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Quantum transport of narrow-channels in in-plane magnetic
fields with Rashba and Dresselhaus spin-orbit interactions

Student : Shu-Yu Chang Advisor : Shun-Jen Cheng

Department of Electrophysics
National Chiao Tung University

ABSTRACT

We investigate coherent electronic quantum transport in a narrow channel with
Rashba and Dresselhaus spin-orbit interaction in the presence of an external in-plane
magnetic field that is applied along the channel direction. The spin-split energy
spectrum is horizontally shifted respectively by the Rashba and the Dresselhaus
effects and is vertically shifted by the applied magnetic field. First, we consider the
Rashba spin-orbit interaction and the in-plane magnetic field in the narrow channel,
there is a pseudo-gap in the energy spectrum. With the increasing magnetic field, we
investigate the variation of the spin orientation. Furthermore, we find the hole-like
quasi bound state and electron-like quasi-bound state features in conductance. When
we consider the Rashba, Dresselhaus and Zeeman effects simultaneously, energy
spectrum becomes asymmetry. In some specific cases, except for the quasi-bound
state feature, we find the Fano effect in transport properties. Hence, in the presence of
the Rashba spin-orbit interaction and the in-plane magnetic field, the Dresselhaus
effect significantly affects coherent magneto-quantum transport properties.
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Chapter 1  Introduction to charge transport in semiconductors

1.1 Introduction to semiconductors

The term “semiconductor” represents a certain class of solid materials. It
suggests that the electrical conductivity is intermediate in magnitude between a
conductor and an insulator. Semiconductor materials are numerous and versatile. We

can distinguish it into elementary semiconductors and compound semiconductors.

Elementary semiconductors are Silicon (Si) and germanium (Ge), phosphorous
(P), sulfur (S), selenium (Se), and tellurium (Te). Compound semiconductors are
categorized following by the group of their constituents in the periodic table of
elements. Such as gallium arsenide (GaAs), aluminium arsenide (AlAs), indium
arsenide (InAs), indium antimonide (InSb), gallium antimonide (GaSb), gallium
phosphide (GaP), gallium nitride (GaN), aluminium antimonide (AlSb), and indium
phosphide (InP) are all belong to the so-called III-V semiconductors. There are also
II-VI semiconductors, such as zinc sulfide (ZnS), zinc selenide (ZnSe) and cadmium
telluride (CdTe), III-VI compounds, such as gallium sulfide (GaS) and indium
selenide (InSe), as well as IV-VI compounds, such as lead sulfide (PbS), lead telluride
(PbTe), lead selenide (PbSe), germanium telluride (GeTe), tin selenide (SnSe), and tin
telluride (SnTe).

For compound semiconductors, there are two chemical constituents are called
binary compounds. Additionally, there are compound semiconductors with three
constituents, such as Al,Ga;_,As (aluminium gallium arsenide), In,Ga;,As (indium
gallium arsenide), and also In,Ga; P (indium gallium phosphide). In this situation, it

is called about ternary semiconductors or semiconductor alloys.

H(x,y,z)=H +H +H, (1.1.1)

1.2 Low dimensional semiconductor systems
1.2.1 Introduction to heterostructure semiconductors

For heterostructure, since the two different materials will have two different
energy bandgaps, the energy band will have a discontinuity at the junction interface.
We may have an abrupt junction in which the semiconductor changes abruptly from a
narrow bandgap material to a wide-band gap material. In Fig. 1.2.1.1 shows the

energy-band diagram of a GaAs-AlGaAs heterojunction in thermal equilibrium. The



AlGaAs is moderately to heavily doped n type, while the GaAs is more lightly doped
or even intrinsic. In order to achieve thermal equilibrium, electrons flow from the
wide-bandgap AlGaAs into the GaAs, forming an accumulation layer of electrons in
the potential well adjacent to the interface. The electrons contained in a potential well
are quantized. The two-dimensional electron gas refers to the condition in which the
electrons have quantized energy levels in one spatial direction (perpendicular to the

interface), but are free to move in the other two spatial directions.

Fig. 1.2.1.1. The bandage profile of semiconductor heterostructures.

Since the GaAs is lightly doped or intrinsic, the two-dimensional electron gas is
in a region of low impurity doping so that impurity scattering effects are minimized.
The electron mobility will be much larger than if the electrons were in the same
region with the ionized donors. The movement of the electrons parallel to the
interface will still be influenced by the coulomb attraction of the ionized impurities in
the AlGaAs. The effect of these forces can be further reduced by using a graded
AlGaAs-GaAs heterojunction. The graded layer is Al,Ga;As in which the fraction x
varies with distance. In this situation, an intrinsic layer of graded AlGaAs can be
sandwiched between the N-type AlGaAs and the intrinsic GaAs. Fig. 1.2.1.2 shows
the conduction-band edge across a graded AlGaAs-GaAs heterojunction in thermal
equilibrium. The electrons in the potential well are further separated from the ionized
impurities so that the electron mobility is increased above that in an abrupt

heterojunction.



Fig. 1.2.1.2. the conduction-band edge across a graded AlGaAs-GaAs

heterojunction in thermal equilibrium.

The two-dimensional electron gas (2DEG) trapped at a doped heterostructure is
the most important low-dimensional system for electronic transport. It forms the
kernel of a field-effect transistor. The high electron mobility transistor has many
acronyms including modulation-doped field-effect transistor (MODFET) and high
electron mobility transistor (HEMT).

1.2.2 Modeling the low dimensional semiconductor systems

Fig. 1.2.2.1 is the GaAs/AlGaAs high electron mobility transistor. The cap layer
in the transistor can prevent the n-type AlGaAs from oxidizing. Above the cap layer,
we use two metal gates to define a quasi-one dimensional quantum channel. The
Hamiltonian of a semiconductor with heterostructure can be written separately in the

vertical and lateral parts of form

H(x,y,z)=H +H_, (1.2.2.1)
where
hZ
Hn=2 *(kf+ky2)+V(x,y) (1.2.2.2)
m
and
2712
H, = h kz +V.(z2). (1.2.2.3)

Vi(z) is the quantum well at the interface of the heterostructure. The electrons
underneath the gate oxide are confined to the heterostructure interface, and thus
occupy well defined energy levels. Nearly always, only the lowest level is occupied,
and so the motion of the electrons perpendicular to the interface can be ignored. While,
the electron can be free to move in the other two spatial directions. Hence, we can
ignore the z-part Hamiltonian and emphasize the x, y dependant Hamiltonian (Eq.
1.2.2.2).
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Fig. 1.2.2.1. The GaAs/AlGaAs high electron mobility transistor.

1.3 Quantum transport in quasi-one-dimensional quantum systems
1.3.1 Introduction to quantum transport

In macroscopic systems, the conductance obeys an ohmic scaling law:
G=ﬂ. (1.3.1.1)
L

As the dimensions become smaller, there are two corrections to this law. Firstly there
is an interface resistance independent of the length L of the sample. Secondly the
conductance does not decrease linearly with the width W anymore. Instead it
depends on the number of transverse modes in the quantum channel. The
Landauer-Buttiker formula incorporates both of these features [1, 2]:

2
G=2%NT. (13.1.2)
The factor T is the average probability that an electron incident from the source will
transmit to the drain, the factor 2 is for the spin and N is the number of propagating
modes with positive group velocity due to transverse confinement. The
Landauer-Buttiker formalism only applies to coherent transport. In this paper, we

assume that the phase-coherent length is larger than the sample of linear size L, in

which /,>L and the elastic mean free path is larger than the sample size /, > L.

Namely, our system is in the coherent quantum transport regime.



1.3.2 Quasi-one-dimensional quantum systems

To form a quasi-one-dimensional quantum system (Fig. 1.2.2.1), we use two split
top gates above the HEMT. We can rewrite the Eq. 1.2.2.2 in the following form:
h2
Hy (6, 9) = (S )V (0) 4V, (v, ) (1.32.1)
Since the two split top gates are quite near each another, electrons will be confined in
the quantum channel and can only propagate along the x direction. Hence, the single

particle Hamiltonian in the narrow channel can be described by.

272
H= h k* +V(x,y). (1.3.2.2)
2m
This Hamiltonian can be separated into two parts:
272
H,=—+V.(). (1.3.2.3)
2m
272
H = h kj: +V(x) (1.3.2.4)

Vc(v) indicates the confining potential in the transverse direction. The corresponding
eigenvalue of H, is the sub-band energy. In the narrow channel, the electron
propagates along x direction whose kinetic energy will be the total energy of an
incident electron subtracting the subband energy Ey = Eio - &n, &n depends on which
subband the electron occupying. V(x) exhibits the x dependant potential which can be
the spin orbit interaction or the scattering potential in longitudinal direction. In this
chapter, we consider the system is only with the static scattering potential along x
direction without spin orbit interaction. In the following chapters, we will discuss the
spin-resolved transport properties including both the static scattering potential and

spin orbit interaction.

Drain

Sorce =

2l

Fig. 1.3.2.1. System figuration.



1.3.3 Analytical approach

The system figuration is shown in Fig. 1.3.2.1. A static finger gate is in the
middle of the narrow channel. The system under investigation can be described by the

Hamiltonian:
2

H=2p*+Vc(y)+V05(x), Vc(y)=%ma)y2y2 (1.3.3.1)
m

In order to simplify the calculation, the dimensionless Hamiltonian is introduced by

. : . : ) 1
choosing appropriate physical units: the length unit /*=— , the energy
F
: n’k; : : : . 2E
unit £* = o and the unit of the parameter w, of the confining potential @, = >
m

£

Following performing standard dimensionless the Hamiltonian becomes:

H=k+y* +V,6(x). (13.3.2)

Fig. 1.3.3.1. System picture.

The wave function can factorize into functions of x and y, as follows:
Y(r)=yx)e(»). (1.3.3.3)

Since the confining potential in the transverse direction is a parabolic potential, the

wavefunction and the subband energy will be
g, =2n+o,. (1.3.3.4)

and

1 - 2 X
Y AOHn(_J- (1.3.3.5)



The electrons incident from the left source will be scattered by the static delta

potential in the middle of the quantum channel. The electrons may be back scattered

or forward scattered. Therefore, the x-part wave functions can be written in the form:
x<0p(x)=e" +re™ (1.3.3.6)

and
x>0,p(x)=te™ k=JE-¢, . (1.3.3.7)

r, t represent the reflected and transmitted coefficients. £ is the total energy of the
electron and ¢, is the subband energy. The wavefunctions should satisfy these
boundary conditions:

Dy(x=0)=w(x=0") (1.3.3.8)
and

(i)y'(x=0)=p'(x=0")—Vy(x=0"). (1.3.3.9)

Substituting the x-part wave functions into these boundary conditions can obtain:
r=t—1 (1.3.3.10)
and
ik(1-r)=ikt =Vt . (1.3.3.11)
Combining these two equations and using linear algebra, the transmitted coefficient
can be expressed as:

1

>k (1.3.3.12)
2ik

=

Once obtaining the transmitted coefficient, we can substitute it into the

Landauer-Biittiker equation and acquire the conductance.

26* 2 267 1
G:— t = .
h ;' .| h Zn:H v} (1.3.3.13)
45>



1.3.4 Numerical approach

In this section, we show the numerical results and discussion of the variation of
conductance with the potential strength V). The numerical calculations presented
below are carried out under the assumption that the electron effective mass m =
0.067my, which is appropriate to the GaAs-based semiconductors. The typical

electron density is n ~ 10" cm™. Accordingly, the energy unit E = 9 meV, the length

£

unit L* = 7.96 nm, and the frequency unit @ = % =13.6 THz[3].

In Fig. 1.3.4.1, we demonstrate the conductance at different scattering potential
strength and the frequency remaining at wy = 13.6 THz. In the absence of scattering
potential, the conductance is ideally quantized. The conductance regularly increases
2¢%/h as the energy raises 2Ep, since the transverse modes will increase one mode
whenever the energy raises 2Er and we need to take account of another subband (the
subband energy level spacing is 2Er.). As the magnitude of the scattering potential
increases, the electrons may be reflected by the scattering potential and successfully
transmitted. Then, the conductance can not transmit completely anymore. When the
scattering potential strength changes into stronger, the probability for electrons to
transmit is more difficult therefore the conductance is significantly suppressed and the
degree of suppression will increase with the stronger of magnitude of the scattering

potential.

