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Abstract

We consider the electronic state-of a two-dimensional electron gas in a muffin-tin
potential triangular lattice. Several Dirac cone structures at the K points in the reciprocal
space have been obtained.

Effects of spin-orbit interaction duie to-thein=plane potential gradient of the muffin-tin
potential have been studied in-detail. We find that gap opening at the Dirac points can
lead to global gaps. In contrast to the graphene case, the Chern number of an energy
band for a given spin state is nonzero. This is due to the rotational symmetry by rotating
about an axis normal to the system by 60°.

As a result the system has a topological Z, invariant and we expected it to support
helical edge states in the open boundary case. The spin-orbit interaction is thus shown
to drive the system into a topological insulating phase.
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Chapter 1

Introduction

1.1 Background

Recently, graphene have attracted a lot: of studies because graphene has Dirac points
structure at each corners of Brilloin zone. Therefore, to-find out new structure with Dirac
cone by artificial fabrication in semiconductors can be addressed an important issue.
In realistic case we must consider the spin-orbit interaction for our case (see chapterl).
Another interesting topic is quantum spin Hall state which has a special property for

electrons transmission with certain spin helix.

1.1.1 spin-orbit coupling in solid-state system

Electron spin, the only internal degree of freedom of electrons, follows naturally from the
Dirac equation when Dirac tried to put wave function in a covariant form, when space
and time appear on equal footing. A nonrelativistic limit of the Dirac equation gives rise
to the spin-orbit interaction term, that has been found great success in atomic energy

spectra. The spin-orbit interaction, in vacuum can be expressed by [2]

eh
Hso = ———=o0-(Exp)=

T2 o (VV xp), (1.1)

4mic?



CHAPTER 1. INTRODUCTION

where my is the free electron mass, i the Planck constant and ¢ the light speed of light.
The physical mechanism of Hgo can be interpreted: an electron moving in an electric
potential region sees, in its frame of reference, an effective magnetic field which couples
with the electron spin through the magnetic moment of the electron spin. Through this
effective magnetic field, which certainly depends on the orbital motion of the electron, the
SOI is established. This physical picture holds in semiconductor too, when V(r) could be
the periodic potential of the host lattice and also the impurities.

The k-p model is often applied to the electron energy band calculation in semiconduc-
tor, when the states in the vicinity of the band edges. Furthermore, within the envelope
function approximation (EFA), the energy band can be characterized by effective masses.
The SOI in semiconductors requires, first of all, an effective electric field in the material.
Such effective electric field can'be contributed from. the build-in crystal field where the
crystal has bulk inversion asymmetric (BIA) the so-called Dresselhaus SOI, or structural
inversion asymmetry (SIA),.the so-called Rashba SOL. The BIA is found in zinc-blende
structure and the STA in asymimetric ‘quantum wells (QWs) or heterostructures.

Based on the effective mass ‘approximation, the effect of all the fast-varying atomic
potential has been incorporated into the effective mass. Slower varying V' (r), with varia-
tion length scale much greater than the lattice spacing, is found to contribute to SOI with
a much greater SO coupling constant A. For a central potential V (r) = V(r) in vacuum,

the SO coupling is

h 1dV R 1dV L Avac 1 dV/
o (rxp)=———F7—0=— -—L-o,

o (VVxp) = 4m3c2r dr h hordr

4m3c?

4m3c? r dr

where L is the orbital angular momentum, o is the vector Pauli matrices and Ay, =

—R2)(4m2e?) ~ —3.72 x 1076 A”,
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But in a semiconductor, also for a central potential V(r) = V(r), the SO coupling is

A1dV
Hyo=——-—L
S0 hr dr g
where
P2l 1 1
Ay — | — —

3 |E2 (B, + 02|

g

For a 2DEG, the SOI becomes

A1dV(p)
Heo = —2-"Hro..
SO hp dp g

Here P is the momentum matrix element between.s- and p-orbitals, F, is the energy
band gap, and Ag represents‘the SOIenergy split to the spin split-off hole band [3, 4]. Of
particular interest is that A =120 A% in InAs, which is seven order of magnitude greater
than Ay [3, 5]

Qualitatively, this large enhancement of SO coupling constant can be explained in the

. . 111
following. With A, o TIE T g o We can see that
by 2
mo MoC
~Y
Avac ~ m* By

1 . moc® . 0.5MeV.
0.0237 B, 0.418eV’

For InAs, mqo/m* ~ leading to

~ 52 x 10°.
AVaC
2
Comparing with % = 32 x 10°%, such hand waving argument has captured the

essential physical origin of the great enhancement.
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1.1.2 Quantum Hall effect

The integer quantum Hall state (von Klitzing, Dorda, and Pepper, 1980; Prange and
Girvin, 1987), occurs when free electrons are confined to two dimensions by applying a
strong magnetic field. The quantization of the electrons circular orbits with cyclotron
frequency w. leads to quantized Landau levels with energy ¢, = hw.(m +1/2). If N
Landau levels are filled and the rest are empty, then an energy gap separates the occupied
and empty states just as in an insulator. Unlike an insulator, though, an x-direction
electric field causes the cyclotron orbits to drift, leading to a Hall current characterized

by the quantized Hall conductivity,

04y = Ne?/h. (1.2)

This precision is a manifestation of the topological nature of o,, Landau levels can be
viewed as a band structure. Since the generators of translations do not commute with one
another in a magnetic field, electronie states cannot belabeled by momentum. However, if
a unit cell with area 2mhc/eB enclosing a flux quantum is defined, then lattice translations
restore the commutation relation, so Blochs theorem allows electron states to be labeled
by 2D crystal momentum k. In the absence of a periodic potential, the energy levels are
simply the k independent of Landau levels FE,, (k) = €,,. In the presence of a lattice
periodic potential, the energy levels will disperse with k. This leads to a band structure

that looks identical to that of an ordinary insulator.

1.1.3 Quantum spin Hall effect

The quantum spin Hall state is a state of matter proposed to exist in special, two-
dimensional, semiconductors with spin-orbit coupling. The quantum spin Hall state of
matter is the cousin of the integer quantum Hall state, but, unlike the latter, it does
not require the application of a large magnetic field. The quantum spin Hall state does

not break any discrete symmetries (such as time-reversal or parity symmetry). The first
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proposal for the existence of a quantum spin Hall state was developed by Kane and Mele
[6] who adapted an earlier model for graphene by Haldane [7] which exhibits an integer
quantum Hall effect. The Kane and Mele model is two copies of the Haldane model such
that the spin up electron exhibits a chiral integer quantum Hall Effect while the spin
down electron exhibits an anti-chiral integer quantum Hall effect. It has been recently
proposed [8] and subsequently experimentally realized [9] in mercury (II) telluride (HgTe)
semiconductors.

Overall the Kane-Mele model has a charge-Hall conductance of exactly zero but a
spin-Hall conductance of exactly U;Zi” = (in units of %) Independently, a quantum spin
Hall model was proposed by Bernevig and Zhang [10] in an intricate strain architec-
ture which engineers, due to spin-orbit ‘coupling, a magnetic field pointing upwards for
spin-up electrons and a magnetic field pointing downwards for spin-down electrons. The
main ingredient is the existence of spin-orbit coupling, which can be understood as a
momentum-dependent magnetic field coupling to the spin of the electron.

Strictly speaking, the models with spin-orbit coupling do not have a quantized spin

spin

Hall conductance o7

# 2. Those-models-are more properly referred as topological

insulator which is an example of topologically ordered states.
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1.2 Motivation

A material ”garphene” which has six pairs Dirac points at each corners of Brilloin zone
(show in Fig. 1.2). The electrical properties of graphene can be described by a conventional

tight-binding model, and the eigenvalues are given by

—E —7f1 (k)
—fik) -E

=B =i () =0, (1.3)

so that the eigenvalues are given by E (k) = +v|f; (k)|. E (k) that |f; (k)| = 0 for some
k leading to a gapless energy band. |fy (k)|* is given by |fi (kK)|° = 1 4 4 cos? (k, %) +
4 cos (k,%) cos (kzm@) [1].

- ol - P - -
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Figure 1.1: The graphene structure (hexagon lattice) in (a) and the energy dispersion
which have Dirac cones in (b). Ref: http://en.wikipedia.org/wiki/Graphene.

This Dirac physics of graphene has been in widespread discussed, because the Dirac

6
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physics often exist in high energy physics system but in graphene can be found in Solid-
state physics.

Marco Gibertini, Achintya Singha, Vittorio Pellegrini, and Marco Polini, have pro-
vided an artificial graphene-like system and discuss an experimental realization [11] in a
modulation-doped (the model shows in Fig. 1.2(a)) GaAs quantum well (see Fig. 1.2(b))

and the numerical results (shown in Fig. 1.3), which Dirac cones exist at K points .

