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窄通道的量子傳輸 
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國立交通大學電子物理研究所碩士班 

 

摘要 

 

 

我們研究考慮共平面磁場與 Rashba 及 Dresselhaus 自旋軌道交互作用之窄通

道的同調量子傳輸。因為 Rashba 及 Dresselhaus 自旋軌道交互作用造成能帶水平

方向的仳裂，而外加共平面磁場則造成能帶垂直方向的仳裂。首先，當我們同時

考慮 Rashba 自旋軌道交互作用及共平面磁場時，能帶中，會出現虛能隙。在調

變磁場大小的過程中，我們觀察電子自旋方向的改變。傳輸特性上，我們發現了

似電子和似電洞的準束縛態。而當我們同時考慮共平面磁場與 Rashba 及

Dresselhaus 自旋軌道交互作用時，能帶開始變得不對稱。在傳輸特性上，除了發

現似電子和似電洞的準束縛態之外，我們發現了 Fano 效應。因此，在考慮 Rashba
自旋軌道交互作用及共平面磁場時，Dresselhaus 效應對傳輸特性有重大的影響。 
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ABSTRACT 
 

 

 
We investigate coherent electronic quantum transport in a narrow channel with 

Rashba and Dresselhaus spin-orbit interaction in the presence of an external in-plane 
magnetic field that is applied along the channel direction. The spin-split energy 
spectrum is horizontally shifted respectively by the Rashba and the Dresselhaus 
effects and is vertically shifted by the applied magnetic field. First, we consider the 
Rashba spin-orbit interaction and the in-plane magnetic field in the narrow channel, 
there is a pseudo-gap in the energy spectrum. With the increasing magnetic field, we 
investigate the variation of the spin orientation. Furthermore, we find the hole-like 
quasi bound state and electron-like quasi-bound state features in conductance. When 
we consider the Rashba, Dresselhaus and Zeeman effects simultaneously, energy 
spectrum becomes asymmetry. In some specific cases, except for the quasi-bound 
state feature, we find the Fano effect in transport properties. Hence, in the presence of 
the Rashba spin-orbit interaction and the in-plane magnetic field, the Dresselhaus 
effect significantly affects coherent magneto-quantum transport properties. 
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Chapter 1   Introduction to charge transport in semiconductors 
 
1.1 Introduction to semiconductors 

The term “semiconductor” represents a certain class of solid materials. It 
suggests that the electrical conductivity is intermediate in magnitude between a 
conductor and an insulator. Semiconductor materials are numerous and versatile. We 
can distinguish it into elementary semiconductors and compound semiconductors.  

 

Elementary semiconductors are Silicon (Si) and germanium (Ge), phosphorous 
(P), sulfur (S), selenium (Se), and tellurium (Te). Compound semiconductors are 
categorized following by the group of their constituents in the periodic table of 
elements. Such as gallium arsenide (GaAs), aluminium arsenide (AlAs), indium 
arsenide (InAs), indium antimonide (InSb), gallium antimonide (GaSb), gallium 
phosphide (GaP), gallium nitride (GaN), aluminium antimonide (AlSb), and indium 
phosphide (InP) are all belong to the so-called III-V semiconductors. There are also 
II-VI semiconductors, such as zinc sulfide (ZnS), zinc selenide (ZnSe) and cadmium 
telluride (CdTe), III-VI compounds, such as gallium sulfide (GaS) and indium 
selenide (InSe), as well as IV-VI compounds, such as lead sulfide (PbS), lead telluride 
(PbTe), lead selenide (PbSe), germanium telluride (GeTe), tin selenide (SnSe), and tin 
telluride (SnTe). 

 
For compound semiconductors, there are two chemical constituents are called 

binary compounds. Additionally, there are compound semiconductors with three 
constituents, such as AlxGa1−xAs (aluminium gallium arsenide), InxGa1−xAs (indium 
gallium arsenide), and also InxGa1−xP (indium gallium phosphide). In this situation, it 
is called about ternary semiconductors or semiconductor alloys.        

( , , ) x y zH x y z H H H= + +  (1.1.1)

 
                                                                                 

1.2 Low dimensional semiconductor systems 

1.2.1 Introduction to heterostructure semiconductors 

For heterostructure, since the two different materials will have two different 
energy bandgaps, the energy band will have a discontinuity at the junction interface. 
We may have an abrupt junction in which the semiconductor changes abruptly from a 
narrow bandgap material to a wide-band gap material. In Fig. 1.2.1.1 shows the 
energy-band diagram of a GaAs-AlGaAs heterojunction in thermal equilibrium. The 
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AlGaAs is moderately to heavily doped n type, while the GaAs is more lightly doped 
or even intrinsic. In order to achieve thermal equilibrium, electrons flow from the 
wide-bandgap AlGaAs into the GaAs, forming an accumulation layer of electrons in 
the potential well adjacent to the interface. The electrons contained in a potential well 
are quantized. The two-dimensional electron gas refers to the condition in which the 
electrons have quantized energy levels in one spatial direction (perpendicular to the 
interface), but are free to move in the other two spatial directions. 
 
 

 

Fig. 1.2.1.1. The bandage profile of semiconductor heterostructures. 
 
 

Since the GaAs is lightly doped or intrinsic, the two-dimensional electron gas is 
in a region of low impurity doping so that impurity scattering effects are minimized. 
The electron mobility will be much larger than if the electrons were in the same 
region with the ionized donors. The movement of the electrons parallel to the 
interface will still be influenced by the coulomb attraction of the ionized impurities in 
the AlGaAs. The effect of these forces can be further reduced by using a graded 
AlGaAs-GaAs heterojunction. The graded layer is AlxGa1-xAs in which the fraction x 
varies with distance. In this situation, an intrinsic layer of graded AlGaAs can be 
sandwiched between the N-type AlGaAs and the intrinsic GaAs. Fig. 1.2.1.2 shows 
the conduction-band edge across a graded AlGaAs-GaAs heterojunction in thermal 
equilibrium. The electrons in the potential well are further separated from the ionized 
impurities so that the electron mobility is increased above that in an abrupt 
heterojunction. 
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Fig. 1.2.1.2. the conduction-band edge across a graded AlGaAs-GaAs 
heterojunction in thermal equilibrium. 

 
The two-dimensional electron gas (2DEG) trapped at a doped heterostructure is 

the most important low-dimensional system for electronic transport. It forms the 
kernel of a field-effect transistor. The high electron mobility transistor has many 
acronyms including modulation-doped field-effect transistor (MODFET) and high 
electron mobility transistor (HEMT). 
 
1.2.2 Modeling the low dimensional semiconductor systems 

Fig. 1.2.2.1 is the GaAs/AlGaAs high electron mobility transistor. The cap layer 
in the transistor can prevent the n-type AlGaAs from oxidizing. Above the cap layer, 
we use two metal gates to define a quasi-one dimensional quantum channel. The 
Hamiltonian of a semiconductor with heterostructure can be written separately in the 
vertical and lateral parts of form 

( , , ) zH x y z H H= + , (1.2.2.1)

where 

( )
2

2 2
* ( , )

2 x yH k k V x y
m

= + +  (1.2.2.2)

and 
2 2

* ( )
2

z
z c

kH V z
m

= + . (1.2.2.3)

Vc(z) is the quantum well at the interface of the heterostructure. The electrons 
underneath the gate oxide are confined to the heterostructure interface, and thus 
occupy well defined energy levels. Nearly always, only the lowest level is occupied, 
and so the motion of the electrons perpendicular to the interface can be ignored. While, 
the electron can be free to move in the other two spatial directions. Hence, we can 
ignore the z-part Hamiltonian and emphasize the x, y dependant Hamiltonian (Eq. 
1.2.2.2). 
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Fig. 1.2.2.1. The GaAs/AlGaAs high electron mobility transistor. 
 

 
1.3 Quantum transport in quasi-one-dimensional quantum systems 

1.3.1 Introduction to quantum transport 

In macroscopic systems, the conductance obeys an ohmic scaling law: 
WG
L

σ
= . (1.3.1.1)

As the dimensions become smaller, there are two corrections to this law. Firstly there 
is an interface resistance independent of the length L of the sample. Secondly the 
conductance does not decrease linearly with the width W  anymore. Instead it 
depends on the number of transverse modes in the quantum channel. The 
Landauer-Buttiker formula incorporates both of these features [1, 2]: 

22eG NT
h

= . (1.3.1.2)

The factor T is the average probability that an electron incident from the source will 
transmit to the drain, the factor 2 is for the spin and N is the number of propagating 
modes with positive group velocity due to transverse confinement. The 
Landauer-Buttiker formalism only applies to coherent transport. In this paper, we 
assume that the phase-coherent length is larger than the sample of linear size L, in 

which l Lφ >  and the elastic mean free path is larger than the sample size el L> . 

Namely, our system is in the coherent quantum transport regime. 
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1.3.2 Quasi-one-dimensional quantum systems 

To form a quasi-one-dimensional quantum system (Fig. 1.2.2.1), we use two split 
top gates above the HEMT. We can rewrite the Eq. 1.2.2.2 in the following form: 

( )
2

2 2
*( , ) ( ) ( , )

2 x y c sH x y k k V y V x y
m

= + + + . (1.3.2.1)

Since the two split top gates are quite near each another, electrons will be confined in 
the quantum channel and can only propagate along the x direction. Hence, the single 
particle Hamiltonian in the narrow channel can be described by. 

2 2

* ( , )
2

kH V x y
m

= + . (1.3.2.2)

This Hamiltonian can be separated into two parts: 
2 2

* ( )
2

y
y c

k
H V y

m
= + . (1.3.2.3)

2 2

* ( )
2

x
x

kH V x
m

= +  (1.3.2.4)

VC(y) indicates the confining potential in the transverse direction. The corresponding 
eigenvalue of Hy is the sub-band energy. In the narrow channel, the electron 
propagates along x direction whose kinetic energy will be the total energy of an 
incident electron subtracting the subband energy Ek = Etot - εn, εn depends on which 
subband the electron occupying. V(x) exhibits the x dependant potential which can be 
the spin orbit interaction or the scattering potential in longitudinal direction. In this 
chapter, we consider the system is only with the static scattering potential along x 
direction without spin orbit interaction. In the following chapters, we will discuss the 
spin-resolved transport properties including both the static scattering potential and 
spin orbit interaction. 
 

Fig. 1.3.2.1. System figuration. 
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1.3.3 Analytical approach 

The system figuration is shown in Fig. 1.3.2.1. A static finger gate is in the 
middle of the narrow channel. The system under investigation can be described by the 
Hamiltonian:  

2

0* ( ) ( )
2 c
pH V y V x
m

δ= + + , 2 21( )
2c yV y m yω=  (1.3.3.1)

In order to simplify the calculation, the dimensionless Hamiltonian is introduced by 

choosing appropriate physical units: the length unit 1*
F

l
k

= , the energy 

unit
2 2

*
2 *

FkE
m

= , and the unit of the parameter ωy of the confining potential 
*

* 2
y

Eω = . 

Following performing standard dimensionless the Hamiltonian becomes:  
2 2 2

0 ( )yH k y V xω δ= + + . (1.3.3.2)
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Fig. 1.3.3.1. System picture. 

 
The wave function can factorize into functions of x and y, as follows: 

( ) ( ) ( )x yψ ϕΨ =r . (1.3.3.3)

Since the confining potential in the transverse direction is a parabolic potential, the 
wavefunction and the subband energy will be 

(2 1)n ynε ω= + . (1.3.3.4)

and 

( )
2

2
02

00

1

2 !

x
x

n nn

xx e H
xn x

ψ
π

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (1.3.3.5)
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The electrons incident from the left source will be scattered by the static delta 
potential in the middle of the quantum channel. The electrons may be back scattered 
or forward scattered. Therefore, the x-part wave functions can be written in the form: 

0, ( ) ikx ikxx x e reψ −< = +  (1.3.3.6)
and  

0, ( ) ,ikx
nx x te k Eψ ε> = = − . (1.3.3.7)

r, t represent the reflected and transmitted coefficients. E is the total energy of the 
electron and εn is the subband energy. The wavefunctions should satisfy these 
boundary conditions:  

(i) ( 0 ) ( 0 )x xψ ψ− += = =  (1.3.3.8)
and 

(ii) 0( 0 ) ( 0 ) ( 0 )x x V xψ ψ ψ− + +′ ′= = = − = .  (1.3.3.9)

Substituting the x-part wave functions into these boundary conditions can obtain: 
1r t= −   (1.3.3.10)

and 

0(1 )ik r ikt V t− = − . (1.3.3.11)
Combining these two equations and using linear algebra, the transmitted coefficient 
can be expressed as: 

0

1

1
2

t V
ik

=
−

. 
(1.3.3.12)

Once obtaining the transmitted coefficient, we can substitute it into the 
Landauer-Büttiker equation and acquire the conductance. 

2 2
2

2
0

2

2 2 1| |
1  

4

n
n n

e eG t
Vh h
k

= =
+

∑ ∑ . 
(1.3.3.13)
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1.3.4 Numerical approach 

In this section, we show the numerical results and discussion of the variation of 
conductance with the potential strength V0. The numerical calculations presented 
below are carried out under the assumption that the electron effective mass m* = 
0.067m0, which is appropriate to the GaAs-based semiconductors. The typical 
electron density is n ~ 1011 cm-2. Accordingly, the energy unit E* = 9 meV , the length 

unit L* = 7.96 nm, and the frequency unit 
*

* 13.6 THzEω = = [3]. 