(a) (b)

E(E,)

Fig. 1.3.4.1. Conductance (in units of 2e*/h) versus kinetic energy in a quantum channel with
tunable potential strength V4 (a) The potential is repulsive (b) The potential is attractive. The

Fermi energy Er =9 meV



Chapter 2 Spin-resolved quantum transport

2.1 Introduction to spintronics

In the recent years, there has been growing interest in the emerging field of spin
electronics or “spintronics”. Spintronics, where the spin of electrons is used to carry
information, is a rapidly growing area of research [4—6]. There are several techniques
for generating pure spin currents [7-9]; Spintronics involves exploration of the extra
degrees of freedom provided by the electron spin, in addition to those due to electron

charge, with a new view to realize the new functionalities in future electronic devices.

Spin-orbit interaction (SOI) is considered as an efficient manipulation via gate
voltages, which is a relativistic effect that couples the electron spin, momentum, and
electric field (or momentum dependant effective magnetic field in the electron frame.)
The SOI has been utilized to devise various spintronics devices such as spin

transistors, spin logic, and spin filters [10-13].

In 1990, Datta and Das proposed to control the strength of Rashba spin-orbit
interaction using gate voltage as a spin-field transistor based on spin rotation, which
can be a significant strong effect in narrow gap semiconductor heterostructures [14].
The gate control of the spin current employing the Aronov-Casher effect was
considered. The electric dipole spin resonance controlled by the time-dependant gate
was also studied. Furthermore, spin-orbit interaction is likely to be important in
Einstein-Podolsky-Rosen type spin-dependant entangled electronic states for quantum
information processing [15, 16]. Considering semiconductor systems, there are two
main types of spin-orbit interaction. The Dresselhaus spin-orbit interaction [17]

appears due to the asymmetry present in certain crystal lattices.

The Rashba spin-orbit interaction [18] arises due to the asymmetry associated
with the confining potential of the heterostructure quantum well. The perpendicular
electric fields inside heterostructure quantum wells are important for understanding
spin-orbit coupling, which is sample-specific and adjustable. In narrow gap
semiconducting quantum wells, a variation of about 50% of the spin-orbit coupling
coefficient was observed experimentally by adjusting the voltage on adjacent gate
electrodes, in which a quantum well is populated only by donor-layer electrons.
Consequently, much interest has been attracted to the realization of spin polarized
transistors, spin filter devices, and other devices based on electrical gate control to the

spin-dependant transport.



2.2 The spin-orbit interactions and the Zeeman effect

To realize a spin device, it is important to utilize the spin-orbit interaction since it
provides a way of controlling the spin degree of freedom electrically in
semiconductor-based systems. Moreover, for a quasi-one-dimensional ballistic it is
found that the SOI could significantly modify the band structure, thus additional
subband extrema and energy gaps are produced. Effects of SOI and Zeeman splitting
on the physical properties of quantum wires, e.g., photovoltaic effect [19] and shot
noise [20] have been investigated in detail. Li et al [21]. have presented that the SOI
and the Zeeman effect could result in significant variations of the conductance and the

thermopower which are spin-dependent.

We will consider the transport properties in the presence of the SOI and the
in-plane magnetic field. The spin-orbit interaction can be caused by structural
inversion asymmetry (SIA), which can be artificially controlled by the applied gate
voltages or by the specific design of the heterostructure, or by bulk inversion
asymmetry (BIA), which is determined by the semiconductor material and the
geometry of the sample. Both Hpia and Hsia lead to spin splitting of the conduction
band linear in k. The in-plane magnetic field will cause the energy splitting that is

independent of k.

The structural inversion asymmetry results in the Rashba spin-orbit interaction.
The Rashba spin-orbit interaction depends on the gradient of the potential and is
therefore more important the higher the nuclear charge of the element. In Ch. 1.2.1,
we have mentioned that the electrons are confined at the heterostructure interface. For
the purpose of confining electrons to nanostructure devices, potential well is necessary.
The potential well at the interface results in the non-negligible Rashba spin—orbit
interaction (SOI), especially in systems with structural inversion asymmetry (SIA)
like e.g. semiconductor heterostructures. Heavy elements in the periodic table show
stronger effects. This is also valid in crystals. For instance, in silicon the spin-orbit
interaction is much weaker than in Ge or GaAs. It is even more important in InAs and
InSb. In a two-dimensional electron gas (2DEG) obtained by a strong confinement in
the z-direction (Fig. 1.3.3.1), the Rashba SOI is described by the Rashba term

(2.2.1)

z

Hy,= %(pyax -p0,)

The components of the electron momentum operator are denoted by p;, the Pauli
matrices are represented by i, and a proportional to £, is the SOI coupling coefficient
set by the confining electric field or by the applied gate voltage.
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In III-V or II-VI the heterostructure semiconductors, such as, the difference
between cations and anions breaks the degeneracy of the band structure with respect
to the spin degree of freedom, and is present in both bulk materials and semiconductor
nanostructures. The electric fields resulting from the lack of an inversion centre lead
to bulk inversion asymmetry (BIA) and to the Dresselhaus term in the Hamiltonian. In

the conduction band, the spin splitting Hamiltonian is given by
Hbulk,D = 7/(; [kax (kj _k22 ) + Jyky (k22 - k)f ) + O-zkz (kf - k}% ):| . (222)

To obtain the effective Hamiltonian of the two-dimensional quantum channel, we take

the average of the above bulk Hamiltonian with respect to the ground state wave
function along the vertical z direction.

L

h

The components of the electron momentum operator are denoted by p;, the Pauli

(po.-p,0,). (2.2.3)

matrices are represented by oj, and S is the Dresselhaus spin-orbit interaction strength.

An external magnetic field lifts time inversion symmetry so that we can obtain a
finite Zeeman energy splitting AE; = g*upB, where g" is the effective g factor and up
the Bohr magneton of the electron or hole states. It was first shown by Roth et al. [22]
that electrons can have an effective g factor g* that differs substantially from the
free-electron value gy = 2. The effective g factor g # 2 results from the spin—orbit
interaction, which couples the orbital motion with the spin degree of freedom.
Because of without SOI, the motion of spin-up electrons would be completely
decoupled from the motion of spin-down electrons, and there would be identical
Hamiltonians for spin-up and spin-down electrons except for the trivial Zeeman term
*(go/2)upB, so that in this case Zeeman splitting would be controlled by the g factor,
in which gy = 2 of free electrons. Recently, calculations and experiments have shown
that ¢* can have different values for B applied in the direction normal to the plane of

the 2D system and for B in the plane of the quantum wire [23-26].

In Ch3 and Ch4, we will analyze the transport properties in a quantum channel in

the presence of the spin-orbit interactions and in-plane magnetic field.

11



Chapter 3 Quantum transport in the presence of the Rashba
spin-orbit interaction with in-plane magnetic field

In this chapter, we will use the analytical approach to investigate how the Rashba
spin-orbit interaction and an in-plane magnetic field affect the electron transport. We
will introduce the system Hamiltonian and analyze the energy spectrum and the
wavefunction in the first section. In the second section we will use the
Landauer-Buttiker formula by the matching method to calculate the conductance. At
last, we will demonstrate the numerical results under different strengths of the Rashba

spin-orbit interaction, the magnetic field and the gate voltage.

3.1 Theory

In this section, we use the numerical approach to calculate the energy spectrum
and the spinor states of the system considering both the Rashba and the Dresselhaus

spin-orbit coupling and an in-plane magnetic field.

3.1.1 System and Formulation

In this paragraph, we use the analytical approach to derive the energy spectrum
and the spinor states of the system considering the Rashba spin-orbit coupling and an

in-plane magnetic field [27].

We use a transverse hard wall potential to simulate the confinement potential
along y direction. The transverse potential is a narrow constriction therefore we can
neglect the momentum py along y direction. Then, the Rashba term can be reduced
from Eq.(2.2.1) to

a
)

The Hamiltonian for the quantum channel in the presence of the Rashba spin-orbit

Hy,=-=po,. (3.1.1.1)

interaction and the Zeeman effect which is due to an applied magnetic field along x

direction has the form
2

p o 1
H=—-—po +— Bo_ +V (y), 3.1.1.2
0 2]’}’[ hpx y ZgSﬂB X c(y) ( )

where a is the Rashba strength, B is the magnetic field strength and V7 is the confining

potential. In the middle of the quantum channel there is a scattering potential in forms

of delta potential. Then the total single particle Hamiltonian is

H=Hy+V,(x), V.(x)=V,5(x). (3.1.1.3)

12



nAs

Fig. 3.1.1.1. System picture

. . . | .
For convenience, we choose the following units: length unit / = P energy unit
F
272 E* hZ
E =—-2% magnetic field unit B =—, the Rashba coefficient unit & =—2*, the
Hp m

confinement potential in units of Fermi energy V. (y)=V(y)E  and defining

1 . ’ . .
g= 5 g, . In the following way, we can obtain the dimensionless unperturbed
Hamiltonian:
H,=k*=2ako,+gBo, +V(y). (3.1.1.4)

Separating the unperturbed Hamiltonian into the x-dependant and y-dependant parts

can get:
H,=H)+H, (3.1.1.5)
with
H’ =kf—20{kx0'y+gBO'x (3.1.1.6)
and
Hﬁzkyz+V(y), (3.1.1.7)
where
v =1 y|<% (3.1.1.8)

oo, otherwise
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is a potential that confines the electron in the transverse direction and we suppose that
the confining potential with only the lowest occupied subband.
The wavefunction of the unperturbed Hamiltonian can be expanded by the spatial

wavefunction and spinor state,
P(x,y) =4, 1. (3.1.1.9)

Since the transverse confinement potential is the hard wall potential, the transverse

¢n(y)=\/§sin(%yj, (3.1.1.10)

and the subband energy will be

gn:(ﬂJ . (3.1.1.11)

wavefunction will be

Here, we only consider the lowest occupied subband. That is n is equal to 1. Then,
substituting the transverse wavefunction and the subband energy into Eq. (3.1.1.4)
and Eq. (3.1.1.9) obtain

(—2akx0'y+gBO'x);(=(E—8n—kxz);(. (3.1.1.12)
Expanding the above equation by the Pauli matrices:

[ 0 gB+i2ak,

gB—i2ak 0 jZ:(E“gn‘kf)% (3.1.1.13)

The spinor state and the eigen-energy can be obtained by solving the above

eigenvalue problem. The spinor state is

Ao :%L;’(m} ;0=1 (3.1.1.14)
where
Q(k)ztan‘l[zak"j, (3.1.1.15)
|¢B
and the energy is
Ef =g, +k>+0\(gB) +(Q2ak,) , (3.1.1.16)

where k, can only be real and ¢ = + indicating the spin branches for a given subband 7.
For an ideal wire without scattering potential, it is convenient to use Eq. (3.1.1.16) to

obtain energy spectrum as a function of wave vector for propagating modes, as shown

14



in Secs. 3.1.2 and 3.1.3.

In general, there are four extreme values in the energy dispersion. For
convenience, we define Py, = (kps, Ebs) and P, = (ki, Eiy) to denote the extreme
values of the energy dispersion at the subband bottom (b) and subband top (7),
respectively. We also define AE- to represent the pseudo-gap or the branch level
spacing for a given subband, respectively. In addition, 0 = +, — represents the
upper branch and lower branch, respectively.

To analyze the energy spectrum and find the local minimum and local maximum
in the energy dispersion for the case involving both the Rashba and the Zeeman

effects, it is convenient to define the group velocity, given by

o 2
v :dEn . 4a’k,

(o2
¢ dk, Jg B +4a’k?

(3.1.1.17)

where the subscript ¢ = + indicating the spin branches. As the group velocity is
identical to zero for specific wavevectors, there will be local minimum or local

maximum in the energy spectrum (Fig. 3.1.1.2).

