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Abstract

This work covers three parts: the topological features of the HgTe/CdTe quantum
well, the electronic spectrum of quantum spin Hall bar with or without a split-gated
configuration, and the quantum transport through a quantum point contact formed by a
finite-length split-gate on a HgTe/CdTe quantum spin Hall bar.

In the first part, we work out and demonstrate the Z, topological invariant of HgTe/CdTe
system. In the second part, we show that the edge states, when exist, will remain locating
to the vicinity of the boundaries of the quantum spin Hall bar rather than to the bound-
aries defined by the split gates. Finally, in the third part, interesting structures in the

conductance are found. Relation of these structures to the edge states will be explored.
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Chapter 1

Introduction

1.1 Background

1.1.1 Topological insulator(TI).

- What is TI?

Topological insulators are new' states of quantum matter. It is very different from
traditionally defined metals and insulators. The electronic state of its body is an insulator
with an energy gap, and its surface is metal state without energy gap. This surface metallic
state, which is gapless, is also very different from the surface state in the general sense. The
latter is due to dangling bonds on the surface or due to surface reconstruction. However,
the surface state of topological insulator is completely determined by the topological
structure of the bulk electronic states of the material. It is determined by symmetry,
and independent from specific structure of the surface. Just because the surface metal
state is determined by symmetry, it is very stable, almost not affected by impurity and
disordering in the material. In addition, the basic property of topological insulator is the
combined result of quantum mechanics and the theory of relativity. Due to the effect of
spin orbit coupling, and under appropriate conditions, a surface electronic state of zero
energy gap will form. This state is protected by the time reversal symmetry so that the

state is robust against normal impurities.
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Figure 1.1: Electric band.

- What is different between TT and others material?

We can easily see the difference between materials by the band theory: Look at the
figure 1.1, we see that metals contain a band that is partly empty and partly filled re-
gardless of temperature. Therefore they have very high conductivity. It is not the same
as metals, both ordinary insulators and semiconductors have an energy band where all
states are occupied (the valence band) and a band of higher energy where all states are
empty (the conduction band). The difference between an ordinary insulator and a semi-
conductor is just the size of the band gap between the valence band and the conduction
band. In an ordinary insulator, the gap is large enough so that in an ordinary situation,
the electrons will never gain energy enough to move up to the conduction band. The gap
in a semiconductor is smaller, making the jump to the conduction. Topological insulators
resemble an ordinary band insulator, with the Fermi level falling between the conduction
and valence bands. On the surface of a topological insulator appear special states that fall

within the bulk energy gap and allow surface metallic conduction band for the electrons
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o

possible. These states are called surface states (in 3D) or edge states (in 2D).

- Why its name is ”topological insulator” ?
Topological insulator with two meaning:
+ It behaves as an insulator in bulk band. So it has name ”insulator”.
+ To distinguish it from the ordinary insulator. Topological insulators are different from
ordinary insulators on the topological properties. One sees that, the topological invariant,
what characterized by TKNN number (or first Chern number) of topological insulator is
integer number, while the ordinary insulator ’s is zero.

- Features of topological insulators: In general, the features of topological insulators
can identified as:

+ About conductance: Metal> semiconductor> topological insulator > ordinary in-
sulator.
+ Comparing with the ordinary insulator:
* The same bulk states, besides it has new states which locate at surfaces.
* The Z, invariant of topelogical insulator is # 0.
The Z5 invariant of ordinary insulator is = 0.

- Applications of this material?

The application to spintronics is an obvious one because the fact that surface conduc-
tion bands flowing in opposite directions are spin polarized. Also, the flow of electrons
across the surface of a topological insulator does not dissipate energy as heat. This dis-
sipatedness conduction has obvious application in small electronic devices because the

conduction does not depend upon the size of the material.

1.1.2 Time reversal symmetry

- What is time reversal symmetry
Time reversal symmetry is known as symmetry that the forward-in -time behavior of
solution is typically very similar to the backward-in-time behavior.

This concept can be described by equation: [H,©] = 0 with © is the time reversal
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symmetry operator.
Hi (7, t) =B (7,1). (1.1)
Under the action of time reversal operator, we have:
OHY (7 ,t) = Eap (7, —t).

So clearly that solution is the same when we reversed time.

In a system which includes them time reversal symmetry, we always have double
degeneracy (Kramer degeneracy) because if H [n) = E,, |n) then |n) and © |n) belong the
same energy eigenvalue F,,.

- How it effects to topological insulator?

To understand why time reversal symmetry is important for a topological insulator
we consider the surface state characteristics. The surface states of a quantum topological
insulator are spin polarized based upon the direction in which current is flowing. Time
reversal symmetry acts on the wave vector Qu (?) = —u <—?> and the spin Oy (%) =
X (=3)-

The surface states are time reversal invariant because spin and momentum are both
negative under time reversal. The fact that the surface states are time reversal invariant
makes them robust against perturbations that are time reversal invariant. However, a
time reversal symmetry breaking perturbation like a magnetic field will destroy the surface

states of a topological insulator.

1.1.3 Spin-orbit interaction.

Spin-orbit interaction (or spin-orbit coupling) is interaction of a particle’s spin and
its motion. A well know example of this effect is the shift in an electron’s atomic energy

level due to electromagnetic interaction between electron’s spin and the magnetic field.
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The spin-orbit interaction in vacuum can be written as:

Hio= 3 (ﬁ <) = AL S, (1.2)

4mey?.c

The physical mechanism of Hgo can be interpreted: an electron moving in an electric
potential region sees, in its frame of reference, an effective magnetic field which couples
with the electron spin through the magnetic moment of the electron spin. Through this
eective magnetic eld, which certainly depends on the orbital motion of the electron, the
SOI is established.

- The role of SIO in topological insulator:

One sees that, nonmagnetic insulators without spin orbit interaction are ordinary
insulator, and when the spin-orbit interaction become stronger, insulator maybe become
topological insulators. Hence the edges states (or surface states) of topological insulators
arise from the spin-orbit interaction. The spin-orbit interaction acts as a ”spin-dependent
magnetic field” and it gives rise to spin-dependent quantum Hall effect. The edge states
from this spin-dependent quantum Hall effect consist of counter propagating states with

opposite spin. And therefore, they called helical edge states.

1.1.4 Hall effects.

We know that there are 4 kinds of Hall effects.

- Classical Hall effect is discovered by Edwin Hall in 1879. In the classical Hall ef-
fect, a voltage difference is produced across an electrical conductor and a magnetic field
perpendicular to the current.

- Quantum Hall effect is the quantum version of the classical Hall effect. One observed
this effect in two dimensional electron systems, subjected to low temperatures and strong

magnetic fields.
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Hall conductivity is now quantized as:

Oy =N .%

If N are integer numbers (N=1,2,3,...), we have integer quantum Hall effect. If N are
rational fraction (N=1/3,2/5,3/7,...), we have the fractional quantum Hall effect.

- Spin Hall effect is accumulation of spin on the lateral surfaces of a current-carrying
sample, the signs of the spin directions being opposite on the opposing boundaries. When
the current direction is reversed, the directions of spin orientation is also reversed. Notice
that, we do not need a magnetic field in this case. If we apply a strong enough magnetic
field is applied in the direction perpendicular to the orientation of the spins at the surfaces,
SHE will disappear because of the spin precession around the direction of the magnetic
field.

- The quantum spin Hall state is a state of matter proposed to exist in special, two-
dimensional, semiconductors with spin-orbit coupling. The quantum spin Hall state of
matter is the cousin of the integer quantum Hall state, but, unlike the latter, it does
not require the application of a large magnetic field. The quantum spin Hall state does
not break any discrete symmetries (such as time-reversal or parity). The first proposal
for the existence of a quantum spin Hall state was developed by Kane and Mele[8] who
adapted an earlier model for graphene by F. Duncan M. Haldane[11] which exhibits an
integer quantum Hall effect. The Kane and Mele model is two copies of the Haldane
model such that the spin up electron exhibits a chiral integer quantum Hall Effect while
the spin down electron exhibits an anti-chiral integer quantum Hall effect. It has been
recently proposed [10] and subsequently experimentally realized in mercury (II) telluride
(HgTe/CdTe) semiconductors.

Overall the Kane-Mele model has a charge-Hall conductance of exactly zero but a
spin-Hall conductance of exactly of?™ = 2 (in units of ;%). Independently, a quantum

spin Hall model was proposed by Bernevig and Zhang[9] in an intricate strain architec-
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ture which engineers, due to spin-orbit coupling, a magnetic field pointing upwards for
spin-up electrons and a magnetic field pointing downwards for spin-down electrons. The
main ingredient is the existence of spin-orbit coupling, which can be understood as a
momentum-dependent magnetic field coupling to the spin of the electron.

Strictly speaking, the models with spin-orbit coupling do not have a quantized spin
Hall conductance U;Zi" # 2. Those models are more properly referred as topological

insulator which is an example of topologically ordered states.