4 AlGaAs GaAs

N T

2DEG
(Two Dimensional
Electron Gas)

Figure 1.2: (a) Scanning electron microscopy images of the nano-patterned modulation-
doped GaAs/AlGaAs sample. [11]. (b)The conduction bands and valence bands of each

AlGaAs and GaAs produce the states interaction making 2DEG.

Recently, a theoretical works [12] was proposed by Cheol-Hwan Park and Steven G.
Louie* which is an ordinary two-dimensional electron gas (2DEG) under an appropriate
external muffin-tin potential (MTP) as shown in Fig. 1.4 reveals that massless Dirac
fermions are generated near the corners of the supercell Brilloin zone (see Fig. 1.5). They

provide detailed theoretical estimates to realize such artificial graphene-like system.
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1.0
o =l g

= 04} -
0.2 - — _
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I M K I
V, =—0.8mev

Figure 1.3: The energy dispersion of MTP (hexagon larrice). [11].

Ja,

o900

Yy
e -0 @
o ‘o090

Figure 1.4: A muffin-tin type with a center to center distance a. The potential is Uy inside
the disk with diameter d and zero outside.

In this thesis, we start from the model which was proposed by Cheol-Hwan Park and
Steven G. Louie*, and further consider the of spin-orbit coupling (SOI) (which comes from
the in-plane potential gradient) due to muffin-tin potential (MTP) lattice. We expect the
SOI can open up gaps at Dirac points. And new class of topological states has emerged
recently, namely quantum spin Hall (QSH) states, which occur in the gap between bulk

state. So we discuss whether QSH is provided by topological invariant in our systems.
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15
10

~ U,=200 meV
|- U,=100 mev
- U;=50 meV
d=0.663a

m=002m 7|

B M K il il 1, B <D i
Wavevector Wavevector

Figure 1.5: The lowest two energy-bands dispersion of a hexagonal 2DEG superlattice.

1.3 A guilding tour to this thesis

In Chapter 2, we study the system about 2DEG under an appropriate external periodic
potential. In Chapter 3, we consider the effect of spin-orbital coupling in our system
and discuss the numerical result. In Chapter 4, we introduce the numerical calculations
of Berry curvature. The numerical results for each bands would be showed and discuss
it. In Chapter 5, we introduce and calculate the Chern number and Z; number which
are topological invariant. Those can help us to expect the edge states and the quantum
spin Hall states for bulk system. In Chapter 6 present our conclusion and possible future

work.



Chapter 2

Energy band structure without SOI

effect

In this chapter we demonstrate a work-about energy band engineering by the artificial pat-
tern mechanism to achieve the graphene-like band structure. An ordinary two-dimensional
electron gas (2DEG) under an appropriate external periodic potential (muffin-tin type ar-
ray) reveals that massless Dirac fermions are generated near the corners of the supercell

Brilloin zone.

2.1 Energy band structure for a muffin-tin potential

lattice in 2DEG

The Hamlitonian for a 2D muffin-tin type (triangular lattice) potential V (r) can be

expressed by

h2

2m*

H=———V?>+V(r), (2.1)

where m* is the effective electron mass. The Bloch wave function for this muff-tin potential

(MTP) lattice can be described by

10
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-

K
M
K| L™ K,

K, K}

Lad ==

Figure 2.1: The Brillouin zene of hexagonal lattice.

Defined the wave function and periodic potential as bellow:

1 f )
\I/H r)= ———¢"7° 62Gn'rcn . 2.2
( ) Vv N - Aunit cell ; ( )

The wave function can be approximately expressed as a linear combination of many (n)
plane-wave states, where N is the number of unit cell; A pitcen 1S the area of unit cell in real
space; k = K; + k the small k was expanded from K; (Fig. 2.1). The form of external

potential is showed below:

V(r) — ZeiGm'r‘/;;’ (23)

m

where G, is the vector of each K point in k space (there are showed in appendixA about

how to label m); V! = \/52553?@ J1 (Gg’d) (Uy is external potential energy, and the explicit
form is derived in appendixB) is the interaction coefficient for each localized component
G,, potential ; m is the labels K point.

We substitute this wave function W (r) and MTP V' (r) to Schrodinger equation HW¥ =

11



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

EV, given by

) ) h?
Z elk~r€l(Gn+K1)~r |:2_7n* (k2 + 9k - (Gn + Kl) + (Gn + K1)2) cn

" Z kT iK1+ (Gt Gl Ty o (2.4)

mn

— E § :ezk-rez(G‘rnJrKl)-rcn7
n

(Gm+Gn)ry// _ iG e/ _ iGpry// _ i GnrY//
where Y e/ GntGn)Tyl e = N @Gt e, = NGt e = S @G T e
n,m n’,m n,m n,m’

then m’ = m, and we confined the same spatial factor e’*Te(GntKi)r on hoth side and

the othogonality gives us

2
S [% (k? + 2k - (G, DK )= G 1K) ) G + Vém] en =B eninn; (25)

where V',,_,, is the interaction coefficient for MTP; the n, m label K points in k-space

and we assume »_ k% + 2k - (G, + Ky) + (G, + Kl)2 Omn + V.| _,. = My,. This equation

nm

is cast into a matrix form for numerical-ealculation (see Eq. (2.6)),

PG| K

C Em | cC
2m* nm m 2m* mo|

. . ]:LQK2 ~
where the dimensionless parameters are My, = - M, k = Kok, K1 = KoK, G, = K¢G/,

RK? mK?2 , WK?2 1y . . . . .
E = =-te, Uy = 5 tuo, V,_,, = 5.2V, _,,. With this numerical matrix formulation as
m 2m ) T n—m 2m 'nm—m

shown as Eq. (2.5) and Eq. (2.6), we can obtain the numerical result.

12



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

There are the numerical result of energy distribution in MTP lattice (Fig. 2.2), we
can see the Dirac point at K point, this phenomenon confirm with the results proposed

by Cheol-Hwan Park and Steven G. Louie* [12].

U,=165meV
m” =0.023m|(Inds) |
a = 40nm

d =0.663a

E(meV)

r M K r

Figure 2.2: The lowest two energy bands calculation of a hexagonal 2DEG superlattice .
The Dirac point energy which is at the crossing of the two bands.

And the Fig. 2.3 shows the results of our rework which are a periodic structure (for
wide area in k-space can obviously discover it) and we can see the Dirac points at each
corners of Brilloin zone. And the results for other higher energy bands dispersion are

showed in appendixC.

13
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Figure 2.3: The contour of energy dispersion for (a) the first lowest band, (b) the second
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CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

2.1.1 The Analytical result by perturbation method

The wave function W (r) can be approximately expressed as a linear superposition (as
show asEq. (2.2)) of three plane-wave states. The reason for choosing this three basis
(K1, K2, K3) is that they are same energy and connected by the most simple reciprocal

vectors G1, Go and Gs ( shown in Fig. 2.4),

K

Figure 2.4: This figure shows the wave function which be expanded to K;, K5, K3 by
G

1
Wi () = e e e 7 (K ) )+ coexp (i (K oK) -1) + 3 exp (1 (K 4 K) )]
(2.7)
where —2— is the normalized coefficient of the wave function and K;, Ks, and K represent

V3Ac

wavevectors at the supercell Brillouin zone corners 1, 2, and 3, respectively, in Fig. 2.4.
Because of the Schrodinger equation HV = EWVU and Eq. (3.1), we can obtain those

equations as bellow:

15
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_ 6i(Kl—‘,—k)-rEllc1

2m

{Clvlg_l + o [%(k + K1 + G2)2 + V/Q_Q] + 03V’2_3}
ciKstk)r {01V’3_1 + V'3 g9+ |:h—2(k + K; + Gg)Q + V/3_3i| }

€i(K1+k)'r {Cl |: hQ* (k + K1 + G1)2 + V/1_1i| + CQV/1_2 + 03V’1_3

ei(KQ-i-k)'I' ei(K2+k)~I'E'202 ,

— e’L’(I(g+k)-I"E303

(2.8)

2m*

where Kl + Gl = Kl7 Kl + G2 = KQ, K1 + G3 = Kg.
Equivalently, we could express the eigenstate as a three-component column vector

c = (C1,02763>T . Within this basis, the Hamiltonian H (which ignore the k? term,

because the secondly contribution can be ignored), will give us

1 0 0
h2K?
1 0 +HO+H17
2m*
0 0 1
011
Hy=W 1|10 1|, (2.9)
1 1 0

! / / / / / ! . / _ / I
, Where V'), =V o =V 1 =V 3=V 1 =V 3=V o=W; V' 1_; =Vy 5 =

cos Oy 0 0
Hy = huok 0 cos(bk — %) 0 ) (2.10)
0 0 cos(fx — )

where %Z(k - K;) = vohk cos bk, vy is the group velocity and 6y is the polar angle of the

16



CHAPTER 2. ENERGY BAND STRUCTURE WITHOUT SOI EFFECT

wavevector k from the +x direction. The eigenvalues of the unperturbed Hamiltonian
Hy are given by Fy = —W, —W,2W. These two degenerated eigenvectors of Hy with the

same eigenvalue -W.