(b)

—oB [
g kb+=0
_=¢,—gB k

. E, =¢,—gB
_ [l 8B
I (205) k, =0

B
B, =o-|a vy E, =z, gB
b, n ‘: 2a) Eb’_=£n_lia2+(§_B)2:| b— &
a

Fig. 3.1.1.2. (a) For the case 2a’° > gB, energy spectrum with labeling local energy

extreme values and corresponding wavevectors. (b) For the case 2a° < gB, energy
spectrum with labeling local energy extreme values and corresponding wavevectors.

These local extreme values occur at

P,,=(kt,,E,,)=(0,e,,—gB), (3.1.1.18)

B =(ky. . E,) = (0,6, +8B) (3.1.1.19)

az_(ﬁf
2x

and

P =(k, ,t, )=(% JE, _ :gn—[a2+(%)z}) (3.1.1.20)
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It is noteworthy that this extreme value (Eq. 3.1.1.20) only exists as 2a° > gB
otherwise the value in the square root will be negative. Namely, this extreme value
only occurs when the Rashba is significantly stronger than the Zeeman effects (Fig.
3.1.1.2 (a)). The gap between the upper branch and the lower branch would be

AE,=2gB. (3.1.1.21)
If the Rashba coefficient is not strong enough, the energy spectrum will be vertical
splitting (Fig. 3.1.1.2(b)). The energy spacing between the upper branch and the lower
branch is

AE, =2gB. (3.1.1.22)

For the specific cases, we consider only the Rashba effect, and then the energy

dispersion (Eq. 3.1.1.16) becomes

E'=¢ +kl+02ak, (3.1.1.23)
E
L—' k
k, =-a k, =+a
E . =¢-a E =¢-a

Fig. 3.1.1.3. For the case of considering the
Rashba effect and turning off the magnetic field B
= 0, energy spectrum with labeling local energy

extreme values and corresponding wavevectors.

The energy dispersion is lateral splitting. The local extreme values which can be
solved from the group velocity (Eq. 3.1.1.17) are at

B. =k E,)=(-as,-a’) (3.1.1.24)
and

B =k, .E, )=(a,e,~a’) (3.1.1.25)
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If we consider only the Zeeman effect, the energy dispersion (Eq. 3.1.16)

becomes

E =¢ +kl+ogB

E
‘ kb+ =O
k Eb+ =gn _gB
k,_=0
E,_=¢,—-gB

Fig. 3.1.1.4. For the case of considering only the
in-plane magnetic field and the Rashba coefficient
= 0, energy spectrum with labeling local energy

extreme values and corresponding wavevectors.

The energy dispersion is vertical splitting. The local extrema are at

and

1)b+ = (kb Eb+) = (O’gn +gB) b

+ 2

B =(k,_,E, )=(0,&,—-gB),

(3.1.1.26)

(3.1.1.27)

(3.1.1.28)

which can be solved from the group velocity (Eq. 3.1.1.17). Then, the energy spacing

between the upper branch and the lower branch is

AE, =2gB.

17
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(a)

E(E)

(©)

E(E)

3.1.2 The Rashba effect

In this section, we investigate the energy spectrum with the different Rashba

effect in the presence of the in-plane magnetic field (gB = 0.02). There are four cases:
a=0.0Q20° < gB), 0.052a* < gB), 0.1(2a* = gB), and 0.2(2a* > gB), as shown in Fig.
3.1.2.1. The magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for

InAs)
1.050
1.025
1.0004
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K (k.)

0.2 0.4

0.6

Fig. 3.1.2.1. Energy spectrum versus wave number with magnetic field strength gB = 0.02
for different values of a: (a) a = 0.0 (b) a = 0.05, (¢) @ = 0.1, and (d) a = 0.2 (the

Rashba-Zeeman effect). The Fermi energy Er = 66 meV and the Fermi wave vector kg = 2x

10° cm™. The magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for

InAs). The black and red curves indicate the plus (¢ = +) and minus (¢ = —) spin branches,

respectively. The black dot and the red dot correspond to the local minima of plus and minus

branches at the subband bottoms, denoted by P,+ and P»-. The red circle stands for the local

maxima of the minus branch at the subband top, denoted by P;-.

In Fig. 3.1.2.1(a), we consider only the Zeeman effect. In the presence of the

in-plane magnetic field, the energy spectrum is vertical splitting. The local minima are
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at Py = (kp—, Ep-) = (0.0, &,— gB) = (0.0, 0.98), Pp+ = (kp+, E»+) = (0.0, &, + gB) = (0.0,
1.02) and the branch level spacing for a given subband is AE; = 2gB = 0.04 as we
mentioned in (Eq. 3.1.28). In the second case, the Rashba effect is week and not
strong enough to form a pseudo-gap, that is, 2a” < gB, therefore the energy spectrum
is vertical splitting (Fig. 3.1.2.1(b)) and the local minima are Py+ = (kp+, Ep+) = (0.0,
en +gB) = (0.0, 1.02) and Pp- = (kp-, Ep-) = (0.0, &,— gB) = (0.0, 0.98). The branch
level spacing for a given subband is still AE; = 2gB = 0.04. When the Rashba effect
satisfy 2a” = gB, the energy spectrum is still vertical splitting and the local minima are
the same as the first two cases. When the Rashba effect is strong enough to from a
pseudo-gap, that is, 2a* > gB, there is a magneto-spin-orbit pseudo-gap in the energy
spectrum (Fig. 3.1.2.1(d)). The local minimum at the upper branch is Py = (kp+, Ep+)
= (0.0, &, + gB) = (0.0, 1.02) (Eq. 3.1.19) and the local extreme values at the lower
branch are P, = (k, E.-) = (0.0, &,— gB) = (0.0, 0.98), Py,_1 = (kp-1, Ep-1) =(0.1952,
0.9575) and Pp-p = (kp-2, Ep-2) = (0.1952, 0.9575) (Eq. 3.1.18 and 3.1.20). The
pseudo-gap is AE; =2gB = 0.04.
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3.1.3 The Zeeman effect

For comprehending how the Zeeman effect would affect the energy spectrum, we
fix the Rashba effect (a« = 0.2) and tune the Zeeman effect from weak to strong. Below,
there are five cases: gB = 0(20° > gB), gB = 0.02(2a>> gB), gB = 0.08 (2a* = gB), gB
=0.1 (2a>< gB).

(@) (b)
1.4
1.4
1.2
1.2
u _
uy Luu‘
1.0 g
1.0
0.8 i . . ; :
1.2 08 -04 0.0 0.4 0.8 1.2 0.8 P —
k (k) 1.2 08 -04 0.0 0.4 0.8 1.2
XV F
k (k)
(©) (d)
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1.2 1.2
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0-8 T L T T T Ds T T ¥ T ¥ T ¥ T *. T ¥
1.2 0.8 -0.4 0.0 0.4 0.8 1.2 1.2 08 -04 0.0 0.4 0.8 1.2
k(k.) k(k.)

Fig. 3.1.3.1 Energy spectrum versus wave number with different magnetic field strength gB
and the fixed Rashba strength a: (a) gB=0,a=0.2; (b) gB=0.04,2=0.2; (c) gB=0.08, a =
0.2 (d) gB=0.12, o = 0.2. The Fermi energy Er = 66 meV and the Fermi wave vector kr = 2x
10° em™. The magnetic field strength is approximately 6T when gB = 0.04 (g, = —15 for
InAs). The black and red curves indicate the plus (¢ = +) and minus (¢ = —) spin branches,
respectively. The black dot and the red dot correspond to the local minima of plus and minus
branches at the subband bottoms, denoted by P+ and P»-. The red circle stands for the local

maxima of the minus branch at the subband top, denoted by P;-.

In Fig. 3.1.3.1(a), we show the energy dispersion in the presence of the Rashba

20



spin-orbit interaction. The energy dispersion is lateral splitting. The local minimum at
the plus branch is Py+ = (kp+, Ep+) = (—0.2, 0.96) and at the minus branch is P, = (k.,
Ep)=1(0.2,0.96) (Eq. 3.1.24 and 3.1.25). In Fig. 3.1.3.1(b), when the Zeeman effect
gB = 0.04 and 2a* > gB, there is a pseudo-gap in the energy spectrum. The local
extreme value at the upper branch is Py = (kp+, Ep+) = (0.0, 1.04). The local extreme
values at the lower branch are Py. = (kp.1, Ep-1) = (=0.17, 0.95), Pp.2 = (kp-2, Ep-2) =
(0.17,0.95) and P;_= (k; -, E; -) = (0.0, 1.04) (Eq. 3.1.18 and 3.1.20). As the magnetic
field increases and gB = 0.08 and 2a” = gB, the energy dispersion is vertical splitting
(Fig. 3.1.3.1(c)) and the branch level spacing for a given subband is AE; = 2gB = 0.16.
As the Zeeman coefficient increases (gB = 0.12) and satisfies 2a” < gB, the branch
level spacing compare to Fig. 3.1.3.1(c) increases AEz = 2gB = 0.24 since the in-plane

magnetic field increases.
3.1.4 Spin orientation

In order to investigate the spin orientation in the presence of the Rashba
spin-orbit interaction and the in-plane magnetic field, we calculate the effective
magnetic field for these spin-orbit interactions and the Zeeman effect [28]. The
dimensionless Hamiltonian for an electron in the presence of the magnetic field can
be expressed as:

H=0-B, (3.1.4.1)
where B i1s dimensionless (B* = E*/,uB). Hence, when the above equation is identical to
the Rashba term,

—2ak,c,=c-B=Bo,, (3.1.4.2)
we can obtain the effective magnetic field for the Rashba spin-orbit interaction:
B, =-2ak.y. (3.1.4.3)
In the same way, we can obtain the effective magnetic field for the Zeeman effect:
B, =gBx. (3.1.4.4)
Then, the effective magnetic field of the system can be expressed as:
B, =B,x+B,y=gBx—2ak,y. (3.1.4.5)

In order to achieve equilibrium, the spin orientation of the electron in the presence of
the magnetic field tends to be opposite to the direction of the magnetic field.
Therefore, the spin orientation of the electron at the plus branch is aligned in the

direction of the effective magnetic field. However, the spin orientation of the electron
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at the minus branch will be opposite to the direction of the effective magnetic field.

We can express the spin orientation for the electrons at the plus branch as:
- gB ~ 20k, ~ B
So = X= y, o=+. (3.1.4.6)

J(eB) +(2ak,) \(gB) +(2ak,)

and the spin orientation for the electrons at the minus branch is:

- gB ~ 2ak, ~ B
Se == x+ y, o=-. (3.1.4.7)

J(eB) +(2ak,)  \(eB) +(2ak,)

Below, we show the energy spectrum with the spin orientation in the presence of

the Rashba spin-orbit interaction with different Zeeman effects.

(2) (b)

T 1 T 1
05 1 0s 1

o=

(c) (d)

Fig. 3.1.4.1. Energy dispersion with spin orientation illustrated by the arrows with the
different Zeeman effects and the fixed Rashba strength a. (a) gB =0, o = 0.2; (b) gB =
0.04, o = 0.2; (c¢) gB = 0.08, o = 0.2 (d) gB = 0.12, a = 0.2. The magnetic field
strength is approximately 6T when gB = 0.04 (g, = —15 for InAs)
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In Fig. 3.1.4.1 (a), we turn off the magnetic field and only consider the Rashba
spin-orbit interaction. The spin orientation is along the y direction. When the in-plane
magnetic field increases, the spin orientation is inclined to along the X direction.
Therefore, the spin orientation is at the angle between the X axis and the y axis. When
the Zeeman effect increases from gB = 0.04 to 0.12, the angle between the spin
orientation and the X axis decreases. Since the effective magnetic field of the Rashba
spin-orbit interaction is dependant of the linear £, at &, = O the spin orientation is

always along the X direction.

