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Abstract

Electron in graphene has a unique mesoscopic transport property due to its linear dispersion
relation when the Fermi energy falls within the low energy regime. The electron behaves as a
massless Dirac fermion. Most well-known characteristic of a massless Dirac fermion is the
Klein-tunneling, where the particle cannot be blocked or trapped by static barriers.

This thesis focuses on the transport property, in general, and the Klein-tunneling characteristics, in
particular, for a graphene acted upon by a time-modulated potential. For the clarity of the physics
involved, our consideration is limited to the case of normal incidence. We use tight-binding model
for the description of the graphene so that our results cover nonlinear dispersion regime for the
electrons. In the low energy regime, we reproduce the Klein-tunneling results in a time-modulating
potential case, which has been predicted by Tahir et.al. recently. In addition, we find an exotic
central band refocusing phenomenon, where the transmission will be dominated by the central band
(the elastic channel) at specific values of the length L of the time-modulated region. This L- periodic
phenomenon is explained by a peculiar interference condition that is made possible by the linear
energy dispersion relation and the chirality of the particle. Furthermore, we find dip structures in the
total transmission in both the high-energy region, and in the low-energy regime of a gapped
graphene. These dip structures signify the breakdown of the Klein-tunneling, and is shown to result
from coherent hopping to or from the band edge via the emitting or absorbing of photons provided
by the time-modulated potential. The band edge has a singular effective density of states as long as
the transverse momentum is conserved. Finally, by staying on the dip structures, the total
transmission is found to exhibit another L-periodic phenomenon which we can identify as a
non-typical Fabry-Perot resonance.
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List of figures

2.1 The time-dependent potential barrier is presence from site-0 to site-L. The system is
divided into three regions: Region | (n<-1), Region Il (0<n<L), and Region Il
(L<n).

2.2 The dispersion of 1D TBM. The right/left-going wave vectors are illustrated by
blacked/grayed circles individually.(at certain possible energy).

2.3 The scattering states constituted by right/left-going states are also exhibited. The
right-going states are shown with black color accompanied by black right arrows, while
the left-going states are in gray color with gray left arrows.

2.4 Transmission dip structure appears when the first sideband reaches the band
bottom(emit one photon with energy #w). L refers to the width of barrier in unit of
lattice constant. o indicates the degree of inaccuracy.

3.1 the two dimensional graphene sheet. The honeycomb structure is composed by a
triangular lattice with two carbon atoms (distinguished by A (e) and B(o)) on every

lattice site. The conventional primitive lattice vectors, {a,,a,}, are denoted.

3.2 the Brillouin zone. The six K-points are categorized into two groups:

K, =K&=7£(L0) and K,=-K&=(-10).

3.3 Left :Dispersion energy spectrum in Graphene. Right : zoom in one of Dirac cones.
Cite from The electron properties of Graphene (2009)

3.4 dispersion relation of gapless/gapped graphene along k, =0. (a) gapless graphene,
(b) gapped graphene, and (c) the related symmetry points in the Brillouin zone.

3.5 Dispersion relation with normal incident particle. Red and blue curve refer to h,
and—h,, respectively. K, valley is close to the cross point of these two curves at right
hand side, the other cross point is labeled by K, valley.
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4.1 The graphene sheet is divided into three regions. In region Il (0<M <L), a
time-dependent potential, V (t) =V, cos(wt) is presented. The sublattices A and B are

denoted as o and e, respectively. The conventional primitive lattice vectors, {a,,a,},
and x-y lattice vectors, {ax,ay}, are labeled. Each lattice site can be represented by

ma, +na, =(n-m)a, +(n+m)a, =Ma, +Na,.

4.2 dispersion relation with three typical values of k,. M, and M, are the first

Brillion zone boundaries in one dimensional momentum space of graphene.

4.3 The scattering states constituted by right/left-going states are also exhibited. The
right-going states are shown with black color accompanied by bla-A +zwarrows, while
the left-going states are in gray color with gray left arrows.

5.1 The transmission dips appear when the incident Energy is 1@ away from the
band edges Aand —-A which have large density of state. L refers to the width of
barrier. o, indicates the degree of inaccuracy. The arrows show that incident energies
-A+ho and A+heo emit a photon with 7@ and be trapped at valence/conduction
band edge.

5.2. Shown in the two inserts are blow-ups of the T-E curves near the vicinity of the
two dip structures in Fig. 5.1. Here 6 =10"" 7iw. Whereas the figures show that T
do not drop to zero at the two dip structures, they confirm that we have found the
two minimum T values.

5.3. The transmission dips appear when the incident Energy is 17w away from the
band edges Aand —A which have large effective density of state by fixing ky. L
refers to the width of barrier. o, indicates the degree of inaccuracy.

5.4. Shown in the two inserts are blow-ups of the T-E curves near the vicinity of the
two dip structures in Fig. 5.3. Here 6=10"" fiw .

5.5. The transmission dips appear when the incident Energy is 17w away from the
band edges E, which have large effective density of state by fixing ky. L refers

to the width of barrier. o, indicates the degree of inaccuracy.
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5.6. Shown in the insert is a blow-up of the T-E curve near the vicinity of the dip
structure in Fig. 5.5. Here 6=10"" 7o .

5.7. Numerical convergence of our calculation is shown when the number of sidebands
N, included in our calculation is increased systematically, with N =1, 2, 5, 10,
respectively, in Figs. 5.7(a)-(d). Correspondingly, both the accuracies o, and the T-E

curves improve rapidly and converge nicely in Fig. 5.7 (d).

Fig. 5.8 (a) Central band refocusing (CSR) profile. The period of oscillated sideband
conductance can only determined by the difference between forward wave vectors

which are k, -k, (m==1). (b) Compare central band with sidebands which absorb

photons. (c) Compare central band with sidebands which emit photons. The A=0
means this system is a gapless graphene. L refers to the width of barrier in unit of a, .

o, indicate the degree of inaccuracy.

Fig. 5.9 the densities of individual sidebands in Region Il with two barrier widths,
L=240 and L=500.

Fig. 5.10 (a) Central band refocusing (CSR) profile applying with double amplitude of

time-dependent potential. The period of oscillated sideband conductance can only
determined by the difference between forward wave vectors which are k, -k,

(m = ﬂ) .(b) Compare central band with sidebands which absorb photons. (¢c) Compare

central band with sidebands which emit photons. The A=0 means this system is a
gapless graphene. L refers to the width of barrier in unit of a . o, indicate the

degree of inaccuracy.

Fig. 5.11 (a) Central band refocusing (CSR) profile applying with frequency is one-half

of that in Fig. 5.6. The period of oscillated sideband conductance can only determined by

the difference between forward wave vectors which are k -k, (m = il) .(b) Compare

central band with sidebands which absorb photons. (¢) Compare central band with
sidebands which emit photons. The A=0 means this system is a gapless graphene. L
refers to the width of barrier in unitof a,. o, indicate the degree of inaccuracy.

graphene. L refers to the width of barrier in unit of a,. o, indicate the degree of
inaccuracy.

Fig. 5.12 Non-typical Fabry-Perot resonance for the case when the incident energy stays
at the dip structure. The incidence energy E,=t,—%® is at an 7o below the band
top t,. The choice of the time-modulated potential parameters are such that only up to
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first-sideband processes are important. The curve shows the dominance of the central
band in the transmission. The L-period cannot be explained by the usual Fabry-Perot

resonance  condition: 27z /(q{” - p{’) =26.5a, ,where g , p® are

wavevector-pairs for the elastic channel. It is explained by a non-typical Fabry-Perot
resonance that connects wavevector-pairs between the central and the first-sideband
channels.

Fig. 5.13 stay at dip structure, these series of figures show the transmission is a
periodic L dependence.

Fig. 5.14 Non-typical Fabry-Perot resonance for the case when the system stays at the dip
structure, with low incident energy, and the graphene is gapped . The incident energy
E,=A+hw isatan e above the band bottom A. The observed physics in Fig. 5.12
remain valid here. The L-period is the result of a non-typical Fabry-Perot resonance
condition.

A.1Case(a) Energy dispersion fixing k, :0.2(K) which means k a, <%. The band

bottom is flat. The dashed lines divide energy levels into different scenario, which need to

be discussed individually. We will get 4 momentum from Eqgn(A.1l). In regions
E,<E<E ,E>E, ,E<E, we get 4 complex wave vectors. In

regionsE, <E<E, ,E;<E<E, we get 2 complex 2 real wave vectors. In regions
E,<E<E, ,E,<E<E, weget4real wave vectors. We define that if k, is positive

corresponding to the energy region we focus on then we name it K-related wave vector,
contrary to K related wave vector if k,  is negative then we name it K’-related wave
vector. And we define right-going wave vector as p left-going wave vector as q. Here

the valley index was accompany with momentum p'”, we define p®,q¥ ( p®,q®) as

4

343,

K (K ')valley. X-axis is momentum Kk, inunitof K= ;Y-axis is energy in unit

t,=2.8ev E, =sin(kyay) E,=-F,E,=-F,E;=-F

A.2 Left: Plot momentum p(l) in real(Blue circle) and imaginary(Red cross) part. Fix

k, at 0.2K. Right: Energy dispersion, which used to compare with the left figure. The
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red line label the momentum we are discussing. According to energy dispersion plot
with red line, the group velocity is always positive. In regions E>E, ,

E<E, , E,<E<E , p” is given by evanescent mode.In regions of
E,<E<E, E,<E<E,, p(l) is given by propagating mode. The imaginary part of

p(l) become larger as the energy is further away from the band bottom, and become

smaller as the energy is closer toward to the band bottom.