0
1
\q>=;§ 1|, (2.11)
~1
2
o) = — (2.12)
62_\/6_1' )
—1

Thus H; can be treated asta perturbation, which' is* approximate for hvgk < W and
restricted to the sub-Hilbert space spanned by the two vectors is represented by a 2 x 2

matrix Hj(degenerate perturbation theory)-

- < ci|Hilep > < cei|Hiles' > —k, —k
i = e 1| Hilés — 2 ol (2.13)

< CQ|H1|01 > < CQ|H1|CQ > 2 —k’y k’x

The eigenenergies of H; are given by

E(k) = i%k. (2.14)

Therefore we can see at k=0, there are degenerate eigenstates and the group velocity near

K (k = 0) shows the linear behavior comparing with Fig. 2.2.

17
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2.2 The numerical result compare with single well

system

We use the same program to calculate the case of Uy=-300meV. When the extra potential

is negative, the MTP are consisted of many single wells. Such wave under MTP can be

illustrated by the overlapping wave function of the nearest single wells.

Schrodinger equation in cylinder coordinates, can be written by

o harh+ S| +vinboeio - Beine). 2.15)

Applying the factored form ¥(r, ¢) = R(r)®(¢), where R(r) is the radial part, and ¢

is the angle between r and Z, one can obtain

A 4 dR0) e )
R g~ W VEB) = SAg e (2.16)

This Schrodinger can be decoupled into the radial’and azimuthal parts,

ER(r) | 1dR(r) | [(V(r) = B)I 112

dr? r dr —A 2 R(r) =0,
o) o (2.17)
d¢? ’

where we assume A:%, and the disk-shaped potential V(r) = —=Vp0(4 — 1), Vo > 0 is

external potential strength; d is the diameter of potential region.

The solution of radial equation is the Bessel equation. Therefore the electron wave

function in two dimensions can be written in form

Cii(ar)e® < g,
\Ill(rv gb) = )
E K (Br)e’® p >4
where a = %; 0 = %'.

The wave function is continuous at the boundary

18
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[SlisH

r = £, therefore we can get the energy level of finite single well. The Fig. 2.5 shows (a)
MTP case and (b) single well case, where the [ is the orbital quantum number, the [=0 is
single state; |l|=1 includes two state. Although the single well energy band structure is

not exactly as same as muffin-tin potential, the band energy level agrees quite well with

each other.
T S == 0 =
(@) (b)
I ———— !:3
-50r . 50t |
100, N 10
~ s E— ~ I:’)
% > =4
E -150r : g -150+ ]
N N’
L L
~200¢ S -200f =1 -
-250r : -250F ]
=0
=V
-300 -
[ M K [ 300r M K r

Figure 2.5: The energy band structure for (a) the numerical MTP in 2DEG sys-
tem. Compared the energy level with (b) the single well in 2DEG system. U, =
—300meV , a = 40nm ; d=0.663a.
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2.3 Brief summary

In this chapter, we show that the energy band structures excluding SOI effect in external
periodic potential in 2DEG. There are massless Dirac points at the corners of Brilloin
zone (K points) as graphene system.

And we also do another work for inspecting the numerical results. The wave function
be expanded from I'" point and compare the numerical energy dispersion with the results
which the wave function be expanded from K;. The result for comparison is exactly the

same.

20



Chapter 3

Energy band structure with SOI

effect

In this chapter, we consider the effect-of spin-orbit coupling on the energy band structure,
we have discussed in Chapter 2. The spin-orbit is arisen from the in-plane gradient of the

periodic potential.

3.1 Muffin-tin potential lattice in the presence of SOI

The Hamlitonian H for a 2D MTP system with spin-orbital interaction can be expressed

by.

2

p
H=—+V Hep. 3.1
o T (r) + Hso (3.1)

The spin-orbit interaction term, in vacuum can be desired by

A A A A
Hso = 50-(px E) = —=—0-(p x VU) = Zo-(p x VV) = =20 (VV x p), (32)

where in-plane electric field E = —VU (U: electric potential); V (Electric potential en-

ergy)= - eU (e > 0 ) ; spin-orbit coupling constant A=120A? (for InAs)
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The wave function includes both spin-up and spin-down component in column vector

form:

U, (1) = vy G | ] (3.3)

Cn|

The Hamlitonian of SOI term operates on the wave function leading to:

A . Cn
HsoV (r) = —% e'Gm Vo (G X Pp) ZeZ(G”")' !
m n Cn|
| XSV (G x p), 0 > Gnteire, (3.4)
_ R n 3.4
" 0 = el (G xp), | | Sy

= —1A Z eHGm+(Grntr)lr Cnt Vo (G X Gy, +K)),

=Cp | Vo (G X (Gt K))

where G,, X p is along z-direction, 80 0-2 =6, and Y ¢{CntGITy/ 0 — N~ i Gwryl e, =
n,m n',m

S GtV e = S0 GtV eu(m! = m). The matrix here is diagonal, show-

n,m n,m’

ing that spin-up and spin-down are decoupled because Hgp depends only on o,. Due

to Eq. (3.1), and Schrodinger equation HV (r) = EW (r), and the orthogonal term of

ik~rei(K1+Gn)-r

plane-wave form e can be a substrate the m’th component to form a matrix

ik-rei(KlJan)-r

equation. For getting the simple numerical formulation, we take off e and

obtain:
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CHAPTER 3. ENERGY BAND STRUCTURE WITH SOI EFFECT

B2 S 242k - (G, + Ky) + (G, + K;) 0 e |,
2m* < 0 K242k - (G + Ky) + (G, + Ky)? Cnl
Z V’ 1—3) [anm X (Gm + K;)] 0 Cm1

_y | P

n Cnl|

(3.5)

This equation shows that the spin-up. ¢4 part is decoupled with spin-down ¢,,; (the element
only exist on diagonal term). Thenumerical result’is shown on the subsection 3.4.

The Fig. 3.5 shows the lowest two bands with wave vector near K;. We can see that
the original Dirac point opens up a gap in the presence of SOI and the numerical result

shows E. . = E

Cnl*

3.1.1 The Analytical result in the presence of SOI by perturba-
tion method

The subsection will show the analytical calculation in our system in the presence of SOI
. The Schrodinger equation for a 2DEG in the presence of SOI, using the Eq. (3.1) and
Eq. (3.2) (where we defined Hgp = hgoo., because of VV x p is along z direction) can

be written in the following form

23
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The wave function Wy (r),, = ¥ (r), g, ( kis very close to K, all at the equivalent
K points (see Fig. 2.4 ) can be approximately expressed as a linear superposition of three

plane-wave states,

1
3A,

Wy (1) = ——— [er, exp (i (Ky + k) - ) + ¢, exp (i (Ko + K) - 1) + ¢, exp (i (Ks + k) - 1)].

:

(3.7)

2
p
m*

where s = £1 (spin up s=1; spin down s=-1), and 3

+ V(r) expand is subspace of
k+K,), k+K,) and |k + Kj), will give

1 00
h2K?
2m*

01 0 | +Ho+ Hy

0 01

Here, Hy, given by Eq. (2:9), denotes the effect of V' (r), and H; given by Eq. (2.10)
which is linear in k.

The Eq. (3.6) has a spin-orbit term, as show bellow

hsoWe—+1 (T)
= —iAe®T V7, [eEHGHCIT (G % [Gy + (K + k)] e,

67L[K1+(G2+Gm)]'r {Gm X [GQ + (Kl + k)]} C2s

N (3.8)
cKi+(G3+Gm)] {G x [G3 + (K1 + k)|} cs,

— —ieRT SV, [e®HGn TG, (K 4 K)o,

+ Kt GG % (Ky 4 k) ¢, + /®CGmTG,, x (K3 + k) c3,]
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hsoWs—41 (r)

V'io1Giog X (Hl) V'i_9Gig X (/12) V'i_3Gi_3 X (53) ei(Kﬁk)’rCl

s

= —iA V9 1Gay X (/ﬁ) V9 9Ga_o X (/12) V9 3Ga_3 X (lf3) 61(K2+k)'rc2

V'3 1Gs_1 X (/ﬁ) V'3 9Gg_a X (fiz) V'3 3Gs_3 X (/13) 6i(K3+k)'r038

Elsei(Kl-l-k)-rcl

s

— EQS 67;(I<2-i-k)~rc2

S

EBS ei(K3+k) .ng

s

(3.9)

where k1 = K +k, ko = Ko+ k, &5 = Ko—+k, and the same spatial factor e’ Tei(GntKi)r

on both side can be ignore for.the matrix form.