3.1.5 Complex energy dispersion

It is interesting to note since the Rashba and the Zeeman effects result in the
spin-splitting energy dispersion, there is a gap appearing in the energy regime (see Fig.
3.1.2.1(d)). The channel number must be conservative, and therefore there are two
evanescent modes in this gap regime [29]. For finding these evanescent modes, we

rearrange (3.1.16) into this following form

k2= (E+2a°—£)T(E+2a° ~&,)* +(gB) —(E—¢,) | (3.1.5.1)

From this degree 4 polynomial we find that for a given energy there are four
corresponding modes. Namely, for a given energy we can find the corresponding
wave vectors from the above equation. The above polynomial problem can be solved
by calling the DZPOCC subroutine from the IMSL library. For a given energy, this
subroutine can find the corresponding four complex roots k. In Fig. 3.1.5.1, we
demonstrate a three dimensional energy dispersion considering both the Rashba and
the Zeeman effects (20° > gB). In this picture, the x axis represents the real part of k,
the y axis represents the imaginary part of k& and the z axis stands for energy. We can
see below the lower band bottom, there are four evanescent modes which represents
by the red line. At the gap energy regime there are two propagating modes and two
evanescent modes. The evanescent modes in the gap are in form of a bubble. These
evanescent modes won’t contribute to the current since the electron at these modes
would decay with distance and they can not successfully transmit to the drain.
However, during the scattering process it might be scattered into these evanescent
modes, thus we still need to know the wavevectors and spinor states about the

evanescent modes for calculating transport.
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Fig. 3.1.5.1. 3D Energy dispersion in the presence of the
Rashba spin-orbit interaction and in-plane magnetic field (a =
0.2, gB = 0.02). kg and £k represent, respectively, the real part
and the imaginary part of the wave number (k = kg + k7). The
black solid line represents the propagating modes and the red
solid line represents the evanescent modes. The Fermi energy

Er= 66 meV and the Fermi wave vector kg = 2x10% em™.

The evanescent modes in the bubble are pure imaginary since the local minimum
Py + at the upper branch and the local maximum P, at the lower branch are at &, = 0.
We substitute 4, = ix into Eq. (3.1.16) and obtain

E=¢,+x’+g’B’ —4a’c’ (3.1.5.2)

The spinor state for the evanescent modes is

1

N | —

(gB+ 20{/{)2

= 2p2 4,22
o (gB+2a/c)2+‘ngz_4a2K2‘ +NE B -4a’x (3.1.5.3)
gB+2ax

which can be solved by substituting &, = ix into Eq. (3.1.13). Then, we can write down

the general spinor state for propagating modes and evanescent modes

1
7= 88 — 2k, | J&B + 407k (3.1.5.4)
|gB—i2akX|2+‘ngz—4a2kf +NE . - o
gB—-i2ak,
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3.2 Transport theory

In this section, we derive the analysis wavefunction and transport formulation of
the system.
H=H,+V (x), (3.2.1)

where
2

1
Hy=L——apo +-—guBo +V.(y), (3.2.2)
2m 2

For the electron incident along X at a given energy, we use ks (¢s) to denote the
wavevector of right-going (left-going) modes at the spin branch o, where the dummy
index o could be the outer or the inner modes, denoted by 1 or 2, as shown in Fig.
3.2.1. Then, the scattering wavefunction is of the form

w(x)=e"" y(k,)+ D r,e"" 7(q,),x<0, (3.2.3)
and
w(x)=>1,e" y(k,),x>0, (3.2.4)

where o representing that the electron is at which mode and the spinor state y(k_) is

in the form of

1
3 |gB—i205kx|2 -, — 1 __,
Fo” |gB—i2ak,| +|g’ B> ~4a’kl|| & g B t+4a'k; 07=, (3.2.5)
’ ) gB—-i2ak,

where the sign of ¢ depends on which mode the electron is at, spin up or spin down.

At the nano-scale, the coherent quantum transport at zero temperature is

20
% ] (3.2.6)

To solve the reflection and transmission coefficients, we use the property that the
wavefunctions must satisfy the boundary conditions. The boundary conditions for
w(x) is continuous atx =0

w(x=0)=y(x=0") (3.2.7)

and for the derivative of y/(x) is given by
' (x=0")=yp'(x=0")-Vy(x=0). (3.2.8)
After some algebra, we get the four equations relating to the reflection coefficients

and the transmission coefficients.
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We take the energy regime &, —gB<E<¢g,+gB for example (Fig. 3.2.1). The

wavefunction is expressed as in the form:

Fig. 3.2.1. Energy spectrum with labeling
modes. ki, g1 indicate the outer right-going
and left-going modes. k>, ¢ in this energy

regime are evanescent modes.

p(x)=e"" y(k,)+ Y. re" y(q,),x <0

and
p(x)= Y 1,e" y(k,),x>0.
Expanding the wavefunction, the wavefunction is in the form:
w(x)=e"" [Zj +r e {Z} +r.e {:"j , x<0
and
w(x)=t, -e" { ‘TJ +1_ " {Z} , x>0,
where
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(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)



[ 2ak
O(k_) = tan ‘( d Uj, (3.2.15)
gB

1
“=75 (3.2.16)
d :_L i0(q,)
= He (3.2.17)
and
-1 2aqa'
0(q,) = tan 9B ) (3.2.18)
P
2
a, = (8B +2ak,) : (3.2.19)
(gB+2aK,) + ‘ngz —40&(2‘
282 _ Agi
b.=a,- ggB+ 2; R (3.2.20)
%
2
¢, = (g8 +20:0,) : (3.2.21)
(gB+2aQ,) +|g°B’ —4a’ Q]

2B _ 4020%
d_=c. & @0 (3.2.22)

7 gB+ 2a0.

Matching the wavefunction at the boundary conditions of the scattering potential:

p(x=0")=y(x=0"). (3.2.23)
' (x=0")=y'(x=0")-Vy(x=0"). (3.2.24)
We can get four simultaneous equations.
l. a_+rc +r.c. =ta_ +t.a, (3.2.25)
2. b +rd +rd_=tb +t.b. (3.2.26)
3. k,a,+r,q,c, +r.q.c, =t (k, +iV))a, +1,(k; +iV;)a, (3.2.27)
4. kb, +1,q,d,+1.q.d, =t (k,+iVy)b, +1t (k, +iV,)b, (3.2.28)
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Rearranging the four simultaneous equations into a matrix form, it becomes

—C —C; a a- r a

—d, —d_ b, b | b, (AX=B) 390
_qaca _chE (kO' + iVO)aO' (kE + iV;))a& to‘ B oo ' ( o )
-q,d, —q.d_ (k,+iV))b (k. +iV )b, | t. k.b,

For a given energy, there are four modes and four corresponding spinor states.
Substituting the wave vectors and the spinor states into these elements in the matrix,
solving the inverse matrix of A and operating it on matrix B can get the transmission
coefficients ¢_, f_.At the zero temperature, the conductance is given by

G:Z{eh—2

01,0

tO'L,G'R

1y

o

20,
L, (3.2.30)

where o, o denote the branch index, and v, , v, represent the group velocity at

the corresponding mode. In the scattering process, the electrons may be incident from
a right-going mode k_, but transmitted at another right-going mode £k_ or

o

transmitted at the same mode k£, (Fig. 3.2.2). The total transmission in this energy

regime is

2 2 2

+

2 )

¢

+4

+|t

+,-

(3.2.31)

-+

-,
. -
.- -

________________
- -~

. Voé‘(x) l‘/ xa
\ﬁ\'n._.ﬂ"*,’ﬂ’t

.
~'~.—"

Fig. 3.2.2.Scattering process in the high energy regime.
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3.3 Numerical results

The numerical calculation presented below are carried out under the assumption
that the electron effective mass m" = 0.023 my, which is appropriate to the InAs-based
semiconductors. The typical electron density is n ~ 10'?cm™. Accordingly, the length
unit is L = 5.0 nm, the transverse width unit of the quantum channel is w o =nl" =

15.7 nm, the energy unit is E* = 66 meV and the spin-orbit coupling parameter is in
2

units of o = f £ = 3317x10" eV m [30]. All the physical units are shown in
m

Appendix.

3.3.1 Ideal conductance with the tunable Rashba effects

3 3
2 2
o) o)
U] U]
1 1
0 T T T 0 T T T T T T T
0.950 0.975 1.000 1.025 1.050 0.950 0.975 1.000 1.025 1.050
E(E) E(E,)
3 3
2 5]
) o)
O] U]
1 1
0 T T T T T T T 0 T T T T T T T
0.950 0.975 1.000 1.025 1.050 0.950 0.975 1.000 1.025 1.050
E(E,) E(E,)

Fig. 3.3.1.1. Conductance (in units of Gy = e*/h) versus kinetic energy without the
scattering potential in the presence of in-plane magnetic field with different Rashba
coefficients: (a) =0, gB = 0.02; (b) = 0.05, gB=0.02; (c) «=0.1,gB=0.02; (d) =
0.2, gB = 0.02. The Fermi energy Er = 66 meV and the Fermi wave vector kr = 2x10°
cm™'. The magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for
InAs).
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In Fig. 3.3.1.1, we investigate the ideal conductance [31] in the presence of
in-plane magnetic field with different Rashba coefficients. Since there is no scattering
potential, the electron can be totally transmitted through the quantum channel without
reflection. It is shown in Fig. 3.3.1.1(a) when we only consider in-plane magnetic
field in the system, the conductance will be identical to Gy with Gy= &/l above the
subband bottom of the energy. There is only one propagating mode contributing to the
conductance for the energy regime above the subband bottom (Fig. 3.1.2.1(a)). In the
higher energy regime, namely the electron energy is higher than the bottom of the
upper subband, there are four propagating modes (two left and two right going modes)
and the conductance is increasing to 2Gy. In Fig. 3.3.1.1(b) and (c), the Rashba
coefficient increases from 0.0 to 0.05 and 0.1. However, the Rashba effect is not
strong enough (207 = gB) to form a pseudo-gap in the energy spectrum, that is, the
corresponding energy spectrum is still vertical splitting (Fig. 3.1.2.1(b) and (c)).
Therefore, the conductance in Fig. 3.3.1.1(b) and (c) will be identical to Gy in lower
energy regime and identical to 2Gy in higher energy regime. In Fig. 3.3.1.1(d), the
Rashba coefficient o = 0.2 satisfying 27 > gB, therefore there are a pseudo-gap in the
energy spectrum (Fig. 3.1.2.1 (d)). In low energy regime, there are two inner modes
(left and right going modes with low momentum) and two outer modes (left and right
going modes with high momentum), and hence the transported electrons contribute to
conductance 2Gy. In mediate energy regime, that is the magneto-spin-orbit
pseudo-gap energy regime, there are two outer propagating modes (left and right
going modes), and the two inner modes belong to evanescent modes. Hence, the
conductance reduces to Gy. For the high energy regime, namely the electron energy is
higher than the bottom of the upper subband, there are four propagating modes (two
right-going modes and two left-going modes) and the conductance is increasing to
2Gy.
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3.3.2 Transport properties with the Rashba effects in the presence of in-plane
magnetic field

(1) The attractive scattering potentials

(a) (b)
3 3
24 2
5 0y
e S © 14 Vor 0.0
1 L fagy e, et TS
—v,=02 | —V,=-02 | J/
—V,=-03 | —V,=-03 :// Y
—— V=04 | —V,=-04 I A
0 S— : . 0 - V1
0.950 0.975 1.000 1.025 1.050 0.950 0.975 1.000 1.025 1.050
E(E) E(E))
(c) (d)
3 3
24 5]
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—V,= 00 e 1G]
Ly s = ool 14 L —
—V,=-02 =
—V,=-03
0 i e /\ / \\.
0.950 0.975 1.000 1.025 1.050 3.950 ' 0_9‘?5 : 1_0'00 :
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Fig. 3.3.2.1. Conductance (in units of Go= ¢*/h) versus kinetic energy with the attractive
scattering potential in the presence of in-plane magnetic field with different Rashba
coefficients: (a) a = 0.0, gB = 0.02 (2¢* < gB) (b) a = 0.05, gB = 0.02 (2> < gB) (c) a =
0.1, gB = 0.02 (2a*= gB) (d) a = 0.2, gB = 0.02 (20> > gB). The Fermi energy Er = 66
meV and the Fermi wave vector kz = 2x10° cm™. The magnetic field strength is
approximately 3T when gB = 0.02 (g, = —15 for InAs).