A.3 Left: Plot momentum p(z) in real(Blue circle) and imaginary(Red cross) part. Fix

k, at0.2K.

Right: Energy dispersion, which used to compare with the left figure. The red line label
the momentum we are discussing. According to energy dispersion plot with red line, the

group velocity is always positive. In regionsE<E, ,E>E,, E <E<E p(z) is
given by evanescent mode. In regions E <E<E,,E,<E<E,, p(z) is given by

propagating mode. The imaginary part of p(z) become larger as the energy is further

away from the band bottom, and become smaller as the energy is closer toward to the
band bottom.

A.4 Energy dispersion fixing k, :0.8(K) which means k a, >%. The band bottom

is flat. The dashed lines divide energy levels into different scenario, which need to be
discussed individually. We will get 4 wave vector from Eqn.(A.1). In regions
E,<E<E ,E>E, ,E<E, we get 4 complex wave vectors. In
regionsE, <E<E, ,E;<E<E, we get 2 complex 2 real wave vectors. In regions
E,<E<E, ,E,<E<E, we get 4 real wave vectors. We define that if k, is
positive corresponding to the energy region we focus on then we name it K-related
wave vector, contrary to K related wave vector if k, is negative then we name it
K’-related wave vector. And We define right-going wave vector as p left-going wave

vector as g respectively. Here the valley index was accompany with momentum p(’),

we define p,q" (p'®,¢®) as K (K')valley. X-axis is momentum k_ in unit of
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K =27 -y-axis is energy in unit of t, =2.66ev E, =sin(ka, )

3«@a

E,=-E,E,=-E, E,=-E,

A.5 Left: Plot momentum p(l) in real(Blue circle) and imaginary(Red cross) part. Fix

k, at 0.8K. Right: Energy dispersion, which used to compare with the left figure. The

red line label the momentum we are discussing. According to energy dispersion plot
with red line, the group velocity is always positive. In regions E>E, ,

E<E, , E,;<E<E p(l) is given by evanescent mode. In regions
E,<E<E, E,<E<E,, p(l) is given by propagating mode. The imaginary part of

p(l) become larger as the energy is further away from the band bottom, and become

smaller as the energy is closer toward to the band bottom.

A.6 Left: Plot momentum p(z) in real(Blue circle) and imaginary(Red cross) part. Fix

k, at 0.8K. Right: Energy dispersion, which used to compare with the left figure. The

red line label the momentum we are discussing. According to energy dispersion plot
with red line, the group velocity is always positive. In regions E>E, ,

E<E, , E,<E<E p(z) is given by evanescent mode. In regions
E,<E<E, E,<E<E,, p(z) is given by propagating mode. The imaginary part of

p(z) become larger as the energy is further away from the band bottom, and become

smaller as the energy is closer toward to the band bottom.

B.1 We set up sublattice A as original point and subblattice B is at a distance d away

from Asite. The coorinate here is described by capital Ry, \

B.2 We define &,,6,,8, as the vectors (d),(—a,+d),(—a,+d) we will use later to

present the current flow.
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Chapter 1

Introduction

Recently, a new kind of material, called graphene has attracted much attention. People did not
believe the existence of a single atom thick membrane due to both finite temperature and quantum
fluctuations destroy the stability of this material. Not until 2004, did a group from the University of
Manchester led by A.K. Geim successfully fabricate this 2D material [1]. Since then, graphene has
become a big star in mesoscopic physics. Because of the high electron mobility at room
temperature[2] , and the remarkably breaking strength which experimentalists has showed graphene
is 200 times greater than steel[3], graphene has been expecting to replace silicon in microelectronic
devices.

The transport properties of graphene has paid more and more attention by both theorists and
experimentalists, because of the exotic phenomenon , occurred around the corner of Brillouin zone
(Dirac cone), Klein paradox[4] which was proposed by M.I. Katsnelson[5]. The reason of existence
of this property is due to conservation of chirality.

M. Tahir et al [6], who considered the effect of a time-periodic potential on a monolayer graphene
and showed that the Klein paradox still holds around Dirac cone. This is due, again, to the
conservation of chirality in the presence of the ac field. Using the effective Hamiltonian, this work is

limited to the energy regime |E|<0.2t0, where t, is the hopping energy between neighboring

atoms.

My fundamental idea of this paper is based on the concept which we employ tight-binding
Hamiltonian instead of effective Hamiltonian. The purpose to do so is to discuss the energy level
where effective Hamiltonian is not appropriate to use. Furthermore by employing tight-binding
Hamiltonian we also can make a discussion about valleytronics which effective Hamiltonian can’t
tell. We hope there are still some interesting physics within the higher energy level, including
inter-valley scattering, Klein paradox breaking, and resonance behavior according to the width of
barrier.

Not only employ effective tight-binding Hamiltonian, we also open a global gap right on the Dirac
cone to observe the tunneling property in low energy level.

In this work, we have established our formulation systematically. We try this out successfully for

1
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the case of one dimensional tight-binding system in Chapter 2. In Chapter 3 we present the
tight-binding model for graphene and establish the conventions and notations to be used in this work.
This includes our choice of the primitive lattice vectors that will be most convenient for our wave
function matching in Chapter 4, AB site identification, and energy spectra as well as tight-binding
Hamiltonian, and then we have a brief derivation of effective Hamiltonian. In the end of Chapter 3,
we have a discussion of Klein tunneling by employing effective Hamiltonian.

Then we will discuss the tunneling property in armchair-edge graphene in Chapter 4 by using the
same way we do in Chapter 2. Chapter 5 gives the results and analyze of the transport property in
our system and in the end of this chapter, we will make a conclusion of our work.

Interestingly by using the tight-binding Hamiltonian, Klein paradox still exist while we consider a
normal incident wave which the energy is not linear to momentum space.



Chapter 2
Time dependent transport in one-dimensional
tight-binding model

In this chapter, we establish, for the tight-binding model, the boundary condition for the
time-dependent case. Along this line, we have derived the continuity equation, the current operator,
and the conservation of current for the time-dependent case.

2-1 One dimensional time-dependent tight-binding Hamiltonian

In this section, one-dimensional (1D) tight-binding model (TBM) is utilized to discussed the
Tien-Gorden model[7]. The system we consider is a 1D chain of atoms (let a be the spacing between

two nearest atoms) with a time-dependent potential (but spatially-independent), V, cos(a)t), in the
whole background. The time-dependent Schrédinger equation (with 72 =1 henceforward) is

Hlyw)=io,|w) (2.1)
with

A = Fy +V (1) ==t, 3 (|n~2)(n]+[n+1)(n]) +V, cos (et) X |n){n].

n n

The general solutions to Eqn. (2.1) is expanded by the eigen-states of I:|0 with the corresponding
eigen-energy E, =-2t;cos(ka):
ly)= ;Ck (t)e "™ k) (2.2)
, Where
K= e ).

Due to the presence of time-dependent potential, the expanding coefficients, C,(t), in Eqn. (2.2)
also depend on time. By Eqn. (2.1), C,(t) can be further deduced:
C.t)=ce ™" =¢ 33, (L)e ™ (2.3)

, Where J_ means the 1°-kind of Bessel functions of integer order m. Combining Eqns. (2.2) and
(2.3):



lw)=>"cJ, (2)e BN k). (2.4)
k,m

Eqgn. (2.4) is the solution to Tien-Gorden model [7] in 1D TBM.

Before entering next section, it is worth to cast Eqn. (2.1) into a more convenient form. First of all,
Eqgn. (2.4) is rewritten as

V)= Fed. (e

> \/_ch‘] ( )e i(E+mo)t |kna| > zf (t)| > (25)

k,m,n

Project Eqn. (2.1) to the n-th orbital, |n), we arrive

—ty (foq+ ) +V, cos(at) f, =io, f, (2.6)

Eqn. (2.6) relates the amplitude of the n-th orbital, f,, to those of its nearest neighbor, f ., and
f.,. Via Eqn. (2.6), the current, continuous equation, and boundary conditions are discussed in the
following sections.

2-2 Continuity equation and current

Here, two different approaches are used to obtain the expression for the expectation value of the
current. The first route follows the continuity equation from the Schrédinger equation in Egn. (2.6).
The current and its divergence for tight-binding Hamiltonian are identified. On the other hand, the
current operator can be defined through the density and the velocity operators. The expectation value
of this current operator is consistent with that from the first approach.

