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National Chiao Tung University

ABSTRACT

The thermal fluctuations and disorder of vortices structure in highly anisotropic
layered type Il superconductors has been studied by Monte Carlo simulation in two
dimensional Ginzburg-Landau model with the quasi-momentum basis. VVortices
structure are studied with disorder parameter { = 0~1 and reduced temperature
ar = —17~ — 11 in the thesis. | developed the rotation averaging to analysis the
snapshots of the Fourier transform of the superfluid density. I identified the melting
line with disorder by comparing the vortices structure in pure system that the melting
point of finite sample has been developed by Y. Kato and N. Nagaosa. And |
identified the glass (irreversibility) line by comparing the difference of vortices
structure with two different distribution of disorder. One can see the vortices pin on
the disorder with disorder strong enough so that there are difference between the
vortices structure with two different distribution of disorder to find the glass transition

line. I will give a a; — ¢ phase diagram in the end.
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Chapter 1

Introduction

1.1 Type Il superconductor in magnetic field

Superconductors are materials that at sufficiently low temperatures possess
such a remarkable properties as zero resistivity and perfect diamagnetism. One can
divide superconductors into two different classes: Type | and Type II. Type |
superconductors completely expel magneticfield (the Meissner effect) when they
are under magnetic field lower than a certain critical magnetic field H, and the
superconductivity will be destroyed (including Meissner effect) at fields higher than
H.. Many metals belong to this class although typically critical temperature T, at
which the superconductivity appears.is very low (below 10K). Higher critical
temperatures are achieved in so'called type-ll'superconductors which are almost
exclusively used in applications.

While early type Il superconductors were also "low T." metals and alloys with
temeratures about 10K, in 1986 new kind of such superconductors was discovered:
cuprate high-temperature superconductors. The critical temperature exceeded 100K
and attracted a wide spread interest to new phenomena in superconductivity such as
thermal fluctuations and role of disorder. The important feature of the new
superconductors is their layered structure, especially in Bi and Th based materials.
The anisotropy is so high that the superconductivity is nearly two dimensional (2D).

In this work | will study a 2D model of highly fluctuating superconductors subject to
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magnetic field.

Magnetic properties of new superconductors are quite distinct. In a type I
superconductors there are three regions in magnetic phase diagram, namely the T-H,
divided by two critical magnetic field H.;(T) and H.,(T) asshown in Fig. 1-1-1.
The Messner effect exists only when external magnetic field is below the lower
critical field H.,(T) and there the superconductors have no resistence. In the
intermediate region, H.1(T) < H < H.,(T) certain amount of magnetic flux
penetrates the superconductors in a form of fluxions carrying one unit of flux
bo = :—: also called Abrikosov vortices. In center of the vortex there is the normal
core. The superconductivity is. destroyed in the core of a smaller width & called the
coherence length. Two major characteristics of the mixed state are the coherence
length € which is the size of the normal core and the penetration depth A on
whose scale the supercurrent decays. The type Il superconductivity refers to
materials in which the ratio kx = ? is.larger than -k, = \/% ([1] A. A. Abrikosov). For
the strongly type Il superconductors k ~ 100 > x_, they are strongly fluctuating due
to high T, and large anisotropy in a sense that thermal fluctuations of the vortex

degrees of freedom are not negligible.
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Fig. 1-1-1: Schematic magnetic phase diagram of type Il superconductor.

1.2 Ginzburg - Landau model

Central to this theory is the introduction of the concept of an order parameter.
The order parameter is an appropriate quantity which vanishes in the high
temperature phase (T > T,) but acquires a nonzero value below the transition
(T < T,). Treat superconductivity as a "spontaneously broken system" and some kind
of macroscopic quantum state. Ginzburg and Landau built the idea that assume the
existence of a macroscopic "wave function"”, {5, which they took as the order
parameter associated with superconductivity. It's much easier to explain type Il
superconductivity by this model that starting from phenomenology instead BCS

theory starting from microscopic system.



The GL free energy near T, undergoing a phase transition:

A et =\ |2 , , (1.2.1)
FI) = J & | (V=S5 A) ] + @Il + bl
where a'(T) = aT, (1 - Tl) and b'(T) are phenomenological parameters.
The coherence length and penetration depth are defined by
h? (1.2.2)
(1) = s
2ma(T, —T)
c’m 1.2.3
N2(T) = B (1.2.3)

dre?a(T, —T)

1.3 Thermal fluctuations and disorder

Vortex Phases and The Properties

The phase diagram of superconductors in magnetic has been determined in
details. By Ginzburg-Landau theory, the properties of superconductors is determined
by the "distance" between the vortices. In the presence of thermal fluctuations in
high Tc materials the vortex crystal melts into a vortex liquid as the external
magnetic field H > H;. A quantitative theory of thermal fluctuations using the
lowest Landau level approximation is given. On the other hand, in the presence of

guenched disorder pinning the vortex matter acquires certain "glassy" properties.



Fig. 1-3-1: Theoretical T-B phase diagram([2] B. Rosenstein).

Melting by thermal fluctuation

In high Tc superconductors temperature can be high enough, so that one cannot
neglect additional thermal fluctuations which occur on the mesoscopic scale. The

Ginzburg parameter,

T. z (1.3.1)
167TFGL52€C)

Gi == 2(
where &, = y;1€ is the coherence length in the field direction, generally
characterizes the strength of the thermal fluctuations on the mesoscopic scale([3] A. P
Levanyuk; [4] V. L.Ginzburg; [5] Larkin). The definition of Gi is in the papers of D.

