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Global attractor and topological chaos of
second-order difference equations in discrete
Hamiltonian systems

Student: Po-Ying Huang Advisor: Ming-Chia Li

Department (Institute) of Applied Mathematics

National Chiao Tung University

Abstract

In this thesis, we discusstwo distinct dynamics of the difference equation
AlpAx(t — 1)] + qx(t) = f(x(t — 1)) or f(x(t)), t €7Z,

where Ax(t —1) = ax(t) — bx(t =1). These two dynamics are the
behavior of globally attracting and topological chaos. We have several
results. Under some conditions of a, b, p and g, every orbit of the equa-
tion asymptotically converges to a global attractor. See theorems 2.2 and
2.3. If there exists a function relating to f which has more than one simple
zeros or positive topological entropy at an expected parametric value,
then the shift map restricted to the set of solutions of this equation has
topological chaos. See theorems 2.6, 2.7, 2.8 and 2.9. Finally, we trans-
form this equation into a parameterized continuous function by changing
variables. We can also write it as the form of a discrete Hamiltonian
system. For the case f(x(t)), theorem 2.10 says that there exists a
function relating to f which has positive topological entropy such that the
corresponding function has topological chaos. For the case f(x(t—l)),
with an additional assumption that the function relating to f is locally
trapping, theorem 2.11 says that the corresponding function has also
topological chaos.
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1 Introduction

In this thesis, we mainly discuss the globally attracting and chaotic behavior in view of
topological entropy of the nonlinear second-order difference equation A [p (¢) Az (¢t — 1)+
q(t)x(t) = u(t,z(t)), t € Z. In 2006, Ma and Guo in [9] used variational methods
to study the existence of nontrivial homoclinic orbits emanating from 0 of this differ-
ence equation. A homoclinic orbit emanating from 0 is a solution z (t) if z(¢) — 0
as t — doo. This equation can also be written as an equivalent first order nonlinear
nonautonomous discrete Hamiltonian system AX (t) = JVHx (t,z (t+ 1),y (t)), where
X(t) = (z(t),y®)", y(t) = p(t) Az (t — 1), the Hamiltonian function H (t, X (t)) =

#(t) ly (t)]2 + %q (t) [z (t)]2 —V(t,x(t)), V(tzx)= fox u (t, s) ds, and the normal symplec-
1
tic matrix J = ol They considered the assumption that the function u (¢, z) grows

superlinearly both at origin and at infinity or is odd with respect to x € R. There are
also other assumptions we don’t mention here. There were some people discussing so-
lutions of continuous Hamiltonian systems in the past. In 1991, Zelati and Rabinowitz
in [6] considered a class of continuous second-order Hamiltonian systems of the form
2—L({t)z+V.(t,z) = 0, where z € R% L € OR,R”™) and V € C? (R x R",R)
with other assumptions. They established the existence of infinitely many homoclinic
orbits for the class. Tanaka in [13] studied the existence of nontrivial homoclinic or-
bits emanating from 0 of a first-order Hamiltonian system. of the form z = JH, (t, 2),
0 Iy
—In
In this thesis, we suppose p (t) = p, ¢(t) = ¢ and the difference operator A is defined
as Ax (t—1) = ax (t) — bx (t — 1) with two weighted numbers a and b. The function
u(t,z (t)) is of the forms wu (¢t,z (t)) = f(x(t —1)) or f(x(t)) for some continuous one-
variable function f with f (0) = 0.
In this paragraph, we briefly introduce the goals of the papers we apply throughout

where z € R?Y, J = ,and H e C* (R x R?NR) with other assumptions.

this thesis. In [1], a concept called dynamical networks is discussed. [1] states that each
dynamical network is characterized by three factors. These factors are respectively (1)
the network’s topology (structure of a network), (2) the interactions between the elements
(local subsystems) and (3) the intrinsic dynamics of local subsystems. Afraimovich and
Bunimovich in [1] used the methods of symbolic dynamics and formalism to analyze the
stability of dynamical networks and their subnetworks with these three factors. Their
main result gives sufficient conditions to enable dynamical networks to possess a global
attractor. In [8, 12], the family of difference equations @y (Y, Yn+1,*** , Ynim) = 0, n € Z,
with parameters A in some metric space is discussed. Li and Malkin in [12] proved that
if the difference equations have a singular limit of the form ®,, (yo,v1, - ,Ym) = @ (yn)
as A — )\ for some N with 0 < N < m and some function ¢ with k simple zeros, then

for A close enough to \g, the difference equation has a topological k-horseshoe. Indeed,