Route I. From continuity equation

The probability density on site-n is given by f f /a. Therefore, from Eqn. (2.6), the continuity
equation is
l * 1 * * 1
—=o | f f )=—=(0f )f —f —(0f
a t( n n) a( t n) n n a( t n)

ito * * it *
=2(f fo)f ——2f(f —f
a ( n+1+ n—l) n a n ( n+1 n—l)

(2.7)
:& fn*—l fn - fn* fn at fn+1 fn - fn* fn+1
a | ——— “—— T" Hf_/e
=A,(J)

The RHS of Eqn. (2.7) is identified as the current divergence, An(j), in TBM. There are arrows



below each term in Eqn. 2.7 to indicate the direction of density flux. For example, the term, f . f

n-1"n?

indicates flux from n to n-1 and thus a left arrow is attached below. From these arrows, A, (j) is

proportional to flux out of site-n.

From A, (J) , it is inspired that the current on site-n is related to right going flux:

joc| fOf L~ f 4T f —ff (2.8)

n'n1- Th1'n n+l 'n n 'nu
—

— <« - “—

To inspect this conjecture, the current in the long-wavelength limit is derived. In this limit, the

amplitude, f,, , is expanded at as

foo=f(nata)=f +a(o,f) +%2(a§ f) (2.9)
Therefore,

A, (j)=-it,ad, [ £(8,f), - (0.f7) fn} (2.10)

Eqgn. (2.10) demonstrates the current form in the long wavelength limit:
i = itoa[(axf*)n f.— (0,1 )n]

= It?o[( fr:rl N fn*—l) e fn*( foa = f”‘l)] 240
= It?o( fn* n-1" fntl fn + fnil fn - fﬂ* f””)

Eqgn. (2.11) confirms the conjecture from Eqgn. (2.8).

Route Il. From current operator
The current operator is defined as
i :—p“V;Vp” (2.12)
, Where p, and V are the density and velocity operators, respectively. The density operator is
related to probability density on site-n and has the form:

~ 1
p=—Imin| (2.13)

The velocity operator is derived from the time derivative of position operator, X=a) n|n)(n|:

x>

7= [*’i'ﬂ :aTtOZn:(|n—1><n|—|n+1><n|) (2.14)



The commutator in Eqgn. (2.14) is evaluated via the Hamiltonian defined in Eqgn. (2.1):
[)“(, ﬁ]z atozn:(|n—1><n|—|n+l><n|)
Therefore, the current operator is reached:
i, :%Dn)(n—lHn—1><n|+|n+1><n|—|n><n +1|] (2.15)
The expectation value of J, with |y)=>" f (t)|n), recovers Eqgn. (2.11). This ensures the two

routes are consistent.

2 t * * *
<l//| Jn|(//>=_( fn fn—l_ fn—lfn + fn+lfn —f

i X
20 + o) (2.16)

2-3 Boundary conditions and scattering states

With the preliminary in Secs. 2-1 and 2-2, it is ready for the system of a time-dependent potential
barriers in a 1D atomic chain. Fig. 2.1 displays the system that the barrier separates the space into
three regions. The potential is presence in the region Il with 0<n<L as shown in Fig. 2.1. The
boundary conditions between the wave functions in different regions are discussed in this section.

n=-1 0 V (t) =V, cos(at) L +1

i

oooq%

e 6 0 o
Region Il - 5 Region Il1

Region |

Fig. 2.1 The time-dependent potential barrier is presence from site-0 to
site-L. The system is divided into three regions: Region I (n <-1), Region Il
(0<n<L),and Region Il (L<n).

For the presence of potential barrier, the Schrddinger equation (Eqgn. (2.6)) is separated into three
equations:

—t,[ fou )+ f. ()] =10, (t) n<-1 (2.17 a)
—to [ fou () + . ()] +V, cos(at) (1) =id, f, (1) 0<n<L (2.17 b)
—t[ fu®+ f.®]=i0,f,(t) n>L+1 (2.17¢)

Note the constraints imposed in each equation in Egn. (2.17). For example, Eqn. (2.17 a) holds only
for thosen<-1. To derive the boundary conditions, the auxiliary functions, F"’, F!")(t) and



F(")(t) are introduced by the following Schrédinger equations without any spatial constraint:

~t,(F +F0)=ia,F" (2.18 a)
~t, (R +F{Y)+V, cos(et) F™ =ia F" (2.18 b)
—t(FO 4 FO) =g F0 (2.18¢)

By Eqns. (2.17) and (2.18), the auxiliary functions are further required that

F=f, n<-1

F=f, 0<n<L (2.19)

FM"=f  n<L+l

At boundary n=-1, Eqns. (2.17 a) and (2.18 a) read:
~t,(f, + f,)=i0,f,, (2.20)

—t, (F"+F9)=ia,FY (2.21)

Compare with Egns. (2.19), (2.20), and (2.21) leads to the boundary condition for the auxiliary
functions in regions land Il at n=0:
s (2.22 a)

Similar procedures will lead to other boundary conditions and they are listed below with derivations
omitted:

FO—f =F( (2.22 b)
FL(lll) — fL — FL(ll) (222 C)
Rl = fL, =R (2.22 d)

For the auxiliary functions and the boundary conditions between them, the wave function, f(t),

is ready to be solved. It usually takes two steps: write down the general forms of the auxiliary
functions from Eqns. (2.18) individually, then impose the boundary conditions from Eqgn. (2.22) that

f (t) isthe combination of F", F" and F"" in three regions.

At the first stage, the general forms for F’, F" and F"" are inspired by Eqns. (2.4) and

(2.5):
Fn(l)(t):ﬁgcél)e—iEkteikna :ﬁZ(CE’L)eipma+Rgeiq£na)e_igt (2.23 a)



R0 =G 20, (e e < B (A BN, (e (223D)
k,m &,m

Fn(lll)(t):ﬁzcélll)efi[fkteikna :ﬁZTgeipgnae_iﬂ (223 C)
k £

05 -04 03 02 01 0 01 02 03 04 05
ka
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Fig. 2.2 The dispersion of 1D TBM. The right/left-going wave vectors are
illustrated by blacked/grayed circles individually.(at certain possible

energy)

Note the summation over k in Eqgns. (2.23) are transformed into energy-sum which sum over all
possible energy. The p, and q, are the right-going-k and left-going-k corresponding to energy, ¢ .

The right/left-going-k are in the sense that the group velocities are right/left-going. Fig. 2.2 is the
dispersion of ﬁo that p, and q, is easily read out. The initial condition is already imposed that

the waves are incident from region I. Hence, the right-going scattering states are looked for. In Fig.
2.3, the scattering states composed by these right/left-going Bloch wave vectors, k are exhibited in
individual regions. The procedures to determine these k are discussed in Appendix A.
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Fig. 2.3 The scattering states constituted by right/left-going states are also
exhibited. The right-going states are shown with black color accompanied by
black right arrows, while the left-going states are in gray color with gray left
arrows.

For the 2" stage, the boundary conditions require these auxiliary functions are equal for all time at
the boundaries. For example, from Eqgns. (2.22 a), (2.23 a) and (2.23 b):
3 (6l 4R, et = T(A +8)3, (et 229
Let e=¢,+sw with seZ,and rearrange the summation as:
D)+ R JE = 3 (A, 4By, ) 3 (e

£0,S £.M,S

=> (Awmw + Bgo+mw) 3, (el

£.M,S

(2.25)

Egn. (2.25) means the states of two energies ¢ and &, are decoupled if (gl—gz)/a)eZ.

Therefore the summation over g, can be omitted in Eqn. (2.25):

D (o +R)e™ = (A +B,) I, (L)e ™ (2.26 a)

S m,s

, with a short-hand notations that ¢, =¢,+mw, R, =R etc. The coefficients cé') are also

go+Sw !

replaced by o, , without losing any generality. Therefore, the incident wave is a single state with a

definite energy &, and unity amplitude.



Eqgn. (2.26 a) contains a set of linear equations. The other sets of equations form the rest boundary
conditions are list below without derivations:

Z(é‘s,oeiipoa n Rsefiqsa)e—igst _ Z(Anefipma + Bme—iqma)‘]&m ((_g)e—igst (2.26 b)
Z(Aneimea + Bmeiqua)Js,m (V?o)e—igst _ ZTseipsLae—igst (226 C)
Z(Aneipm(ul)a + Bmeiqm(L+l)a)J57m (%)e—igst _ ZTseips(LJrl)ae—igst (226 d)

The discussion above concludes that for the presence of time-dependent potential, the incident
wave with a definite energy, ¢,, will be scattering into those states with energies E=¢, =¢,+Sw .
The energy, &, are referred to the s-th sideband (the O-th sideband is denoted as the central

sideband). The sideband structures for scattering states is determined numerically by Eqns. (2.26)

with a cut off, |s|<N;.

2-4 Transmission dip structures

In this section we have a brief introduction of the form of conductance and density of state in
order to explain the transmission dip structures.
Jin =Jr tdg (2.28)

J.,, J; J; isincident current, transmission current, reflection current, respectively.

