國立交通大學

電子物理學系

碩士論文

利用有限差分法計算半導體量子點電子結構

Finite difference method for calculation of electronic

structure of semiconductor quantum dots

研究生:古智豪

指導教授:鄭舜仁 教授

中華民國一百年七月

利用有限差分法計算半導體量子點電子結構

Finite difference method for calculation of electronic structure of semiconductor quantum dots

研究生:古智豪

Student: Chih-Hao Ku

指導教授:鄭舜仁 教授

Advisor: Shun-Jen Cheng

Electrophysics

July 2011

HsinChu, Taiwan, Republic of China

中華民國一百年七月

利用有限差分法計算半導體量子點電子結構

學生:古智豪

指導教授:鄭舜仁 博士

國立交通大學電子物理研究所碩士班

摘要

本篇論文主要是在探討如何利用有限差分法計算半導體量子點 的電子結構,並應用於以下三種量子點:1. hierarchical量子點[17] 2.droplet epitaxy量子點[18] 3. InAs/GaAs自組式(self-assembled)量子 點[19]。在文章中利用了多能帶k·p理論以及波包近似法計算量子點 電子結構。在使用三維均勻格點的有限差分法中,在單一維度上至少 需使用70格點以上對於基態的計算才可以達到較佳收斂性。在計算上 使用的電腦配備為CPU 2.27GHz與linux作業系統,要達到收斂的計算 時間約15個小時,記憶體的使用大小為14GB。

在三種量子點中以hierarchical量子點的高度以及長度都是最大, 其導電帶的能階量化約5meV,價電帶能階量化約1.5meV。droplet epitaxy量子點,高度與hierarchical量子點接近,但是長度略小一些。 在能量上導電帶的能階量化約10meV,價電帶能階量化約3meV。 InAs/GaAs自組式量子點,高度與長度都小於其他兩種量子點,所以 在能階量化都比較大。導電帶能階量化約70meV,價電帶能階量化約 25meV。

Finite difference method for calculation of electronic structure of semiconductor quantum dots

Student : Chih-Hao Ku

Advisor : Shun-Jen Cheng

Department of Electrophysics

National Chiao Tung University

We present finite difference method simulation for the electronic structures of semiconductor quantum dots in the framework of multi-band $k \cdot p$ theory and envelope function approximation (EFA). By using the numerical techniques, the electronic structures of three kinds of quantum dots, i.e. hierarchical quantum dots[17], droplet epitaxy quantum dots[18] and InAs/GaAs self-assembled quantum dots[19] are computed. In the three-dimensional finite difference method with *uniform* grids, it is found that more than 70 grids in a dimension is necessary to get satisfactory convergence consequences. With the grid number, the numerical time more than 15 hours and 15GB RAM size are needed to execute a code on a machine of CPU 2.27GHz and linux O.S..

Among the three types of quantum dots under consideration, the hierarchical quantum dots have greater sizes than others with height ~7nm and length ~ 70nm. As a result, the lateral quantization of hierarchical quantum dots is about 5meV for an electron and about 1.5meV for a valence hole. For droplet epitaxy quantum dots, whose heights are close to the hierarchical quantum dots but lengths are smaller, the quantization energy are about 10meV for a conduction electron and about 3meV for a valance hole. Self-assembled quantum dots usually have the smallest sizes than others. It turns out that the quantization is about 70meV for a conduction electron and about 25meV for a valance hole confined in a self-assembled dot.

致謝

首先,感謝鄭舜仁老師這兩年碩士生涯對我的指導與諄諄教 誨。讓我在固態物理以及理論計算上更進一步的了解,以及在作 研究上應該具備的態度與方法。感謝口試委員周武清老師、張文 豪老師、林炯源老師在口試時提出的寶貴意見。

感謝盧書楷、廖禹淮學長在平常對我的照顧與指導,讓我在 碩士生活中得到許多幫助。接著要感謝陳彥廷、尤文廷、陳勇達、 趙虔震、徐燁、許克銘、曾浤鈞學長們在研究上以及技術上的帶 領,使我的研究可以更加順利。也謝謝研究室同屆同學鄭丞偉、 張語宸、廖建智、林以理、陳力瑋、張書瑜,在平常課業上的討 論以及互相幫助。也謝謝學弟、妹們的陪伴與幫忙。

感謝家人提供我一個無憂無慮的環境,讓我可以堅持自己的 理想。而在我在疲憊或是遭受挫折的時刻,提供一個溫暖的地方 讓我有繼續堅持下去的勇氣。最後想對所有幫助過我的人說聲謝 謝。

iv

П	臼	٠
Н	鉨	•

中文摘要ii
英文摘要iii
致謝iv
目錄:v
表目錄:
圖目錄:viii
第一章 導論1
1.1 量子點簡介1
1.2 理論文獻
1896
1.4 章節概要
第二章 k·p 法與量子點等效位能4
2.1 <i>k</i> ·p法5
2.2 多能帶模型(multi-band models)7
2.3 波包近似法(Envelope function approximation)13
2.4 量子點的等效位能16
第三章 有限差分法23

3.1 一維均勻格點的有限差分法	
3.2 三維均勻格點的有限差分法	27
3.3 有限差分法的收斂與驗證	
第四章 量子點電子結構	46
4.1 hierarchical 量子點的電子結構與波函數	46
4.2 droplet epitaxy 量子點的電子結構與波函數	55
4.3 InAs/GaAs 量子點的電子結構與波函數	
第五章 結論	71
參考文獻	74
附錄 A、材料參數	76
1896	

表目錄:

表 3.2.1 係數矩陣與有限差分項對照表 32
表 4.1.1 文獻[17]中量測的量子點的大小
表 4.2.1 根據文獻[18]所估計的量子點大小
表 4.2.2 hierarchical 量子點與 droplet epitaxy 量子點計算結果比較
表 4.3.1 hierarchical 量子點、droplet epitaxy 量子點與 InAs/GaAs
量子點計算結果比較
表 A.1 InAs/GaAs 材料參數[8,14]
表 A.2 GaAs/Al _{0.45} Ga _{0.55} As 材料參數[8,21]77
表 A.3 GaAs/Al _{0.35} Ga _{0.65} As 材料参数[8,22]77

圖目錄:

圖	2.1	理論流程圖	4
圖	2.3.	 .1 六能帶模型等效位能示意圖。 	15
圖	2.4.	.1 截角金字塔特徵函數示意圖(xz 平面)	17
圖	2.4.	.2 導電帶的位能圖	17
圖	2.4.	.3 價電帶的位能圖	18
圖	2.4.	.4 利用有限元素法計算 strain tensor 與文獻[14]比較的結	果。
			21
圖	2.4.	.5 利用有限元素法計算應變張量。	22
圖	2.4.	.6考慮應變後等效位能的變化。	22
圖	3.1.	.1 一維均勻格點示意圖	24
圖	3.1.	.2 一維均勻格點有限差分法展開(3.1.6)式後的矩陣型式.	26
圖	3.2.	.1 利用有限差分法近似二階微分與解析結果比較。	29
圖	3.2.	.2 三維均勻格點示意圖	30
圖	3.2.	.3 製作表(3.2.1)示意圖	32
圖	3.3.	.1 (a)x 方向格點與程式所使用記憶體大小關係(b)x 方向;	格
點	與程	呈式所需時間大小關係。	40
圖	3.3.	.2 (a)矩陣中非零項與程式所使用記憶體大小關係。(b)矩	陣

中非零項與程式所需時間大小關係。40
圖 3.3.3 (a)、(b)x 方向格點與量子點價電帶的能階關係,(c)、(d)
x 方向格點與量子點價電帶的能階誤差百分比41
圖 3.3.4 (a)、(b)z 方向的位能圖。42
圖 3.3.5 z 方向的波函數分佈。43
圖 3.3.6 四能帶模型的程式與文獻[15]的比較結果。
圖 3.3.7 六能帶模型與四能帶模型的程式與文獻[16]的比較結果。
圖 4.1.1 GaAs/Al _{0.45} Ga _{0.55} As 量子點的示意圖。
圖 4.1.2 GaAs/Al _{0.45} Ga _{0.55} As 量子點的價電帶能階收斂情形。47
圖 4.1.3 GaAs/Al _{0.45} Ga _{0.55} As 量子點的導電帶能階。
圖 4.1.4 GaAs/Al _{0.45} Ga _{0.55} As 量子點的價電帶能階。
圖 4.1.5 GaAs/Al _{0.45} Ga _{0.55} As 量子點的導電帶基態波函數。 50
圖 4.1.6 GaAs/Al _{0.45} Ga _{0.55} As 量子點的價電帶基態波函數。 50
圖 4.1.7 GaAs/Al _{0.45} Ga _{0.55} As 量子點的導電帶第一激發態波函數。
圖 4.1.8 GaAs/Al _{0.45} Ga _{0.55} As 量子點的價電帶第一激發態波函數。
圖 4.1.9 不考慮輕、重電洞耦合下, GaAs/Al _{0.45} Ga _{0.55} As 量子點的
價電帶能階。54

圖 4.2.1 文獻[18]中所觀測的量子點形狀。	55
圖 4.2.2 GaAs/Al _{0.35} Ga _{0.65} As 量子點的價電帶能階收斂情形。	56
圖 4.2.3 GaAs/Al _{0.35} Ga _{0.65} As 量子點的導電帶能階。	57
圖 4.2.4 GaAs/Al _{0.35} Ga _{0.65} As 量子點的價電帶能階。	57
圖 4.2.5 GaAs/Al _{0.35} Ga _{0.65} As 量子點的導電帶基態波函數。	58
圖 4.2.6 GaAs/Al _{0.35} Ga _{0.65} As 量子點的價電帶基態波函數。	58
圖 4.2.7 GaAs/Al _{0.35} Ga _{0.65} As 量子點的導電帶第一激發態波函	⑤數。
	59
圖 4.2.8 GaAs/Al _{0.35} Ga _{0.65} As 量子點的價電帶第一激發態波函	⑤數。
	59
圖 4.2.9 不考慮輕、重電洞耦合下, GaAs/Al _{0.35} Ga _{0.65} As 量子	·點的
價電帶能階。	60
圖 4.3.1 InAs/GaAs 量子點的導電帶能階。	63
圖 4.3.2 InAs/GaAs 量子點的價電帶能階。	63
圖 4.3.3 InAs/GaAs 量子點的導電帶基態波函數。	64
圖 4.3.4 InAs/GaAs 量子點的價電帶基態波函數。	65
圖 4.3.5 InAs/GaAs 量子點的導電帶第一激發態波函數。	66
圖 4.3.6 InAs/GaAs 量子點的價電帶第一激發態波函數。	67
圖 4.3.7 不考慮輕、重電洞耦合下, InAs/GaAs 量子點的價	電帶

能階		8
圖 4	3.8 不考慮輕、重電洞耦合與應變效應下,InAs/GaAs 量子	-
點的	價電帶能階	9

第一章 導論

1.1 量子點簡介

當材料的尺寸大小與電子在材料內物質波的波長接近時,此 時電子受到量子侷限效應 (quantum confinement effect)的影響, 產生不同於塊材(bulk)的物理特性。量子點(quantum dot)是準零維 (quasi-zero dimensional)的奈米材料,其三個維度都受到量子侷限, 所以有著不連續的電子能階,因此量子點也被稱為人造原子[1,2]。 而利用量子侷限效應的系統除了量子點外還包括一個維度都受 到量子侷限效應的量子井(quantum well)與兩個維度都受到量子 侷限效應的量子線(quantum wire),它們也有各自的物理特性。 常用來製作量子點的材料有 IV 與 III-V 族的半導體材料。量子點 的應用[3-5]有量子點雷射、光感測元件、單電子電晶體、生物螢 光檢測、單光子輻射…等。

1.2 理論文獻

再計算量子點電子結構的部分,在導電帶(conduction band) 的部分是使用*k*·*p*理論的單能帶模型;在價電帶(valence band)的 部分則是使用*k*·*p*理論的四能帶模型[6,7]與六能帶[7]模型。並搭 配波包近似法(Envelope function approximation)與有限差分法來 求解。而其他更準確的理論包含k·p八能帶模型[8]或甚至更高能帶的k·p理論。而計算上同時也有考慮應變(strain)效應[9]。

1.3 研究動機

當要研究量子點的物理量,如精細結構(Fine-structure splitting)、庫侖作用力、螢光發光強度…等。此時必須使用到導 電帶與價電帶的電子結構,如能量及波函數。所以要如何提供一 個可以探討各個物理量的工具,變成為了很重要的問題。因此希 望可以藉由這篇論文,提供一個可以準確、有效率且具有擴充便 利性的程式去計算量子點的電子結構。