P. Li and B. Rosenstein([6] D. Li and B. Rosenstein; [7] D. Li and B. Rosenstein). The

Ginzburg parameter is significantly larger in high T, superconductors compared to
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the low temperature one. The physical reasons behind the enhancement are the small
coherence length, high T, and large anisotropy(y, in some case like BSCCO).
Under these circumstances fluctuations influence various physical properties and even
lead to new observable qualitative phenomena such as the vortex lattice melting into a
vortex liquid. There are several remarkable experiments determined that the vortex
lattice melting in high Tc superconductors is first order ([8] E. Zeldov; [9] M.
Willemin; [10] T. Nishizaki; [11] H. Beidenkopf; [12] H. Beidenkopf) and spikes in
specific heat ([13] A. Schilling; [14] A. Schilling; [10] T. Nishizaki; [15] F. Bouquet; [16]

R. Lortz; [17] R. Lortz).

"Glassy" properties by disorder

In type Il superconductivity, it will form vortices.in superconductor if the external
magnetic field is strong. There's dissipation because the magnetic field penetrate the
superconductor and make the vortices moving. As the vortices pin on the impurities
(pinning effect) the flux flow may be stopped and the material restores the property
of zero resistivity. Otherwise thermal fluctuations might depin the vortices and make
various quantities such as magnetization become irreversible. Disorder on the
mesoscopic scale can be modeled in the framework of the Ginzburg- Landau
approach adding a random component to its coefficients ([18] A. I. Larkin). The
random component of the coefficient of the quadratic term W(r) is called 8T

disorder since it can be interpreted as a local deviation of the critical temperature

-6-



from Tc.
a'-a[1+w()), W(IEW(') = n&8.8(r — 1) (1.3.2)
Disordered vortex matter is depinned at certain “critical current” Jc and the
flux flow ensues. Close to Jc the flow proceeds slowly via propagation of elastic flow
before becoming a fast plastic flow at larger currents. The |-V curves of the
disordered vortex matter therefore are nonlinear. Disorder creates a variety of

“glassy” properties involving slow relaxation, memory effects, etc.

1.4 Goals of the present work

Although most people believe the existence of the Abrikosov lattice phase that
solved from GL equation by LLL approximation, but T. Giamarchi and P. Le Doussal
disagree([19] T. Giamarchi). They claimed there’s no Abrikosov phase by two
approaching: gauge glass model([20] M. P. A. Fisher; [21] D. S. Fisher) and elastic
lattice structure at small scale([22] M. Feigelman). Fig. 1-4-1 is the phase diagram of
their prediction. | tried to plot the phase diagram by using Monte Carlo simulation. |
analyzed the results of the MC simulation directly in mathematical way to check the

phase diagram.



VORTEX GLASS ™,
.
ORPINNEDLIQUID ™

FLUX LIQUID

BRAGG GLASS

Fig. 1-4-1: The phase diagram by T. Giamarchi and
P. Le Doussal’s prediction([19] T.'Giamarchi).
Comparing with Fig. 1-3-1,-one can find there’s

no Abrikosov phase in this phase diagram.
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Chapter 2

Description of a layered superconductors in

strong magnetic fields by the LLL approximation
2.1 Landau levels and the quasimomentum basis

We focuses on the properties of the two dimensional type Il superconductors
with the external magnetic field in the region H.; < H < H_, in the thesis. LLL
approximation is the most acceptable theory'where \H =~ H_,. In LLL theory, since
magnetization is small we replace thefield inside superconductor B by external field
H which is essentially homogeneous. So we can drop the nonlinear term of the
Ginzburg-Landau equation.

As the thermal fluctuations becoming strong enough, excitations of the lattice
are no longer invariant under the symmetry transformations. So we need to regauge
the system with LLL theory by the quasimomentum basis.

Solve the linear Ginzburg-Landau equation order parameter expanding in
guasimomentum basis within the LLL([23] D. Li and B. Rosenstein)

Y(xy) = ZkaQDk (2.1.1)

2 < _ ~1) 2n(x—k (2.1.2)
1




where the coefficients (), are complex numbers and ¢, are quasi-momentum
basis. We can find the property of ¢
@i = exp{—ixk,}po(x — ky,y + ky). (2.1.3)
It is proved that quasi-momentum basis satisfy magnetic transitions([24] B.
Rosenstein) which is defined as
Ty = e*,, (2.1.4)
here d is the general displacement vector and T; is magnetic translation operator.
The sample size in the simulation is finite and had following dimensions([25] H. Y.
Lin):
L =Ld, +Ld,; (2.1.5)

13 (2.1.6)
dl = (a, O), dZ = (E'?)

here a = \/%. Thus, the area of the rectangle is- L?d, X d» = 2N, N, = 2.

According to definition of d; and ds,the basisvector d, and d, of the reciprocal

lattice are

d, = %(1—\/—%) d, = 2_”(0,%) (2.1.7)

We work in reciprocal lattice vector, so that k with the basis vector is
k = k,d; +k,d, (2.1.8)
1 - 1 L-1
Here k; = O’Z’ T and k, = O’Z’ S due to we choose the lowest Landau

level wave function with quasi-momentum k.
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N ¥

dz = a(—,

dl = (a, 0)

Fig. 2-1-1: Interpretation of the lattice vector d; and d,.

a is the distance of a vortex to another adjacent vortex.

The quasi-momentum basis satisfy magnetic translations

TLl/J(x, y) = eikLllJ(xﬁ y),

and then we have

eikL =4
2T
k, = Tnx, n, =0,+1,12,
2T
ky = Tny’ n, = 0,11, 12,

-11 -
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2.2 Free energy

We start at the two dimensional GL free energy:

( ) (2.2.1)

F—fdxdy—|(v——A)¢| + &' (M1 + UG Y)W + 2 )2

where Y is the order parameter of the superconductivity, A is the magmetic
vector potential. m and e* are the mass and charge of the Cooper pair. a'(T) =
aT.(1—1t) and b'(T) are phenomenological parameters. U(x,y), the disorder
term, is like W(r) which is the disorder coefficient by Larkin ([18] A. I. Larkin).

U(x,y)U(0,0) = R§(x)6(») (2.2.2)
Let us focus the clean system first: The;GL free energy equation for pure vortex

system is

F—fdxdy |<V——A)¢2 DI + b'(T )It/JI‘* (2.2.3)

In order to get the dimensionless LLL free energy, we need to rescale % —

—ZT 2, X -2, y_>X and | = — . then we obtain in
\/z bram 1 1
B/Hc,

F_
T 4n

224
dxdy [arlpl? +5 11 224

here,

2apmt/?l (2.2.5)

Ar = yrapri/2

is the reduced temperature, and ap = aT.(1 — b —t).
Here is the GL free energy in the form that we'll use it in Monte Carlo simulation.