hso(k)
0 (Gieox Ky + Gy o xk) (Gi_3x Ks+ Gi_3 xk)
= =AW | (Gy_y x Ky +Gy_1 x k) 0 (Go_3 x K3+ Go_3 x k)
(G331 x K1 + G371 xk) (Gs_o2 x Ky + G35 x k) 0
(3.10)

where V/_p, = Vg = Vi = Vg = Vs = Vigg = Vi3 o=W; V', =

Vigo=V'30=0(V',, = \/52552?@ J1(€24)), and we also assume A = G,_yy, - K, sin(3F)
At the K point, the Hy has a doubly degenerate energy -W. Using the correspond eigen-
states, |c1) and |cg) given by, Eq. (2.11), Eq. (2.12), we obtain the 2 x 2 subspace repre-

sentation of Hy, H; and hgo.
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- ci| Hy le ci| Hy le 1 0

o [ el e ) | -
<C2|H0‘Cl> <CQ|H0|CQ> 0 ]_

i, — (c1| Hy|er) {c1| Hy|ea) _ % —ky  —Fky | (3.12)
(col Hy|er) (co| Hy |co) —ky  ky

- cil Hso le c1l Hep |c 0 1

hiso.s = el Hsoler) {erl Hso lez) — iV3sAIWA , (3.13)

<CQ’HSO’C]_> <02|H50|Cg> —1 0

where \ is spin-orbit cotipling constant. We ignore the energy shift term H, and

obtain:
L — oy, — Mg+ iV/3sAW A
Hy + hso,s = , (3.14)
— Mok, —iV3SAWA Mo,
hve  \
E=-W=+ (7%) + 3 (sANW)%. (3.15)

The Eq. (3.15) shows the lowest two energy bands at K point opens up a gap (2v/3AAW),
the s=1 (spin-up)and s=-1 (spin-down) the energy dispersion is the same ( which is as

same as numerical result, see subsection 3.4).
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58 T T T

57.5

numerical
analytical

57

56.5-

1.1209(meV)

E(meV)

—0.1 —=0.05 (O] 0.05 0.1

Figure 3.1: The lowest two bands which wave vector is near K; (k,=0, —0.1K; < k, <
0.1K;). The red line: the numerical result for three K point with SOI; blue line: the
analytic result for 2 x 2 matrix with' SOL, X=120A%(InAs); m* = 0.023m,; Uy = 165meV;
a=40nm; d=0.663a.

The Fig. 3.5 shows the energy of analytic energy band (restrict in subspace) is higher
than numerical energy band (3 x 3 matrix) except the k ~ 0 (close to K7). Because of the
numerical energy band consider the 2W (higher energy), leading the energy higher than

analytic energy band (only consider -W).

3.2 The position symmetry for muffin-tin triangular
lattice

There are an external muffin-tin triangular potential in the 2DEG. This structure has

a symmetry property for rotating 60° alone the z-axis. We can interpret the symmetry
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property from Fig. 3.2, each muffin-tin triangular structure (a), (b), (c¢) in real-space have
the corresponding BZ (a), (b), (c¢) in k-space. For example, the figure (a) rotate 60° to
becomes figure (b) in real-space and the K system in (a) change to K’ system in (b)
relatively in k-space. Because of the action for rotating 60° doesn’t change the structure,

the rotating symmetry is tenable.

real-space
60° 120° 60 x 7
(a) R . (0) o . (c) R °
[+] ® @ ® ® ° ™ ™ el
] ] ® L ® ®
60° k-space | 5 60" x i
(@ K, X ®) K, X, [k, K
K k| |k, k| |K! K| e
K, K, K, K, K, K;

Figure 3.2: This figure shows the rotating symmetry property for triangular lattice, the
original system (a) in real-space correspond to (a) in k-space, then rotate % from central
point to become (b) in real-space and k-space , and do the same work to become (¢) in
real-space and k-space, where 7 is an integer(the blue point note the system which has
been rotated ).

For the analytic calculation, the wave function expanded from K7 point(using the K7,

K, K be the basis), the method is as same as K system. There are only H; term different
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from K system which the k become -k.

cos Oy 0 0
Hy = —huok 0 cos(bx — &) 0 ) (3.16)
0 0 cos(fx — )

Therefore, we obtain the subspace (as show in Eq. (3.12) and Eq. (3.13)) representation

of Hy, Hy and hgo , and count the energy dispersion. The result of energy dispersion in

K’ system is as same as K system £ = —W + \/(%k;)Q + 3 (sAXW)?. This result prove

the position symmetry property( show in Fig. 3.2) which is authentic.

3.3 The numerical . result - compare with single well
system in the presence of SOI

Using the same numerical program calculates the case of Uy=-300meV. When the extra
potential is negative, the MTP resembles many single wells. Such wave under M'TP can

be illustrated by the overlapping wave functions of the nearest single wells.

HSO:__o-. r— X ——O"(I'Xp) :———O'ZLZ (317)

A oV __A@V A OV
h or p)= hr Or hr Or

The disk-shaped potential with step-like profileV (r) = —V40(% — r) gives rise to SOI
term, where d is the diameter of the single well.

AV (4 1)

_ L. 3.18
SO hr g ( )

The total wave function with spin state ;s is written as Wy (r,¢) = R (r)®(¢)xs =
Re(r)e® .

Here o,xs = sxs,(s = £1 the meaning is spin-up or spin-down state). Substituting
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wave function into the Schrodinger equation, the radial differential equation reads

d d. PP rV(r) lIsHso

o T A A

r

A

R (r) = ER(r). (3.19)
The radial function R?(r) has different coefficients for inside and outside the disk, that

depend on the index s, given by

. Cidi(ar) r<d
Ri(r) = (3.20)
EfK(Br)  r>

N

NI

Y

The Hgo is nonzero only at r:g, the boundary condition that bring forth the spin de-

generacy is given by

dR, + AlsV; d
!r) + 22 031(5

%
dr |4~ A

r

) =0 (3.21)

Finally,the wave function'is continuous-at-boundary, we obtain the coefficient C} , E}
, energy level, and orbital quantum.number.

Compared with the energy level of a single well, we can obviously discover the each
energy band is almost same level (see Fig. 3.3). There are two energy bands equal to same
orbital quantum number(l) when the |I| # 0. For the (1)=0 case, only have one energy
band because the [=0 did not have opposite quantum number. This work can provide a

method to prove the program which is authentic.
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T~ —~ 0 £S5
=3
-50r B -50F ]
~100; 1 -100 =0 1
=2
S o
S S
£ -150 1€ -150F i
| — | —
] w
~200 200} =1
250/ 1 -250- |
1=0
- | -
300 M K ro ~300p MK r

Figure 3.3: Energy band structure with parameters units typical for InAs are: effective
mass m*=0.023m.; a = 40nm; SO coupling constant A=120A2 (a) numerical muffin-
tin potential (Uy = —300meV ) in the presence of SOI. Compared with (b) single well
(Vo=300mev) in 2DEG.
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3.4 Results for energy band structure in the presence

of SOI

In our numerical examples, physic parameters are chosen for InAs in the practical ex-

perimental parameters. The Fig. 3.4 shows the energy dispersion with SOI which open

— without SOI
~ with SOI =4— 160+ 1 150
125 NTTETITETO
140+ 1145
IO 2
120 9
%100- > 110 1;';
¢ 108
A 1105 i
M"’y
74 i
e g
2t
40;
/ 36"" ot
201 1 35.5 il
35 "’t,t
345
0 L L . .
I M K r

Figure 3.4: Parameters units typical for InAs are: effective mass m*=0.023m,; Uy =
165meV , a = 40nm ; SO coupling constant A=120A2 The blue line is without SOI and
the red line is with SOI which spin-up and spin -down are flipping in muffin-tin lattice .

up gaps at K and I' points (the magnitudes of each gaps are shown in Fig. 5.7), the
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spin-up states and spin-down states are same energy dispersion but spins opposite site in

z-direction (Fig. 3.4). And for the lowest two energy band, the spin-up and spin-down

3] .
®®®® ® :
6@@ )
A~ @Q &
2 35.5 79004 o ¥ -
E *:ee N
1t ** @) 0 *
- (880" ° %
35¢ ééééo 8 X 1
& &
. &
34.5¢ .

K

Figure 3.5: The lowest two bands which wave vector is near K;. Red circle: the system
with SOL; blue star: the system without SOI, A=120A%(InAs); m* = 0.023m,; Uy =
165meV; a=40nm; d=0.663a.

states mixing at K point without SOI (see Eq. (3.5)).

:k@mpfwgmpwﬁg+vu)' (3.22)

£0

Because of Eq. (3.22), the states at K point is a superposition state with the basis is the

eigenstate without SOI, leading to open up a gape for first lowest energy band and second

33



CHAPTER 3. ENERGY BAND STRUCTURE WITH SOI EFFECT

lowest energy band (Fig. 3.5).

