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自旋軌道作用對奈米圖形二維電子系統的影響 

 

研究生：蘇韋綾                 指導教授：朱仲夏教授 

 

國立交通大學 

電子物理研究所 

 

 

摘要 

 

  我們考慮電子狀態在三角形週期電壓下的二維電子氣體中，有多對狄拉克角錐的結

構在倒空間中的 K點被找到。由於週期性的平面電位差造成的有效自旋軌道交互作用，

導致在狄拉克點上的錐狀結構打開一個能隙。 

與石墨石烯的 Chern 值做比較,此週期性三角結構系統的 Chern 值不為零，是由於

此系統(三角形週期晶格)有以垂直平面方向做轉軸旋轉 60 度倍數的系統對稱性。 

由於拓撲學中的不變量 Z2值以及 Chern 值，可預期在樣品邊界擁有相反方向傳輸

的邊緣態以及量子自旋霍爾效應是存在此系統的。此自旋軌道交互作用是造成此系統有

拓撲絕緣相位的原因。 

 

 

 

 

 

 

 

 

 

 

 

 



EFFECTS SPIN-ORBIT INTERACTION

ON A NANO-PATTERNED TWO-DIMENSIONAL
ELECTRON GAS

Student: Wei-Ling Su Advisor: Prof. Chon-Saar Chu

Department of Electrophysics

National Chiao Tung University

Abstract

We consider the electronic state of a two-dimensional electron gas in a muffin-tin
potential triangular lattice. Several Dirac cone structures at the K points in the reciprocal
space have been obtained.

Effects of spin-orbit interaction due to the in-plane potential gradient of the muffin-tin
potential have been studied in detail. We find that gap opening at the Dirac points can
lead to global gaps. In contrast to the graphene case, the Chern number of an energy
band for a given spin state is nonzero. This is due to the rotational symmetry by rotating
about an axis normal to the system by 60◦.

As a result the system has a topological Z2 invariant and we expected it to support
helical edge states in the open boundary case. The spin-orbit interaction is thus shown
to drive the system into a topological insulating phase.
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Chapter 1

Introduction

1.1 Background

Recently, graphene have attracted a lot of studies because graphene has Dirac points

structure at each corners of Brilloin zone. Therefore, to find out new structure with Dirac

cone by artificial fabrication in semiconductors can be addressed an important issue.

In realistic case we must consider the spin-orbit interaction for our case (see chapter1).

Another interesting topic is quantum spin Hall state which has a special property for

electrons transmission with certain spin helix.

1.1.1 spin-orbit coupling in solid-state system

Electron spin, the only internal degree of freedom of electrons, follows naturally from the

Dirac equation when Dirac tried to put wave function in a covariant form, when space

and time appear on equal footing. A nonrelativistic limit of the Dirac equation gives rise

to the spin-orbit interaction term, that has been found great success in atomic energy

spectra. The spin-orbit interaction, in vacuum can be expressed by [2]

HSO = − e~
4m2

0c
2
σ · (E× p) =

~
4m2

0c
2
σ · (∇V × p) , (1.1)

1



CHAPTER 1. INTRODUCTION

where m0 is the free electron mass, ~ the Planck constant and c the light speed of light.

The physical mechanism of HSO can be interpreted: an electron moving in an electric

potential region sees, in its frame of reference, an effective magnetic field which couples

with the electron spin through the magnetic moment of the electron spin. Through this

effective magnetic field, which certainly depends on the orbital motion of the electron, the

SOI is established. This physical picture holds in semiconductor too, when V (r) could be

the periodic potential of the host lattice and also the impurities.

The k ·p model is often applied to the electron energy band calculation in semiconduc-

tor, when the states in the vicinity of the band edges. Furthermore, within the envelope

function approximation (EFA), the energy band can be characterized by effective masses.

The SOI in semiconductors requires, first of all, an effective electric field in the material.

Such effective electric field can be contributed from the build-in crystal field where the

crystal has bulk inversion asymmetric (BIA) the so-called Dresselhaus SOI, or structural

inversion asymmetry (SIA), the so-called Rashba SOI. The BIA is found in zinc-blende

structure and the SIA in asymmetric quantum wells (QWs) or heterostructures.

Based on the effective mass approximation, the effect of all the fast-varying atomic

potential has been incorporated into the effective mass. Slower varying V (r), with varia-

tion length scale much greater than the lattice spacing, is found to contribute to SOI with

a much greater SO coupling constant λ. For a central potential V (r) = V (r) in vacuum,

the SO coupling is

~
4m2

0c
2
σ · (∇V × p) =

~
4m2

0c
2

1

r

dV

dr
σ · (r× p) =

~2

4m2
0c

2

1

r

dV

dr

L

~
·σ = −λvac

~
1

r

dV

dr
L ·σ,

where L is the orbital angular momentum, σ is the vector Pauli matrices and λvac =

−~2/(4m2
0c

2) ≈ −3.72× 10−6 Å
2
.

2



CHAPTER 1. INTRODUCTION

But in a semiconductor, also for a central potential V (r) = V (r), the SO coupling is

HSO = −λ

~
1

r

dV

dr
L · σ,

where

λ ≈ P 2

3

[
1

E2
g

− 1

(Eg + ∆0)2

]
.

For a 2DEG, the SOI becomes

HSO = −λ

~
1

ρ

dV (ρ)

dρ
Lzσz.

Here P is the momentum matrix element between s- and p-orbitals, Eg is the energy

band gap, and ∆0 represents the SOI energy split to the spin split-off hole band [3, 4]. Of

particular interest is that λ = 120 Å
2

in InAs, which is seven order of magnitude greater

than λvac [3, 5].

Qualitatively, this large enhancement of SO coupling constant can be explained in the

following. With λvac ∝ 1
m2

0c2
= 1

m0

1
m0c2

, we can see that

λ

λvac

∼ m0

m∗
m0c

2

Eg

.

For InAs, m0/m
∗ ∼ 1

0.023
; m0c2

Eg
∼ 0.5 MeV

0.418 eV
; leading to

λ

λvac

∼ 52× 106.

Comparing with 120 Å
2

3.73×10−6 Å
2 = 32 × 106, such hand waving argument has captured the

essential physical origin of the great enhancement.

3



CHAPTER 1. INTRODUCTION

1.1.2 Quantum Hall effect

The integer quantum Hall state (von Klitzing, Dorda, and Pepper, 1980; Prange and

Girvin, 1987), occurs when free electrons are confined to two dimensions by applying a

strong magnetic field. The quantization of the electrons circular orbits with cyclotron

frequency ωc leads to quantized Landau levels with energy εm = ~ωc (m + 1/2). If N

Landau levels are filled and the rest are empty, then an energy gap separates the occupied

and empty states just as in an insulator. Unlike an insulator, though, an x-direction

electric field causes the cyclotron orbits to drift, leading to a Hall current characterized

by the quantized Hall conductivity,

σxy = Ne2/h. (1.2)

This precision is a manifestation of the topological nature of σxy Landau levels can be

viewed as a band structure. Since the generators of translations do not commute with one

another in a magnetic field, electronic states cannot be labeled by momentum. However, if

a unit cell with area 2π~c/eB enclosing a flux quantum is defined, then lattice translations

restore the commutation relation, so Blochs theorem allows electron states to be labeled

by 2D crystal momentum k. In the absence of a periodic potential, the energy levels are

simply the k independent of Landau levels Em (k) = εm. In the presence of a lattice

periodic potential, the energy levels will disperse with k. This leads to a band structure

that looks identical to that of an ordinary insulator.

1.1.3 Quantum spin Hall effect

The quantum spin Hall state is a state of matter proposed to exist in special, two-

dimensional, semiconductors with spin-orbit coupling. The quantum spin Hall state of

matter is the cousin of the integer quantum Hall state, but, unlike the latter, it does

not require the application of a large magnetic field. The quantum spin Hall state does

not break any discrete symmetries (such as time-reversal or parity symmetry). The first

4



CHAPTER 1. INTRODUCTION

proposal for the existence of a quantum spin Hall state was developed by Kane and Mele

[6] who adapted an earlier model for graphene by Haldane [7] which exhibits an integer

quantum Hall effect. The Kane and Mele model is two copies of the Haldane model such

that the spin up electron exhibits a chiral integer quantum Hall Effect while the spin

down electron exhibits an anti-chiral integer quantum Hall effect. It has been recently

proposed [8] and subsequently experimentally realized [9] in mercury (II) telluride (HgTe)

semiconductors.

Overall the Kane-Mele model has a charge-Hall conductance of exactly zero but a

spin-Hall conductance of exactly σspin
xy = (in units of e

4π
) Independently, a quantum spin

Hall model was proposed by Bernevig and Zhang [10] in an intricate strain architec-

ture which engineers, due to spin-orbit coupling, a magnetic field pointing upwards for

spin-up electrons and a magnetic field pointing downwards for spin-down electrons. The

main ingredient is the existence of spin-orbit coupling, which can be understood as a

momentum-dependent magnetic field coupling to the spin of the electron.

Strictly speaking, the models with spin-orbit coupling do not have a quantized spin

Hall conductance σspin
xy 6= 2. Those models are more properly referred as topological

insulator which is an example of topologically ordered states.
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CHAPTER 1. INTRODUCTION

1.2 Motivation

A material ”garphene” which has six pairs Dirac points at each corners of Brilloin zone

(show in Fig. 1.2). The electrical properties of graphene can be described by a conventional

tight-binding model, and the eigenvalues are given by

∣∣∣∣∣∣∣
−E −γf1 (k)

−γf ∗1 (k) −E

∣∣∣∣∣∣∣
= E2 − γ2 |f1 (k)|2 = 0, (1.3)

so that the eigenvalues are given by E (k) = ±γ |f1 (k)|. E (k) that |f1 (k)| = 0 for some

k leading to a gapless energy band. |f1 (k)|2 is given by |f1 (k)|2 = 1 + 4 cos2
(
ky

a0

2

)
+

4 cos
(
ky

a0

2

)
cos

(
kx

√
3a0

2

)
[1].