In Fig. 1.3.4.1, we demonstrate the conductance at different scattering potential 
strength and the frequency remaining at ωy = 13.6 THz. In the absence of scattering 
potential, the conductance is ideally quantized. The conductance regularly increases 
2e2/h as the energy raises 2EF, since the transverse modes will increase one mode 
whenever the energy raises 2EF and we need to take account of another subband (the 
subband energy level spacing is 2EF.). As the magnitude of the scattering potential 
increases, the electrons may be reflected by the scattering potential and successfully 
transmitted. Then, the conductance can not transmit completely anymore. When the 
scattering potential strength changes into stronger, the probability for electrons to 
transmit is more difficult therefore the conductance is significantly suppressed and the 
degree of suppression will increase with the stronger of magnitude of the scattering 
potential. 
 
(a) (b) 

Fig. 1.3.4.1. Conductance (in units of 2e2/h) versus kinetic energy in a quantum channel with 
tunable potential strength V0 (a) The potential is repulsive (b) The potential is attractive. The 
Fermi energy EF = 9 meV 
 
 



 

 9

Chapter 2   Spin-resolved quantum transport 
 
2.1 Introduction to spintronics 

In the recent years, there has been growing interest in the emerging field of spin 
electronics or “spintronics”. Spintronics, where the spin of electrons is used to carry 
information, is a rapidly growing area of research [4−6]. There are several techniques 
for generating pure spin currents [7–9]; Spintronics involves exploration of the extra 
degrees of freedom provided by the electron spin, in addition to those due to electron 
charge, with a new view to realize the new functionalities in future electronic devices. 
 

Spin-orbit interaction (SOI) is considered as an efficient manipulation via gate 
voltages, which is a relativistic effect that couples the electron spin, momentum, and 
electric field (or momentum dependant effective magnetic field in the electron frame.) 
The SOI has been utilized to devise various spintronics devices such as spin 
transistors, spin logic, and spin filters [10−13]. 
 

In 1990, Datta and Das proposed to control the strength of Rashba spin-orbit 
interaction using gate voltage as a spin-field transistor based on spin rotation, which 
can be a significant strong effect in narrow gap semiconductor heterostructures [14]. 
The gate control of the spin current employing the Aronov-Casher effect was 
considered. The electric dipole spin resonance controlled by the time-dependant gate 
was also studied. Furthermore, spin-orbit interaction is likely to be important in 
Einstein-Podolsky-Rosen type spin-dependant entangled electronic states for quantum 
information processing [15, 16]. Considering semiconductor systems, there are two 
main types of spin-orbit interaction. The Dresselhaus spin-orbit interaction [17] 
appears due to the asymmetry present in certain crystal lattices.  

 
The Rashba spin-orbit interaction [18] arises due to the asymmetry associated 

with the confining potential of the heterostructure quantum well. The perpendicular 
electric fields inside heterostructure quantum wells are important for understanding 
spin-orbit coupling, which is sample-specific and adjustable. In narrow gap 
semiconducting quantum wells, a variation of about 50% of the spin-orbit coupling 
coefficient was observed experimentally by adjusting the voltage on adjacent gate 
electrodes, in which a quantum well is populated only by donor-layer electrons. 
Consequently, much interest has been attracted to the realization of spin polarized 
transistors, spin filter devices, and other devices based on electrical gate control to the 
spin-dependant transport. 
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2.2 The spin-orbit interactions and the Zeeman effect 

To realize a spin device, it is important to utilize the spin-orbit interaction since it 
provides a way of controlling the spin degree of freedom electrically in 
semiconductor-based systems. Moreover, for a quasi-one-dimensional ballistic it is 
found that the SOI could significantly modify the band structure, thus additional 
subband extrema and energy gaps are produced. Effects of SOI and Zeeman splitting 
on the physical properties of quantum wires, e.g., photovoltaic effect [19] and shot 
noise [20] have been investigated in detail. Li et al [21]. have presented that the SOI 
and the Zeeman effect could result in significant variations of the conductance and the 
thermopower which are spin-dependent.  
 

We will consider the transport properties in the presence of the SOI and the 
in-plane magnetic field. The spin-orbit interaction can be caused by structural 
inversion asymmetry (SIA), which can be artificially controlled by the applied gate 
voltages or by the specific design of the heterostructure, or by bulk inversion 
asymmetry (BIA), which is determined by the semiconductor material and the 
geometry of the sample. Both HBIA and HSIA lead to spin splitting of the conduction 
band linear in k. The in-plane magnetic field will cause the energy splitting that is 
independent of k. 
 

The structural inversion asymmetry results in the Rashba spin-orbit interaction. 
The Rashba spin-orbit interaction depends on the gradient of the potential and is 
therefore more important the higher the nuclear charge of the element. In Ch. 1.2.1, 
we have mentioned that the electrons are confined at the heterostructure interface. For 
the purpose of confining electrons to nanostructure devices, potential well is necessary. 
The potential well at the interface results in the non-negligible Rashba spin–orbit 
interaction (SOI), especially in systems with structural inversion asymmetry (SIA) 
like e.g. semiconductor heterostructures. Heavy elements in the periodic table show 
stronger effects. This is also valid in crystals. For instance, in silicon the spin-orbit 
interaction is much weaker than in Ge or GaAs. It is even more important in InAs and 
InSb. In a two-dimensional electron gas (2DEG) obtained by a strong confinement in 
the z-direction (Fig. 1.3.3.1), the Rashba SOI is described by the Rashba term 

( )R y x x y z
H p pα σ σ= − . (2.2.1)

The components of the electron momentum operator are denoted by pi, the Pauli 
matrices are represented by σi, and α proportional to Ez is the SOI coupling coefficient 
set by the confining electric field or by the applied gate voltage. 
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In III-V or II-VI the heterostructure semiconductors, such as, the difference 
between cations and anions breaks the degeneracy of the band structure with respect 
to the spin degree of freedom, and is present in both bulk materials and semiconductor 
nanostructures. The electric fields resulting from the lack of an inversion centre lead 
to bulk inversion asymmetry (BIA) and to the Dresselhaus term in the Hamiltonian. In 
the conduction band, the spin splitting Hamiltonian is given by 

( ) ( ) ( )2 2 2 2 2 2
,bulk D c x x y z y y z x z z x yH k k k k k k k k kγ σ σ σ⎡ ⎤= − + − + −⎣ ⎦ . (2.2.2)

To obtain the effective Hamiltonian of the two-dimensional quantum channel, we take 
the average of the above bulk Hamiltonian with respect to the ground state wave 
function along the vertical z direction. 

( )D x x y yH p pβ σ σ= − . (2.2.3)

The components of the electron momentum operator are denoted by pi, the Pauli 
matrices are represented by σi, and β is the Dresselhaus spin-orbit interaction strength. 
 

An external magnetic field lifts time inversion symmetry so that we can obtain a 
finite Zeeman energy splitting ΔEZ = g∗μBB, where g∗ is the effective g factor and μB 
the Bohr magneton of the electron or hole states. It was first shown by Roth et al. [22] 
that electrons can have an effective g factor g∗ that differs substantially from the 
free-electron value g0 = 2. The effective g factor g∗ ≠ 2 results from the spin–orbit 
interaction, which couples the orbital motion with the spin degree of freedom. 
Because of without SOI, the motion of spin-up electrons would be completely 
decoupled from the motion of spin-down electrons, and there would be identical 
Hamiltonians for spin-up and spin-down electrons except for the trivial Zeeman term 
±(g0/2)μBB, so that in this case Zeeman splitting would be controlled by the g factor, 
in which g0 = 2 of free electrons. Recently, calculations and experiments have shown 
that g∗ can have different values for B applied in the direction normal to the plane of 
the 2D system and for B in the plane of the quantum wire [23−26]. 
 

In Ch3 and Ch4, we will analyze the transport properties in a quantum channel in 
the presence of the spin-orbit interactions and in-plane magnetic field. 
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Chapter 3   Quantum transport in the presence of the Rashba 
spin-orbit interaction with in-plane magnetic field 
 

In this chapter, we will use the analytical approach to investigate how the Rashba 
spin-orbit interaction and an in-plane magnetic field affect the electron transport. We 
will introduce the system Hamiltonian and analyze the energy spectrum and the 
wavefunction in the first section. In the second section we will use the 
Landauer-Buttiker formula by the matching method to calculate the conductance. At 
last, we will demonstrate the numerical results under different strengths of the Rashba 
spin-orbit interaction, the magnetic field and the gate voltage. 
 
3.1 Theory 

In this section, we use the numerical approach to calculate the energy spectrum 
and the spinor states of the system considering both the Rashba and the Dresselhaus 
spin-orbit coupling and an in-plane magnetic field.  

3.1.1 System and Formulation 
 

In this paragraph, we use the analytical approach to derive the energy spectrum 
and the spinor states of the system considering the Rashba spin-orbit coupling and an 
in-plane magnetic field [27]. 
 

We use a transverse hard wall potential to simulate the confinement potential 
along y direction. The transverse potential is a narrow constriction therefore we can 
neglect the momentum py along y direction. Then, the Rashba term can be reduced 
from Eq.(2.2.1) to 

R x yH pα σ= − . (3.1.1.1)

The Hamiltonian for the quantum channel in the presence of the Rashba spin-orbit 
interaction and the Zeeman effect which is due to an applied magnetic field along x 
direction has the form 

2

0 *

1 ( )
2 2x y s B x c
pH p g B V y
m

α σ μ σ= − + + , (3.1.1.2)

where α is the Rashba strength, B is the magnetic field strength and Vc is the confining 
potential. In the middle of the quantum channel there is a scattering potential in forms 
of delta potential. Then the total single particle Hamiltonian is 

0 ( )sH H V x= + , ( )0( )sV x V xδ= . (3.1.1.3)



 

 13

 

x

y
z

 split gate

 split gate

1 xxIn Ga As−

InAs
2DEG

B

x

y
z

 split gate

 split gate

1 xxIn Ga As−

InAs
2DEG

B

x

y
z

x

y
z

 split gate

 split gate

1 xxIn Ga As−

InAs
2DEG

B

 
Fig. 3.1.1.1. System picture 

 

For convenience, we choose the following units: length unit * 1

F

l
k

≡ , energy unit 

2 2
*

*2
FkE

m
≡ , magnetic field unit 

*
*

B

EB
μ

≡ , the Rashba coefficient unit 
2

*
*
Fk

m
α = , the 

confinement potential in units of Fermi energy ( ) ( ) *
cV y V y E=  and defining 

1
2 sg g≡ . In the following way, we can obtain the dimensionless unperturbed 

Hamiltonian: 

2
0 2 ( )x y xH k k gB V yα σ σ= − + + . (3.1.1.4)

Separating the unperturbed Hamiltonian into the x-dependant and y-dependant parts 
can get: 

0 0
0 x yH H H= +  (3.1.1.5)

with  

0 2 2x x x y xH k k gBα σ σ= − +   (3.1.1.6)

and 

0 2 ( )y yH k V y= + , (3.1.1.7)

where 
 

0,  
( ) 2

,  otherwise

dy
V y

⎧ <⎪= ⎨
⎪∞⎩

 (3.1.1.8)
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is a potential that confines the electron in the transverse direction and we suppose that 
the confining potential with only the lowest occupied subband. 
The wavefunction of the unperturbed Hamiltonian can be expanded by the spatial 
wavefunction and spinor state,  

( , ) ( ) xik x
nx y y eφ χΨ = . (3.1.1.9)

Since the transverse confinement potential is the hard wall potential, the transverse 
wavefunction will be 

( ) sinn
ny y

d d
π πφ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (3.1.1.10)

and the subband energy will be 

2

n
n
d
πε ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (3.1.1.11)

Here, we only consider the lowest occupied subband. That is n is equal to 1. Then, 
substituting the transverse wavefunction and the subband energy into Eq. (3.1.1.4) 
and Eq. (3.1.1.9) obtain  

2( 2 ) ( )x y x n xk gB E kα σ σ χ ε χ− + = − − . (3.1.1.12)

Expanding the above equation by the Pauli matrices: 

20 2
( )

2 0
x

n x
x

gB i k
E k

gB i k
α

χ ε χ
α

+⎛ ⎞
= − −⎜ ⎟−⎝ ⎠

. (3.1.1.13)

   The spinor state and the eigen-energy can be obtained by solving the above 
eigenvalue problem. The spinor state is 

( )

11 ; =
2 i kxeσ θχ σ

σ
⎡ ⎤

= ±⎢ ⎥
⎣ ⎦

, (3.1.1.14)

where 

1 2( ) tan xkk
gB
αθ − ⎛ ⎞

≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

, (3.1.1.15)

and the energy is 

2 2 2( ) (2 )   n n x xE k gB kε σ α± = + + + , (3.1.1.16)

where kx can only be real and σ = ± indicating the spin branches for a given subband n. 
For an ideal wire without scattering potential, it is convenient to use Eq. (3.1.1.16) to 
obtain energy spectrum as a function of wave vector for propagating modes, as shown 
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in Secs. 3.1.2 and 3.1.3. 
In general, there are four extreme values in the energy dispersion. For 

convenience, we define Pbσ = (kbσ, Ebσ) and Ptσ = (ktσ, Etσ) to denote the extreme 
values of the energy dispersion at the subband bottom (b) and subband top (t), 
respectively. We also define ΔEZ to represent the pseudo-gap or the branch level 
spacing for a given subband, respectively. In addition, σ = ＋, － represents the 
upper branch and lower branch, respectively. 

