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ABSTRACT : This paper uses the Jacobi series to analyze linear optimal control systems 
incorporating observers. The method simplijies the system of equations into the successive 
solution of a set of linear algebraic equations. An illustrative example is included to demonstrate 
that only a small number (m = 6) of shifted-Jacobi series are needed to obtain an accurate 
solution. 

1. Zntroduction 

Orthogonal functions, often used to represent an arbitrary time function, have 
recently been used to solve control problems. Typical examples are the Walsh 
functions (l), block-pulse functions (2), Laguerre polynomials (3), Legendre 
polynomials (4) and Chebyshev series (5). 

Stavroulakis and Tzafestas (6) first used the Walsh function to analyze an optimal 
control system incorporating an observer, but the results were derived based on very 
unrealistic assumptions. These assumptions were corrected by Kawaji and Tada (7), 
where the Walsh series was adopted to solve the optimal control law of linear 
systems incorporating observers. More recently, Chou and Horng (5) applied the 
shifted-Chebyshev series to approach the same problem. 

In the present paper, the shifted-Jacobi series (8) is taken to facilitate research 
on the analysis of linear optimal control systems incorporating an observer. 

ZZ. Problem Statement 

Consider a linear time-invariant controllable system 

s(t) = AX(t) + BU(t) 

Y(t) = CX(t) 

(14 

(lb) 
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with the performance index 

J= 
s 

m [Xr(t)QX(t)+Ur(t)RU(t)] dt; Q > 0, R > 0 (2) 
0 

where X(t) is the n x 1 state vector, U(t) is the q x 1 control vector, Y(t) is the p x 1 
output vector, and A, B, C are n x n, n x q, p x n constant matrices, respectively. 

The problem considered in this paper is to find the optimal control law U*(t) for 
the system of Eq. (l), and at the same time minimize the performance index (2) 
subject to the following constraints (9): 

(1) an (n-p)-dimensional Luenberger observer is constructed to incorporate the 
system, and 

(2) the optimal control U*(t) is achieved by using digital computation. 

It is well known that the optimal control law is given by (10) 

U*(t) = -R - ‘BrPX(t) = KX(t) 

where the superscript T denotes transpose, and P is the 
solution of the Riccatti equation : 

ArP+PA+Q-PBR-lB=P = 0. 

(3) 

unique positive-definite 

But, in general application, only the output vector Y(t) is available for measurement. 
In this case, the control signal may be realized with (n-p)-dimensional state 
observers (11) 

k(t) = DZ(t) + GY(t) +HV(t) (4a) 

X(t) = MY(t)+NZ(t) 

U*(t) = Kg(t) 

where Z(t) is a (n-p) x 1 vector and D, G, H, M, N 
dimensions. For the dynamic system of (4) to be 
relationship must be hold (12): 

Z(t) = UX(t) + e(t) 

k(t) = De(t) 

where 

(4b) 

(5) 
are matrices of appropriate 
an observer, the following 

(6) 

(7) 

UA-DU = GC (ga) 

H-UB=O (gb) 

MC+NU=I, (8~) 

where I, stands for an n x n identity matrix. Substituting Eqs (4b), (6) and (8~) into (5), 
we can obtain 

U*(t) = KX(t) + KNe(t). (9) 

Inserting Eq. (9) into (1) yields 

%(t) = (A + BK)X(t) + BKNe(t) A &X(t) + Be(t). (10) 

It follows from Eq. (9) that the solution of (7) and (10) is necessary for the 
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determination of the control law. In the next section, we adopt the shifted-Jacobi 
series to carry out the solution of these equations. This approach will result in an 
algebraic matrix equation which is conveniently available for digital computation. 

ZZZ. Shifted-Jacobi Series Approach 

The Jacobi polynomial can be represented in terms of a hypergeometric function 
in the interval - 1 < 2 < 1 

(11) 

In the form, the subscripts 2 and 1 become clear. The leading subscript 2 indicates 
that two Pochhammer symbols in the numerator and the final subscript 1 indicates 
one Pochhammer symbol in the denominator. We try to transform the independent 
variable into values between 0 and tf, and let 

t l+Z -_=_ 
t / 2 . 

Then, the shifted-Jacobi polynomials become 

where t, is the final time and a and b are parameters with a > - 1, b 3 - 1 and 

(a+l)n=(a+l)(a+2)...(a+n) 

(a+l), = 1. 