1.1 .

range

Figure 3.6: This figure shows the/value of gap for first lowest energy band and second
lowest energy band which depend on:Cqpnge(show in appendix A).

The Fig. 3.6 shows the magnitude of the gap ( between first lowest energy band and
second lowest energy band) would decrease when the Cpun4e ( orbital index) increase.
We have trying other parameters for different a, d, Uy, and roughly discuss the results,

because for Cpqnge=1 ( shown in appendix E).

3.5 The relationship between time reversal property
and our system

The numerical results show the energy dispersion of spin-up and spin-down states are
same energy dispersion. We analyze the these results by time reversal symmetry. The

wave function and Schrodinger equation are given by
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i . Ug,s (T 0
‘IIR,S (r) = e“{;r Z U’K,,S <r> XS - eZle‘ ( ) + , (323)
’ 0 Up,s (T)
s=1 s=—1
1 0 1 0 4 ' Copesm
H\I’KL s (I‘) = HO -+ hso err Z elGn~r 1
01 0 -1 n Cn,k,s=—1

, A ) Y
_ ezwr Z ean-r s=1tn,k,s=1
n Eszflcn,n,s:fl

where the periodic function wu,, . \(r)="> eS¢, . ; s = +1 is meaning spin-up and
n
spin-down and the definition of Hgo-= =23 €TV’ 5 - (G,, X p) = hy,0.. Because of
m

0.Xs = SXs the Schrodinger equation turns out to be:
(HN.SO + ShSO) eimr |UK,,8> Xs = En,sein.r ‘un,s> Xs- (325)

Time reversal operator ® acts on Eq. (3.25), one obtain that

(HN.SO - ShSO) e—iKuI‘ |u—n,—s> X—s = En,se_iwr |u—n,—s> X=s, (326)
where
Ohgso = O —% STV (G X P), | = % STV (G_p X —p), ©
- - (3.27)
= —hs09®,
and

*

O] |U;<;,s> Xs = |UH,S>*Ust = |un78>*X—s e = |u_,§7_s> = ‘un,8> :
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The eigenstate of Eq. (3.26) is |u_,, —s), so the eigenenergy of this system must be E_,,
which implicate £ ; = E_, 5, and because E, _, = E_, _, which comes from the parity

operator m acting on Eq. (3.25), we obtain

(Hxso + shso) e T Ju_p o) Xs = Ewse ™ Ju_ps) Xs, (3.28)

where the rotating symmetry for triangular lattice (see Fig. 3.2 shows the system in our

model with inversion symmetry, the result E, ; = F, _; is proven.

3.6 Brief summary

Thus far in this chapter, wesshow that the energy band structure with SOI effect in
external periodic potential in 2DEG. There exist a massless Dirac point at K; without
SOI effect ( as show in chapert2), and we considered the MTP gradient which arise the
SOI, the degenerated energy at K point can openup-a gap, and we also have an analytic

calculation to prove the numerical result is authentic.
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Chapter 4

Berry curvature with SOI effect in

our system

Berry curvature is as a local gauge potential and gauge field associated with the Berry
phase. These concepts were-introduced by Michael Berry in a paper published in 1984
[14] emphasizing how geomeétric phases provide a powerful unifying concept in several
branches of classical and quantum physics. Sueh phase have come to be know as Berry

phases. In this chapter, we will show the Berry curvature with SOI effect in our system.

4.1 Berry phase

In quantum mechanics, the Berry phase arises in a cyclic adiabatic evolution. The quan-
tum adiabatic theorem applies to a system whose Hamiltonian H (k) depends on & that
varies with time t. If the n’th eigenvalue €, (k) remains non-degenerate everywhere along
the path and the variation with time t is sufficiently slow, then a system initially in the
eigenstate |u,€(0)’n> will remain in an instantaneous eigenstate }u,{(t)’n% up to a phase,

throughout the process. The state at time ¢ can be written as

| i | )
U, (1)) = PalOPE ‘un(t)7n> , (4.1)
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where the second exponential term is "dynamic phase factor” and the first exponential
term is the geometric term, with v, being the Berry phase. By plugging into the time-

dependent Schrodinger equation, we can obtain the solution of ~, ()

t (1)
. d . d
Vo (t) = / dt' <Un(t'>,n}@ |th(iryn) = i / dis - (Upsin| = [ten) (4.2)

0 #(0)
In the case of a cyclic evolution around a close path & (t) = & (0),

From Stoke’s theorem, we have
7 (C) = i / / dS - Voo % (g | Vidttis) = / / dS - Q, (k). (4.3)
c c

where Q,, (k) =iV s X (U 11V ki) 18 call the Berry curvature. One might worry that
the arbitrary phase attached our expression in Eq. (4.3). To examine this we consider
the following gauge transformation |tixn) = €“*) |u,.), where the ¢ is a k dependent
phase factor. We get (U | Vilm)y =1 V& (R)+ (Upn | Vitgn), and in substituting
into Eq. (4.3), the additional term V, X V& (k) = 0. This step shows that the Berry
curvature is independent of arbitrary phase factor which dependent on k in the wave

function. As such, the definition of Berry phase in Eq. (4.3) is uniquely defined.

4.2 Berry curvature analysis

For a closed path C that forms the boundary of a surface S , the closed-path Berry phase
can be rewritten using Stokes’ theorem as 7, = [ dS - Q,(k).
S

From Eq. (4.3), we get:
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T (C) = z// dS - Vi X (Ugn | Vilgn)
c

_ / / 1S - [(Victtnn] X [Vt + (tn | Ve X Voctt)] (0.4)

://dS'Qn(m).

The formulation is as shown below: a complete set Y [V oty n) (Vi ns|=1 has been

inserted in the second row of Eq. (4.4), and they are grouped into n #n' and n = n/

terms.

Q, (K) =1 (Vipn| X |V illen)

I
~.
N

Z <Vkuk,n | Uk,n’) X <uk,n’ | Vn”n,n) + Z <Vnun,n | Un,n’) X <uk,n’ | VKZ“KZJ%)) .

n#n/ n=n'
(4.5)
Because of Vi (Uwn | Upn) =0,
Vi (Ui | Un)
(4.6)

= <V/<,uf<,,n | un,n> + <uk:,,n ’ Vm”n,n) = <ul<a,n ‘ VK,U‘F\‘,,TL>* + <un,n | Vkauh‘,,n> = 0;

where (U | Vglg,) must be pure imaginary, as a result of Eq. (4.5) the second term
of the second row is zero.

There is a useful relation for obtaining the numerical formulation:

(U | (ViH ) [tgen) = (Upr | (VieH — HV o) [t )
- <Un,n’| VnEn,n ‘un,n> - <un,n" En,nvn |un,n>
(4.7)
- VKEK,,H <un,n’ | un,n) + En,n <Un,n’ | VK,/U/K/,TZ> - En,n’ <un,n’ | Vnuk,,n>
- (En,n - Eka,n’) <ul<.',,n’ | Vn“n,n) y
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where the H (k) comes from H (k) = U (k) HU' (k) = e **T He'*™. Because of Schrodinger
equation: H [y, (r)) = HUT (K) |upn (¥) = 0 (K) [Ven () = &, (k) UT (k) |ugen (1)).
From Eq. (4.7), we obtain:

<U’K,,’n/| VK,H ‘um,n> ,
En’n _ E&n/ ? n # n

<un,n’ | Vkun,n> = (48)

and substituted to Eq. (4.5). The numerical calculation of Berry curvature is read as:

Q, (k) =i Z (| Op, H (K) [te) (U | O, H () [tien) — (2 = y) 5

Bnr (k) — B (9)] 49)

n'#n
The Eq. (4.9) shows explicitly, that the Berry curvature is due to the restriction to a single
band n and to the resulting virtual transitions to other bands n’ # n, and the numerical
result n’ is the effective number for-two bands which are the nearest for each higher
energy and lower energy (Becatse of the denominator-[E, (k) — E, (k)]* in Eq. (4.9)).
For example, the n=1, n’=2;"3 and another case the n=4, n'=2, 3 ( lower energy), 5, 6 (

higher energy).

4.2.1 The analytic result of Berry curvature

The wave function W, (r) may be approximately expressed as a linear combination of
three plane-wave states.

The term H; + Hgo, when restricted to the sub-Hilbert space spanned by the two
vectors (the degenerate eigenvectors of lowest two bands) is represented by a 2 x 2 matrix
Hi+Hso (shown in chapter 3.1.1 ), the meaning of this step is that we only focus on the

Berry curvature of k-space near K point(the Dirac point of the lowest band).

o — g, — Mok, +iV3sAW A
H, + Hso = ; (4.10)

—Mog, —iV3sAW A o,
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— Pk, —FPoky + 1A Yo.s
_POky - ZAS POkz Zn,s Zn,s

where A, = V/3sAW A, s==41(spin index) , Py = 20 vy = 21 Schrodinger equation

27 m* ?