In the presence of the scattering potential, the conductance is not ideally
quantized anymore since the electron may be back scattered and has no contribution
to the conductance. In Fig. 3.3.2.1 we show the transport properties in the presence of
in-plane magnetic field with different Rashba coefficients. We find that the increasing
of the strength of the scattering potential will cause the more suppressive of

conductance.
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In Fig. 3.3.2.1(a), we investigate the transport properties in the presence of the
in-plane magnetic field (gB = 0.02) with applying the attractive scattering potential.
The conductance is suppressed with the increasing strength of the potential. When the
Rashba coefficient a = 0.05 with the in-plane magnetic field (gB = 0.02), there is a dip
structure in the conductance (Fig. 3.3.2.1(b)). The dip structure occurs at electron-like
quasi-bound state which is at the bottom of the upper branch. As the potential strength
increases, the dip structure shifts along the direction of the low energy regime.
Namely, the corresponding energy of the electron-like quasi-bound state decreases
when the potential strength increases. In addition, the width of the dip structure
increases as the potential strength increases. Since the life time is defined as the
reciprocal of the width of the dip structure, the life time for the electron staying at the

quasi-bound state becomes shorter when the potential strength increases.

When the Rashba coefficient increases to a = 0.1 with the in-plane magnetic
field (gB = 0.02), there is the dip structure in the conductance (Fig. 3.3.2.1(c)).
However, when the Rashba coefficient is identical to @ = 0.1, the dip structure shifts
along the low energy direction with the increasing potential strength less than the dip
structure shifts with the increasing potential strength along as the Rashba coefficient a
=0.05 (Fig. 3.3.2.1(b)). In Fig. 3.3.2.1(d), the transport properties are with the Rashba
coefficient o = 0.2 in the presence of the magnetic field gB = 0.02. The shift along the
low energy direction for the dip structure with the increasing potential strength is less
and the width of the dip structure in the conductance is narrower. That is, the life time
for the electron staying at the quasi-bound state becomes longer. Therefore, we can
deduce that except the potential strength, the life time for the electron staying at the
quasi-bound state is also affected by the Rashba effect.
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(I1) The repulsive scattering potentials

(a) (b)
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Fig. 3.3.2.2. Conductance (in units of Gy = e*/h) versus kinetic energy with the
repulsive scattering potential in the presence of in-plane magnetic field with different
Rashba coefficients: (a) o = 0.0, gB = 0.02 (2a” < gB) (b) a = 0.05, gB = 0.02 2’ <
gB) (c) a=0.1, gB = 0.02 (2a’ = gB) (d) a = 0.2, gB = 0.02 (20> > gB). The Fermi
energy Er = 66 meV and the Fermi wave vector k¢ = 2x10° cm™. The magnetic field

strength is approximately 3T when gB = 0.02 (g, = —15 for InAs).

In Fig. 3.3.2.2(a) and (b), we investigate the transport properties in the presence
of the in-plane magnetic field (gB = 0.02) with applying the repulsive scattering
potential. The conductance is suppressed with the increasing strength of the potential.
As the Rashba coefficient (« = 0.1) satisfies 2a” = gB, the energy dispersion is at the
critical point to form a pseudogap and the energy dispersion is vertical splitting (Fig.
3.1.2.1(c)). Hence, in this case, the hole-like quasi-bound state is not well defined.
The dip structure in the conductance is not obvious (Fig. 3.3.2.2(c)).

In Fig. 3.3.2.2(d), we show the transport properties in the presence of the
in-plane magnetic field gB = 0.02 with the Rashba coefficient o = 0.2. A dip structure
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appears at the hole-like quasi-bound state. The corresponding energy for the hole-like
quasi-bound state is above the subband top of the lower branch. Since the repulsive
scattering potential will enhance the hole-like quasi-bound state, the dip structure at

the hole-like quasi-bound state with the applying repulsive potential is obvious.
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Chapter 4  Quantum transport in the presence of Rashba and
Dresselhaus spin-orbit interactions with in-plane magnetic field

In this chapter, we use the numerical approach different from the way used in
Chapter 3 to investigate how the Rashba spin-orbit interaction, the Dresselhaus
spin-orbit interaction an in-plane magnetic field affect the electron transport. We will
introduce the system Hamiltonian and analyze the energy spectrum and the
wavefunction in the first section. In the second section we will use the
Landauer-Buttiker formula by the matching method to calculate the conductance. At
last, we will demonstrate the numerical results under different strengths of the

spin-orbit interaction and the magnetic field and the gate voltage.
4.1 Theory

In this section, we use the numerical approach to calculate the energy spectrum
and the spinor states of the system considering both the Rashba and the Dresselhaus

spin-orbit coupling and an in-plane magnetic field.
4.1.1 System and Formulation

The confinement potential defined by the two closed split gates is a transverse
hard wall potential, as shown in Fig. 4.1.1.1. The transverse potential is a narrow
constriction hence we can neglect the momentum py along y direction. Then, the

Dresselhaus term Eq. (2.2.3) can be reduced to

Hu=§px0x- (4.1.1.1)

Also, the Rashba term can be reduced as mentioned in Ch3. The Hamiltonian of the
quantum channel in the presence of the Rashba and the Dresselhaus spin-orbit
interaction and the Zeeman effect which is due to an applied magnetic field along x

direction is
2

p a 7] 1
H,=——~-—po,+=po +—guBo +V.(y), 4.1.1.2
0 2 hpx y hpx x 2gs B x c(y) ( )

where a i1s the Rashba strength, £ is the Dresselhaus strength, B is the magnetic field

strength and V7 is the confining potential [32]. In the middle of the quantum channel
there is a finger gate in forms of delta potential. The total single particle Hamiltonian
is

H=Hy+V,(x), V.(x)=V,5(x). (4.1.1.3)
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nAs

Fig. 4.1.1.1. System picture

For the sake of convenience, the physical quantities that appear in the following

: o 1 7y e Wk :
equations are dimensionless: length unit / Ek—, energy unit £ = 5 £ magnetic
m

y o

*

. E : .. Ik
field unit B =—, the Rashba coefficient unit « =—2X , the Dresselhaus
Hp m
) .o Rk Al . .
coefficient unit f =—-, the confinement potential in units of Fermi energy
m

c

. . 1 . .
V.(y)=V(y)E and defining g= S8 - Then, the dimensionless unperturbed
Hamiltonian is:
H, =k2—2akx0'y+2,ka0'x+gB0'x+Vc(y). (4.1.1.4)

The unperturbed Hamiltonian can be separated into two different parts:

H, =H3+H;’ (4.1.1.5)
with
H=k- 20k .0, +2pk o, +gBo, (4.1.1.6)
and
H;’ :ky2+V(y), (4.1.1.7)
where
Viy)= 0 y|<% (4.1.1.8)

oo, otherwise
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is a potential confining the electron in the transverse direction. We suppose that the
confining potential with only the lowest occupied subband. The wavefunction of the
unperturbed Hamiltonian can be expanded by the spatial wavefunction and spinor

state,
Y(x,y)=¢,()e"" 1. (4.1.1.9)

Since the transverse confining potential is a hard wall potential, the transverse

¢n(y)=\/§sin(%y), (4.1.1.10)

gn:(ﬂj . (4.1.1.11)

wavefunction will be

Here, we only consider the lowest occupied subband. Namely, n is equal to 1.
Substituting the transverse wavefunction and the subband energy into (4.1.1.5) and
(4.1.1.9) obtain:

&, ¥ +(k}—2ako,+2pko, +gBo, )W = EY. (4.1.1.12)
Expanding Eq. (4.1.1.12) with the Pauli matrices obtains

k> gB+2pk, +i2ak,
gB+ 2k —i2ak, ;2

X

jﬂc:(E—e,,)z- (4.1.1.13)

The eigen-energy can be obtained by solving the above eigen-value problem. The

energy is

Ef =g, +k>+\/(2pk, +gB) +(2ak,)’ . (4.1.1.14)

For an ideal wire without scattering potential, it is convenient to use Eq.
(4.1.1.14) to obtain energy spectrum as a function of the real wave vector for

propagating modes.
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4.1.2 The Dresselhaus effects
(1) With Rashba spin-orbit interaction and in-plane magnetic field

For understanding how the Dresselhaus effect would affect the energy spectrum,
in the presence of the Rashba spin-orbit interaction and in-plane magnetic field.
Below, we fix the Rashba coefficient o = 0.2 and the Zeeman parameter gB = 0.02,

and then we tune the Dresselhaus coefficient f from weak to strong: We shall consider
four cases: = 0.0, 0.1 (f<a), 0.2 (a=p), and 0.3 (f>a), as shown in Fig. 4.1.2.1.

(a) (b)
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Fig. 4.1.2.1. Energy spectrum versus wave number in the presence of the Rashba
spin-orbit interaction and in-plane magnetic field with different Dresselhaus
coefficients: (a) a = 0.2, =10.0,gB=0.02 (b) a=0.2, =0.1,gB=0.02 (c) a = 0.2,
=0.2,g8=0.02 (d) a=0.2, = 0.3, gB = 0.02. The Fermi energy Er = 66 meV and
the Fermi eave vector k¢ = 2x10° cm™. The magnetic field strength is approximately
3T when gB = 0.02 (g, = —15 for InAs). The black and red curves indicate the plus (o
= +) and minus (c = —) spin branches, respectively. The black dot and the red dot
correspond to the local minima of plus and minus branches at the subband bottoms,
denoted by P+ and P»-. The red circle stands for the local maxima of the minus
branch at the subband top, denoted by P;-.
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In general, there are four extreme values in the energy dispersion. For
convenience, we define Py, = (kps, Ebs) and P, = (ki, Eiy) to denote the extreme
values of the energy dispersion at the subband bottom (b) and subband top (%),
respectively. We also define AE.=E,,—E and A E,=E,»—E, to represent the
pseudo-gap and the branch level spacing for a given subband, respectively. In addition,
o = +, — represents the upper branch and lower branch, respectively. In Fig.
4.1.2.1 (a), we show the spin-splitting energy dispersion with the Rashba and the
Zeeman effects but without the Dresselhaus effect. The energy dispersion we
discussed before in Ch 3. We mentioned before that the pseudo-gap is identical to A
E-=2gB, thatis, AE-=2gB=0.04. In the presence of the Dresselhaus effect (f = 0.1)
(Fig. 4.1.2.1(b)), the local maximum at the lower branch is P.- = (k;—, E;~) = (—0.024,
0.9825) and the local minimum at the upper branch is P,» = (kp+, Ep+) = (—0.02,
1.0183), that is, A E.=0.0358. At the lower branch, there are two local minimums P
—1= (kp—1, Ep—1) = (=0.22, 0.9572) and P»—> = (kp-», Ep-2) = (0.22, 0.9396). These
two local energy minimums at the lower branch are in different energy values
therefore the energy spectrum is asymmetry. As the strength of the Dresselhaus effect
increases (f = 0.2) (Fig. 4.1.2.1(¢c)), these local extreme values are P, = (k;—, E,-) =
(—0.0281, 0.9865), Ps+ = (kp+, Ep+) = (—0.02, 1.0148), Po-.1= (kp-—.1, Ep-1) = (—
0.28, 0.9335) and Ps-..= (kp .2, Ep-.2) = (0.28, 0.9053). In this case, AE.=0.0283. In
Fig. 4.1.2.1(d), the strength of the Dresselhaus effect is f = 0.3. The local energy
minimum at the upper branch is at Py+ = (kp+, Ep+) = (—0.02, 1.0117). At the lower
branch the local energy extreme values are at P~ = (k,-, E, ) = (—0.024, 0.9891), P;s-.
1= (kp—1, E»-1) = (—0.36, 0.8864) and Ps-.» = (kp .2, Ep—.2) = (0.356, 0.8531) and A
E.=0.0226. Hence, when we consider the Dresselhaus effect in the presence of the
Rashba and in-plane magnetic field, the pseudo-gap (A E.) is smaller than A E- and
the pseudo-gap A E. decreases from 0.0358 to 0.0226 with the increasing Dresselhaus
effect.

