region we can write the total 

 

T

T

in

J

J

Density of state  w

T   (2.27) 

 can be ritten as 

    0

1

2 2 sin

dN L
D

d at


  ka


   (2.28) 

r zero oEq (2.8) will go to infinity when ka is eithe r n . According to Fig. 2.2 we can observe 
nd bottom  when  is when ka  is zero, the energy is at lower ba ; ka n  the energy is at higher 

ba

ttom. 

Fig. 2.3 present the dip structure by observing the total transmission varies from incident energy. 

This is ec otential. After 

em

nd bottom. Since the density of state at band bottom is so large that we predict the conductance 

will dramatically drop while energy is at band bo

 

 b ause the incident particle exchanges energy with the time-dependent p

itting a photon with energy  the energy is trapped at the band bottom which has large density 
of state, as a result the transmission dip appears. This result inspires us to discover the same physical 
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concept in Graphene. 

 11

In case of mistakes may happen, we introduce a way to check the inaccu

 

racy J  by testing the 

current conservation. Where N  is the amount of data, label the region of current, see Fig 4.1. 

or instance, means we have 100 data and 

i  

2100N   i   F means the II region of current is 

considered. 

  
3 21

3

N

J ij j
j i

J J
N

    (2.29) 

 

 

0

0.8

0.9

1

1 2
0.2

0.3

0.4

0.5

0.6

0.7

0 1 2

 
 

Fig. 2.4 Transmission dip structure appears when the first 

m(emit one photon with energy sideband reaches the band botto

 ). L  refers to the width of barrier in unit of lattice constant. 

  indicates the degree of inaccuracy. 
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Chapter 3  
Theoretical basics in graphene 
 
  The theoretical basics in graphene are briefly presented in this chapter. In Sec. 3-1, the 

tight-binding model in graphene is discussed including band structure and the valley degrees of 

freedom. The 2D Dirac-like effective Hamiltonian of low energy excitations is in Sec. 3-2. In Sec. 
3-3, the exotic phenomena related the chirality of electron called Klein tunneling is given. 

 

3-1 Two dimensional tight-binding Hamiltonian in graphene 
A graphene sheet shown in Fig. 3.1 is a honeycomb structure composed by carbon atoms at every 

corner of hexagons. The structure can be seen as a triangular lattice with a basis of two carbons (A 

and B distinguished by ● and ○, respectively) per unit cell. The primitive lattice vectors 

    3 31 1
1 0 2 02 2 2 2

ˆ ˆ ˆ ˆ,x ya x y a x y         a a a a  x ya a are also exhibited with  being the 

distance between two nearest carbons.  

0a

1a 2a

xa ya

B

A

 
Fig. 3.1 the two dimensional graphene sheet. The honeycomb structure is composed 
by a triangular lattice with two carbon atoms (distinguished by A (●) and B(○)) on 
every lattice site. The conventional primitive lattice vectors,  1 2,a a , are denoted.  

 

In reciprocal space, the primitive lattice vectors are     2 2
1 23 3

ˆ ˆ ˆ ˆ3 ,  3a ax y x y     b b

, and separated into 

by the valley-shaped from ). In

. 

The Brillouin zone of a triangular lattice is a hexagon as shown in Fig. 3.2. The six corners (K points) 

of the hexagon are coupled by { ,b b two distinct groups, 1K  and 2K  (in Fig. 
3.2). These two points can be identified  dispersion (Fig. 3.3  graphene, 

there are plenty of physics related to the two valleys and these will be introduced in the following 

1 2}
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sections in this chapter.

 

 
Fig. 3.2 the Brillouin zone. The six K-points are categorized into two groups: 

1b

2b

1K2K

2K

2K

1K

1K

4
1 3 3

ˆ (1,0)
a

Kx  K  and 4
2 3 3

ˆ ( 1,0)
a

Kx    K . 

 
The basic dispersion feature of graphene can be characterized by the 1st nearest neighbor 

tig

 

ht-binding model: 

 
 0

,

, ; 1, ; , 1; , ;
ˆ

, ; 1, ; , 1; , ;m n

m n B m n B m n B m n A
H t

m n A m n A m n A m n B

     
  

     
   (3.1) 

The eigen-basis of Eqn. (3.1) is in Bloch type: 

  
,

; , ;
m n

A C m n B  (3.2) 

By Eqns. (3.1) and (3.2), the eigenvalue equation, 

,mni
A Be C m n  k Rk

Ĥ Ek k , can be casted into 

 
B

0

0
A A

B

h C C
E

C Ch

    
 


   
   

k

k
 

, (3.3) 

with  

 
    
    

1 2

1 2

0 0

0 0

1 1 2 cos

1 1 2 cos

y y

y y

ik ai i
x x

ik ai i
x x

h t e e t e k a

h t e e t e k a

   

 

      

      

k a k a
k

k a k a
k


 
, and

.

From Eqn. (3.3), the energy dispersion has an analytical form: 

     2
0 4cosy y x x x xk ak k   (3.4) 

e Bloch electrons in graphene are related to two-component columns 

 .  (3.5) 

( ) 1 4cos cosE h h t k a k a     k 

Solutions of Eqn. (3.3) reveal th

named pseudo-spin,  

( )

( )
A

B

C

C

 
  
 

k

k

k

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In low energy limit, the pseudo-spin is modeled by the 2D Dirac electron’s chiralty. The details are 

resented in next section. 

