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The spectral theory of wave propagation in a weakly range-dependent environment is deduced 
from the corresponding theory for a wedge-shaped structure. The solution obtained is compared 
to that derived previously, which suggests that some modifications are necessary in the previous 
formulation in order to bring the solution into a symmetric form. 

PACS numbers: 43.30.Bp 

INTRODUCTION 

The adiabatic mode theory • has found wide applications 
in the analysis of wave propagation in weakly range-depen- 
dent environments. Under the assumption of adiabatic ap- 
proximation, local modes propagate independently with 
negligible mutual coupling and preserve their identity to 
adapt themselves smoothly to the slowly changing environ- 
ments. It fails, however, to apply in a region containing fields 
of continuous spectrum. A notable example is the wave 
propagation in a shallow leaky wedge structure, where the 
trapped adiabatic modal fields may reach their respective 
cutoffs and begin to radiate across the wedge boundary. Jen- 
sen and Kuperman 2 have computed the field numerically via 
the parabolic equation method, which vividly displayed the 
picture of the coupling mechanism involved. Based on this 
observation, recent advances TM make use of the characteris- 
tic Green's function, representing the field as a spectral inte- 
gral, where the adiabatic approximation is extended to in- 
clude the continuous spectrum contribution by invoking the 
condition of invariance of local transverse resonance. The 

spectral integral formulation makes it feasible to treat the 
modal field constituents, whether discrete or continuous, 
from a unified point of view. It also substantially broadens 
the scope of the solution since various well-developed 
asymptotic techniques can be readily applied. It is most use- 
ful, in particular, in deriving a uniform representation of the 
fields in the transition region which is otherwise difficult to 
obtain. This aspect has been explored extensively in Ref. 3. 
However, the resultant solution in Ref. 3 is found to be for- 
mally unsatisfactory since it is not symmetric in form. In this 
paper we show how a symmetric form can be obtained based 
on the results in Ref. 4. 

I. FORMULATION AND SOLUTION FOR A WEDGE 
REGION 

For clarity and completeness, the solution obtained in 
Ref. 4 is rederived in this section. The model we consider 

here is a wedge-shaped medium with refractive index n em- 
bedded in a semi-infinite half-space as shown in Fig. 1. The 
cylindrical coordinate system is adopted with the bottom 
interface taken as abscissas. We then seek a solution of the 

reduced wave equation (a harmonic time dependence e- 

is assumed and deleted throughout), 

--fipp+pWa--w + ) = ), 
(la) 

with a unit line source located at the position p = (p', •') 
and satisfying the boundary conditions, 

G=O at•=a, 
•G 

G and continuous at • = O, 

edge condition at p = 0, 

radiation condition at p = oo, 

where k is the wavenumber associated with the wedge region 
being considered. To confine our attention to a gradually 
changing environment, we assume that the wedge angle is 
small and concentrate our interest in a region sufficiently 
remote from the edge such that the local arc length (which is 
approximately the local depth in adiabatic mode theory) 
remains finite and varies slowly with range. 

The problem is a nonseparable one. However, we pro- 
ceed as in the adiabatic mode theory. But instead of directly 
constructing the adiabatic eigenfunctions, the method of 
characteristic Green's function -• is used. The characteristic 

FIG. 1. The wedge geometry. 

n0 = 1 
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Green's function in the angular domain satisfies 

+2x = 

and is given by 

x) = 

(2) 

sin k x/A (a - • > ) 

ik x[-•-( a -- 4 < ) eik •/2--( a + 4 < ) e + F(A; p) 
X , 

1 + F(A; p) e 

•> = max(•, •'), •< = min (•, •'), (3) 

where A is a spectral variable and F (A; p) is the reflection 
coefficient resulting from the local boundary condition 
where the assumption has been made to ignore the back- 
scattering angular wave under the wedge. A simple evalua- 
tion invoking boundary conditions yields 

or 

(4a) 

[•pA• i•(1) ,4]/ r(A;p) = A _ 1-• -• 

[•pA• i•f(1) A A + 1- 7 -• . (4b) 
The local completeness relation is then given by the spectral 
integral 

dX X), (5) 

where the integration contour Cx encircles all the singulari- 
ties of the integrand g• in the proper spectral plane (Fig. 2). 
The pole singularities Am are evaluated through the local 

Im)• 

........ -- = ReX 

m 

FIG. 2. Contour of integration in the complex A plane. 

resonance equation in the denominator in Eq. (3) 

1 + F(Am;p)e2inf•-mCt=O (6) 

or, alternatively, by making use of Eq. (4b) 

s. (p) x/( 1 -- 1/n 2) -- ,•m/D 2 ' 
sa (p) = ap = arc length at p extended by the wedge. 