Figure 1.1: The graphene structure (hexagon lattice) in (a) and the energy dispersion
which have Dirac cones in (b). Ref: http://en.wikipedia.org/wiki/Graphene.

This Dirac physics of graphene has been in widespread discussed, because the Dirac

6



CHAPTER 1. INTRODUCTION

physics often exist in high energy physics system but in graphene can be found in Solid-

state physics.

Marco Gibertini, Achintya Singha, Vittorio Pellegrini, and Marco Polini, have pro-

vided an artificial graphene-like system and discuss an experimental realization [11] in a

modulation-doped (the model shows in Fig. 1.2(a)) GaAs quantum well (see Fig. 1.2(b))

and the numerical results (shown in Fig. 1.3), which Dirac cones exist at K points .

Figure 1.2: (a) Scanning electron microscopy images of the nano-patterned modulation-
doped GaAs/AlGaAs sample. [11]. (b)The conduction bands and valence bands of each
AlGaAs and GaAs produce the states interaction making 2DEG.

Recently, a theoretical works [12] was proposed by Cheol-Hwan Park and Steven G.

Louie* which is an ordinary two-dimensional electron gas (2DEG) under an appropriate

external muffin-tin potential (MTP) as shown in Fig. 1.4 reveals that massless Dirac

fermions are generated near the corners of the supercell Brilloin zone (see Fig. 1.5). They

provide detailed theoretical estimates to realize such artificial graphene-like system.

7



CHAPTER 1. INTRODUCTION

Figure 1.3: The energy dispersion of MTP (hexagon larrice). [11].

a
d

x

y

Figure 1.4: A muffin-tin type with a center to center distance a. The potential is U0 inside
the disk with diameter d and zero outside.

In this thesis, we start from the model which was proposed by Cheol-Hwan Park and

Steven G. Louie*, and further consider the of spin-orbit coupling (SOI) (which comes from

the in-plane potential gradient) due to muffin-tin potential (MTP) lattice. We expect the

SOI can open up gaps at Dirac points. And new class of topological states has emerged

recently, namely quantum spin Hall (QSH) states, which occur in the gap between bulk

state. So we discuss whether QSH is provided by topological invariant in our systems.

8



CHAPTER 1. INTRODUCTION

Figure 1.5: The lowest two energy bands dispersion of a hexagonal 2DEG superlattice.

1.3 A guilding tour to this thesis

In Chapter 2, we study the system about 2DEG under an appropriate external periodic

potential. In Chapter 3, we consider the effect of spin-orbital coupling in our system

and discuss the numerical result. In Chapter 4, we introduce the numerical calculations

of Berry curvature. The numerical results for each bands would be showed and discuss

it. In Chapter 5, we introduce and calculate the Chern number and Z2 number which

are topological invariant. Those can help us to expect the edge states and the quantum

spin Hall states for bulk system. In Chapter 6 present our conclusion and possible future

work.

9



Chapter 2

Energy band structure without SOI

effect

In this chapter we demonstrate a work about energy band engineering by the artificial pat-

tern mechanism to achieve the graphene-like band structure. An ordinary two-dimensional

electron gas (2DEG) under an appropriate external periodic potential (muffin-tin type ar-

ray) reveals that massless Dirac fermions are generated near the corners of the supercell

Brilloin zone.

2.1 Energy band structure for a muffin-tin potential

lattice in 2DEG

The Hamlitonian for a 2D muffin-tin type (triangular lattice) potential V (r) can be

expressed by

H = − ~2

2m∗∇2 + V (r), (2.1)

where m∗ is the effective electron mass. The Bloch wave function for this muff-tin potential

(MTP) lattice can be described by

10



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

Figure 2.1: The Brillouin zone of hexagonal lattice.

Defined the wave function and periodic potential as bellow:

Ψκ (r) =
1√

N · Aunit cell

eiκ·r ∑
n

eiGn·rcn . (2.2)

The wave function can be approximately expressed as a linear combination of many (n)

plane-wave states, where N is the number of unit cell; Aunitcell is the area of unit cell in real

space; κ = K1 + k the small κ was expanded from K1 (Fig. 2.1). The form of external

potential is showed below:

V (r) =
∑
m

eiGm·rV ′
m, (2.3)

where Gm is the vector of each K point in k space (there are showed in appendixA about

how to label m); V ′
m = 2πU0d√

3Gma1a2
J1

(
Gmd

2

)
(U0 is external potential energy, and the explicit

form is derived in appendixB) is the interaction coefficient for each localized component

Gm potential ; m is the labels K point.

We substitute this wave function Ψ (r) and MTP V (r) to Schrödinger equation HΨ =

11



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

EΨ, given by

∑
n

eik·rei(Gn+K1)·r
[
~2

2m∗
(
k2 + 2k · (Gn + K1) + (Gn + K1)

2)
]

cn

+
∑
mn

eik·rei[K1+(Gn+Gm)]·rV ′
mcn

= E
∑

n

eik·rei(Gn+K1)·rcn,

(2.4)

where
∑
n,m

ei(Gm+Gn)·rV ′
mcn =

∑
n′,m

eiGn′ ·rV ′
mcn′−m =

∑
n,m

eiGn·rV ′
mcn−m =

∑
n,m′

eiGn·rV ′
n−m′cm′ ,

then m′ = m, and we confined the same spatial factor eik·rei(Gn+K1)·r on both side and

the othogonality gives us

∑
nm

[
~2

2m∗
(
k2 + 2k · (Gn + K1) + (Gn + K1)

2) δmn + V ′
n−m

]
cm = E

∑
nm

cmδmn, (2.5)

where V ′
n−m is the interaction coefficient for MTP; the n, m label K points in k-space

and we assume
∑
nm

k2 + 2k · (Gn + K1) + (Gn + K1)
2 δmn + V ′

n−m = Mnm. This equation

is cast into a matrix form for numerical calculation (see Eq. (2.6)),

~2K2
0

2m∗


 M̃nm





 cm




=
~2K2

0

2m∗ εm


 cm




, (2.6)

where the dimensionless parameters are Mnm =
~2K2

0

2m
M̃nm, k = K0κ, K1 = K0K

′
1, Gn = K0G

′,

E =
~2K2

0

2m
ε, U0 =

~2K2
0

2m
u0, V ′

n−m =
~2K2

0

2m
Ṽ ′

n−m. With this numerical matrix formulation as

shown as Eq. (2.5) and Eq. (2.6), we can obtain the numerical result.

12



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

There are the numerical result of energy distribution in MTP lattice (Fig. 2.2), we

can see the Dirac point at K point, this phenomenon confirm with the results proposed

by Cheol-Hwan Park and Steven G. Louie* [12].

Figure 2.2: The lowest two energy bands calculation of a hexagonal 2DEG superlattice .
The Dirac point energy which is at the crossing of the two bands.

And the Fig. 2.3 shows the results of our rework which are a periodic structure (for

wide area in k-space can obviously discover it) and we can see the Dirac points at each

corners of Brilloin zone. And the results for other higher energy bands dispersion are

showed in appendixC.
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k
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1
)

k y(K
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M
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Figure 2.3: The contour of energy dispersion for (a) the first lowest band, (b) the second
lowest band which m∗ = 0.023me, a=40nm, d=0.663a and U0=165 meV.
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CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

2.1.1 The Analytical result by perturbation method

The wave function Ψκ (r) can be approximately expressed as a linear superposition (as

show asEq. (2.2)) of three plane-wave states. The reason for choosing this three basis

(K1, K2, K3) is that they are same energy and connected by the most simple reciprocal

vectors G1, G2 and G3 ( shown in Fig. 2.4),

Figure 2.4: This figure shows the wave function which be expanded to K1, K2, K3 by
Gm.

Ψκ (r) =
1√
3Ac

[c1 exp (i (K1 + k) · r) + c2 exp (i (K2 + k) · r) + c3 exp (i (K3 + k) · r)] ,

(2.7)

where 1√
3Ac

is the normalized coefficient of the wave function and K1, K2, and K3 represent

wavevectors at the supercell Brillouin zone corners 1, 2, and 3, respectively, in Fig. 2.4.

Because of the Schrödinger equation HΨ = EΨ and Eq. (3.1), we can obtain those

equations as bellow:
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CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

ei(K1+k)·r
{

c1

[
~2

2m∗ (k + K1 + G1)
2 + V ′

1−1

]
+ c2V

′
1−2 + c3V

′
1−3

}
= ei(K1+k)·rE1c1

ei(K2+k)·r
{

c1V
′
2−1 + c2

[
~2

2m∗ (k + K1 + G2)
2 + V ′

2−2

]
+ c3V

′
2−3

}
= ei(K2+k)·rE2c2

ei(K3+k)·r
{

c1V
′
3−1 + c2V

′
3−2 + c3

[
~2

2m∗ (k + K1 + G3)
2 + V ′

3−3

]}
= ei(K3+k)·rE3c3

,

(2.8)

where K1 + G1 = K1, K1 + G2 = K2, K1 + G3 = K3.