而量子點的尺寸大小對於量子點的電子結構改變非常的敏感,希望可以藉由計算,找出它們彼此之間的關係。

1.4 章節概要

第一章的部分,是對於量子點及理論計算的內容作一個初步 性的介紹。

第二章,我們針對k·p 的能帶理論作一個描述。並且討論 如何將k·p 能帶理論應用到量子點的計算,最後介紹如何產生 量子點的等效位能與應變效應。

第三章開始,對有限差分法作推導以及實際應用在由第二章

所介紹用來計算量子點的k·p 理論。進一步探討使用有限差分 法的限制以及如何達到有效率且精確的計算,接著與文獻作驗證 確認其正確性。

第四章,對一系列的量子點尺寸大小與電子結構作討論。希 望藉由這些比較,可以更進一步了解實際文獻上所量測量子點的 電子結構。第五章就對論文的工作做一個總結以及討論在未來可 以如何改進我們目前的工作。

第二章 k·p 法與量子點等效位能

本章主要介紹的理論結構如下圖 2.1。首先決定好我們所要 計算的量子點形狀、大小和材料後,接著產生出考慮量子點形狀、 應變(strain)的 Hamiltonian。最後選擇適當的基底作展開,再對角 化後得到能階及波函數。

我們分別對流程圖的各別項目作介紹,先從k·p法、波包近 似法(Envelope Function Approximation),以及量子點等效位能。 2.1 k·p法

在固態的系統中,原子的排列是固定且具有週期性的。所以, 當電子或其他的帶電荷粒子在固態的系統中所受到的位能也是 具有週期性排列的,可表為(2.1.1)式。

 $V(\bar{r}) = V(\bar{r} + \bar{T})$ (2.1.1) $\bar{T} = n_1 \hat{a}_1 + n_2 \hat{a}_2 + n_3 \hat{a}_3$ 在這裡 $V(\bar{r})$ 是來自原子的位能,並不是外加的位能。 \bar{T} 是一個平 移向量,而 $n_1 \cdot n_2 \cdot n_3$ 是整數, $\hat{a}_1 \cdot \hat{a}_2 \cdot \hat{a}_3$ 為晶格向量。根據 Bloch's theorem 當電子處在週期性位能中,波函數可以表示為 Bloch function 的形式,如(2.1.2)式。

$$\Psi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} u_{n,\vec{k}}(\vec{r})$$
 (2.1.2)

$$u_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r}+T)$$

 $e^{i \vec{k} \cdot \vec{r}}$ 表示的是電子在晶體中具有平面波的特性,而 $u_{n,\vec{k}}(\vec{r})$ 表示電子局部的波函數,是一個週期為 \vec{r} 的函數。現在我們來考慮 Schrödinger equation ,如(2.1.3)式。

$$H_0 \psi_n = E_n \psi_n \tag{2.1.3}$$

$$H_0 = \frac{\hat{p}^2}{2m_0} + V(\vec{r})$$
$$\hat{p} = -i\hbar\nabla$$

H₀是 Hamiltonian, m₀是電子的質量, V(r)使指來自原子的位 能將(2.1.2)式代入(2.1.3)式中, 可得

$$H_0 \psi_{n,\bar{k}}(\bar{r}) = E_{n,\bar{k}} \psi_{n,\bar{k}}(\bar{r})$$
(2.1.4)

 $(2.1.4) 式 可 以 改 寫 成 (2.1.5) 式 \circ$ $\begin{bmatrix} \frac{\hat{p}^2}{2m_0} + V(\vec{r}) \\ m_{n,\vec{k}}(\vec{r}) \end{bmatrix} e^{i\vec{k}\cdot\vec{r}} u_{n,\vec{k}}(\vec{r}) = E_{n,\vec{k}} e^{i\vec{k}\cdot\vec{r}} u_{n,\vec{k}}(\vec{r}) \qquad (2.1.5)$ $(2.1.5) 式 \in \Pi , \vec{k} (2.1.6) : \vec{k} \circ$ $e^{i\vec{k}\cdot\vec{r}} \begin{bmatrix} \frac{\hat{p}^2 + 2\hbar\vec{k} \cdot \hat{p} + \hbar^2k^2}{2m_0} + V(\vec{r}) \\ m_{n,\vec{k}}(\vec{r}) \end{bmatrix} u_{n,\vec{k}}(\vec{r}) = E_{n,\vec{k}} e^{i\vec{k}\cdot\vec{r}} u_{n,\vec{k}}(\vec{r}) \qquad (2.1.6)$

接著把(2.1.6)式兩邊的
$$e^{i\vec{k}\cdot\vec{r}}$$
消去可得(2.1.7)式。

$$\left[\frac{\hbar^2 k^2}{2m_0} + \frac{\hat{p}^2}{2m_0} + \frac{\hbar}{m_0}\vec{k}\cdot\hat{p} + V(\vec{r})\right]u_{n,\vec{k}}(\vec{r}) = E_{n,\vec{k}}u_{n,\vec{k}}(\vec{r}) \quad (2.1.7)$$

此時方程式出現了 $\frac{\hbar}{m_0} \vec{k} \cdot \hat{p}$,所以稱為 $k \cdot p$ 法。接下來進一步考

慮自旋軌道耦合(spin-orbital coupling), Hamiltonian 可以把(2.1.3) 式改寫成(2.1.8)式。

$$\left(H_0 + H_{s.o.}\right)\psi_n = E_n\psi_n \tag{2.1.8}$$

$$H_0 = \frac{\hat{p}^2}{2m_0} + V(\vec{r})$$
$$\hat{p} = -i\hbar\nabla$$
$$\hbar$$

$$H_{s.o.} = \frac{h}{4m_0^2 c^2} \sigma \cdot (\nabla V \times \vec{p})$$

其中, σ是包力自旋矩陣,

$$\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

將(2.1.8)式重覆(2.1.3)式到(2.1.7)式的步驟作運算,可得到(2.1.9)

式。

$$\begin{bmatrix} \frac{\hbar^2 k^2}{2m_0} + \frac{\hat{p}^2}{2m_0} + \frac{\hbar}{m_0} \vec{k} \cdot \vec{\Pi} + V(\vec{r}) \end{bmatrix} u_{n,\vec{k}}(\vec{r}) = E_{n,\vec{k}} u_{n,\vec{k}}(\vec{r}) \quad (2.1.9)$$

$$\vec{\Pi} = \vec{p} + \frac{\hbar 896}{4m_0 c^2} \sigma \times \nabla V$$

2.2 多能帶模型(multi-band models)

在計算上,分成導電帶與價電帶的計算。在導電帶我們使用 單能帶模型(one-band model),將(2.1.4)式根據 Löwdin 的微擾理 論[11]可求得*k*·*p*等效的 Hamiltonian[12],如(2.2.1)式。

$$E_c(\vec{k}) = E_c(\vec{k}=0) + \frac{\hbar^2 k^2}{2m_0 m^*}$$
(2.2.1)

$$m^{*} = \frac{1}{\left(1 + \frac{2}{m_{0}^{2}} \frac{(p_{cv})^{2}}{E_{c} - E_{v}}\right)}$$
(2.2.2)

m^{*}稱為有效質量,會根據材料的不同而改變。可以從(2.2.1)式中 清楚的看到,當底值很接近零的時,電子在塊材中的行為表現和 在真空中的行為表現接近,而差異僅在有效質量上的不同。在真 空中 $m^* = 1$,而在大部份的半導體中 m^* 會小於1,因此電子在塊 材中的行為表現相當於質量變小了。(2.2.2)式中 $p_{cv} = \langle c | \hat{p} | v \rangle$,表 示導帶電與價電帶的動量矩陣元素, $E_g = E_c - E_y$ 為能隙(energy gap),是導電帶底部和價電帶頂部的能量差。 在價電帶部分,我們是使用六能帶模型(six-band models)。 這裡採用的基底為 $\{u_n\} = \{u_{j;j_z}\}$ 其,其中 $u_1 = |u_{3/2;3/2}\rangle$ 、 $u_2 = |u_{3/2;1/2}\rangle$, $u_3 = |u_{3/2;-1/2}\rangle$, $u_4 = |u_{3/2;-3/2}\rangle$, $u_5 = |u_{1/2;1/2}\rangle$, $u_6 = |u_{1/2;-1/2}\rangle$,而 j 為總角動量、 j_z 為總角動量在 Z 方向的分量。 所以六能帶模型的 Hamiltonian 可表為

$$H(\bar{k}) = -\begin{bmatrix} P_{k} + Q_{k} & -S_{k} & R_{k} & 0 & -\frac{S_{k}}{\sqrt{2}} & \sqrt{2}R_{k} \\ -S_{k}^{\dagger} & P_{k} - Q_{k} & 0 & R_{k} & -\sqrt{2}Q_{k} & \sqrt{\frac{3}{2}}S_{k} \\ R_{k}^{\dagger} & 0 & P_{k} - Q_{k} & S_{k} & \sqrt{\frac{3}{2}}S_{k}^{\dagger} & \sqrt{2}Q_{k} \\ 0 & R_{k}^{\dagger} & S_{k}^{\dagger} & P_{k} + Q_{k} & -\sqrt{2}R_{k}^{\dagger} & -\frac{S_{k}^{\dagger}}{\sqrt{2}} \\ -\frac{S_{k}^{\dagger}}{\sqrt{2}} & -\sqrt{2}Q_{k}^{\dagger} & \sqrt{\frac{3}{2}}S_{k} & -\sqrt{2}R_{k} & P_{k} + \Delta & 0 \\ \sqrt{2}R_{k}^{\dagger} & \sqrt{\frac{3}{2}}S_{k}^{\dagger} & \sqrt{2}Q_{k}^{\dagger} & -\frac{S_{k}}{\sqrt{2}} & 0 & P_{k} + \Delta \end{bmatrix}$$

$$P_{k} = \frac{\hbar^{2}}{2m_{0}}\gamma_{1}\left(k_{x}^{2} + k_{y}^{2} + k_{z}^{2}\right)$$

$$Q_{k} = \frac{\hbar^{2}}{2m_{0}}\gamma_{2}\left(k_{x}^{2} + k_{y}^{2} - 2k_{z}^{2}\right)$$

$$R_{k} = \frac{\hbar^{2}}{2m_{0}}\left[-\sqrt{3}\gamma_{2}\left(k_{x}^{2} + k_{y}^{2}\right) + i2\sqrt{3}\gamma_{3}k_{x}k_{y}\right]$$

$$(2.2.6)$$

$$S_{k} = \frac{\hbar^{2}}{2m_{0}}2\sqrt{3}\gamma_{3}\left(k_{x}k_{z} - ik_{y}k_{z}\right)$$

$$(2.2.7)$$

在這裡 γ_1 、 γ_2 、 γ_3 是 Luttinger-Kohn 參數,不同的材料會 有不同的參數值。 Δ 則是 spin-orbit split energy,亦隨著不同的 材料而改變。(2.2.3)式中,主對角線的元素 $P_k + Q_k$ 、 $P_k - Q_k$ 、 $P_k + \Delta$ 分別對應到的是重電洞、輕電洞、split-off bands。非主對角線上 的元素,則表示重電洞、輕電洞、split-off bands之間的耦合。

 $k \cdot p$ 的矩陣可以表為 $H_{m,n}(\vec{k}) = H^{k}_{m,n}(\vec{k}) + V^{s}_{m,n}$ 的形式,其中 $H^{k}_{m,n}(\vec{k})$ 是與 \vec{k} 有關的項。而 $V^{s}_{m,n}$ 是與 \vec{k} 無關的項,在這裡的 $V^{s}_{m,n}$ 我 們考慮的是應變(strain)的影響,這部分 2.4 節會在介紹。而 $H^{k}_{m,n}(\vec{k})$ 的矩陣元素可表示成(2.2.8)式。

$$H_{m,n}(\bar{k}) = e_n \delta_{mn} + \sum_{\alpha} a_{mn}^{\alpha,\beta} k_{\alpha} + \sum_{\alpha,\beta} b_{mn}^{\alpha,\beta} k_{\alpha} k_{\beta} + \sum_{\alpha,\beta,\gamma} b_{mn}^{\alpha,\beta,\gamma} k_{\alpha} k_{\beta} k_{\gamma} + \cdots (2.2.8)$$

其中, α , β , $\gamma = x$, y, z, e_n我們通常使用描述 band edge 的能量, 而且只會出現在主對角線上。

單能帶模型:

所以當(2.2.1)式使用(2.2.8)式來表示成矩陣可寫為

$$H(\vec{k}) = e_c + \sum_{\alpha,\beta=x,y,z} b^{\alpha,\beta} k_{\alpha} k_{\beta}$$
(2.2.9)

其中, $I_{m\times m}$ 指的是 $m \times m$ 的單位矩陣(identity matrix),

$$e_c = E_c(\vec{k} = 0)$$
 (2.2.10)

$$b^{xx} = \left[\frac{\hbar^2}{2m_0 m^*}\right] \tag{2.2.11}$$

$$b^{yy} = \left[\frac{\hbar^2}{2m_0 m^*}\right] \tag{2.2.12}$$

$$b^{zz} = \left[\frac{\hbar^2}{2m_0 m^*}\right] \tag{2.2.13}$$

$$b^{xy} = [0] ; b^{yz} = [0] ; b^{xz} = [0]$$
 (2.2.14)