 

p

  If there is an onsite energy difference, 2 , between A and B atoms, a gap is introduced. Thus, the 

Hamiltonian in Eqn. (3.1) is modified as: 

 
 0

,

ˆ
, ; , ;, ; 1, ; , , ;m n

H t
m n B m n Bm n A m n A m n A m n B ,

, ; 1, ; , 1; , ; , ; , ;

1; m n

m n B m n B m n B m n A m n A m n A       
      

      

Eqns. (3.3) and (3.4) are also replaced accordingly: 

B


   (3.6) 

A A
h C C

E
C Ch

    
  

B


   
  k 

k

 
 (3.7) 

      2 2 2
0( ) 1 4cos cos 4cosx x x xk a k a  (3.8) y yE h h t k a        k kk 

 

Fig. 3.3 shows the linear dispersions of gapless graphene at six K points. 

K points are modeled by the effective Hamiltonians, which are 

identical to those of the two-dimensional massless/massive Dirac fermions. Fig. 3.4 displays these 

re

The dispersions for 

gapless/gapped graphene near six 

lativistic dispersions. The effective Hamiltonians is discussed in next section. 

 

 
Fig. 3.3 Left :Dispersion energy spectrum in Graphene. Right : zoom in one of Dirac 
cones. Cite from The electron properties of Graphene (2009) 
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Fig. 3.4 dispersion relation of gapless/gapped graphene along . (a) 

gapless graphene, (b) gapped graphene, and (c) the related symmetry 
points in the Brillouin zone. 
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3-2 Effective Hamiltonian for low energy excitations 
The effective Hamiltonian can be derived from small-q expansion at  and : 1K 2K

   

  

0
ˆ

0
ˆ

3

2
3

2


Kx x y F x y

Kx x y F x

at
h q iq v q iq

at
h q iq v q iq





 

 

 

 

  

  

k q

k q



 
 

y

 (3.9) 

; a valley-index, , is introduced to indicate )1( 1  K or )2 ( 1  K   valleys. Therefore, from 

re: Eqns. (3.3) and (3.7) the effective Hamiltonians a

 ˆ 0

0
x y

x y

q iq  

 
eff FH v

q iq
     (3.10) 

for gapless graphene while  , 

 
 

F x y

F x y

v q iq

v q iq





  
 
   

ˆ
effH  (3.11) 

FE v q q , and , for gapped graphene. The dispersion of Eqns. (3.10) and (3.11) are 

2 2 2
FE v q   q , respectively. Compare with the massless/massive relativ rsions, istic dispe

E c k k , and 2 2 2 4
0c k m c  k , the electrons in graphene with 0E t  behave as relativistic 

2
0and  /F Fv m v .  

 

E

fermions with the replacements: 

, qusiparticles in graphene act like relativistic particles, Dirac fermions. 

 can make perfect transmission resulting from Chiral nature through a 

ba

c 

3-3 Klein tunneling: 
When incident angle is zero

At this incident angle, particle

rrier no matter how high or wide it is. This exotic phenomenon is called Klein tunneling. 

To prove that, we can substitute 0yk  into Eqn. (3.3) then we have 

 A AC Ch
E

0

0 B Bh C C

   



   

 


  k 
(3.6) 

 Eqn. (3.5) are

k   

 

2E h  k

ely.

Where the eigenvalues of . The two eigenvalues are shown in Fig 3.5, red and 

 These two eigenveblue curve refer to hk  and h k , respectiv ctors will be orthogonal to each 
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other; hence the incident wave and reflection wave cannot propagate in the same valley. Since we 

have already known it is impossible to have transmission and reflection wave in the same valley, so 

we have the following question. Is there any possible to propagate from the other valley? Here since 

the incident energy we select is so close to Fermi energy that the reflection wave is very hard to 

propagate from the other valley due to large momentum transform. Hence the orthogonal property of 

eigenvectors and large momentum transform leads the transport to a perfect 

tunneling.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-3

-2

-1

0

1

2

3
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Fig. 3.5 Dispersion relation with n rmal incident particle. Red 

and blue curve refer to 

o

 and hhk  k , respectively. valley is 

 

1K

close to the cross point of these two curves at right hand side, the 

other cross point is labeled by 2K y.  valle

2
ka


0

kE
t

h  k

h   k



Chapter 4  
Time-dependent potential barrier in graphene 
 

  In this chapter, the time-dependent transport theory in graphene is exhibited. The system we 

interesting in is presented in Sec. 4-1. For the translational invariant along y-direction, the 2D 

tight-binding Hamiltonian is reduced into an 1D Schrodinger equation. Based on this 1D equation, 

the current and continuity equation is discussed in Sec. 4-2. To solve the scattering states with the 

presence of time-dependent potential barrier, the boundary conditions are derived in Sec. 4-3. 

 

4-1 One-dimensional Schrödinger equation for graphene 
The system with time-dependent potential is demonstrated in Fig. 4.1. A graphene sheet is divided 

into three regions for the presence of a potential barrier. The barrier is applied along the armchair 

orientation hence both intra- and inter-valley scattering are allowed in transport. Fig. 4.1 also 

displays the conventional primitive lattice vectors, 31
1 02 2

ˆ ˆ( )x y a  a  and 31
2 02 2

ˆ ˆ( )x y a a , 

where  is the distance between two nearest carbon atoms. Therefore, any lattice vector is 

expressed by 
0a

1 2mn m n R a a . However, due to the translational invariance along y-direction, 

another more co  basis set is introduced: 

 

nvenient lattice

0 03
1 2 2

ˆ( ) ( )mn m n n m x n m      2
ˆa a

x yy M N R a a a a  (4.1) 

ith 0

2
ˆa

x xa  and 03
2

ˆa
y ya ; ( , ) ( , )M N n m n m  

e characterized by M

. Within this M

gion I, II, and III) a

-N coordinate, the three w

regions (Re r 0 , 0 M L  , and M L , respectively 

(Fig. 4.1 o e the one-dimensional (1D) 

Schrödinger equation in graphene.  