(1) Without in-plane magnetic field

For analyzing the energy dispersion, we have to calculate the group velocity,
expressed as the analytical form

b By 4k, +2(2pk, + gB)

¢ dk, \/(2akx)2 +(2k, +gB)’ ' “412.1)

We have investigated how the Dresselhaus effect would influence the energy
dispersion in the presence of the Rashba spin-orbit interaction and an applied in-plane
magnetic field. Now, we turn off the in-plane magnetic field (B = 0) but still consider

the Rashba spin-orbit interaction to see what affects the Dresselhaus effect would
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bring about. In this case, we can take limit B = 0 from the group velocity. This yields

the result

v, (B=0)= ‘;i’? —2k +2Ja’+ . (4.1.2.2)

X

As the group velocity equals to zero, we can obtain the analytical solutions about the

local extreme values. These extreme values occurs at
When the Dresselhaus coefficient is equal to zero, then the extreme values are at

. -a, o=+
kg (v, :o):{m’ o (4.1.2.4)

ke (v, =0)= (4.1.2.3)
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Fig. 4.1.2.2. Energy spectrum versus wave number in the presence of the Rashba, the
Dresselhaus and the Zeeman effects with different Dresselhaus strength. (a) a = 0.2,
=0.0,gB=0.00b)a=02,=0.1,gB=0.0(c) a=0.2,=0.2,gB=0.0 (a) a = 0.2,
L =0.3, gB=0.0. The Fermi energy £Er = 66 meV and the Fermi eave vector k¢ = 2x
10° cm™. The black and red curves indicate the plus (o = +) and minus (¢ = ) spin

branches, respectively.
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In Fig. 4.1.2.2(a), in the presence of the Rashba spin-orbit interaction a = 0.2 the
energy spectrum is lateral spin-splitting and the local extreme values are at k, = —0.2.
0.2 (Eq. 4.1.2.4) and the corresponding energy is £ = 0.96. In Fig. 4.1.2.2(b), when
we consider the Dresselhaus effect f = 0.1 in the presence of the Rashba spin-orbit
interaction, the local extreme values are at k, = —0.2236, 0.2236 (Eq. 4.1.2.3) and the
corresponding energy is £= 0.95. As the Dresselhaus coefficient becomes f = 0.2, the
local extreme values are at k, = —0.2828, 0.2828 (Eq. 4.1.2.3) and the corresponding
energy is £= 0.92, as shown in Fig. 4.1.2.2(c). In Fig. 4.1.2.2(d), the Dresselhaus
coefficient increases to f = 0.3, the local extreme values are at k, = —0.3606, 0.3606
(Eq. 4.1.2.3) and the corresponding energy is £= 0.87. From these figures, we find
that as the Dresselhaus effect gradually increases, the energy spectrum is still lateral
splitting and symmetry but the local extreme energy values decreases from 0.95 to
0.87.
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4.1.3 The Rashba-Dresselhaus effects

After investigating how the Dresselhaus effect would influence the energy
dispersion, we are going to tune the strength of the Rashba and the Dresselhaus
effects and see how the spin-orbit interactions would affect the energy spectrum. The
different ratio between the spin-orbit interactions and the Zeeman effect will result in

different energy spectrums. We categorize them into three cases: (1) a =f < gB, (2) a
=f=gB,(3)a=[>gB.
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Fig. 4.1.3.1. Energy spectrum versus wave number in the presence of in-plane
magnetic field with different Rashba and Dresselhaus coefficients. (a) a = f = 0.01,
gB=0020b)a=p=gB=0.02(c)a==0.1,gB=0.02 (d) a==0.2, gB=0.02.
The Fermi energy Er = 66 meV and the Fermi eave vector kp = 2x10% cm™. The
magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for InAs). The
black and red curves indicate the plus (c = +) and minus (¢ = —) spin branches,
respectively. The black dot and the red dot correspond to the local minima of plus and
minus branches at the subband bottoms, denoted by P+ and P:-. The red circle stands

for the local maxima of the minus branch at the subband top, denoted by P:-.
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It is shown in Fig. 4.1.3.1(a), the Rashba is identical to the Dresselhaus but
substantially less than the Zeeman effects. It breaks the spin degeneracy of the system
and results in two vertically separated spin-splitting subbands. The energy extreme
values are at Py-=(kp+, Ep+) =(-=0.008, 1.0199) and Ps-=(ky—, E»-)=(0.008,
0.9799), that is, AE,=0.04. As the Rashba and the Dresselhaus are identical to the
Zeeman effects (Fig. 4.1.3.1(b)), it is vertical spin-splitting. The energy extreme
values are at Po+1=(kp+1, Ep+1)=(—0.02, 1.0196) and Ps—..=(kp—.2, Ep—.2)=(0.02,
0.9796), that 1s, A E»,=0.04. Therefore, we can deduce that when the Rashba and the
Dresselhaus effects in the presence of in-plane magnetic field are small, there is no
affect in the branch level spacing for a given subband AE,= AE.=0.04. In Fig.
4.1.3.1 (c) and (d), the spin-orbit interactions are larger than the Zeeman effect. As the
Dresselhaus and the Rashba coefficients are identical to 0.1 (a=f=0.1), there are
two extreme values Ps—.1=(kp .1, Ep-.1)=(-0.1002, 0.99) and Ps..=(kp.2, Ep-.2)=
(0.136, 0.964) at the lower branch. However when the Dresselhaus and the Rashba
coefficients are identical to 0.2 (a=/£=0.2), there are three extreme values Ps-.1= (kp
+1, Ep+1)=(=0.28, 0.9335), Ps— 2= (kp—>, Ep-2)=1(0.28, 0.9053) and P.—=(k;-, E;-)=
(=0.02, 0.986) at the lower branch. Hence, we know that under the applying fixed
in-plane magnetic field there is a critical value for the Rashba and Dresselhaus
coefficients. When the Rashba and the Dresselhaus are smaller than the critical value
(a=£<0.1), there is only an extreme value at the lower band. However, if the Rashba
and the Dresselhaus are larger than the critical value (a=f>0.1), there are two local
minimums and one local maximum at the lower branch. In Fig. 4.1.3.1 (c), the
extreme value at the upper branch is P, =(ky—, E5-)=(—0.0361, 1.016). Therefore,
the branch level spacing for a given subband is identical to 0.026 (A E;=0.026) and
smaller than the pseudo-gap ( A E.= 0.04) considering the Rashba spin-orbit
interaction an in-plane magnetic field. In Fig. 4.1.3.1 (d) the band bottom at the upper
branch is at Py =(kp, E»-)=(—0.02, 1.015). Hence, in mediate energy regime the
pseudo-gap is identical to 0.029, A E.=0.029, and smaller than A E.=0.04.

From the above four cases, we know that the subband splitting depends on the
ratio between the Rashba, Dresselhaus and the Zeeman effects. When the Rashba and
the Dresselhaus coefficients are smaller than the critical value, the subbands are
vertical splitting. However, as Rashba and the Dresselhaus coefficients are larger than

the critical value, the magneto-spin-orbit pseudo-gap will exist.
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4.1.4 The Zeeman effects

The strength of the in-plane magnetic field along X direction would influence the
energy dispersion. The magnetic field strength is approximately 15T when gB = 0.1
(gs = —15 for InAs).
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Fig. 4.1.4.1. Energy spectrum versus wave number in the presence of the Rashba, the
Dresselhaus and the Zeeman effects with different Dresselhaus strength. (a) o = f =
02,gB=0.0(Mb)a==02,gB=0.1(c)a==02,gB=02 (d)a==02,gB=
0.3. The Fermi energy Er = 66 meV and the Fermi wave vector kr = 2x10° cm™. The
magnetic field strength is approximately 15T when gB = 0.1 (g, = —15 for InAs). The
black and red curves indicate the plus (c = +) and minus (¢ = —) spin branches,
respectively. The black dot and the red dot correspond to the local minima of plus and
minus branches at the subband bottoms, denoted by P+ and P;-.

In Fig. 4.1.4.1 we tune the in-plane magnetic field from weak to strong with the
fixed Rashba and Dresselhaus spin-orbit interactions. In Fig. 4.1.4.1(a), we consider
the Rashba and the Dresselhaus effects without the magnetic field, and then it causes
lateral energy splitting as we mentioned before. When the magnetic field becomes

stronger (gB = 0.1), the energy spectrum is vertical splitting (Fig. 4.1.4.1(b)). At the
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lower branch the local minimum is at P»- = (ky—, Ep-) = (0.008, 0.9799) and at the
upper branch the local minimum is at P»+» = (ky+, Ep+) = (—0.008, 1.0199). Then, A
E»=0.04. As the Zeeman coefficient is identical to the Rashba and the Dresselhaus
coefficients (a = f = gB = 0.2), the energy spectrum is also vertical splitting (Fig.
4.1.4.1(c)). The extreme values are at P»- = (kp—, Ep-) = (0.2525, 0.7463) and P, =
(kp+, Ep+) = (—0.1242, 1.1737). The branch level spacing for a given subband is
0.4274, AE,=0.4274. When the Zeeman effect is larger than the Rashba and the
Dresselhaus spin-orbit interactions (o = f = 0.2 < gB = 0.3) (Fig. 4.1.4.1(d)), the
extreme values are at P»- = (ky-, Ep-) =(0.2445, 0.6501), Po+ = (kp+, Ep+) = (—0.14,
1.2699) and the branch level spacing for a given subband is 0.6198, A E,=0.6198. In
conclusion, as the in-plane magnetic field gradually increases, the branch level
spacing for a given subband A E» increases from 0.04 to 0.6198.

Spin orientation

For investigating the spin orientation in the presence of the Rashba, Dresselhaus
spin-orbit interactions and the in-plane magnetic field, we calculate the effective
magnetic field for these spin-orbit interactions and the Zeeman effect. The
dimensionless Hamiltonian for an electron in the presence of the magnetic field can
be expressed as:

H=0c-B, (4.1.4.1)
where B is dimensionless (B* = E*/,uB). Hence, when the above equation is identical to
the Rashba term,

—2ak,c,=c-B=B,0,, (4.1.4.2)
we can obtain the effective magnetic field for the Rashba spin-orbit interaction
B, =-2ak.y. (4.1.4.3)

In the same way, we can obtain the effective magnetic field for the Dresselhaus

spin-orbit interaction and the Zeeman effect:

B, =2k x,and (4.1.4.4)

B, =gBx. 4.14.5)
Then, the effective magnetic field of the system can be expressed as:
B, =(B,+B,)x+B,y=(2pk +gB)x—2aky. (4.1.4.6)

In order to achieve equilibrium, the spin orientation of the electron in the presence of

the magnetic field tends to be opposite to the direction of the magnetic field.
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Therefore, the spin orientation of the electron at the plus branch is aligned in the
direction of the effective magnetic field. However, the spin orientation of the electron
at the minus branch will be opposite to the direction of the effective magnetic field.