The Gaussian integrals referred to the paper of B. Rosenstein and D. Li ([24] B.

-12-



Rosenstein) is

J. dxfp(r)fﬂ;é(r) eXp[—ir . q] = 417 z 6(‘1 — k- Q) F(k, Q) (226)
" Q1,02
here
i x 2.2.
£ =em - Si[(5)0 - (45) 4k @2

with decomposition of arbitrary momentum ¢ into its rational part k, which belongs
to the Brillion zone, and an integer part @, belonging to the reciprocal lattice

q=k+Q  Q=Qids+Qd; (2.2.8)
The inverse Fourier transform of Eq. (2.2.6) is

. o
PMPi(r) = Z expli(k + @)~ 7] exp [% Q2+ Ql)] pxp [_ (k+ @7 ZQ) (2.2.9)
Q

il + @) (ky + Q)
2

+ ey (I, + Qy)l

Since the superfluid density and its Fourier transform defined as:

p(xy) = lW(x, y)I* = ZlekClgok(pl (2.2.10)

(2.2.11)

1
P +P) =5 [ expl-i( + P) -] x p(x,) dxdy

From the equations from Eqg. (2.2.6) to Eq. (2.2.11) we get the quadratic term in Eqg._
2.2.4

1 ar (2.2.12)
— WP = —172 E crC
4“L,yaT|¢(x 3] 5 l 1 Gy

while the quartic term takes a form

-13-



1 (2.2.13)
- 4
e ) Wesn)
1, ] , 1
= ZL z Z exp {lTL’ [—P 2L, -1)+ E(pl + 21
pP !l 1
n iT[ 12
— P2, +P) — (p1 + Pl)]]}exp [? (P
(p + P)? i
- PI)] exp I_ 4 l CFP1+11].[I72+12]C1
The disordered term of the GL free energy is
(2.2.14)
| ara-oue e
xy
laT,(1=¢t) |
= 2nL? C—l P(O)ao,o,o,o
2(mtb'T)2
+ z [p(p + P)ay, op.ot C. c.]
p1>0,P120,p2=0,P2=0
+ Z [P +P)a,p+c.c.|
p2+P2>0
Where a is defined as random potential coefficient by Lin ([25] H. Y. Lin).
U(x, y) = ag,0,0,0 (2.2.15)

p1>0,P120,p2=0,P2=0

+ ap, 0p,0 €xp[—i(p + P) - 71}

t 2 {appexpli(p + P) - 7]

p2+P,>0
+ay, pexp[—i(p + P) - r]}

The detail definition of Eq. (2.2.15) to Eq. (2.2.15) are shown in Appendix A.
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2.3 Disorder parameter ¢ of Li and Nattermann

M. S. Li and T. Nattermann([26] T. Natterman) defined the dimensionless
parameter ( to control the relative disorder strength, and expand the random
Gaussian disorder in renormalized Hermite polynomials to express the disorder term

of GL free energy equation. The disorder term of M. S. Li and T. Nattermann is

2.3.1
[ @ asr e 234
here &T,(r) is real and Gaussian distributed with
8T.(r) =0 (2.3.2)
8T (r)8T, (r") =¢?T7§%85:(r = 1) (2.3.4)
They defined the disorder parameter with following relation
1
- (b2 (2.3.5)
(=4
n2(1'=t —b)
Connecting our disorder term with their-notation, we have
RlaT,(1—t) [1*af{® (2.3.6)
1 272
8mL2(nb'T)2 64mL

By controlling the specific { to generate the corresponding complex random fields,

we can get various degree disorder vortex systems.
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2.4 MC simulation method.

Metropolis algorithm:

The standard Monte Carlo method with Metropolis algorithm ([28] D. P. Landau
and K. Binder; [27] V. Kato) was used to simulate the two-dimensional pure and
disordered vortex system. In the classic Metropolis method, we use a transition
probability which depends on the difference of energy AE between the initial and
trial configuration to determine whether the trial configuration is accepted or not.
Now | introduce the Monte Carlo method as follows. First, we choose an initial
configuration and calculate the initial energy- E,,. Second, we choose asite C; € cN
randomly and generate the trial configuration with C/**" by using the rule:

e - Cfld + €eAC, where AC is a complex-number which is chosen randomly from
the region |ReAC| <1 and |ImAC| <.1 inthe complex plane. Third, we calculate
the energy E,, of trial configuration and the difference of energy AE, here

AE = E,, — E,,. If AE < 0, the system accepted the trial configuration, but if AE > 0,
the trial configuration is accepted with a probability exp(—BE). Generating a

random number y uniformly in the interval [0,1], if y < exp(—BE) the trial
configuration is accepted, otherwise it is rejected. This process is called Monte Carlo
step/site (MCS/site). Note that the old configuration is still counted again for
averaging if the trial configuration is rejected. By using Monte Carlo method, the

system will fall into the stable states and reach the equilibration, and the

characteristics of vortex system can be measured.
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Monte Carlo calculations:

We used
— ld
{lflv: - C?plz + 611‘]1612—j2A (2.4.1)

to vary the value of a specific wave function coefficient C; in our Monte Carlo
simulation, here A = eAC. Note that j and 1 are vectors which composed of two
reciprocal vectors d; and ds. Furthermore we used these equation to calculate the
energy of trial configuration and only discussed the changes of the summation of
wave function coefficient product, the detail of Monte Carlo calculations are worked
out in Appendix C. The summation of wave function coefficient product of trial

configuration is

newxrnew _ old . A (old : ]
Z Cl1,lz lul, — Z(Ch.lz + 611‘]1612—12A) (Ch,lz + 611—11612—]2A)
Lyl Iyl

Z(COld Old* N, 611—1'1512—1'2 Old*A “ 611 J1612 JZCOld A"+ AA*)

Il 24l Iyl Il
llJlZ

= COI"A + CPU A" + AN + Z coldscold

Il Il l1 l2
Il

(2.4.2)
Evidently the ¥, ,, C{’ll‘fz*C{’ll‘fz term can be calculated directly by old configuration,
hence we can store it to simulate the vortex system more efficiently. The old
calculation results always can be applied in new one and a lot of computer time is
saved, the CPU time in one Monte Carlo step o L?. There are 16 X 16 numbers of

vortices in our simulation. We took 6 X 10° MC steps to reach the thermal

equilibration and calculated the physical quantities over 1 X 10°~1 x 107 MC steps.