1.2 Motivation.

- Introducing to 2D topological insulator HgTe/CdTe:

The two dimensional incarnation of the topological insulator states, also know as the
quantum spin Hall effect was first predicted to be present in graphene, by Kane and
Mele [8]. However, ones see that the spin-orbit interaction in graphene is too week to
produce a band large enough. It was later in 2006 proposed by Bernevig, Hughes and
Zhang [10] to be present in mercury telluride (HgTe/CdTe) quantum wells which were
also demonstrated by Konig in 2007 [7].

Mercury telluride quantum wells can be prepared by sandwiching the material between
cadmium telluride, which has a similar lattice constant but much weaker spin-orbit cou-
pling. Therefore, increasing the thickness d of the HgTe/CdTe layer increases the strength
of the spin-orbit coupling for the entire quantum well. For a thin quantum well, as shown
in the left of the figure 1.2, the CdTe has the dominant effect and the bands have a normal
ordering: The s-like (electron in s orbital) conduction subband E1 is located above the
p-like (electron in p orbital) valence subband H1. In a thick quantum well as shown on
the right of the figure, the opposite ordering occurs due to increation of thickness d of the

HgTe/CdTe layer.

The two dimensional topological insulator mecury telluride can be described by an
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Figure 1.2: HgTe/CdTe quantum well at thickness greater then and less then the critical
thickness.
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effective Hamiltonian [10]:

My Ak. 0 0
H(E)=<(F)+ Abe =M 0 ’ (1.3)
RO 0 0 M, -—Ak

s(?):(J—Dk%Mk:M—Bk?.

Where the upper 2x2 block describes spin-up electrons in the s-like £y conduction
and the p-like H; valence bands, and the lower block describes the spin-down electrons in
those bands. The term e ( ?) is an unimportant bending of all bands. The energy gap
between the bulk bands is 2M.-And B typically negative, describes the curvature of the
bands; A incorporates interband coupling to lowest order. For M/B<O0, the eigen states
of model describe a trivial insulator. For thickness quantum wells, the band are inverted,
M becomes negative and we have topological insulators.

In our research, we do work with the values of the parameters A, B, C, D, M at the
thickness of the HgTe/CdTe quantum well is dg,,=7nm. And therefore, A=346.5 meV.nm,
B=-686 meV.nm?, C=0, D=-512 meV.nm?, M=-10 meV .

- Recently, some interesting research on HgTe/CdTe were shown [2],[4],[5],[6]. In these
papers, they considered the system of HgTe/CdTe quantum spin Hall bar without external
fields or under the electric field which is filled in the system.

Because the edge states are the feature states of the 2D topological insulator. So we
do not want to apply a electric field for the whole system. We propose to apply electric
potentials at transerve boundaries only. And then we have the two split gates system
(figure 1.3).

When we do that, we mean the edge states will be effected by potentials much more
than to bulk states. And so we can control edge states by the electric potentials. If

potentials are large enough, the edge states will be destroyed around I' point. From this
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1 v

d x v

Figure 1.3: The two split gates system: Hgle/Cdle bar with electric potentials are
applied at transerve boundaries.

Figure 1.4: Quantum transport model is proposed from the system of HgTe/CdTe bar
with electric potentials are applied at transerve boundaries (QPC system).

Tr m

idea, we also proposed a quantum transport system on the HgTe/CdTe material like in
the figure 1.4.

This transport system looks like quantum point contact (QPC). Because we can control
the edge states in the middle region, so thank to the voltage gates, we can control the
current of edge states, and therefore change the conductance of the system.

When the width of the potentials areas qual 0 or W/2. Our system closes to the
HgTe/CdTe quantum spin Hall bar. And we can check our result via the papers which

have been published.

10
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1.3 A guiding tour to the thesis.

This thesis includes 6 chapters. In chapter 1, we already introduced topological
insulators. In chapter 2, we will work out the topological features of HgTe/CdTe materials.
Berry curvature and Chern number will be calculated and analyzed. In chapter 3, we
would like to present the calculation and the result for the HgTe/CdTe bar system. Two
approaches will be presented and we can compare the results with result of other papers.
In chapter 4, we study the two split gates system. From here we can see the effect of
potentials to the edge states. In chapter 5, we go to the quantum transport system which
we proposed early. And in chapter 6, it is our conclusions for this research. Besides, we

also propose an idea as a future work.

11



Chapter 2

Study topological features of
HgTe/CdTe material via Berry

curvature and Chern number.

HgTe/CdTe is a 2D topological insulator, so it must be different from ordinary insulators.
The difference of topological insulators and ordinary insulators are in the topo of space of
wave functions. For topological insulators, ones see that topological invariant is different
from 0. The while the topological invariant of ordinary insulators is equal to 0. In
physics, the topological properties normally are considered under the change of Berry
curvature. For 2D topological insulators (also are quantum spin hall insulator), they are
distinguished from the ordinary insulators by Z5 invariant, which can be calculated from
Chern numbers. Chern numbers will be intergraded from the Berry curvature over the
Brillouin zone. In this chapter, we will study the topological properties of HgTe/CdTe
materials to see they are really 2D topological insulators.

First, we can reduce our work on the 2x2 matrix Hamiltonian instead of 4x4 Hamil-
tonian, which was introduced in the reference [10] as well as in chapter 1. Why can we

do that?

12
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VIA BERRY CURVATURE AND CHERN NUMBER.

P(z,
If we set the general form of wave function like this ¢ (x,y) = (=:9)
' (z,y)
Then the Schrodinger equation can be simple as
H(k) 0 Cl.y) | _ | 2@y - H(k)®(z,y) = EQ(z,y)
0 H*(_k) (I)I(Jf,y) @/('x7y) H*(—k)q)l(q}’y) ZE@/(JZ,y)

This result says that we just need to solve the equation H (k)®(z,y) = E®(x,y). The
other solution we can reduce from this solution because of relation between H (k) and
H*(—Fk). This relation is time reversal symmetry. So, we just solve Schrodinger equation
with the upper block (spin up) and employ the time reversal symmetry to get the results

for the lower block(spin down).

2.1 Berry phase and Berry curvature.

2.1.1 Overview of Berry phase and Berry curvature.

In physics, Berry connection and Berry curvature are related concepts, which can be
viewed, respectively, as a local gauge potential and gauge field associated with the Berry
phase. These concepts were introduced by Michael Berry in a paper published in 1984[12]
emphasizing how geometric phases provide a powerful unifying concept in several branches
of classical and quantum physics. Such phases have come to be known as Berry phases
[12], [13].

In a cyclic adiabatic evolution, if the n-th eigenvalue ¢, (?) remains non-degenerate
everywhere along the path and the variation with time t is sufficiently slow, then a system

initially in the eigenstate ‘ug > will remain in an instantaneous eigenstate ‘umt) n>,

(0),n

13
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up to a phase

40
d
Yo (t) =1 / dE <u?n — ‘u?n> (2.1)
L b dk b
K (0)

With 7, (¢) being the Berry phase. Notice that the integral is working on a closed
path k(t) = k£(0) of the cyclic evolution.

Using the Stoke’s theorem, we get v, =i [ dS. V3 x <u?n ‘V?u?m} = [dS.Q, (?)

Where

Q, (?) =1V—> X <u—>

k k.n

Vﬁu/?,n> (2.2)

is called the Berry curvature.
For numerical calculation, one sees that the formula (2.2) is not convenient and has
some difficulties on the technical calculations. So, with demand for calculation one tried

to transform (2.2) to another form which can help us to calculate more easily. Let rewrite

(2.2) as follow

Vo X Voup >} =1 <V—>u—>7n‘ X ’V?u?7n> .

8“73,77, B 8“73,71 8“73,7;
Oky Oky Ok :

= 1 into the above result, we have

dup B duy ,
ok, ok,

o duy
For example we consider along z direction, so €2, ( k ) = 1. [< o

Ok
u?,n’ > <u?,n’

u?,n’> : <u?,n’

Inserting the complete set »
TLI

Q, (?) —i Y KG;Z”

,n/

u?,n’> : <u?,n’

14
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Considering <u7,n, Vo H ‘u7n>

O H

= Q, (?) =iy (e ) (2.3)

n'#n

Or we can simply write as

=\ (ks == ky) —"(ky i k)
0, (%) = z.% (Ezi - E;ny 24)
Where

(kg ky) = <u?n‘ O, H ‘u?n,> <u7n,‘ Ok, H ‘u?n>
(ky = ky) = <u?n‘ O, H ‘u? n,> <u? n,‘ O, H ‘u?n>

2.1.2 The Berry curvature in HgTe/CdTe topological insulators.

To calculate the Berry curvature, we need to know Eigen states and Eigen energies

of the Hamiltonian. So, first we will start from the Schrodinger equation to find these

15
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things. From the equation Hu = Eu we have

C+V—Dy.(k>+ k) +M Ak, — iky) a sl @
A. (kg + ik,) C+V —D_.(k>+k*) - M b b
(2.5)

Solving this equation we will get both solutions for £ and u. First of all, we move
E.u to the left hand side and we get the equation (H — 1.E)u = 0. Directly we have

det(H — 1.E) = 0. Because the matrix is 2x2, so we get 2 roots for F.