We can express the spin orientation for the electrons at the plus branch as:

(2Bk, + gB) ~ 2ak, -

- = y, o=+.
\/(Qﬂkx +gB) +(2ak,)’ \/(2ﬂkx +gBY +(2ak,) (4.1.4.7)

and the spin orientation for the electrons at the minus branch is:

(23k, + gB) ., 2ak, ~

S * y, o=-.
\/(2ﬂkx +gB) +(2ak,)’ \/(2ﬂkx +gBY +(2ak,) (4.1.4.8)

Below, we show the energy spectrum with the spin orientation in the presence of

|

the Rashba and the Dresselhaus spin-orbit interactions with different Zeeman effects.
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Fig. 4.1.4.2. Energy dispersion with spin orientation illustrated by the arrows in
the presence of the fixed Rashba and Dresselhaus spin-orbit interactions with
different Zeeman coefficients. (a) a = =0.2,gB=0.0 (b) a = =0.2,gB =0.1
(©)a==02,g8=02 (d)a=p=0.2,gB=0.3. The magnetic field strength
is approximately 15T when gB = 0.1 (g, = —15 for InAs).
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In Fig. 4.1.4.2 (a), we turn off the magnetic field and only consider the Rashba
and the Dresselhaus spin-orbit interactions. The spin orientation is at 45° between the
X and y axes. When a = f, spin is a good quantum number and D’yakonov-Perel’ spin
relaxation is absent [10] (Spin relaxation in disordered two-dimensional electron gas
is dominated by the D’yakonov-Perel’ mechanism.). Recently, in order to achieve o =
L there has been much effort into this direction both the theoretically [10] with new
device proposals and experimentally [33]. When the in-plane magnetic field increases,
the angle between the X axis and the spin orientation is decreasing. Since the effective
magnetic field of the Rashba and the Dresselhaus spin-orbit interactions are
dependant of the linear k,, at &, = 0 the spin orientation is always along the X

direction.
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4.1.5 Complex energy dispersion

To perform numerical calculation for computing the spin-resolved conductance
in the presence of arbitrary scattering potentials involving the coupling of propagating
and evanescent modes [29], we start from rearranging the Eq. (4.1.1.14) into a

polynomial equation
K+ 2(E-2,)-CB) ~(2a)’ |k ~4BgBk, +(E~&,) ~(gB) =0. (“.15.1)

The polynomial problem can be solved by calling the DZPOCC subroutine from the
IMSL library. For a given energy, this subroutine can find the corresponding four
complex roots kx. In this way, we can get the propagating modes and evanescent

modes simultaneously, as shown in Fig. 4.1.5.1.

Fig. 4.1.5.1. 3D Energy dispersion in the presence of the spin-orbit
interactions and in-plane magnetic field (a« = f = 0.2, gB = 0.02).
kr and k; represent, respectively, the real part and the imaginary
part of the wave number (kK = kg + ki). The black solid line
represents the propagating modes and the red solid line represents
the evanescent modes. The Fermi energy Er = 66 meV and the

Fermi wave vector kr = 2x10% cm™.
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4.2 Spin-resolved transport theory

In this section, we use the numerical method to calculate the wavefunction and
derive the transport formulation. For the electron incident along X at a given energy,
we use ks (¢s) to denote the wavevector of right-going (left-going) modes at the spin
branch o, where the dummy index o could be the outer or the inner modes, denoted
by 1 or 2, as shown in Fig. 3.2.1. Then, the scattering wavefunction is of the form

w(x)=e"" y(k,)+ D r,e" y(q,),x<0, 4.2.1)
and
w(x)= 16" y(k,),x>0, (4.2.2)

where the y(k_ ) 1s the spinor states. In section 4.1, we have already calculated the
wave vectors for a given energy. In this section, we can substitute the corresponding
wave vectors of the given energy into the eigen-value problem (Eq. 4.1.1.13) and use
the DEVCCG subroutine in IMSL to solve this eigenvector problem. Solving the
eigen-value problem can obtain two eigenvalues and two spinor states. We choose the
one of eigenvalues close to the given energy and the corresponding spinor states.
Namely, we have the spinor states and wave vectors for a given energy. The
wavevectors and the spinor states can be classified by the group velocity. The Eq.

(4.2.1) can be expressed explicitly in the form:

_ikyx aO‘ ig,x co‘ igsx Cs
v(x)=e" b +7 e J +re™ PRk x<0, (4.2.3)
w(x)=t, e {ﬂ et {ﬂ . x>0. (4.2.4)

Here k, and k. represent the right going mode, g, and ¢_. denote the left going

a, a.
il

denote the spinor states of the right-going modes and

c, C
HEl

represent the spinor states of the left-going modes.

mode,

In order to calculate the conductance, we use the matching method to get the
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transmission. The wavefunction /(x) is continuous atx =0
w(x=0)=y(x=0") (4.2.7)
and the derivative of y/(x) satisfies
v (x=0")=yp'(x=0")-Vy(x=0). (4.2.8)

After the linear algebra, we can get the four equations relating the reflection
coefficients 7, r. and the transmission coefficients 7_, ..

(e

l. a,+rc +r.c.=ta_ +t.a., (4.2.9)
2. b +rd +rd_=tb +tb_, (4.2.10)
3. kya,+rq.c +r.q.c.=t (k +iVy))a, +t (k. +iV,)a_, (4.2.11)
4. kb +rqg.d +rq.d. =t (k +iVy))b +t (k. +iV,)b.. (4.2.12)

Establishing a matrix form from the four simultaneous equations gets

—c, —c, a, a, r, a,

e e o | ax=B). @2
—q.c, —q.c; (k,+iVya, (k,+iV))a, | ¢t, k,a, o
-q,d, —q.d. (k, +iVy)b (k. +iVy)b_ || t. kb,

Substituting the modes and the corresponding spinor states into the matrix elements

and calling the DLSACG subroutine in IMSL to obtain the inverse matrix of A and
operate A" on matrix B will finally obtain the transmission coefficients t, t_.(The

DLSACG subroutine can solve a complex general system of linear equations AX = B
(A, B are already known).)

At the zero temperature, the conductance 1s given by

G=Z{eh—2

0,0

tO'L Or

* Loy 42.14
b (4.2.14)

o

where o, o denote the branch index, and v, , v, represent the group velocity at

the corresponding mode. As we mentioned before in Ch3, during the scattering
process, the electrons may be incident from a right-going mode k_ but transmitted at

another right-going mode k_ or transmitted at the same mode k_ . In the high energy

regime, the total transmission is

r-¥

O .,0p

2
+

2

2 2 2
=[e_| +]r... .

+

L. (4.2.16)

tO'L Or
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Fig. 4.2.1. The scattering process in the high energy regime.
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4.3 Numerical results

The numerical calculation presented below are carried out under the assumption
that the electron effective mass m" = 0.023 my, which is appropriate to the InAs-based
semiconductors. The typical electron density is n ~ 10> cm™. Accordingly, the length
unit is L* = 5.0 nm, the transverse width unit of the quantum channel is W=aL" =
15.7 nm, the energy unit is E" =66 meV, the corresponding Fermi wave vector kr = 2

x 10° cm”, the Rashba spin-orbit coupling parameter is in units of

2
a = % = h liF = 3.317x10"° eV m and the Dresselhaus spin-orbit interaction
yom
* EF hsz -10 . .
parameter S = N =—77—=13.317x10"" eV m [30]. All the physical units are shown
e m
in Appendix.

4.3.1 Ideal conductance with tunable the Dresselhaus effects
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Fig. 4.3.1.1. Conductance (in units of Go= e’/h) versus kinetic energy without the scattering
potential in the presence of the Rashba spin-orbit interaction and in-plane magnetic field with
different Dresselhaus coefficients: (a) = 0.2, = 0.0, gB = 0.02; (b) «=0.2, §=0.1, gB =
0.02; (¢) =0.2,=0.2,gB=0.02; (d) a=0.2, §=0.3, gB =0.02. The Fermi energy Er =
66 meV. The magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for InAs).
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In Fig. 4.3.1.1, we investigate the ideal conductance in the presence of the
Rashba spin-orbit interaction and in-plane magnetic field with different Dresselhaus
coefficients. Since there is no scattering potential, the electron can be totally
transmitted in the quantum channel without scattering. It is shown in Fig. 4.3.1.1(a)
when we only consider the Rashba spin-orbit interaction and an in-plane magnetic
field in the system, the conductance will be identical to 2Gy with Gy = e*/h above the
subband bottom of the energy. In low energy regime, there are two inner modes (left
and right going modes with low momentum) and two outer modes (left and right
going modes with high momentum), and hence the transported electrons contribute to
conductance 2Gy. In mediate energy regime, that is the magneto-spin-orbit
pseudo-gap energy regime, there are two outer propagating modes (left and right
going modes), and the two inner modes belong to evanescent modes. The
conductance reduces to Gy. In the high energy regime, namely the electron energy is
higher than the bottom of the upper subband, there are four propagating modes (two

left and two right going modes) and the conductance is increasing to 2Gy.

As the Dresselhaus effect is 0.1 (Fig. 4.3.1.1(b)), above the subband bottom of
the energy the conductance will not be identical to 2Gy anymore. Since in sufficient
low energy regime there are only two propagating modes (one left and one right going
modes with low momentum and high momentum, respectively), the transported
electrons contribute to conductance Gy. In low energy regime there are two
right-going modes hence the conductance is equal to 2Gy. In magneto-spin-orbit
pseudo-gap energy regime, the conductance reduces to Gy since there are two outer
modes (left and right going modes), and the two inner modes belong to evanescent
modes. When the electron energy is higher than the bottom of the upper subband, the
conductance is increasing to 2Gy because of two right-going modes in the high energy

regime.

As we mentioned before in Fig. 4.1.2.1, the pseudo-gap decreases when the
Dresselhaus effect increases. Therefore, we can see the pseudo-gap energy regime
reduce in ideal conductance Gy reduces when the Dresselhaus coefficients increases
from 0.1 to 0.3 (Fig. 4.3.1.1(b), (c) and (d)).
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4.3.2 ldeal conductance with the tunable Rashba-Dresselhaus effects
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Fig. 4.3.2.1. Conductance (in units of Go= e’/h) versus kinetic energy without the
scattering potential in the presence of in-plane magnetic field with different Rashba
and Dresselhaus coefficients: (a) a = =0.01, gB=0.02 (b) a = f=2gB =0.02 (¢c) a
=p=0.1,g8=0.02 (d) a=p=0.2, gB=0.02. The Fermi energy Er = 66 meV. The
magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for InAs)

In this section, we consider the ideal conductance in the presence of in-plane
magnetic field with different Rashba and Dresselhaus coefficients. As the Rashba and
the Dresselhaus effects are less than the Zeeman effect, the ideal conductance is
identical to Gy above the subband bottom in low energy regime (Fig. 4.3.2.1(a)) since
there is only a right-going mode in this energy regime (see Fig. 4.1.3.1(a)). When the
energy is higher than the band bottom of the upper branch, the conductance will

increase to 2Gy because of two right-going modes in this energy regime.

If the Rashba and the Dresselhaus coefficients are identical to the Zeeman
coefficient, the corresponding energy spectrum (Fig. 4.1.3.1(b)) is also vertically
splitting. Accordingly, in low energy regime the ideal conductance is identical to Gy

above the subband bottom and in higher energy regime the ideal conductance
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increases to 2Gy.

In Fig. 4.3.2.1(c) we show the ideal conductance for the Rashba and the
Dresselhaus effects (o« = f = 0.1) larger than the Zeeman effect (gB = 0.02). The
corresponding energy spectrum is in Fig. 4.1.3.1(c). Under the applying magnetic
field, the Rashba and the Dresselhaus effects is not strong enough to form a
pseudo-gap in mediate energy regime and therefore in low energy regime the ideal
conductance is Gy above the subband bottom and in higher energy regime the ideal
conductance is increasing to 2Gy. As the Rashba and the Dresselhaus effects (a = f =
0.2) is significantly large enough to form a pseudo-gap in mediate energy regime,
there are two propagating modes (a right-going mode and a left-going mode) and two
evanescent modes in mediate regime. The ideal conductance will reduce from 2Gy to

Gy in the pseudo-gap regime (Fig. 4.3.2.1(d)).
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4.3.3 The Dresselhaus effects in the presence of the Rashba spin-orbit interaction
and in-plane magnetic field

(1) The attractive scattering potentials
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Fig. 4.3.3.1. Conductance (in units of Gy = ¢*/h) versus kinetic energy with the

attractive scattering potential in the presence of the Rashba spin-orbit interaction and
in-plane magnetic field with different Dresselhaus coefficients: (a) a = 0.2, f = 0.0,
gB=0.02(b)a=02,=0.1,gB=0.02(c)a=0.2,=0.2,g8=0.02(d)a=0.2,5
= 0.3, gB = 0.02. The Fermi energy Er = 66 meV. The magnetic field strength is
approximately 3T when gB = 0.02 (g, = —15 for InAs)

In the presence of the scattering potential, the conductance is not ideally
quantized anymore since the electron is in the scattering process. The increasing
strength of the attractive scattering potential causes the more suppressive conductance
(Fig. 4.3.3.1). In the above picture we will show the transport properties in the
presence of the Rashba spin-orbit interaction and in-plane magnetic field with
different Dresselhaus coefficients. In Fig. 4.3.3.1(a), we show the conductance in the
presence of the Rashba spin-orbit interaction and in-plane magnetic field but without

the Dresselhaus effect which we already mentioned in Ch3. We can see under the
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applying attractive scattering potential there is a dip structure appears at the energy
corresponding to the electron-like quasi-bound state at the bottom of the upper branch
(Fig. 4.3.3.1(a), (b), (c) and (d)). Since the attractive scattering potential will enhance

the electron-like quasi-bound state.