六能帶模型:

同理(2.2.3)式亦可以使用(2.2.8)式來表示

$$H_{m,n}(\vec{k}) = e_n \cdot \delta_{mn} + \sum_{\alpha,\beta=x,y,z} b_{mn}^{\alpha,\beta} k_\alpha k_\beta \qquad (2.2.15)$$

其中, e_n 是描述 band edge 的能量, $e_1 = e_2 = e_3 = e_4 = 0$;

$$e_5 = e_6 = \Delta$$
 °

$$\begin{bmatrix} b_{mn}^{xx} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} (\gamma_1 + \gamma_2) & 0 & -\sqrt{3}\gamma_2 & 0 & 0 & -\sqrt{6}\gamma_2 \\ 0 & (\gamma_1 - \gamma_2) & 0 & -\sqrt{3}\gamma_2 & 0 \\ -\sqrt{3}\gamma_2 & 0 & (\gamma_1 - \gamma_2) & 0 & 0 & \sqrt{2}\gamma_2 \\ 0 & -\sqrt{3}\gamma_2 & 0 & (\gamma_1 + \gamma_2) & \sqrt{6}\gamma_2 & 0 \\ 0 & -\sqrt{2}\gamma_2 & 0 & \sqrt{6}\gamma_2 & \gamma_1 & 0 \\ -\sqrt{6}\gamma_1 & 0 & \sqrt{3}\gamma_2 & 0 & \sqrt{6}\gamma_2 \\ 0 & (\gamma_1 - \gamma_2) & 0 & \sqrt{3}\gamma_2 & -\sqrt{2}\gamma_2 & 0 \\ \sqrt{3}\gamma_2 & 0 & (\gamma_1 - \gamma_2) & 0 & 0 & \sqrt{2}\gamma_2 \\ 0 & \sqrt{3}\gamma_2 & 0 & (\gamma_1 + \gamma_2) & -\sqrt{6}\gamma_2 & 0 \\ 0 & -\sqrt{2}\gamma_2 & 0 & \sqrt{6}\gamma_2 & \gamma_1 & 0 \\ \sqrt{5}\gamma_2 & 0 & \sqrt{2}\gamma_2 & 0 & 0 & \gamma_1 \end{bmatrix}$$
(2.2.17)
$$\begin{bmatrix} b_{mn}^{zz} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} (\gamma_1 - 2\gamma_2) & 0 & 0 & 0 & 0 & 0 \\ 0 & (\gamma_1 + 2\gamma_2) & 0 & 0 & 2\sqrt{2}\gamma_2 & 0 \\ 0 & 0 & (\gamma_1 + 2\gamma_2) & 0 & 0 & -2\sqrt{2}\gamma_2 \\ 0 & 0 & 0 & (\gamma_1 - 2\gamma_2) & 0 & 0 \\ 0 & 2\sqrt{2}\gamma_2 & 0 & 0 & \gamma_1 & 0 \\ 0 & 0 & -2\sqrt{2}\gamma_2 & 0 & 0 & \gamma_1 \end{bmatrix}$$
(2.2.18)

2.3 波包近似法(Envelope function approximation)

當在一個有限系統中外加位能,例如: V_{QD}(r)是由量子點形 狀與材料所形成的位能, V_s(r)是因為應變造成的位能, V_E(r)是 因為電場所形成的位能, V_B(r)是加入磁場造成的位能等。

如果這些位能在空間中是緩慢變化的話,這時候用波包近似 法簡化我們的 Hamiltonian,以波包函數(envelope function) $g(\bar{r})$ 取代原來 Bloch function $e^{i\bar{k}\cdot\bar{r}}$ 的部分,可得(2.3.1)式。

$$\Psi_{i} = \sum_{n=1}^{N_{kp}} g_{i;n}(\vec{r}) u_{n}(\vec{r})$$
(2.3.1)

 N_{kp} 是指考慮 N_{kp} 個 band,而下標n是指第n 個 band 的波包函數, i則是指第i 個能階。考慮(2.3.1)式及 $k \cdot p$ 的 Hamiltonian 後並經 過計算,可以得到(2.3.2)式。

$$H_{m,n} \to H_{m,n}(\bar{k} \to \hat{\bar{p}}/\hbar; \bar{r})$$

$$H_{m,n}(\hat{\vec{p}}/\hbar;\vec{r}) = e_n(\vec{r})\delta_{mn} + \frac{1}{\hbar^2}\sum_{\alpha,\beta}b_{mn}^{\alpha,\beta}\hat{p}_{\alpha}\hat{p}_{\beta} + V_{mn}^s(\vec{r})_{(2.3.2)}$$

其中 $e_n(\bar{r})$ 與 $V_{QD}(\bar{r})$ 有關, V_{nn}^s 為應變所產生的位能與應變張量 $\varepsilon_{\alpha\beta}(\bar{r})$ 有關。根據波包近似法可以將(2.2.1)、(2.2.3)、(2.2.4)、(2.2.5)、 (2.2.6)、(2.2.7)式中的 \bar{k} 給替換成 \hat{p}/\hbar 。最後得到我們在計算量 子點所使用的等效質量 Hamiltonian。

$$H(\hat{\vec{p}}/\hbar;\vec{r}) = e_{c}(\vec{r}) + \frac{1}{\hbar^{2}} \sum_{\alpha,\beta=x,y,z} b^{\alpha,\beta} \hat{p}_{\alpha} \hat{p}_{\beta} + V_{s}^{c}(\vec{r}) \quad (2.3.3)$$

其中, $e_c(\bar{r}) = V_{QD}^c(\bar{r})$ 是在導電帶中由量子點形狀與材料所形成 的位能。 $b^{xx} \land b^{yy} \land b^{zz} \land b^{xy} \land b^{yz} \land b^{xz} 為1 \times 1$ 的矩陣,它們的值 與(2.2.11)式、(2.2.12)式、(2.2.13)式、(2.2.14)式相同。

同理	,六	能带	模型											
	$H_{m,r}$	$n(\hat{\bar{p}}/\bar{z})$	ħ; <i>ī</i>)	$=e_n($	\overline{r}) · δ_r	nn + -	$\frac{1}{\hbar^2} \sum_{\alpha, \beta = x, y, z} b$	$D_{m,n}^{\alpha,\beta}$	\hat{p}_{a}	\hat{p}_{μ}	₃ +	V_s^{ι}	'(<i>r</i>	⁽²⁾ (2.3.4)
其中	<i>, m</i>	, n = 1	1,2,3	6	。把	$e_n(\vec{r})$	· S _{mn} 表為知	三陣	的	形	式	,	如	(2.3.5)
式,	大小	為的	6×6	矩陣	0			C						
	$e_1(\vec{r})$	0	0	0	0	0	1896	[0	0	0	0	0	0	
	0	$e_2(\vec{r})$	0	0	0	0		0	0	0	0	0	0	
	0	0	$e_3(\vec{r})$	0	0	0		0	0	0	0	0	0	
	0	0	0	$e_4(\vec{r})$	0	0	$=V_{QD}(r)\cdot I_{6\times 6}$	0	0	0	0	0	0	(2.3.5)
	0	0	0	0	$e_5(\vec{r})$	0		0	0	0	0	Δ	0	× ,
	0	0	0	0	0	$e_6(\vec{r})$		0	0	0	0	0	Δ	

b^{xx}、b^{yy}、b^{zz}、b^{xy}、b^{yz}、b^{xz}為6×6的矩陣,它們的值與(2.2.16) 式~(2.2.21)式相同。在這裡要注意,實際上真實六能帶模型的位 能要為圖(2.3.1)。

圖 2.3.1 六能帶模型等效位能示意圖。

由於內部與外部的材料是不同,因此在參數部分也會不一樣,此 時 $\Delta_{InAs} \neq \Delta_{GaAs}$ 。但是在計算上我們統一都只使用內部的參數 Δ_{InAs} ,所以在(2.3.5)式中的 $\Delta = \Delta_{InAs}$ 。而實際上, $V_{QD}^{HH} \neq V_{QD}^{LH}$ 也 是會不一樣的,不過我們在計算時先暫時考慮是一樣的 $V_{QD}^{\nu} = V_{QD}^{HH} = V_{QD}^{LH}$ 。

當我們再使用(2.3.3)式與(2.3.4)式計算量子點電子結構時, $V_{QD}(\vec{r})$ 則表示為量子點的等效位能。而等效位能與量子點的形狀、 材料、擴散效應、外加電場或磁場、應變等...有關。接下來下一 節就來討論如何描述一個量子點的等效位能 $V_{QD}(\vec{r})$ 與應變造成 的位能 $V_{x}(\vec{r})$ 。

2.4 量子點的等效位能

在計算上最重要的就是要決定量子點的等效位能。影響這個 等效位能有許多因素影響,如形狀、材料、擴散效應、應變、壓 電效應、庫侖作用力、自旋軌道耦合等...。在本論文我們僅考慮 由量子點形狀及材料與應變所產生的等效位能。首先,為了描述 由量子點形狀及材料所產生的位能V_{QD}(*r*),必須先定義一個函數 X_{QD}(*r*)稱為特徵函數。特徵函數與量子點形狀有關,在量子點的 內部值為1,外部則為0,如式(2.4.1)。

$$X_{QD}(\vec{r}) = \begin{cases} 1, & \vec{r} \text{ in the dot} \\ 0, & \vec{r} \text{ out of the dot} \end{cases}$$
(2.4.1)

在常用模擬量子點的形狀,如截角金字塔或金字塔特徵函數 就可以定義成式(2.4.2)。

$$X_{QD}(x, y, z) = \begin{cases} 1, \quad \left(\frac{b_x}{2c}z - \frac{b_x}{2}\right) \le x \le \left(\frac{b_x}{2c}z + \frac{b_x}{2}\right) \\ \left(\frac{b_y}{2c}z - \frac{b_y}{2}\right) \le y \le \left(\frac{b_y}{2c}z + \frac{b_y}{2}\right) \\ 0, \qquad others \end{cases}$$
(2.4.2)

其中, $c \equiv \frac{b_x}{2} \tan \theta$,如圖(2.4.1)所示。

圖 2.4.1 截角金字塔特徵函數示意圖(XZ 平面)

圖(2.4.1)中有色區塊部分表示為模擬的量子點形狀,特徵函數值 為1。邊框則表示為完整金字塔形狀。(2.4.2)式中,b_x、b_y為量 子點底部 x 方向及 y 方向的長度, h 為截角金字塔的高度, c 為 完整金字塔的高度, θ 為 45 度。 決定好特徵函數之後,便可以產生與形狀有關的量子點位能:

在這裡分成兩個部份來討論:導電帶和價電帶

導電帶部分:

圖 2.4.2 導電帶的位能圖

圖(2.4.2)就是我們描述導電帶時的位能 $V_{QD}^{c}(\bar{r})$,在計算時我們設

定 E_c^{dot} 當作零位面,而與特徵函數的關係式可寫成(2.4.3)式,其 中 $\Delta_{barrier}^c = E_c^{barrier} - E_c^{dot}$ $V_{QD}^c(\bar{r}) = \Delta_{barrier}^c \times [1 - X_{QD}(\bar{r})]$ (2.4.3)

價電帶部分:

當考慮應變時,barrier的材料是GaAs,dot的材料則是InAs。 而決定 $\Delta_{barrier}^{c}$ 與 $\Delta_{barrier}^{v}$ 的值和材料有關,詳細的材料參數值列在附錄A。 應變效應:

我們研究的對象是自組式量子點,而當自組式量子點的形成 是由於兩種不同材料因為晶格長度的不匹配所造成時,必須考慮 應變效應。因為晶格長度不匹配,產生應變。晶格常數大的材料 晶格常數會被縮小,晶格常數小的材料晶格常數會被拉大,這些 現象再交界面更為顯著,最後達到平衡的狀態。我們考慮的量子 點材料是InAs/GaAs時, InAs的晶格常數比GaAs的晶格常數大, 晶格不匹配度大約7%,所以 InAs 會被壓縮,造成量子點的導電 帶與價電帶band edge energy 改變。這裡一樣分成兩個部分討論: 導電帶與價電帶 1896 導電帶部分: 導電帶部分是使用單能帶模型 應變等效位能V_m(r)的式子可寫 成(2.4.5)式[8]

$$V_s^c(\vec{r}) = a_c \left(\varepsilon_{xx}(\vec{r}) + \varepsilon_{yy}(\vec{r}) + \varepsilon_{zz}(\vec{r}) \right)$$
(2.4.5)

價電帶部分:

價電帶部分是使用六能帶模型,應變等效位能的式子可寫成 (2.4.6)式[8]

$$V_{s}^{\nu}(\bar{r}) = -\begin{bmatrix} P_{s} + Q_{s} & -S_{s} & R_{s} & 0 & -\frac{S_{s}}{\sqrt{2}} & \sqrt{2}R_{s} \\ -S_{s}^{\dagger} & P_{s} - Q_{s} & 0 & R_{s} & -\sqrt{2}Q_{s} & \sqrt{\frac{3}{2}}S_{s} \\ R_{s}^{\dagger} & 0 & P_{s} - Q_{s} & S_{s} & \sqrt{\frac{3}{2}}S_{s}^{\dagger} & \sqrt{2}Q_{s} \\ 0 & R_{s}^{\dagger} & S_{s}^{\dagger} & P_{s} + Q_{s} & -\sqrt{2}R_{s}^{\dagger} & -\frac{S_{s}^{\dagger}}{\sqrt{2}} \\ -\frac{S_{s}^{\dagger}}{\sqrt{2}} & -\sqrt{2}Q_{s}^{\dagger} & \sqrt{\frac{3}{2}}S_{s} & -\sqrt{2}R_{s} & P_{s} & 0 \\ \sqrt{2}R_{s}^{\dagger} & \sqrt{\frac{3}{2}}S_{s}^{\dagger} & \sqrt{2}Q_{s}^{\dagger} & -\frac{S_{s}}{\sqrt{2}} & 0 & P_{s} \end{bmatrix} \end{bmatrix}$$

$$P_{s}(\bar{r}) = -a_{v}\left(\varepsilon_{xx}(\bar{r}) + \varepsilon_{yy}(\bar{r}) + \varepsilon_{zx}(\bar{r})\right) \qquad (2.4.7)$$

$$Q_{s}(\bar{r}) = \frac{b}{2}\left(\varepsilon_{xx}(\bar{r}) + \varepsilon_{yy}(\bar{r}) - 2\varepsilon_{zx}(\bar{r})\right) \qquad (2.4.8)$$

$$R_{s}(\bar{r}) = \frac{\sqrt{3}b}{2}\left(\varepsilon_{xx}(\bar{r}) - \varepsilon_{yy}(\bar{r})\right) - id\varepsilon_{xy}(\bar{r}) \qquad (2.4.9)$$

$$S_{\varepsilon}(\vec{r}) = -d\left(\varepsilon_{xz}(\vec{r}) - i\varepsilon_{yz}(\vec{r})\right)$$
(2.4.10)

其中 $a_c \, \cdot a_v \, \cdot b \, \cdot d$ 稱為 deformation potentials,與材料有關,不同材料的值列在附錄 A。其中 $\mathcal{E}_{\alpha\beta}$ 稱為應變張量(strain tensor), α 表示形變的方向, β 則表示參考軸的方向。 $\mathcal{E}_{\alpha\beta}$ 是一個與位置有 關的函數,在這裡的計算是使用有限元素法[13]。為了確認計算 上的正確性,我們採取文獻[14]來作比較。文獻上模擬量子點形 狀為金字塔型,底部寬度為 13.6nm,高度 6.8nm。圖(2.4.4)是與 文獻比較的結果。

其中 $P_{\varepsilon}(\bar{r})$ 與 $Q_{\varepsilon}(\bar{r})$ 為(2.4.7)式與(2.4.8)式。

圖 2.4.5 利用有限元素法計算應變張量。截角金字塔形狀量子點,底部寬度 為 16nm,高度 5nm。

圖 2.4.6 考慮應變後等效位能的變化。虛線為不考慮應變的結果、實線為考 慮應變使用等效位能公式計算結果。截角金字塔形狀量子點,底部 長度與寬度皆為 16nm,高度 5nm。

由圖(2.4.6)可以看到應變會造成導電帶的 band edge 變小了,而

價電帶重電洞部分的 band edge 變大了。

第三章 有限差分法

有限差分法(finite difference method)是利用離散方法得到有 限個差分方程式後,並搭配邊界條件求出近似解。其基本思想是 將一個欲求解的區域畫分成有限個的網格點,此時配合微分方程 式及邊界條件去進行離散化後得到差分方程式,再去計算出每個 格點與鄰近格點的值,最後便可以求得未知函數的解。

3.1 一維均勻格點的有限差分

有限差分法的推導,我們先從 Taylor 級數出發。在考慮一維的情況時,

$$\psi(x_{n_x} - \Delta x) = \psi(x_{n_x}) - \frac{\Delta x}{1!} \left(\frac{d\psi}{dx} \right)_{x=x_{n_x}} + \frac{(\Delta x)^2}{2!} \left(\frac{d^2 \psi}{dx^2} \right)_{x=x_{n_x}} + \cdots$$
 (3.1.1)
為了方便,定義 $\psi(x_{n_x} - \Delta x) = \psi_{n_x} + \frac{(\Delta x)^2}{2!} \left(\frac{d^2 \psi}{dx^2} \right)_{x=x_{n_x}} + \cdots$ (3.1.1)

以此類推。將(3.1.1)式改寫成(3.1.2)式

$$\psi_{n_x-1} = \psi_{n_x} - \frac{\Delta x}{1!} \left(\frac{d\psi}{dx}\right)_{x=x_{n_x}} + \frac{\Delta x^2}{2!} \left(\frac{d^2\psi}{dx^2}\right)_{x=x_{n_x}} + \cdots$$
 (3.1.2)

$$\psi_{n_x+1} = \psi_{n_x} + \frac{\Delta x}{1!} \left(\frac{d\psi}{dx}\right)_{x=x_{n_x}} + \frac{\Delta x^2}{2!} \left(\frac{d^2\psi}{dx^2}\right)_{x=x_{n_x}} + \dots \quad (3.1.3)$$

為了要得到一階微分,將(3.1.2)式與(3.1.3)式相減可得(3.1.4)式

$$\frac{\psi_{n_x+1} - \psi_{n_x-1}}{2\Delta x} = \left(\frac{d\psi}{dx}\right)_{x=x_{n_x}} + \frac{(\Delta x)^2}{6} \left(\frac{d^3\psi}{dx^3}\right)_{x=x_{n_x}} + \dots \quad (3.1.4)$$

同理,二階微分的形式為(3.1.5)式

$$\frac{\psi_{n_x+1} - 2\psi_{n_x} + \psi_{n_x-1}}{(\Delta x)^2} = \left(\frac{d^2\psi}{dx^2}\right)_{x=x_{n_x}} + \frac{(\Delta x)^2}{12} \left(\frac{d^4\psi}{dx^4}\right)_{x=x_{n_x}} + \cdots \quad (3.1.5)$$

在這裡忽略掉大於(Δx)²的高次方項,大於(Δx)²的高次方項 就是誤差來源。所以當Δx的值越小的時候,這個近似法就越精 確,誤差也越小。

現在我們來實際操作,當考慮在教科書常見的一維的 Schrödinger equation,如(3.1.6)式。 $\begin{pmatrix} \hbar^2 & d^2 & f_2 \end{pmatrix}$

我們先在 $x \in \{0, L_x\}$ 這個範圍內,先產生出 N_x +1個格點,而格點 之間的間距大小為 $\Delta x = L_x / N_x$ 。每個格點的編號為 n_x , $n_x \in \{0, N_x\}$ 。

$$\psi_{n_x-2}$$
 ψ_{n_x-1} ψ_{n_x} ψ_{n_x+1} ψ_{n_x+2}
 x_{n_x-2} Δx x_{n_x-1} Δx x_{n_x} Δx x_{n_x+1} Δx x_{n_x+2}
圖 3.1.1 一維均勻格點示意圖
而根據(3.1.7)式,可以得到 N_x +1的差分方程式,如(3.1.8)式。

$$\begin{cases} -\frac{\hbar^{2}}{2m_{0}} \left[\frac{\psi_{1} + \psi_{-1}}{(\Delta x)^{2}} \right] + \left[-\frac{\hbar^{2}}{2m_{0}} \left(\frac{-2}{(\Delta x)^{2}} \right) + V_{0} \right] \psi_{0} = E\psi_{0} \\ -\frac{\hbar^{2}}{2m_{0}} \left[\frac{\psi_{2} + \psi_{0}}{(\Delta x)^{2}} \right] + \left[-\frac{\hbar^{2}}{2m_{0}} \left(\frac{-2}{(\Delta x)^{2}} \right) + V_{1} \right] \psi_{1} = E\psi_{1} \\ \vdots \\ -\frac{\hbar^{2}}{2m_{0}} \left[\frac{\psi_{N_{x}} + \psi_{N_{x}-2}}{(\Delta x)^{2}} \right] + \left[-\frac{\hbar^{2}}{2m_{0}} \left(\frac{-2}{(\Delta x)^{2}} \right) + V_{N_{x}-1} \right] \psi_{N_{x}-1} = E\psi_{N_{x}-1} \end{cases}$$
(3.1.8)
$$-\frac{\hbar^{2}}{2m_{0}} \left[\frac{\psi_{N_{x}-1} + \psi_{N_{x}+1}}{(\Delta x)^{2}} \right] + \left[-\frac{\hbar^{2}}{2m_{0}} \left(\frac{-2}{(\Delta x)^{2}} \right) + V_{N_{x}} \right] \psi_{N_{x}} = E\psi_{N_{x}} \end{cases}$$

所以將(3.1.9)式展開成矩陣型式 $\sum_{n_x=0}^{N_x+1} H_{n_x,n_x} \psi_{n_x} = E \psi_{n_x} \circ H_{n_x,n_x}$ 為

(3.1.10)式。

$$H_{n_{x},n_{x}'} = \begin{cases} \frac{-\hbar^{2}}{2m_{0}}\frac{1}{(\Delta x)^{2}} , n_{x} = n_{x}'-1 \\ \frac{\hbar^{2}}{2m_{0}}\frac{2}{(\Delta x)^{2}} + V_{n_{x}} , n_{x} = n_{x}' \\ \frac{-\hbar^{2}}{2m_{0}}\frac{1}{(\Delta x)^{2}} , n_{x} = n_{x}'+1 \\ 0 , others \end{cases}$$
(3.1.10)

3.2 三維均勻格點的有限差分法

當考慮我們實際計算量子點電子結構所使用的Hamiltonian, (2.3.3)式時。

$$H_{m,n}(\hat{\vec{p}}/\hbar;\vec{r}) = e_n(\vec{r})\delta_{mn} + \frac{1}{\hbar^2}\sum_{\alpha,\beta}b_{mn}^{\alpha,\beta}\hat{p}_{\alpha}\hat{p}_{\beta}$$

需要使用有限差分法作處理的部分是 $\frac{1}{\hbar^2}\hat{P}_{\alpha}\hat{P}_{\beta}$ 項,共有六項。分

別為 $\frac{\partial^2}{\partial x^2}$ 、 $\frac{\partial^2}{\partial y^2}$ 、 $\frac{\partial^2}{\partial z^2}$ 、 $\frac{\partial^2}{\partial x \partial y}$ 、 $\frac{\partial^2}{\partial y \partial z}$ 、 $\frac{\partial^2}{\partial x \partial z}$ 項。此時就必須使

用三維的有限差分法。

在三維的系統中, 在對 x 方向、y 方向與 z 方向的二階微分 作有限差分法近似時,可以重複(3.1.2)式至(3.1.5)式的步驟,便 可得(3.2.1)式、(3.2.2)式與(3.2.3)式。96

$$\left(\frac{\partial^2 \psi}{\partial x^2}\right)_{n_x, n_y, n_z} \sim \frac{\psi_{n_x+1, n_y, n_z} - 2\psi_{n_x, n_y, n_z} + \psi_{n_x-1, n_y, n_z}}{(\Delta x)^2} \qquad (3.2.1)$$

$$\left(\frac{\partial^2 \psi}{\partial y^2}\right)_{n_x, n_y, n_z} \sim \frac{\psi_{n_x, n_y+1, n_z} - 2\psi_{n_x, n_y, n_z} + \psi_{n_x, n_y-1, n_z}}{(\Delta y)^2} \qquad (3.2.2)$$

$$\left(\frac{\partial^2 \psi}{\partial z^2}\right)_{n_x, n_y, n_z} \sim \frac{\psi_{n_x, n_y, n_z+1} - 2\psi_{n_x, n_y, n_z} + \psi_{n_x, n_y, n_z-1}}{(\Delta z)^2} \qquad (3.2.3)$$

在這裡定義 $\psi(x_{n_x} - \Delta x, y_{n_y}, z_{n_z}) = \psi_{n_x - 1, n_y, n_z} \cdot \psi(x_{n_x}, y_{n_y}, z_{n_z}) = \psi_{n_x, n_y, n_z} \cdot$

 $\psi(x_{n_x} + \Delta x, y_{n_y}, z_{n_z}) = \psi_{n_x + 1, n_y, n_z} \cdot \psi(x_{n_x}, y_{n_y} - \Delta y, z_{n_z}) = \psi_{n_x, n_y - 1, n_z} \cdots \circ$

至於
$$\frac{\partial^2 \psi}{\partial x \partial y}$$
、 $\frac{\partial^2 \psi}{\partial y \partial z}$ 、 $\frac{\partial^2 \psi}{\partial x \partial z}$ 項,我們的處理方法是使用近似後的一