E=C+V = Dk? % \/(BE — MY}t A2 (2.6)

Let denote

B = C+V—Dk2+\/(Bk2 - M) AR E | = C’+V—Dk2—\/(Bk2 — M)? 4 A2}

Inserting (2.6) back into the (2.5) we will see the relation between a and b as following

Bk? — M £/ (BR? - M)* + A28

And thus we have 2 Eigen vectors. They must be in forms

4

aq Ak_
uy = = C1.
b Bk — M+ \/(BR? — M)® + A2k
< (2.8)
a_y Ak_
U_1 = = C_1.
by Bk — M —\/(BR? — M)* + A28

The Eigen vector u; is corresponding to F; and u_; is corresponding to F_;. a and b

can be found more specifically by the normalized condition |a|* 4 |[b|*> = 1. Since we can

16
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know that

V(BR2 = M)? 4 4282 = (B.A? — M)’

b = (2.9)

2\/(BR? — M)? + A2.k2

Now we can start to calculate the Berry curvature based on the formula (2.4). Fist,

noting that

Ok_ JOky = O(ky —i.ky)/Oky = 1;0k_ Ok, = —i and Ok/Ok, = ky/k; Ok Ok, = ky,/k

, SO we get
—2D. .k, A 1 0 01
Ok, H = = —2kz D —2k,B. + A.
A =2D_.k, 0 —1 10
—2D .k, —iA 1 0 0 —1
Oy, H = = —2k,D = 2k,B. + 1 A.
1A —2 D¢ 0 —1 1 0

We only have 2 states, so we do not need to take summation in (2.4), and the index n

is indicated for 1 or -1. The denominator is always equal to (B, — F_1)* = (E_1 — Fy)* =

2
<2\/(Bk2 - M)+ AQ.I@) . And we go to a better form

(kg ky) — (ky o ky)

.
(2 (Bk? — M)* + A2.k?>

Qn(? (2.10)

)=

Let consider the first term of the numerator.

(kg Ky) = (un (k) [0k, H [u—n(k)) . (un(k) |0, H |un(k))

17
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D_|_ 0 01 a_p
(1106, o) = (e b ) |28 44
0 D_ 1 0 b_,
= —2ky. (Dyap *.a_py+ D_byx.b_p) + A (an * .b_py + by x.a_y,)

= 2k, X+ A (ap*.b_p+b, *x.a_y)

D, 0 [0 -1 an
<U_n(k) ‘8kyH |Un(k)> = < Q_p* b_p,* > —Qky + 1A
0 D_ 1 0 by,

= —2ky. (Dia_p * .ap + D_b_,, % .b,) + 1A (—a_p * .by + b_p, * .ay)
= —2ky, X +iA. (—a_p * by, +b_p, * .ay)

Where

X = (Dyap *.a_p + D_by % b_,) . (2.11)

(kg = ky) = [2kp. X + A (4 % .bop + by x.a_y,)] . [=2ky. X + 1A (—a_p * by + by, * .ay)]
= 4k ky X? — 21k, X A (—a_p, % by +b_p % .an) = 2k, X A. (an * by + b, x .a_y)

+iA% (—a_p * bpan * by +b_y % .pay x by — a_y x byby *.a_p, + by ¥ .apby, * .a_y,)

(2.12)

Doing in similar way for the second term of numerator, we have

(ky = ky) = (un(k) |0k, H |u_n(k)) (u_n(k) |0, H un(k))
= Akyky X? — 2ky XA (a_y % by + by, % .ay) — 20k, X A. (—ap * b_p + by % .a_y)

+iA% (—ap * b_pa_p * by — @y % .b_pb_y % .ap + by x .a_pa_y x by + by * .a_pb_y * .ay,)

(2.13)
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Substituting (2.12) and (2.13) into (2.10) we get result for the numerator of (2.10).

(kg ky) — (ky o2 ky)
= 2ky X.A. [by (a_p ¥ —a_p) + b_p, (a5, — apx)] + 20k, X A. b, (a_p, * +a_,) — b_y, (an, + ap*)] -

+2iA% (apan * b_p* — a_pa_p, * .b,")
(2.14)

Notice that in the calculation we already consider b,, are positive quantities. To con-
tinuous to reduce this result, we need to use the relation (2.7) of a, and b, for next

calculations.

First,

X = (Diap *.a_, + Db, %.b_y)

_ Aky Ak
f— D—|— B~k2_M+n\/(Bk2_M)2+A2.k2.bn.B,kQ—an\/(BkQ_M)2+A2.k2.b_n + D_bn * .b_n
=D, A%k ——0) ~ 2

(Bk2—M)*—n2[(Bk2=M)*+ A2.k?]

=—(Dy —D_)b,.b_, (because n?=1)
= —2B.b,b_,,.

And, second

(b (a_p *x —a_p) + b_p (@, — ap*)]
A2ik, " — A.2ik, b
" Bk2—M—n\/(BR2—M)>+A2k2 " " Bk2—Mtny/(BK2—M) +A2k2 "

P 2 o 7.°
= 4iAkybyb_, VBRI TR (2 — 1 s applied)

—A2.k2?

(b (a_p * +a_p) — b_p (G + ap*)]

A2k, _ b A2k, b
"Br2-M-n\/(BR2—M)>?1A2k2 " " B2 Miny/(BK2-M)*+ A2 k2

— 4 Akybypb_ Y BEMIAATE (0 56 applied)

—A2.k?
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Analytical result of Berry curvature, n=—1

Analytical result of Berry curvature, n=1
700 T T T T

(a) (b)

600 EET

500 \ 1 2001
€ <
4001 £300

e @
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2300 >400
8 8
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0 : 700 . . . . . . . . .
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k (1/nm) k (1/nm)

Figure 2.1: The plotting of the Berry curvature for analytical result.

The final term is

(anan w.b_p? — a_pa, * .an)

_ A2 k2 b2p 2 A2.k? b 2p 2
- > 2:Yn Y—n ; 3 2:V—n -Un
(B.k2—M+n (Bk?—M)~+.42.k2) (B.kz—;\f{—n\/(Bk?—M) +A2.k2)
.2 2 .
A2 9 (B.k?—M).n\/(BR2 = M)*+ A2 k2
- . n ¥Y—nm (—Az.k2)2
(B.k2—M).ny/(Bk2—M)*+A2 k2
—AZ k2

= 4b,%.b_,2

Putting all in (2.14) and using the formula of b2 (2.9) we have

(B.k2 + M)

(ky : ky) — (ky = ky) = 2inA”. .
V(BR2 = M)? + 4282

And thus the Berry curvature now is ready calculated by (2.10)

% .o _ ..
(ev/ B2+ A2 k2)
2inA2. (B.42+21) . (2.15)
= \/(Bk2_M)2+A2.k2 _ A2(B.k2+M)

(m/W)2 N n'2[(3k2_M)2+A2.k2]3/2
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2.2 Chern number.

Chern number is an important key to help us go to the Z, invariant, which can
help us to distinguish topological insulators and trivial insulators. Chern number can be
calculated via the Berry curvature by the formula

1 — —
C, = %/dk (k). (2.16)

_>
Here we do work on the 2 dimensions momentum space. So d k = dk,dk, = 2nk.dk =

7.dk?
1
- C, = 5/dk?.Qn(?).

Now we can put the result of the Berry curvature in (2.15) in the above formula, in
addition we notice that because the Berry curvature decays rapidly to 0. So we can change
the boundaries of the integral on the first Briliouin zone to boundaries 0 and infinite of

k, and we have

C, = _l/dk?n. A% (B2 + M) : (2.17)
b2 2[(Bk? — M)? + A2.k2])""?
Setting
2 _
cosf) = (B~ M) (2.18)

V(BR? = M)? + 4282

We find the boundaries of the new variable as follow

M M
k> =0= 0 =0y;cos, :_\/W:_|M| = —sgn(M)
(B.k* — M) B

= sgn(B)

k22002>9:02 cosfy = lim =
e J(BR - MY+ A2/ (B)?
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dcost) A% (B.k* + M)
0" 9[(Bk? — M)* + A2.1?]

3/2

So, C,, = =1 [dk? .22 — —Ln(costh — costy) = —3n[sgn(B) + sgn(M)]. In all our
0

calculations, we use the value of parameters are B = —686; M = —10.

= C,=n.

1 for n=1:conductance band.
=C, = (2.19)
—1 for n= —1: valence band.

2.3 The analysis of the result of Berry curvature and

Chern number.