 

  The Hamiltonian of this system is 

). In the f llowing, this new basis set is employed to deriv

 
 
 

 

0 ( )H V t

0
,

,

ˆ ˆ

1, 1; 1, 1; , ; , ;

1, 1; 1, 1; , ; , ;

, ; , ; , ; , ;
( ) cos

, ; , ; , ; , ;

M N

M N

M N A M N A M N A M N B
t

M N B M N B M N B M N A

M N A M N A M N A M N A
V M t

M N B M N B M N B M N B


       
   

       
                  





 (4.2) 

where defines the size of gap and the amplitude of the time-dependent barrier has the spatial 

form: 

2  
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0 0 or 

0

( )
0

M M L
V M

V M L

 
   

. 

ance along y, the wave function is characterized by a single , and Since the translational invari yk

written as 

 

  
 

,

, ,
,

( , ; ) , ; ( , ; ) , ;

( ; ) , ; ( ; ) , ;y y

y y

A B
M N

iNk a

A k B k
M N

f M N t M N A f M N t M N B

e f M t M N A f M t M N B .

  

 




 (4.3) 

For abbreviated notation, , ( ; ) ( ; ) for  or 
ykf M t f M t A B    . 

 
Fig. 4.1. The graphene sheet is divided into three regions. In region II ( 0 M L  ), a 
time-dependent potential, 0( ) cos( )V t V t  is presented. The sublattices A and B are 

ors, denoted as ○ and ●, respectively. The conventional primitive lattice vect  1,a a2 , 

and x-y lattice vectors,  ,x y , are labela a ed. Each lattice site can be represented by 

1 2 ( ) ( )x y x ym n n m n m M N      a a a a a a . 

 

  Combination of Eqns. (4.2) and (4.3) results in  

A

1   M      0

1

0

1

N

n m






M n m  L L   1
B

ya

Region

I

Region

II

Region

III

xa

1a 2a
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 
 

 

0
,

0
,

1, 1; , ;

( ; ) 1, 1; 1, 1; , ;

( ; ) , ; ( ; ) , ;
cos

( ; ) , ; ( ; ) , ;

( ;

y y

y y y y

iNk a

M N A

A AiNk a iNk a

M N B B

t A

N A M N A
t e

f M t M N B M N B M N B

f M t M N A f M t M N A
V t e e

f M t M N B f M t M N B

i f M



  
 

       
                   

 





( ; ) 1, 1;Bf M t M N A M    

 
,

) , ; ( ; ) , ; ( 1)y yiNk a

B
M N

t M N A f M t M N B e  

 (4.4) 

Inner product Eqn. (4.4) with , ;M N  , we have 

  (4.5) 

By defining 

 

 
  

 
  

0

0

( 1; ) ( 1; ) ( ; )

( ) cos ( ; ) ( ; )

( 1; ) ( 1; ) ( ; )

( ) cos ( ; ) ( ; )

y y

y y

ik a

B B B

A t A

ik a

A A A

B t B

t f M t f M t e f M t

V M t f M t i f M t

t f M t f M t e f M t

V M t f M t i f M t





      
    

      
   

1

1

( ; )0ˆ ;
( ; )0

y y

y y

ik a
A

Mik a
B

f M te
T

f M te

   
    

   
f , 

Eqn. (4.5) is rewritten as 

  ˆ ˆ   0 1 1 ˆ ( ) cosM M x M M z M tV M t i         t T T f f f f f Mf  (4.6) 

. 

ent and continuity equation 
sity is defined as  

Eqn. (4.6) is the 1D Schrödinger equation for the system

 

4-2 Curr
  From the Schrödinger equation, the probability den

 †( ; ) /M M xM t a  f f .  (4.7) 

o derive the tight-binding version of continuity equation and the related current form, dif

 

T ferentiate 

Eqn. (4.7) w.r.t. time and combine with Eqn. (4.6): 

   

   

 

† † f f

† † † †0 0
1 1 1 1

† † † †0
1 1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

t M M M t M
t

x x

M M M M M M M M
x x

M M M M M M M M
x

a a

it it
T T T T

a a

it
T T T T

a



   

   


   

   

   

f f

f f f f f f f f

f f f f f f f f

 (4.8 a) 
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   † † † †0
1 1 1

ˆ ˆ ˆ ˆ
M M M M M M M M

x

it
j T T T

a
   

   

 
    

 

1 MT 


f f f f f f f f     (4.8 b) 

Eqn. (4.8 b) defines form of  for the 1D Schrödinger equation. There is an arrow below each 

term in Eqn. (4.8 b) indicating the direction of particle flux. These arrows reveal 

 j

 M j  is 

proportional to outgoing flux. This engages us to conjecture the form of current, which is 

proportional to right-going flux: 

 † † † †
1 1 1

ˆ ˆ ˆ ˆ
M M M M M M M M Mj T T T T  

   

    1f f f f f f f f
   

 

To investigate this conjecture,  M j  is examined in the long wavelength limit. In this limit, the 

wave function, 1M f , is expanded as 

   
2

2
1 ( )

2
x

M x x M x x xM M

a
Ma a a      f f f f f   (4.9) 

herefore,  T

     0
† †ˆ ˆ

M x x M x xM M
j it a T T       Mf f f f  (4.10) 

onstrates the current form in the long wavelength lim

 

Eqn. (4.10) dem it: 

   

   

0

0
1 1 1 1

† † †ˆ ˆ
2

M x x M M x MM

M M M M M M

it
T T   

 

     f f f f f f
 (4.11) 

Eqn. (4.11) confirms the conjecture from Eqn. (4.8). 