Equivalently, we could express the eigenstate as a three-component column vector

c = (c1, c2, c3)
T . Within this basis, the Hamiltonian H (which ignore the k2 term,

because the secondly contribution can be ignored), will give us

~2K2

2m∗




1 0 0

0 1 0

0 0 1




+ H0 + H1,

H0 = W




0 1 1

1 0 1

1 1 0




, (2.9)

, where V ′
n−m = V ′

1−2 = V ′
2−1 = V ′

1−3 = V ′
3−1 = V ′

2−3 = V ′
3−2=W; V ′

1−1 = V ′
2−2 =

V ′
3−2 = 0 ( V ′

m = 2πU0d√
3Gma1a2

J1(
Gmd

2
)) and

H1 = ~υ0k




cos θk 0 0

0 cos(θk − 2π
3

) 0

0 0 cos(θk − 4π
3

)




, (2.10)

where ~2
m

(k ·Ki) = υ0~k cos θk, υ0 is the group velocity and θk is the polar angle of the

16



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

wavevector k from the +x direction. The eigenvalues of the unperturbed Hamiltonian

H0 are given by E0 = −W,−W, 2W . These two degenerated eigenvectors of H0 with the

same eigenvalue -W.

|c1〉 =
1√
2




0

1

−1




, (2.11)

|c2〉 =
1√
6




2

−1

−1




. (2.12)

Thus H1 can be treated as a perturbation, which is approximate for ~υ0k < W and

restricted to the sub-Hilbert space spanned by the two vectors is represented by a 2 × 2

matrix H̃1(degenerate perturbation theory).

H̃1 =




< c1|H1|c1 > < c1|H1|c2 >

< c2|H1|c1 > < c2|H1|c2 >


 = ~

υ0

2



−kx −ky

−ky kx


 . (2.13)

The eigenenergies of H̃1 are given by

E (k) = ±~υ0

2
k. (2.14)

Therefore we can see at k=0, there are degenerate eigenstates and the group velocity near

K (k ≈ 0) shows the linear behavior comparing with Fig. 2.2.
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2.2 The numerical result compare with single well

system

We use the same program to calculate the case of U0=-300meV. When the extra potential

is negative, the MTP are consisted of many single wells. Such wave under MTP can be

illustrated by the overlapping wave function of the nearest single wells.

Schrödinger equation in cylinder coordinates, can be written by

{
− ~2

2m∗

[
1

r

d

dr
(r

d

dr
) +

1

r2

d

dφ2

]
+ V (r)

}
Ψ(r, φ) = EΨ(r, φ) . (2.15)

Applying the factored form Ψ(r, φ) = R(r)Φ(φ), where R(r) is the radial part, and φ

is the angle between r and x̂, one can obtain

A

R(r)

d

dr
(r

dR(r)

dr
)− r2(V (r)− E) = −A

d2Φ(φ)

Φ(φ)dφ2
. (2.16)

This Schrödinger can be decoupled into the radial and azimuthal parts,

d2R(r)

dr2
+

1

r

dR(r)

dr
+

[
(V (r)− E)

−A
− l2

r2

]
R(r) = 0,

d2Φ(φ)

dφ2
= −l2Φ(φ),

(2.17)

where we assume A= ~2
2m∗ , and the disk-shaped potential V (r) = −V0θ(

d
2
− r), V0 > 0 is

external potential strength; d is the diameter of potential region.

The solution of radial equation is the Bessel equation. Therefore the electron wave

function in two dimensions can be written in form

Ψl(r, φ) =





ClJl(αr)eilφ
r ≤ d

2
,

ElKl(βr)eilφ
r ≥ d

2
,

where α =
√

V0+E
A

; β =
√

|E|
A

. The wave function is continuous at the boundary
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r = d
2
, therefore we can get the energy level of finite single well. The Fig. 2.5 shows (a)

MTP case and (b) single well case, where the l is the orbital quantum number, the l=0 is

single state; |l|=1 includes two state. Although the single well energy band structure is

not exactly as same as muffin-tin potential, the band energy level agrees quite well with

each other.

−300

−250

−200

−150

−100

−50

0

E
(m

e
V

)

−300
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−200

−150
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−50

0

E
(m

e
V

)

Γ MΓ KM Γ K Γ

l=0

l=1

l=3

l=0

l=2

l=1

(a) (b)

Figure 2.5: The energy band structure for (a) the numerical MTP in 2DEG sys-
tem. Compared the energy level with (b) the single well in 2DEG system. U0 =
−300meV , a = 40nm ; d=0.663a.
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2.3 Brief summary

In this chapter, we show that the energy band structures excluding SOI effect in external

periodic potential in 2DEG. There are massless Dirac points at the corners of Brilloin

zone (K1 points) as graphene system.

And we also do another work for inspecting the numerical results. The wave function

be expanded from Γ point and compare the numerical energy dispersion with the results

which the wave function be expanded from K1. The result for comparison is exactly the

same.
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Chapter 3

Energy band structure with SOI

effect

In this chapter, we consider the effect of spin-orbit coupling on the energy band structure,

we have discussed in Chapter 2. The spin-orbit is arisen from the in-plane gradient of the

periodic potential.

3.1 Muffin-tin potential lattice in the presence of SOI

The Hamlitonian H for a 2D MTP system with spin-orbital interaction can be expressed

by.

H =
p2

2m∗ + V (r) + HSO. (3.1)

The spin-orbit interaction term, in vacuum can be desired by

HSO =
eλ

~
σ ·(p× E) = −eλ

~
σ ·(p×∇U) =

λ

~
σ ·(p×∇V ) = −λ

~
σ ·(∇V × p) , (3.2)

where in-plane electric field E = −∇U (U: electric potential); V (Electric potential en-

ergy)= - eU (e > 0 ) ; spin-orbit coupling constant λ=120Å2 (for InAs)
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The wave function includes both spin-up and spin-down component in column vector

form:

Ψκ (r) = eiκ·r ∑
n

eiGn·r




cn↑

cn↓


 . (3.3)

The Hamlitonian of SOI term operates on the wave function leading to:

HSOΨ (r) = −iλ

~
∑
m

eiGm·rV ′
mσ · (Gm × p)

∑
n

ei(Gn+κ)·r




cn↑

cn↓




= −iλ

~




∑
m

eiGm·rV ′
m (Gm × p)z 0

0 −∑
m

eiGm·rV ′
m (Gm × p)z







∑
n

ei(Gn+κ)·rcn↑

∑
n

ei(Gn+κ)·rcn↓




= −iλ
∑
mn

ei[Gm+(Gn+κ)]·r




cn↑V ′
m (Gm × (Gn + κ))z

−cn↓V ′
m (Gm × (Gn + κ))z


,

(3.4)

where Gm × p is along z-direction, so σ·ẑ = σz and
∑
n,m

ei(Gm+Gn)·rV ′
mcn =

∑
n′,m

eiGn′ ·rV ′
mcn′−m =

∑
n,m

eiGn·rV ′
mcn−m =

∑
n,m′

eiGn·rV ′
n−m′cm′( m′ = m). The matrix here is diagonal, show-

ing that spin-up and spin-down are decoupled because HSO depends only on σz. Due

to Eq. (3.1), and Schrödinger equation HΨ (r) = EΨ (r), and the orthogonal term of

plane-wave form eik·rei(K1+Gn)·r can be a substrate the m’th component to form a matrix

equation. For getting the simple numerical formulation, we take off eik·rei(K1+Gn)·r and

obtain:
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~2

2m∗
∑

n




k2 + 2k · (Gn + K1) + (Gn + K1)
2 0

0 k2 + 2k · (Gn + K1) + (Gn + K1)
2







cn↑

cn↓


 +

∑
mn

V ′
n−m




1− iλ [Gn−m × (Gm + κ)] 0

0 1 + iλ [Gn−m × (Gm + κ)]







cm↑

cm↓




=
∑

n




Ecn↑

Ecn↓


.

(3.5)

This equation shows that the spin-up cn↑ part is decoupled with spin-down cn↓ (the element

only exist on diagonal term). The numerical result is shown on the subsection 3.4.

The Fig. 3.5 shows the lowest two bands with wave vector near K1. We can see that

the original Dirac point opens up a gap in the presence of SOI and the numerical result

shows Ecn↑ = Ecn↓ .

3.1.1 The Analytical result in the presence of SOI by perturba-

tion method

The subsection will show the analytical calculation in our system in the presence of SOI

. The Schrödinger equation for a 2DEG in the presence of SOI, using the Eq. (3.1) and

Eq. (3.2) (where we defined HSO = hSOσz, because of ∇V × p is along z direction) can

be written in the following form

HΨκ (r) =





[
p2

2m∗ + V (r)

]



1 0

0 1


 + hSO




1 0

0 −1








eiκ·r ∑
n

eiGn·r




cn↑

cn↓




= eiκ·r ∑
n

eiGn·rEn




cn↑

cn↓


 .

(3.6)
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The wave function Ψκ (r)κ = Ψ (r)k+K1
( k is very close to K1, all at the equivalent

K points (see Fig. 2.4 ) can be approximately expressed as a linear superposition of three

plane-wave states,

Ψκ,s (r) =
1√
3Ac

[c1s exp (i (K1 + k) · r) + c2s exp (i (K2 + k) · r) + c3s exp (i (K3 + k) · r)] ,

(3.7)

where s = ±1 (spin up s=1; spin down s=-1), and p2

2m∗ + V (r) expand is subspace of

|k + K1〉, |k + K2〉 and |k + K3〉, will give

~2K2

2m∗




1 0 0

0 1 0

0 0 1




+ H0 + H1,

Here, H0, given by Eq. (2.9), denotes the effect of V (r), and H1 given by Eq. (2.10)

which is linear in k.