1



there exists a closed (in the product topology) shift-invariant set I'y such that olr, is
conjugate to the full shift of £ symbols o|g,. On the other hand, Juang, Li and Malkin
in [8] proved for another case that @, (vo,y1, " ,¥m) = & (yn,yn+r) for some N, L
with 0 < N, N + L < m and a function £ in two variables as A — )\, if £ (z,y) = 0
has a branch y = ¢ (z) with A, (@) > 0, then for A in some neighborhood of A, there
exists a closed (in the product topology) invariant set to which the restriction of the shift
map has topological entropy close arbitrarily to ht“‘%("p). In [11], Li, Lyu and Zgliczyriski
considered perturbations from a low-dimensional continuous map f to a family of high-
dimensional continuous maps F\. They proved at A = 0, if Fj satisfies one of two forms:
(1) Fo(2,9) = (f(2),9(x) € R xR (2) Fy(2,) = (f(2),9(,9)) € R x R" with
g(Rx U) C int(U) for some compact set U homeomorphic to the closed unit ball in
R”, then liminfy g htop (F\) > hiop (f). Note that hy,p, (f) here denotes the supremum of

topological entropies of f restricted to compact f-invariant sets.

In this thesis, by applying these results, we have several results to find sufficient con-
ditions to make the difference equation mentioned in the beginning of this section have a
global attractor at the origin and be topologically chaotic in the set of its solutions with
parameter perturbation. Notice that the (difference) equation mentioned in this para-
graph means the equation in the beginning of this section if no additional explanation is
involved. See the next section. Theorems-2.2 and 2.3 state that under some conditions
we find, the equation has the behavior of global attracting in the set of its solutions. Sec-
ondly, the remaining results concern with the topological chaos of the equation. Theorems
2.6 and 2.7 connect the dynamic of the shift map restricted to the set of the solutions of
the equation involving parameter perturbing with symbolic dynamics of full shift, while
theorems 2.8 and 2.9 connect it with the topoloegical entropy of some function relating
to the function f. In theorems 2.10 and 2.11, we consider the behavior of topological
chaos of the difference equation in terms of its corresponding discrete Hamiltonian sys-
tem. Moreover, it can be written as the dynamical system of an iterated function. The
two theorems state that if one can find a function which relates to the function f and
possesses positive topological entropy at an expected value of the parameter we concern,
then the iterated system must own topological chaos as the parameter is near enough to

this expected value.

This thesis is organized as follows. In section 2, we state some definitions we use in
our results and the details of these results. In section 3, we state the preliminary for the
proofs of theorems 2.2 and 2.3, mainly from the work of [1]. In section 4, we prove if a,
b, p, ¢ and f satisfy some conditions, then our difference equation has a global attractor
at the origin. See theorems 2.2 and 2.3. In section 5, we state the main results about the
family of difference equations ®y (Y, Yni1, " »Yntm) = 0, n € Z, from [8, 12]. In section
6, we apply the results in section 5 to the proofs of theorems 2.6, 2.7, 2.8 and 2.9. In

section 7, we state the main results in [11] and some corollaries. In section 8, we prove

2



theorems 2.10 and 2.11 by using the corollaries in section 7. In section 9, we find some

numerical examples to verify the applicability of our results.




2 Definitions and the statements of main theorems

Following [9], we now consider two special cases of the nonlinear difference equation
defined on R
Alp@) Azt —1)]+qt)z(t) =u(t,z(t),t € (1)

Let Az (t—1) =ax(t) — bz (t—1), a,b >0, p(t) = p, q(t) = q, where a,b,p and g are
real parameters independent of ¢, and a continuous function u (¢,z (t)) = f(x (t — 1)) or
f(x(t)) with f (0) = 0, which means u is real-valued and dependent only on z. Then one
can see that Az (t — 1) is a weighted difference with the weights a and b. Let z,, denote

x (t). Then we get the form of recursive sequence of one variable
a*pryo + b2px, — (2abp — @) g1 — f (Tps1) =0,n € Z (2)
for the case u (t,x (t)) = f (x (t)) and
a’pa o + b*pr, — (2abp — @) Tpy1 — f(2,) =0, € Z (3)

for the case u (t,x (t)) = f (x (t — 1)).

We also call the equations (2) and (3) difference equations in this thesis.

Next, we denote a new sequence y (6=1) = pAz(t=1). Then z () = 2z (¢t —1) +
aipy (t —1). On the other hand, consider the equation (1). We have two consequences for
y (t) below.