(7) 

The correct adiabatic modes can be derived from the residue 

contribution at the poles. In addition, there exists a branch 
point singularity at 

At, =p2(1- l/n2) , (8) 

which is responsible for the field radiated across the bottom 
interface and which does not appear in the adiabatic mode 
theory. It is, however, inherent in the present approach. The 
local resonance in Eq. (6) is extended to a spectral variable 
while maintaining the range dependence through the invar- 
iance relation, 

1 + F(A;]9)e 2ik'/-i-a = 1 + F(A ';]9')e 2ik'fi-'a , (9) 

which is required to construct a solution that is consistent 
with the adiabatic mode theory. 

Substitution of A (p) into the radial equation leads to 

p-•p + k2p-• gp = -6(p- ). (10) P 

To solve Eq. (10) let 

gp = ]9 -- 1/2fp ß 

One finds 

[d 2 (A(p) 1 )Ifs, •-•+ k 2 1 '0 2 •- 4k2p 2 
1/26( ]9 --]9') . ( 11 ) 

Equation (11 ) can be solved asymptotically by WKB ap- 
proximation to obtain 

g•,,•exp(ik f•• > dp•l A(p) 1 ,0 2 •' 4k 2]92 

X[_2ik(]9,)1/2191/2( 1 •(]9) 1 )1/4 ]92 •' 4k 2]92 

( ]9,)2 nt- 4k 2( ]9,)2' ' (12) 
where we have ignored the backscattering wave field from 
the edge, due to the fact that this field will be strongly atten- 
uated in a leaky wedge structure before reflecting back to the 
region concerned. 

Recall that the exact solution for the Green's function in 

a separable problem is given by 5 
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G( p, p') = k2 f •-•i c, g•' (p' p'; A ) g+ ( q•' q•'; A ) dA . 
(13) 

A simple substitution of Eqs. (3) and (12) would not be 
justified due to the fact that the solution thus obtained would 
violate the principle of reciprocity. To remedy this, we re- 
write Eq. (3) as 

sin kx•l (o• -- •bl) 

e i•4-•(a-4:) d- r'(A2; p2)e ik4-•(a +•) x , (14) 
1 + F(2; p)e 2i•'4T" 

where • = •) , •2 = • ( are either the source point or the 
observation point while 2•, 2 2 are associated with •, •2, 
respectively. 

Substituting Eqs. (12) and (14) into ( 13 ), we obtain 

G( p, p') = k2f 4c9Lic9A sinkx/•l(a_41 ) ½ik4-•(a--42)_• F(,•2;P2 ) d2 . 

•-•' c• t3L/•A t k(AA t) 1/4 1 -3- r'(A; p) e 2ik4Ta 

Xexp ik dp" 1-•+ 
( ( p,,)2 4k2( p,,)2 

X[__2ikp•/2(p,)•/2(l__/].(p' •) 1 )1/4( ,•(p) 1)1/4]-1 (p,)2 + 4k 2(p,)2 1 p2 •- 4k 2p2 (15) 

Here A is a spectral integration variable whereas A' and A" 
are related to A through the invariance relation, 

L(A; p) = F(A; p)e 2i•'4T" = F(A '; p')e 2i•'•4-•" 

= F(A ";p")e 2i•42'" . (16) 
A scalar factor [ (c•L/c•A ) / (c•L/c•A' ) ] • / 2 has been inserted 
in order to preserve the symmetry of the solution. 