2.3.1 The Berry curvature under the time reversal symmetry.

We know that the time reversal symmetry is an important property of quantum spin
hall insulators. We know that, under the effect of the time reversal symmetry, momentum
and spin change their sign.

For Berry curvature, the above results that we obtained are just for the upper block
of the Hamiltonian, the block of spin up. What is result of Berry curvature for the spin
down block?

We can answer this question by considering the change of the Berry curvature under
the action of the time reversal operator.

First, we write the Berry curvature as follow

Q, (?) =iV X <u? V?u?m) =V x Xn’s (7) ) (2.20)

Here st (?) =1 <u—>
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We have

—

_ _ —1 _

Z”’S (k) - <u?,n,s‘ V?u?,n,s> o <u?,n,s‘ 070 ‘V?u?,n,su?,n,s> - <u—?,n,—s‘ @V?u?,n,s>
_ .

= (u g, Ovpup, )= (up, |V pu g, ) = A0 (-F)

So,

Qs (- F) =V g x Aoy (-F) ==V x A, (F) ==, (F). 221)

Thus, under the time reversal symmetry not only momentum and spin change sign
but also Berry curvature change sign. The result (2.15) is for spin up, so for spin down

the Berry curvature must be

2 A2 (B2 + M)

2[(Bk2 = M) + A2.4?]

Qi (k) =n. 573 (2.22)

What about Chern number? If we look at (2.16) we can conclude quickly that
Chern numbers change sign also. If (2.19) gives us the Chern number for spin up
Cnt+ =n (n=1,—-1), we will have Chern number for spin down is C,,; = —n . Later

these results will help us to consider Z, invariant of HgTe/CdTe material.

2.3.2 /7, invariant.

S0, the time reversal symmetry requires C), + + C,, | = 0. While the difference of them
Cy = (Chp — Ch1) /2 defines quantized spin Hall conductivity [8]. The Z, invariant which
can help us to distinguish trivial insulators and topological insulators can be calculated

as following

v =C_C, mod 2. (2.23)

One pointed out that v = 0 stands for trivial insulators and v = 1 stands for quantum
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Quantum spin Hall insulator

Figure 2.2: Edge states in quantum spin Hall insulator at the interface between a Quantum
spin Hall insulator and an ordinary insulator.

spin Hall insulators (see Fig. 2.2). Let see in our system, what is v?
For our system, C, = (Cpy —Cp ) /2= (1—(-1))/2=1Sov =1mod2=1. v =1
is a nice result. It confirms that HgTe/CdTe is a 2D topological insulator (or quantum

spin Hall insulator).

2.4 Brief summary.

The topological classification is based on the topological invariant. For trivial insulator,
its Z, invariant is equal to 0, and for non-trivial insulator is equal to 1. In this chapter
we pointed out that the Z, number of HgTe/CdTe materials is equal 1, that means
HgTe/CdTe insulators are quantum spin Hall insulators. Besides, we also pointed out the
change of Berry curvature and Chern number in the time reversal symmetry. The results
say that under the time reversal symmetry, not only spin and momentum changed sign,

but also the Berry curvature and Chern number change their sign.
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Chapter 3

Electronic spectrum of a HgTe/CdTe

quantum Hall bar.

In this chapter, we will study on the HgTe/CdTe bar system. This part will help us
to understand better the Right and Left regions of the transport system. Besides, it also
helps us to check our results for our model, the model that we apply electric potentials

at transerve boundaries only.

3.1 First approach: using sine functions as basic.

We know that the sine function ¢, (y) = \/%sin(%) is the solution of the Schrodinger
equation for the infinite quantum well. A long y direction, the system looks like an infinite
quantum well, so we can use sine functions as a basic of wave functions. Along x direction,
the system has no boundaries, so the wave along x direction to be the wave function of

free particle. And then we can write the wave function of system as:

Uz, y) = €57 xnon(y). (3.1)

Because the Hamiltonian (upper block) is 2x2, therefore x,, must be 2x1 column
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Figure 3.1: The HgTe/CdTe bar system.

matrices. In addition, they need to satisfy the normalization of wave function:

(W(z,y) |¥(z,y)) me Xn- (Lm(y) len(y me Xn-Omn an X =1 (3.2)

The upper block can be written clearly:

H(?) | CH+V =Dk k) + M A.(ky — ik,)
A. (kg I iky) CHV - D_.(k2+ k> - M
C+V+M-D,.k} Zidk Dy 0 0 A
— i i k2T + ky
iAk, Ol — M — D_k* 0 D A0

(3.3)

Where D, =D+ B,D_=D — B.
Combining Hamiltonian and the wave function in the Schrodinger equation Hy = Ev

, we will go to this form:

4 A
C+V+M-—D,.k} —iA.k,

» AV M D2 2 Xn-on(y)
1A. +V - —D_. n

4 ’ . * =E > Xn-n

9 .D_|_ 0 0 A n
—ky > Xn-@n(y) + kg > Xn-@n(y)
0 D | » A0 | n
\ V,

Let multiply both sides by dy.on,(y) and taking integral along y direction, we will get
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to
Z (C+V+M) Omn — Dy <90m|ky2|30n> —iA <S0m|ky|<)0n>
" iA <90m|ky|§0n> (C+V = M)dmn — D <90m‘ky2|‘»0n>
2| D+
n O D_ n O n
Setting:

AT = (CHV + M) bun — Dy (em(y) |k 100 () mn = {em () [ky lon(y))

A = (C+V = M) b = DA 0 (y) Ty I (1))

A+ —ZAf]mn D+ 0 0 A
Smn = " 5 an — 5mn 5 Tmn = 5mn

1A mn A U- | A 0
Noting that m, n indices are not column and row index of matrices. For a given value
of m, n we have one matriz S,,, , for other values we have different matrices Sy,.
The detail of calculation for AT A~ 9., will be shown in the appendix A. The
results are

nm 2
AL, = (C+V + M) dun=Ds (o) [k [£a(y)) = (C+V + M) =D (5 0o

m

A = (CH+V = M) bn=D_(pm(y) |ky* [@n(y)) = (C+V = M) dpn—D- (%)2-%.
(3.5)

Z(mi?—%)w [(—1)™™ —1] for m#n

Nn = {@u(Y) [ky [0n(y)) =
0 for m=n
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HgTe bar system,N=70,V=0,W=100 HgTe bar system,N=140,V=0,W=200
25 T T r . T T T . —25 T T - : — : - : -
\/ @ ®
20 20+ B
15 157
10 104

Energy (meV)
o
Energy (meV)
=)
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o
=25

Figure 3.2: Energy dispersion of HgTe/CdTe bar system. Potential is V=0 meV. The
width of system is W=100nm for (a) and W=200 nm for (b).

S0, S FrnXn = 3. EdmnXn With Fpn = Spn — ka” Xoan + ko Ty If we set

FH F12 . . = FIN / Xl
Fyy Fy . . . Fyy X2

F = K= (3.6)
Fyi Fyo . . . Fyn XN

We will stay at the Eigen problem

Fr = E.k. (3.7)

This form is very nice for numerical programs.
In the Fig. 3.2, we have energy dispersions for HgTe/CdTe bar system. Because of
the finite size effect, the energy bands open an edge gap and this gap is falling within

the bulk gap. When the width of system is smaller, then the edge gap opens bigger and
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HgTe bar system,N=70,V=0,W=100 HgTe bar system,N=70,V=10,W=100
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Figure 3.3: Energy dispersion.of HgTe/CdTe bar system. The width of system is
W=100nm. Potential is V=0 meV for (a) and V=10 meV for (b).

HgTe bar system,Density of the wave function-1st down Iével at kx ==0.05nm and kx=0.050m, W=200nm,V=0
0.09 T T T T T T T T
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20t i
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Figure 3.4: (a) Density of edge states at k=0.05 and k=-0.05 nm. Other parameters are
W=200 nm, V=0 meV. (b) Edge states at each boundary.
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vice versa. (See the Fig. 3.2 (a), W = 100, the edge gap is bigger than the Fig. 3.2
b’s.). Since we fix parameters and only change the value of potential, the result is shown
in the Fig. 3.3. The result shows that the whole energy dispersion is shifted up or down
since we change potential. Nothing else changed in the energy dispersion. So, essentially
the potential in this system does not deform physics of the system if we just examine
the energy dispersion or wave functions. It means that physics are not changed if we
only consider V' = 0 case. However, potential is reason of scattering, so in the transport
system we need to consider potential also. In the Fig. 3.4 are density of edge states and
the sketch of edge states locate in the HgTe/CdTe bar system. The values of parameters
of system are W=200 nm, V' = OmeV . The edge states are considered at the points
k, = —0.05nm and k, = 0.05nm. which are shown in the picture of the energy dispersion.
Density of edge state at k, = —0.05nm says that it is located nearly the bottom edge
(nearby y = 0), and from the energy dispersion we can see that group velocity of this edge
state is positive, that means the wave is right-moving wave. In the system in figure (b),
this edge state is indicated by the green solid line with the direction is towards right. We
have the red arrow upwards is indicated for spin up of electrons. At the point &, = 0.05,
we have another edge state which was plotted by the green dot line. Unlike the former
edge state, this edge state locates nearly the top edge (nearby y = W). And from the
energy dispersion, we know the direction of the group velocity for this state is left-moving.
Because of these things, in the figure (b), the second edge state is described by a green
dot line towards the left. Of course, the second edge state has the same spin up with the
first edge state due to they come from the same block of Hamiltonian.