Letc=a+b+l,then 

The recursive formulas for shifted-Jacobi polynomials are 

Jo(t) = 1 

Jl(t) = -(b+ l)+(c+ 1) ; 
0 

Jz(t) =+ (b+l),-2(b+2)(c+2) 

J(t) J-V’(b+l) 
n n. I 

1+ t (_l)k(c+n)k t K 
k=l (b+l),iy ()I 

(13) 
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with 

2n(n + a + b) (2n + a + b - 2)J,(t) 

=(2n+a+b-1) (2n+a+b)(2n+a+b-2) ( t ) 2 ‘1 Jn-10) 2t,-1 +a -b 

-2(n+a-1)(n+b-1)(2n+a+b)J,_2(t). (14) 

The orthogonality condition is 

s t’ tb(tf - tyJ,,(t)J,,,(t) dt = 
0 

nZm (15) 

n=m 

where r(s) stands for the gamma function. Note that an arbitrary time function f(t) 
can be approximated by the Jacobi polynomials as 

f(t) = f. f,J,(t). (16) 

For practical application, we use only the finite-term of the series to approximate 

f(t). That is 

m-l 

_I-@) = “z. .LJ&) = f'J(t) (17) 

where 

fT = cfo, fl~.*.,fm-lI 

and 

JT = [Jo@), J1(t), . . . , J,- l(t)l. 

The Jacobi coefficient fj is obtained by minimizing the integral square error 

Using the necessary condition of minimizing E 

aE 
%=O j=O, 1,2 ,..., m-l 

J 

we obtain 

(18) 

(19) 

(2n + c) (n!)T(n + c) 

s 

ff 
f” = T(n+a+ l)T(n+b+ l)t(fa+b+l 

tb(tJ- t)Y(t)J”(t) dt 
O 

n=O, 1,2 ,..., m-l. (20) 
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The integration for the shifted-Jacobi series can be represented by (8) 

s f J&7 dt’ = tf 
(n+c) 

0 
(2n+c+ 1)(2n+c) Jn+l@) 

(a-4 
+ (*n+c+l)(2n+c-1) Jn(t) 

(n+a)(n+b) 
-(2n+c)(2n+c-1)(2n+c+ 1) Jn-1(t) 

(-l)“r(n+b+l) 

+ (n+c- l)(n+ l)!T(b) Jo(t) 1 ’ 
n = 0, l,...,m-1 (21) 

or in vector form 

s 

f 
J(t’) dt’ = FJ(t) (22) 

0 

where Fis the operational matrix of integration, given by (23) on the next page. 
Now, we wish to represent the state vector X(t) and error vector e(t) by shifted- 

Jacobi polynomials : 

m-l 
e(t) = c &J,(t) = E’J(t) 

n=O 
(24) 

m-l 

X(t) = c X,J,(t) = XTJ(t) 
n=O 

(25) 

where E, and X, are the coefficients of the Jacobi series for e(t) and X(t), respectively. 
If E, and X, can be determined, the desired control law can be expanded in terms of 
shifted Jacobi series as: 

U*(t) = (KXT + KNET)J(t). (26) 

Using these identities 

s 

f 
k(t’) dt’ = X(t) - x(0) (27) 

0 

s 

f 

k(t’) dt’ = e(t)-e(0) (28) 
0 

we can obtain 

ET = [e(O), 0,. . . , 0] + DETF (29) 

and 

XT = [x(o), 0,. . . , 01 + AXTF + BETF. (30) 
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Equations (29) and (30) can be rewitten as 

E = (D @ FT)E + E(0) 

X = (A @ FT)X + (fi @ F=)E + (h @I I)X(O) 

where 

E(0) = [e(O), 0,. . . , 01' 

(31) 

(32) 

X(0) = [X(O), 0,. . . ) O] = 

and the operation h @I FT is a Kronecker product (13) 

i(t) = -1.52(t)- 1.25Y(t)- U(t), Z(0) = 0.5 

m = (y) zw+( 1:5) Y(t) 

where U = [ - 1.5, 11. One can identify that 

A=A+BK=(_;.5, _;), &BKN=(_;). 

The numerical solutions of X and E are shown as follows: 

(i) whena=0,b=1,m=6andtf=5sec 

ET = [ -0.0266730, 0.06468 11, - 0.0686554 

0.0468477, - 0.0233069, -0.01006241 

XT = [ 0.188055, 0.08 1498, -0.179148, +0.051450 

0.026011, -0.211355, 0.096915, 0.025337 

0.007720, - 0.009478 

-0.032898, 0.014465 1 . 
Hence the optimal control is 

U*(t) = 0.2814205,(t)-0.0244275,(t)-0.2404625,(t) 

+0.1493765,(t)-0.044626J,(t)+O.O1031J,(t). 