階微分(3.2.4)式、(3.2.5)式及(3.2.6)式來做處理。

$$\left(\frac{\partial\psi}{\partial x}\right)_{n_x,n_y,n_z} \sim \frac{\psi_{n_x+1,n_y,n_z} - \psi_{n_x-1,n_y,n_z}}{2\Delta x}$$
(3.2.4)

$$\left(\frac{\partial\psi}{\partial y}\right)_{n_x,n_y,n_z} \sim \frac{\psi_{n_x,n_y+1,n_z} - \psi_{n_x,n_y-1,n_z}}{2\Delta y}$$
(3.2.5)

$$\left(\frac{\partial\psi}{\partial z}\right)_{n_x,n_y,n_z} \sim \frac{\psi_{n_x,n_y,n_z+1} - \psi_{n_x,n_y,n_z-1}}{2\Delta z}$$
(3.2.6)

$$u \frac{\partial^2 \psi}{\partial x \partial y} 項為例子, 將(3.2.4) 式代入(3.2.5) 式可以得到(3.2.7) 式$$

$$\left(\frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) \right)_{n_x, n_y, n_z} - \frac{(\psi_{n_x+1, n_y+1, n_z} - \psi_{n_x+1, n_y-1, n_z}) - (\psi_{n_x-1, n_y+1, n_z} - \psi_{n_x-1, n_y-1, n_z})}{4\Delta x \Delta y} \quad (3.2.7)$$

為了確認採取這種形式展開的正確性,我們實際代入一個函數去 微分。當使用一個簡單的函數 $F(x, y) = x^2 y^3$,對函數微分會得到 $\left(\frac{\partial}{\partial x}\left(\frac{\partial F(x, y)}{\partial y}\right)\right) = 6xy^2$ 。接下來就使用(3.2.7)式去作 $\frac{\partial^2 F(x, y)}{\partial x \partial y}$ 的 近似與實際微分 $\frac{\partial^2 F(x, y)}{\partial x \partial y} = 6xy^2$ 作比較。圖(3.2.1)分別為解析結

果與數值近似的結果比較。

果、線為解析結果。(a)表示函數微分後 x 方向變化的值,(b)表示函數 微分後 y 方向變化的值。x 方向與 y 方向的格點數為 60 個格點。

由圖(3.2.1)的結果可以看出採用的近似法與解析結果是一致的。

接下來,開始在三維的空間中產生格點。與一維產生格點的 方式類似,現在是在一個空間中,創造出一個長方盒。 $x \cdot y \cdot z$ 方向上的長度分別為 $L_x \cdot L_y \cdot L_z$,在 $x \in \{0, L_x\}$ 範圍內產生 $N_x + 1$ 個格點、 $y \in \{0, L_y\}$ 範圍內產生 $N_y + 1$ 個格點、 $z \in \{0, L_z\}$ 範圍內 $產生 N_z + 1 個格點, 所以長方盒內的總格點數為$ $N_g = (N_x + 1) \times (N_y + 1) \times (N_z + 1) \circ \Delta x = L_x / N_x \cdot \Delta y = L_y / N_y \cdot \Delta z = L_z / N_z, \, \beta$ 別表示 x、y、z 方向上格點之間距離。

並設定邊界條件為零,處理的方法與一維有限差分法類似,參考 1896 (3.1.8)式與(3.1.9)式。

接下來實際操作如何將有限差分法與計算量子點電子結構 所使用的 Hamiltonian: (2.3.3)式作結合。在這裡舉兩個例子:

當使用單能帶模型時,(2.3.3)式內的矩陣大小、e_n(r)與係數 矩陣b^{a,β}都已經被決定了,如(2.3.4)式。所以直接把本小節所推 導出的(3.2.1)式~(3.2.3)式與(3.2.7)式~(3.2.9)式帶入(2.3.4)式,可 以得到(3.2.10)式。

$$H(\hat{\vec{p}}/\hbar;\vec{r})\psi = e_{c}(\vec{r})\cdot\psi - b^{xx}\left(\frac{\partial^{2}\psi}{\partial x^{2}}\right) - b^{yy}\left(\frac{\partial^{2}\psi}{\partial y^{2}}\right) - b^{zz}\left(\frac{\partial^{2}\psi}{\partial z^{2}}\right) \\ - b^{xy}\left(\frac{\partial^{2}\psi}{\partial x\partial y}\right) - b^{yz}\left(\frac{\partial^{2}\psi}{\partial y\partial z}\right) - b^{xz}\left(\frac{\partial^{2}\psi}{\partial x\partial z}\right) \\ \sim e_{c}(x_{n_{x}}, y_{n_{y}}, z_{n_{z}})\cdot\psi_{n_{x},n_{y},n_{z}} - b^{xx}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}} - 2\psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x}-1,n_{y},n_{z}}}{(\Delta x)^{2}}\right) \\ - b^{yy}\left(\frac{\psi_{n_{x},n_{y}} + 1, n_{z}}{(\Delta y)^{2}}\right) \\ - b^{zz}\left(\frac{\psi_{n_{x},n_{y}} + 1, n_{z}}{(\Delta y)^{2}}\right) \\ - b^{zz}\left(\frac{\psi_{n_{x},n_{y},n_{z}+1} - 2\psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}-1}}{(\Delta z)^{2}}\right) \\ - b^{xy}\left(\frac{\psi_{n_{x}+1,n_{y}+1,n_{z}} - \psi_{n_{x}+1,n_{y}-1,n_{z}} - \psi_{n_{x}-1,n_{y}+1,n_{z}} + \psi_{n_{x},n_{y}-1,n_{z}}}{4\Delta x\Delta y}\right) \\ - b^{yz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y}-1,n_{z}} - \psi_{n_{x},n_{y}-1,n_{z}+1} + \psi_{n_{x},n_{y}-1,n_{z}-1}}{4\Delta x\Delta y}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x},n_{y}-1,n_{z},n_{z}+1} + \psi_{n_{x},n_{y}-1,n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x},n_{y}-1,n_{z},n_{z}+1} + \psi_{n_{x},n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}+1} + \psi_{n_{x},n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}+1} + \psi_{n_{x},n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}+1} + \psi_{n_{x},n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}-1}}\right) \\ - b^{xz}\left(\frac{\psi_{n_{x}+1,n_{y},n_{z}+1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}-1} - \psi_{n_{x}+1,n_{y},n_{z}$$

其中, $e_c(x_{n_x}, y_{n_y}, z_{n_z}) = V_{QD}^c(x_{n_x}, y_{n_y}, z_{n_z})$, $b^{xx} \cdot b^{yy} \cdot b^{zz} \cdot b^{xy} \cdot b^{yz}$ 、 b^{xz}為1×1的矩陣,它們的值與(2.2.11)式、(2.2.12)式、(2.2.13)式、 (2.2.14)式相同。由(3.2.10)式可知,當決定好了使用泰勒展開式 去近似二階微分的型式之後,我們選取空間中的任一點 (ψ_{n_x,n_y,n_z}) , 便可以使用空間鄰近的格點去描述我們的微分方程式。所以我們 以二階微分展開的係數與鄰近格點資訊的關係整理成一個表格, 如表(3.2.1)。以 $-b^{xx}\left(\frac{\partial^2 \psi}{\partial x^2}\right)$ 項展開為例子,其使用泰勒展開的二階 微分展開為 $-b^{xx}\left(\frac{\psi_{n_x+1,n_y,n_z}-2\psi_{n_x,n_y,n_z}+\psi_{n_x-1,n_y,n_z}}{(\Delta x)^2}\right)$ 。所以由表格的第一 行可以看到,根據其對應的鄰近格點為 ψ_{n_x+1,n_y,n_z} 、 ψ_{n_x,n_y,n_z} 、 ψ_{n_x-1,n_y,n_z} , 把這些鄰近格點相關的係數填入至表格之中,如圖(3.2.3)。以此 類推對其他二階微分也是使用相同的作法填入至表格中。

$H(\hat{\vec{p}}/\hbar;\vec{r})\psi = \left(b^{xx}\left(\frac{\partial^2\psi}{\partial x^2}\right) - b^{yy}\left(\frac{\partial^2\psi}{\partial y^2}\right) - b^{zz}\left(\frac{\partial^2\psi}{\partial z^2}\right) - b^{xy}\left(\frac{\partial^2\psi}{\partial x\partial y}\right) - b^{yz}\left(\frac{\partial^2\psi}{\partial y\partial z}\right) - b^{xz}\left(\frac{\partial^2\psi}{\partial x\partial z}\right) + e_c(\vec{r})\cdot\psi$										
$\overline{\qquad}$										
$-b^{xx}\left(\frac{\psi_{n_x+1,n_y,n_z}-2\psi_{n_x,n_y,n_z}+\psi_{n_x-1,n_y,n_z}}{(\Delta x)^2}\right)$										
	Ψ_{n_x-1,n_y,n_z}	$-\frac{b^{xx}}{(\Delta x)^2}$	0	0	0	0	0	0		
	Ψ_{n_x+1,n_y,n_z}	$-\frac{b^{xx}}{(\Delta x)^2}$	0	0	0	0	0	0		
	Ψ_{n_x,n_y-1,n_z}	0	$-\frac{b^{yy}}{(\Delta y)^2}$	0	0	0	0	0		
	Ψ_{n_x,n_y+1,n_z}	0	$-\frac{b^{39}}{(\Delta y)^2}$	0	0	0	0	0		
	Ψ_{n_x,n_y,n_z-1}	0	0	$-\frac{b^{\mu}}{(\Delta z)^2}$	0	0	0	0		
	Ψ_{n_x,n_y,n_z+1}	0	0	$-\frac{b^{zz}}{(\Delta z)^2}$	0	0	0	0		
	Ψ_{n_x,n_y,n_z}	$+\frac{2 \cdot b^{xx}}{(\Delta x)^2}$	$+\frac{2 \cdot b^{yy}}{(\Delta y)^2}$	$+\frac{2 \cdot b^{22}}{(\Delta z)^2}$	0	0	0	$V_{\rm QD}(x_{n_{\rm x}},y_{n_{\rm y}},z_{n_{\rm z}})$		
					F_{X}					

圖 3.2.3 製作表(3.2.1)示意圖

表 3.2.1 係數矩陣與有限差分項對照表

$H\psi =$	$-b^{xx}\frac{\partial^2\psi}{\partial x^2}$	$-b^{yy}\frac{\partial^2\psi}{\partial y^2}$	$-b^{zz}\frac{\partial^2\psi}{\partial z^2}$	$-b^{xy}\frac{\partial^2\psi}{\partial x\partial y}$	$-b^{yz}\frac{\partial^2\psi}{\partial y\partial z}$	$-b^{xz}\frac{\partial^2\psi}{\partial x\partial z}$	$e_{c}(\vec{r})\psi$
Ψ_{n_x-1,n_y,n_z}	$-rac{b^{xx}}{\left(\Delta x ight)^2}$	0	0	0	0	0	0
Ψ_{n_x+1,n_y,n_z}	$-\frac{b^{xx}}{\left(\Delta x\right)^2}$	0	0	0	0	0	0
Ψ_{n_x,n_y-1,n_z}	0	$-rac{b^{yy}}{\left(\Delta y ight)^2}$	0	0	0	0	0

Ψ_{n_x,n_y+1,n_z}	0	$-rac{b^{yy}}{\left(\Delta y ight)^2}$	0	0	0	0	0
Ψ_{n_x,n_y,n_z-1}	0	0	$-\frac{b^{zz}}{\left(\Delta z\right)^2}$	0	0	0	0
ψ_{n_x,n_y,n_z+1}	0	0	$-\frac{b^{zz}}{\left(\Delta z\right)^2}$	0	0	0	0
ψ_{n_x,n_y,n_z}	$+\frac{2\cdot b^{xx}}{\left(\Delta x\right)^2}$	$+\frac{2\cdot b^{yy}}{\left(\Delta y\right)^2}$	$+\frac{2\cdot b^{zz}}{\left(\Delta z\right)^2}$	0	0	0	$V_{QD}(x_{n_x}, y_{n_y}, z_{n_z})$
ψ_{n_x-1,n_y-1,n_z}	0	0	0	$-\frac{b^{xy}}{4\Delta x\Delta y}$	0	0	0
ψ_{n_x-1,n_y+1,n_z}	0	0	0	$+\frac{b^{xy}}{4\Delta x\Delta y}$	0	0	0
ψ_{n_x+1,n_y-1,n_z}	0	0	0	$+\frac{b^{xy}}{4\Delta x\Delta y}$	0	0	0
ψ_{n_x+1,n_y+1,n_z}	0	0	0	$-\frac{b^{xy}}{4\Delta x\Delta y}$	0	0	0
ψ_{n_x,n_y-1,n_z-1}	0	0	0		$-\frac{b^{yz}}{4\Delta y\Delta z}$	0	0
ψ_{n_x,n_y-1,n_z+1}	0	0	0	0	$+rac{b^{yz}}{4\Delta y\Delta z}$	0	0
ψ_{n_x,n_y+1,n_z-1}	0	0	0	189	$\frac{b^{yz}}{4\Delta y\Delta z}$	0	0
ψ_{n_x,n_y+1,n_z+1}	0	0	0	0	$\frac{b^{yz}}{4\Delta y\Delta z}$	0	0
ψ_{n_x-1,n_y,n_z-1}	0	0	0	0	0	$-\frac{b^{xz}}{4\Delta x\Delta z}$	0
ψ_{n_x-1,n_y,n_z+1}	0	0	0	0	0	$+\frac{b^{xz}}{4\Delta x\Delta z}$	0
Ψ_{n_x+1,n_y,n_z-1}	0	0	0	0	0	$+\frac{b^{xz}}{4\Delta x\Delta z}$	0
ψ_{n_x,n_y+1,n_z+1}	0	0	0	0	0	$-rac{b^{xz}}{4\Delta x\Delta z}$	0