To analyze the energy spectrum and find the local minimum and local maximum 
in the energy dispersion for the case involving both the Rashba and the Zeeman 
effects, it is convenient to define the group velocity, given by 

2
n x

x 2 2 2 2
x x

42
4

g
dE kk
dk g B k

σ αυ σ
α

= = +
+ , 

(3.1.1.17)

where the subscript σ = ± indicating the spin branches. As the group velocity is 
identical to zero for specific wavevectors, there will be local minimum or local 
maximum in the energy spectrum (Fig. 3.1.1.2).  
 

(a) 

0bk + =

b nE gBε+ = −
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2

2 -
2b
gBk α
α−

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

2 2
, ( )

2b n
gBE ε α
α−

⎡ ⎤= − +⎢ ⎥⎣ ⎦
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Fig. 3.1.1.2. (a) For the case 2α2 > gB, energy spectrum with labeling local energy 
extreme values and corresponding wavevectors. (b) For the case 2α2 ≤ gB, energy 
spectrum with labeling local energy extreme values and corresponding wavevectors. 

These local extreme values occur at 

( , ) (0, )t t t nP k E gBε− − −= = − , (3.1.1.18)

( , ) (0, )b b b nP k E gBε+ + += = + , (3.1.1.19)

and 
2

2 2 2
, ( , ) ( - , ( ) )

2 2b b b b n
gB gBP k t Eα ε α
α α− − − −

⎛ ⎞ ⎡ ⎤= = ± = − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ . 
(3.1.1.20)
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It is noteworthy that this extreme value (Eq. 3.1.1.20) only exists as 2α2 > gB 
otherwise the value in the square root will be negative. Namely, this extreme value 
only occurs when the Rashba is significantly stronger than the Zeeman effects (Fig. 
3.1.1.2 (a)). The gap between the upper branch and the lower branch would be  

Z 2E gBΔ = . (3.1.1.21)
If the Rashba coefficient is not strong enough, the energy spectrum will be vertical 
splitting (Fig. 3.1.1.2(b)). The energy spacing between the upper branch and the lower 
branch is  

Z 2E gBΔ = . (3.1.1.22)
For the specific cases, we consider only the Rashba effect, and then the energy 

dispersion (Eq. 3.1.1.16) becomes 
2 2   n n x xE k kε σ α± = + + . (3.1.1.23)

 

bk α+ = − bk α− = +
2

b nE ε α+ = − 2
b nE ε α− = −

E

k
bk α+ = − bk α− = +

2
b nE ε α+ = − 2

b nE ε α− = −
bk α+ = − bk α− = +

2
b nE ε α+ = − 2

b nE ε α− = −

E

k

 
Fig. 3.1.1.3. For the case of considering the 
Rashba effect and turning off the magnetic field B 
= 0, energy spectrum with labeling local energy 
extreme values and corresponding wavevectors. 

 
The energy dispersion is lateral splitting. The local extreme values which can be 
solved from the group velocity (Eq. 3.1.1.17) are at 

2( , ) ( , )b b b nP k E α ε α+ + += = − − , (3.1.1.24)

and 
2( , ) ( , )b b b nP k E α ε α− − −= = − . (3.1.1.25)

 
 
 



 

 17

If we consider only the Zeeman effect, the energy dispersion (Eq. 3.1.16) 
becomes  

2
n n xE k gBε σ± = + + . (3.1.1.26)

 

b nE gBε− = −
0bk − =

0bk + =

b nE gBε+ = −

E

k

b nE gBε− = −
0bk − =

0bk + =

b nE gBε+ = −

b nE gBε− = −
0bk − =

0bk + =

b nE gBε+ = −

E

k

E

k

 

Fig. 3.1.1.4. For the case of considering only the 
in-plane magnetic field and the Rashba coefficient 　 
= 0, energy spectrum with labeling local energy 
extreme values and corresponding wavevectors. 

 
The energy dispersion is vertical splitting. The local extrema are at 

( , ) (0, )b b b nP k E gBε+ + += = + , (3.1.1.27)

and 

( , ) (0, )b b b nP k E gBε− − −= = − , (3.1.1.28)

which can be solved from the group velocity (Eq. 3.1.1.17). Then, the energy spacing 
between the upper branch and the lower branch is  

2ZE gBΔ = . (3.1.1.29)
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3.1.2 The Rashba effect 

In this section, we investigate the energy spectrum with the different Rashba 
effect in the presence of the in-plane magnetic field (gB = 0.02). There are four cases:  
α = 0.0(2α2 < gB), 0.05(2α2 < gB), 0.1(2α2 = gB), and 0.2(2α2 > gB), as shown in Fig. 
3.1.2.1. The magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for 
InAs) 
 

(a) (b) 

 
(c) (d) 

Fig. 3.1.2.1. Energy spectrum versus wave number with magnetic field strength gB = 0.02 
for different values of α: (a) α = 0.0 (b) α = 0.05, (c) α = 0.1, and (d) α = 0.2 (the 
Rashba-Zeeman effect). The Fermi energy EF = 66 meV and the Fermi wave vector kF = 2×

106 cm-1. The magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for 
InAs). The black and red curves indicate the plus (σ = +) and minus (σ = −) spin branches, 
respectively. The black dot and the red dot correspond to the local minima of plus and minus 
branches at the subband bottoms, denoted by Pb＋ and Pb－. The red circle stands for the local 
maxima of the minus branch at the subband top, denoted by Pt－. 

 
In Fig. 3.1.2.1(a), we consider only the Zeeman effect. In the presence of the 

in-plane magnetic field, the energy spectrum is vertical splitting. The local minima are 
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at Pb− = (kb−, Eb−) = (0.0, εn − gB) = (0.0, 0.98), Pb+ = (kb+, Eb+) = (0.0, εn + gB) = (0.0, 
1.02) and the branch level spacing for a given subband is ΔEZ = 2gB = 0.04 as we 
mentioned in (Eq. 3.1.28). In the second case, the Rashba effect is week and not 
strong enough to form a pseudo-gap, that is, 2α2 < gB, therefore the energy spectrum 
is vertical splitting (Fig. 3.1.2.1(b)) and the local minima are Pb+ = (kb+, Eb+) = (0.0, 
εn + gB) = (0.0, 1.02) and Pb− = (kb−, Eb−) = (0.0, εn − gB) = (0.0, 0.98). The branch 
level spacing for a given subband is still ΔEZ = 2gB = 0.04. When the Rashba effect 
satisfy 2α2 = gB, the energy spectrum is still vertical splitting and the local minima are 
the same as the first two cases. When the Rashba effect is strong enough to from a 
pseudo-gap, that is, 2α2 > gB, there is

 
a
 
magneto-spin-orbit pseudo-gap in the energy 

spectrum (Fig. 3.1.2.1(d)). The local minimum at the upper branch is Pb+ = (kb+, Eb+) 
= (0.0, εn + gB) = (0.0, 1.02) (Eq. 3.1.19) and the local extreme values at the lower 
branch are Pt− = (kt−, Et−) = (0.0, εn − gB) = (0.0, 0.98), Pb−,1　= (k b−,1 , E b−,1) = (0.1952, 
0.9575) and Pb−,2　= (k b−,2 , E b−,2) = (0.1952, 0.9575) (Eq. 3.1.18 and 3.1.20). The 
pseudo-gap is ΔEZ = 2gB = 0.04.
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3.1.3 The Zeeman effect 
 

For comprehending how the Zeeman effect would affect the energy spectrum, we 
fix the Rashba effect (α = 0.2) and tune the Zeeman effect from weak to strong. Below, 
there are five cases: gB = 0(2α2 > gB), gB = 0.02(2α2 > gB), gB = 0.08 (2α2 = gB), gB 
= 0.1 (2α2 < gB).  
 

(a) (b) 

 

(c) (d) 

Fig. 3.1.3.1 Energy spectrum versus wave number with different magnetic field strength gB
and the fixed Rashba strength α: (a) gB = 0, α = 0.2; (b) gB = 0.04, α = 0.2; (c) gB = 0.08, α = 
0.2 (d) gB = 0.12, α = 0.2. The Fermi energy EF = 66 meV and the Fermi wave vector kF = 2×

106 cm-1. The magnetic field strength is approximately 6T when gB = 0.04 (gs = −15 for 
InAs). The black and red curves indicate the plus (σ = +) and minus (σ = −) spin branches, 
respectively. The black dot and the red dot correspond to the local minima of plus and minus 
branches at the subband bottoms, denoted by Pb＋ and Pb－. The red circle stands for the local 
maxima of the minus branch at the subband top, denoted by Pt－. 

 
In Fig. 3.1.3.1(a), we show the energy dispersion in the presence of the Rashba 
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spin-orbit interaction. The energy dispersion is lateral splitting. The local minimum at 
the plus branch is Pb+ = (kb+, Eb+) = (−0.2, 0.96) and at the minus branch is Pb- = (kb-, 
Eb-) = (0.2, 0.96) (Eq. 3.1.24 and 3.1.25). In Fig. 3.1.3.1(b), when the Zeeman effect 
gB = 0.04 and 2α2 > gB, there is a pseudo-gap in the energy spectrum. The local 
extreme value at the upper branch is Pb+ = (kb+, Eb+) = (0.0, 1.04). The local extreme 
values at the lower branch are Pb- = (kb-,1, Eb-,1) = (−0.17, 0.95), Pb-,2 = (kb-,2, Eb-,2) = 
(0.17, 0.95) and Pt,− = (kt,−, Et, −) = (0.0, 1.04) (Eq. 3.1.18 and 3.1.20). As the magnetic 
field increases and gB = 0.08 and 2α2 = gB, the energy dispersion is vertical splitting 
(Fig. 3.1.3.1(c)) and the branch level spacing for a given subband is ΔEZ = 2gB = 0.16. 
As the Zeeman coefficient increases (gB = 0.12) and satisfies 2α2 < gB, the branch 
level spacing compare to Fig. 3.1.3.1(c) increases ΔEZ = 2gB = 0.24 since the in-plane 
magnetic field increases. 
 
3.1.4 Spin orientation 
 

In order to investigate the spin orientation in the presence of the Rashba 
spin-orbit interaction and the in-plane magnetic field, we calculate the effective 
magnetic field for these spin-orbit interactions and the Zeeman effect [28]. The 
dimensionless Hamiltonian for an electron in the presence of the magnetic field can 
be expressed as:  

H Bσ= ⋅ , (3.1.4.1)
where B is dimensionless (B* = E*/μB). Hence, when the above equation is identical to 
the Rashba term,  

2 x y y yk B Bα σ σ σ− = ⋅ = , (3.1.4.2)

we can obtain the effective magnetic field for the Rashba spin-orbit interaction: 

2R xB k yα= − . (3.1.4.3)

In the same way, we can obtain the effective magnetic field for the Zeeman effect: 

ZB gBx= . (3.1.4.4)

Then, the effective magnetic field of the system can be expressed as: 

2eff Z R xB B x B y gBx k yα= + = − . (3.1.4.5)

In order to achieve equilibrium, the spin orientation of the electron in the presence of 
the magnetic field tends to be opposite to the direction of the magnetic field. 
Therefore, the spin orientation of the electron at the plus branch is aligned in the 
direction of the effective magnetic field. However, the spin orientation of the electron 
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at the minus branch will be opposite to the direction of the effective magnetic field. 
We can express the spin orientation for the electrons at the plus branch as: 

( ) ( ) ( ) ( )2 2 2 2

2

2 2
x

x x

gB kS x y
gB k gB k

σ
α

α α
= −

+ +
, σ = + . (3.1.4.6)

and the spin orientation for the electrons at the minus branch is: 

( ) ( ) ( ) ( )2 2 2 2

2

2 2
x

x x

gB kS x y
gB k gB k

σ
α

α α
= − +

+ +
, σ = − . (3.1.4.7)

Below, we show the energy spectrum with the spin orientation in the presence of 
the Rashba spin-orbit interaction with different Zeeman effects.  
 
(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3.1.4.1. Energy dispersion with spin orientation illustrated by the arrows with the 
different Zeeman effects and the fixed Rashba strength α. (a) gB = 0, α = 0.2; (b) gB = 
0.04, α = 0.2; (c) gB = 0.08, α = 0.2 (d) gB = 0.12, α = 0.2. The magnetic field 
strength is approximately 6T when gB = 0.04 (gs = −15 for InAs) 
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In Fig. 3.1.4.1 (a), we turn off the magnetic field and only consider the Rashba 

spin-orbit interaction. The spin orientation is along the y direction. When the in-plane 
magnetic field increases, the spin orientation is inclined to along the x direction. 
Therefore, the spin orientation is at the angle between the x axis and the y axis. When 
the Zeeman effect increases from gB = 0.04 to 0.12, the angle between the spin 
orientation and the x axis decreases. Since the effective magnetic field of the Rashba 
spin-orbit interaction is dependant of the linear kx, at kx = 0 the spin orientation is 
always along the x direction. 
 