 The time average current is spatially independent. To show this, 

† †ˆ ˆj it a T T    f f f f

 

1M Mj j   is calculated: 

 

   

   
1 1 1 1

0

† † †ˆ ˆ
M M M M M MT Tit

j j
   

    
f f f f f f

 

1

2 1 1 2

0
1 1 2 1 1 2

1
0

† † †

† † † †

†

2 ˆ ˆ

ˆ ˆ ˆ ˆ
2

ˆ

2

M M

M M M M M M

M M M M M M M M

M M

T T

it
T T T T

T
it



   

     



  
 
      

   



f f f f f f

f f f f f f f f

f f 1
† ˆ

M MT  f f 1 1

2 1 1 2 1

† †

† † †

ˆ ˆ

ˆ ˆ ˆ

M M M M

M M M M M M

T T

T T T

 

    

  

 

f f f f

f f f f f f 1
† ˆ

M MT  f f 
    1

1

2 M Mj j

 
 
 
 
 

   

  

Because ( ) ( ) i t
M Mt e 



 f f , the time average of  M j  is 
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     †

† ( )

,

/

( ) ( ) ( )

M t t M M xt t t

i t
M M

x t

j M a

i
e

a
 

 



     



     

  

f f

f f  0
 

Hence, 1 0M Mt t
j j  



M L

; i.e. the time average current is spatially independent. 

4-3 Boundary conditions and scattering states 
  The 1D Schrödinger equation implies the boundary conditions between the three regions. To 

derive these conditions, the Schrödinger equation (Eqn. (4.6)) is divided into three equations:  

  (4.12 a)  0 1 1
ˆ ˆ ˆ 1M M x M z M t Mt T T i M         f f f f f

 
 

 
0 1 1

0

ˆ ˆ ˆ
0

cos

M M x M
t M

M z M

t T T
i

V t



 
 

        
   

f f f
f

f f
 



 (4.12 b) 

  (4.12 c)  0 1 1
ˆ ˆ ˆ 1M M x M z M t Mt T T i M L         f f f f f

Note the constraints imposed in each equation in Eqn. (4.12). For example, Eqn. (4.12 a) holds only 

for those 1M   . To derive the boundary conditions, the auxiliary functions, ( )I
MF , , and 

 are introduced by the following Schrödinger equations without any spatial constraint: 

( )II
MF

( )III
MF

  ( ) ( ) ( ) ( ) ( )
0 1 1

ˆ ˆ ˆI I I I I
M M x M z M tt T T i         MF F F F F  (4.13 a) 

 
 

 

( ) ( ) ( )
0 1 1 ( )

( ) ( )
0

ˆ ˆ ˆ

cos

II II II
M M x M II

t MII II
M z M

t T T
i

V t



 
 

      
   

F F F 
 F

F F
 (4.13 b) 

  (4.13 c)  ( ) ( ) ( ) ( ) ( )
0 1 1

ˆ ˆ ˆIII III III III III
M M x M z M t Mt T T i        F F F F F

By Eqns. (4.12) and (4.13), the auxiliary functions are further required that 

  (4.14) 

( )

( )

( )

( ) ( ) 1

( ) ( ) 0

( ) ( )

I
M M

II
M M

III
M M

t t M

t t M

t t L M

 



 

F f

F f

F f

L



 

At boundary 1M   , Eqn. (4.12 a) read as: 

  0 0 2 1 1
ˆ ˆ ˆ x zt T T i          1t f f f f f , (4.15) 

and from Eqn. (4.13 a): 

  ( ) ( ) ( ) ( ) ( )
0 0 2 1 1 1

ˆ ˆ ˆI I I I
x zt T T i          I

t F F F F F  (4.16) 
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Combination of Eqns. (4.14), (4.15), and (4.16) leads to the boundary condition at : 0M 

  (4.17 a) ( ) ( )
0 0 0( ) ( ) ( )I t t F f F II t

t

t

t

Similar procedures will lead to other boundary conditions and they are listed below with derivations 

omitted: 

  (4.17 b) ( ) ( )
1 1 1( ) ( ) ( )II It t   F f F

  (4.17 c) ( ) ( )( ) ( ) ( )III II
L L Lt t F f F

  (4.17 d) ( ) ( )
1 1 1( ) ( ) ( )II III

L L Lt t   F f F

For the auxiliary functions and the boundary conditions between them, the right-going scattering 
states, , is ready to be solved. As indicated in Chapter 2, the procedures are departed into two 

steps: write down the general forms of the auxiliary functions from the Schrodinger equations in 
Eqns. (4.13) individually, then impose the boundary conditions from Eqn. (4.17) that  is the 

combination of 

( )M tf

( )M tf
( )I

MF , , and  in three regions.  ( )II
MF ( )III

MF

 

At the first stage, the general forms of ( )I
MF , ( )II

MF , and  are inspired by Eqns. (2.4) and 

(2.5): 

( )III
MF

 
 ( ) ( )

( ) ( ) ( )

( )( ) ( )1

( ) ( )1

,

( ) x x x

x x

x

x x

iE k t ik MaI I
M k kN

k

ip Ma iq MaI i

p p qN

t c e e

c e R e e
 
 

  
  

t 


 







 




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The pseudo-spin, 
xk , is introduced in Chapter 3. Note the summation over xk  in Eqns. (4.18) are 

transformed into summation over all possible energy, , and valley-index,  (with 1   for K1 and 

2   for K2). Fig. 4.2 displays the dispersion relation, ( )xE k , with three typical values of . For 

the valley structures, each valley, 

yk

 , contributes a right-going-k, ( )p 
 , and a left-going-k, ( )q 

  for 

a given energy, . As mentioned in Chapter 2, the right/left-going-k are in the sense that the group 

velocities are right/left-going. Fig. 4.3 illustrates the right-going scattering states constituted by these 
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( )p 
  and ( )q 

 . In Appendix A, the procedures to determine these Bloch wave vectors are discussed.  