The Eq. (3.6) has a spin-orbit term, as show bellow

hSOΨs=±1 (r)

= −iλeik·r ∑
m

V ′
m

[
ei[K1+(G1+Gm)]·r {Gm × [G1 + (K1 + k)]}c1s

+
ei[K1+(G2+Gm)]·r {Gm × [G2 + (K1 + k)]} c2s

ei[K1+(G3+Gm)]·r {Gm × [G3 + (K1 + k)]} c3s




= −iλeik·r ∑
m

V ′
m

[
ei(K1+Gm)·rGm × (K1 + k)c1s

+ ei(K2+Gm)·rGm × (K2 + k) c2s + ei(K3+Gm)·rGm × (K3 + k) c3s

]
,

(3.8)
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hSOΨs=±1 (r)

= −iλ




V ′
1−1G1−1 × (κ1) V ′

1−2G1−2 × (κ2) V ′
1−3G1−3 × (κ3)

V ′
2−1G2−1 × (κ1) V ′

2−2G2−2 × (κ2) V ′
2−3G2−3 × (κ3)

V ′
3−1G3−1 × (κ1) V ′

3−2G3−2 × (κ2) V ′
3−3G3−3 × (κ3)







ei(K1+k)·rc1s

ei(K2+k)·rc2s

ei(K3+k)·rc3s




=




E1se
i(K1+k)·rc1s

E2se
i(K2+k)·rc2s

E3se
i(K3+k)·rc3s




,

(3.9)

where κ1 = K1 +k, κ2 = K2 +k, κ2 = K2 +k, and the same spatial factor eik·rei(Gn+K1)·r

on both side can be ignore for the matrix form.

hSO(κ)

= −iλW




0 (G1−2 ×K2 + G1−2 × k) (G1−3 ×K3 + G1−3 × k)

(G2−1 ×K1 + G2−1 × k) 0 (G2−3 ×K3 + G2−3 × k)

(G3−1 ×K1 + G3−1 × k) (G3−2 ×K2 + G3−2 × k) 0




,

(3.10)

where V ′
n−m = V ′

1−2 = V ′
2−1 = V ′

1−3 = V ′
3−1 = V ′

2−3 = V ′
3−2=W; V ′

1−1 =

V ′
2−2 = V ′

3−2 = 0 ( V ′
m = 2πU0d√

3Gma1a2
J1(

Gmd
2

)), and we also assume A = Gn−m ·Kn sin(5π
6

)

At the K point, the H0 has a doubly degenerate energy -W. Using the correspond eigen-

states, |c1〉 and |c2〉 given by, Eq. (2.11), Eq. (2.12), we obtain the 2× 2 subspace repre-

sentation of H0, H1 and hSO.
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H̃0 =



〈c1|H0 |c1〉 〈c1|H0 |c2〉
〈c2|H0 |c1〉 〈c2|H0 |c2〉


 = −W




1 0

0 1


 , (3.11)

H̃1 =



〈c1|H1 |c1〉 〈c1|H1 |c2〉
〈c2|H1 |c1〉 〈c2|H1 |c2〉


 =

~v0

2



−kx −ky

−ky kx


 , (3.12)

h̃SO,s =



〈c1|HSO |c1〉 〈c1|HSO |c2〉
〈c2|HSO |c1〉 〈c2|HSO |c2〉


 = i

√
3sλWA




0 1

−1 0


 , (3.13)

where λ is spin-orbit coupling constant. We ignore the energy shift term H̃0 and

obtain:

H̃1 + h̃SO,s =




−~v0

2
kx −~v0

2
ky + i

√
3sλWA

−~v0

2
ky − i

√
3sλWA ~v0

2
kx


 , (3.14)

E = −W ±
√(

~v0

2
k

)2

+ 3 (sAλW )2. (3.15)

The Eq. (3.15) shows the lowest two energy bands at K point opens up a gap (2
√

3AλW ),

the s=1 (spin-up)and s=-1 (spin-down) the energy dispersion is the same ( which is as

same as numerical result, see subsection 3.4).
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Figure 3.1: The lowest two bands which wave vector is near K1 (ky=0, −0.1K1 < kx <
0.1K1). The red line: the numerical result for three K point with SOI; blue line: the
analytic result for 2× 2 matrix with SOI, λ=120Å2(InAs); m∗ = 0.023me; U0 = 165meV;
a=40nm; d=0.663a.

The Fig. 3.5 shows the energy of analytic energy band (restrict in subspace) is higher

than numerical energy band (3×3 matrix) except the k ≈ 0 (close to K1). Because of the

numerical energy band consider the 2W (higher energy), leading the energy higher than

analytic energy band (only consider -W).

3.2 The position symmetry for muffin-tin triangular

lattice

There are an external muffin-tin triangular potential in the 2DEG. This structure has

a symmetry property for rotating 60◦ alone the z-axis. We can interpret the symmetry
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property from Fig. 3.2, each muffin-tin triangular structure (a), (b), (c) in real-space have

the corresponding BZ (a), (b), (c) in k-space. For example, the figure (a) rotate 60◦ to

becomes figure (b) in real-space and the K system in (a) change to K ′ system in (b)

relatively in k-space. Because of the action for rotating 60◦ doesn’t change the structure,

the rotating symmetry is tenable.

Figure 3.2: This figure shows the rotating symmetry property for triangular lattice, the
original system (a) in real-space correspond to (a) in k-space, then rotate π

3
from central

point to become (b) in real-space and k-space , and do the same work to become (c) in
real-space and k-space, where ñ is an integer(the blue point note the system which has
been rotated ).

For the analytic calculation, the wave function expanded from K ′
1 point(using the K ′

1,

K ′
2, K ′

3 be the basis), the method is as same as K system. There are only H1 term different
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from K system which the k become -k.

H1 = −~υ0k




cos θk 0 0

0 cos(θk − 2π
3

) 0

0 0 cos(θk − 4π
3

)




, (3.16)

Therefore, we obtain the subspace (as show in Eq. (3.12) and Eq. (3.13)) representation

of H0, H1 and hSO , and count the energy dispersion. The result of energy dispersion in

K ′ system is as same as K system E = −W ±
√(~v0

2
k
)2

+ 3 (sAλW )2. This result prove

the position symmetry property( show in Fig. 3.2) which is authentic.

3.3 The numerical result compare with single well

system in the presence of SOI

Using the same numerical program calculates the case of U0=-300meV. When the extra

potential is negative, the MTP resembles many single wells. Such wave under MTP can

be illustrated by the overlapping wave functions of the nearest single wells.

HSO = −λ

~
σ ·

(
r̂
∂V

∂r
× p

)
= − λ

~r
∂V

∂r
σ · (r× p) = − λ

~r
∂V

∂r
σzLz. (3.17)

The disk-shaped potential with step-like profileV (r) = −V0θ(
d
2
− r) gives rise to SOI

term, where d is the diameter of the single well.

HSO = −λV0δ
(

d
2
− r

)

~r
σzLz. (3.18)

The total wave function with spin state χs is written as Ψκ,s(r, φ) = Rs
l (r)Φ(φ)χs =

Rs
l (r)e

ilφχs.

Here σzχs = sχs,(s = ±1 the meaning is spin-up or spin-down state). Substituting
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wave function into the Schrodinger equation, the radial differential equation reads

[
d

dr
(r

d

dr
)− l2

r
− rV (r)

A
− lsHSO

A

]
Rs

l
(r) = − r

A
ERs

l
(r). (3.19)

The radial function Rs
l
(r) has different coefficients for inside and outside the disk, that

depend on the index s, given by

Rs
l (r) =





Cs
l Jl(αr) r ≤ d

2
,

Es
l Kl(βr) r ≥ d

2
,

(3.20)

The HSO is nonzero only at r=d
2
, the boundary condition that bring forth the spin de-

generacy is given by

r
dRl(r)

dr

∣∣∣∣
d
2
+

d
2
− +

λlsV0

A
Rl(

d

2
) = 0 . (3.21)

Finally,the wave function is continuous at boundary, we obtain the coefficient Cs
l , Es

l

, energy level, and orbital quantum number.

Compared with the energy level of a single well, we can obviously discover the each

energy band is almost same level (see Fig. 3.3). There are two energy bands equal to same

orbital quantum number(l) when the |l| 6= 0. For the (l)=0 case, only have one energy

band because the l=0 did not have opposite quantum number. This work can provide a

method to prove the program which is authentic.
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Figure 3.3: Energy band structure with parameters units typical for InAs are: effective
mass m∗=0.023me; a = 40nm; SO coupling constant λ=120Å2 (a) numerical muffin-
tin potential (U0 = −300meV ) in the presence of SOI. Compared with (b) single well
(V0=300mev) in 2DEG.
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3.4 Results for energy band structure in the presence

of SOI

In our numerical examples, physic parameters are chosen for InAs in the practical ex-

perimental parameters. The Fig. 3.4 shows the energy dispersion with SOI which open

Figure 3.4: Parameters units typical for InAs are: effective mass m∗=0.023me; U0 =
165meV , a = 40nm ; SO coupling constant λ=120Å2 The blue line is without SOI and
the red line is with SOI which spin-up and spin -down are flipping in muffin-tin lattice .

up gaps at K and Γ points (the magnitudes of each gaps are shown in Fig. 5.7), the
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spin-up states and spin-down states are same energy dispersion but spins opposite site in

z-direction (Fig. 3.4). And for the lowest two energy band, the spin-up and spin-down

34.5

35

35.5

36

E
(m

e
V

)

K
Figure 3.5: The lowest two bands which wave vector is near K1. Red circle: the system
with SOI; blue star: the system without SOI, λ=120Å2(InAs); m∗ = 0.023me; U0 =
165meV; a=40nm; d=0.663a.

states mixing at K1 point without SOI (see Eq. (3.5)).

[
HSO,

p2

2m∗ + V (r)

]

=

[
(∂xV )py − (∂yV )px,

p2

2m∗ + V (r)

]

6= 0

. (3.22)

Because of Eq. (3.22), the states at K point is a superposition state with the basis is the

eigenstate without SOI, leading to open up a gape for first lowest energy band and second
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lowest energy band (Fig. 3.5).
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Figure 3.6: This figure shows the value of gap for first lowest energy band and second
lowest energy band which depend on Crange(show in appendix A).

The Fig. 3.6 shows the magnitude of the gap ( between first lowest energy band and

second lowest energy band) would decrease when the Crange ( orbital index) increase.