所以當我們把係數與表格同一列的格點相乘之後便可以還原到

原始的(3.2.10)式。接著要轉換成矩陣的型式時,也是利用表

(3.2.1)。這邊的作法是先把表格內相同格點(同一列)因為不同的 二階微分所產生的係數先相加,再乘上表格中同一列的格點位置 資訊,最後再全部加總起來便可以得到當對空間中任一個格點使 用有限差分法展開的微分方程式。接著對空間中每一個格點作展 開便可以得到每個格點相關的微分方程式。最後收集所有微分方 程式便可以得到矩陣。這樣製作表(3.2.1)的好處在於,在程式的 編寫上是較為方便的,透過表格可以立刻得知使用鄰近格點展開 Hamiltonian 後的資訊。而且程式在創造矩陣時,因為已經事先 得知鄰近格點的資訊,不必在建立矩陣時再去作運算,也提高了 一部分的效率。

最後根據空間中任一個格點將(3.2.10)式與表(3.2.1)展開成 矩陣型式通式,所以單能帶模型的H_(nx,ny,nz)(nx',ny',nz')</sub>為(3.2.11)式。

$$H_{(n_{x},n_{x},h_{x},$$

其中
$$A = \left(\frac{2 \cdot b^{xx}}{(\Delta x)^2} + \frac{2 \cdot b^{yy}}{(\Delta y)^2} + \frac{2 \cdot b^{zz}}{(\Delta z)^2}\right) + V_{QD}^c(x_{n_x}, y_{n_y}, z_{n_z}) \circ$$
最後對角化矩陣
便可得能量E與波函數 ψ 。

現在要改用四能帶模型時,同樣地決定好使用的 Hamiltonian

型式後,此時(2.3.3)式內的矩陣大小、 $e_n(\bar{r})$ 與係數矩陣 $b_{mn}^{\alpha,\beta}$ 一樣 也被決定了。依照剛剛單能帶模型的步驟,同樣的可以寫下近似 後的(3.2.13) 式。

$$H_{m,n}(\hat{p}/\hbar; \vec{r})\psi = e_{n}(\vec{r}) \cdot \delta_{mn}\psi - b_{mn}^{xx} \left(\frac{\partial^{2}\psi}{\partial x^{2}}\right) - b_{mn}^{xy} \left(\frac{\partial^{2}\psi}{\partial y^{2}}\right) - b_{mn}^{zz} \left(\frac{\partial^{2}\psi}{\partial z^{2}}\right) \\ - b_{mn}^{yy} \left(\frac{\partial^{2}\psi}{\partial x\partial y}\right) - b_{mn}^{xz} \left(\frac{\partial^{2}\psi}{\partial y\partial z}\right) - b_{mn}^{xz} \left(\frac{\partial^{2}\psi}{\partial x\partial z}\right) \\ \sim e_{n}(\vec{r}) \cdot \delta_{mn}\psi_{n_{x},n_{y},n_{z}} - b_{mn}^{xx} \left(\frac{\psi_{n_{x}+1,n_{y},n_{z}} - 2\psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}} - b_{mn}^{xy} \left(\frac{\psi_{n_{x},n_{y},n_{x}+1,n_{z}} - 2\psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}-1,n_{z}}}{(\Delta x)^{2}}\right) \\ - b_{mn}^{zz} \left(\frac{\psi_{n_{x},n_{y},n_{z}+1} - 2\psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}-1}}{(\Delta z)^{2}}\right) \\ - b_{mn}^{xy} \left(\frac{\psi_{n_{x},n_{y}+1,n_{z}+1} - \psi_{n_{x},n_{y},n_{z}} + \psi_{n_{x},n_{y},n_{z}-1}}{4\Delta x\Delta y}\right) \\ - b_{mn}^{xz} \left(\frac{\psi_{n_{x},n_{y}+1,n_{z}+1} - \psi_{n_{x},n_{y}+1,n_{z}-1} - \psi_{n_{x},n_{y},n_{z}+1} + \psi_{n_{x},n_{y},n_{z}-1}}{4\Delta x\Delta z}\right) \right)$$

$$(3.2.13)$$

此時
$$m, n = 1, 2, 3, 4$$
, $e_1(\vec{r}) = e_2(\vec{r}) = e_3(\vec{r}) = e_4(\vec{r}) = V_{QD}^{\nu}(\vec{r})$, $b_{mn}^{xx} \land b_{mn}^{yy} \land$
 $b_{mn}^{zz} \land b_{mn}^{xy} \land b_{mn}^{yz} \land b_{mn}^{xz} 為 4 \times 4$ 的矩陣, 它們的值分別為(3.2.14)式
~(3.2.19)式。

$$\begin{bmatrix} b_{mm}^{xx} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} (\gamma_1 + \gamma_2) & 0 & -\sqrt{3}\gamma_2 & 0 \\ 0 & (\gamma_1 - \gamma_2) & 0 & -\sqrt{3}\gamma_2 \\ -\sqrt{3}\gamma_2 & 0 & (\gamma_1 - \gamma_2) & 0 \\ 0 & -\sqrt{3}\gamma_2 & 0 & (\gamma_1 + \gamma_2) \end{bmatrix}$$
(3.2.14)
$$\begin{bmatrix} b_{mm}^{xy} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} (\gamma_1 + \gamma_2) & 0 & \sqrt{3}\gamma_2 & 0 \\ 0 & (\gamma_1 - \gamma_2) & 0 & \sqrt{3}\gamma_2 \\ \sqrt{3}\gamma_2 & 0 & (\gamma_1 - \gamma_2) & 0 \\ 0 & \sqrt{3}\gamma_2 & 0 & (\gamma_1 + \gamma_2) \end{bmatrix}$$
(3.2.15)
$$\begin{bmatrix} b_{mm}^{xy} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} (\gamma_1 - 2\gamma_2) & 0 & 0 & 0 \\ 0 & (\gamma_1 + 2\gamma_2) & 0 & 0 \\ 0 & 0 & 0 & (\gamma_1 - 2\gamma_2) \end{bmatrix}$$
(3.2.16)
$$\begin{bmatrix} b_{mm}^{xy} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} 0 & 0 & i \cdot 2\sqrt{3}\gamma_3 & 0 & 0 \\ -i \cdot 2\sqrt{3}\gamma_3 & 0 & 0 & 0 \\ 0 & -i \cdot 2\sqrt{3}\gamma_3 & 0 & 0 \\ 0 & 0 & 0 & -i \cdot 2\sqrt{3}\gamma_3 \\ 0 & 0 & 0 & -i \cdot 2\sqrt{3}\gamma_3 \end{bmatrix}$$
(3.2.18)
$$\begin{bmatrix} b_{mm}^{xy} \end{bmatrix} = -\frac{\hbar^2}{2m_0} \begin{bmatrix} 0 & -2\sqrt{3}\gamma_3 & 0 & 0 \\ -i \cdot 2\sqrt{3}\gamma_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \cdot 2\sqrt{3}\gamma_3 \\ 0 & 0 & 0 & 2\sqrt{3}\gamma_3 \end{bmatrix}$$
(3.2.19)

整理(3.2.12)式後,可以得到與表(3.2.1)一樣的格式。但是差別在 於係數矩陣b^{α,β}上。接著根據定義的格點將(3.2.13)式展開成矩陣

型式,四能帶模型的 $H_{(m,n_x,n_y,n_z)(n,n_x',n_y',n_z')}$ 為(3.2.20)式。

所以由上面兩個例子可以發現,只要決定好有限差分法展開之後的格點,根據格點所搭配的係數矩陣,便可以很容易產生有限差分法展開的 Hamiltonian。所以要使用六能帶模型的 Hamiltonian

作計算,便只需要替換(3.2.19)式中的係數矩陣b^{a,β}即可。

3.3 有限差分法的收斂與驗證

使用有限差分法作計算要如何逼近到準確的值是很重要的。 在本章的第一節有提到我們使用有限差分法的誤差來源是來自 大於 $(\Delta x)^2$ 高次方項,因此只要將 Δx 的值縮小,便可以得到更精 確的值。所以在計算上我們會提高格點的數量來求解。但是,受 限於計算所使用的機器與程式,提高格點的數量會增加記憶體的 使用。因此並不能無限制的提高格點數量,而且當使用很大量的 格點求解時也會增加運算的時間。圖(3.3.1)表示使用有限差分法 計算六能帶模型,我們所採用的量子點材料為 InAs/GaAs,參數 列於附錄 A,其形狀為截角金字塔,其底部長度及寬度為 12nm、 高度 5nm。測試格點與記憶體大小及計算時間的關係。在測試時 電腦的 CPU: 2.27GHz、記憶體大小 70GB 與 Linux 作業系統, 在编譯程式是使用 intel fortran compiler。

圖 3.3.1 (a)x 方向格點與程式所使用記憶體大小關係(b)x 方向格點與程式所需時 間大小關係。這裡取的計算範圍 x、y、z 方向皆為 30nm; x、y、z 方 向格點相同(N_x=N_y=N_z)。

圖(3.3.2)與圖(3.3.1)的所計算的量子點相同,圖(3.3.2)則表示有限

圖 3.3.2 (a)矩陣中非零項與程式所使用記憶體大小關係。(b)矩陣中非零項與程 式所需時間大小關係。

而我們知道當格點的數量越高,便可以得到更精確的值。但是由圖(3.3.1)與圖(3.3.2)可以發現,當提高格點的數量時,時間及記 憶體的需求也越來越大。所以在選取合適的格點數量,達到有效 率且精確的計算變成為使用上的關鍵。接下來我們對能量做收斂 的比較,看格點的數量要到多大,計算出來的結果才能夠達到我 們可以接受的範圍。我們選取兩個大小不同的量子點作比較,其 底部大小相同,但高度不一樣的情況。圖(3.3.3)表示不同高度的 量子點的大小,與能量及誤差的關係圖。在這裡使用的誤差百分

圖 3.3.3 (a)、(b)x 方向格點與量子點價電帶的能階關係,(c)、(d) x 方向格點與 量子點價電帶的能階誤差百分比。 量子點底部長、寬皆為 12nm。(a)與(c)圖量子點高度為 5nm。(b)與(d) 圖量子點高度為 2nm。x、y、z 方向格點相同(N_x=N_y=N_z)。

由圖(3.3.3)可以看到選擇相同格點數量的時候,高度較小的量子 點的收斂性是比較差的。這是因為當高度變小的時候,在量子點 內部的格點數量也變少了,使得格點沒有辨法很完整的描述位能、 波函數及量子點的形狀,因此沒辨法達到收斂的值,如圖(3.3.4) 與圖(3.3.5a)與圖(3.3.5b)。所以要達到收斂的結果,關鍵就在於 量子點內部存在多少的格點數量,是否可以完整的描述位能及量 子點的形狀,如圖(3.3.5c)與圖(3.3.5d)。

圖 3.3.4 (a)、(b)z 方向的位能圖。圖上的點為實際格點的位置,量子點底部長、 寬皆為 12nm。(a)圖量子點高度為 5nm。(b)圖量子點高度為 2nm。

圖 3.3.6 四能帶模型的程式與文獻[15]的比較結果。其中左圖的部分是使用程 式計算能量的結果,而右圖是文獻的結果。

由圖(3.3.6)可知,四能帶模型的計算結果與文獻的比較相當的接 近,所以我們的程式是可信任的。再接下來對六能帶模型的程式 所計算的結果與文獻[16]作比較。文獻中模擬為雙量子點,隨距 離的改變與能量之間變化的關係,量子點形狀為圓盤型(disk), 半徑為 10nm,高度為 2nm。目前六能帶的程式模擬是考慮單一 個量子點,但是文獻是考慮雙量子點的情況。當雙量子點距離很 遠的時,可以視為單一量子點的計算,所以在與文獻比較,我們 就選用文獻中距離較遠的結果來作比較,如圖(3.3.7)。