 
 

Fig. 4.2 dispersion relation with three typical values of . yk 1M  and 2M  

are the first Brillion zone boundaries in one dimensional momentum space 
of graphene.  
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Fig. 4.3 The scattering states constituted by right/left-going states are also 

exhibited. The right-going states are shown with black color accompanied 

by black right arrows, while the left-going states are in gray color with 

gray left arrows. 

 

  For the 2nd stage, the boundary conditions require these auxiliary functions are equal for all time at 

the boundaries. For example, from Eqns. (4.17 a), (4.18 a) and (4.18 b) at : 0M 
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Let 0 s     with , and rearrange the summation as: s
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Eqn. (2.25) means the states of two energies 1  and 2  are decoupled if .  1 2 /   

Therefore the summation over 0  in Eqn. (4.19) can be om

  
itted: 
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with a short-hand notations that 

  
         

, 0m m    , 
0s sR R  , etc. Because we are interesting in the 

scattering between valleys, the incident wa gle valley, 0ve is characterized by a sin   with definite 

energy, 0 . Thus, the coefficients, ( )

0
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p
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Eqn. (4.20 a) contains a set of linear equations. The other sets of equations form the rest boundary 

conditions are list below without derivations: 
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

The transmission conductance and sideband structures for the time-dependent potential barrier in 
graphene is studied via numerically solving Eqns. (4.20) with a cut off, 

 (4.20 d) 

ss N . These results are 

resented in Chapter 5.  
 
p
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Chapter 5  
Results and discussions 
 

In this chapter we have analyzed the conductance of a graphene with electrons normally incident 

to the time-dependent barrier. The results are categorized into two groups: high energy level ( 0E t≈ ) 

and low energy level ( 00.2E t< ). 

 

The transmission dip structures resulting from the band top/bottom are presented in Sec. 5-1. We 

also discuss the relation between conductance and the barrier width in Secs. 5-2 and 5-3. In Sec. 5-2, 

an interesting phenomena we called central band refocusing (CSR) due to the interplay between 

Klein tunneling and linear dispersion. In Sec. 5-3, we demonstrate the transmission oscillating with 

barrier width as the incident energy lies on the dips. Such oscillation is related to Fabry-Perot 

resonance. However, the dips play some role and the oscillating period is double to that of ordinary 

Fabry-Perot experiments. 

 

5-1 Dip structures of conductance 
The transmission dips are observed as one of the sidebands lies close to band top/bottom. The 

physics origin of the dips is the diverse of density of state at band top/bottom. Besides, the current of 

these states are close to zero. Therefore, if one of the sidebands near band top/bottom, the 

transmission to this sideband is enhanced and the electrons are trapped within this sideband.  

 

For gapped graphene, the band top/bottom naturally exist in low energy regime. Figs. 5.1 and 5.3 

show there are two dips which relate to conductance band bottom ( E = ∆ ) and valance band top 

( E = −∆ ) respectively. Figs. 5.2 and 5.3 also reveal the difference between 2ω = ∆ (Fig. 5.1) and 

2ω ≥ ∆ (Fig. 5.3). For gapless graphene, the band top/bottom are at energy 0t ( 0t− ) and Fig. 5.5 

shows the transmission dips relating to band top ( 0E t= ). Fig. 5.7 shows the number of sideband we 

take into consideration would affect the accuracy of results. 

 

In case of the wrong data we may get, we introduce a way to calculate the accuracy by testing the 

current conservation. Where N  is the amount of data, i  label the region of current, see Fig 4.1. 

For instance, 100N =  means we have 100 data and 2i =  means the II region of current is 

considered. 

 ( )
3 21

 
3

N

J ij j
j i

J J
N

σ = −∑∑  
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Effective density of state fixing ky can be written as 

 ( ) ( ) ( )
( ) ( ) ( )

2 22 4cos 4cos

2 4 sin 2cos sin
x x x x

x x x x x x

k a k adN LD
d a k a k a k a

ε
ε π

∆ + + = =   − −    
  

Effective density of state will go to infinity when xk is at Dirac cone.  
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Fig. 5.1. The transmission dips appear when the incident Energy is 1 ω  

away from the band edges ∆ and −∆  which have large effective density 

of state by fixing ky. L  refers to the width of barrier. Jσ  indicates the 

degree of accuracy. The arrows show that incident energies ω−∆ +   and 

ω∆ +   emit a photon with ω  and be trapped at valence/conduction 

band edge. 
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Fig. 5.2. Shown in the two inserts are blow-ups of the T-E curves near 

the vicinity of the two dip structures in Fig. 5.1. Here δ = 1510− ω . 

Whereas the figures show that T do not drop to zero at the two dip 

structures, they confirm that we have found the two minimum T 

values. 
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Fig. 5.3. The transmission dips appear when the incident Energy is 1 ω  
away from the band edges ∆ and −∆  which have large effective 
density of state by fixing ky. L  refers to the width of barrier. Jσ  

indicates the degree of accuracy. 
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Fig. 5.4. Shown in the two inserts are blow-ups of the T-E curves near 

the vicinity of the two dip structures in Fig. 5.3. Here δ = 1510− ω .  
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Fig. 5.5. The transmission dips appear when the incident Energy is 1 ω  
away from the band edges 2E  which have large effective density of state 

by fixing ky. L  refers to the width of barrier. Jσ  indicates the degree of 

accuracy. 
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Fig. 5.6. Shown in the insert is a blow-up of the T-E curve near the 

vicinity of the dip structure in Fig. 5.5. Here δ = 1510− ω . 
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 Fig. 5.7. Numerical convergence of our calculation is shown when the 

number of sidebands sN included in our calculation is increased 

systematically, with 1,  2,  5,  10sN = , respectively, in Figs. 5.7(a)-(d). 