We have trying other parameters for different a, d, U0, and roughly discuss the results,

because for Crange=1 ( shown in appendix E).

3.5 The relationship between time reversal property

and our system

The numerical results show the energy dispersion of spin-up and spin-down states are

same energy dispersion. We analyze the these results by time reversal symmetry. The

wave function and Schrödinger equation are given by
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Ψκ,s (r) = eiκ·r ∑
s

uκ,s (r) χs = eiκ·r







uκ,s (r)

0




s=1

+




0

uκ,s (r)




s=−1


 , (3.23)

HΨκ,s (r) =





H0




1 0

0 1


 + hso




1 0

0 −1








eiκ·r ∑
n

eiGn·r




cn,κ,s=1

cn,κ,s=−1




= eiκ·r ∑
n

eiGn·r




Es=1cn,κ,s=1

Es=−1cn,κ,s=−1


 ,

(3.24)

where the periodic function ucκ,s=1 (r) =
∑
n

eiGn·rcn,κ,s; s = ±1 is meaning spin-up and

spin-down and the definition of HSO = − iλ
~

∑
m

eiGm·rV ′
mσ · (Gm × p) = hsoσz. Because of

σzχs = sχs the Schrödinger equation turns out to be:

(HN.SO + shSO) eiκ·r |uκ,s〉χs = Eκ,se
iκ·r |uκ,s〉χs. (3.25)

Time reversal operator Θ acts on Eq. (3.25), one obtain that

(HN.SO − shSO) e−iκ·r |u−κ,−s〉χ−s = Eκ,se
−iκ·r |u−κ,−s〉χ−s, (3.26)

where

ΘhSO = Θ

[
−iλ

~
∑
m

eiGm·rV ′
m (Gm × p)z

]
=

iλ

~
∑
m

eiGm·rV ′
m (G−m ×−p)z Θ

= −hSOΘ,

(3.27)

and

Θ |uκ,s〉χs = |uκ,s〉∗ σyχs = |uκ,s〉∗ χ−s eiδ ⇒ |u−κ,−s〉 = |uκ,s〉∗ .
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The eigenstate of Eq. (3.26) is |u−κ,−s〉, so the eigenenergy of this system must be E−κ,−s

which implicate Eκ,s = E−κ,−s, and because Eκ,−s = E−κ,−s, which comes from the parity

operator π acting on Eq. (3.25), we obtain

(HN.SO + shSO) e−iκ·r |u−κ,s〉χs = Eκ,se
−iκ·r |u−κ,s〉χs, (3.28)

where the rotating symmetry for triangular lattice (see Fig. 3.2 shows the system in our

model with inversion symmetry, the result Eκ,s = Eκ,−s is proven.

3.6 Brief summary

Thus far in this chapter, we show that the energy band structure with SOI effect in

external periodic potential in 2DEG. There exist a massless Dirac point at K1 without

SOI effect ( as show in chapert2), and we considered the MTP gradient which arise the

SOI, the degenerated energy at K point can open up a gap, and we also have an analytic

calculation to prove the numerical result is authentic.
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Chapter 4

Berry curvature with SOI effect in

our system

Berry curvature is as a local gauge potential and gauge field associated with the Berry

phase. These concepts were introduced by Michael Berry in a paper published in 1984

[14] emphasizing how geometric phases provide a powerful unifying concept in several

branches of classical and quantum physics. Such phase have come to be know as Berry

phases. In this chapter, we will show the Berry curvature with SOI effect in our system.

4.1 Berry phase

In quantum mechanics, the Berry phase arises in a cyclic adiabatic evolution. The quan-

tum adiabatic theorem applies to a system whose Hamiltonian H(κ) depends on κ that

varies with time t. If the n’th eigenvalue εn(κ) remains non-degenerate everywhere along

the path and the variation with time t is sufficiently slow, then a system initially in the

eigenstate
∣∣uκ(0),n

〉
will remain in an instantaneous eigenstate

∣∣uκ(t),n

〉
, up to a phase,

throughout the process. The state at time t can be written as

|Ψn (t)〉 = eiγn(t)e
− i
~

t∫
0

dt′εn(κ(t′)) ∣∣uκ(t),n

〉
, (4.1)
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where the second exponential term is ”dynamic phase factor” and the first exponential

term is the geometric term, with γn being the Berry phase. By plugging into the time-

dependent Schrödinger equation, we can obtain the solution of γn (t)

γn (t) = i

t∫

0

dt′
〈
uκ(t′),n

∣∣ d

dt′
∣∣uκ(t′),n

〉
= i

κ(t)∫

κ(0)

dκ · 〈uκ,n| d

dκ
|uκ,n〉 . (4.2)

In the case of a cyclic evolution around a close path κ (t) = κ (0),

From Stoke’s theorem, we have

γn (C) = i

∫∫

C

dS ·∇κ × 〈uκ,n | ∇κuκ,n〉 =

∫∫

C

dS ·Ωn (κ) , (4.3)

where Ωn (κ) = i∇κ×〈uκ,n | ∇κuκ,n〉 is call the Berry curvature. One might worry that

the arbitrary phase attached our expression in Eq. (4.3). To examine this we consider

the following gauge transformation |ũκ,n〉 = eiξ(κ) |uκ,n〉, where the eiξ(κ) is a κ dependent

phase factor. We get 〈uκ,n | ∇κuκ,n〉 = i∇κξ (κ) + 〈uκ,n | ∇κuκ,n〉, and in substituting

into Eq. (4.3), the additional term ∇κ ×∇κξ (κ) = 0. This step shows that the Berry

curvature is independent of arbitrary phase factor which dependent on κ in the wave

function. As such, the definition of Berry phase in Eq. (4.3) is uniquely defined.

4.2 Berry curvature analysis

For a closed path C that forms the boundary of a surface S , the closed-path Berry phase

can be rewritten using Stokes’ theorem as γn =
∫
S

dS ·Ωn(κ).

From Eq. (4.3), we get:
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γn (C) = i

∫∫

C

dS ·∇κ × 〈uκ,n | ∇κuκ,n〉

= i

∫∫

C

dS · [〈∇kuκ,n| × |∇κuκ,n〉+ 〈uκ,n | ∇κ ×∇κuκ,n〉]

=

∫∫

C

dS ·Ωn (κ) .

(4.4)

The formulation is as shown below: a complete set
∑
n′
|∇κuκ,n′〉 〈∇κuκ,n′|=1 has been

inserted in the second row of Eq. (4.4), and they are grouped into n 6= n′ and n = n′

terms.

Ωn (κ) = i 〈∇κuκ,n| × |∇κuκ,n〉

= i

(∑

n6=n′
〈∇kuk,n | uk,n′〉 × 〈uk,n′ | ∇κuκ,n〉+

∑

n=n′
〈∇κuκ,n | uκ,n′〉 × 〈uk,n′ | ∇κuκ,n〉

)
.

(4.5)

Because of ∇κ 〈uκ,n | uκ,n〉 = 0,

∇κ 〈uκ,n | uκ,n〉

= 〈∇κuκ,n | uκ,n〉+ 〈uκ,n | ∇κuκ,n〉 = 〈uκ,n | ∇κuκ,n〉∗ + 〈uκ,n | ∇κuκ,n〉 = 0,

(4.6)

where 〈uκ,n | ∇κuκ,n〉 must be pure imaginary, as a result of Eq. (4.5) the second term

of the second row is zero.

There is a useful relation for obtaining the numerical formulation:

〈uκ,n′| (∇κH) |uκ,n〉 = 〈uκ,n′| (∇kH −H∇κ) |uκ,n〉

= 〈uκ,n′|∇κEκ,n |uκ,n〉 − 〈uκ,n′|Eκ,n∇κ |uκ,n〉

= ∇κEκ,n 〈uκ,n′ | uκ,n〉+ Eκ,n 〈uκ,n′ | ∇κuκ,n〉 − Eκ,n′ 〈uκ,n′ | ∇κuκ,n〉

= (Eκ,n − Eκ,n′) 〈uκ,n′ | ∇κuκ,n〉 ,

(4.7)
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where the H (κ) comes from H (κ) = U (κ) HU † (κ) = e−iκ·rHeiκ·r. Because of Schrödinger

equation: H |Ψκ,n (r)〉 = HU † (κ) |uκ,n (r)〉 = εn (κ) |Ψκ,n (r)〉 = εn (κ) U † (κ) |uk,n (r)〉.
From Eq. (4.7), we obtain:

〈uκ,n′ | ∇kuκ,n〉 =
〈uκ,n′|∇κH |uκ,n〉

Eκ,n − Eκ,n′
, n 6= n′ , (4.8)

and substituted to Eq. (4.5). The numerical calculation of Berry curvature is read as:

Ωn (κ) = i
∑

n′ 6=n

〈uκ,n| ∂kxH (κ) |uκ,n′〉 〈uκ,n′| ∂kyH (κ) |uκ,n〉 − (x ↔ y)

[En′ (κ)− En (κ)]2
ẑ. (4.9)

The Eq. (4.9) shows explicitly, that the Berry curvature is due to the restriction to a single

band n and to the resulting virtual transitions to other bands n′ 6= n, and the numerical

result n′ is the effective number for two bands which are the nearest for each higher

energy and lower energy (Because of the denominator [En (κ) − En′ (κ)]2 in Eq. (4.9)).

For example, the n=1, n′=2, 3 and another case the n=4, n′=2, 3 ( lower energy), 5, 6 (

higher energy).

4.2.1 The analytic result of Berry curvature

The wave function Ψκ,s (r) may be approximately expressed as a linear combination of

three plane-wave states.