[ﬁl (k) + Hso (n)] |Ukn,s) = En |tns); n = E1(n = 1, the second lowest band; n = —1,

the first lowest band); Y,, s, Z, s are the elements of |u, ., s). The solution of Eq. (4.11) is

Poka-+n[ v/ (Pok)?+2 , i} . ,
Zps = hoR A Yy, and normalize Yy, o, Zp s (Y Yos+ 2} (Zn s = 1), we obtain

Pyk,)* + A2
Vs = (Pohy) t9 (4.12)

2(%M2+A§+n%h,(%M2+A4

Then we use the above requations, the Eq. (4.9) in this case becomes (the analytic

result of Berry curvature)

N>

Qn::tl (K/)
) 1 0 Yo 0 1 Y6
(—P) ( Vi, Zh ) ( Ve 2, ) — c.c.
0 -1 7 10 Zns
4 (P2k2 + A2)
P[P (Y Yons — 25 o Zons) (Y2 o Zns + 2% Yas) — ]
- 1(P2? + A2) ©
nA,P? .
== 3 zZ.
2 [(Pok)® + A2]?
(4.13)
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4.2.2 The Berry curvature of numerical result compare with the

analytic result

This section we will use the Berry curvature analytic formulation Eq. (4.13) to compare

with the numerical results which consider three K points( unperturb points and same

energy).
O T T T
_5} | ——analytiacl 1
—numerical
_10 L
Q(a%)

s -15/
e -10
-20r -20
-30

_25 L

_30 L

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
k. (K.)

Figure 4.1: The inset shows the contour of Berry curvature for the lowest band ( in spin-
up case) by considering three K point and we chose (a) k,=0k,, .. , (b) k,=0.3k,,.. and
(c) ky,=0.6k,,.. (black line) corresponding to the dispersion which is expanded from K;
(ky = ky, = 0) in the main panel. The blue line is analytic result n=-1, s=1 (Cy4nge=1);
the red line is numerical result (the lowest band).

Ymax

From the Fig. 4.1 and Fig. 4.2 we can observe the magnitude of analytic Berry curva-

ture at K point confirm to the numerical result. The analytic Berry curvature match the
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30 1
——analytical
—numerical| 1

25

N
()
T

TR
o
T

0 ! f I t
-0.15 -01- -005~~0 005 01 015

Figure 4.2: The inset shows the contour of Berry curvature for the second lowest band (in
spin up case) by considering three K point and we chose (a) k,=0k,, .. , (b) k,=0.3k
and (c) k,=0.6k,, . (black line) corresponding to the dispersion which is expanded from
K (k; = ky = 0) in the main panel. The blue line is analytic result n=1, s=1 (Cyqnge=1);
the red line is numerical result (the second lowest band).

Ymax

numerical results except K point.
The effect Berry curvature for first lowest energy band distribute around K point, and
when C,4nge (shown in appendix A) increase the Berry curvature would stable (Crange ~ 11,

are shown in Fig. 4.3).
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0
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-362 ——— G ange™7
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Figure 4.3: The C,4y4c increase to 11, the numerical Berry curvature would almost stable.

4.2.3 The relationship between time reversal property and Berry

curvature

The numerical results show that the spin-up and spin-down Berry curvatures are opposite
sign (see Fig. 4.4 and Fig. 4.5), the curvature satisfies €, (k) = —Q, _s (—&). In this
subsection, we will derive some symmetry relation of the Berry curvature. The specific
symmetry we consider are the inversion symmetry (via parity operator 7) and the time

reversal symmetry ( via time-reversal operator ®). Our Hamiltonian H has the property
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[H, 7] =0 and [H,®] = 0. We start from the expression of the Berry curvature

Qn (K') =1 <Vnu/<,,n’ X ‘Vmun,n> = VK, X An,s (K') ) (414)

where A, s (k) is called Berry connection ( like a vector potential in k-space), the curve
of A, s (k) is Berry curvature. Because of the inversion symmetry ( proven by rotating

60° in chapter 3), we insert w7~ ! into Berry connection Eq. (4.14)
A (B) = 0 (U | T Vom0 ) = 0 (U soms] Vie [Uims) = —Ans (—K) . (4.15)

Here, we point out that w !V =V, because kin V,., or in |V o) 1s a classical vector,

1 1 -1

TET U ens), Where Tl = —rr !

not an operator. Furthermore, m—1e™™ |y o) =€

and 7 Uy pns)=|U_rns). The symmetry property of the Berry connection we obtain in
Eq. (4.15) is for the same spin index but for opposite-x. Corresponding, the symmetry

property of Berry curvature is_given by
Qs (k) =VeXxA,;(kK)=—-VexA,;(—K) = Q5 (—K), (4.16)

Eq. (4.16) is resulted form inversion symmetry. The symmetry relation for ©,, s (), due

to time-reversal symmetry is derived in following. Denoting o) = |ty p.s),

|8) = iV g [tgns) we have
A”vs (K/> =1 <Uﬁ,n,s| V:{ |un,n,s> = <Oé | B) . (417)

Corresponding, we denote |&) = O |a) = |U_jopn,—s),

‘B> =0 |f) = =iV, |u_rn—s). We have the identity (a | §) = <ﬁ~ ‘ d> such that
@] 8) = (B &) =i (T (tsnal) [1mns) = =i (o] T [ s) = A (—10),
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(4.18)

Between the second and the third steps in Eq. (4.18), we used the relationship (V  (tn.s|) [Uwns) =

— (Ugn.s| Vi [Upns), which is derived as follows

Vn <un,n,s ‘ un,n,s) =0
= (Vh‘, <uh‘,,n,s|> |u/<,,n,s> + <un,n,s‘ Vn ‘uh‘,,n,s> =0 (419)

:> (VK, <ul‘-‘,,TL,S|) |ul<,,?’l,,8> = - </u’K,,TL,S| VK, |UH,7’L,S> .

From Eq. (4.18), we obtain the Berry curvature

Vi x Ay (K) = Vi XA, s (—k) == Vg XA,y (—K) = —Q_, (—K). (4.20)

Eq. (4.20) is resulted from time-reversal symmetry, Inversion and time-reversal symme-

tries together give us

Qn,s (K’> = _Qn,—s (_F") = _Qn,—s (F"') . (4'21)

This symmetry in Eq. (4.20) is clearly demonstrate in our numerical results, presented

in Fig. 4.4 and Fig. 4.5. Thus confirming the validity of our numerical calculation.

4.2.4 The numerical result of Berry curvature

This subsection shows the numerical results of Berry curvature for the lowest energy band
and the second lowest energy band ( the other figures for high energy band are showed in

appendix D).
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Figure 4.4: The Berry curvature of the lowest energy band for n=1 (a) the contour
for spin-up (b) the contour for spin-down (n/=2,3); A=120A2 (InAs); m* = 0.023m,;
Up = 165meV; a=40nm; d=0.663a ( where k,=k,=0 is I" point).

The Berry curvature distributions imply that the energy difference with others band
is the main effect and the wave function term is the minor effect for leading the main
contribution of Berry curvature , we can observe these from Eq. (4.9). And the important
information in Fig. 4.4 and Fig. 4.5 is that the periodic triangular lattice in our system
with inversion symmetry (K = K’ in k-space), the Berry curvature distributions is the

same at six corners of BZ.
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Figure 4.5: The Berry curvature of the second lowest energy band for n=1 (a) the contour
for spin-up (b) the contour for spin-down (n/=2,3); A=120A2 (InAs); m* = 0.023m,;
Uy = 165meV; a=40nm; d=0.663a ( where k,=k,=0 is I' point).

4.3 Brief summary and discussion

This chapter we introduced the Berry curvature which comes from the Berry phase, and
also show the numerical results of Berry curvature for each energy bands in first BZ.
Finally, we discuss the correlation between Berry curvature and time reversal property to

guarantee the correct numerical results are correct.
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However, the another important thing is to compare with the Berry curvature of
graphene (see Fig. 4.6). Because of graphene without the inversion symmetry property (

the Berry curvature K # K’ see Fig. 4.6 (b)), we can understand simply from Fig. 4.7.

Figure 4.6: The (a) show the energy dispersion of graphene in BZ. (b) The Berry curvature
of graphene in BZ. [15]

real space
honeycomb lattice
180°
® ® - .
.
® ] b - ®
.
L] o L] ® ®
L J
e o . ° o

e e © o

Figure 4.7: There are without rotating symmetry in graphene, which imply K # K’ in
k-space (the blue point note the system which has been rotated ).
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Chapter 5

Searching for quantum spin Hall

effect in our system

The QSH systems are insulating in-the bulk, they have an energy gap separating the va-
lence and conduction bandssbut on the boundary they-have gapless edge or surface states
that are topologically protected and immune to impurities or geometric perturbations
[16], [17],[18], [19].