But we do not have only these two edge states, but also have two other edge states
because of time reversal symmetry. The other edge states come from the lower block of
Hamiltonian for spin down. We know that, under the action of time reversal operator,
both momentum and spin change sign. So, the edge state which is indicated by the green
solid line in the Fig. (b) will have a ”brother” with spin down and the direction of moving

is towards the left, it is opposite direction with the green solid wave. The edge state with
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spin down is described by the orange dot line in the Fig. (b). Thus, the green solid
edge state and the orange dot edge state are a couple due to the time reversal symmetry.
Similar, the spin up-green dot line is also in another couple and its partner is an edge state
with spin down and the direction of moving is towards the right. This state is described

by the orange solid line in the Fig. (b).

3.2 Second approach: using exponent functions as
trial functions.

In this approach, we can focus more deeply on the edge states. This is a very nice
way for seeking physics of edge states nearby gamma point. Not only that, we also can
get some analytical results for the limited case with the width W closes to infinite. And
we have semi-infinite system. In physics, if analytical result is possible, it is better than
numerical result. This is the reason that similar calculations were published on Physical

Review Letter [4]. We will try with a trial function as

Y(w,y) = e*xe (3.8)
Applying to the Schrodinger equation we have:

C+V —Dy.(k2+ k> +M A.(ky — ik,)
A.(ky + ik,) C+V—-D_.(k>+k*) —M

eikzzxe)\y — Eeikz:vxe)\y
(3.9)

Let see kg, k, as operators and they act on the exponential functions. After that we

can cancel e?*=* M on both sides without any mistake.

C+V—Dy(k? =)+ M—E A (ky — N
x =0 (3.10)
A. (ks + ) C+V —D_(k,>=X)-M-E
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And then we get

ay — D (k2 — N2 A (ky — A
det * +( ) ( ) =0
A. (ks + ) a_ — D_.(k,* — \?)

Here

a,=C+V+M-FEa =C+V-M-E. (3.11)

This equation allows us examine A in the values of E. We have 4 solutions )\, £\,

from this equation with

)\1:\/ka_F+’/F2—gi%_)\2:\/ka_,F—‘/FQ—%’ (312)

e A+ Dya_+D o,
2.D,D_ ‘

So, the wave function must be the superposition of these solutions, given as follows

a; a;’ a as'

. 2
O(z,y) = *? |a MY+ of e MY+ e+
b b, b by’

e MY

(3.13)

We need to determine the superposition coefficients «, o/, 3, 5'. The relation between
a’s and b’s, which are the coefficients for a normalized pseudospin, can be found directly

from the Schrodinger equation, given also in Eq. (3.10)
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C+V —Dy.(k>—N)+M—-E

A (ky — \)

A (ks + ) C+V—-D_(k = X)-M-E
to give
b — _A~(k3:c+)\)a
T CH+V—D_.(kz?-N2)-M-E
_ —A.ks —AN -
= VD kI aE T oD e s — X +aY
_ —Akg B AN
Here X' = C+V—D_.(kz®—A?)—M—E i CHV—-D_.(k;>—X2)—-M-E"
E.q (3.13) then becomes
1 1
(3] Myt e~ My
; X] + Yl X1 — Yi
(D($7 y) — ezkx:c
1 : 1
+/B]. 6/\2y + /))-l e_)\Qy
X2 + sz XQ — Yé

(3.14)

In the final form of the wave function, we already combined notations a and «, § in

new notations are aq, 3.

Now we will go to the important point which helps us to look for edge states. Applying

this wave function for the vanishing condition of the wave function at the two boundaries

y = 0and y = W we will get 2 matrix equations. In fact we have 4 equations because each

matrix equation from the boundary conditions gives us 2 equations. Therefore we have

enough equations to solve 4 parameters ai,ay’, 31, 31'. Because of the unique property

of solution, it leads to an important relation that we can look for edge states from this
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relation.

6)\1W/2 e—)qW/? 6)\2W/2 e—)\QW/Q

d (X1 +Y)eM2 (X =Yy) e M2 (X 4+ Y,) eV (X, — Ya) e W2 .
et = 0.
e—)qW/? 6)\1W/2 e—)\QW/Q 6)\2W/2

(Xl 4 Y*l) e—)qW/Q (Xl _ Y'l) 6)\1W/2 (X2 T }/’2) e—)\QW/Q (X2 _ Y’2) 6)\2W/2
(3.15)

The calculation for this relation can make you feel bored. But if we do work, we have

no other choice. We want to show immediately the result of the calculation as following

1 — cosh(MW)cosh(M W) (X = X7)2 =157 — V32 (3.16)
sinh(A\ W) sinh(AW) 2Y, Y ' ‘

The left hand side of Eq. (3.16) is rewritten as —1 [::ﬁﬁgi;%ﬁ; + EZEE&?VVZ;; . After
some more steps of calculation. Besides, the right also can be written in a better form

with using a new notation
L=C+V—-D_.(k,>—)X)-M—FE. (3.17)

Combining all things together and then we have

tanh(\W/2)  tanh(A\W/2)  LoAi% + Li2X° — k2 (Ly — L) (3.18)
tanh()\QW/Q) tanh()\1W/2) N LlLQ)\l)\Q ' ’

One more time, we want to emphasize that the calculations from E.q (3.15) to E.q
(3.16) and E.q (3.16) to E.q (3.18) are quite hard and long. But with the aim is physical
meaning of results so some steps will be said in key words that would be not in details.

Because A, L are functions of energy which are given by (3.12) and (3.17). So with a
given width W, since we give a value of k, in to E.q (3.18) we will get the solution of E. It

means we can get relation between E and k, via E.q (3.18) by numerical method. Because
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Figure 3.5: (a) Edge energy dispersion at W=200nm and V=0 meV. (b) The dependence
of energy gap on the width of system.

the E.q (3.18) is obtained from the condition of wave function at the two boundaries. So
this relation between E — k, reflects the structure of energy of edge states.

The numerical result in the Fig. 3.5 (a) shows that we have a gap in the energy
dispersion of edge states. And edge states look perfectly linear around the gamma point.
Besides, the Fig. 3.5 (b) tells us the dependence of edge gap on the width of system. Since
the width is increased, the gap becomes smaller. This result is completely reasonable with
the finite size effect. In the Fig. (b), we can see that the edge gap decays exponentially.
At the width is 500 nm, the gap almost closes to zero. But the gap never equals to zero
because of the finite size effect, even it can be very small. The two edge curves will be
crossing and we have gapless in the case of semi-infinite system. We can get the result for
this particular case by taking limit of the result of the equation (3.18) since W closes to
infinite. The work is not easy, but we will be happy because we can get analytical results
which are always expectation of physicists.

Since W closes to infinite, lim tanh(AWW/2) — 1, thus the left hand side of Eq. (3.18)
would be 141=2. And then the Eq. (3.18) becomes k,*(Ly — Ly)* = (Lo — L1\y)*.
Now we use the relations (3.17) of L, (2.11) of ay,a_ and (3.12) of A\, F and turns

inserting into the result which we have just gotten, we will get a nice form for edge states
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Analytical result for limit case W very large Comparing analytical result and numerical result for large W
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Figure 3.6: (a) plotting of analytical result for the limited case semi-infinite. (b) Com-
parison of analytical result for limit case and numerical result for the case of the width is
large enough.

as following

MD A
E=C+V ~ =+ =\/=DiD k.. (3.19)

So, this method can provide us a good result for the limited case of the width- the
case of semi-infinite. The edge states for a semi-infinite system are completely linear on
momentum. The two linear lines correspond to two different directions of moving. They
are opposite direction. This analytical result can be checked by the result from the Fig.
3.5(b). Form the Fig. 3.5(b) we can see that at W = 1000nm, the edge gap very small
and nearby 0. That means the numerical result for W = 1000nm and the analytical
results for the semi-infinite are almost coincided.

The result of Fig. 3.6 (b) confirms the correctness of the analytical result for the

semi-infinite case.

3.3 Comparing results of two approaches.

We can compare two approaches in the results of edge states.