-17 -



The physical quantities were measured every 30 ~50 MC steps. We control € ina
reasonable region to make the acceptance ratiois 0.3 ~0.4 and then the vortex
system reach the thermal equilibrium state efficiently. All the simulations were

started from the heating processes with the initial configuration which is defined as

follows: C; = lZ)—TI here C; is one of all coefficients of wave function and others
A

are equal to zero, EA ~ 1.16 is the mean-field value of the Abrikosove ratio.
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Chapter 3

Indicators of the four vortex phases and the MC

data Analysis

3.1 Vortices configuration

Fig. 3-1-1 are the snapshots of the spatial distribution of the order-parameter
field [Y(x,y)|? for ar <t,, and ay > t,,, respectively. There are 16 X 16 = 256
vortices in each sample and we used 6-x 10% Monte Carlo steps to make sure the
system reaches the equilibration by referring the MC simulation by Y. Kato and N.
Nagaosa ([27] V. Kato). The melting temperature was calculated of the sample with

finite size,

tm = —13.02 for Ny = 256 (3.1.1)

@2 ®a @]
» ..f ‘

]
%

-'G'-'-
o

IR:AS

0.6+

=%

04t
Fig. 3-1-1(a): snapshots of
the spatial distribution of
0.2t

the order-parameter field

lY(x,y)|? for ar < tp,.

0.0}




0.8F

0.6 @\=2

04 @

0.2F

UU C 1 1 1 I 1 I 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3-1-1(b): snapshots of the spatial distribution of

the order-parameter field |(x,¥)|? for-a; > t,,.

One can easily see that the vortices arrayed regular and randomly for ar < t,, and
ar > t,, in Fig. 3-1-1. The Fourier transform of Fig. 3-1-1 is shown in Fig. 3-1-2. One
can find a big change while the pattern is structure less above t,, and the pattern
below t,, shows the six sharp peaks with hexagonal symmetry indicating the
existence of the lattice of the vortices. | try to analysis the change of the Fourier
transform pattern for disorder parameter ( and reduced temperature a; dueto

(=0~1 and a;y = —17~ — 11 to find the phase transition.
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Fig. 3-1-2(a): The Fourier transform of Fig. 3-1-1(a).

One can see:beautiful hexagonal lattice

Fig. 3-1-2(b): The Fourier transform of Fig. 3-1-1(b).

It’s a structure less pattern instead of beautiful

hexagonal lattice
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3.2 Rotation average

We made discrete data with reduced temperature a; = —17~ — 11 and
reduced disorder ¢ = 0~1 which are snapshots in the equilibrium state. There are
20 samples with each a; and (. The first thing we need to do is averaging the 20
samples of the Fourier transform pattern. Since they are just snapshots in
equilibrium state, averaging them let us get rid of the extreme un-objective sample
so that we can mark the phases correctly. Consider the patterns with beautiful lattice
for ar <t,, first.|rotated the highest peak of the first ring to the same angle and
averaged them so the information of the patterns will not lose in averaging directly.
It’s no doubt that the other peaks will be moved to the same coordinate because it’s
always a hexagonal lattice at first ring. And'| averaged the six peaks to eliminate the
height difference between the peaks because | don’t want to always see a peak much
taller than others due to | made.it in the rotation. Fig. 3-2-1 is the simple
interpretation of the rotation. Comparing the patterns before and after rotation
averaging, one should find they are the same since it is structure less originally and
they have a big difference since it is a hexagonal lattice originally. Fig. 3-2-2 shows

the series procedure of the rotation averaging.
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Fig. 3-2-1: Interpretation of the rotation: | rotated

all the peaks to theisame position.

Fig. 3-2-2(a): The pattern of vortices averaged directly. One
will get averaged patterns like this with any reduced

temperature and disorder without rotation.
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Fig. 3-2-2(b): There is a tallest peak much taller than others due

to that | choose the highest'peak rotating to the same position.

Fig. 3-2-2(c): After angle averaging: averaged six

parts of dividing by every 60 degrees to eliminate

the un-objective peak.
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| concluded the trend of the patterns changing. As the temperature increasing,
the vorteice melted by thermal fluctuation. And as the disorder increasing, the

vortices approach pinning on the disorder and also destruct the lattice. Fig. 3-2-3 and

Fig. 3-2-4 show the changing with reduced temperature and reduced disorder.

Fig. 3-2-3: Series Fourier transform pattern, the temperature

getting higher from (a) to (d).
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Fig. 3-2-4: Series Fourier transform pattern, the disorder

getting higher from (a) to (d).

According to the appearance of the samples after averaging, | marked the phase
diagram to three parts: the Fourier transform pattern with (a)beautiful hexagonal
lattice, (b)structure less lattice and (c)disturbed but still looked like hexagonal lattice
that show on Fig. 3-2-5. But it’s difficult to separate the phases precisely so | tried

some numerical analysis that | introduce in the following section.
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Glass phase

Liquid phase

Solid phase

Fig. 3-2-5: The phase diagram can be separate to three parts roughly. In solid phase,
there are six sharp peaks separately formed the beautiful hexagonal lattice. While in
vortex liquid phase, there’s nearly no peak observed in the diagram so looked like a
smooth ring. And one can see the vortices “sticky” connected by each other in the

glass phase.

3.3 Indicator of melting line

To determine the melting line precisely, we need a numerical analysis. |
integrated the first ring and the six peaks individually as shown in Fig. 3-3-1. By
comparing the integration of each individual peaks and the first ring

[ integral[peaks] r (3.3.1)
m

[ integral[ring]
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Fig. 3-3-1: Interpretation of R: (a) is enlarged pictures of a single

peaks, (b) is the snapshot including the first ring only.