44

圖 3.3.7 六能帶模型與四能帶模型的程式與文獻[16]的比較結果。其中右邊的 部分是使用程式計算能量的結果,而左邊部分是文獻的結果。

由圖(3.3.7)可知, 六能帶模型的計算結果與文獻的比較相當的接

近,所以我們六能帶模型的程式是可信任的。

第四章 量子點電子結構

本章主要是計算的結果,模擬的量子點形狀為截角金字塔形狀,材料參數列在附錄 A。先列出導電帶與價電帶的能階與波函數,觀察量子點的大小與電子結構之間的關係。

根據文獻[17,18,19],目前成長量子點的方式,量子點可以分為沒有應變效應的量子點與有應變效應的量子點。

4.1 hierarchical 量子點的電子結構與波函數

這類型的量子點其材料主要是由 GaAs/AlGaAs 所組成,因 為晶格匹配所以沒有應變效應。根據成長方式的不同,其量子點 的大小也不盡相同,我們分兩種不同成長方式的量子點做討論。 根據文獻[17],hierarchical 量子點成長方式是先利用 InAs 及 GaAs 製造出奈米洞(nanohole),接著先覆蓋一層 Al_{0.45}Ga_{0.55}As 再覆蓋一層 GaAs 組成量子點,如圖(4.1.1)。

圖 4.1.1 GaAs/Al_{0.45}Ga_{0.55}As 量子點的示意圖。

我們根據文獻的量測,如表(4.1.1)。先使用與它接近的量子 點形狀參數作分析。

高度 h(nm)	底部長 b _x (nm)	底部寬 b _y (nm)	$\xi \equiv \frac{b_y}{b_x}$
5	74	63	0.85
7	74	55	0.74
10	75	50	0.67
15	74	50	0.68
	高度 h(nm) 5 7 10 15	高度 h(nm) 底部長 b _x (nm) 5 74 7 74 10 75 15 74	高度 h(nm)底部長 b_x(nm)底部寬 b_y(nm)5746377455107550157450

表 4.1.1 文獻[17]中量測的量子點的大小

其中定義不對稱性的符號為 $\xi = \frac{\delta_y}{L}; \xi = 1$ 則表示對稱。

挑選 QD#2 的量子點大小作計算。材料為 GaAs/Al_{0.45}Ga_{0.55}As,

材料參數請參考附錄 A 的表(A.2)。圖(4.1.2)為計算時,改變不同

格點,程式的收斂情形。誤差公式 error = $\frac{E_{Nx} - E_{Nx=80}}{E_{ground state;Nx=80}} \times 100\%$ 。

圖 4.1.2 GaAs/Al_{0.45}Ga_{0.55}As 量子點的價電帶能階收斂情形。左圖為能階與格點的關係;右 圖是誤差百分比。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。格點的部 分(N_x=N_y=N_z)。

由圖(4.1.3)與圖(4.1.4)可以看到,經由程式所計算出來導電帶與

價電帶的能階。

圖 4.1.3 GaAs/Al_{0.45}Ga_{0.55}As 量子點的導電帶能階。左圖為位能與能階;右圖是把能階部分放大來 看的結果。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。

圖 4.1.4 GaAs/Al_{0.45}Ga_{0.55}As 量子點的價電帶能階。左圖為位能與能階;右圖是把能階部分放大來 看的結果。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。

在導電帶部分基態能階的能量約 65meV 左右,而價電帶部分的 基態的能量是 15meV 左右,每個能階都是兩重簡併。導電帶量 化的大小為 5meV、價電帶量化為 1.5meV。量化的定義為第一激 發與基態的能量差值。圖(4.1.5)與圖(4.1.6)分別為導電帶與價電帶基態能量的波函數。

圖 4.1.5 GaAs/Al_{0.45}Ga_{0.55}As 量子點的導電帶基態波函數。黑線部分為模擬時的 量子點形狀。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。

圖 4.1.6 GaAs/Al_{0.45}Ga_{0.55}As 量子點的價電帶基態波函數。黑線部分為模擬時的量子點形狀。 量子點底部長度 74nm,底部寬度 55nm,高度 7nm。

圖 4.1.8 GaAs/Al_{0.45}Ga_{0.55}As 量子點的價電帶第一激發態波函數。

由圖(4.1.5)可以發現,基態能量的波函數在空間中的分布是類似 一顆球的形狀,這和氫原子模型或是無限深位能井中基態能量的 波函數分布是一樣的。在圖(4.1.7)中,第一激發態的波函數分佈 與無限深位能井的第一激發態的波函數分佈類似,在量子點的長 軸(x 方向)的波函數變成反對稱的分佈。

然而價電帶的波函數就比較特別,如圖(4.1.6)與圖(4.1.8)。由圖 (4.1.6)可以看到價電帶基態波函數中成分最多的是重電洞(在 z 方向角動量為 3/2),接著輕電洞的成分其次。那輕電洞部分的波 函數分布是反對稱的形式。我們先從(4.1.1)式開始,這是我們計 算量子點使用的 Hamiltonian。而主對角線對應的就是重點洞與 輕電洞的元素,而非對角線R、S項則是有關輕、重電洞耦合的 項。

$$H(\hat{\vec{p}}/\hbar;\vec{r}) = -\begin{bmatrix} P+Q & -S & R & 0\\ -S^{\dagger} & P-Q & 0 & R\\ R^{\dagger} & 0 & P-Q & S\\ 0 & R^{\dagger} & S^{\dagger} & P+Q \end{bmatrix} + V_{QD}(\vec{r}) \cdot I_{4\times 4} \quad (4.1.1)$$

$$P = \frac{-\hbar^2}{2m_0} \gamma_1 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$
(4.1.2)

$$Q = \frac{-\hbar^2}{2m_0} \gamma_2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2\frac{\partial^2}{\partial z^2} \right)$$
(4.1.3)

$$R = \frac{-\hbar^2}{2m_0} \left[-\sqrt{3}\gamma_2 \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} \right) + i2\sqrt{3}\gamma_3 \frac{\partial^2}{\partial x \partial y} \right]$$
(4.1.4)

$$S = \frac{-\hbar^2}{2m_0} 2\sqrt{3}\gamma_3 \left(\frac{\partial^2}{\partial x \partial z} - i\frac{\partial^2}{\partial y \partial z}\right)$$
(4.1.5)

假設當沒有任何耦合效應的時候,重電洞基態的波函數分布是類 似原子軌域的 s 軌域。當加入耦合效應後,可以由(4.1.1)式中看 出重電洞與輕電洞是透過R、S項耦合的。根據(4.1.1)式、(4.1.4) 式與(4.1.5)式,由矩陣可知影響重電洞透過S項耦合到輕電洞 $(j_z = \frac{1}{2})$ 。由圖(4.1.6)中在 xy 平面與 xz 平面上會看到原本對稱的 重電洞波函數經過S項中 $\frac{\partial^2}{\partial r \partial z}$ 的作用後輕電洞 $(j_z = \frac{1}{2})$ 的實部的波 函數在 X 方向與 Z 方向變成反對稱的情形。同理,輕電洞 $(j_z = \frac{1}{2})$ 的虚部的波函數,在對稱的重電洞波函數經過S項中 $\frac{\partial^2}{\partial v \partial z}$ 的作用 後,在y方向與 Z 方向變成反對稱的情形。而影響重電洞耦合到 輕電洞 $(j_z = -\frac{1}{2})$ 的項為R項,所以在 xy 平面上會看到原本對稱的 重電洞波函數經過R項中 $\frac{\partial^2}{\partial x \partial y}$ 的作用後變成類似原子軌域中d軌 域的情形。

如果要作不考慮重電洞與輕電洞的計算是把(4.1.1)式中,會 使重電洞與輕電洞耦合的R、S項設為零,如(4.1.6)式。

$$H(\hat{\vec{p}}/\hbar;\vec{r}) = -\begin{bmatrix} P+Q & 0 & 0 & 0\\ 0 & P-Q & 0 & 0\\ 0 & 0 & P-Q & 0\\ 0 & 0 & 0 & P+Q \end{bmatrix} + V_{QD}(\vec{r}) \cdot I_{4\times 4} \quad (4.1.6)$$

這樣做的好處在於,當考慮重電洞與輕電洞耦合的情況時非常的 複雜,並不容易於理解。可是當不考慮輕、重電洞耦合時,由(4.1.6) 式可以發現,只不過是解四個類似單能帶模型的 Hamiltonian。 由於單能帶模型較容易分析與理解,因此便可以透過這種方式去 了解考慮輕、重電洞耦合前後的差異了。這裡我們使用相同的參 數,計算不考慮輕、重電洞耦合的價電帶電子結構。 $b_x = 74(nm)$ $b_y = 55(nm)$ h = 7(nm)no R, S term C -15 -20 -50 -25 Potential(meV) 120-100 -30 Energy(meV) $\Delta_{lh} = \beta 0 meV$ -35 -40 -45 -200 ground state light hole state -50 1st excited state -D - ground state 2nd excited state -250 -55 15 -10 10 -5 0 5

圖 4.1.9 不考慮輕、重電洞耦合下, GaAs/Al_{0.45}Ga_{0.55}As 量子點的價電帶能階。左圖為位能與能階; 右圖是把能階部分放大來看的結果。量子點底部長度 74nm, 底部寬度 55nm, 高度 7nm。 這裡定義一個符號為 Δ_{lh} , Δ_{lh} 為在不考慮耦合項的計算下, 重電 洞與輕電洞的基態能量的差值。由圖(4.1.6)可以看到, Δ_{lh} 約 30meV。這個 Δ_{lh} 值遠比量化(1.5meV)的值大的許多, 表示輕電洞 矩離重電洞很遠,所以在基態波函數中輕電洞的成分很少。

4.2 droplet epitaxy 量子點的電子結構與波函數

不同於前面量子點的成長方式,根據文獻[18],它是以 droplet epitaxy 方式成長。這個成長方式是將 GaAs 以類似水滴狀的晶種 在基板(Al_{0.35}Ga_{0.65}As)上開始磊晶,形成一個類似二維高斯函數分 佈的形狀,如圖(4.2.1)。接著根據退火的溫度,形成對稱性與高 度不相同的量子點。

根據文獻[18]所量測的量子點,定出模擬時所使用量子點的大小

参 數,而模擬的形狀為截角金子塔

	高度 h(nm)	底部長 b _x (nm)	底部寬 b _y (nm)	$\xi \equiv \frac{b_y}{b_x}$
QD#I	11.1	45.4	37.6	0.828
QD#II	7.5	52.5	36.5	0.655
QD#III	4.6	64.0	32.6	0.509
QD#IV	1.5	111.75	33.2	0.297

表 4.2.1 根據文獻[18]所估計的量子點大小

可以看到與同樣都是沒有應變效應的量子點,因為生長方式的不 同,量子點之間產生的差異也很大。使用奈米洞成長的量子點高 度越高不對稱性也越大,而使用 droplet epitaxy 成長的量子點則 是高度越高不對稱性越小。下面就來實際模擬量子點的電子結構, 其材料為 GaAs/Al_{0.35}Ga_{0.65}As,參數列於附錄 A 的表(A.3)。我們 選擇的量子點大小參數為表(4.2.1)的 QD#II。圖(4.2.2)為程式的 收斂情形,改變量子點格點與能量及誤差關係圖。誤差公式

圖 4.2.2 GaAs/Al_{0.35}Ga_{0.65}As 量子點的價電帶能階收斂情形。左圖為能階與格點的關係;右 圖是誤差百分比。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。格點的部 分(N_x=N_y=N_z)。

圖 4.2.3 GaAs/Al_{0.35}Ga_{0.65}As 量子點的導電帶能階。左圖為位能與能階;右圖是把能階部分放大來 看的結果。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。

圖 4.2.4 GaAs/Al_{0.35}Ga_{0.65}As 量子點的價電帶能階。左圖為位能與能階;右圖是把能階部分放大來 看的結果。量子點底部長度 74nm,底部寬度 55nm,高度 7nm。

在導電帶部分基態能階的能量約 60meV 左右,而價電帶部分的

基態的能量是 15meV 左右,每個能階都是兩重簡併。導電帶的

量化為 10meV, 價電帶的量化為 3meV。

圖(4.2.4)~圖(4.2.7)分別為導電帶與價電帶基態能量的波函 數與第一激發態波函數。

圖 4.2.5 GaAs/Al_{0.35}Ga_{0.65}As 量子點的導電帶基態波函數。黑線部分為模擬時的 量子點形狀。量子點底部長度 52.5nm,底部寬度 36.5nm,高度 7.5nm。

圖 4.2.6 GaAs/Al_{0.35}Ga_{0.65}As 量子點的價電帶基態波函數。黑線部分為模擬時的量子點 形狀。量子點底部長度 52.5nm,底部寬度 36.5nm,高度 7.5nm。

在這裡波函數的分布情形與上一節的結果相同,就不再重複敘述。

同樣地,計算不考慮輕、重電洞耦合下的價電帶電子結構。

60
	hierarchical 量子點	droplet epitaxy 量子點	
成分	GaAs/Al _{0.45} Ga _{0.55} As	GaAs/Al _{0.35} Ga _{0.65} As	
	b _x =74nm	b _x =52.5nm	
量子點大小	b _y =55nm	b _y =36.5nm	
	h=7nm	h=7.5nm	
導電帶量化	5meV	10meV	
價電帶量化	1.5meV	3meV	
$\Delta_{_{lh}}$	30meV	25meV	