By matching the boundary condition and getting the current in each region we can write the total
transmission T by observing the current conservation.
J

17 (2.27)

in

Density of state can be written as
D(e)-N_L__ L __
de 27 2atysin(ka)
Eq (2.8) will go to infinity when kais either zero ornz. According to Fig. 2.2 we can observe
when ka is zero, the energy is at lower band bottom; when ka is nz the energy is at higher
band bottom. Since the density of state at band bottom is so large that we predict the conductance
will dramatically drop while energy is at band bottom.

(2.28)

Fig. 2.3 present the dip structure by observing the total transmission varies from incident energy.
This is because the incident particle exchanges energy with the time-dependent potential. After
emitting a photon with energy 7 the energy is trapped at the band bottom which has large density
of state, as a result the transmission dip appears. This result inspires us to discover the same physical

10



concept in Graphene.

In case of mistakes may happen, we introduce a way to check the inaccuracy o, by testing the
current conservation. Where N is the amount of data, i label the region of current, see Fig 4.1.
For instance, N =100 means we have 100 data and i=2 means the Il region of current is

considered.
1 N 3 2
9, :\/3_NZZ(‘JU _Ji) (2.29)
j i
1
0sl{ ®=425x10"Hz
V =0.051eV !
071 L =0.3nm ; ]
g Ne=3 k =T
. |- a : —
! o, =3.12x10" Py ;
05" \.\
0.4~ .
o _ 1 2
0.3~ vy .
0.2
0 2

|
1
E
ho

Fig. 2.4 Transmission dip structure appears when the first
sideband reaches the band bottom(emit one photon with energy
hew). L refers to the width of barrier in unit of lattice constant.
o indicates the degree of inaccuracy.



Chapter 3

Theoretical basics in graphene

The theoretical basics in graphene are briefly presented in this chapter. In Sec. 3-1, the
tight-binding model in graphene is discussed including band structure and the valley degrees of
freedom. The 2D Dirac-like effective Hamiltonian of low energy excitations is in Sec. 3-2. In Sec.

3-3, the exotic phenomena related the chirality of electron called Klein tunneling is given.

3-1 Two dimensional tight-binding Hamiltonian in graphene

A graphene sheet shown in Fig. 3.1 is a honeycomb structure composed by carbon atoms at every
corner of hexagons. The structure can be seen as a triangular lattice with a basis of two carbons (A

and B distinguished by e and o, respectively) per unit cell. The primitive lattice vectors
—a (Lg+80)= —a(-L1g+L 9y == ibi i i
a, —ao(2 X+ y)—aX +a,,a, —ao( yX+5y)=-a,+a,; are also exhibited with a, being the

distance between two nearest carbons.

Fig. 3.1 the two dimensional graphene sheet. The honeycomb structure is composed
by a triangular lattice with two carbon atoms (distinguished by A (e) and B(0)) on

every lattice site. The conventional primitive lattice vectors, {a,,a,}, are denoted.

In reciprocal space, the primitive lattice vectors are {b1 =2—”(\/§)?+ )7), b, =§—;’(—\/§)?+ )7)}

3a
The Brillouin zone of a triangular lattice is a hexagon as shown in Fig. 3.2. The six corners (K points)
of the hexagon are coupled by {b,,b,}, and separated into two distinct groups, K, and K, (in Fig.
3.2). These two points can be identified by the valley-shaped from dispersion (Fig. 3.3). In graphene,

there are plenty of physics related to the two valleys and these will be introduced in the following

12



sections in this chapter.

Kl KZ

Fig. 3.2 the Brillouin zone. The six K-points are categorized into two groups:

K, =K&=-(1,0) and K, =-Ki=-2(-1,0).

The basic dispersion feature of graphene can be characterized by the 1% nearest neighbor

tight-binding model:

4 l(|m,n;B>+|m—1,n; B)+|m,n-1; B))(m,n;A|+} o)
s (Jm,n; A)+|m+1,n; A)+|m,n+1; A))(m, n; B|
The eigen-basis of Eqn. (3.1) is in Bloch type:
k)= elFm {CA|m,n;A>+CB|m,n; B>} (3.2)

By Eqgns. (3.1) and (3.2), the eigenvalue equation, H |k> =E | k>, can be casted into

O NfCal | Ca 3.3
ol €le)

e =t (T+e ™ +e )=t (1+2¢™" cos(ka, ), and

with

h, =-t, (1 e g ) =, (1 +2e"% cos(k,a, ))

From Eqn. (3.3), the energy dispersion has an analytical form:

E(k)=+/hh, = ito\/l + 4cos(kyay ) cos(k,a, )+4cos’ (ka,) (3.4)
Solutions of Eqn. (3.3) reveal the Bloch electrons in graphene are related to two-component columns

named pseudo-spin,

(Cak)
Z —(CB (k)J . (3.5)

13



In low energy limit, the pseudo-spin is modeled by the 2D Dirac electron’s chiralty. The details are

presented in next section.

If there is an onsite energy difference, 2A, between A and B atoms, a gap is introduced. Thus, the

Hamiltonian in Eqn. (3.1) is modified as:

. m,n;BY+m-1,n;B)+\m,n—1;B)){m,n; A ,n; AY(m,n; A|—
o] (mre oL E) Al fma ]
. (|m,n;A>+|m+1,n;A>+|m,n+1;A>)<m,n;B| |m,n; B)(m,n; B

m,n

Eqns. (3.3) and (3.4) are also replaced accordingly:

& Sl
i -E (3.7)
h, -A|Ce C,

E(k)=+JA*+hh = ito\/A2 +1+4cos(kyay)cos(kxalx)%r4cos2 (ka,) (3.8)

Fig. 3.3 shows the linear dispersions of gapless graphene at six K points. The dispersions for
gapless/gapped graphene near six K points are modeled by the effective Hamiltonians, which are
identical to those of the two-dimensional massless/massive Dirac fermions. Fig. 3.4 displays these

relativistic dispersions. The effective Hamiltonians is discussed in next section.

Fig. 3.3 Left :Dispersion energy spectrum in Graphene. Right : zoom in one of Dirac
cones. Cite from The electron properties of Graphene (2009)
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Fig. 3.4 dispersion relation of gapless/gapped graphene along k, =0. (a)

gapless graphene, (b) gapped graphene, and (c) the related symmetry
points in the Brillouin zone.
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3-2 Effective Hamiltonian for low energy excitations

The effective Hamiltonian can be derived from small-q expansion at K, and K,:

hk:rK>2+q = 3a%(TQX - qu) =Ve (qu - qu)
(3.9)

hk:rK>2+q = 3a%(‘[qx + qu) = VF (qu + qu)

; a valley-index, 7, is introduced to indicate K,(r=+1)or K,(r =-1) valleys. Therefore, from

Eqns. (3.3) and (3.7) the effective Hamiltonians are:

. 0 7q, —iq
H. = . v 3.10
eff VF |:z_qx +qu 0 :| ( )
, for gapless graphene while
. A Ve (70, —iQ
H,, = _ F( y) (3.11)
Ve (zq, +iq, ) -A

, for gapped graphene. The dispersion of Eqns. (3.10) and (3.11) are E =xv; |q , and

E, =+Viq* +A’ , respectively. Compare with the massless/massive relativistic dispersions,

E, = ic|k ,and E, =+,/c’k? +m]c* , the electrons in graphene with E < t, behave as relativistic

fermions with the replacements: ¢—>V, and m;,— A/V;.

3-3 Klein tunneling:

When incident angle is zero, qusiparticles in graphene act like relativistic particles, Dirac fermions.
At this incident angle, particle can make perfect transmission resulting from Chiral nature through a

barrier no matter how high or wide it is. This exotic phenomenon is called Klein tunneling.

To prove that, we can substitutek, = Ointo Eqn. (3.3) then we have
0 h|lC C
“I| =gl * (3.6)
h, 0| Cg C;

Where the eigenvalues of Eqn. (3.5) are E = +h *. The two eigenvalues are shown in Fig 3.5, red and

blue curve refer to h, and-h,, respectively. These two eigenvectors will be orthogonal to each

16



other; hence the incident wave and reflection wave cannot propagate in the same valley. Since we
have already known it is impossible to have transmission and reflection wave in the same valley, so
we have the following question. Is there any possible to propagate from the other valley? Here since
the incident energy we select is so close to Fermi energy that the reflection wave is very hard to
propagate from the other valley due to large momentum transform. Hence the orthogonal property of
eigenvectors and large momentum transform leads the transport to a perfect

tunneling.

ka
27

Fig. 3.5 Dispersion relation with normal incident particle. Red

and blue curve refer to h, and-h,, respectively. K, valley is

close to the cross point of these two curves at right hand side, the
other cross point is labeled by K, wvalley.
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Chapter 4

Time-dependent potential barrier in graphene

In this chapter, the time-dependent transport theory in graphene is exhibited. The system we
interesting in is presented in SecC. 4-1. For the translational invariant along y-direction, the 2D
tight-binding Hamiltonian is reduced into an 1D Schrodinger equation. Based on this 1D equation,
the current and continuity equation is discussed in Sec. 4-2. To solve the scattering states with the

presence of time-dependent potential barrier, the boundary conditions are derived in Sec. 4-3.