Correspondingly, both the accuracies Jσ and the T-E curves improve  

rapidly and converge nicely in Fig. 5.7 (d). 
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5-2 Central band refocusing (CSR) 
In this section, the relation between transmission and barrier width is investigated in the low 

energy regime. An exotic phenomenon, the central band refocusing (CSR), is observed that the 

transmission can be periodical dominated by the central band as the barrier width increasing. Fig. 5.5 

shows the CSR profile, the total transmission is fixed at one due to the Klein tunneling. However, the 

transmission via other sidebands oscillate with the barrier width. The phenomena of CSR is 

established by three elements: (1) the Klein tunneling, (2) nearly null inter-valley scattering, and (3) 

linear dispersion. The first two factors forbid any reflection waves that only the central band exists in 

Region I. The other sidebands are allowed in Region II with only forward wave vectors (null 

inter-valley transition and Klein tunneling). More specifically, Eqns. (5.1) and (5.2) are the wave 

functions for Region I and Region II with the incident wave at K1 valley and energy 0E :  
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 (5.2) 

The coefficients, (1)
sA , are determined via Eqn. (4.17 a), only (the difference between Eqns (4.17 a) 

and (4.17 b) is the same order with that of the inter-valley scattering. That is they are identical in the 

sense of absence of inter-valley scattering.). Therefore these (1)
sA -coefficients are irrelevant to the 

boundaries at  and 1M L L= + . Furthermore, Eqn. (4.17 a) forces the wave function of the sideband 

components other than central band are zero at 0M = . 

 

The above discussions only complete the half of the story. The other half is from the linear 

dispersion that the wave vectors for different sidebands are characterized by: 

 (1) (1)
0mp p m p= + ∆  

, where (1)
0p  is the wave vector of the central band and (1)

mp  that of the m-th sideband with energy 

0mE E m ω= +  . Hence, the wave function in Region II is periodic with the period determined by 

2 / 2 / Fp vπ π ω∆ =  .  

 

  Fig. 5.9 shows the absolute wave function components for individual sidebands for the cases of 
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two different width of potential, L=250 and L=500. It demonstrates that the coefficients of (1)
sA  are 

determined, only, by left boundary of the barrier. 

 

Fig. 5.10 shows how different V  affect CSR. Compare to Fig. 5.8, we double the amplitude of 

barrier, we find that the contribution to conductance is separated by more sidebands and the period 

does not change.  

 

Fig. 5.11 shows how different ω  affect CSR. Compare to Fig. 5.8, we have one-half frequency; 

we find that not only the contribution to conductance which is separated by more sidebands, the 

period is also double. 
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Fig. 5.8 (a) Central band refocusing (CSR) profile. The period of oscillated 
sideband conductance can only determined by the difference between forward 
wave vectors which are 0mk k−  ( )1m = ± . (b) Compare central band with 

sidebands which absorb photons. (c) Compare central band with sidebands 
which emit photons. The =0∆  means this system is a gapless graphene. L  
refers to the width of barrier in unit of xa . Jσ  indicate the degree of accuracy. 
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Fig. 5.9 the densities of individual sidebands in Region II with two barrier 

widths, L=240 and L=500. 
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Fig. 5.10 (a) Central band refocusing (CSR) profile applying with double 
amplitude of time-dependent potential. The period of oscillated sideband 
conductance can only determined by the difference between forward wave 
vectors which are 0mk k−  ( )1m = ± .(b) Compare central band with sidebands 

which absorb photons. (c) Compare central band with sidebands which emit 
photons. The =0∆  means this system is a gapless graphene. L  refers to the 
width of barrier in unit of xa . Jσ  indicate the degree of accuracy.  
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Fig. 5.11 (a) Central band refocusing (CSR) profile applying with frequency 
is one-half of that in Fig. 5.6. The period of oscillated sideband conductance 
can only determined by the difference between forward wave vectors which 
are 0mk k−  ( )1m = ± .(b) Compare central band with sidebands which absorb 

photons. (c) Compare central band with sidebands which emit photons. The 
=0∆  means this system is a gapless graphene. L  refers to the width of 

barrier in unit of xa . Jσ  indicate the degree of accuracy. 
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5-3 Non-typical Fabry-Perot resonance 
In this section, we present the Fabry-Perot resonance as the incidence energy lies on dips. For the 

dips enhance reflection, the interference between forward and backward waves takes place inside the 

region of potential barrier. To simplify the analysis, the parameters are specified such that 

transmissions and reflections are dominated by two sidebands.  

 

Fig. 5.12 displays the Fabry-Perot resonance with K-valley incident and the 1st sideband energy, 

1 0 0E E tω= + = . The transmission is dominated by central band and the oscillating period is 

determined from the difference between wave vectors in the central band, (2) (1)
0 02 / ( ) 26.5 xq p aπ − = . 

However, the period is 53 xa , double to that of estimated.  

 

Also we can observe the dip structure by selecting certain barrier width in Fig. 5.8. In Fig. 5.13 we 

give a series of dip structure by varying with barrier width. It is interesting that we can control the 

dip structure to be survived or not. We can reopen the Klein-tunneling; we can make zero 

transmission as well by choosing certain barrier width. 