Lotz (1) = f (0 (1), then () =—Br(r=1) 42 (b— L) y(t - 1) + L x
f(be-1)+ Ly -1);

2. ifu(t,xa)):f(x(t—m),theny(t):—g—gx(t—1)+§(b_%)y(t_1)+§><
f(x(t—1)).

For these two consequences, we get two dynamical systems which is defined on R2.

For all n € Z,

Tpy1 = —In + —Yn (4)
a ap
b 1 1 b 1
Yn+1 = __an + - (b - i) Yn + _f (_‘rn + _yn)
a a ap a” \a ap
and
b 1
Tpt1 = —Tp + —UYn (5)
a ap
bq 1 q 1
Yn+1 = __21'71 + = <b - _) Yn + _f (In)
a a ap a



respectively. Transform them into the dynamics of maps in the form X, ., = F(X,),

where X,, = (7,,,y,) € R? and F is a continuous function with parameters a, b, p, ¢ such

that b1 by 1 1 /b1
F(x,y):(—x+—y,——§’x+—(b—i>y+—f(—x+—y)) (6)
a ap a a ap a” \a ap
and b 1 b 1 1
q q
Fe.y) = (—x+—y,——2x+—(b——)y+—f<x>). )
a ap a a ap a

Let v: D C F — FE be a function, where E is a metric space endowed with a metric
p- Recall that v is Lipschitz if L = sup,, % < 00. Such L is called the Lipschitz
constant. We state the definition of a global attractor as follows.

Definition 2.1. A function vy : E — E has a global attractor xo € E if p (y™ () ,v" (0))

— 0 asn — oo forallz € E.

Given a differentiable dynamical system I' : D — D, where D C R". we know that
if the derivative of I' at a point x( has all eigenvalues with absolute values less than one,
then zq is an attractor. But in this thesis, by Contraction Mapping Principle, we use the
main result in [1] to guarantee each of the systems (4) and (5) without differentiability
to have a global attractor in terms of contraction. We state the conditions and results in

theorems 2.2 and 2.3 and the proofs of them are showed insection 4.

Theorem 2.2. Let p,q € R, p #.0, and M->0 be the Lipschitz constant of a continuous
function f. If max <9 L ) + max (|%‘ N 1826 /B > < 1, then the dynamical

a’ | ap @ a la?p|

system (6) has a global attractor.

49
ap

Theorem 2.3. Let p,q € R, p# 0, and M > 0 be a Lipschitz constant of the continuous
function f . If max <b L >+max <‘Z—Z| + M1l g

a’ |ap a’a ap

(7) has a global attractor.

) < 1, then the dynamical system

Secondly, we define a simple zero of a function. Let v be a C' function on a subset
of R. We say a point zg is a simple zero if v (x¢) = 0 and ' (z9) # 0. This means that
Zo is a zero of v with multiplicity one. We recall the definition of topological entropy of
a continuous map v : X — X, where (X, p) is a compact metric space. The main work

comes from Bowen [5]. Let n € N and ¢ > 0. First define a metric p,, : X x X — R by
Pn (l’, y) = MaXo<i<n P (71 (Q}) 77i (y)) for any x,y € X.

Definition 2.4 ([5]).

1. A set S C X is said to be (n,¢e)-separated if p, (v,y) > € for any distinct points
x,y €8S.



2. Denote the maximum cardinality of an (n,e)-separated set for v by sep(n,e,7).

Since X is compact, sep (n,e,v) is finite. The topological entropy of v is

1
hiop (7) = lim |limsup— In sep (n,e,7)| .

—0 n—o0

We define topological chaos of a system v as the following statement, which can be
found in page 137 of [10].

Definition 2.5 ([10]). We say v : X — X exhibits topological chaos if it has positive
topological entropy.

From now on, we discuss the property of topological chaos of systems (6) and (7).

In [12], Li and Malkin proved that a difference equation has the same dynamic as its
corresponding map. (in [12], definition 3.1 describes how a difference equation corresponds
a map. Furthermore, the item (iii) of theorem 3.3 describes a commutative diagram which
claims that the topological entropies of the difference equation and the map are identical.)
Since the maps (6) and (7) correspond to the difference equations (2) and (3) respectively,
we just exhibit the dynamics of the maps in the results of theorems 2.6, 2.7, 2.8 and 2.9.

Theorems 2.6 and 2.7 below show us how to find 'some special parameters and make
a small perturbation such that the difference equations (2) and (3) both possess chaotic
behavior in view of simple zeros of some function associated with f and by applying the

main theorems in [12].