4-1 One-dimensional Schrodinger equation for graphene

The system with time-dependent potential is demonstrated in Fig. 4.1. A graphene sheet is divided
into three regions for the presence of a potential barrier. The barrier is applied along the armchair

orientation hence both intra- and inter-valley scattering are allowed in transport. Fig. 4.1 also
displays the conventional primitive lattice vectors, a, = —lx+ =Y¥)a, and a, —(2X+ v)a,,

where @, is the distance between two nearest carbon atoms. Therefore, any lattice vector is
expressed by R, =ma, +na,. However, due to the translational invariance along y-direction,

another more convenient lattice basis set 1s introduced:

R, =ma +nha, =(n— m)a“x+(n+m) y=Ma, +Na, 4.1)

with a, =%R and a, —L ; (M,N)=(n—m,n+m). Within this M-N coordinate, the three

regions (Region I, I, and III) are characterized by M <0, 0<M <L, and M > L, respectively
(Fig. 4.1). In the following, this new basis set is employed to derive the one-dimensional (1D)

Schrédinger equation in graphene.

The Hamiltonian of this system is

H, +V(t)

]

(M =LN+LA) +|M +1,N +1; A +|M,N; A)) (M, N; B|+}
+ 4.2)

(IM+1LN=1;B)+|M —1,N-1;B)+|M,N;B))(M,N; Al

|M,N;A><M,N;A|+]+A(|M N; A (M, N; Al J}

IM,N;B)(M,N;B| IM,N;B)(M,N;B|

%{V(M)cos(aﬁ)(

where 2A defines the size of gap and the amplitude of the time-dependent barrier has the spatial

form:
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0 M<QorM >L
VM=, gem<L ‘
; <M <

Since the translational invariance along y, the wave function is characterized by a single K, and

written as

7

<

(4.3)

> (Fa(M,N;O|M,N; A)+ T, (M, N;1)| M, N; B))
N
3 gt ( Fai (MID[M N A+ Fy, (M ;t)||v|,N;B>).

M

=z

For abbreviated notation, fmky (M;t)=f,(M;t) forp=AorB.

Region Region Region
I H 11

Fig. 4.1. The graphene sheet is divided into three regions. In region Il (0<M <L), a
time-dependent potential, V (t) =V, cos(wt) is presented. The sublattices A and B are

denoted as o and e, respectively. The conventional primitive lattice vectors, {al,az},
and x-y lattice vectors, {ax,ay}, are labeled. Each lattice site can be represented by

ma, +na, =(n-mja, +(n+m)a, =Ma, +Na, .

Combination of Eqns. (4.2) and (4.3) results in
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—t Z eiNkyay
0

M,N

fo(M;t)(IM LN +1 A)+[M + LN +1; A)+|M,N; A)) +
fo(M;t)([M +1,N —1;B)+|M —1,N —1;B) +|M,N;B})

s [ Ta(MSD|M,N; A wia [ Ta(M3D|M,N; A) -
+ 4V, cos(at)e™ ™ «(M:D)] )* +Ae™ «(M:) ) (4.4)
VN fo(M;t)|M,N;B) fg(M;t)|M,N;B)
=i 0, (f,(M;)|M,N; A+ f,(M;1)|M,N;B))e™™  (n=1)

M,N

Inner product Eqn. (4.4) with <

, we have
t, [( fo(M+L0)+ f (M —Lt))e ™™ + f,(M; t)]

)
+{V(M)cos(at)+A} f,(M;t)=id, f,(M;t)
)
{

(4.5)
—to[( f,(M=L;t)+ f, (M +1Lt))e" + f,(M; t)]
+{V (M) cos(at)—A} f,(M;t)=id, f;(M;1)
By defining
ik, )
T E[e'k?aw e 0 } C E[::Em :ﬂ
Eqn. (4.5) is rewritten as
—t, (Tfy, +Thy + 6,y ) +V (M) cos(at) f, + Ao, T, =id f,, (4.6)
Eqn. (4.6) is the 1D Schrodinger equation for the system.
4-2 Current and continuity equation
From the Schrodinger equation, the probability density is defined as
p(M;ty=f)f,/a. (4.7)

To derive the tight-binding version of continuity equation and the related current form, differentiate
Eqn. (4.7) w.r.t. time and combine with Eqn. (4.6):

(at f";r' ) f'V' . fl\; (at fM)
a a

_atp:_

X X

B (T + £ T, )~ ((£0TE + £TF,, ) 4.8 2)

a

X

o |O:.' o=

( fl\zflffM - fr\;ffo1 - fk;ffM+l + fl\;IHTfM )
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A (1)= 2 f Ty = BT = £0Thy .+ £ T, @8b)

X “— - “— -

Eqn. (4.8 b) defines form of V- j for the 1D Schrédinger equation. There is an arrow below each

term in Eqn. (4.8 b) indicating the direction of particle flux. These arrows reveal A, (j) is

proportional to outgoing flux. This engages us to conjecture the form of current, which is

proportional to right-going flux:

/—‘f\L r—’% r—’% r—’%
jy o faTE, - ) Tf + f,JMTf fTTfM+1

To investigate this conjecture, A, (j) is examined in the long wavelength limit. In this limit, the
wave function, f,,,,, is expanded as

fo. = f(Ma, ta)=f, +a (0,) +a7X(azf)M (4.9)
Therefore,

A, (j):-itoaxax[fgf(axf)M ~(8, 7). ffM] (4.10)
Eqgn. (4.10) demonstrates the current form in the long wavelength limit:

jM = itoax |:(ax fT)M ffM p f’\;f (aX f )M :|

‘ A (4.11)
2 [( fl\;Ir+1 fJ—l)TfM - fr\;T(fMH - fM—l):|

Eqn. (4.11) confirms the conjecture from Eqn. (4.8).

The time average current is spatially independent. To show this, j,, — J,,_, is calculated:

) ] it, [( M+ T ) _fTT(fM+1_fM71):|_
v = Iwa = ? [(

f - fJ. 2)Tf|v| -1 fr\;flf(fm - fM—2)J

:%( fl\;lr+l AfM - fJTfM+] + fr\JAr—szM—l - fh;—]ffM—Z)

it ( fM—l - - fT P M-1 fl\IﬂEMH"' fl\;+le )
—_0

2 (szTfMl f1TF, L~ FINFE, + fTANH)

Because f, ()= f, (w)e™, the time average of A, (j) is
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<AM (J)>t = <_atp(M )>t = _<at ( fl\; fu )/ax>t
) aL<Z (0= f (@), (w)e-‘<‘”-”'>t> =0

X t

Hence, <jM >t —< | >t =0; i.e. the time average current is spatially independent.

4-3 Boundary conditions and scattering states

The 1D Schrodinger equation implies the boundary conditions between the three regions. To

derive these conditions, the Schrodinger equation (Eqn. (4.6)) is divided into three equations:

—t, ('ffM+l+'ffM_l+c}x f, )+AO'Z f, =io, f,, M <1 (4.12 a)
-t (Tf, +Tf, +6 f, )+
o( M+l M-1 T Oy M) =i, f,, 0<M <L (4.12b)
V, cos(at) f,, + Ao, f,

_tO(ffM+l +ffM—l+6-XfM)+AUZ fM :Iat fM M 2L+1 (412 C)
Note the constraints imposed in each equation in Eqn. (4.12). For example, Eqn. (4.12 a) holds only

for those M <-1. To derive the boundary conditions, the auxiliary functions, F\”,F!", and

F.\"" are introduced by the following Schrédinger equations without any spatial constraint:

4 (R TR, 40,0y ) =i ) @139
B Ce= (1) r= (1) A ()

t (TRYD +TRYD +6,F40 )+ _ig FO (4.13 b)
V, cos(at) R\ + Ao, Fy"

—t, (TR + TR + 6, Fy" )+ Ao, R =io R 4.13¢)

By Eqns. (4.12) and (4.13), the auxiliary functions are further required that

Fo' (0= f, () M <-1
S OERM() 0<M <L (4.14)
Fa' ()= f, 1) L<M

At boundary M =-1, Eqn. (4.12 a) read as:
—t,(Tf, +Tf,+6,f,)+A0, T, =i0 T, (4.15)
and from Eqn. (4.13 a):

-, (TR +TFY +6,F )+ Ao, F " =io F ) (4.16)
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Combination of Eqns. (4.14), (4.15), and (4.16) leads to the boundary conditionat M =0:

F = f,(t)=F"(1 (4.17 a)
Similar procedures will lead to other boundary conditions and they are listed below with derivations
omitted:
FiOM=f,0)=F"t) (4.17 b)
F"t)=f ®=F"® .17 ¢)
FAO=f,0=F® 4.17 d)

For the auxiliary functions and the boundary conditions between them, the right-going scattering
states, f,, (), is ready to be solved. As indicated in Chapter 2, the procedures are departed into two
steps: write down the general forms of the auxiliary functions from the Schrodinger equations in
Eqns. (4.13) individually, then impose the boundary conditions from Eqn. (4.17) that f, (t) is the

combination of F\!", F!" and F{"" in three regions.