The term H1 + HSO, when restricted to the sub-Hilbert space spanned by the two

vectors (the degenerate eigenvectors of lowest two bands) is represented by a 2×2 matrix

H̃1+H̃SO (shown in chapter 3.1.1 ), the meaning of this step is that we only focus on the

Berry curvature of k-space near K point(the Dirac point of the lowest band).

H̃1 + H̃SO =




−~v0

2
kx −~v0

2
ky + i

√
3sλWA

−~v0

2
ky − i

√
3sλWA ~v0

2
kx


 , (4.10)
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


−P0kx −P0ky + i∆s

−P0ky − i∆s P0kx







Yn,s

Zn,s


 = n

√
(P0k)2 + ∆2

s




Yn,s

Zn,s


 , (4.11)

where ∆s =
√

3sλWA, s=±1(spin index) , P0 = ~υ0

2
, υ0 = ~K1

m∗ ; Schrödinger equation
[
H̃1 (κ) + H̃SO (κ)

]
|uκ,n,s〉 = En |uκ,n,s〉; n = ±1(n = 1, the second lowest band; n = −1,

the first lowest band); Yn,s, Zn,s are the elements of |uκ,n,s〉. The solution of Eq. (4.11) is

Zn,s =
P0kx+n

[√
(P0k)2+∆2

s

]

(−P0ky+i∆s)
Yn,s and normalize Yn,s, Zn,s (Y ∗

n,sYn,s + Z∗
n,sZn,s = 1), we obtain

|Yn,s|2 =
(P0ky)

2 + ∆2
s

2

[
(P0k)2 + ∆2

s + nP0kx

√
(P0k)2 + ∆2

s

] . (4.12)

Then we use the above equations, the Eq. (4.9) in this case becomes (the analytic

result of Berry curvature)

Ωn=±1 (κ)

= i


(−P0)

2

(
Y ∗

n,s Z∗
n,s

)



1 0

0 −1







Y−n,s

Z−n,s




(
Y ∗
−n,s Z∗

−n,s

)



0 1

1 0







Yn,s

Zn,s


− c.c.




4 (P 2
0 k2 + ∆2

s)
ẑ

=
i
[
P 2

0

(
Y ∗

n,sY−n,s − Z∗
n,sZ−n,s

) (
Y ∗
−n,sZn,s + Z∗

−n,sYn,s

)− c.c
]

4 (P 2
0 k2 + ∆2

s)
ẑ

=
n∆sP

2
0

2
[
(P0k)2 + ∆2

s

] 3
2

ẑ.

(4.13)
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4.2.2 The Berry curvature of numerical result compare with the

analytic result

This section we will use the Berry curvature analytic formulation Eq. (4.13) to compare

with the numerical results which consider three K points( unperturb points and same

energy).
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Figure 4.1: The inset shows the contour of Berry curvature for the lowest band ( in spin-
up case) by considering three K point and we chose (a) ky=0kymax , (b) ky=0.3kymax and
(c) ky=0.6kymax (black line) corresponding to the dispersion which is expanded from K1

(kx = ky = 0) in the main panel. The blue line is analytic result n=-1, s=1 (Crange=1);
the red line is numerical result (the lowest band).

From the Fig. 4.1 and Fig. 4.2 we can observe the magnitude of analytic Berry curva-

ture at K point confirm to the numerical result. The analytic Berry curvature match the
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Figure 4.2: The inset shows the contour of Berry curvature for the second lowest band (in
spin up case) by considering three K point and we chose (a) ky=0kymax , (b) ky=0.3kymax

and (c) ky=0.6kymax (black line) corresponding to the dispersion which is expanded from
K1 (kx = ky = 0) in the main panel. The blue line is analytic result n=1, s=1 (Crange=1);
the red line is numerical result (the second lowest band).

numerical results except K point.

The effect Berry curvature for first lowest energy band distribute around K point, and

when Crange (shown in appendix A) increase the Berry curvature would stable (Crange ≈ 11,

are shown in Fig. 4.3).
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Figure 4.3: The Crange increase to 11, the numerical Berry curvature would almost stable.

4.2.3 The relationship between time reversal property and Berry

curvature

The numerical results show that the spin-up and spin-down Berry curvatures are opposite

sign (see Fig. 4.4 and Fig. 4.5), the curvature satisfies Ωn,s (κ) = −Ωn,−s (−κ). In this

subsection, we will derive some symmetry relation of the Berry curvature. The specific

symmetry we consider are the inversion symmetry (via parity operator π) and the time

reversal symmetry ( via time-reversal operator Θ). Our Hamiltonian H has the property
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[H, π] = 0 and [H,Θ] = 0. We start from the expression of the Berry curvature

Ωn (κ) = i 〈∇κuκ,n| × |∇κuκ,n〉 = ∇κ ×An,s (κ) , (4.14)

where An,s (κ) is called Berry connection ( like a vector potential in k-space), the curve

of An,s (κ) is Berry curvature. Because of the inversion symmetry ( proven by rotating

60◦ in chapter 3), we insert ππ−1 into Berry connection Eq. (4.14)

An,s (κ) = i 〈uκ,n,s|ππ−1∇κππ−1 |uκ,n,s〉 = i 〈u−κ,n,s|∇κ |u−κ,n,s〉 = −An,s (−κ) . (4.15)

Here, we point out that π−1∇κπ=∇κ because κ in ∇κ, or in |∇κuκ,n〉 is a classical vector,

not an operator. Furthermore, π−1eiκ·r |uκ,n,s〉=e−iκ·r |u−κ,n,s〉, where π−1r = −rπ−1,

and π−1 |uκ,n,s〉=|u−κ,n,s〉. The symmetry property of the Berry connection we obtain in

Eq. (4.15) is for the same spin index but for opposite κ. Corresponding, the symmetry

property of Berry curvature is given by

Ωn,s (κ) = ∇κ ×An,s (κ) = −∇κ ×An,s (−κ) = Ωn,s (−κ) , (4.16)

Eq. (4.16) is resulted form inversion symmetry. The symmetry relation for Ωn,s (κ), due

to time-reversal symmetry is derived in following. Denoting |α〉 = |uκ,n,s〉,
|β〉 = i∇κ |uκ,n,s〉 we have

An,s (κ) = i 〈uκ,n,s|∇κ |uκ,n,s〉 = 〈α | β〉 . (4.17)

Corresponding, we denote |α̃〉 = Θ |α〉 = |u−κ,n,−s〉,∣∣∣β̃
〉

= Θ |β〉 = −i∇κ |u−κ,n,−s〉. We have the identity 〈α | β〉 =
〈
β̃

∣∣∣ α̃
〉

such that

〈α | β〉 =
〈
β̃

∣∣∣ α̃
〉

= i (∇κ 〈u−κ,n,−s|) |u−κ,n,−s〉 = −i 〈u−κ,n,−s|∇κ |u−κ,n,−s〉 = An,−s (−κ) ,
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(4.18)

Between the second and the third steps in Eq. (4.18), we used the relationship (∇κ 〈uκ,n,s|) |uκ,n,s〉 =

−〈uκ,n,s|∇κ |uκ,n,s〉, which is derived as follows

∇κ 〈uκ,n,s | uκ,n,s〉 = 0

⇒ (∇κ 〈uκ,n,s|) |uκ,n,s〉+ 〈uκ,n,s|∇κ |uκ,n,s〉 = 0

⇒ (∇κ 〈uκ,n,s|) |uκ,n,s〉 = −〈uκ,n,s|∇κ |uκ,n,s〉 .

(4.19)

From Eq. (4.18), we obtain the Berry curvature

∇κ ×An,s (κ) = ∇κ ×An,−s (−κ) = −∇−κ ×An,−s (−κ) = −Ωn,−s (−κ) . (4.20)

Eq. (4.20) is resulted from time-reversal symmetry. Inversion and time-reversal symme-

tries together give us

Ωn,s (κ) = −Ωn,−s (−κ) = −Ωn,−s (κ) . (4.21)

This symmetry in Eq. (4.20) is clearly demonstrate in our numerical results, presented

in Fig. 4.4 and Fig. 4.5. Thus confirming the validity of our numerical calculation.

4.2.4 The numerical result of Berry curvature

This subsection shows the numerical results of Berry curvature for the lowest energy band

and the second lowest energy band ( the other figures for high energy band are showed in

appendix D).
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Figure 4.4: The Berry curvature of the lowest energy band for n=1 (a) the contour
for spin-up (b) the contour for spin-down (n′=2,3); λ=120Å2 (InAs); m∗ = 0.023me;
U0 = 165meV; a=40nm; d=0.663a ( where kx=ky=0 is Γ point).

The Berry curvature distributions imply that the energy difference with others band

is the main effect and the wave function term is the minor effect for leading the main

contribution of Berry curvature , we can observe these from Eq. (4.9). And the important

information in Fig. 4.4 and Fig. 4.5 is that the periodic triangular lattice in our system

with inversion symmetry (K = K ′ in k-space), the Berry curvature distributions is the

same at six corners of BZ.
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Figure 4.5: The Berry curvature of the second lowest energy band for n=1 (a) the contour
for spin-up (b) the contour for spin-down (n′=2,3); λ=120Å2 (InAs); m∗ = 0.023me;
U0 = 165meV; a=40nm; d=0.663a ( where kx=ky=0 is Γ point).

4.3 Brief summary and discussion

This chapter we introduced the Berry curvature which comes from the Berry phase, and

also show the numerical results of Berry curvature for each energy bands in first BZ.

Finally, we discuss the correlation between Berry curvature and time reversal property to

guarantee the correct numerical results are correct.

48



CHAPTER 4. BERRY CURVATURE WITH SOI EFFECT IN OUR SYSTEM

However, the another important thing is to compare with the Berry curvature of

graphene (see Fig. 4.6). Because of graphene without the inversion symmetry property (

the Berry curvature K 6= K ′, see Fig. 4.6 (b)), we can understand simply from Fig. 4.7.