In theoretical prediction, there's almost no difference between these two integral in
solid. So | expected there'sa big step-at the melting line. First | choose the highest
point in the first ring, and summed over the value of nearby points. The other five
peaks are determined by choosing the five peaks having a included angle respond to
origin and the highest point in 60,120, 180,260 and 320 degrees. For ideal solid
phase the ratio R,, must be 1. And the ratio for ideal liquid is about 0.42 that |

tested it by a simulation of ideal liquid as Fig. 3-3-2.
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Fig. 3-3-2: Ideal liquid Fourier transform of |2

3.4 Indicator of glass (irreversibility) line

To determine the glass line precisely, we need to compare the vortices position
in two different initial conditions. If the system is in Brrag glass phase or vortex glass
phase. The vortices will prefer pinning on the disorder. So | rotated the highest votex
peak of the first ring to the same position with two different initial conditions like |
did in the average. And | multiplied these two plots and integrated it. Before
integrating, | had eliminated the points value nearby the highest point included the
highest point to avoid always getting high integral value nearby the highest point. If
the system isn't in glass phases the peaks with two initial conditions will be in almost

the same position, and the integral must be much larger than the integral with
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system in glass phases. The precede work before the integration show in Fig. 3-4-1.

For convenient, | call the integration as Iy.

nea
Ly o
AT 4 Vi LS A
A A
(2 g,
7
£t
Vs |

A
%,

Fig. 3-4-1: The precede work before the integration: (a) vortices with
random distribution disorder; (b) vortices with lattice distribution disorder;

(c) after multiplied of (a) and (b); (d) the highest peak is eliminated.
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Chapter 4

The phase diagram of the vortex matter

4.1 Melting line

Using the indicator defined in section 3.3, | sketched the ar — R,,, diagram of
the pure system in two initial conditions (In ideal cases, there’s no difference
between two systems with random distribution of disorder and lattice like
distribution of disorder.)(Fig. 4-1-1). From Fig. 4-1-1 we can see that the boundary
value of solid and liquid phase is about 0.5. If the value of R,, is above 0.5, | said
the system is more like in'solid phase. Otherwise, if R,, isbelow 0.5, the system is

more like in liquid phase.

random dizstribution of dizorder

[

ut{Z}=

Fig. 4-1-1(a): ar — R,,, diagram with random distribution

of disorder in pure system.
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lattice distribution of dizorder

:'.5-—

-18 -15 -14 -13 -12 -11

Fig. 4-1-1(b): ar — R,,, diagram with lattice distribution

of disorder in pure system.

Use R,, = 0.5 to be the.indicator of the boudaryof solid phase and liquid
phase. | calculated the ratio- R,,, of each samples with reduced temperature during
ar = —17~ — 11 and disorder parameter during ¢ = 0~1. As shown in Fig. 4-1-2,
it's clear to see the melting line in the a; — ¢ diagram. It matches the melting line of
the contour plot of ar — {_diagram that one can find the transition line at the same

position (Fig. 4-1-3).

R Log . . . . ]
0.8 L] L L L ]
0.0 L L L L L
Out[15}=
0.4 L L L L L
0.2 L
PR B | [ R PR R S PR S R PR B PR B l aT
-18 -15 -14 -13 -12 -11

Fig. 4-1-2(a): If the ratio R of the system is larger than 0.5, it marked red point. In
another way, if the ratio R of the system is smaller than 0.5, it marked blue point. It's
the statistical of R with random distribution initial condition.
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Fig. 4-1-2(b): It's the statistical of R with lattice-like distribution

initial condition. One can;see the same melting line clearly

both in random distribution i.c. or in lattice-like distribution i.c..

o[l

Fig. 4-1-3(a): Contour plot of ar — ¢ diagram of

R, with random distribution disorder
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Out[i]=

Fig. 4-1-3(b): Contour plotof .ar — ¢ diagram of
R,, withattice like distribution disorder. one
can see'the transition line is the same with two
different distribution of disorder by comparing

(a) and.(b), and fitted the transition line.in Fig. 4-1-2.

4.2 Glass (irreversibility) line

Using the indicator defined in section 3.4 and sketched the a; — I; diagram
directly without considering the thermal fluctuation is strong at high temperature,
we got a glass line isn't objective (Fig. 4-2-1) that the glass point should be higher as
the temperature getting higher because the peak is hard to pin on the disorder by
the strong thermal fluctuation at high temperature. The reason to see a un-objective
trend is because the vortices almost melted at high temperature, so of course the

integral I, is smaller than the vortices integral under low temperature (no sharp
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peaks).
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~19 —13 —17 —16 -15 -14 aT

Fig. 4-2-1: Density plot without correction, one can see the
integration | getting higher as temperature getting higher at

low temperature but getting lower as temperature getting up.

Here are two ways to solve the problem. One is see the plot fixed one
temperature at a time. The border on the step is the transition point of the glass line
(Fig. 4-2-2). By observing the plot fixed one temperature at a time, one will not
confused by the number but focuses on the variation of I;. Another way to see the
trend of glass line is dividing the integral value I; of disordered system by the
integral 15" of pure system. In ideal case, vortices with two different initial

condition in pure system map to each other perfectly and the integral is always larger
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than the case in disorder system. So it's reasonable to divided the integral value of
disorder by the integral of pure system to "normalize" the integral values. We can see
the trend in the contour plot after correction by the second way in Fig. 4-2-3 that it

fit the transition points in Fig. 4-2-3 with different a;.

Ig aT = -17 aT = -13
® g L]
07[®
°
[} 0s[®
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. 1
| [] 02 04 [ D8 10
02 04 06 0.8 Z ¥ [ ]
aT = —14 aT =-13
035 Fee L]
021
[ °
% e o 020F
0.30 |
L]
° 019
. 018k
025 °
017
L [ ] .
L] L]
a0l 0.16F
015 F
L]
. . . . . . .
02 0.4 0.6 0.8 10

0.0 02 04 0.6 0.3 10

Fig. 4-2-2: ¢ — I, diagram with fixed a; at a time. The decrease speed as disorder
getting larger of [ is slow down at high temperature. It means it's hard to pin on

the disorder at high temperature so there's no big difference between low { and

high .
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Fig. 4-2-3: Contour plot after correction. One
can see the integration I, getting higher sharply

at ar = —13.