3.1.5 Complex energy dispersion 
 

It is interesting to note since the Rashba and the Zeeman effects result in the 
spin-splitting energy dispersion, there is a gap appearing in the energy regime (see Fig. 
3.1.2.1(d)). The channel number must be conservative, and therefore there are two 
evanescent modes in this gap regime [29]. For finding these evanescent modes, we 
rearrange (3.1.16) into this following form 

2 2 2 2 2 2( 2 ) ( 2 ) ( ) ( )x n n nk E E gB Eα ε α ε ε= + − + − + − −∓ . (3.1.5.1)

From this degree 4 polynomial we find that for a given energy there are four 
corresponding modes. Namely, for a given energy we can find the corresponding 
wave vectors from the above equation. The above polynomial problem can be solved 
by calling the DZPOCC subroutine from the IMSL library. For a given energy, this 
subroutine can find the corresponding four complex roots kx. In Fig. 3.1.5.1, we 
demonstrate a three dimensional energy dispersion considering both the Rashba and 
the Zeeman effects (2α2 > gB). In this picture, the x axis represents the real part of k, 
the y axis represents the imaginary part of k and the z axis stands for energy. We can 
see below the lower band bottom, there are four evanescent modes which represents 
by the red line. At the gap energy regime there are two propagating modes and two 
evanescent modes. The evanescent modes in the gap are in form of a bubble. These 
evanescent modes won’t contribute to the current since the electron at these modes 
would decay with distance and they can not successfully transmit to the drain. 
However, during the scattering process it might be scattered into these evanescent 
modes, thus we still need to know the wavevectors and spinor states about the 
evanescent modes for calculating transport. 
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Fig. 3.1.5.1. 3D Energy dispersion in the presence of the 

Rashba spin-orbit interaction and in-plane magnetic field (α = 

0.2, gB = 0.02). kR and kI represent, respectively, the real part 

and the imaginary part of the wave number (k = kR + kI). The 

black solid line represents the propagating modes and the red 

solid line represents the evanescent modes. The Fermi energy 

EF = 66 meV and the Fermi wave vector kF = 2×106 cm-1. 

 
The evanescent modes in the bubble are pure imaginary since the local minimum 

Pb,+ at the upper branch and the local maximum Pt,− at the lower branch are at kx = 0. 
We substitute kx = iκ into Eq. (3.1.16) and obtain 

2 2 2 2 24nE g Bε κ α κ= + ± − . (3.1.5.2)

The spinor state for the evanescent modes is 
1
22

2 2 2 2
2 2 2 2 2

1
( 2 )

4( 2 ) 4
2

gB
g BgB g B

gB

ακχ α κακ α κ
ακ

⎡ ⎤⎡ ⎤+ ⎢ ⎥= ⎢ ⎥ −⎢ ⎥+ + − ±⎢ ⎥⎣ ⎦ ⎢ ⎥+⎣ ⎦ , 

(3.1.5.3)

which can be solved by substituting kx = iκ into Eq. (3.1.13). Then, we can write down 
the general spinor state for propagating modes and evanescent modes 

2

2 2 2 2
2 2 2 2 2

1
2

4
2 4

2

x
x

x x
x

gB i k
g B k

gB i k g B k
gB i k

α
χ α

α α
α

⎡ ⎤
− ⎢ ⎥

= +⎢ ⎥±− + − ⎢ ⎥−⎣ ⎦ . 

(3.1.5.4)
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3.2 Transport theory 
 

In this section, we derive the analysis wavefunction and transport formulation of 
the system. 

0 ( )sH H V x= + , (3.2.1)
where 

2

0 *

1 ( )
2 2x y s B x c
pH p g B V y
m

α σ μ σ= − + + , (3.2.2)

For the electron incident along x at a given energy, we use kσ (qσ) to denote the 
wavevector of right-going (left-going) modes at the spin branch σ, where the dummy 
index σ could be the outer or the inner modes, denoted by 1 or 2, as shown in Fig. 
3.2.1. Then, the scattering wavefunction is of the form 

( ) ( ) ( ), 0ik x iq xx e k r e q xσ σ
σ σ σ

σ

ψ χ χ= + <∑ , (3.2.3)

and 

( ) ( ), 0ik xx t e k xσ
σ σ

σ

ψ χ= >∑ , (3.2.4)

where σ representing that the electron is at which mode and the spinor state ( )kσχ  is 
in the form of 

2

2 2 2 2
2 2 2 2 2

1
2

; =4
2 4

2

x
x

x x
x

gB i k
g B k

gB i k g B k
gB i k

σ

α
χ σα

σα α
α

⎡ ⎤
− ⎢ ⎥

= ±+⎢ ⎥− + − ⎢ ⎥−⎣ ⎦

, (3.2.5)

where the sign of σ depends on which mode the electron is at, spin up or spin down. 
At the nano-scale, the coherent quantum transport at zero temperature is 

2 2

, ,
, ,

R

L R R L

L R L R L

eG G t
h

σ
σ σ σ σ

σ σ σ σ σ

υ
υ

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ . (3.2.6)

To solve the reflection and transmission coefficients, we use the property that the 
wavefunctions must satisfy the boundary conditions. The boundary conditions for 

( )xψ  is continuous at x = 0 

( ) ( )0 0x xψ ψ− += = =  (3.2.7)

and for the derivative of ( )xψ  is given by  

( ) ( ) ( )00 0 0x x V xψ ψ ψ− + +′ ′= = = − = . (3.2.8)

After some algebra, we get the four equations relating to the reflection coefficients 
and the transmission coefficients. 
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We take the energy regime n ngB E gBε ε− < < +  for example (Fig. 3.2.1). The 
wavefunction is expressed as in the form: 

 
 

k

E
1k2k1q 2q

k

E

k

E
1k2k1q 2q

 

Fig. 3.2.1. Energy spectrum with labeling 
modes. k1, q1 indicate the outer right-going 
and left-going modes. k2, q2 in this energy 
regime are evanescent modes. 

 
 

( ) ( ) ( ), 0ik x iq xx e k r e q xσ σ
σ σ σ

σ

ψ χ χ= + <∑  (3.2.9)

and 

( ) ( ), 0ik xx t e k xσ
σ σ

σ

ψ χ= >∑ . (3.2.10)

Expanding the wavefunction, the wavefunction is in the form: 

( ) ik x iq x iq xa c c
x e r e r e

b d d
σ σ σσ σ σ

σ σ
σ σ σ

ψ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 0x <  (3.2.11)

and 

( ) ik x ik xa a
x t e t e

b b
σ σσ σ

σ σ
σ σ

ψ
⎢ ⎥ ⎡ ⎤

≡ ⋅ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 0x > , (3.2.12)

where 
1
2

aσ = , (3.2.13)

 
( )1

2
i kb e σθ

σ = − , (3.2.14)
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1 2( ) tan kk
gB

σ
σ

αθ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (3.2.15)

 
1
2

cσ = , (3.2.16)

 
( )1

2
i qd e σθ

σ = − , (3.2.17)

and 

1 2( ) tan qq
gB

σ
σ

αθ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (3.2.18)

 
1
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2 2 2 2 2

( 2 )
( 2 ) 4

gBa
gB g B

σ
σ

σ σ

ακ
ακ α κ

⎧ ⎫+⎪ ⎪= ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

, (3.2.19)

 

2 2 2 24
2

g B
b a

gB
σ

σ σ
σ

α κ
ακ

−
= ⋅

+
, (3.2.20)

  
1

22

2 2 2 2 2

( 2 )
( 2 ) 4

gB Qc
gB Q g B Q

σ
σ

σ σ

α
α α

⎧ ⎫+⎪ ⎪= ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

, (3.2.21)

 

2 2 2 24
2

g B Q
d c

gB Q
σ

σ σ
σ

α
α

−
= ⋅

+
. (3.2.22)

Matching the wavefunction at the boundary conditions of the scattering potential:  

( ) ( )0 0x xψ ψ− += = = . (3.2.23)

 

( ) ( ) ( )00 0 0x x V xψ ψ ψ− + +′ ′= = = − = . (3.2.24)

We can get four simultaneous equations. 
1. a r c r c t a t aσ σ σ σ σ σ σ σ σ+ + = +  (3.2.25)
2. b r d r d t b t bσ σ σ σ σ σ σ σ σ+ + = +  (3.2.26)

3. 0 0( ) ( )k a r q c r q c t k iV a t k iV aσ σ σ σ σ σ σ σ σ σ σ σ σ σ+ + = + + +  (3.2.27)
4. 0 0( ) ( )k b r q d r q d t k iV b t k iV bσ σ σ σ σ σ σ σ σ σ σ σ σ σ+ + = + + +  (3.2.28)
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Rearranging the four simultaneous equations into a matrix form, it becomes 

0 0

0 0

( ) ( )
( ) ( )

c c a a r a
d d b b r b

q c q c k iV a k iV a t k a
q d q d k iV b k iV b t k b

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (AX=B). (3.2.29)

For a given energy, there are four modes and four corresponding spinor states. 
Substituting the wave vectors and the spinor states into these elements in the matrix, 
solving the inverse matrix of A and operating it on matrix B can get the transmission 
coefficients tσ , tσ . At the zero temperature, the conductance is given by  

2 2

,
,

R

L R

L R L

eG t
h

σ
σ σ

σ σ σ

υ
υ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ,  (3.2.30)

where σR, σL denote the branch index, and 
Rσυ , 

Lσυ  represent the group velocity at 

the corresponding mode. In the scattering process, the electrons may be incident from 
a right-going mode kσ  but transmitted at another right-going mode kσ  or 
transmitted at the same mode kσ  (Fig. 3.2.2). The total transmission in this energy 
regime is 

2 2 2 2 2

, , , , ,
,

L R

L R

T t t t t tσ σ
σ σ

− − − + + + + −= = + + +∑ . (3.2.31)

 
 

− + + −
1k2k1q 2q

1k2k1q 2q

( )0V xδ

,t+ +

,t+ −

,t− +
,t− −

− + + −
1k2k1q 2q

1k2k1q 2q

( )0V xδ

,t+ +

,t+ −

,t− +
,t− −

 

Fig. 3.2.2.Scattering process in the high energy regime. 
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3.3 Numerical results 

The numerical calculation presented below are carried out under the assumption 
that the electron effective mass m* = 0.023 m0, which is appropriate to the InAs-based 
semiconductors. The typical electron density is n ~ 1012 cm-2. Accordingly, the length 
unit is L* = 5.0 nm, the transverse width unit of the quantum channel is w* = πL* = 
15.7 nm, the energy unit is E* = 66 meV and the spin-orbit coupling parameter is in 

units of 
2

*
*
Fk

m
α = = 3.317×10-10 eV m [30]. All the physical units are shown in 

Appendix. 
 
3.3.1 Ideal conductance with the tunable Rashba effects 

Fig. 3.3.1.1. Conductance (in units of G0 = e2/h) versus kinetic energy without the 
scattering potential in the presence of in-plane magnetic field with different Rashba 
coefficients: (a) α = 0, gB = 0.02; (b) α = 0.05, gB = 0.02; (c) α = 0.1, gB = 0.02; (d) α = 
0.2, gB = 0.02. The Fermi energy EF = 66 meV and the Fermi wave vector kF = 2×106 
cm-1. The magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for 
InAs). 
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In Fig. 3.3.1.1, we investigate the ideal conductance [31] in the presence of 
in-plane magnetic field with different Rashba coefficients. Since there is no scattering 
potential, the electron can be totally transmitted through the quantum channel without 
reflection. It is shown in Fig. 3.3.1.1(a) when we only consider in-plane magnetic 
field in the system, the conductance will be identical to G0 with G0 = e2/h above the 
subband bottom of the energy. There is only one propagating mode contributing to the 
conductance for the energy regime above the subband bottom (Fig. 3.1.2.1(a)). In the 
higher energy regime, namely the electron energy is higher than the bottom of the 
upper subband, there are four propagating modes (two left and two right going modes) 
and the conductance is increasing to 2G0. In Fig. 3.3.1.1(b) and (c), the Rashba 
coefficient increases from 0.0 to 0.05 and 0.1. However, the Rashba effect is not 
strong enough (2α2 ≦ gB) to form a pseudo-gap in the energy spectrum, that is, the 
corresponding energy spectrum is still vertical splitting (Fig. 3.1.2.1(b) and (c)). 
Therefore, the conductance in Fig. 3.3.1.1(b) and (c) will be identical to G0 in lower 
energy regime and identical to 2G0 in higher energy regime. In Fig. 3.3.1.1(d), the 
Rashba coefficient α = 0.2 satisfying 2α2 > gB, therefore there are a pseudo-gap in the 
energy spectrum (Fig. 3.1.2.1 (d)). In low energy regime, there are two inner modes 
(left and right going modes with low momentum) and two outer modes (left and right 
going modes with high momentum), and hence the transported electrons contribute to 
conductance 2G0. In mediate energy regime, that is the magneto-spin-orbit 
pseudo-gap energy regime, there are two outer propagating modes (left and right 
going modes), and the two inner modes belong to evanescent modes. Hence, the 
conductance reduces to G0. For the high energy regime, namely the electron energy is 
higher than the bottom of the upper subband, there are four propagating modes (two 
right-going modes and two left-going modes) and the conductance is increasing to 
2G0. 
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3.3.2 Transport properties with the Rashba effects in the presence of in-plane 
magnetic field 
 
(I) The attractive scattering potentials 
 

(a)  (b) 

 
(c) (d) 

 

Fig. 3.3.2.1. Conductance (in units of G0 = e2/h) versus kinetic energy with the attractive 
scattering potential in the presence of in-plane magnetic field with different Rashba 
coefficients: (a) α = 0.0, gB = 0.02 (2α2 < gB) (b) α = 0.05, gB = 0.02 (2α2 < gB) (c) α = 
0.1, gB = 0.02 (2α2 = gB) (d) α = 0.2, gB = 0.02 (2α2 > gB). The Fermi energy EF = 66 
meV and the Fermi wave vector kF = 2×106 cm-1. The magnetic field strength is 
approximately 3T when gB = 0.02 (gs = −15 for InAs). 