 

Fig. 5.14 demonstrates the Febry-Perot resonance for gapped graphene at low energy region with 

size of gap = 2∆ . The incident wave is at K-valley and the next sideband energy lies on the 

conduction band edge ( 1 0E E ω− = − = ∆ ).  
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Fig. 5.12 Non-typical Fabry-Perot resonance for the case when the incident energy stays at the dip 

structure. The incidence energy 0 0E t ω= −   is at an ω  below the band top 0t . The choice of 

the time-modulated potential parameters are such that only up to first-sideband processes are 

important. The curve shows the dominance of the central band in the transmission. The L-period 

cannot be explained by the usual Fabry-Perot resonance condition: (2) (1)
0 02 / ( ) 26.5 xq p aπ − = ,where  

)2(
0q , )1(

0p  are wavevector-pairs for the elastic channel. It is explained by a non-typical Fabry-Perot 

resonance that connects wavevector-pairs between the central and the first-sideband channels.  
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Fig. 5.13 T-E curves for selected L values in Fig. 5.12, which show that the 

dip structures can be fine-tuned by L.  
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Fig. 5.14 Non-typical Fabry-Perot resonance for the case when the system stays at the dip structure, 

with low incident energy, and the graphene is gapped . The incident energy 0E ω= ∆ +   is at an 

ω  above the band bottom ∆ . The observed physics in Fig. 5.12 remain valid here. The L-period  

is the result of a non-typical Fabry-Perot resonance condition. 
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Appendix A 
 
The x component of momentum we choice in calculation is quite important. By Eqn.(A1) we can get 

four momentum by given energy and yk . Two is for forward propagating mode, the other two is for 

backward propagating mode. 

 

( )2 2
2 21

cos sin1
cos

2

y y y y
x

x

k a E k a
k

a
−
 − ± − =
  
 

 

In the following discussion we replace xk  with p  and q  to present the forward and backward 

propagating momentum, respectively. 

 Momentums can be divided into two parts. One is real part and the other one is imaginary part. The 

sign of real part decide which valley the momentum belongs to. We set up τ  as valley index. Here 

the valley index was accompany with momentum ( )p τ , we define ( )1p , ( )1q ( ( )2p , ( )2q ) as 

K ( )'K valley.  

The sign of imaginary part should be treated very carefully to prevent explosion from wave function. 

It should be positive when the real part of momentum is positive and be negative when the real part 

of momentum is negative. For example, in Eqn.(A2) if the imaginary part of p is negative, then 

m xip Mae
η

 will come to be infinity while M is increasing. However, it is wrong because when the wave 
is propagating within potential area, it should be decay while the propagating distance is increasing. 

 
( )

( )

( )

( )
( )

( )
( )

, ,

( ) ( )
( ; ) ( ) ( )

( ) ( )
x x miMp a iMq aA l A l iE tII

l m l l m l
m l B l B l

c p c q
M t a J z e b J z e e

c p c q

τ τ
τ τ

τ τ
τ τ

τ

ψ −
− −

    
 = +           

∑  (A2) 

 

There are two cases, which have different dispersion energy profile owing to 
2y yk a π

>  and 

2y yk a π
<  according to Eqn.(A.1). Hence, the dispersion confined in Brillouin zone will be 

discussed separately. The different energy levels also lead to different scenario, which need to be 

discussed individually.
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Case(a): 
2y yk a π

<  
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Fig.A.1: Case(a) Energy dispersion fixing ( )0.2yk K=  which means 
2y yk a π

< . The band bottom 

is flat. The dashed lines divide energy levels into different scenario, which need to be discussed 

individually. We will get 4 momentum from Eqn(A.1). In regions 1 1 3 3, ,E E E E E E E− −< < > <  

we get 4 complex wave vectors. In regions 2 3 3 2,E E E E E E− −< < < <  we get 2 complex 2 real 

wave vectors. In regions 1 2 2 1,E E E E E E− −< < < <  we get 4 real wave vectors. We define that if 

xk  is positive corresponding to the energy region we focus on then we name it K-related wave 

vector, contrary to K related wave vector if xk  is negative then we name it K’-related wave vector. 

And we define right-going wave vector as p  left-going wave vector as q . Here the valley index 

was accompany with momentum ( )p τ , we define ( )1p , ( )1q ( ( )2p , ( )2q ) as K ( )'K valley.  X-axis is 

momentum xk  in unit of 
0

4

3 3
K

a
π

= ;Y-axis is energy in unit of 

0 2.8t ev= .

( ) ( ) ( )1 2 3 1 1 2 2 3 3sin , 5 4cos , 5 4cos , , ,y y y y y yE k a E k a E k a E E E E E E− − −= = − = + = − = − = −  
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FigA.2.Left: Plot momentum ( )1p  in real(Blue circle) and imaginary(Red cross) part. Fix yk  at 

0.2K. Right: Energy dispersion, which used to compare with the left figure. The red line label the 

momentum we are discussing. According to energy dispersion plot with red line, the group velocity 

is always positive. In regions 2E E> , 3E E−< , 1 1E E E− < <  ( )1p  is given by evanescent mode. 

In regions of 1 2E E E≤ ≤ , 3 1E E E− −< < , ( )1p  is given by propagating mode. The imaginary part of 

( )1p  become larger as the energy is further away from the band bottom, and become smaller as the 

energy is closer toward to the band bottom. 
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 Fig. A.3.Left: Plot momentum ( )2p  in real(Blue circle) and imaginary(Red cross) part. Fix yk  at 

0.2K. 