At the first stage, the general forms of F.”, F\", and F!""” are inspired by Eqns. (2.4) and
2.5):

() 1 () —iE(kX)t ikXMaX
Fu (t)‘ﬁzckx € & X,
Ky

4.1
Z C(I) ip{”'Ma, n R(r)eiqg”MaX e—igt ( 8 a)
\/7 Zpér) & Zqir)
Fhslll)(t) :ﬁ z C&)I(I)‘Jm(V;U)efi(E(kX)+ma))teikxMaxka
Ky ,m
* 4.18b
=_L A @i Ma, + B(MgidMa, J (V_o)e*i(ﬂmw)t ( )
IN & X T Ps Lo )Ino
g,r,m
F,\;I“)(t) :ﬁ C(lll)e—IE(k )t ik, Ma, . :ﬁZTg(T)elp Maxe—lgtl (418 C)
k £,7

X

The pseudo-spin, %, , is introduced in Chapter 3. Note the summation over Kk, in Eqns. (4.18) are

transformed into summation over all possible energy, £, and valley-index, 7 (with =1 for K, and

v =2 for K;). Fig. 4.2 displays the dispersion relation, E(k,), with three typical values of k. For

the valley structures, each valley, 7, contributes a right-going-k, p'”, and a left-going-k, g\ for

a given energy, € . As mentioned in Chapter 2, the right/left-going-k are in the sense that the group
velocities are right/left-going. Fig. 4.3 illustrates the right-going scattering states constituted by these
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p'” and q.In Appendix A, the procedures to determine these Bloch wave vectors are discussed.
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Fig. 4.2 dispersion relation with three typical values of k,. M, and M,

are the first Brillion zone boundaries in one dimensional momentum space
of graphene.
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M=-1 0 V (t) =V, cos(awt) L+1
Region | Region Il Region Il
(1) g—ist 7) 4—ist
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g
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o
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Fig. 4.3 The scattering states constituted by right/left-going states are also
exhibited. The right-going states are shown with black color accompanied
by black right arrows, while the left-going states are in gray color with

gray left arrows.

For the 2™ stage, the boundary conditions require these auxiliary functions are equal for all time at
the boundaries. For example, from Eqns. (4.17 a), (4.18 a) and (4.18 b)at M =0:
S (el e + RO 20 Je ™ = X (A0 + B g ) I (e (4.19)
Let ¢ =¢,+sw with seZ, and rearrange the summation as:

Z ) 2] —i(g+so)t
(Cp(r) Zp(r) + Rgo+sa)lq(f) )e
£0+S® £0+s® 50+S0

£0,S,T

() (7) V, —i(gy+Ssw+mm)t
> (Agugsw Xy +BILL X0 )Jm(;‘))e ) ) (4.19)
£0ts@ £Q+S@

£0,8,7,M

_ (7) (7) V, —i(g+so)t
- Z (Agqumep(r)m + Bgo+m(ulq(f)m ) ‘Js—m (Eﬂ)e
£)+Ma £)+Me

Eqn. (2.25) means the states of two energies & and &, are decoupled if (51—52)/ wel .

Therefore the summation over &, in Eqn. (4.19) can be omitted:

D808 e + R 2 )67 = 2 (A 20+ B 2 ) 320 (4.20 a)

S, T s,7,m

, with a short-hand notations that &, =¢,+mw, R, =R etc. Because we are interesting in the

&ytSw ?
scattering between valleys, the incident wave is characterized by a single valley, 7, with definite

energy, &,. Thus, the coefficients, ¢}, is replaced by &5, , -

£0+s0
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Eqn. (4.20 a) contains a set of linear equations. The other sets of equations form the rest boundary

conditions are list below without derivations:

_ip(f)ax () _iq(r)ax et
Z(é‘s,oé‘r,q}e ) Zpér>+Rs e qur) e

s.7

_ (1) a-iply 3y (1) =g 2, Vo \ pisst
- Z (AnT € Zp;nm + er € Zf#n” Js—m(EU)e

s,7,m

in(™) ig(™) i
ips”’'Lay (7) fids"’Lay —iggt
2(55,051,10e ) Zpg” + Rs e Zq;” )e )

s.7

_ (1) niPly L (7) id L2y Vo ya-iedt
= 3 (A g+ B g )3, (e

s,z,m

ip{”) (L+1)a, () #iqd”) (L+D)ay —iggt
Z(5S,O5I,roe ) X +R;7e™ Koo e

s.7

_ (2) piply (L+D)ay () pidly) (L+D)ay Vo \n-icst
= 3 (A g+ B g )3, (e

s,7,m

(4.20 b)

(4.20 ¢)

(4.20 d)

The transmission conductance and sideband structures for the time-dependent potential barrier in

graphene is studied via numerically solving Eqns. (4.20) with a cut off,
presented in Chapter 5.

s| < N,. These results are
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Chapter 5
Results and discussions

In this chapter we have analyzed the conductance of a graphene with electrons normally incident
to the time-dependent barrier. The results are categorized into two groups: high energy level (E = t,)

and low energy level (|E|<0.2t)).

The transmission dip structures resulting from the band top/bottom are presented in Sec. 5-1. We
also discuss the relation between conductance and the barrier width in Secs. 5-2 and 5-3. In Sec. 5-2,
an interesting phenomena we called central band refocusing (CSR) due to the interplay between
Klein tunneling and linear dispersion. In Sec. 5-3, we demonstrate the transmission oscillating with
barrier width as the incident energy lies on the dips. Such oscillation is related to Fabry-Perot
resonance. However, the dips play some role and the oscillating period is double to that of ordinary
Fabry-Perot experiments.

5-1 Dip structures of conductance

The transmission dips are observed as one of the sidebands lies close to band top/bottom. The
physics origin of the dips is the diverse of density of state at band top/bottom. Besides, the current of
these states are close to zero. Therefore, if one of the sidebands near band top/bottom, the
transmission to this sideband is enhanced and the electrons are trapped within this sideband.

For gapped graphene, the band top/bottom naturally exist in low energy regime. Figs. 5.1 and 5.3
show there are two dips which relate to conductance band bottom (E =A) and valance band top
(E =-A) respectively. Figs. 5.2 and 5.3 also reveal the difference between 7w =2A (Fig. 5.1) and
ho > 2A (Fig. 5.3). For gapless graphene, the band top/bottom are at energy t,(-t,) and Fig. 5.5
shows the transmission dips relating to band top (E =t,). Fig. 5.7 shows the number of sideband we

take into consideration would affect the accuracy of results.

In case of the wrong data we may get, we introduce a way to calculate the accuracy by testing the
current conservation. Where N is the amount of data, i label the region of current, see Fig 4.1.
For instance, N =100 means we have 100 data and i=2 means the Il region of current is
considered.

> =\/§Ztli(3”_jj)2
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Effective density of state fixing ky can be written as

D(s) = dN (sz \/A2+4cos k.a,)+4cos’(k,a,)
de \27) —4a[sin(k.a,)-2cos(ka,)sin(k,a,)]

Effective density of state will go to infinity when Kk is at Dirac cone.

) 1A ~A+hw A+ho
1k L ﬁlr
o ©=338x10"Hz Ao
V =0.028 eV /
o8 @=0 e 14
T L=12.3nm 2 _A) (a
07t N —6 |
A =0.028 eV L
06l
o, =5.18x107" E(e) A+ho
05l |
0.4 ! 1 L 1 | |

1
E ()
Fig. 5.1. The transmission dips appear when the incident Energy is 1w
away from the band edges Aand —A which have large effective density
of state by fixing ky. L refers to the width of barrier. o, indicates the

degree of accuracy. The arrows show that incident energies —A+#@ and
A+heo emit a photon with 7@ and be trapped at valence/conduction
band edge.
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0.4

A -A+hw A+ho
L jr F
® = 3.38x10" Hz
V =0.028 eV
| 0.5024 L=12.3nm
- A=0028eV  ~._
-5 0 4._ 0| o =5.18x107" 0.610;\ - -
I E-(-Atho) -5 0
E-(A+ho)
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Fig. 5.2. Shown in the two inserts are blow-ups of the T-E curves near
the vicinity of the two dip structures in Fig. 5.1. Here §=10" #w.
Whereas the figures show that T do not drop to zero at the two dip
structures, they confirm that we have found the two minimum T
values.
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Fig. 5.3. The transmission dips appear when the incident Energy is 1 7w
away from the band edges Aand —A which have large effective
density of state by fixing ky. L refers to the width of barrier. o,

indicates the degree of accuracy.
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Fig. 5.4. Shown in the two inserts are blow-ups of the T-E curves near

the vicinity of the two dip structures in

Fig. 5.3. Here 6=10" hw.
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6=0
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N, =2

A=0

o, =2.2096x10° L~

E(7w)

Fig. 5.5. The transmission dips appear when the incident Energy is 1hw
away from the band edges E, which have large effective density of state

by fixing ky. L refers to the width of barrier. o, indicates the degree of
accuracy.
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t,—ho t,
1
0.8
0.084 0)28.5X1013 HZ
T 0.6- V =0.0028 eV |
0.082 1 =0
L=22.1nm
04  0.08 N, =2 -
Yo A=0
0.2+ 0'07235 0 TsaU 6 o, =2.2096x10™° .
E—(t, —ho)
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E(ho)

Fig. 5.6. Shown in the insert is a blow-up of the T-E curve near the
vicinity of the dip structure in Fig. 5.5. Here 6=10" 7w.
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Fig. 5.7. Numerical convergence of our calculation is shown when the
number of sidebands N, included in our calculation is increased

systematically, with N, =1, 2, 5, 10, respectively, in Figs. 5.7(a)-(d).
Correspondingly, both the accuracies o, and the T-E curves improve

©=85x102Hz

0.8\ _0.0028ev

0.6 6=0
L=22.1nm

A

0.2 A=0

o, =2.2096x10°°

E(flta))

=85x102Hz
0.81v =0.0028 ev

0.6[7=0
L=22.1nm

0.4, =10

0.2[A=0
0, =6.2103x10%°

rapidly and converge nicely in Fig. 5.7 (d).