In the presence of the scattering potential, the conductance is not ideally 
quantized anymore since the electron may be back scattered and has no contribution 
to the conductance. In Fig. 3.3.2.1 we show the transport properties in the presence of 
in-plane magnetic field with different Rashba coefficients. We find that the increasing 
of the strength of the scattering potential will cause the more suppressive of 
conductance. 



 

 32

In Fig. 3.3.2.1(a), we investigate the transport properties in the presence of the 
in-plane magnetic field (gB = 0.02) with applying the attractive scattering potential. 
The conductance is suppressed with the increasing strength of the potential. When the 
Rashba coefficient α = 0.05 with the in-plane magnetic field (gB = 0.02), there is a dip 
structure in the conductance (Fig. 3.3.2.1(b)). The dip structure occurs at electron-like 
quasi-bound state which is at the bottom of the upper branch. As the potential strength 
increases, the dip structure shifts along the direction of the low energy regime. 
Namely, the corresponding energy of the electron-like quasi-bound state decreases 
when the potential strength increases. In addition, the width of the dip structure 
increases as the potential strength increases. Since the life time is defined as the 
reciprocal of the width of the dip structure, the life time for the electron staying at the 
quasi-bound state becomes shorter when the potential strength increases. 

 
When the Rashba coefficient increases to α = 0.1 with the in-plane magnetic 

field (gB = 0.02), there is the dip structure in the conductance (Fig. 3.3.2.1(c)). 
However, when the Rashba coefficient is identical to α = 0.1, the dip structure shifts 
along the low energy direction with the increasing potential strength less than the dip 
structure shifts with the increasing potential strength along as the Rashba coefficient α 
= 0.05 (Fig. 3.3.2.1(b)). In Fig. 3.3.2.1(d), the transport properties are with the Rashba 
coefficient α = 0.2 in the presence of the magnetic field gB = 0.02. The shift along the 
low energy direction for the dip structure with the increasing potential strength is less 
and the width of the dip structure in the conductance is narrower. That is, the life time 
for the electron staying at the quasi-bound state becomes longer. Therefore, we can 
deduce that except the potential strength, the life time for the electron staying at the 
quasi-bound state is also affected by the Rashba effect. 
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(II) The repulsive scattering potentials 
 
(a) (b) 

(c) (d) 

Fig. 3.3.2.2. Conductance (in units of G0 = e2/h) versus kinetic energy with the 
repulsive scattering potential in the presence of in-plane magnetic field with different 
Rashba coefficients: (a) α = 0.0, gB = 0.02 (2α2 < gB) (b) α = 0.05, gB = 0.02 (2α2 < 
gB) (c) α = 0.1, gB = 0.02 (2α2 = gB) (d) α = 0.2, gB = 0.02 (2α2 > gB). The Fermi 
energy EF = 66 meV and the Fermi wave vector kF = 2×106 cm-1. The magnetic field 
strength is approximately 3T when gB = 0.02 (gs = −15 for InAs). 
 

In Fig. 3.3.2.2(a) and (b), we investigate the transport properties in the presence 
of the in-plane magnetic field (gB = 0.02) with applying the repulsive scattering 
potential. The conductance is suppressed with the increasing strength of the potential. 
As the Rashba coefficient (α = 0.1) satisfies 2α2 = gB, the energy dispersion is at the 
critical point to form a pseudogap and the energy dispersion is vertical splitting (Fig. 
3.1.2.1(c)). Hence, in this case, the hole-like quasi-bound state is not well defined. 
The dip structure in the conductance is not obvious (Fig. 3.3.2.2(c)). 

In Fig. 3.3.2.2(d), we show the transport properties in the presence of the 
in-plane magnetic field gB = 0.02 with the Rashba coefficient α = 0.2. A dip structure 
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appears at the hole-like quasi-bound state. The corresponding energy for the hole-like 
quasi-bound state is above the subband top of the lower branch. Since the repulsive 
scattering potential will enhance the hole-like quasi-bound state, the dip structure at 
the hole-like quasi-bound state with the applying repulsive potential is obvious. 
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Chapter 4   Quantum transport in the presence of Rashba and 
Dresselhaus spin-orbit interactions with in-plane magnetic field 
 

In this chapter, we use the numerical approach different from the way used in 
Chapter 3 to investigate how the Rashba spin-orbit interaction, the Dresselhaus 
spin-orbit interaction an in-plane magnetic field affect the electron transport. We will 
introduce the system Hamiltonian and analyze the energy spectrum and the 
wavefunction in the first section. In the second section we will use the 
Landauer-Buttiker formula by the matching method to calculate the conductance. At 
last, we will demonstrate the numerical results under different strengths of the 
spin-orbit interaction and the magnetic field and the gate voltage. 
 
4.1 Theory 
 

In this section, we use the numerical approach to calculate the energy spectrum 
and the spinor states of the system considering both the Rashba and the Dresselhaus 
spin-orbit coupling and an in-plane magnetic field.  
 
4.1.1 System and Formulation 
 

The confinement potential defined by the two closed split gates is a transverse 
hard wall potential, as shown in Fig. 4.1.1.1. The transverse potential is a narrow 
constriction hence we can neglect the momentum py along y direction. Then, the 
Dresselhaus term Eq. (2.2.3) can be reduced to 

D x xH pβ σ= . (4.1.1.1)

Also, the Rashba term can be reduced as mentioned in Ch3. The Hamiltonian of the 
quantum channel in the presence of the Rashba and the Dresselhaus spin-orbit 
interaction and the Zeeman effect which is due to an applied magnetic field along x 
direction is  

2

0 *

1 ( )
2 2x y x x s B x c
pH p p g B V y
m

α βσ σ μ σ= − + + + , (4.1.1.2)

where α is the Rashba strength, β is the Dresselhaus strength, B is the magnetic field 
strength and Vc is the confining potential [32]. In the middle of the quantum channel 
there is a finger gate in forms of delta potential. The total single particle Hamiltonian 
is  

0 ( )sH H V x= + , ( )0( )sV x V xδ= . (4.1.1.3)
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Fig. 4.1.1.1. System picture 

 
For the sake of convenience, the physical quantities that appear in the following 

equations are dimensionless: length unit * 1

F

l
k

≡ , energy unit 
2 2

*
*2
FkE

m
≡ , magnetic 

field unit 
*

*

B

EB
μ

≡ , the Rashba coefficient unit 
2

*
*
Fk

m
α = , the Dresselhaus 

coefficient unit 
2

*
*
Fk

m
β = , the confinement potential in units of Fermi energy 

( ) ( ) *
cV y V y E=  and defining 1

2 sg g≡ . Then, the dimensionless unperturbed 

Hamiltonian is: 

2
0 2 2 ( )x y x x x cH k k k gB V yα σ β σ σ= − + + + . (4.1.1.4)

The unperturbed Hamiltonian can be separated into two different parts: 

0 0
0 x yH H H= +  (4.1.1.5)

with  

0 2 2 2x x x y x x xH k k k gBα σ β σ σ= − + +  (4.1.1.6)

and  

0 2 ( )y yH k V y= + , (4.1.1.7)

where  

0,  
( ) 2

,  otherwise

dy
V y

⎧ <⎪= ⎨
⎪∞⎩

 (4.1.1.8)
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is a potential confining the electron in the transverse direction. We suppose that the 
confining potential with only the lowest occupied subband. The wavefunction of the 
unperturbed Hamiltonian can be expanded by the spatial wavefunction and spinor 
state,  

( , ) ( ) xik x
nx y y eφ χΨ = . (4.1.1.9)

Since the transverse confining potential is a hard wall potential, the transverse 
wavefunction will be  

( ) sinn
ny y

d d
π πφ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (4.1.1.10)

the subband energy will be  

2

n
n
d
πε ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (4.1.1.11)

Here, we only consider the lowest occupied subband. Namely, n is equal to 1. 
Substituting the transverse wavefunction and the subband energy into (4.1.1.5) and 
(4.1.1.9) obtain: 

( )2 2 2n x x y x x xk k k gB Eε α σ β σ σΨ + − + + Ψ = Ψ . (4.1.1.12)

Expanding Eq. (4.1.1.12) with the Pauli matrices obtains 

2

2

2 2
( )

2 2
x x x

n
x x x

k gB k i k
E

gB k i k k
β α

χ ε χ
β α

⎛ ⎞+ +
= −⎜ ⎟

+ −⎝ ⎠
. (4.1.1.13)

The eigen-energy can be obtained by solving the above eigen-value problem. The 
energy is 

2 2 2(2 ) (2 )n n x x xE k k gB kε β α± = + ± + + . (4.1.1.14)

For an ideal wire without scattering potential, it is convenient to use Eq. 
(4.1.1.14) to obtain energy spectrum as a function of the real wave vector for 
propagating modes.  
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4.1.2 The Dresselhaus effects 

(I) With Rashba spin-orbit interaction and in-plane magnetic field 

For understanding how the Dresselhaus effect would affect the energy spectrum, 
in the presence of the Rashba spin-orbit interaction and in-plane magnetic field. 
Below, we fix the Rashba coefficient α = 0.2 and the Zeeman parameter gB = 0.02, 
and then we tune the Dresselhaus coefficient β from weak to strong: We shall consider 
four cases: β = 0.0, 0.1 (β<α), 0.2 (α=β), and 0.3 (β>α), as shown in Fig. 4.1.2.1.  

(a) (b) 

(c) (d) 

Fig. 4.1.2.1. Energy spectrum versus wave number in the presence of the Rashba 
spin-orbit interaction and in-plane magnetic field with different Dresselhaus 
coefficients: (a) α = 0.2, β = 0.0, gB = 0.02 (b) α = 0.2, β = 0.1, gB = 0.02 (c) α = 0.2, β 
= 0.2, gB = 0.02 (d) α = 0.2, β = 0.3, gB = 0.02. The Fermi energy EF = 66 meV and 
the Fermi eave vector kF = 2×106 cm-1. The magnetic field strength is approximately 
3T when gB = 0.02 (gs = −15 for InAs). The black and red curves indicate the plus (σ 
= +) and minus (σ = −) spin branches, respectively. The black dot and the red dot 
correspond to the local minima of plus and minus branches at the subband bottoms, 
denoted by Pb＋ and Pb－. The red circle stands for the local maxima of the minus 
branch at the subband top, denoted by Pt－. 
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In general, there are four extreme values in the energy dispersion. For 
convenience, we define Pbσ = (kbσ, Ebσ) and Ptσ = (ktσ, Etσ) to denote the extreme 
values of the energy dispersion at the subband bottom (b) and subband top (t), 
respectively. We also define ΔEg≣Eb＋－Et－ andΔEb≣Eb＋－Eb－ to represent the 
pseudo-gap and the branch level spacing for a given subband, respectively. In addition, 
σ = ＋, － represents the upper branch and lower branch, respectively. In Fig. 
4.1.2.1 (a), we show the spin-splitting energy dispersion with the Rashba and the 
Zeeman effects but without the Dresselhaus effect. The energy dispersion we 
discussed before in Ch 3. We mentioned before that the pseudo-gap is identical to Δ

EZ＝2gB, that is, ΔEZ＝2gB＝0.04. In the presence of the Dresselhaus effect (β = 0.1) 
(Fig. 4.1.2.1(b)), the local maximum at the lower branch is Pt－ = (kt－, Et－) = (－0.024, 
0.9825) and the local minimum at the upper branch is Pb＋ = (kb＋, Eb＋) = (－0.02, 
1.0183), that is, ΔEg＝0.0358. At the lower branch, there are two local minimums Pb

－, 1 = (kb－, 1, Eb－, 1) = (−0.22, 0.9572) and Pb－, 2  = (kb－, 2, Eb－, 2) = (0.22, 0.9396). These 
two local energy minimums at the lower branch are in different energy values 
therefore the energy spectrum is asymmetry. As the strength of the Dresselhaus effect 
increases (β = 0.2) (Fig. 4.1.2.1(c)), these local extreme values are Pt－ = (kt－, Et－) = 
(－0.0281, 0.9865), Pb＋ = (kb＋, Eb＋) = (－0.02, 1.0148), Pb－, 1 = (kb－, 1, Eb－, 1) = (－

0.28, 0.9335) and Pb－, 2 = (kb－, 2, Eb－, 2) = (0.28, 0.9053). In this case, ΔEg＝0.0283. In 
Fig. 4.1.2.1(d), the strength of the Dresselhaus effect is β = 0.3. The local energy 
minimum at the upper branch is at Pb＋ = (kb＋, Eb＋) = (－0.02, 1.0117). At the lower 
branch the local energy extreme values are at Pt－ = (kt－, Et－) = (－0.024, 0.9891), Pb－, 

1 = (kb－, 1, Eb－, 1) = (－0.36, 0.8864) and Pb－, 2  = (kb－, 2, Eb－, 2) = (0.356, 0.8531) andΔ

Eg＝0.0226. Hence, when we consider the Dresselhaus effect in the presence of the 
Rashba and in-plane magnetic field, the pseudo-gap (ΔEg) is smaller thanΔEZ and 

the pseudo-gapΔEg decreases from 0.0358 to 0.0226 with the increasing Dresselhaus 
effect. 
 