Figure 4.6: The (a) show the energy dispersion of graphene in BZ. (b) The Berry curvature
of graphene in BZ. [15]

Figure 4.7: There are without rotating symmetry in graphene, which imply K 6= K ′ in
k-space (the blue point note the system which has been rotated ).
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Chapter 5

Searching for quantum spin Hall

effect in our system

The QSH systems are insulating in the bulk, they have an energy gap separating the va-

lence and conduction bands, but on the boundary they have gapless edge or surface states

that are topologically protected and immune to impurities or geometric perturbations

[16], [17],[18], [19].

Therefore, this chapter we will use the topological invariant ( Chern number and Z2

number) to examine the edge state and classify the insulator for open boundary case.

5.1 The Chern number of the energy band

The Chern invariant is rooted in the mathematical theory of fiber bundles ( Nakahara,

1990), but it can be understood physically in terms of the Berry phase ( Berry, 1984)

associated with the Bloch wave functions|un (κ)〉. Provided there are no accidental de-

generacies when k is |un (κ)〉 transported around a closed loop, acquires a well defined

Berry phase given by the line integral of An = i 〈un|∇κ |un〉. This may be expressed as a

surface integral of the Berry flux (Berry curvature) Fn = ∇ × An. The Chern invariant

is the total Berry flux in the Brillouin zone, and distinguishes the two states ( bulk and
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edge state) is a topological invariant similar to the genus.

The Chern theorem, which states that the integral of the Berry curvature over a close

manifold is quantized in unit of 2π .This number is the so-called Chern number.

Cn =
1

2π

∫

BZ

d2κFn. (5.1)

The total Chern number, summed over all occupied bands, Coccupied =
N∑

n=1

Cn that is invari-

ant even if there are degeneracies between occupied bands, provided the gap separating

occupied and empty bands remains finite. A fundamental consequence of the topological

classification of gapped band structures is the existence of gapless conducting states at

interfaces where the topological invariant changes. Such edge states are well known at

the interface between the integer quantum Hall state and vacuum ( Halperin, 1982)and

deeply related to the topology of the bulk quantum Hall state.

Figure 5.1: The rotating symmetry property for triangular lattice, the original system in
real-space correspond to the BZ in k-space (top right), rotating x axis 180◦ the position
in real-space is not change ( the blue point note the system which has been rotated )
and ky becomes −ky in k-space ( bottom right). The (a) shows the pink triangular is the
smallest repeated unit cell in BZ.
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Figure 5.2: The hexagon black line shows the area of Brillouin zone and the area of
triangle dashed line is the basic area for integrating which we mention at below in main
panel, and the inset shows the contour of Berry curvature near K1 ( red box) is isotropic
with κ.

In the process of integrating the first Brillouin zone (BZ) for Chern number (see

Eq. (5.1) ). We can use the property of rotating symmetry (triangular lattice (K=K ′)

and Fig. 5.1) for efficient numerical calculation, so we only need to integrate the area in

frist BZ which is overed one twelfth BZ (see the area of triangle dash line in Fig. 5.2). This

integral result multiplies 12 is equivalent to the integration over all BZ. It’s a convenient

method for saving much time for numerical process.

Cn =
1

2π

∫

BZ

Ωnκdκdφ. (5.2)

Because of the Berry curvature is isotropic from K or Γ (ex: the inset in Fig. 5.2), we use

the cylindrical coordinate to be the basis axis ( see Eq. (5.2)) to obtain the more complete

data than using rectangular coordinates .

And the Chern numbers for each energy bands ( which are showed in Fig. 5.7) actually

are not a perfect integer for numerical results ( Ca in Fig. 5.3 ), but the trend which is
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Figure 5.3: The numerical results of Chern number for first lowest band ( the blue line in
top right figure).

standing on more data from the effective contribution ( ex: the effective contribution for

first lowest energy band is around K point: Cc) shows the Chern number ( Ca − Cb + Cc

see Fig. 5.3) will be an integer (be stable).

5.2 Z2 invariant

A system with helical edge states is said to be in a QSH state, because there are a net

spin flow forward along the top edge and backward along the bottom edge, just like the

separated transport of charge in the quantum Hall ( QH) state ( see Fig. 5.4).

The calculation of Sz number ( ν ) is simpler if the crystal has extra symmetry . For

instance, if the 2D system conserves the perpendicular spin Sz, then the up and down spins
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Figure 5.4: Quantum spin Hall effect: the upper edge contains a forward mover( like a
magnetic field B with ẑ direction) with up spin and a backward mover ( like a magnetic
field B with −ẑ direction) with down spin, and conversely for the lower edge.

have independent Chern integers C↑ , C↓ . Time reversal symmetry requires C↑ + C↓ = 0,

and the difference Cσ = (C↑ + C↓) /2 defines a quantized spin Hall conductivity ( Sheng et

al., 2006). The Z2 invariant is then simply [20] as showed as below:

ν= Cσ mod 2. (5.3)

In our system, this case satisfies the aforementioned conditions. Therefore, the value of

ν=0 stands for conventional insulator and ν=1 denotes quantum spin Hall insulator (see

Fig. 5.5).

In Fig. 5.5 shows the Fermi energy is between conduction band and valence band in

open boundary system. The QSH state occurs at the edge, because the topological Z2

number change from ν=0 ( in vacuum) to ν=1 (in semi-conductor).

The discussion for the term mod2 in Eq. (5.3) which comes from classifying topological

insulator which is trivial or nontrivial in a small perturbation case ( Fig. 5.6).
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Figure 5.5: ( Color online)Edge states in the quantum spin Hall insulator (QSHI). (a)
The interface between a QSHI and an ordinary insulator. (b) The edge state dispersion
in the graphene model in which up( blue arrow) and down(green arrow) spins propagate
in opposite directions [20].

The surface states meet at an odd number (which associate with Z2 number) of points

with a small perturbation case in k-space, the QSH effect would occur. For example,

there are a time reversal pair ( in Fig. 5.6 right hand side) with Fermi level on the

crossing point of edge state, the spin-up and spin-down states follow the time reversal

symmetry E(κ,σ) = E(−κ,−σ), and in the perturbation case, the Kramers degeneracy

( ΘH = HΘ, where H in Eq. (5.4); H |n〉 = E |n〉, implies |n〉 and Θ |n〉 have same E

) is robust, which make the edge states ( at the crossing point) be protected even in the

present of a perturbation in system.

H =

[
p2

2m∗ + V (r)

]
+

[−λ

~
σ · (∇V × p)

]
. (5.4)

And another case ( in Fig. 5.6 left hand side), when the surface states meet at an
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Figure 5.6: The sketches show the electronic structure ( energy versus momentum) for
a trivial insulator (left) and a strong topological insulator (right), such as Bi1 - xSbx In
both cases, there are allowed electron states ( black lines) introduced by the surface
that lie in the bulk band gap ( the bulk valence and conduction bands are indicated by
the green and blue lines, respectively). In the trivial case, even a small perturbation (
changing the chemistry of the surface) can open a gap in the surface states, but in the
nontrivial case, the conducting surface states are protected.( Illustration: Alan Stone-
braker/stonebrakerdesignworks.com)

even number of points, the edge states ( at the crossing point) would not be protected (

meaning opened up gaps) because of the mixed states ( at the crossing point) still yield

Kramers degeneracy for a small perturbation case.

5.3 Brief summary

Topological classification is basic on the topological invariant ( Chern number and Z2

number) changes in bulk system, the special states at interfaces will exist for boundary.

In this chapter, we have calculated the Chern number in bulk system for each band and

expected to appear the edge states by the change invariant for open boundary case. And

the another important point, the QSH state is expected in open boundary case by Z2

number change. For example, the Chern number C↑occupied
= - 1, C↓occupied

= 1 for Fermi
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energy (can be modulated by Fig. 5.8 ) between first lowest energy band and second

lowest energy band. We expect the spin-up and spin-down edge states will occur in open

boundary case. And for QSH states, Because of the Z2 number=1 for Fermi energy

between first lowest energy band and second lowest energy band, the QSH states be

expected in open boundary system ( Fig. 5.7).

Figure 5.7: This figure shows Chern number of spin-up and spin-down for each energy
bands and the comparison for Fermi energy, C↑occupied

, C↓occupied
, Z2 number.
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Figure 5.8: The setup of experiment, we use the external bias making the n-dope layer to
control the Fermi energy.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In conclusion, we show that by including the spin-orbit interaction due to the the muffin-

tin potential lattice, the Dirac cones can open up to give global energy gap. The lattice

is a triangular lattice and the spin-orbit interaction arises from the in-plane potential

gradient of the potential lattice.