4.3 Phase diagram

Assemble the results in section 4.1 and 4.2. 1 gota ar — I; phase diagram
roughly showed in Fig. 4-3-1. The melting point of my analysis in pure system is at
ar = —13 approximately. It’s the same as the calculation by Kato ([27] Y. Kato) in
MC simulation with finite sample. The trend of melting line as disorder getting large
fit the theory prediction that the melting point with larger disorder is at lower
temperature. Because the well accuracy of melting line, the glass line in my analysis
is reliable. From my analysis, the Abrikosov lattice is existence. There is no pinning

effect since the disorder is weak. From Fig. 4-2-2 one can see there is a big step when
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the disorder get strong enough. Also from the big difference of patterns of the
Fourier transform of ||? between solid phase (Abrikosov phase) and glass phase

(Brag glass or vortex glass) we saw in Fig. 3-2-4, the Abrikosov lattice is existence

indeed.

disorder

1.0 o=
melting line

T Vortex Glass
glass line

06 X

“T B Gl

ragg iass Vortex Liquid
0.2 == . .
Abrikosov Solid
0 -1=7 —1=6 —1=5 -54 -1=3 -1=2 —1=1 aft

Fig. 4-3-1: ar — { phase diagram. The blue line is the glass transition line; The red

line is the melting transition line.
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Chapter 5

Conclusion

The vortex simulation in highly anisotropic layered type Il superconductors has
been studied by Monte Carlo simulation in two dimensional Ginzburg-Landau model
with the quasi-momentum basis. Vortices structure are studied with disorder
parameter { = 0~1 and reduced temperature ar = —17~ — 11 in the thesis. |
developed the rotation averaging to analysis the snapshots of the Fourier transform
of the superfluid density. Using the rotation averaging, | compared the diagrams of
the average of samples with:eachdisorder parameterand reduced temperature
before and after rotation to classify the diagrams into three categories: Abrikosov
lattice phases, vortex liquid phase'and glass phase. In solid phase (Abrikosov phase),
there are six sharp peaks separately formed the beautiful hexagonal lattice. While in
vortex liquid phase, there’s nearly no peak observed in the diagram so looked like a
smooth ring. And one can see the vortices “sticky” connected by each other in the
glass phase. To identify the transition line precisely, | made two indicators for melting
line and glass line as R,, and I; to analysis phase diagram numerically. R, is
defined by the compare of the integral of finite area near ideal solid peaks and the
integral of the first ring (the central lattice). R,,, must be 1 in ideal solid phase since
all contribution of the integral of the first ring comes from the six sharp peaks only. In
another way, R,, must be small because most contribution of the integral of the

first ring doesn’t come from the area near the peaks even there’s no peaks in the
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liquid phase. The glass transition line indicator [ is defined by the multiplication of
the samples at the same disorder parameter and reduced temperature but with two
different distribution of disorder. There’s no pinning effect in the ideal Abrikosov
phase so the Fourier transform distribution of the samples with two different
distribution of disorder are the same. So one will get a high value of Iy, since the
samples of two kind distributions of disorder map on each other almost perfectly. As
the system get into the glass phase, there is stronger pinning effect as the disorder
getting larger. So the samples of two kind distributions of disorder didn’t map on
each other except the peak | rotated it to the same position. | got the phase diagram
by these two indicator that the'melting line coincide with many experiments. That
makes the glass (irreversibility) line of the analysis reliable. The glass (irreversibility)
line in the analysis confirm with the theory prediction. Here'l offer a reliable a; — ¢

diagram in the present.
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Appendix

Appendix A

The quadratic term of GL function is

p(,y) = W, MI? = Y CeCrorer, (A1)

we substitute the form of the quasi-momentum

or = exp{—ixk }po(x — ky,y + ky), (A2)

into the basic formula as

' k + Q)?
P = Y eplikH Q) rlewp |2 @F + )| exp [—%
Q1d1+Q2d;
OB )]
(A.3)
Thus, we have
Po(x, )05 (x — ley, y 4 k)
= exp{—ixk,} ex'p[i(kx + Q,)x
Q1&;22&2
' k+ Q)°
+i(ky + Qy)ylexp [% (Qf + Ql)] exp [—%
ikt Qx)z(ky ) iy +0,)]
(A4)

We can rewrite Eq.(A.1) by using Eq.(A.2)
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p(x,y) = Z CrCr o191
k1

= Z C;Cl exp{ix(kx - lx)}(pg(x - kyry + kx)(po(x - ly'y + lx)-
kl

(A.5)

The two function product is

(po(x -1,y+ lx)<p3(x —ky,y+ kx),
set x' =x—1L,y' =y+1,
and then

po(x yeh (5= (ky =L,)),y' + (ke — 1),
set ky' = ky — L, k' =k, — L, we have
Po(x', ¥ po(¥ =k ¥ + k')
x exp{—ix’kx’}z exp[i(kx’ + Q,)x'
Q

(k' + Q)?

+i(key" + Qy)y'lexp [% (Qf + Ql)] exp l— 1

itk +QIky' +Qy) 0,
— 2( y y) + ik, (ky +Qy)],

rewrite x',y’ by x,y and k., k," by kyk,
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<p0(x -1, y+ lx)fpé(x —ky,y+ kx)

= ex'p{—i(x - ly)(kx - lx)}z exp[i(kx — L, + Qx)(x - ly)
Q

J k-1 2
+i(ky =Ly + Q)W + L) ]exp [g (Qf + Ql)] exp [—%

B i(k,— 1L, + Qx)(ky — 1y + QY)
2

+ilky — L) (ky — L, + Qy)]

(A.6)

substituting Eq.(A.6) into Eq.(A.3)

p(x,y) = Z CuCy exp{ix(ky —l)3@o(x — ky, v + ke )@o(x — 1,y + 1)

Z Z exp{ix(ke = 1) Yexp{—i(x - ly)(kx — L) }explilky — L + Q) (x — ly)