E(};lw)
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5-2 Central band refocusing (CSR)

In this section, the relation between transmission and barrier width is investigated in the low
energy regime. An exotic phenomenon, the central band refocusing (CSR), is observed that the
transmission can be periodical dominated by the central band as the barrier width increasing. Fig. 5.5
shows the CSR profile, the total transmission is fixed at one due to the Klein tunneling. However, the
transmission via other sidebands oscillate with the barrier width. The phenomena of CSR is
established by three elements: (1) the Klein tunneling, (2) nearly null inter-valley scattering, and (3)
linear dispersion. The first two factors forbid any reflection waves that only the central band exists in
Region I. The other sidebands are allowed in Region Il with only forward wave vectors (null
inter-valley transition and Klein tunneling). More specifically, Eqns. (5.1) and (5.2) are the wave
functions for Region I and Region Il with the incident wave at K, valley and energy E,:

i a 7) 4l —i iél) ay —iEy
F& ()= J—Z( giPn M2, 1(1)5 +%)e Emt:ﬁep M P Eot (5.1)

I Y 7) Higl”) Vo \ o —iEmt
FI\SI )(t :% % (A%( g X, () Bi ‘e Koo )Jms(Eo)e I
QY 2) ip{PMay Vo \ a—iEm
%Z( (1)elp a, Zpén + ( )eIP a Zpgz))\]mfs(zo)e iE t (52)
ST A 0, (e
m,s

The coefficients, A", are determined via Eqgn. (4.17 a), only (the difference between Eqns (4.17 a)

and (4.17 b) is the same order with that of the inter-valley scattering. That is they are identical in the

sense of absence of inter-valley scattering.). Therefore these A® -coefficients are irrelevant to the

boundaries at M =L and L+1. Furthermore, Eqgn. (4.17 a) forces the wave function of the sideband
components other than central band are zeroat M =0.

The above discussions only complete the half of the story. The other half is from the linear
dispersion that the wave vectors for different sidebands are characterized by:

Pn’ = Pg” +mAp
, where p{P is the wave vector of the central band and p that of the m-th sideband with energy

E., =E, +mho. Hence, the wave function in Region Il is periodic with the period determined by

2l Ap =2rnhaol v, .

Fig. 5.9 shows the absolute wave function components for individual sidebands for the cases of
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two different width of potential, L=250 and L=500. It demonstrates that the coefficients of A" are

determined, only, by left boundary of the barrier.
Fig. 5.10 shows how different V affect CSR. Compare to Fig. 5.8, we double the amplitude of

barrier, we find that the contribution to conductance is separated by more sidebands and the period
does not change.

Fig. 5.11 shows how different @ affect CSR. Compare to Fig. 5.8, we have one-half frequency;
we find that not only the contribution to conductance which is separated by more sidebands, the
period is also double.
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Fig. 5.8 (a) Central band refocusing (CSR) profile. The period of oscillated
sideband conductance can only determined by the difference between forward

wave vectors which are k_ -k, (m:il). (b) Compare central band with
sidebands which absorb photons. (c) Compare central band with sidebands
which emit photons. The A=0 means this system is a gapless graphene. L
refers to the width of barrier in unitof a,. o, indicate the degree of accuracy.
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Fig. 5.9 the densities of individual sidebands in Region Il with two barrier
widths, L=240 and L=500.

500

38



@

k I I I I I I I I I I I I I
1 . 14 i 2\
\ w=127x10"Hz FERY S
1 H A Y
v V=01204 eV oS Sy =T
05F 1 N,=5 LA Y 1 0y |m==T -
3 oL R m=0
ooy =l34x10 b P Y
\ A T
0 I Neleypn T Eny P | | LN m T a L i RONIPLT LT NEps

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

L(a)

(b) (c)

1 N | T T O
K ] U I e
P i omee
T P

200 400 600 800 1000 200 400 600 800 1000

L(a,) L(a,)

Fig. 5.10 (a) Central band refocusing (CSR) profile applying with double
amplitude of time-dependent potential. The period of oscillated sideband
conductance can only determined by the difference between forward wave

vectors which are k -k, (m :il).(b) Compare central band with sidebands
which absorb photons. (c) Compare central band with sidebands which emit
photons. The A=0 means this system is a gapless graphene. L refers to the
width of barrier in unitof a,. o, indicate the degree of accuracy.
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Fig. 5.11 (a) Central band refocusing (CSR) profile applying with frequency
is one-half of that in Fig. 5.6. The period of oscillated sideband conductance
can only determined by the difference between forward wave vectors which

are k., —k, (m =+1).(b) Compare central band with sidebands which absorb
photons. (c) Compare central band with sidebands which emit photons. The
A=0 means this system is a gapless graphene. L refers to the width of
barrier inunitof a,. o, indicate the degree of accuracy.
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5-3 Non-typical Fabry-Perot resonance

In this section, we present the Fabry-Perot resonance as the incidence energy lies on dips. For the
dips enhance reflection, the interference between forward and backward waves takes place inside the
region of potential barrier. To simplify the analysis, the parameters are specified such that
transmissions and reflections are dominated by two sidebands.

Fig. 5.12 displays the Fabry-Perot resonance with K-valley incident and the 1% sideband energy,
E,=E,+hwo=t,. The transmission is dominated by central band and the oscillating period is
determined from the difference between wave vectors in the central band, 27/(q® - p{’) =26.5a,.
However, the period is 53a, , double to that of estimated.

Also we can observe the dip structure by selecting certain barrier width in Fig. 5.8. In Fig. 5.13 we
give a series of dip structure by varying with barrier width. It is interesting that we can control the

dip structure to be survived or not. We can reopen the Klein-tunneling; we can make zero
transmission as well by choosing certain barrier width.

Fig. 5.14 demonstrates the Febry-Perot resonance for gapped graphene at low energy region with

size of gap = 2A. The incident wave is at K-valley and the next sideband energy lies on the
conduction band edge (E , =E, 7w =A).
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= | =
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Fig. 5.12 Non-typical Fabry-Perot resonance for the case when the incident energy stays at the dip
structure. The incidence energy E,=t,—%w is at an 7@ below the band top t;,. The choice of

the time-modulated potential parameters are such that only up to first-sideband processes are
important. The curve shows the dominance of the central band in the transmission. The L-period

cannot be explained by the usual Fabry-Perot resonance condition: 27z /(q{” — p{’) = 26.5a, ,where

& pl are wavevector-pairs for the elastic channel. It is explained by a non-typical Fabry-Perot

resonance that connects wavevector-pairs between the central and the first-sideband channels.
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Fig. 5.13 T-E curves for selected L values in Fig. 5.12, which show that the
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Fig. 5.14 Non-typical Fabry-Perot resonance for the case when the system stays at the dip structure,
with low incident energy, and the graphene is gapped . The incident energy E,=A+7%® is at an

he above the band bottom A. The observed physics in Fig. 5.12 remain valid here. The L-period

is the result of a non-typical Fabry-Perot resonance condition.
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Appendix A

The x component of momentum we choice in calculation is quite important. By Eqn.(Al) we can get

four momentum by given energy and k, . Two is for forward propagating mode, the other two is for

backward propagating mode.

L —Coskyazyi\/Ez—sinz(kyazy)
" a 2

X

In the following discussion we replace k, with p and g to present the forward and backward
propagating momentum, respectively.

Momentums can be divided into two parts. One is real part and the other one is imaginary part. The
sign of real part decide which valley the momentum belongs to. We set up 7 as valley index. Here

2)

the valley index was accompany with momentum p” , we define p® , q" ( p®,q?) as

K (K")valley.

The sign of imaginary part should be treated very carefully to prevent explosion from wave function.
It should be positive when the real part of momentum is positive and be negative when the real part
of momentum is negative. For example, in Eqn.(A2) if the imaginary part of pis negative, then

e™ M3 will come to be infinity while M is increasing. However, it is wrong because when the wave

is propagating within potential area, it should be decay while the propagating distance is increasing.