(I) Without in-plane magnetic field 

For analyzing the energy dispersion, we have to calculate the group velocity, 
expressed as the analytical form 

( )
( ) ( )

2

2 2

4 2 2
2

2 2
x xn

g x
x x x

k k gBdEv k
dk k k gB

α β β

α β

± + +
= = ±

+ +
. (4.1.2.1)

We have investigated how the Dresselhaus effect would influence the energy 
dispersion in the presence of the Rashba spin-orbit interaction and an applied in-plane 
magnetic field. Now, we turn off the in-plane magnetic field (B = 0) but still consider 
the Rashba spin-orbit interaction to see what affects the Dresselhaus effect would 
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bring about. In this case, we can take limit B = 0 from the group velocity. This yields 
the result 

( ) 2 20 2 2n
g x

x

dEv B k
dk

α β
±

= = = ± + . (4.1.2.2)

As the group velocity equals to zero, we can obtain the analytical solutions about the 
local extreme values. These extreme values occurs at 

( )
2 2

2 2

,  
0

,  
x gk vσ α β σ

α β σ

⎧− + = +⎪= = ⎨
+ + = −⎪⎩

. (4.1.2.3)

When the Dresselhaus coefficient is equal to zero, then the extreme values are at 

( ) ,  
0

,  x gk vσ α σ
α σ

− = +⎧
= = ⎨+ = −⎩

. (4.1.2.4)

 
(a) (b) 

(c) (d) 

Fig. 4.1.2.2. Energy spectrum versus wave number in the presence of the Rashba, the 
Dresselhaus and the Zeeman effects with different Dresselhaus strength. (a) α = 0.2, β 
= 0.0, gB = 0.0 (b) α = 0.2, β = 0.1, gB = 0.0 (c) α = 0.2, β = 0.2, gB = 0.0 (a) α = 0.2, 
β = 0.3, gB = 0.0. The Fermi energy EF = 66 meV and the Fermi eave vector kF = 2×

106 cm-1. The black and red curves indicate the plus (σ = +) and minus (σ = −) spin 
branches, respectively. 
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In Fig. 4.1.2.2(a), in the presence of the Rashba spin-orbit interaction α = 0.2 the 
energy spectrum is lateral spin-splitting and the local extreme values are at kx = −0.2. 
0.2 (Eq. 4.1.2.4) and the corresponding energy is E = 0.96. In Fig. 4.1.2.2(b), when 
we consider the Dresselhaus effect β = 0.1 in the presence of the Rashba spin-orbit 
interaction, the local extreme values are at kx = −0.2236, 0.2236 (Eq. 4.1.2.3) and the 
corresponding energy is E = 0.95. As the Dresselhaus coefficient becomes β = 0.2, the 
local extreme values are at kx = −0.2828, 0.2828 (Eq. 4.1.2.3) and the corresponding 
energy is E = 0.92, as shown in Fig. 4.1.2.2(c). In Fig. 4.1.2.2(d), the Dresselhaus 
coefficient increases to β = 0.3, the local extreme values are at kx = −0.3606, 0.3606 
(Eq. 4.1.2.3) and the corresponding energy is E = 0.87. From these figures, we find 
that as the Dresselhaus effect gradually increases, the energy spectrum is still lateral 
splitting and symmetry but the local extreme energy values decreases from 0.95 to 
0.87. 
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4.1.3 The Rashba-Dresselhaus effects 
 

After investigating how the Dresselhaus effect would influence the energy 
dispersion, we are going to tune the strength of the Rashba and the Dresselhaus 
effects and see how the spin-orbit interactions would affect the energy spectrum. The 
different ratio between the spin-orbit interactions and the Zeeman effect will result in 
different energy spectrums. We categorize them into three cases: (1) α = β < gB, (2) α 
= β = gB, (3) α = β > gB.  
 
(a) (b) 

(c) (d) 

Fig. 4.1.3.1. Energy spectrum versus wave number in the presence of in-plane 
magnetic field with different Rashba and Dresselhaus coefficients. (a) α = β = 0.01, 
gB = 0.02 (b) α = β = gB = 0.02 (c) α = β = 0.1, gB = 0.02 (d) α = β = 0.2, gB = 0.02. 
The Fermi energy EF = 66 meV and the Fermi eave vector kF = 2×106 cm-1. The 
magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for InAs). The 
black and red curves indicate the plus (σ = +) and minus (σ = −) spin branches, 
respectively. The black dot and the red dot correspond to the local minima of plus and 
minus branches at the subband bottoms, denoted by Pb＋ and Pb－. The red circle stands 
for the local maxima of the minus branch at the subband top, denoted by Pt－. 
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It is shown in Fig. 4.1.3.1(a), the Rashba is identical to the Dresselhaus but 
substantially less than the Zeeman effects. It breaks the spin degeneracy of the system 
and results in two vertically separated spin-splitting subbands. The energy extreme 
values are at Pb＋＝(kb＋, Eb＋) ＝(−0.008, 1.0199) and Pb－＝(kb－, Eb－)＝(0.008, 
0.9799), that is, ΔEb＝0.04. As the Rashba and the Dresselhaus are identical to the 
Zeeman effects (Fig. 4.1.3.1(b)), it is vertical spin-splitting. The energy extreme 
values are at Pb＋, 1＝(kb＋, 1, Eb＋, 1)＝(−0.02, 1.0196) and Pb－, 2＝(kb－, 2, Eb－, 2)＝(0.02, 
0.9796), that is, ΔEb＝0.04. Therefore, we can deduce that when the Rashba and the 
Dresselhaus effects in the presence of in-plane magnetic field are small, there is no 
affect in the branch level spacing for a given subband ΔEb＝ΔEz＝0.04. In Fig. 
4.1.3.1 (c) and (d), the spin-orbit interactions are larger than the Zeeman effect. As the 
Dresselhaus and the Rashba coefficients are identical to 0.1 (α＝β＝0.1), there are 
two extreme values Pb－, 1＝(kb－, 1, Eb－, 1)＝(−0.1002, 0.99) and Pb－, 2＝(kb－, 2, Eb－, 2)＝
(0.136, 0.964) at the lower branch. However when the Dresselhaus and the Rashba 
coefficients are identical to 0.2 (α＝β＝0.2), there are three extreme values Pb－, 1＝(kb

＋, 1, Eb＋, 1)＝(−0.28, 0.9335), Pb－, 2＝(kb－, 2, Eb－, 2)＝(0.28, 0.9053) and Pt－＝(kt－, Et－)＝
(−0.02, 0.986) at the lower branch. Hence, we know that under the applying fixed 
in-plane magnetic field there is a critical value for the Rashba and Dresselhaus 
coefficients. When the Rashba and the Dresselhaus are smaller than the critical value 
(α=β＜0.1), there is only an extreme value at the lower band. However, if the Rashba 
and the Dresselhaus are larger than the critical value (α=β＞0.1), there are two local 
minimums and one local maximum at the lower branch. In Fig. 4.1.3.1 (c), the 
extreme value at the upper branch is Pb－＝(kb－, Eb－)＝(－0.0361, 1.016). Therefore, 
the branch level spacing for a given subband is identical to 0.026 (ΔEb＝0.026) and 
smaller than the pseudo-gap ( Δ Ez ＝ 0.04) considering the Rashba spin-orbit 
interaction an in-plane magnetic field. In Fig. 4.1.3.1 (d) the band bottom at the upper 
branch is at Pb－＝(kb－, Eb－)＝(−0.02, 1.015). Hence, in mediate energy regime the 
pseudo-gap is identical to 0.029, ΔEg＝0.029, and smaller thanΔEz＝0.04. 

From the above four cases, we know that the subband splitting depends on the 
ratio between the Rashba, Dresselhaus and the Zeeman effects. When the Rashba and 
the Dresselhaus coefficients are smaller than the critical value, the subbands are 
vertical splitting. However, as Rashba and the Dresselhaus coefficients are larger than 
the critical value, the magneto-spin-orbit pseudo-gap will exist. 
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4.1.4 The Zeeman effects 
 

The strength of the in-plane magnetic field along x direction would influence the 
energy dispersion. The magnetic field strength is approximately 15T when gB = 0.1 
(gs = −15 for InAs). 
 
(a) (b) 

(c) (d) 

Fig. 4.1.4.1. Energy spectrum versus wave number in the presence of the Rashba, the 
Dresselhaus and the Zeeman effects with different Dresselhaus strength. (a) α = β = 
0.2, gB = 0.0 (b) α = β = 0.2, gB = 0.1 (c) α = β = 0.2, gB = 0.2  (d) α = β = 0.2, gB = 
0.3. The Fermi energy EF = 66 meV and the Fermi wave vector kF = 2×106 cm-1. The 
magnetic field strength is approximately 15T when gB = 0.1 (gs = −15 for InAs). The 
black and red curves indicate the plus (σ = +) and minus (σ = −) spin branches, 
respectively. The black dot and the red dot correspond to the local minima of plus and 
minus branches at the subband bottoms, denoted by Pb＋ and Pb－.  
 

 In Fig. 4.1.4.1 we tune the in-plane magnetic field from weak to strong with the 
fixed Rashba and Dresselhaus spin-orbit interactions. In Fig. 4.1.4.1(a), we consider 
the Rashba and the Dresselhaus effects without the magnetic field, and then it causes 
lateral energy splitting as we mentioned before. When the magnetic field becomes 
stronger (gB = 0.1), the energy spectrum is vertical splitting (Fig. 4.1.4.1(b)). At the 
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lower branch the local minimum is at Pb－ = (kb－, Eb－) = (0.008, 0.9799) and at the 
upper branch the local minimum is at Pb＋ = (kb＋, Eb＋) = (−0.008, 1.0199). Then, Δ

Eb＝0.04. As the Zeeman coefficient is identical to the Rashba and the Dresselhaus 
coefficients (α = β = gB = 0.2), the energy spectrum is also vertical splitting (Fig. 
4.1.4.1(c)). The extreme values are at Pb－ = (kb－, Eb－) = (0.2525, 0.7463) and Pb＋ = 
(kb＋, Eb＋) = (−0.1242, 1.1737). The branch level spacing for a given subband is 
0.4274, ΔEb＝0.4274. When the Zeeman effect is larger than the Rashba and the 
Dresselhaus spin-orbit interactions (α = β = 0.2 ＜ gB = 0.3) (Fig. 4.1.4.1(d)), the 
extreme values are at Pb－ = (kb－, Eb－) = (0.2445, 0.6501), Pb＋ = (kb＋, Eb＋) = (－0.14, 
1.2699) and the branch level spacing for a given subband is 0.6198, ΔEb＝0.6198. In 
conclusion, as the in-plane magnetic field gradually increases, the branch level 
spacing for a given subbandΔEb increases from 0.04 to 0.6198.  
 
Spin orientation 
 

For investigating the spin orientation in the presence of the Rashba, Dresselhaus 
spin-orbit interactions and the in-plane magnetic field, we calculate the effective 
magnetic field for these spin-orbit interactions and the Zeeman effect. The 
dimensionless Hamiltonian for an electron in the presence of the magnetic field can 
be expressed as:  

H Bσ= ⋅ , (4.1.4.1)
where B is dimensionless (B* = E*/μB). Hence, when the above equation is identical to 
the Rashba term,  

2 x y y yk B Bα σ σ σ− = ⋅ = , (4.1.4.2)

we can obtain the effective magnetic field for the Rashba spin-orbit interaction 

2R xB k yα= − . (4.1.4.3)

In the same way, we can obtain the effective magnetic field for the Dresselhaus 
spin-orbit interaction and the Zeeman effect: 

2D xB k xβ= , and (4.1.4.4)

ZB gBx= . (4.1.4.5)

Then, the effective magnetic field of the system can be expressed as: 

( ) ( )2 2eff D Z R x xB B B x B y k gB x k yβ α= + + = + − . (4.1.4.6)

In order to achieve equilibrium, the spin orientation of the electron in the presence of 
the magnetic field tends to be opposite to the direction of the magnetic field. 
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Therefore, the spin orientation of the electron at the plus branch is aligned in the 
direction of the effective magnetic field. However, the spin orientation of the electron 
at the minus branch will be opposite to the direction of the effective magnetic field. 
We can express the spin orientation for the electrons at the plus branch as: 

( )
( ) ( ) ( ) ( )2 2 2 2

2 2

2 2 2 2
x x

x x x x

k gB kS x y
k gB k k gB k

σ

β α

β α β α

+
= −

+ + + +
, σ = + . (4.1.4.7)

and the spin orientation for the electrons at the minus branch is: 

( )
( ) ( ) ( ) ( )2 2 2 2

2 2

2 2 2 2
x x

x x x x

k gB kS x y
k gB k k gB k

σ

β α

β α β α

+
= − +

+ + + +
, σ = − . (4.1.4.8)

Below, we show the energy spectrum with the spin orientation in the presence of 
the Rashba and the Dresselhaus spin-orbit interactions with different Zeeman effects.  
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 4.1.4.2. Energy dispersion with spin orientation illustrated by the arrows in 
the presence of the fixed Rashba and Dresselhaus spin-orbit interactions with 
different Zeeman coefficients. (a) α = β = 0.2, gB = 0.0 (b) α = β = 0.2, gB = 0.1 
(c) α = β = 0.2, gB = 0.2  (d) α = β = 0.2, gB = 0.3. The magnetic field strength 
is approximately 15T when gB = 0.1 (gs = −15 for InAs). 
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In Fig. 4.1.4.2 (a), we turn off the magnetic field and only consider the Rashba 
and the Dresselhaus spin-orbit interactions. The spin orientation is at 45° between the 
x and y axes. When α = β, spin is a good quantum number and D’yakonov-Perel’ spin 
relaxation is absent [10] (Spin relaxation in disordered two-dimensional electron gas 
is dominated by the D’yakonov-Perel’ mechanism.). Recently, in order to achieve α = 
β there has been much effort into this direction both the theoretically [10] with new 
device proposals and experimentally [33]. When the in-plane magnetic field increases, 
the angle between the x axis and the spin orientation is decreasing. Since the effective 
magnetic field of the Rashba and the Dresselhaus spin-orbit interactions are 
dependant of the linear kx, at kx = 0 the spin orientation is always along the x 
direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 48

4.1.5 Complex energy dispersion 
 

To perform numerical calculation for computing the spin-resolved conductance 
in the presence of arbitrary scattering potentials involving the coupling of propagating 
and evanescent modes [29], we start from rearranging the Eq. (4.1.1.14) into a 
polynomial equation 

( ) ( ) ( ) ( )2 2 24 2 22 (2 ) 2 4 0x n x x nk E k gBk E gBε β α β ε⎡ ⎤+ − − − − − + − − =⎣ ⎦ . (4.1.5.1)

The polynomial problem can be solved by calling the DZPOCC subroutine from the 
IMSL library. For a given energy, this subroutine can find the corresponding four 
complex roots kx. In this way, we can get the propagating modes and evanescent 
modes simultaneously, as shown in Fig. 4.1.5.1. 
 