表 4.2.2 hierarchical 量子點與 droplet epitaxy 量子點計算結果比較

4.3 InAs/GaAs 量子點的電子結構與波函數

InAs/GaAs 量子點的成長方式,是由於兩種材料的晶格常數 不匹配。因此晶格常數大的材料晶格常數會被縮小,晶格常數小 的材料晶格常數會被拉大,因此在計算上必須要考慮應變的效應。 這類型的量子點大小通常沒有很大,底部大小約10nm~25nm之 間。高度介於1nm~10nm 左右。而底部大小的對稱性通常都比較 對稱,不像 hierarchical 量子點與 droplet epitaxy 量子點在幾何不 對稱性上有很大的差異。

那在計算上模擬量子點的形狀為截角金字塔,材料參數列於 附錄 A 的表(A.1)。採取量子點大小底部長度為 20nm,底部寬度 18nm,高度 5nm。 1896

圖 4.3.1 InAs/GaAs 量子點的導電帶能階。左圖為位能與能階,虛線是沒有考慮應力的位能,實 線是考慮應力的等效位能;右圖是把能階部分放大來看的結果。量子點底部長度 20nm, 底部寬度 18nm,高度 5nm。

圖 4.3.2 InAs/GaAs 量子點的價電帶能階。上方的圖為位能與能階,虛線是沒有考慮應力的位能, 實線是考慮應力的等效位能;下方的圖是把能階部分放大來看的結果。量子點底部長度 20nm,底部寬度 18nm,高度 5nm。

導電帶能量的量化大約是 70meV 左右, 在價電帶的能量量化大

約 20meV 左右。

圖(4.3.3)與圖(4.3.4)分別為導電帶與價電帶基態能量的波函數。圖(4.3.5)與圖(4.3.6)則分別為導電帶與價電帶第一激發能量的波函數。

圖 4.3.4 InAs/GaAs 量子點的價電帶基態波函數。黑線部分為模擬時的量子點形狀。量子點底部長為 20nm,底部寬為 18nm,量子點高度為 5nm。

圖 4.3.6 InAs/GaAs 量子點的價電帶第一激發態波函數。黑線部分為模擬時的量子點形狀。量子點底部長為 20nm,底部寬為 18nm,量子點高度為 5nm。

波函數的分佈情形與前兩節討論的 hierarchical 量子點與 droplet epitaxy 量子點波函數分佈類似。但是在價電帶基態波函數部分, 計算時考慮的是六能帶模型,所以多了 split-off band。那根據 (2.2.3)式,可以看到重電洞 $(j_z = \frac{3}{2})$ 與 split-off band $(j_z = \frac{1}{2})$ 是透過S 項耦合的,所以波函數分佈會與同樣透過S項耦合的輕電洞 $(j_z = \frac{1}{2})$ 類似。同理 split-off band $(j_z = -\frac{1}{2})$ 的波函數分佈也會與輕電 $洞(j_z = -\frac{1}{2})$ 類似。波函數的輕電洞成分比 hierarchical 量子點與 droplet epitaxy 量子點來的高。 接著,計算不考慮輕、重電洞耦合的價電帶電子結構。如圖 (4.3.7) • no R, S term $b_x = 20(nm)$ $b_y = 18(nm)$ h = 5(nm)-20 -40 100 V_{eff}^{HH} -60 $\Delta_{lh} = 150 meV$ 50 $V_{e\!f\!f}^{L\!H}$ -80 0 100 -120 -140

-160

圖 4.3.7 不考慮輕、重電洞耦合下, InAs/GaAs 量子點的價電帶能階。左圖為位能與能階, 粗線 是考慮應力的等效位能;右圖是把能階部分放大來看的結果。量子點底部長度 20nm,底 部寬度 18nm, 高度 5nm。

當不考慮耦合的情形時,重電洞與輕電洞基態能階的差值

 $\Delta_{lh} = 150 meV$ 。這個差值遠比前兩節的量子點大了許多,這裡試

著作不考慮應變下的計算。在沒有重電洞與輕電洞耦合時,沒有

應變效應的價電帶能階。

在這裡把 4.1 節到 4.3 節的量子點做個整理比較。如表(4.3.1)。

	hierarchical 量子點	droplet epitaxy 量子點	InAs/GaAs 量子點
成分	GaAs/Al _{0.45} Ga _{0.55} As	GaAs/Al _{0.35} Ga _{0.65} As	InAs/GaAs
	b _x =74	b _x =52.5	b _x =20
量子點大小(nm)	b _y =55	b _y =36.5	b _y =18
	h=7	h=7.5	h=5
導電帶能量量化	5 meV	10 meV	70 meV
價電帶能量量化	1.5 meV	3 meV	25 meV
Δ_{lh}	30 meV	25 meV	150 meV

表 4.3.1 hierarchical 量子點、droplet epitaxy 量子點與 InAs/GaAs 量子點計算結果比較

第五章 結論

本篇論文我們使用k·p 理論並搭配波包近似法,去計算量 子點的電子結構。在數值方法利用有限差分法展開成矩陣。接著, 我們使用 fortran 的程式語言撰寫程式,並使用 ARPACK[20]對角 化矩陣,最後求得能量與波函數。

對於有限差分法的使用也作了一些討論,我們可以從一階微分的形式推導二階交叉項的微分,甚至可以推廣到更高次項的微分。在使用上我們的電腦為CPU:2.27GHz、記憶體大小70GB 與 Linux 作業系統,編譯程式則是使用 intel fortran compiler。在 使用三維均勻格點的計算時,在單一維度的格點至少需要70個 格點以上才能對基態的計算達到收斂性較好的結果,而計算的時 間大約15個小時,記憶體的使用量約14GB 左右。在使用上的 限制,我們發現在量子點高度2nm 以下時收斂性會比較差,這 與我們使用均勻格點描述位能及波函數有關。當量子點某一方向 長度縮小時,會使得用來描述量子點形狀的格點減少,因此失真 的情況會表現在位能與波函數上所以造成不收斂的結果。

在論文的工作上,我們建立了一個用來計算量子點電子結構 的程式,並且我們與文獻[15,16]作比較與驗證。而這個程式是可 以拿來模擬實驗上觀測到的量子點。實際應用於以下三種量子點: 1.hierarchical量子點 2.droplet epitaxy量子點 3.InAs/GaAs自組式 量子點。在三種量子點中以hierarchical量子點的高度以及長度都 是最大,其導電帶的能階量化約5meV,價電帶能階量化約1.5meV。 droplet epitaxy量子點,高度與hierarchical量子點接近,但是長度 略小一點,在能量上導電帶的能階量化約10meV,價電帶能階量 化約3meV。InAs/GaAs自組式量子點,高度與長度都小於其他兩 種量子點,所以在能階量化都比較大。導電帶能階量化約70meV, 價電帶能階量化約25meV。

而在程式的使用上,當決定好格點、材料參數、量子點形狀、 應變與 Hamiltonian 後,便可以計算出量子點的電子結構。所以 在程式上也把這部分給模組化,譬如當要改變量子點形狀時,只 需要把特徵函數給替換掉;當 Hamiltonian 的形式改變時,可以 使用第三章(3.2.12)式~(3.2.18)式的做法,整理出係數矩陣,最後 替換掉程式內的係數矩陣即可。因此,在程式的可讀性與擴充性 也提高了。

在論文中仍有許多的效應並沒有被考慮,例如電子與電洞間 的庫侖作用力,外加電場與磁場,自旋軌道耦合(spin-orbit coupling)等。這些效應均會改變量子點電子結構。而在導電帶與 價電帶部分是分開來計算,若要更加精確可以使用八能帶的理論 作計算。而在數值方法的改善上,我們是使用均勻格點的有限差 分法。而使用上還是有一些的限制,要達到非常理想的收斂結果 時必須要使用龐大的記憶體與時間。在文獻[23,24]上有使用非均 勻格點的有限差分法,應該可以提高程式的效率。

參考文獻

[1] M. A. Kastner, Phys. Today 46, 24 (1993).

[2] S. Tarucha, D. G. Austing, and T. Honda, Phys. Rev. Lett. 77, 3613 (1996).

[3] Stanko Tomi, Phys. Rev. B 73, 125348 (2006).

[4] A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, Appl. Phys. Lett. 84, 1058 (2004).

[5] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N.

S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).

[6] Gabriel Bester, Alex Zunger, J. Shumway, Phys. Rev. B 71, 075325 (2005).

[7] J. M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955).

[8] S. L. Chuang, Physics of Optoelectronic Devices, 2nd edition, Wiley (2009).

[9] Craig Pryor, Phys. Rev. B 57, 7190 (1998).

[10] A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O'Reilly, J. Appl. Phys. 86, 297 (1999).

[11] Löwdin P. O., J. Chem. Phys. 19, 1396 (1951).

[12]吴建民,「利用k·p法研究砷化銦/砷化鎵之奈米結構」,台灣大學,碩士 論文,民國九十五年七月.

[13] *Comsol multiphysics*® software package.

[14] O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).

[15] Luis G. C. Rego, Pawel Hawrylak, Jose A. Brum, and Arkadiusz Wojs, Phys.

Rev. B 55, 15694 (1996).

[16] T. Chwiej and B. Szafran, Phys. Rev. B 81, 075302 (2010).

[17] A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K.

Kern, A. Zrenner, D. Bimberg, and O.G. Schmidt, Phys. Rev. Lett. **92**, 166104 (2004) [18] Masafumi Jo, Takaaki Mano, and Kazuaki Sakoda, Appl. Phys. Exp. **3**, 045502 (2009).

[19]張文豪,徐子民「半導體量子光學」,物理雙月刊,廿八卷五期,2006年10 月.

[20] R. B. Lehoucq, D. C. Sorensen, C. Yang, "ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods" (1997).

[21] V. Mlinar, A. Schliwa, D. Bimberg, and F. M. Peeters, Phys. Rev. B **75**, 205308 (2007).

[22] C. Bosio, J. L. Staehli, M. Guzzi, G. Hurri, and R. A. Logan, Phys. Rev. B **38**, 3263 (1988).

[23] I-H Tan, G. L. Snider, L. D. Chang, E. L. Hu, J. Appl. Phys. 68, 4071 (1990).
[24]徐燁,「利用有限差分法計算自組式量子點電子結構」,交通大學,碩士論 文,民國九十九年七月.

附錄 A、材料參數

Quantity		Unit	InAs	GaAs
Lattice constant	а	nm	0.6055	0.565
Energy gap	E_{g}	eV	0.413	1.518
CB edge	E_{c}	eV	-6.207	-5.289
VB edge	$E_{_{\mathcal{V}}}$	eV	-6.620	-6.807
Spin-orbit coupling energy	Δ_0	eV	0.38	0.34
CB effective mass	m^*	m_0	0.05	0.0665
Luttinger parameter	γ_1		19.7	6.85
Luttinger parameter	γ_2		8.4	2.1
Luttinger parameter	γ_3		9.3	2.9
CB hydrostatic def. pot	a_c	eV	-5.08	-8.013
VB hydrostatic def. pot	a_{ν}	eV	1.00	1.16
VB shear def. pot. [100]	b	eV	-1.8	-1.824
VB shear def. pot. [111]	d	eV	-3.6	-5.062
Elastic compliance	C_{11}	GPa	83.3	118.8
Elastic compliance	C_{12}	- GPa	45.3	53.8
Elastic compliance	C_{44}	GPa	39.6	59.4
m ₀ 為自由電子的質量。				

表 A.1 InAs/GaAs 材料參數[8,14]

Quantity		Unit	GaAs	Al _{0.45} Ga _{0.55} As
Lattice constant	а	nm	0.565	0.565
Energy gap	E_{g}	eV	1.518	2.140
CB edge	E_{c}	eV	-5.289	-4.8815
VB edge	E_{v}	eV	-6.807	-7.0215
CB effective mass	m^{*}	m_0	0.0665	0.1039
Luttinger parameter	γ_1		6.85	
Luttinger parameter	γ_2		2.1	
Luttinger parameter	γ_3		2.9	

表 A.2 GaAs/Al_{0.45}Ga_{0.55}As 材料參數[8,21]

表 A.3 GaAs/Al_{0.35}Ga_{0.65}As 材料參數[8,22]

Quantity		Unit	GaAs	Al _{0.35} Ga _{0.65} As
Lattice constant	a	nm	0.565	0.565
Energy gap	E_{g}	Eev	1.518	2.0224
CB edge	E_{c}	eV	-5.289	-4.9872
VB edge	E_{v}	eV	-6.807	-7.0082
CB effective mass	m^*	m_0	0.0665	0.096
Luttinger parameter	γ_1	109	6.85	
Luttinger parameter	γ_2		2.1	
Luttinger parameter	γ ₃		2.9	