Right: Energy dispersion, which used to compare with the left figure. The red line label the 

momentum we are discussing. According to energy dispersion plot with red line, the group velocity 

is always positive. In regions 2E E−<  , 3E E> , 1 1E E E− < <  ( )2p  is given by evanescent mode. In 

regions 1 3E E E≤ ≤ , 2 1E E E− −< < , ( )2p  is given by propagating mode. The imaginary part of ( )2p  

become larger as the energy is further away from the band bottom, and become smaller as the energy 

is closer toward to the band bottom. 
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Case(b): 
2y yk a π

>   
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 Fig.A.4Energy dispersion fixing ( )0.8yk K=  which means 
2y yk a π

> . The band bottom is flat. 

The dashed lines divide energy levels into different scenario, which need to be discussed individually. 

We will get 4 wave vector from Eqn.(A.1). In regions 1 1 3 3, ,E E E E E E E− −< < > <  we get 4 

complex wave vectors. In regions 2 3 3 2,E E E E E E− −< < < <  we get 2 complex 2 real wave 

vectors. In regions 1 2 2 1,E E E E E E− −< < < <  we get 4 real wave vectors. We define that if xk  is 

positive corresponding to the energy region we focus on then we name it K-related wave vector, 

contrary to K related wave vector if xk  is negative then we name it K’-related wave vector. And We 

define right-going wave vector as p  left-going wave vector as q  respectively. Here the valley 

index was accompany with momentum ( )p τ , we define ( )1p , ( )1q ( ( )2p , ( )2q ) as K ( )'K valley. X-axis 

is momentum xk  in unit of 
4

3 3
K

a
π

= ;Y-axis is energy in unit of 0 2.66t ev=  

( ) ( ) ( )1 2 3 1 1 2 2 3 3sin , 5 4cos , 5 4cos , , ,y y y y y yE k a E k a E k a E E E E E E− − −= = − = + = − = − = −  
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 Fig.A.5 Left: Plot momentum ( )1p  in real(Blue circle) and imaginary(Red cross) part. Fix yk  at 

0.8K. Right: Energy dispersion, which used to compare with the left figure. The red line label the 

momentum we are discussing. According to energy dispersion plot with red line, the group velocity 

is always positive. In regions 3E E> , 2E E−< , 1 1E E E− < <  ( )1p  is given by evanescent mode. In 

regions 1 3E E E≤ ≤ , 2 1E E E− −< < ( )1p  is given by propagating mode. The imaginary part of ( )1p  

become larger as the energy is further away from the band bottom, and become smaller as the energy 

is closer toward to the band bottom. 
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Fig.A.6 Left: Plot momentum ( )2p  in real(Blue circle) and imaginary(Red cross) part. Fix yk  at 

0.8K. Right: Energy dispersion, which used to compare with the left figure. The red line label the 

momentum we are discussing. According to energy dispersion plot with red line, the group velocity 

is always positive. In regions 2E E> , 3E E−< , 1 1E E E− < <  ( )2p  is given by evanescent mode. In 

regions 1 2E E E≤ ≤ , 3 1E E E− −< < , ( )2p  is given by propagating mode. The imaginary part of ( )2p  

become larger as the energy is further away from the band bottom, and become smaller as the energy 

is closer toward to the band bottom. 
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Appendix B 
 

The current operator was defined as 

 
2

v vj ρ ρ+
=  (B.1) 

Where ρ and v  are density operator and velocity operator, respectively. 

The density operator can be written down as 

 
2

0

1
, , , , , , , ,M N A M N A M N B M N B

a
ρ =  +    (B.2) 

0a  is the lattice constant, on the other word it is the length between each lattices. 

The velocity operator can be relevant to [ ],x H  

 
( )

ˆ, 1 ˆ ˆ
x Hdxv xH Hx

dt i i

  = = = −
 

(B.3) 

The Hamiltonian already introduce in Chapter 3 

 0
,

1 , 1, , ,

1, 1, , ,

     ,     , , ,
ˆ

1, 1, , ,

1, 1, , ,

    ,     , , ,

M N

M N A M N B

M N A M N B

M N A M N B
H t

M N B M N A

M N B M N A

M N B M N A

 + + 
 

− + 
 
 = −  + −
 
 − −
 
  

∑  (B.4) 

The position operator is defined as  

 
', '

', '

' ' ' ' ' ' ' '

' ' ' '

M N

M N

M N A M N A M N B M N B
x

M N D M N D

  +   =  
+  

∑
R

d
 (B.5) 

 

In Eqn.(B.4), ', 'M NR  identify the position from subblattice A and B. The distance between sublattice 

A and B is defined by d .     M N D M N D  help us ensure the difference between subblattice A 

and B. it works out as the following. 

 
    0

    1

M N D M N A

M N D M N B

 =


=
 

To make it more specify we can see Fig.B.1 
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Fig.B.1 We set up sublattice A as original point and subblattice B is at a distance d  away from A 

site. The coorinate here is described by capital , ,M N dR
  

To make the current easier to obtain, we use iδ  to label the vectors we need to discuss. 

  

Fig.B.2 We define 1 2 3, ,δ δ δ  as the vectors ( ) ( ) ( )2 1, ,− + − +d a d a d  we will use later to present 

the current flow. 
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Now we can get commutation of [ ],x H  

 

[ ]
3

3

2

0
, 2

1

1

,

1, 1, , ,

1, 1, , ,

1, 1, , ,

1, 1, , ,

, , , ,

, , , ,

M N

x H

M N A M N B

M N A M N B

M N B M N A
t

M N B M N A

M N A M N B

M N B M N A

=

− − + 
 
+ + + 
 − + − −  + − −
 
 −
 
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∑

δ

δ

δ

δ

δ

δ

 (B.6) 

Combine (B.6) and (B.3) the velocity operator 
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(B.7) 

 

Finally we get our current operator. 
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 (B.8) 
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