 

Fig. 4.1.5.1. 3D Energy dispersion in the presence of the spin-orbit 

interactions and in-plane magnetic field (α = β = 0.2, gB = 0.02). 

kR and kI represent, respectively, the real part and the imaginary 

part of the wave number (k = kR + kI). The black solid line 

represents the propagating modes and the red solid line represents 

the evanescent modes. The Fermi energy EF = 66 meV and the 

Fermi wave vector kF = 2×106 cm-1. 
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4.2 Spin-resolved transport theory 

In this section, we use the numerical method to calculate the wavefunction and 
derive the transport formulation. For the electron incident along x at a given energy, 
we use kσ (qσ) to denote the wavevector of right-going (left-going) modes at the spin 
branch σ, where the dummy index σ could be the outer or the inner modes, denoted 
by 1 or 2, as shown in Fig. 3.2.1. Then, the scattering wavefunction is of the form 

( ) ( ) ( ), 0ik x iq xx e k r e q xσ σ
σ σ σ

σ

ψ χ χ= + <∑ , (4.2.1)

and 

( ) ( ), 0ik xx t e k xσ
σ σ

σ

ψ χ= >∑ , (4.2.2)

where the ( )kσχ  is the spinor states. In section 4.1, we have already calculated the 
wave vectors for a given energy. In this section, we can substitute the corresponding 
wave vectors of the given energy into the eigen-value problem (Eq. 4.1.1.13) and use 
the DEVCCG subroutine in IMSL to solve this eigenvector problem. Solving the 
eigen-value problem can obtain two eigenvalues and two spinor states. We choose the 
one of eigenvalues close to the given energy and the corresponding spinor states. 
Namely, we have the spinor states and wave vectors for a given energy. The 
wavevectors and the spinor states can be classified by the group velocity. The Eq. 
(4.2.1) can be expressed explicitly in the form: 

( ) ik x iq x iq xa c c
x e r e r e

b d d
σ σ σσ σ σ

σ σ
σ σ σ

ψ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 0x < , (4.2.3)

 

( ) ik x ik xa a
x t e t e

b b
σ σσ σ

σ σ
σ σ

ψ
⎡ ⎤ ⎡ ⎤

≡ ⋅ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 0x > . (4.2.4)

Here kσ  and kσ  represent the right going mode, qσ  and qσ  denote the left going 
mode,  

a
b

σ

σ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
a
b

σ

σ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.2.5)

denote the spinor states of the right-going modes and 

c
d

σ

σ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
c
d

σ

σ

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.2.6)

represent the spinor states of the left-going modes. 
In order to calculate the conductance, we use the matching method to get the 
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transmission. The wavefunction ( )xψ  is continuous at x = 0  

( ) ( )0 0x xψ ψ− += = =  (4.2.7)

and the derivative of ( )xψ  satisfies 

( ) ( ) ( )00 0 0x x V xψ ψ ψ− + +′ ′= = = − = . (4.2.8)

After the linear algebra, we can get the four equations relating the reflection 
coefficients rσ , rσ  and the transmission coefficients tσ , tσ . 

1. a r c r c t a t aσ σ σ σ σ σ σ σ σ+ + = + , (4.2.9)
2. b r d r d t b t bσ σ σ σ σ σ σ σ σ+ + = + , (4.2.10)

3. 0 0( ) ( )k a r q c r q c t k iV a t k iV aσ σ σ σ σ σ σ σ σ σ σ σ σ σ+ + = + + + , (4.2.11)
4. 0 0( ) ( )k b r q d r q d t k iV b t k iV bσ σ σ σ σ σ σ σ σ σ σ σ σ σ+ + = + + + . (4.2.12)

Establishing a matrix form from the four simultaneous equations gets 

0 0

0 0

( ) ( )
( ) ( )

c c a a r a
d d b b r b

q c q c k iV a k iV a t k a
q d q d k iV b k iV b t k b

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (AX = B). (4.2.13)

Substituting the modes and the corresponding spinor states into the matrix elements 
and calling the DLSACG subroutine in IMSL to obtain the inverse matrix of A and 
operate A-1 on matrix B will finally obtain the transmission coefficients tσ , tσ . (The 
DLSACG subroutine can solve a complex general system of linear equations AX = B 
(A, B are already known).) 
 

At the zero temperature, the conductance is given by  

2 2

,
,

R

L R

L R L

eG t
h

σ
σ σ

σ σ σ

υ
υ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ,  (4.2.14)

where σR, σL denote the branch index, and 
Rσυ , 

Lσυ  represent the group velocity at 

the corresponding mode. As we mentioned before in Ch3, during the scattering 
process, the electrons may be incident from a right-going mode kσ  but transmitted at 
another right-going mode kσ  or transmitted at the same mode kσ . In the high energy 
regime, the total transmission is 

2 2 2 2 2

, , , , ,
,

L R

L R

T t t t t tσ σ
σ σ

− − − + + + + −= = + + +∑ .  (4.2.16)
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− + + −
1k2k1q 2q

1k2k1q 2q

( )0V xδ

,t+ +

,t+ −

,t− +
,t− −

− + + −
1k2k1q 2q

1k2k1q 2q

( )0V xδ

,t+ +

,t+ −

,t− +
,t− −

 
Fig. 4.2.1. The scattering process in the high energy regime. 
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4.3 Numerical results 

The numerical calculation presented below are carried out under the assumption 
that the electron effective mass m* = 0.023 m0, which is appropriate to the InAs-based 
semiconductors. The typical electron density is n ~ 1012 cm-2. Accordingly, the length 
unit is L* = 5.0 nm, the transverse width unit of the quantum channel is W* = πL* = 
15.7 nm, the energy unit is E* = 66 meV, the corresponding Fermi wave vector kF = 2 

×  106  cm-1, the Rashba spin-orbit coupling parameter is in units of  
2

*
*

F F

F

E k
k m

α = = = 3.317×10-10 eV m and the Dresselhaus spin-orbit interaction 

parameter 
2

*
*

F F

F

E k
k m

β = = = 3.317×10-10 eV m [30]. All the physical units are shown 

in Appendix. 

4.3.1 Ideal conductance with tunable the Dresselhaus effects 
(a) 

 

(b) 

(c) (d) 

Fig. 4.3.1.1. Conductance (in units of G0 = e2/h) versus kinetic energy without the scattering 
potential in the presence of the Rashba spin-orbit interaction and in-plane magnetic field with 

different Dresselhaus coefficients: (a) α = 0.2, β = 0.0, gB = 0.02; (b) α = 0.2, β = 0.1, gB = 
0.02; (c) α = 0.2, β = 0.2, gB = 0.02; (d) α = 0.2, β = 0.3, gB = 0.02. The Fermi energy EF = 
66 meV. The magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for InAs). 
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In Fig. 4.3.1.1, we investigate the ideal conductance in the presence of the 
Rashba spin-orbit interaction and in-plane magnetic field with different Dresselhaus 
coefficients. Since there is no scattering potential, the electron can be totally 
transmitted in the quantum channel without scattering. It is shown in Fig. 4.3.1.1(a) 
when we only consider the Rashba spin-orbit interaction and an in-plane magnetic 
field in the system, the conductance will be identical to 2G0 with G0 = e2/h above the 
subband bottom of the energy. In low energy regime, there are two inner modes (left 
and right going modes with low momentum) and two outer modes (left and right 
going modes with high momentum), and hence the transported electrons contribute to 
conductance 2G0. In mediate energy regime, that is the magneto-spin-orbit 
pseudo-gap energy regime, there are two outer propagating modes (left and right 
going modes), and the two inner modes belong to evanescent modes.  The 
conductance reduces to G0. In the high energy regime, namely the electron energy is 
higher than the bottom of the upper subband, there are four propagating modes (two 
left and two right going modes) and the conductance is increasing to 2G0. 
 

As the Dresselhaus effect is 0.1 (Fig. 4.3.1.1(b)), above the subband bottom of 
the energy the conductance will not be identical to 2G0 anymore. Since in sufficient 
low energy regime there are only two propagating modes (one left and one right going 
modes with low momentum and high momentum, respectively), the transported 
electrons contribute to conductance G0. In low energy regime there are two 
right-going modes hence the conductance is equal to 2G0. In magneto-spin-orbit 
pseudo-gap energy regime, the conductance reduces to G0 since there are two outer 
modes (left and right going modes), and the two inner modes belong to evanescent 
modes. When the electron energy is higher than the bottom of the upper subband, the 
conductance is increasing to 2G0 because of two right-going modes in the high energy 
regime. 
 

As we mentioned before in Fig. 4.1.2.1, the pseudo-gap decreases when the 
Dresselhaus effect increases. Therefore, we can see the pseudo-gap energy regime 
reduce in ideal conductance G0 reduces when the Dresselhaus coefficients increases 
from 0.1 to 0.3 (Fig. 4.3.1.1(b), (c) and (d)). 
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4.3.2 Ideal conductance with the tunable Rashba-Dresselhaus effects 
 
(a) (b) 

(c) (d) 

Fig. 4.3.2.1. Conductance (in units of G0 = e2/h) versus kinetic energy without the 
scattering potential in the presence of in-plane magnetic field with different Rashba 
and Dresselhaus coefficients: (a) α = β = 0.01, gB = 0.02 (b) α = β = gB = 0.02 (c) α 
= β = 0.1, gB = 0.02 (d) α = β = 0.2, gB = 0.02. The Fermi energy EF = 66 meV. The 
magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for InAs) 
 

In this section, we consider the ideal conductance in the presence of in-plane 
magnetic field with different Rashba and Dresselhaus coefficients. As the Rashba and 
the Dresselhaus effects are less than the Zeeman effect, the ideal conductance is 
identical to G0 above the subband bottom in low energy regime (Fig. 4.3.2.1(a)) since 
there is only a right-going mode in this energy regime (see Fig. 4.1.3.1(a)). When the 
energy is higher than the band bottom of the upper branch, the conductance will 
increase to 2G0 because of two right-going modes in this energy regime. 
 