: k—1+Q)?
+i(ky — 1y, +Qy) (7 + L) exp [EZE (QF + Q1)] exp [—#

B i(k, =L+ Qx)(ky — 1y + QY) 4

2 (ky = L) (ky — 1y + Qy)] CrCi

= Z Z exp{ily, (ky — L) Yexp[ilky — L + Q)x — ilky — L + Q)1
Kkl Q

+i(ky —1,+Q))y

' k—1+Q)?
+ i(ky -1, + Qy)lx]exp [% Q% + Ql)] exp [_%

B ik, — L, + Qx)(ky — 1y + Qy) n

> (ky = L) (ky — Ly + Qy)] CrCi
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= Z Z exp{ily, (ky — L) Yexp[ilky — L + Q)x — ilky — L + Q)1

kKl Q

. k— 1+ Q)?
+ i(ky —ly+ Qy)y]exp [%l (QF + Q1)] exp I—%

il =L+ Q)(ky — L, + Q)
2

+ikye(ky — 1, + Qy)] CrCr .

(A7)

And then calulated p(x, y) as the fourier transform of p(x,y)

We start from the equation of |1 (x,5)[?

p(x,y) = Z z expily (e — 1)} expliChs — Ly +Q0)x + i(ky — L, + Q,)y
Kkl Q

' k—1+Q)?
= ilky = L + Q)| exp [% (@r - Ql)] P [‘#
_ i(kx . Qx)(ky = ly + Qy)

2

+ ik (ky — L, + Qy)] CrCr,
(A.8)

and the Fourier transform of p(x,y) is

) = f dxdyexp[—i(p + P)

2mL?

- 1] Z Z exp{il,(ky — Lo Yexplilk, — Ly + Q)x + i(ky, — 1, + Qy)y
Kl Q

: k—1+Q)?
— i(ke = Ly + QL] exp [%T (Qf - Q1)] exp I_%

il = L+ Q)(ky — 1, + Q)
2

+iky(ky — 1, + Qy)] CCy .

(A.9)
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Integration over x and y

o +P)= ) > 6lp+ P — (k- L+ Qlexp{ily (ke — L)} exp[iChy — L + Qx
kKl Q

+ilky =l + @)y = ik = L + Q0 exp | 5 (02

[_ (k=1+Q)* ilky—L+Q)(ky =1, +0Qy)
4

- Q1)] exp >

+iky(ky — 1, + Qy)] CCy .

(A.10)
The Kronecker delta has four solutions :
5 = 500 + 5Ly g0 4 511 (A.11)
1. Major contribution p°°
[pi + 1, <1 and p, + 1, < 1]
Q1 =Py ke =p1 +15;Q2 = P; ky = pa + 1
(A.12)

Substitute (B.5) into (B.3)

P +P) = Z exp {i” l_P1(212 - 1)

l

. .
+ E(P1 + 20, = P)[2(p, + P,) — (p1 + P1)]l} exp [% (p?

— pl)] exp [_ #l

c; Cr.

1+l1,p2+12
(A.13)

2. One umklapp contribution %1
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[p1+1;>1 and p, + 1, < 1]
Q=Pi+Lki=p+LL—1,Q, =Py ky=p,+1;

(A.14)

Substitute (B.7) into (B.3)

p*'(p+P) = Z exp {i” l_(P1 + D2, -1)

l

1 .
+§(P1 +20, =P —2)[2(p, +P,) —(p1 + P1)]l} exp{% [(Py + 1)?

»+P)? .
— (P, + 1)]}exp [—T Cp+1,-1,p,+1,Cl -
(A15)
3. One umklapp contribution  §1°
[pr +1, <1 and p, +1, > 1]
Q=P ki =p1+1;0,=P+ 1k, =p,+1;,—1
(A.16)

Substitute (B.10) into (B.3)

pr(+P) = Z exp {i” l_P1(212 - 1)

l

. .
+ E(P1 + 20, = P)[2(p, + P,) — (p1 + P1)]l} exp [% (p?

_ Pl)] exp l— —(p -ZP) l C,

1+ll,p2+lz—1cl "
(A17)

4. The two umklapp contribution 11
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[p1+1;>1 and p, + 1, > 1]
Q1:P1+1; k1:p1+l1_1;Q2:P2+1; k2:p2+l2_1

(A.18)

Substitute (B.11) into (B.3)

5 (p+P) = Z exp {m [—(P1 + 12l — 1)

l

1 .
+§(P1 +20, =P —2)[2(p, +P,) —(p1 + P1)]l} exp{% [(Py + 1)?

*
Cp1+ll—1,p2+lz—1cl "

— (P, + 1)]} exp [— (I)-Z—P)Zl

(A.19)

Finally, we putted all contributions together with two conditions :
Lif (py+1) <1-P' = PypPl =P,
2.if (pr+h)>1- PSPt 1P =P +2

and we obtain

5(p+P) = Z exp {iﬂ [_P’(le —1)

l

1 .
+ E(P1 + 2l = P")[2(p, + P,) — (p + P1)]l} exp [% (P

, ®+P) .
- P )] exp [_T Clps+ialipy+121C -

(A.20)

here Cpp, 41,1 indicates Cp, 11, mod L)-
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with two conditions :
1Lif (p,+1)<1->P =P,P"=P,,
2.if (p+1)>1>P =P +1,P" =P +2.
Thus, the inverse Fourier transform of g(x,y) is
p(x,y) = XpipP(p + Plexpli(p + P) - 7]. (A.21)

We turn back to calculate the terms of GL free energy.