(ii) When a = 0, b = 1, m = 8 and tf = 5 set 

ET = C-0.026548, 0.064379, -0.068371, 0.046578 

-0.023388, 0.009301, - 0.003051, 0.000898] 

XT = 0.1869905, 0.0824952, -0.1792262, 0.0514082 

0.0265524, -0.2115233, 0.0967997, 0.0252193 

0.0077628, -0.0087817, 0.0030914, -0.0008142 1 -0.0329158, 0.0140254, -0.0041601, 0.0011105 - 
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The optimal control is 

U* = 0.280490-0.0234165,(t)-0.240401J,(t) 

+O.l48910J,(t)-0.0446605&)+0.010154J,(t) 

-0.0025745&)+0.000787.l,@). 

(iii) When a = 0, b = 0, m = 6 and tr = 5 set (i.e. shifted-Legendre series) 

ET = [ -0.0999381, 0.2202352, - 0.2060435 

+0.1292673, -0.0606371, 0.02526551 

XT = 

[ 

0.0767032, 0.3308101, -0.3451541 

0.1486299, -0.3061541, 0.8152940 

0.0648212, 0.0318698, - 0.0240565 

0.1120718, - 0.0866035, + 0.0358856 1 ’ 
The optimal control is 

U* = 0.1637466+0.35029615,(t)-0.64224535,(t) 

+0.33857105,(t) - 0.09943585,(t) +0.02506635,(t). 

The exact solution is 

e(t) = 0.75 exp (- 1.5t) 
and 

U*(t) = -0.75 exp (- 1.5t)-0.55 exp (-0.5t) cos (0.5t) 

+ 1.9 exp (-0.5t) sin (0.5t). 

As can be seen from Tables I and II, the approximate solutions obtained by the 

TABLE I 

Numerical solution of e(t) 

a = 0, b = 1 a=O,b=l a=b=O 
t Exact approx. (m = 6) m=8 m=6 

0.0 -0.750000 -0.726300 
0.1 -0.645531 - 0.633493 
0.2 -0.555614 -0.551735 
0.3 -0.478221 -0.479311 
0.4 -0.411609 -0.415364 
0.5 -0.354275 - 0.359094 
0.6 -0.304927 -0.309751 
0.7 -0.262453 - 0.266637 
0.8 -0.225896 - 0.229 106 
0.9 -0.194430 -0.196555 
1.0 -0.167348 -0.168429 

- 0.747995 -0.741487 
- 0.644946 -0.643566 
-0.555728 -0.557281 
-0.478995 -0.481435 
-0.411996 -0.415001 
-0.354563 -0.357025 
-0.305083 -0.306620 
-0.262488 -0.262963 
-0.225845 -0.225295 
-0.194336 -0.192918 
- 0.167246 -0.165188 
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TABLE II 
Numerical solution of control variable U*(t) 

a=O,b=l a=O,b= 1 a=b=O 
t Exact approx. (m = 6) m=8 m=6 

0.0 - 1.300000 - 1.273610 - 1.298087 - 1.291868 
0.5 -0.403210 - 0.404463 - 0.403487 - 0.406736 
1.0 0.092392 0.094090 0.092489 0.09408 1 
1.5 0.342625 0.346473 0.342546 0.344550 
2.0 0.441502 0.443857 0.441448 0.441086 
2.5 0.449262 0.449924 0.449331 0.448570 
3.0 0.405873 0.406494 0.405880 0.407104 
3.5 0.337983 0.339328 0.337918 0.340412 
4.0 0.26293 1 0.263803 0.262931 0.263013 
4.5 0.191353 0.190635 0.191352 0.187880 
5.0 0.129093 0.131591 0.129305 0.134020 

shifted-Jacobi series are very close to the exact solution, even when a small number 
(m = 6) of shifted-Jacobi polynomials is used. 

IV. Conclusions 

In this paper, shifted-Jacobi polynomials are adopted to solve optimal control 
systems incorporating observers. The proposed technique simplifies the system of 
equations into the successive solution of a set of linear algebraic equations. Thus, the 
computation is effective and straightforward. Moreover, only a small number of the 
shifted-Jacobi series (m = 6) are needed to obtain a satisfactory solution, hence it is 
seen that the method does not, in general, need an excessive capacity of memory and 
computing time. 
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