(z) (7)
'//(”) (M:t) = Z l:alr‘]ml (Z)eiMp(r)ax [CA( ) )J b (Z)eiMq(T)aX [CA (q )HeiEmt (A2)
¢ (pi”) ¢ ()

There are two cases, which have different dispersion energy profile owing to ka, >% and

kyay<% according to Eqgn.(A.1). Hence, the dispersion confined in Brillouin zone will be

discussed separately. The different energy levels also lead to different scenario, which need to be
discussed individually.
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Case(a): k,a, <%

Fix ky=0.2(K)

E ()

E
/ E72
E

5 | | | | | | |

kx O(K) 0.5 1 15 2

Fig.A.1: Case(a) Energy dispersion fixing k, :0.2(K) which means k a, <%. The band bottom

is flat. The dashed lines divide energy levels into different scenario, which need to be discussed
individually. We will get 4 momentum from Eqn(A.1). In regions E, <E<E, ,E>E, ,E<E,
we get 4 complex wave vectors. In regionsE, <E<E, ,E,<E<E, we get 2 complex 2 real
wave vectors. In regions E, <E<E, ,E,<E<E we get4 real wave vectors. We define that if
k, is positive corresponding to the energy region we focus on then we name it K-related wave

vector, contrary to K related wave vector if k,  is negative then we name it K’-related wave vector.
And we define right-going wave vector as p left-going wave vector as q. Here the valley index

was accompany with momentum p'”', we define p@,q" (p',q®) as K (K')valley. X-axis is

momentum k., in unit of K= ai
3J3a,

;Y-axis IS energy in  unit  of

t, = 2.8ev

E, =sin(k,a, ).E, = J5-4cos(k,a, ), E, =[5+ 4cos(k,a, ), E, =-E, ,E,=-E, ,E,=-E,
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Dispersion Energy

ky=0.2(K)

—e— Re( p(l)a

—— Im(p"3 ¢

FigA.2.Left: Plot momentum p(l) in real(Blue circle) and imaginary(Red cross) part. Fix k, at

0.2K. Right: Energy dispersion, which used to compare with the left figure. The red line label the
momentum we are discussing. According to energy dispersion plot with red line, the group velocity

is always positive. In regionsE > E,, E<E_,,E,<E<E, p" isgiven by evanescent mode.
Inregionsof E <E<E, E,<E<E| p(l) Is given by propagating mode. The imaginary part of

p(l) become larger as the energy is further away from the band bottom, and become smaller as the

energy is closer toward to the band bottom.
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ky=0.2(K) Dispersion Energy

Fig. A.3.Left: Plot momentum p(z) in real(Blue circle) and imaginary(Red cross) part. Fix k, at

0.2K.
Right: Energy dispersion, which used to compare with the left figure. The red line label the
momentum we are discussing. According to energy dispersion plot with red line, the group velocity

Is always positive. In regionsE<E, ,E>E;,E, <E<E p(z) Is given by evanescent mode. In

regions E,<E<E, E,<E<E_,p? isgiven by propagating mode. The imaginary part of p'®

become larger as the energy is further away from the band bottom, and become smaller as the energy
is closer toward to the band bottom.
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Case(b): k,a >%

Fix ky=0.8(K)

4 —

N T~ 7

w

1 E2
SN 1E,
LLl /\ /\ E,

1 / \ N E,Z

\ / g

| * kx (K) |

Fig.A.4Energy dispersion fixing k, =0.8(K) which means k a, >%. The band bottom is flat.

The dashed lines divide energy levels into different scenario, which need to be discussed individually.
We will get 4 wave vector from Eqn.(A.1). In regions E , <E<E, ,E>E, ,E<E, weget4
complex wave vectors. In regionsE,<E<E, ,E,<E<E, we get 2 complex 2 real wave
vectors. Inregions E, <E<E, ,E,<E<E, we get4 real wave vectors. We define that if k, is
positive corresponding to the energy region we focus on then we name it K-related wave vector,
contrary to K related wave vector if k, is negative then we name it K’-related wave vector. And We
define right-going wave vector as p left-going wave vector as q respectively. Here the valley

index was accompany with momentum p'”, we define p®,q® (p®®,q®) as K (K ")valley. X-axis

_br

3/3a

E, =sin(k,a, ).E, = [5-4cos(k,a, ), E, =[5+ 4cos(k,a, ), E, =-E, ,E,=-E, ,E,=-E,

Is momentum k, inunitof K= ;Y-axis is energy in unit of t;, =2.66ev
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ky=0.8(K) Dispersion Energy

| A

Fig.A.5 Left: Plot momentum p(l) in real(Blue circle) and imaginary(Red cross) part. Fix k, at

0.8K. Right: Energy dispersion, which used to compare with the left figure. The red line label the
momentum we are discussing. According to energy dispersion plot with red line, the group velocity

Is always positive. In regionsE >E,, E<E, E <E<E p(l) IS given by evanescent mode. In

regions E,<E<E, E,<E<E_, p" is given by propagating mode. The imaginary part of p"

become larger as the energy is further away from the band bottom, and become smaller as the energy
is closer toward to the band bottom.
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ky=0.8(K) Dispersion Energy

—o— Im( p(z)ax)
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s,
(A
e
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Fig.A.6 Left: Plot momentum p(z) in real(Blue circle) and imaginary(Red cross) part. Fix k, at

0.8K. Right: Energy dispersion, which used to compare with the left figure. The red line label the
momentum we are discussing. According to energy dispersion plot with red line, the group velocity

Is always positive. In regionsE >E,, E<E,,E <E<E p(z) IS given by evanescent mode. In

regions E,<E<E, E,<E<E_,p? is given by propagating mode. The imaginary part of p'*

become larger as the energy is further away from the band bottom, and become smaller as the energy
is closer toward to the band bottom.
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Appendix B

The current operator was defined as

kAT
2

Where pand v are density operator and velocity operator, respectively.
The density operator can be written down as

p:iz[|M,N,A><M,N,A|+|M,N,B)(M,N,BH
a0
a, Is the lattice constant, on the other word it is the length between each lattices.
The velocity operator can be relevant to [x,H ]

o [xA]
dt i

~2(xH - ix)

The Hamiltonian already introduce in Chapter 3

'[M +1,N+1,A}(M,N,B|]
IM -1 N +1, A}(M,N,B|

Aoy | M, N ,A)}(M,N,B]|

i | [M+LN-1B)(M,N,A|

IM=1,N-1,B){(M,N,A|

| M, N B)(MN,A] |

The position operator is defined as

C« |Runc[[M'NTAY(M N A[+[M N 'B)(M "N "B ]
X_M',N-{+d|M'N'D><M'N'D| }

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

InEqn.(B.4), R, identify the position from subblattice A and B. The distance between sublattice

Aand B is defined by d. |[M N D){(M N D| help us ensure the difference between subblattice A

and B. it works out as the following.
(M N D|M N A)=0
(M ND|M N B)=1

To make it more specify we can see Fig.B.1
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O¢-1ra) @ (11.4)

o110 @ (1L10)

B @ (0.0.4d)

A (0,0,0)
Cing) Pa-ra)

(—1.-1,0) ~
® ® (1-1,0)

Fig.B.1 We set up sublattice A as original point and subblattice B is at a distance d away from A

site. The coorinate here is described by capital R, \

To make the current easier to obtain, we use 2 to label the vectors we need to discuss.

Fig.B.2 We define §4,,6,,8, asthe vectors (d),(-a,+d),(—a,+d) we will use later to present

the current flow.
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Now we can get commutation of [x,H |

[x.H]=
[—5,|M -LN+1A)
+8;,|M +1L N +1, A)
-8,|M +1,N -1,B)(M,N, A|

_toz

wn |[+6,|M -1L,N-1,B)(M,N,A|
-8,|M,N, A}(M,N, B]
|+6,|M,N,B)(M,N, Al

M,N,B]]
M,N,B]

o~~~

Combine (B.6) and (B.3) the velocity operator

-6,M =L,N +1,A)(M,N,B|]
+8;|M +1,N +1, A)(M, N, B|
-8,|M +1,N =1,B)(M, N, A|
+6,|M ~L,N-1,B)(M,N, A|
-6,|M,N,A)(M,N, B
|+6,|M,N,B)(M,N, A|

. | =t

<
z

Finally we get our current operator.
_ pV+Vp

+8,[|[M, N, A)(M —1,N =1, B|+|M +1,N +1, A)(M, N, B| |
~8,[|[M,N,A)(M +1,N -1, B|+|M -1, N +1, A)(M,N, B|]
~5,[|[M,N,B}{M —1,N +1, A|+|M +1,N -1, B)(M,N, A]
+8,[|[M,N,B)(M +1,N +1, A[+|M =L, N -1, B)(M,N, A[]
+26,|M,N,B)(M,N, A|-26,|M,N,A)(M,N,B|

(B.6)

(B.7)

(B.8)
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