We have shown that the system can enter into a quantum spin Hall by changing the

Fermi energy. This is concluded from our Chern number calculation. Our results show

that, the Chern number for a energy band and for a given spin state can be nonzero

(Cn,s 6= 0). This is different from that for graphene. It is due to the inversion symmetry

in our system and the lack of inversion symmetry in graphene. Subsequently, our Chern

number calculation shows that edge states could exist when the Fermi energy falls within

certain energy intervals. Finally, we show from our Z2 number result that quantum spin

Hall states could exist when the Fermi energy falls within certain energy intervals.
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6.2 future work

In the future, we will study the case for the open boundary in our system. For an explicit

calculation of the edge states. This will be compared against the conclusion from the

topological classification arguments.
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Appendix A

Labeling the periodic wave function

basis K points

We labels the blue circles as Crange=1,2,3,4,5..... which is corresponding to Fig. A.1. The

number of Crange depends on the K points we consider ( NK = 3C2
range , where NK is the

numbers of K points we consider) . For example, the meaning of Crange=1 is that we only

consider the red points are touched by the smallest blue circle . In this case ( Crange=1),

the red points has three, and the blue circle is triangular form. All the numerical results

which the values are stable about Crange=11 ( about±10−3 difference).
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Figure A.1: The number m includes two index v1, v2; the green arrows denote the basis
vector b1, b2 in k-space; the green point is K1 which is the expanded point for wave
function; the red points are all K points for m; the hexagons are Brilloin zones and the
blue circles are defined as a number: Crange .
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Appendix B

The calculations about the periodic

potential coefficient V ′m

In this appendix, we show how to determine the coefficient V ′
m in Eq. (2.3). The 2DEG

is modulated by a two-dimensional MTP array with the explicit potential form

Figure B.1: A muffin-tin type with center-to-center distance a. The external potential
energy is U0 inside the disk with diameter d and zero outside the disk.
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APPENDIX B. THE CALCULATIONS ABOUT THE PERIODIC POTENTIAL
COEFFICIENT V ′

M

V (r) =
∑
ij

Ṽ (r−Rij)

=
∞∑

i,j=−∞
Ṽ (r− 2πi

a1

2π
− 2πj

a2

2π
)

=
∞∑
ij

Ṽ (r− τ1
a1

2π
− τ2

a2

2π
)

=
∞∑

i,j=−∞
Ṽ (2πi, 2πj, r)

=
∞∑

i,j=−∞
Ṽ (τ1, τ2, r),

(B.1)

where Rij = ia1 + ja2(a1,a2 are the basis vectors in real space ( see Fig. B.1)). Then

we used Poisson sum formula ( see Eq. (B.2)) cast the real-space infinite sum into the

reciprocal-space sum.

∞∑
i=−∞

f(2πi) =
1

2π

∞∑
v=−∞

F (v)

F (v) =

∫ ∞

−∞
f(τ)e−ivτdτ.

(B.2)

Therefore, we obtain the expression of periodic potential

V (r) =
1

2π

∞∑
v1=−∞

∫ ∞

−∞

1

2π

∞∑
v2=−∞

∫ ∞

−∞
Ṽ (τ1, τ2, r)e

−iv1τ1dτ1e
−iv2τ2dτ2

= (
1

2π
)2

∞∑
v2=−∞

∞∑
v2=−∞

∫ ∞

−∞
Ṽ (r− τ1

2π
a1− τ2

2π
a2)e

−iv1τ1e−iv2τ2dτ1dτ2,

(B.3)
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APPENDIX B. THE CALCULATIONS ABOUT THE PERIODIC POTENTIAL
COEFFICIENT V ′

M

where

b1 = 2π
a2 × ẑ

ẑ · (a1 × a2)
,

b1 · a1 = 2π

b1 · a2 = 0
,

b2 = 2π
ẑ × a1

ẑ · (a1 × a2)
,

b2 · a2 = 2π

b2 · a1 = 0
,

so

v =
2∑
γ

vγbγ; τ =
2∑
γ

τγaγ;v · τ = 2π
2∑
γ

vγτγ, (B.4)

where v is the vector in k-space ( bγ is basis vector in k space ); τ is real-space vector, and

vγ, τγ are coefficients for those basis vectors, then we substitute Eq. (B.4) into Eq. (B.3)

can obtain the intergral term show by

∫
Ṽ (r− τ

2π
)e−i

(v·τ)
2π dτ1dτ2

= (2π)2

∫
Ṽ (τ ′)e−iv·(r−τ ′)dτ ′1dτ ′2

=
(2π)2

a1a2 sin 60◦
e−iv·r

∫
Ṽ (τ )eiv·τdτ ,

(B.5)

where we use τ ′ = r− τ
2π

in second row in Eq. (B.5), and the integral term in above

equation is

∫
Ṽ (τ )eiv·τdτ

= U0

d
2∫
0

eivτ cos φτdφdτ = U0

vd
2∫
0

2π∫
0

eix cos φ x
v
dφ 1

v
dx = U0

(
1
v

)2

vd
2∫
0

2π∫
0

∞∑
−∞

(i)nJn (x) einφxdφdx

= U0

(
1
v

)2

vd
2∫
0

2πJ0 (x) xdx = 2πU0

(
1
v

)2
xJ1 (x)

∣∣∣
vd
2

0 = πdU0

v
J1

(
vd
2

)
,

(B.6)

then we substitute Eq. (B.6) into Eq. (B.5) to rewrite Eq. (B.3) in the form of
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COEFFICIENT V ′

M

V (r) =
∞∑
ij

Ṽ (r−Rij) =

(
1

2π

)2
(2π)2

a1a2 sin π
3

( ∞∑
v2=−∞

∞∑
v2=−∞

e−iv·rπU0d

v
J1

(
vd

2

))

=
−∞∑

v1v2=∞
eiv·r 2πU0d√

3va1a2

J1

(
vd

2

)
=

∑
m

eiGm·rV ′
m,

(B.7)

where Gm = v, and the coefficient V ′
m = 2πU0d√

3Gma1a2
J1(

Gmd
2

).
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Appendix C

The numerical results of high energy

bands structure

This appendix shows the contours for the high energy bands structure, we can see obvi-

ously the two-dimensional bands structure are a periodic system ( the physical property

in the system can be expressed by the first BZ).

The numerical result in Fig. C.1 confirm the inversion symmetry E(κ) = E(−κ) (K

= K’, the rotating symmetry which we have discussed in chapter 3) is vertical .
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APPENDIX C. THE NUMERICAL RESULTS OF HIGH ENERGY BANDS
STRUCTURE

Figure C.1: This figure shows the contours of energy band structure without spin-orbit
interaction for (a) the third lowest band (b) the forth lowest band (c) the fifth lowest band
(d) the sixth lowest band (e) the seventh lowest band, and the parameter is m∗ = 0.023me,
a=40nm, d=0.663a and U0=165 meV.
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Appendix D

The Berry curvature of numerical

results for high energy bands

This appendix will show the Berry curvature of numerical results with spin-orbit interac-

tion for spin-up. The reason which we do not show the numerical results for spin-down

electron is the magnitude of Berry curvature is as the same as spin-up electron but in

different sign.

Ωn (k) = i
∑

n′ 6=n

〈uk,n| ∂kxH (k) |uk,n′〉 〈uk,n′| ∂kyH (k) |uk,n〉 − (x ↔ y)

[En′ (k)− En (k)]2
ẑ. (D.1)

From Fig. D.2 we can see obviously the Berry curvature which the main variable for

the curve is controlled by the energy difference (comparing withe Eq. (D.1) and Fig. C.1).
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APPENDIX D. THE BERRY CURVATURE OF NUMERICAL RESULTS FOR HIGH
ENERGY BANDS

Figure D.1: The energy dispersion in present SOI in our system, and the parameters are
m∗ = 0.023me, a=40nm, d=0.663a and U0=165 meV.
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APPENDIX D. THE BERRY CURVATURE OF NUMERICAL RESULTS FOR HIGH
ENERGY BANDS

k
x
(K

1
)

k
y
(K

1
)

 

 

−1 0 1
−1

0

1

k
x
(K

1
)

k
y
(K

1
)

 

 

−1 0 1
−1

0

1

−250
−200
−150
−100
−50

−3

−2

−1

k
x
(K

1
)

k
y
(K

1
)

 

 

−1 0 1
−1

0

1

50

100

150

k
x
(K

1
)

k
y
(K

1
)

 

 

−1 0 1
−1

0

1

−0.8
−0.6
−0.4
−0.2
0
0.2

k
x
(K

1
)

k
y
(K

1
)

 

 

−1 0 1
−1

0

1

−0.3

−0.2

−0.1

0

0.1

Ω(a2) Ω(a2)

Ω(a2)Ω(a2)

Ω(a2)

(a) (b)

(d)(c)

(e)

Figure D.2: This figure shows the contours of Berry curvature of numerical results with
spin-orbit interaction for spin-up (a) the third lowest band (b) the forth lowest band
(c) the fifth lowest band (d) the sixth lowest band (e) the seventh lowest band. (where
m∗ = 0.023me, a=40nm, d=0.663a and U0=165 meV; kx = ky = 0 is Γ point.)
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Appendix E

The other parameters for our system

In this thesis we only demonstrate one parameter ( a=40nm, d=0.663a, U0=165meV), so

this appendix shows the other parameters for various a (the spatial period distance for

MTP), and d (the potential disk diameter) and U0 (external potential energy).

Egap = 2
√

3AλW. (E.1)

We can use the analytical formulation of energy gap ( obtained in chapter3 Eq. (E.1))

for the lowest two band to roughly estimate the magnitude of gap with other parameters,

where A =
K2

0

2
√

3
and W = 2πU0d√

3K0a2 J1

(
K0d

2

)
, (K0 = 4π√

3a
). We notice that W is proportional to

U0 such that Egap increase with increasing U0. The Fig. E.1 show the available parameters

for obtain the results have same physic property (global gap). The reason why we didn’t

plot a< 15nm is the limit of the experiment, and we hope to find the large gap and high

degree of a. Fig. E.1 shows that Egap is plotted by varying a and d for a given U0=165meV.

The dashed curve denotes the Dirac cone boundary and Dirac can not occur below this

dashed curve in Fig. E.1(a). Fig. E.1(b) and (c) show the energy bands without global

gap and with global gape, respectively.
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APPENDIX E. THE OTHER PARAMETERS FOR OUR SYSTEM

Figure E.1: (a)The contour plot of the energy gap for the lowest two band by various
parameters a, d but a fixed U0=165meV. The red line denotes the maximum gap when
d/a=0.663 for all a, the white arrows denote that the systems without global gap at
K point for a=15,20,30...(nm) correspond to those rates, so we roughly estimate the
minimum rate line is the white dash line for having global gap. (b) The global gap does
not exist for d =0.1a, a=40nm (c) The global gap does exist when d = 0.2a, a=40nm.
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