Therefore, this chapter we will use the topological invariant ( Chern number and 7,

number) to examine the edge state and classify the insulator for open boundary case.

5.1 The Chern number of the energy band

The Chern invariant is rooted in the mathematical theory of fiber bundles ( Nakahara,
1990), but it can be understood physically in terms of the Berry phase ( Berry, 1984)
associated with the Bloch wave functions|u, (k)). Provided there are no accidental de-
generacies when k is |u, (k)) transported around a closed loop, acquires a well defined
Berry phase given by the line integral of A,, =i (u,| V |u,). This may be expressed as a
surface integral of the Berry flux (Berry curvature) F,, = V x A,,. The Chern invariant

is the total Berry flux in the Brillouin zone, and distinguishes the two states ( bulk and
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edge state) is a topological invariant similar to the genus.
The Chern theorem, which states that the integral of the Berry curvature over a close

manifold is quantized in unit of 27 .This number is the so-called Chern number.

1 2
BZ

The total Chern number, summed over all occupied bands, Coccupied = % C,, that is invari-
ant even if there are degeneracies between occupied bands, providednt_lrlle gap separating
occupied and empty bands remains finite. A fundamental consequence of the topological
classification of gapped band structures is the existence of gapless conducting states at
interfaces where the topological invariant-changes. Such edge states are well known at

the interface between the integer quantum Hall state and vacuum ( Halperin, 1982)and

deeply related to the topology of the bulk quantum Hall state.

|

K, K, 1
180 ° ° 180
v K <A : A
Ve : e o
K, K, .
K; K [} [}
1 2 ! ® . L
C=— [ d«0, K &
27 27 o °
K, K

Figure 5.1: The rotating symmetry property for triangular lattice, the original system in
real-space correspond to the BZ in k-space (top right), rotating x axis 180° the position
in real-space is not change ( the blue point note the system which has been rotated )
and k, becomes —k, in k-space ( bottom right). The (a) shows the pink triangular is the
smallest repeated unit cell in BZ.
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Figure 5.2: The hexagon black line-shows the area of Brillouin zone and the area of
triangle dashed line is the basic area-for integrating which we mention at below in main
panel, and the inset shows the contour of Berry curvature near K; ( red box) is isotropic
with s.

In the process of integrating: the-first Brillouin zone (BZ) for Chern number (see
Eq. (5.1) ). We can use the property of rotating symmetry (triangular lattice (K=K")
and Fig. 5.1) for efficient numerical calculation, so we only need to integrate the area in
frist BZ which is overed one twelfth BZ (see the area of triangle dash line in Fig. 5.2). This
integral result multiplies 12 is equivalent to the integration over all BZ. It’s a convenient

method for saving much time for numerical process.

1

Cn = %/inﬁdﬁd(]ﬁ. (5.2)

BZ

Because of the Berry curvature is isotropic from K or I' (ex: the inset in Fig. 5.2), we use
the cylindrical coordinate to be the basis axis ( see Eq. (5.2)) to obtain the more complete
data than using rectangular coordinates .

And the Chern numbers for each energy bands ( which are showed in Fig. 5.7) actually

are not a perfect integer for numerical results ( C, in Fig. 5.3 ), but the trend which is
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Chernnumber: €. - €& +C
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Figure 5.3: The numerical resu
top right figure).

= —1 = 1

=

r first lowest band ( the blue line in

standing on more data from the effective contribution ( ex: the effective contribution for

first lowest energy band is around K point: C,.) shows the Chern number ( C, — Cy + C,

see Fig. 5.3) will be an integer (be stable).

5.2 Zs invariant

A system with helical edge states is said to be in a QSH state, because there are a net

spin flow forward along the top edge and backward along the bottom edge, just like the

separated transport of charge in the quantum Hall ( QH) state ( see Fig. 5.4).

The calculation of S, number ( v ) is simpler if the crystal has extra symmetry . For

instance, if the 2D system conserves the perpendicular spin S, then the up and down spins
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R

o 2
%

Figure 5.4: Quantum spin Hall effect: the upper edge contains a forward mover( like a
magnetic field B with Z direction) with uprspin and a backward mover ( like a magnetic
field B with —Z direction) with dewn spin, and conversely for the lower edge.

have independent Chern integers C; , C; . Time reversal symmetry requires C; + C; = 0,
and the difference C, = (C; +C) /2 defines a quantized spin Hall conductivity ( Sheng et

al., 2006). The Z, invariant isthen simply [20] as showed as below:

v=_C, mod 2. (5.3)

In our system, this case satisfies the aforementioned conditions. Therefore, the value of
v=0 stands for conventional insulator and ¥=1 denotes quantum spin Hall insulator (see
Fig. 5.5).

In Fig. 5.5 shows the Fermi energy is between conduction band and valence band in
open boundary system. The QSH state occurs at the edge, because the topological Z,
number change from v=0 ( in vacuum) to v=1 (in semi-conductor).

The discussion for the term mod2 in Eq. (5.3) which comes from classifying topological

insulator which is trivial or nontrivial in a small perturbation case ( Fig. 5.6).
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Conduction Band

Conventional | _,
Insulator

(2) b) -
Quantum spint l \ T

Hall insulator  v=I

k3

Valenc? Band
—Tt/a 0 k -m/a

Figure 5.5: ( Color online)Edge states in the quantum spin Hall insulator (QSHI). (a)
The interface between a QSHI and an ordinary insulator. (b) The edge state dispersion
in the graphene model in which up( blue arrow) and down(green arrow) spins propagate
in opposite directions [20].

The surface states meet at an odd mumber (which associate with Zs number) of points
with a small perturbation case in k-space, the QSH effect would occur. For example,
there are a time reversal pair ( in Fig. 5.6 right hand side) with Fermi level on the
crossing point of edge state, the spin-up and spin-down states follow the time reversal
symmetry E(k,o) = E(—k,—0), and in the perturbation case, the Kramers degeneracy
( ®©H = HO, where H in Eq. (5.4); H |n) = E'|n), implies |n) and © |n) have same E
) is robust, which make the edge states ( at the crossing point) be protected even in the

present of a perturbation in system.

H= [ L V(r)] + [%a (VV xp)|. (5.4)

2m*

And another case ( in Fig. 5.6 left hand side), when the surface states meet at an
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Perturbation to a Perturbation to a
trivial topological insulator fopological insulator
—>

Conduction band

S T N

Suﬂace

/‘\ /\ states

Femi

Valence band

Figure 5.6: The sketches show the electronic structure ( energy versus momentum) for
a trivial insulator (left) and a‘strong topelogical insulator (right), such as Bi; _Sby In
both cases, there are allowed electron states ( black lines) introduced by the surface
that lie in the bulk band gap (‘the bulk valence and conduction bands are indicated by
the green and blue lines, respectively). In the trivial.case, even a small perturbation (
changing the chemistry of the surface) can open a gap in the surface states, but in the
nontrivial case, the conducting surface states are protected.( Illustration: Alan Stone-
braker /stonebrakerdesignworks:com)

even number of points, the edge states ( at the crossing point) would not be protected (
meaning opened up gaps) because of the mixed states ( at the crossing point) still yield

Kramers degeneracy for a small perturbation case.

5.3 Brief summary

Topological classification is basic on the topological invariant ( Chern number and Z,
number) changes in bulk system, the special states at interfaces will exist for boundary.
In this chapter, we have calculated the Chern number in bulk system for each band and
expected to appear the edge states by the change invariant for open boundary case. And
the another important point, the QSH state is expected in open boundary case by Z

number change. For example, the Chern number C;,.. ..., =-1,C| ..., = 1 for Fermi
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energy (can be modulated by Fig. 5.8 ) between first lowest energy band and second
lowest energy band. We expect the spin-up and spin-down edge states will occur in open
boundary case. And for QSH states, Because of the Zs number=1 for Fermi energy
between first lowest energy band and second lowest energy band, the QSH states be

expected in open boundary system ( Fig. 5.7).
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Figure 5.7: This figure shows Chern number of spin-up and spin-down for each energy
bands and the comparison for Fermi energy, Ct,.....car Clocoupiear 42 NUIMber.

-
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2DEG I

Figure 5.8: The setup of experiment, we use the external bias making the n-dope layer to
control the Fermi energy.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In conclusion, we show that by including the spin-orbit interaction due to the the muffin-
tin potential lattice, the Dirac cones can-open up to give global energy gap. The lattice
is a triangular lattice and the spin-orbit interaction' arises from the in-plane potential
gradient of the potential lattice.