Quadratic term

oV =GL [ 5 ptp t Prexplip + )11 = L ni5(0)

p+
2
l

(A.22)

Quartic term

1[ 1 ()
8 Xy 6y

= —j Z p(p + Plexpli(p + P)

xyp+P

1
1] D" @ + Phexpli@@ + P) 11 =512 ) 5o + PYF'(p + P)

p/+P/ p+P

1
=212 ) 15+ P

p+P

(A.23)

Substitute (A.19) into (A.23), we have
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1
R 1 , 4
Sﬂfx‘y| €39

=—I? Z Z exp {in [—P’(le -1
p.P l

1 i
+ E(pl + 2L, — P")[2(p, + P,) — (p1 + pl)]l} exp [?( 12

o=

2

, (p+P)?*]
—F )] exp I_ 4 C[p1+l1]'[P2+lz]Cl

(A.24)

Appendix B

I used the random potential in the disorder term of GL equation as

U(x,y) = ag,0,0

p1>O,P120,p2=0,P2=0

+ a;LO;PLOexp[_i(p + P) : T]}

+ Z {appexpli(p + P) - 7] + a; pexp[—i(p + P) - 7]}.

p2+P,>0

(B.1)

here a is the complex random numbers, apip = a_(yp)
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a,pexplilp+ P) - r]

o mk a, op cexp[—i(p+P)-1] @g,0,0,0 @y, 00, 08%p[i(p + P)-7]

=

ay pexp[—i(p + P) - 7]

=N

Pyt Py

The distribution of the random potential in momentum space

and its distribution is divided into five parts. The white noise correlator is

U(x,y)U(0,0) = a5,

+ Z {a,.0,p,,0%p, 0,p,,0exP[i(P + P) - 7]
p1>0,P120,p2=0,P2=0

+ ap. 0p,,0p,0p,08Xp[—i(p + P) - T]}

+ Z {ay payp pexpli(p + P) - 7] + ap pay pexp[—i(p + P) - rl}.

p2+P2>0
(B.2)
with some basic relations as follows:
5 _ R
ap,0,00 = L2
1 R
Rea? = Ima? = -— = 0%,

2 27l

(B.3)
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here @2 is the variance of the normal distribution.

The disorder term of dimensionless GL free energy equation is

j W e )% G, y) 12
X,y

laT,(1—1t) | _
= 2mL? 20 T2 p(0)ag 0,00
+ z {ﬁ(p + P)ay, op, 0t C- c.}

P1 >0,P120,p2 =0,P2 =0

i Z {p(p + P)a,p + c. c}}

D2 +P2>0

(B.4)
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Appendix C
The energy of new configuration can be calculated by using

Cnew S Cl(:)l + 8[1 11812 ]ZA (Cl)

11,05

Hence, the new superfluid density term is

new
| wenr =2m Y cereray
Xy

11,02

= ZHLZZ(CH lzcl(i +811 11812 JzA) (Clo1 +811 11812 ]ZA)

l1,l2

= 21l Z(Cg{;iz COE + G A + €M A + AAY)

11,02

old
— ldx* ld Ax* *
= j ¥ (x, ) |2+ 20 LGOI A+ C2IE A" + AA”).
xy

(C.2)
According to Eq.(A.23+) and Eq.( b.4 ), we can obtain the new interaction term and

disorder term by calculating g(p + P), so that

5(p+P) = Z exp {m l—p'(zz2 ~1)

l

1 .
+ E(P1 + 2L, —P")[2(p + P,) — (p1 + P1)]l} exp [% (P

, (p +P)* P) \
—P )] exp l (COlldHl [p2+15] +6P1+l1] J1 [p2+12]- A )(Cl(il;iz

+ 811‘]1812 —J2 A)'

(C.3)

This calculation result can be separated into four part for different delta function solutions
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as follows

()

Z exp {i” l_P’(le - 1) +%(P1 + 2l — P")[2(p, + P,) — (p1 + Pl)]l} exp [.2 (P

l

+P
— )| exp [ @ )](cold* o

[p1+11).[p2+12]

(C4)

(b)

Z exp {i” l_P’(le - 1) +%(P1 + 2l — P)[2(p, + P,) — (p1 + Pl)]l} exp [.2 (P

l

, (p+P)* )
—P )] exp [_ 4 (8[P1+l1]—f18[P2+12]—f2A Cl(ﬁ?z
= exp {i” I—P’(z[jz —pl=1li1—

1 .
+§(P1 +2[j; =1l = P2+ P) — (p1 + P1)]l} exp [%(Plz

—P’)]ex [ (p'l'P)l( cold ).

U1—p1lliz-p2

(C.5)

(©

plp+P)= Z exp {in [—P’(le —-1)

l

1 in
+ E(P1 + 2l —P")[2(p, + P,) — (p1 + P1)]l} exp [? (P2

, (p +P)* P) \
—P )] exp l (C%lf‘l'l Lp2+l;] 811 11812 JzA)
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1
= exp {i” I_P’(zjz —ju) + E(P1 +2j; —P)[2(p, + P,) — (p1 + Pl)]l} exp [2 (P
, (p+ P) cold
- P )] exp l P l ( Plf"'h P2+f2]A)'
(C.6)
(d)
Z exp {i” l_P’(le - 1) +%(P1 + 2l — P")[2(p, + P,) — (p1 + Pl)]l} exp [.2 (P
l
P
_P,)] expl (p+ ) l(s [pi+14] 118[P2+lz 12611 11612 ]ZAA*)
1 in
= exp {m [—P'(ij ~J)+ 5 (P (a)]]} exp| 2 (P
2
— P’)] exp l— #l (AAY).
(C.7)

Finally, we substitute Eq.(C.4) ~'Eq.(C.7) into Eq.(C.3)

5+ P) = Z exp {iﬂ l—p'(zz2 —1)

l

1 .
+ E(P1 + 2l —P)[2(p, + P,) — (p1 + P1)]l}exp [g (P

+P
—P')] exp [ @ )l(cold* coi

[p1+11)[p2+15]

-54-



+ exp {iﬂ l—P’(ZUz — 02l — 1 — 1D
1 im
+ E(P1 +2[j1 —p1]l = P")[2(p2+P;) — (p1 + P1)]l} exp [7 (P

—P')]ex [ (p"’P)l( cold )

U1-p1llz2-p2

1 .
+ exp {iﬂ [—P’(ij —ju) + 5 (p1 +2j1 = P")[2(p2 + P2) — (p1 + P1)]l} exp [% (P

P
—P’)] exp[ P+ )l( [EIRTRRTY

+exp {in [—P'(ij ~ ) +5 S P2 - (Pm]} exp [ ("

—P) [ p+ l(AA)

(C.8)
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