In the Fig. 3.7 we can see that both approaches give us the same edge states. This is
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Numerical result for edge states in 1st and 2nd approaches,V=0,W=300

solid lines:the result of 1st approach
dot line: the result of 2nd approach
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Figure 3.7: Comparing the result of edge states in the two approaches. The parameters
are W=300, V=0.

a nice result.

3.4 Brief summary:.

The results that we got in this chapter are the energy structure and wave functions
of HgTe/CdTe bar. The most interest here is the construction of edge states. Results
point out that we have 2 pairs of edge states. For spin up, we have 2 edge states locate
at different sides of the system and their moving directions are opposite. Similar, we
have the two other edge states for spin down. Besides, the method using the exponential
functions as trial functions also provide us analytical result for the case of semi-infinite.
The comparison of the edge states in the two approaches indicates that the results for

edge states are exactly the same.
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Chapter 4

Electronic band of a split gated
HgTe/CdTe quantum Hall bar

In chapter 3 we saw that when potentials were applied in the HgTe/CdTe bar in the
way that the potential be filled the whole system, the energy dispersion just shifts up
or down without any change. Because edge states are particular feature of topological
insulators, so in this chapter we will study more physics by controlling edge states via

potentials applied at transerve boundaries of the HgTe/CdTe bar system.

4.1 The equation to determine energy dispersion of
the new system.

Doing in the similar way in the chapter 3, we use the approach with sine functions.

From the Schrodinger equation, we can reduce to the equation

n
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dl .
Vi ¥

dT > YN
\Z

Figure 4.1: The two split gates system with electric potentials are applied at transerve
boundaries.

Where
AT —idn,., o | Y 0 A
Smn — " 7an = 5mn7 Tmn = 5mn (42)
iAn A & % A 0

AT = (C+ M) bmn + {00 (y) VW) lon ) — Dy {om(y) |k lon(y))

mn

A = (C = M) b +X@m () TV (1) [00(9)) = D {@m(y) [k [0a(y))
Thmn = (m (Y) [ky [on(y)) -
But in this model, something is different. We just integrate from 0 < y < d and

(W —=d) <y <W on V(y). And thus, the results are

+ Form #n

(4.4)

A;,m = % {(van) Sin(m_”ﬂ'd) _ (mYn)ﬂ' Sin(m\;nﬂ_d)} ) [1 + (_1)m+n}
+(C — M) G — D (22)* 5y
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+ Form=n

Nmn = {@n(Y) |ky lon(y)) =0

2V W 2m nm\ 2
+ 2V . . et - nmw
AT =(C+ M)+ W {d S sin( W Wd)} D+( ) Omn

_ 2V W . 2m nm\ 2

Now we target to the Eigen problem by set up some things. We set F},, =

ko> Xomn + ke T S0, Y FrunXn = > B.SmnXn. If we set

Fn Foe . . . Fy \ X1

Fyy Fy . . w By X2
F — g K=

FNl FN2 P FNN ) XN

We will go to the Eigen problem:

Fx = F k.

Smn -

(4.7)

Making programs to run this equation, we will get the energy dispersion. Let see

results in the next part.

4.2 Result of energy dispersion.

Before we go to the numerical results of this system, we can guess some things on this

system as following: (1) It is not the same the system in chapter 3, in this system some-

thing changes in the energy dispersion. Because the potentials are applied at transerve
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boundaries only, so edge states will be affected by potentials much more than bulk states.
(2) Edge states will be not moved out of the potential areas, they still locate nearly edges
even some thing changes. Because, if edge states were moved out of the potential areas
then when d closes to W/2, the edge states would locate at the middle of the system.
This is funny thing. So, edge states must locate nearly edges still. (3) Since d = 0 and
d = W/2, the results of this system must be identical to the results of the system in

chapter 2.

4.2.1 Special cases: d =0 and d = W/2.

First we can check results of the new system by special cases. We know that if d = 0,
that means we have no potentials areas in the system and thus the system becomes the
system which is HgTe/CdTe bar with V. = 0 we considered in the chapter 3. Not only
that, we also can check for the case d = W/2. In this case we go the the case that the
electric potential fills the whole system. And we can compare with the result of the system
in chapter 3 for V' # 0.

Look at the results of the Fig. 6.2, we see that the results of two system are exactly
the same. This helps us to believe that we are in the correct direction to consider the

new system.

4.2.2 Result for other cases.

What we expect in the new system is the effect of potentials to the energy dispersion.
This effect is interesting since 0 < d < W/2. Now the system is in a different physics due
to the potentials just affect to a part of the system. The Fig. 4.3 shows us new energy
dispersion, and then we can see the difference with the former results.

From the Fig. 4.3 we can see that the effect of the potentials on the edge states
is stronger than on the the bulk states. This is reasonable because the potentials only

applied nearly transerve boundaries. In addition, we also see that in the bulk bands, for
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The comparision of 2 system. The new system d=0, the old system in chapter 2 V=0. The comparision of 2 system. The new system d=W/2, the old system in chapter 2, V=0, W=200.
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Figure 4.2: Comparison of energy dispersion of the system in chapter 3 and the new
system (a) d=0 for the new system and V=0 for the old system. (b) d=W/2, V=10 for
the new system and V=10 for the old system. Here W=200nm.

sub bands which have higher index will be affected stronger than lower index sub band.
Here the band index is conventional from the top band of lower bands and the bottom
band of the upper bands. This result can be explained by the Fig. 4.4. In the Fig. 4.4
we plot density of down bands at k, = 0. The picture shows that edge states are the
nearest the edges and the 2nd down band (1st bulk down band) is the farthest the edges.
Therefore, the effect of potentials is the strongest on the edge states and the weakest
on the 1st bulk band. For other bulk bands from 2nd index, the effect of potentials is

increasing gradually.

4.3 Edge states in the system.

The interests in this system are the change of edge states under the effect of the
potentials. Look at the Fig. 4.4 we can see that this change is completely different from

the different of the system in chapter 3. Almost states are changed under the effect of
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The difference in the energy dispersion when we change potentials.

(a)V=10mev. (b) V=30meV. (¢) V=-10meV. (d) V=-20 meV. Here W=200nm.
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New HgTe bar system,Density of the wave functions-at kx=0,W=200nm,d=20nm,V=0meV
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Figure 4.4: Density of wave functions for down bands, with the case V=0. Here

W=200nm.
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potentials, especially edge states. The Fig. 4.4 (a) shows that since we change potentials,
the edge gap can be changed. For V' = 10meV, the edge gap become bigger. This means
we can control the gap of edge states by suitable potentials. Besides, the Fig. 4.4 (b)
gives us another new physics. At the point k, = 0 of the 1st down band, it doest not look
like edge state any more. This is correct. For the Fig. 4.4 (b) with V' = 30meV/, we have
the corresponding density of edge state in the Fig. 4.5 (b), it is the blue curve. Clearly
that the blue curve is like bulk state, it is not like edge state any more. So, with a strong
enough potential, we can destroy edge states around the gamma point. We can explain
the destroying as follow: because edge states are affected much more than bulk states,
so they are moved longer than bulk states. If the potentials are large enough, the edge
states will be moved very nearly bulk states and thus a strong mixing of edge state and
bulk states is constructed. It makes edge states now having behavior of bulk states. On
the Fig. 4.4 (c) and (d) we can see some other change of edge state under the change of
potentials. In both cases, we use negative potentials. So we can "pull” edge states down.
The Fig. 4.5 (a) shows the density of the edge state (1st down level) at k, = 0 for two
values of potentials in the HgTe/CdTe bar in chapter 3. Nothing changes in this figure.
It means potentials do not change physics of edge states in that system. But the story
is completely different in the new system. The Fig. 4.5 (b) shows that when we change
potentials, the behavior of edge states can be changed. At V' = 0 we have the same result
as the figure (a). But when V = 10meV (brown curve), due to the wave of edge state
overlap the wave of bulk states so the brown curve looks strange. For V' = —20meV , we
have the green curve. Because we use a negative potential, so it "pulls” edge state far

from the bulk states of upper bands. It is reason why edge states become nicer.

4.4 Brief summary.

In this chapter we have studied the effect of the two split gates system on the states,

especially on the edge states and we got some new results on this system. The new
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results here are that the energy shifts for the bulk-like subbands are different from the
edge-like subbands under effect of the gate potentials. Specifically, edge-like subbands
are affected much more than the bulk-like subbands in their energy spectrum. On the
other hand, based on the wave function profiles, we find out that the edge states survive
under the effects of the split gate potentials. Even though the k, ~ 0 edge state could
be destroyed, finite k, edge-states survive. Whenever the edge states exist, their spatial
profiles are always in the vicinity of the quantum spin Hall bar boundaries, and not in
the neighborhood of the gate boundaries. We also see that, under the influence of the
potentials of the electric gates, the edge gap opening can be varied and goes to zero in the
large gate potential magnitude regime. Thus, thanks to the electric gates, we can control

edge states in the system.
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Chapter 5

Quantum transport in HgTe/CdTe

quantum point contact.