Source Drain

Fig. 4.3.3.2. Scattering process in the presence of the true bound state.

When the Dresselhaus coefficient is identical to 0.1, there is a Fano effect in
sufficient low energy regime (Fig. 4.3.3.1(b)). When we apply a negative delta
potential, below the band bottom of the lower branch there is a true bound state (TBS)

E,, =-V;] /4 (Fig. 4.3.3.2). For the given energy of the electrons corresponding to

the energy which is the binding energy E7zzs plus the band bottom energy of the lower
branch, the electrons with this given energy at the right-going mode may be scattered
into the bound state and then forward scattered into the right-going mode. These
electrons will interference with the electrons directly transmitted at the right-going
mode and result in the Fano peak. On the other hand, the electrons at the right-going
mode may be scattered into the bound state and then back scattered into the left-going
mode or scattered into the left-going mode. These electrons will interference and
result in the Fano dip [34].

For the case of scattering potential V = —0.1, shown in Fig. 4.3.3.1(b), the
corresponding binding energy is Erzs = —0.0025. The Fano effect occurs at 0.9552
which is less than the band bottom energy 0.9572 of the lower branch approximately
0.002. Under this applying potential strength the Fano effect is not apparent. When
the scattering potential Vo= —0.2, the corresponding binding energy is Erzs= —0.01.
Since the Fano effect is at 0.9479 less than the band bottom energy approximately
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0.0095. The corresponding conductance of the Fano peak is approximately 0.95G
and the conductance of the Fano dip is 0.14Gy, the Fano effect under this applying
potential strength is apparent. When the scattering potential is identical to —0.3 and
—0.4, the energy (the binding energy subtracting from the band bottom energy) is
0.9347 and 0.9172, respectively. These energies are less than the band bottom energy

0.9056 of the lower branch, and therefore there are no propagating modes to transport.

When the Dresselhaus coefficient is identical to 0.2, there is a Fano effect in
sufficient low energy regime as the attractive scattering potential is —0.1, —0.2 and
—0.3 (Fig. 4.3.3.1(c)). As the Dresselhaus coefficient is 0.2, the energy range in low
energy regime, Ep-.1—Ep-2=0.0282, is larger than the energy range 0.0176 in low
energy regime as the Dresselhaus coefficient is 0.1. Therefore, when the scattering
potential is identical to —0.3, the Fano effect is at 0.911 which is above the subband
bottom.

As the Dresselhaus coefficient is 0.3 (Fig. 4.3.3.1(d)), the Fano effect occurs
when the attractive scattering potential is —0.1, —0.2 and —0.3. The Fano effect is not
obvious when the attractive scattering potential is —0.1. When the scattering potential
is —0.2 and —0.3, the Fano effect is also indistinct. In conclusion, we deduce that
under the same Rashba spin-orbit interaction and the same in-plane magnetic field the
Fano effect will be affected by the Dresselhaus effect.
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(11) The repulsive scattering potentials]
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Fig. 4.3.3.3. Conductance (in units of Gy = e*/h) versus kinetic energy with the
repulsive scattering potential in the presence of the Rashba spin-orbit interaction and
in-plane magnetic field with different Dresselhaus coefficients: (a) a = 0.2, f = 0.0,
gB=0.02(b)a=02,=0.1,gB=0.02(c)a=0.2,=0.2,g8=0.02(d)a=0.2,5
= 0.3, gB = 0.02. The Fermi energy Er = 66 meV. The magnetic field strength is
approximately 3T when gB = 0.02 (g, = —15 for InAs)

In the presence of the repulsive scattering potential, the increasing strength of the
attractive scattering potential also results in the more suppressive conductance. In Fig.
4.3.3.3(a), we show the conductance in the presence of the Rashba spin-orbit
interaction and in-plane magnetic field but without the Dresselhaus effect which we
already mentioned in Ch3. When the Dresselhaus coefficient is not identical to 0.1,
there is a dip structure appears at the hole-like quasi-bound state. The corresponding
energy of the hole-like quasi-bound state is at the top of the lower branch. Since when
the scattering potential is repulsive, it will enhance the hole-like quasi-bound state.
Additionally, we find that the width of the suppressed plateau is broadening with the

increasing Dresselhaus coefficient.
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4.3.4 Transport properties with the Rashba-Dresselhaus effects in the presence of
an in-plane magnetic field

(1) The attractive scattering potentials
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Fig. 4.3.4.1. Conductance (in units of Gy = e°/h) versus kinetic energy with the
attractive scattering potential in the presence of in-plane magnetic field with different
Rashba and Dresselhaus coefficients: (a) a = f = 0.01, gB=0.02 (b) a = =gB =
0.02(c)a=p=0.1,gB=0.02 (d) a=p=0.2, gB =0.02. The Fermi energy Er = 66
meV. The magnetic field strength is approximately 3T when gB = 0.02 (g, = —15 for
InAs).
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Source Drain

Fig. 4.3.4.2. Scattering process in the presence of the true bound state.

In Fig. 4.3.4.1 we show the transport properties with the Rashba and the
Dresselhaus effects in the presence of an in-plane magnetic field. The corresponding
energy spectrum is vertical splitting (Fig. 4.1.3.1(a) and (b)). Under the applying

attractive scattering potential, there is a Fano effect in low energy regime. Below the

2

band bottom of the upper branch there is a true bound state in binding energy _TO

(Fig. 4.3.4.2). For the given energy of the electrons corresponding to the energy which
is the binding energy E7zs plus from the band bottom energy of the upper branch, the
electrons at this given energy at the right-going mode may be scattered into the bound
state and then forward scattered or back scattered. The forward scattering will result

in the Fano peak. Otherwise, the back scattering will result in the Fano dip.

In Fig. 4.3.4.1(a), as the scattering potential is —0.1, the corresponding binding
energy is —0.0025. The Fano effect occurs at 1.0175 which is less than the band
bottom energy 1.02 of the upper branch approximately 0.0025. When the scattering
potential is —0.2, the binding energy is —0.01. The corresponding Fano effect is at 1.01
less than the band bottom energy of the upper branch 1.02 approximately 0.01. Under
this applying potential, the Fano peak is at 0.939Gy and the Fano dip is at 0.035Gy,
hence the Fano effect is apparent. Moreover, when the scattering potential is —0.3,
the Fano effect occurring at 0.997 is also apparent since the Fano peak occurs at
0.95Gy and the Fano dip occurs at 0.017Gy. As the scattering potential is —0.4 if
there is a Fano effect, it is approximately at 0.98. However this corresponding energy,
0.98, is at the band bottom of the lower branch (Fig. 4.1.3.1(a)). Therefore, there is
without any propagating mode to transport. In Fig. 4.3.4.1(b), the corresponding
energy spectrum is also vertical splitting. Therefore, the transport properties in Fig.
4.3.4.1(b) are similar to the conductance in Fig. 4.3.4.1(a).
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Source Drain

Fig. 4.3.4.3. Scattering process in the presence of the true bound state.

In Fig. 4.3.4.1(c), the Fano effect occurs at the binding energy Erzs below
subband (see Fig. 4.3.4.3). The corresponding energy spectrum is Fig. 4.1.3.1 (c). As
the potential Vy = 0.1, the Fano effect is not apparent. When V = 0.2 and 0.3, there is
a Fano effect and the width between the Fano peak and the Fano dip are larger than
the Fano effect in other cases (Fig. 4.3.4.3 (a), (b) and (d)). That is, when the Rashba
and Dresselhaus coefficients a = f = 0.1 and the Zeeman coefficient gB = 0.02, the
life time for the electron staying in the true bound state is shorter. When V, = 0.4,
there is no propagating modes at the corresponding energy of the bound state. Hence,

under this applying potential V, = 0.4, there is no Fano effect.
In Fig. 4.3.4.1(d), the Fano effect appears at the bound state below the band

bottom of the lower branch. This picture we have mentioned before in section
4.3.3.1(c).
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(I1) The repulsive scattering potentials

E(E,) E(E,)

Fig. 4.3.4.4. Conductance (in units of Gy = ¢*/h) versus kinetic energy with the
repulsive scattering potential in the presence of in-plane magnetic field with
different Rashba and Dresselhaus coefficients: (a) a = f = 0.01, gB=0.02 (b) a = f
=gB=0.02(c)a==0.1,gB=0.02 (d) a = =0.2, gB = 0.02. The Fermi energy
Er =66 meV. The magnetic field strength is approximately 3T when gB = 0.02 (g, =
—15 for InAs).

In the presence of the repulsive scattering potential, the increasing strength of the
attractive scattering potential causes the more suppressive conductance. In Fig. 4.3.4.4
(a) and (b) under the applying repulsive scattering potential, the conductance is
suppressed. As the Rashba and the Dresselhaus identical to 0.1 are stronger than the
Zeeman effects, there are two local extreme values, 0.99 and 0.964 at the lower
branch (Fig. 4.1.3.1(c)). Above subband bottom whose energy value is 0.99, there is a
hole-like quasi-bound state. Therefore, as the energy is identical to the corresponding
energy of the hole-like quasi-bound state, there is a dip structure. When the scattering
potential is 0.1, 0.2, 0.3 and 0.4, the dip structure is at 0.99124, 0.99237, 0.99349 and
0.99429, respectively. Accordingly, the corresponding energy of the quasi-bound state
will be affected by the potential strength.
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In Fig. 4.3.4.4(d), the Rashba and the Dresselhaus identical to 0.2 are stronger
than the Zeeman effects. There is a pseudo-gap in the corresponding energy spectrum
(Fig. 4.1.3.1(d)). The repulsive applying potential will enhance the hole-like

quasi-bound state hence the dip structure is obvious.
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Chapter 5  Conclusion and future work

In Chl, we start from the simple case and we investigate the transport properties
in the presence of the static delta potential in the quantum wire. In Ch2, we introduce
the spintronics. In recent years, there are a lot of researches about the spintronics. We
expect that we can use the spin to carry some information. We realize that for
spintronics the spin-orbit interactions are an efficient way to couple the electron spin
and the momentum. Hence, in Ch3 we consider the Rashba spin-orbit interaction in
our system. In addition, we apply the in-plane magnetic field along X direction. We
use the analytical approach to calculate the conductance. Because of the in-plane
magnetic field, in some specific cases, there is a pseudo-gap in the energy dispersion.
We can see the electron-like dip structure and hole-like dip structure in the
conductance pictures. Chapter 4 investigates the quantum wire in the presence of the
Rashba and the Dresselhaus spin-orbit interactions and the in-plane magnetic field.
The additional Dresselhaus term breaks the symmetry of the energy spectrum. In this
chapter, we use the numerical approach to calculate the transport properties. Under
the asymmetry of the energy spectrum, we can see the Fano effect in the transport

properties.
In the future, we are going to change the direction of the magnetic field. We

expect to see the variation about the energy spectrum and investigate how the

different orientations of the magnetic field could affect the transport properties.
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Appendix:

The physical units for GaAs-based semiconductors

The effective mass m" | The energy unit £ " | The length unit L" | The frequency unit ©
0.067my OmeV 7.96nm 13.6THz
The physical units for InAs-based semiconductors
The effective mass m The energy unit £ The length unit L
0.023my 66melV Snm
width of the channel Rashba parameter a Dresselhaus parameter ,H*
15.7nm 3.317x10" eV m 3.317x10" eV m
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