We have shown that the system can enter into a quantum spin Hall by changing the
Fermi energy. This is concluded from our Chern number calculation. Our results show
that, the Chern number for a energy band and for a given spin state can be nonzero
(Ch.s # 0). This is different from that for graphene. It is due to the inversion symmetry
in our system and the lack of inversion symmetry in graphene. Subsequently, our Chern
number calculation shows that edge states could exist when the Fermi energy falls within
certain energy intervals. Finally, we show from our Z; number result that quantum spin

Hall states could exist when the Fermi energy falls within certain energy intervals.
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6.2 future work

In the future, we will study the case for the open boundary in our system. For an explicit
calculation of the edge states. This will be compared against the conclusion from the

topological classification arguments.
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Appendix A

Labeling the periodic wave function

basis K points

We labels the blue circles as'Cyange=1,2,3,4,5: . which is corresponding to Fig. A.1. The

2

vange » Where N is the

number of Cy4nge depends on the K points we consider.( Nx = 3C
numbers of K points we consider).." For example; the meaning of C,4ng.=1 is that we only
consider the red points are touched by the smallest blue circle . In this case ( Crange=1),

the red points has three, and the blue circle is triangular form. All the numerical results

which the values are stable about Cygpge=11 ( about+107? difference).
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APPENDIX A. LABELING THE PERIODIC WAVE FUNCTION BASIS K POINTS

Figure A.1: The number m includes two index vy, vq; the green arrows denote the basis
vector by, by in k-space; the green point is K; which is the expanded point for wave
function; the red points are all K points for m; the hexagons are Brilloin zones and the
blue circles are defined as a number: Cygpnge -
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Appendix B

The calculations about the periodic

potential coefficient V)

In this appendix, we show how to determine the coefficient V! in Eq. (2.3). The 2DEG

is modulated by a two-dimensional MTP array with the explicit potential form

Q
(%)
)] =

Figure B.1: A muffin-tin type with center-to-center distance a. The external potential
energy is Uy inside the disk with diameter d and zero outside the disk.
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APPENDIX B. THE CALCULATIONS ABOUT THE PERIODIC POTENTIAL
COEFFICIENT V7,

= Z f/(r - Ryj)

= Z VI‘—27TZ——27T]2)
2m
i,j=—00
—ZV r- g - ) (B.1)

= Z V(2mi, 27j, 1)

1,j=—00
)
= Z V(Tl>7—2ar)
1,j=—00

where R;; = ia; + jas(a;,ay are the basis vectors in real space ( see Fig. B.1)). Then
we used Poisson sum formula ( see Eq.-(B.2)) cast the real-space infinite sum into the

reciprocal-space sum.

[e.9]

> femi) = % > E()

1=—00 o V=—00 (BQ)
= / f(r)e ™dr.

Therefore, we obtain the expression of periodic potential

1 .
27T Z V (7, 2,1 “ITL e T2 T2

V1=—00 vz—foo

(B.3)
1 ~ T T .
- (%)2 Z Z / (r= ﬁal 2;32)6_1””16_”2T2d71d72,
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APPENDIX B. THE CALCULATIONS ABOUT THE PERIODIC POTENTIAL
COEFFICIENT V7,

by — 2 a, X 2 b; 81227T’

Z-(a; X ay) by a, =0
where SO

by — 2 2 xa b a2:27r’
z-(a; X ay) by-a; =0
2 2 2

V:ZU,Yb,Y;T:ZT,ya,y;V~T:27TZU,YTV, (B.4)

2! 2! 2!

where v is the vector in k-space ( b, is basis vector in k space ); T is real-space vector, and
v,, 7, are coefficients for those basis vectors, then we substitute Eq. (B.4) into Eq. (B.3)

can obtain the intergral term show by

(v-7)

/‘N/(r—L)ei = drpdmy

— (21)? / 7 () e 6= g (B.5)

B (2m)°
- a1a9 sin 60°

eV / V(T)ei"”'d‘r,

where we use 7' = r — = in second row in Eq. (B.5), and the integral term in above

equation is

[V(T)evTdr
g Yo Hor o

= Uy [ e ordpdr = Uy | [ er02dplde = Uy(L)* [ [ 30 (1) (x) emPwdeda
0 0 0 0 0 —oo

= Un(2)? [ 20do () ade = 2mUp (1) 20y (x) | = 7 g, (u2)

1\2
3)

—~
S —wfg

(B.6)

then we substitute Eq. (B.6) into Eq. (B.5) to rewrite Eq. (B.3) in the form of
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APPENDIX B. THE CALCULATIONS ABOUT THE PERIODIC POTENTIAL
COEFFICIENT V7,

V<”:§3V<r—%>=(%)stm_(Z S el (gd))

V2 =—00 V2=—00

— ... 2nUsd (vd) G oyt
— eivr 2707 7 [ 22 = eiGm T/ 7
D el ) B DL

m

(B.7)

_ . r _ 2nUod Gpnd
where G,, = v, and the coefficient V’,,, = TR Ji(F52).
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Appendix C

The numerical results of high energy

bands structure

This appendix shows the contours for the high energy bands structure, we can see obvi-
ously the two-dimensional bands structure are a periodic system ( the physical property
in the system can be expressed by the first BZ).

The numerical result in Fig. C/1 eonfirm the inversion symmetry E(k) = F(—k) (K

= K, the rotating symmetry which we have discussed in chapter 3) is vertical .
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APPENDIX C. THE NUMERICAL RESULTS OF HIGH ENERGY BANDS
STRUCTURE

125

Figure C.1: This figure shows the contours of energy band structure without spin-orbit
interaction for (a) the third lowest band (b) the forth lowest band (c) the fifth lowest band
(d) the sixth lowest band (e) the seventh lowest band, and the parameter is m* = 0.023m.,
a=40nm, d=0.663a and Uy=165 meV.
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Appendix D

The Berry curvature of numerical

results for high energy bands

This appendix will show the Berry curvature of numerical results with spin-orbit interac-
tion for spin-up. The reason-which we'do not show the numerical results for spin-down
electron is the magnitude of Berry curvature is as'the same as spin-up electron but in

different sign.

Q) =iy (then| O H (K) [trc ) Stnes | O, H () [tnen) — (3 2 y)

2 (D.1)
(B (K) — E, (k)]

n’#n

From Fig. D.2 we can see obviously the Berry curvature which the main variable for

the curve is controlled by the energy difference (comparing withe Eq. (D.1) and Fig. C.1).
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APPENDIX D. THE BERRY CURVATURE OF NUMERICAL RESULTS FOR HIGH
ENERGY BANDS

180
te0 \‘//\/_
140} ? :
- _/ \
2
£ 100} -
w
) \
20 — ]
°r | M K | r

Figure D.1: The energy dispersion in present SOI in our system, and the parameters are
m* = 0.023m,, a=40nm, d=0.663a and Uy=165 meV.
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APPENDIX D. THE BERRY CURVATURE OF NUMERICAL RESULTS FOR HIGH
ENERGY BANDS

(@) (b)
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Figure D.2: This figure shows the contours of Berry curvature of numerical results with
spin-orbit interaction for spin-up (a) the third lowest band (b) the forth lowest band
(c) the fifth lowest band (d) the sixth lowest band (e) the seventh lowest band. (where
m* = 0.023m,., a=40nm, d=0.663a and Uy=165 meV; k, = k, = 0 is I" point.)
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Appendix E

The other parameters for our system

In this thesis we only demonstrate one parameter ( a=40nm, d=0.663a, Uy=165meV), so
this appendix shows the other parameters for various a (the spatial period distance for

MTP), and d (the potential disk diameter) and U (external potential energy).
Egap = 2V3ANW. (E.1)

We can use the analytical formulation of energy gap ( obtained in chapter3 Eq. (E.1))

for the lowest two band to roughly estimate the magnitude of gap with other parameters,

where A = and W = \?}g‘)dQ Ji (B29), (Ko = %) We notice that W is proportional to
Uy such that Egap increase with increasing Uy. The Fig. E.1 show the available parameters
for obtain the results have same physic property (global gap). The reason why we didn’t
plot a< 15nm is the limit of the experiment, and we hope to find the large gap and high
degree of a. Fig. E.1 shows that Eq, is plotted by varying a and d for a given Uy=165meV.
The dashed curve denotes the Dirac cone boundary and Dirac can not occur below this

dashed curve in Fig. E.1(a). Fig. E.1(b) and (c¢) show the energy bands without global

gap and with global gape, respectively.
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APPENDIX E. THE OTHER PARAMETERS FOR OUR SYSTEM

rati o{dsfa)

E{meaev)

MKIF

Figure E.1: (a)The contour plot of the energy gap for the lowest two band by various
parameters a, d but a fixed Uy=165meV. The red line denotes the maximum gap when
d/a=0.663 for all a, the white arrows denote that the systems without global gap at
K point for a=15,20,30...(nm) correspond to those rates, so we roughly estimate the
minimum rate line is the white dash line for having global gap. (b) The global gap does
not exist for d =0.1a, a=40nm (c) The global gap does exist when d = 0.2a, a=40nm.
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