In this chapter we will study transport properties in Hg'Te/CdTe topological insulator
materials. The quantum transport system is made from the system in chapter 3 and the
system in chapter 4. The left region and right region we do not apply potentials, they are
exactly the system which we considered in chapter 3. The middle region is made from
the system in chapter 4, which with 2 potentials applied at transerve boundaries. So, our
quantum transport system looks like a quantum point contact. In the transport problems,
we need to know clearly wave functions in each region. Before we combine eigenstates of

the Schrodinger equation in a superposition, we will find the eigenstate in the form
_ _tkyx
Uz, y) = €7 Xnon(y). (5.1)
n

With ¢,(y) = \/% sin(5#). Unlike the problem of finding energy dispersion, in this
problem for a given incident energy E we need to find out £, and x, and plug them into
the general form of wave function to know specifically the wave function. So, we can not
use equation which is similar equation (3.7) or (4.7) to find eigenstates. We need to make

a new equation which can allow us finding k, and x,, from a give E.
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£

Figure 5.1: The quantum transport model based on the HgTe/CdTe topological insulator
material.

5.1 The equation to determine £k, and Yy,,.

We also start from the Schrodinger equation to get the numerical formula for the trans-
port problem. Inserting the form of wave function (5.1) in to the Schrodinger equation

H+y = Ev we will get to the result

C+V(y)+M-D kf~F —jAk,
> Xn-n(y)
iA.k, CH+Viy) =M -D_k*—FE | »
$ =0.
,[ Dy O 0 A
_kx ZXn-QOn(y) + km ZXn-SOn(y)
0 D_ | n A 0 | n

\ /

(5.2)

Now notice that V(y) varies in a particular way, 0 <y < d,V(y)=V;d <y < (W —d) :
V(y) = 0 and (W —d) <y <: V(y) = V. So when we multiply [ dy.om(y) by both
sides of equation (5.2) and calculate integral, we need to give an attention carefully on

the integral of V' (y). The result after the calculation is

At —i Ay,
>

D 0 0 A
Xn_z k:c2 ! 6man+Z kx 5man = 0.

0 D_ A0
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Here

AT = (C+M —E)bmn+ (m®) VW) len(y)) — Dy {om(y) |k lon(y)) -

App = (C =M = E)bn + (emy) V() len(y)) — D—(em(y) |ky* lon(y)) . (5.3)

Nin = {Om(Y) [ky [0n(y)) -

If we calculate in detail, we have

+ Form #n

Nn = {n(Y) [ky len(y)) = 0.

2V W 2m n 2
+ _ — e~ _ o
Al =(C+M-B)+5 {d = sin{— Wd)} D+<W> S (5.4)

. ya, Y - B nmy2
AL =(C—M—E) o+ W {d - Sln(Wﬂd)} - D_ (W> Omn

So, the matrix equation can be written as

AT — 1 AN mn D 0 A
Z " ! Xn_z ka;Q " 5man+Z ka: 5man =0.
Or, more simply
Where
Smn = " ) an = 5mn ) Tmn = 5mn (56)
ANmn AL 0 D_ A0
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The equation (5.5) can be in a better form if we set up

St S ... Sin Xn X o . 0 Xy
S = X = (5.7)
Sni Sn2 . . . Snn Xyt Xy o o .0 Xpaw
Ty Ty Ty X1
To1 T T Xo
T: R =
Tni Tno . . . Tywn \XN

Noting that S, Xy, Tn are 2x2 matrices and is 2x1 matrix, so S, X, T are 2Nx2N

matrices and K is the 2Nx1 matrix. After this setting we have (5.5) in the form

Sk — ky* Xk + k, Tk = 0. (5.8)

We can get to the form of Eigen problem with k, is eigenvalues if we do as follow

F = kyk (5.9)

and then (5.8) becomes

Sk +TF = k,XF. (5.10)
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If we consider E.q (5.9) and E.q (5.10) as equations of K and F variables, we can

rewrite E.q (5.9) and E.q (5.10) in the form of the matrix equation

0 1 K k., 0 K
S T F 0 kX F

Let take k, out of the matrix and move the matrix [1,0;0, X| into the left hand side

by using its inverted matrix. We have

-1

=~ k, . (5.11)

Clearly the E.q (5.11) is the form of Eigen problem. So, for a given Energy we always

completely determine k, and K by E.q (5.11).

5.2 The wave function in each region and the equa-
tion to determine the coefficients r,,, t,,.

For a given incident energy, we do not get one solution for k,. The square matrix in
E.q (5.11) has 4Nx4N dimensions, therefore the E.q (5.11) gives us 4N solutions for k,
(example, if N=200, that means we have 800 solutions of k,!). Because we have many
egiensolutions, so we need to combine them in a superposition to get the correct wave
function in each region. One thing makes us must do work carefully is the number of
solutions. Number of solution of k, is big, so we need to classify well to see that which
wave is right-moving wave, which is left-moving wave. We will have both real solutions
(propagated mode) and complex solutions (decay mode) for k,.

For real momentum solutions, we can classify by calculating group velocities. If the
group velocity is positive that means the wave is moving along the positive direction. It

is a right-moving wave. Otherwise, the group velocity is negative, we have a left-moving
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wave.
To calculate group velocities for real momentum solutions, we use the velocity operator

which we can get from the Hamiltonian

10H 1 Dy 0 0 A 1
5 = ﬁgk = |2k, * n =2 [2h X+ Ty (5.12)
@ 0 D_ A0
Where
D, 0 0 A
X, = , Ty = . (5.13)
0 D_ 0

The propagated direction is x direction. Group velocity along the x direction will be

integrated over y from 0 to W. And we have

W A
0

W .
= [y 5 () o 0 21X Do Tl 5 o () (5.14)
= L5 ()T [~ 2k X0 + To] Xo-

For complex solutions of k,, we can not classify by the group velocity. We will classify
by the property of wave function at infinite. We know that the wave function should
be 0 at infinite. So if a complex k, in the form (general form of a complex number
k, = a+1b, the wave will in the form exp(i.kx.x) = expli(a+ib)x] = exp(iax) x exp(—bx).
For right-moving waves, the wave must be 0 at x = 400, so it requires b > 0. And for
left-moving waves, the wave function must be 0 at x = —o0, so it requires b < 0. Before
we write wave functions in each region, we will make a nice form for eigenstate (5.1). We
combined all in a unique form of K vector. So, we can do similar thing for sine function

en(y) = /o sin(52). We also combine all sine functions in a vector, a row vector as

o(y) = < o1(y) ©2y) . . . on(y) ) is a row matrix N elements. Then (5.1) can be
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written as

P(z,y) = ™" o(y)k. (5.15)

Now we can write wave functions for the left, middle, right regions. Each region has

wave function as following:

L 2N o -
Pz, y) = enea® o(y)rh  + Zl Ty € 5T () kil
m=

M X ikt o M,+ X ik M,—
PV (z,y) = 21 A€ T p(y) kbt 4+ Zl by €= T (Y ) Ko (5.16)
m= m=
2N s
Vi (z,y) = Zl b€ R () kB
m=

The plus (+) notation indicates for the waves which are right-moving waves, and the
minus (-) notation indicates for left-moving waves. The coefficents 7., an,, b, tn Will be
solved by the continuity conditions. We have two continuity conditions for wave functions:

the wave functions and their first derivative are continuous at the two interfaces z = (

and x = /:
Lo(0 _ _ M (o M(p—p ) =B (z =0
P =0,y) =" (. = 0,y) N YU (x=Ly) =9 (x=4,y) (5.17)
Ot (x = 0,y) = 9™ (. = 0,y) O M (z =L, y) = 0,0 (z = L, y)

These 4 equations lead to the following equations after some calculations

L X L X M X M

_ - + -

Kpg = — Zl TmKyy T+ Z UKy Z bm'ﬂm’
= m=1 m=1

2N 2N
k'r[z/azl == Z T'm- ern’xlim + Z Ay, kM+- M+ + z bm.k’M’_.lﬁ%

< m=1 m=1
;o M+ ’
0 — Z am.el.km,x .ZK;M,—F + Z bm‘ez.kmw .KHM, Z t lkmx ﬁ,—k
m=1

m=1

2N
; _ - R+
0= Z .- kM+6Z kmm £ M+ + Z b k z.lchc .EH%I, _ Z tm.kﬁ’;_el’km’m’e.liﬁ’—'—
\ m
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If we set up