II. TRANSFORMATION INTO LOCAL MODE 

DESCRIPTION 

Although we have adopted a cylindrical coordinate sys- 
tem for our discussion, all of the relations obtained can be 
easily cast into forms suitable for a local stratification under 
the assumption of weak range dependence. Specifically, we 
first transform all of the angular variables into linear ones via 

•=/•/p2, s(p) =pqb, s,(p) =pa. (17) 
Next we make use of the following approximations under the 
assumption of weak range dependence: 

p-•x, s(p).•z, 

s• (p)-•H(x), the local channel depth. 
As a result we have for the reflection coefficient 

F(A; p)--•F(.e) = 

= exp[ - 2i tan- - ]; 
•'•, = 1- 1/n 2. (18a) 

the local resonance equation 

, )e 2"' •dxZ•. 1 + F(Am'p 

--•l + exp [i(2kx/•,• H(x) -- 2 tan-]' •/•b -- •m ) ] 
=0; (18b) 

I 

the Green's functions 

1 exp [ik œ• dxx/1 - •(x) ] 
• -- 2ik [ 1 - •e(x) ]1/4[ 1 -- •e(x') ]1/4' 
sin k xf• [H(x• ) -- z• ] 

g•'-• k(xx') •/2(•e•e ') •/4 
eik •[H(x2) -- z2] _[_ [• (•2)eik 4•[H(x:) 

x ; 
1 + F (•)e 2ik•-H(x) 

and the range-invariant relation 

L (A; p )-•I• (•)e 2ik 4•-H(x) = I• (• ' )e 2ik q•'H(x') 

(18c) 

(18d) 

, (18e) 

where the higher-order terms have been neglected in Eq. 
(18c). Futhermore, 

dA •i / c•L Ic•A OL !OA ' •/ ( c•L Ic• ) ( d• /dA ) = d(•eP2) (OL !0•') (d• '/d2 ') 

_d• ( xx, ) 4 c•L /c• (18f) 

Equation (15) reduces, via substitution of Eqs. (18c), 
(18d), and (18f) to 

k2f40L/O , G( p, p') • - •-•. % c3L/c3• 
sin k x/• [H(x•) -- z•] 

k(•-•- ') TM 

eik,•221I-I(x•) --z21 + F(•2)eik•[H(x•) + z•] 
x 

1 + F(•)e 2•ffn(•) 

X< 
x 

- 2ik [ 1 - •(x) ]]/4[ 1 - •(x') ],/4, 
(19) 
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which is the desired solution pertinent to wave propagation 
in a region with slowly varying boundary interfaces. 

III. DISCUSSION AND CONCLUSION 

Equation (19) is essentially the same as that given in 
Ref. 3. It is not surprising to see this coincidence, since both 
derivations follow the same line of philosophy by assuming 
that the invariance of transverse resonance remains valid 

throughout the entire spectrum as an extension of the adia- 
batic mode theory. One notices, however, difference exits 
between them regarding the definitions of the depth coordi- 
nates z> and z <. Literally the z> and z < are defined respec- 
tively as the greater and lesser values of the source and obser- 
vation depth locations. While these are meaningful in a 
range-independent situation, ambiquity may arise for the 
two depths located in different ranges when the channel 
depth is a function of the range. Such is the case when one 
considers the situation as shown in Fig. 3, which shows if the 
source is specified in a location Q, the depth of an arbitrary 
observation point P in the shaded region will always appear 
to be z>, no matter how one looks from the side of the lower 
boundary (with the depth axis upward) or from the side of 
the upper boundary (with the depth axis downward). In 
other words, the solution obtained in Ref. 3 is coordinate 
dependent, i.e., it will depend upon whether the upper or the 
lower boundary is chosen as the range coordinate axis. A 
modification is therefore necessary in order to bring the sym- 
metry into the solution. On the other hand, our present study 
shows that the z> and z < are determined via a transforma- 
tion from their relative orientations •b > and •b < in the angu- 
lar domain. They are defined uniquely in a scaled sense such 
that the z> and z< represent the depth values with the 
greater and the lesser values of the scaled depths z/H(x ) and 
z'/H( x' ) , respectively. 

FIG. 3. The ambiguity region for z>. 

To conclude our discussion, the spectral theory for a 
weakly range-dependent environment 3 while correctly re- 
taining the symmetry of the solution in range, has ignored 
the symmetric relation in depth and is therefore formally 
unsatisfactory. This can be readily remedied, as we discussed 
in this paper, by proper interpretation of the location param- 
eters. 
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