If the Rashba and the Dresselhaus coefficients are identical to the Zeeman 
coefficient, the corresponding energy spectrum (Fig. 4.1.3.1(b)) is also vertically 
splitting. Accordingly, in low energy regime the ideal conductance is identical to G0 
above the subband bottom and in higher energy regime the ideal conductance 
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increases to 2G0. 
In Fig. 4.3.2.1(c) we show the ideal conductance for the Rashba and the 

Dresselhaus effects (α = β = 0.1) larger than the Zeeman effect (gB = 0.02). The 
corresponding energy spectrum is in Fig. 4.1.3.1(c). Under the applying magnetic 
field, the Rashba and the Dresselhaus effects is not strong enough to form a 
pseudo-gap in mediate energy regime and therefore in low energy regime the ideal 
conductance is G0 above the subband bottom and in higher energy regime the ideal 
conductance is increasing to 2G0. As the Rashba and the Dresselhaus effects (α = β = 
0.2) is significantly large enough to form a pseudo-gap in mediate energy regime, 
there are two propagating modes (a right-going mode and a left-going mode) and two 
evanescent modes in mediate regime. The ideal conductance will reduce from 2G0 to 
G0 in the pseudo-gap regime (Fig. 4.3.2.1(d)). 
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4.3.3 The Dresselhaus effects in the presence of the Rashba spin-orbit interaction 
and in-plane magnetic field 
 
(I) The attractive scattering potentials 
 
(a) (b) 

(c) (d) 

Fig. 4.3.3.1. Conductance (in units of G0 = e2/h) versus kinetic energy with the 
attractive scattering potential in the presence of the Rashba spin-orbit interaction and 
in-plane magnetic field with different Dresselhaus coefficients: (a) α = 0.2, β = 0.0, 
gB = 0.02 (b) α = 0.2, β = 0.1, gB = 0.02 (c) α = 0.2, β = 0.2, gB = 0.02 (d) α = 0.2, β 
= 0.3, gB = 0.02. The Fermi energy EF = 66 meV. The magnetic field strength is 
approximately 3T when gB = 0.02 (gs = −15 for InAs) 
 

In the presence of the scattering potential, the conductance is not ideally 
quantized anymore since the electron is in the scattering process. The increasing 
strength of the attractive scattering potential causes the more suppressive conductance 
(Fig. 4.3.3.1). In the above picture we will show the transport properties in the 
presence of the Rashba spin-orbit interaction and in-plane magnetic field with 
different Dresselhaus coefficients. In Fig. 4.3.3.1(a), we show the conductance in the 
presence of the Rashba spin-orbit interaction and in-plane magnetic field but without 
the Dresselhaus effect which we already mentioned in Ch3. We can see under the 
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applying attractive scattering potential there is a dip structure appears at the energy 
corresponding to the electron-like quasi-bound state at the bottom of the upper branch 
(Fig. 4.3.3.1(a), (b), (c) and (d)). Since the attractive scattering potential will enhance 
the electron-like quasi-bound state. 
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Fig. 4.3.3.2. Scattering process in the presence of the true bound state. 
 

When the Dresselhaus coefficient is identical to 0.1, there is a Fano effect in 
sufficient low energy regime (Fig. 4.3.3.1(b)). When we apply a negative delta 
potential, below the band bottom of the lower branch there is a true bound state (TBS) 

2
0 / 4TBSE V= −  (Fig. 4.3.3.2). For the given energy of the electrons corresponding to 

the energy which is the binding energy ETBS plus the band bottom energy of the lower 
branch, the electrons with this given energy at the right-going mode may be scattered 
into the bound state and then forward scattered into the right-going mode. These 
electrons will interference with the electrons directly transmitted at the right-going 
mode and result in the Fano peak. On the other hand, the electrons at the right-going 
mode may be scattered into the bound state and then back scattered into the left-going 
mode or scattered into the left-going mode. These electrons will interference and 
result in the Fano dip [34]. 

 
For the case of scattering potential V0 = −0.1, shown in Fig. 4.3.3.1(b), the 

corresponding binding energy is ETBS = −0.0025. The Fano effect occurs at 0.9552 
which is less than the band bottom energy 0.9572 of the lower branch approximately 
0.002. Under this applying potential strength the Fano effect is not apparent. When 
the scattering potential V0 = −0.2, the corresponding binding energy is ETBS = −0.01. 
Since the Fano effect is at 0.9479 less than the band bottom energy approximately 
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0.0095. The corresponding conductance of the Fano peak is approximately 0.95G0 
and the conductance of the Fano dip is 0.14G0, the Fano effect under this applying 
potential strength is apparent. When the scattering potential is identical to −0.3 and 
−0.4, the energy (the binding energy subtracting from the band bottom energy) is 
0.9347 and 0.9172, respectively. These energies are less than the band bottom energy 
0.9056 of the lower branch, and therefore there are no propagating modes to transport. 
 

When the Dresselhaus coefficient is identical to 0.2, there is a Fano effect in 
sufficient low energy regime as the attractive scattering potential is −0.1, −0.2 and 
−0.3 (Fig. 4.3.3.1(c)). As the Dresselhaus coefficient is 0.2, the energy range in low 
energy regime, Eb－, 1－Eb－, 2＝0.0282, is larger than the energy range 0.0176 in low 
energy regime as the Dresselhaus coefficient is 0.1. Therefore, when the scattering 
potential is identical to −0.3, the Fano effect is at 0.911 which is above the subband 
bottom. 
 

As the Dresselhaus coefficient is 0.3 (Fig. 4.3.3.1(d)), the Fano effect occurs 
when the attractive scattering potential is −0.1, −0.2 and −0.3. The Fano effect is not 
obvious when the attractive scattering potential is −0.1. When the scattering potential 
is −0.2 and −0.3, the Fano effect is also indistinct. In conclusion, we deduce that 
under the same Rashba spin-orbit interaction and the same in-plane magnetic field the 
Fano effect will be affected by the Dresselhaus effect. 
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(II) The repulsive scattering potentials] 
 
(a) (b) 

(c) (d) 

Fig. 4.3.3.3. Conductance (in units of G0 = e2/h) versus kinetic energy with the 
repulsive scattering potential in the presence of the Rashba spin-orbit interaction and 
in-plane magnetic field with different Dresselhaus coefficients: (a) α = 0.2, β = 0.0, 
gB = 0.02 (b) α = 0.2, β = 0.1, gB = 0.02 (c) α = 0.2, β = 0.2, gB = 0.02 (d) α = 0.2, β 
= 0.3, gB = 0.02. The Fermi energy EF = 66 meV. The magnetic field strength is 
approximately 3T when gB = 0.02 (gs = −15 for InAs) 
 

In the presence of the repulsive scattering potential, the increasing strength of the 
attractive scattering potential also results in the more suppressive conductance. In Fig. 
4.3.3.3(a), we show the conductance in the presence of the Rashba spin-orbit 
interaction and in-plane magnetic field but without the Dresselhaus effect which we 
already mentioned in Ch3. When the Dresselhaus coefficient is not identical to 0.1, 
there is a dip structure appears at the hole-like quasi-bound state. The corresponding 
energy of the hole-like quasi-bound state is at the top of the lower branch. Since when 
the scattering potential is repulsive, it will enhance the hole-like quasi-bound state. 
Additionally, we find that the width of the suppressed plateau is broadening with the 
increasing Dresselhaus coefficient. 
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4.3.4 Transport properties with the Rashba-Dresselhaus effects in the presence of 
an in-plane magnetic field 

(I) The attractive scattering potentials 

(a) (b) 

(c) (d) 

Fig. 4.3.4.1. Conductance (in units of G0 = e2/h) versus kinetic energy with the 
attractive scattering potential in the presence of in-plane magnetic field with different 
Rashba and Dresselhaus coefficients: (a) α = β = 0.01, gB = 0.02 (b) α = β = gB = 
0.02 (c) α = β = 0.1, gB = 0.02 (d) α = β = 0.2, gB = 0.02. The Fermi energy EF = 66 
meV. The magnetic field strength is approximately 3T when gB = 0.02 (gs = −15 for 
InAs). 
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Fig. 4.3.4.2. Scattering process in the presence of the true bound state. 

 
In Fig. 4.3.4.1 we show the transport properties with the Rashba and the 

Dresselhaus effects in the presence of an in-plane magnetic field. The corresponding 
energy spectrum is vertical splitting (Fig. 4.1.3.1(a) and (b)). Under the applying 
attractive scattering potential, there is a Fano effect in low energy regime. Below the 

band bottom of the upper branch there is a true bound state in binding energy 
2

0

4
V

−  

(Fig. 4.3.4.2). For the given energy of the electrons corresponding to the energy which 
is the binding energy ETBS plus from the band bottom energy of the upper branch, the 
electrons at this given energy at the right-going mode may be scattered into the bound 
state and then forward scattered or back scattered. The forward scattering will result 
in the Fano peak. Otherwise, the back scattering will result in the Fano dip. 
 

In Fig. 4.3.4.1(a), as the scattering potential is −0.1, the corresponding binding 
energy is −0.0025. The Fano effect occurs at 1.0175 which is less than the band 
bottom energy 1.02 of the upper branch approximately 0.0025. When the scattering 
potential is −0.2, the binding energy is −0.01. The corresponding Fano effect is at 1.01 
less than the band bottom energy of the upper branch 1.02 approximately 0.01. Under 
this applying potential, the Fano peak is at 0.939G0 and the Fano dip is at 0.035G0, 
hence the Fano effect is apparent. Moreover, when the scattering potential is －0.3, 
the Fano effect occurring at 0.997 is also apparent since the Fano peak occurs at 
0.95G0 and the Fano dip occurs at 0.017G0. As the scattering potential is －0.4 if 
there is a Fano effect, it is approximately at 0.98. However this corresponding energy, 
0.98, is at the band bottom of the lower branch (Fig. 4.1.3.1(a)). Therefore, there is 
without any propagating mode to transport. In Fig. 4.3.4.1(b), the corresponding 
energy spectrum is also vertical splitting. Therefore, the transport properties in Fig. 
4.3.4.1(b) are similar to the conductance in Fig. 4.3.4.1(a). 
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Fig. 4.3.4.3. Scattering process in the presence of the true bound state. 

 
In Fig. 4.3.4.1(c), the Fano effect occurs at the binding energy ETBS below 

subband (see Fig. 4.3.4.3). The corresponding energy spectrum is Fig. 4.1.3.1 (c). As 
the potential V0 = 0.1, the Fano effect is not apparent. When V0 = 0.2 and 0.3, there is 
a Fano effect and the width between the Fano peak and the Fano dip are larger than 
the Fano effect in other cases (Fig. 4.3.4.3 (a), (b) and (d)). That is, when the Rashba 
and Dresselhaus coefficients α = β = 0.1 and the Zeeman coefficient gB = 0.02, the 
life time for the electron staying in the true bound state is shorter. When V0 = 0.4, 
there is no propagating modes at the corresponding energy of the bound state. Hence, 
under this applying potential V0 = 0.4, there is no Fano effect. 
 

In Fig. 4.3.4.1(d), the Fano effect appears at the bound state below the band 
bottom of the lower branch. This picture we have mentioned before in section 
4.3.3.1(c). 
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 (II) The repulsive scattering potentials 

(a) (b) 

(c) (d) 

Fig. 4.3.4.4. Conductance (in units of G0 = e2/h) versus kinetic energy with the 
repulsive scattering potential in the presence of in-plane magnetic field with 
different Rashba and Dresselhaus coefficients: (a) α = β = 0.01, gB = 0.02 (b) α = β 
= gB = 0.02 (c) α = β = 0.1, gB = 0.02 (d) α = β = 0.2, gB = 0.02. The Fermi energy 
EF = 66 meV. The magnetic field strength is approximately 3T when gB = 0.02 (gs = 
−15 for InAs). 

 
In the presence of the repulsive scattering potential, the increasing strength of the 

attractive scattering potential causes the more suppressive conductance. In Fig. 4.3.4.4 
(a) and (b) under the applying repulsive scattering potential, the conductance is 
suppressed. As the Rashba and the Dresselhaus identical to 0.1 are stronger than the 
Zeeman effects, there are two local extreme values, 0.99 and 0.964 at the lower 
branch (Fig. 4.1.3.1(c)). Above subband bottom whose energy value is 0.99, there is a 
hole-like quasi-bound state. Therefore, as the energy is identical to the corresponding 
energy of the hole-like quasi-bound state, there is a dip structure. When the scattering 
potential is 0.1, 0.2, 0.3 and 0.4, the dip structure is at 0.99124, 0.99237, 0.99349 and 
0.99429, respectively. Accordingly, the corresponding energy of the quasi-bound state 
will be affected by the potential strength. 
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In Fig. 4.3.4.4(d), the Rashba and the Dresselhaus identical to 0.2 are stronger 
than the Zeeman effects. There is a pseudo-gap in the corresponding energy spectrum 
(Fig. 4.1.3.1(d)). The repulsive applying potential will enhance the hole-like 
quasi-bound state hence the dip structure is obvious. 
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Chapter 5   Conclusion and future work 
 

In Ch1, we start from the simple case and we investigate the transport properties 
in the presence of the static delta potential in the quantum wire. In Ch2, we introduce 
the spintronics. In recent years, there are a lot of researches about the spintronics. We 
expect that we can use the spin to carry some information. We realize that for 
spintronics the spin-orbit interactions are an efficient way to couple the electron spin 
and the momentum. Hence, in Ch3 we consider the Rashba spin-orbit interaction in 
our system. In addition, we apply the in-plane magnetic field along x direction. We 
use the analytical approach to calculate the conductance. Because of the in-plane 
magnetic field, in some specific cases, there is a pseudo-gap in the energy dispersion. 
We can see the electron-like dip structure and hole-like dip structure in the 
conductance pictures. Chapter 4 investigates the quantum wire in the presence of the 
Rashba and the Dresselhaus spin-orbit interactions and the in-plane magnetic field. 
The additional Dresselhaus term breaks the symmetry of the energy spectrum. In this 
chapter, we use the numerical approach to calculate the transport properties. Under 
the asymmetry of the energy spectrum, we can see the Fano effect in the transport 
properties. 
 

In the future, we are going to change the direction of the magnetic field. We 
expect to see the variation about the energy spectrum and investigate how the 
different orientations of the magnetic field could affect the transport properties. 
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Appendix:  
 
The physical units for GaAs-based semiconductors 
 

The effective mass m* The energy unit E* The length unit L* The frequency unit ω*

0.067m0 9meV 7.96nm 13.6THz 
 
The physical units for InAs-based semiconductors 
 

The effective mass m* The energy unit E* The length unit L* 
0.023m0 66meV 5nm 

width of the channel Rashba parameter α* Dresselhaus parameter β* 
15.7nm 3.317×10-10 eV m 3.317×10-10 eV m 
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