™ a1 bl tl
T a2 b2 t2
r= , A = b= 1=
ToN asN ban lan
L — nf",mé",---,mfﬂ M — [/ﬁ;i\l’—'—’/{é\/[’—'—,...,li%\}—'—:' K
Gﬁ,l = kﬁ,x,l-"fﬁ,l
Gl = kgl - 6o JeEGHE Bl O]
GMt = Mok Mot _y GMA L [G%”L,Gé”’*, Gi\ff]
Gy =k k™ = GY = [Giw",@éw’_a ...,Gi‘f{}
pM+ — ei.k%;j.eﬁ%ﬂr — pMA+ L [P1M7+, P2M’+7 Pfj@*]
PV = ez’.k%;;.zﬁ%,— _ pM— _ [lev—,PQM’_, ey PAfWN’_}
PR+ = e"'k’l’%”;ﬂr'z.,"ﬁzﬁ’+ — PRt = [P1R’+7 Py, Pﬁ\}+]
QU = ke e el o QU = QI QI QU]
Q%,— — k%,x—ei.k%,’x_.f./{%a— - QMa_ = [Qi\/[’_,QQ " ,QZ\}_}
QR+ = kﬁ:;ei'kﬁ”t'é./iﬁ’+ — QT = [Qfﬁa A ff\ﬂ :

We can rewrite the equations in the form of matrix equation:

L
/{n,l

G
0

0

kb= Mt M-
_GL,— GM,+ GM,—
0 pM+ pM-
0 QY QM-

(5.18)
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Energy dispersion,W=200, V=0 and V=15

solid lines: V=0
dot lines: V=15

=15 (meV)
0.2 T T T I I

kx (1/nm)

G/G,

5 10 15 20 25

Figure 5.2: Conductance of the system for the special case d=W /2. Other parameters
are W=200nm, /=100, V=15meV.

5.3 Results of conductance and discussion.

The conductance of the system can be computed by the formula

N N N g
L +real L +Jreal k real

Z T, = Gy Z Z mn|2”’. (5.20)

Un,1

Here Gy = % With (5.14) helps us to calculate group velocities and (5.19) helps us to
compute t,,;n for each incident wave. Thus we have completely factors to determine
conductance by (5.20).

In the Fig. 5.2 we show the conductance of the quantum transport system is versus
incident energy in the case of d = W/2. For this case, our result is identical to the Kai
Chang group’s in the reference [5] And in the Fig. 5.3 we show the conductance of the
quantum point contact system versus energy, the width of potential areas is d=20nm, the
width of the system is W=200nm. Look at both figures we can see that the conductance
spectra have sharp transmission dips. However, in the quantum point contact system

some sharp transmission dips are removed when incident energy line is just crossing the
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New HgTe bar system,N=150,W=200,d=20. V=0 and V=15

-0.2 dot lines: V=0
— lid lines: V=1
-0.15 solid lines 5

-0.1

-0.05

ke (tnmy 0|
005 |

0.1

015 |

02710 T T T T T

conductrance of matrix 4x4, W=200nm, d=20nm, L=100nm ,V=15 (meV/), choose N=150
! 25
8 |

6l

G/G,

Figure 5.3: Conductance of the system. W=200nm, d=20nm, ¢/ =100nm, V=15meV.

Transmission, Theta=0,V=10 (meV)

T T T
18- -

5 g
16 -
14 4
X
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04l B
02f- -
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50 40 30 2 10 ) 10 2 Ed 0 50

Figure 5.4: Transmission in 2D HgTe/CdTe system with 1 interface, V=10meV. No res-
onance states.
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2D HeTe

Transmission via a bamier in 2D Hyle system,Theta-0.V=15) =100
T T T T T T

T T L
T T

Transmission

T T T
| | I 1

! L L L L ! L
B a5 a0 35 25 =™ 15 0 5 ° 5 0 5 20 E: E- E

Figure 5.5: Transmission in 2D HgTe/CdTe system with 2 interfaces, V=10meV, ¢
=100nm. Some broad resonance states appear.

edge states. To understand the appearance of the sharp transmission dips, let start from
the results in the 2D HgTe/CdTe systems. The Fig. 5.4 shows us the transmission in the
2D HgTe/CdTe system with 1 interface. In this system we have 2 regions with different
potentials and we have no boundaries. The transmission result does show any peak.
Meanwhile, the system 2D HgTe/CdTe with 2 interfaces has some resonance peaks in
the transmission spectrum. But these peaks are broad resonances. They are not sharp
transmission dips as the spectra in the Fig. 5.2, 5.3. So we can understand that the
sharp transmission dips in the spectra Figs. 5.2 and 5.3 are sharp resonances and they
appear because of boundary condition of the system. This also means that edge states
are reason of the appearance of the sharp resonances. Normally the resonance states
can be understood in the following interpretation [14], [15]: For the highest peaks with
transmission is perfect, the energies which are corresponding to these peaks can be found
from discrete energy levels of the box corresponds to the middle region. To find the
energy levels of the box, we just need to replace k, = n.w/L and insert into the equation
which allows us to determine energy dispersion. A similar work is carried out for the 2D
HgTe/CdTe system with 2 interfaces and we can see energy lines in the Fig. 5.5 which

are indicated for the energy levels of the corresponding box. In the Fig. 5.5 we can see
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that, when incident energy hits one energy level of the box, the transmission reaches to
the perfect transmission. For the lowest peaks, we can explain by using leaking modes
for the middle region. In the spectra Figs. 5.2 and 5.3 the interpretation is based on the
resonance of edge states and some other states. However, we do still not know exactly
at which energy that sharp resonances appear. So, this for this dark point we would like

propose as a discussion that we are expecting to know the answer.
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Chapter 6

Conclusion and proposal for future

work.

6.1 Conclusion

Throughout the thesis, we have shown that HgTe/CdTe is a 2D topological insulator
material via calculating Berry curvature, Chern number and Z, invariant of this material.
Besides, by the works in chapter 3 we showed for HgTe/CdTe quantum Hall bar system,
there are 2 pairs of edge states appear at boundaries. The couple edge states in the
influence of time reversal symmetry locate at the same boundary, moving in opposite
directions, and have the opposite spin directions. While the couple edge states with the
same spin direction, locate at different boundaries and moving in opposite directions.
The second method in chapter 3 showed a nice analytical result of edge states for the
semi-infinite system.

In chapter 4 we proposed a new system which is just applied potentials at transerve
boundaries, we call it is the two split gates system. In this system we show that edge
states still locate at boundaries even something changed. The results also show that the
shifts of sub bands are different under effect of the potentials. Specifically, edge states are

affected much more than bulk states. Under the influence of the potentials of the electric
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gates, the edge gap can be opened bigger or closer. Besides, if the potentials are strong
enough, they can destroy edge states around the gamma point.

In chapter 5, we have studied quantum transport in the HgTe/CdTe quantum point
contact we see that in the conductance spectra, some sharp resonance dips appear due to
the interference between edge states and evanescent states. In this part, we can explain
the appearance of the sharp resonances. For the interpretation that exactly which energy

that sharp resonances appear, we would like to propose as a discussion.

6.2 Future work.

In this work we can see that edge states are still located at near edges in the two split
gates system. So, from the result we would like to propose a new project is finding the way
to destroy these edge states. If we can do that, that means we can control transmission
of edge states in a topological material. This is very interesting. Because edge states are
general features of topological insulators, they are protected by time reversal symmetry.
Hence if we want to destroy edge states, we can find a way to break down time reversal
symmetry. A good way is using magnetic field. When we apply magnetic field, we need
to calculate again Hamiltonian of 3D model, this work we should start from 8x8 Kane
model. And then calculate effective Hamiltonian of model which we are interested in
before we consider behavior of edge states under effect of magnetic field. It is a big work,

so this idea we would like to propose it as a future work.
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Appendix A
Appendix

We have ¢, (y) = 1/ sin(%Y)

A%

Substituting into the formula of 7,,, , then

T = (2 (1) [y 1ony fdy[ sin (572 (=i:2) /& sin(3)

—22"—” fdy [sm MR 7y ) sin (T WU)J

w
—'we [(mynwcos(mmm/)ﬂ ZARE( “’)”

m-—=n
=il [(mfn)ﬂcos [(m +n)7] = Gt + e cos [(m — n)r] — (mxvn)ﬂ
2mW

= i%(ﬁﬂ—?ﬂ)ﬂ' [(_1)7714-71 B 1} :

This result is just correct for m # n. For m=n, we have

o = (2m(y) Ky [y fdy[ sin(5) (i) & sin %)

w
w
- 2mm

= —i3r fdy sin( 52 ) cos( 5t )
= (em(y )Vf | om(y))
—z—fdy Sy

=0.
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To calculate AT [ A- we need to start from (¢, (y) |k,* [0n(y)) -

Thus,
n 9 nm\ 2
Amn = (C + V + M) 6mn_D—|— <(pm(y) ‘ky |§0n(y)> = (C + V + M) 6mn_D+(W) 6mn
nm\ 2
A, = (C+V = M) bmun—D_ (pm(y) |ky*lon(y)) = (C+V — M) bpn—D_ (W) S

i—2mn__(23)™ " _ 1] For m # n
T = {2n(Y) [ky [on(y))= § Y
0 For m=n
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