Theorem 2.6. Let f be C' on Q =I\V" for some compact interval I C R and some open
set V. C I. Suppose that —qx + f (x) has k->.2.simple zeros in int (Q)). Then there exists
d > 0 such that for any p € (0,6), there exists a closed o-invariant subset 'y, of Y,,, the set
of solutions of the difference equation (2) with the topology of pointwise convergence, such
that o|r, is topologically conjugate to ols, . In particular, h, (oly,) > logk and thus (6)

exhibits topological chaos.

Theorem 2.7. Let f be C' on Q = I\V for some compact interval I C R and some open
set V. C I. If f has k > 2 simple zeros in int (Q), then there exists n > 0 such that for p,q
satisfying p # 0 and \/m < n, there exists a closed o-invariant subset 11, , of Y, ,,
the set of solutions of difference equation (3) with the topology of pointwise convergence,
such that o|n, , is topologically conjugate to ols, . In particular, (a]yp_,q) > logk and

thus (7) exhibits topological chaos.

The constants ¢ and 7 in theorems 2.6 and 2.7 are mainly chosen as dy in theorem 5.1.
Different from theorems 2.6 and 2.7. Theorems 2.8 and 2.9 below show the chaos
property of (2) and (3) in view of topological entropy of some function associated with f

and by applying the main theorems in [8].



Theorem 2.8. Let b,p # 0 (a,p #0). Suppose that

1. f is analytic on Q@ = I\V for some compact interval I = [o, 5] C R, a < 3, and

some set V which is a union of finitely many open subintervals in I;
2. —fr+ lepf () ( — T+ ﬁf (x)): @ — I has positive topological entropy.

Then there exists 6 > 0 such that for any a € (0,0) (orb € (0,9)), o|r, (or olr,) has
positive topological entropy for some closed (in the product topology) o-invariant subset ',
(or T'y) of the set of solutions of (2). Thus, the dynamical system (6) exhibits topological

chaos.

Theorem 2.9. Let q # 0 be a constant. Suppose that

1. f is analytic on Q = I\V for some compact interval I = [o, 5] C R, o < 3, and

some set V' which is a union of finitely many open subintervals in I
2. %f : Q — I has positive topological entropy.

Then there exists n > 0 such that_for any p with 0 < |p| < n, o|n, has positive
topological entropy for some closed (in the product topology) o-invariant subset I, of the

set of solutions of (3). Thus, the dynamical system (7) exhibits topological chaos.

The constants ¢ and 7 in theorems 2.8 and 2.9 are mainly chosen as ¢ in theorem 5.3.
Finally, discuss the chaos of multidimensional-function form of (1) directly (refer to (6)
and (7)). The following theorems tell us that some lower-dimensional function associated

with f affects the higher-dimensional function E'.

Theorem 2.10. Let p # 0 be constant. Suppose that f is a continuous function and
a%‘;y + %f <aipy> has positive topological entropy. Then there exists dg > 0 such that the
dynamical system (6) exhibits topological chaos for 0 < b < dy.

Theorem 2.11. Let p # 0 be constant. Suppose that f is continuous and a%;f (=Uy) C
int (Uy) and Lf (%pUg) C int (Us) for some compact intervals Uy = [aq, 1] C R and

Uy = [ag, Bs], where ay < B, and as < (. If max (htop <a%pf) s Do (g)) > 0 with

gly) =1 (aipy), then there exists 1, > 0 such that the dynamical system (7) exhibits

T a

topological chaos for 0 < \/b? + q* < n,.



3 Preliminary I

In this section, we introduce the preliminary of proving theorems 2.2 and 2.3 which mainly
appears in [1].

Let T; : R — R, ¢ € Z, be a family of maps and each T; satisfies the Lipschitz
condition, i.e., L; = sup,, ‘Tii:;iy‘ < 00. Next, define a function H : R? — R? R” =
{(---r_yror1--+) :1r; € R, j € Z}, which satisfies the following statements:

1. for each i € Z, there exists a finite set Z D K; > i;

2. for any i € Z, there exists a continuous function H; : HjeKi X; — X;, X; =R for

all 7, which satisfies the Lipschitz condition of the form

|Hi (@jer) — Hi (yjer)| <MYl —

jeK;
for any z;,y; € X; and for some constant A; > 0.

If K; = {i}, we suppose H; is an identity map.
3. (H (xj)), = Hi (vjex,) for all i & Z.

Let T : R* — R?” be defined by (T'(z));=T;{(xi) forz € R” and §:R* — R” be
defined by § = H o T. § is called the dynamical network [1}:

Set a finite subset B of Z. A graph G = G.(B,H) means that it contains elements in
B called vertices and edges i — j (starting from 7 and ending to j) if and only if i € K.
We say G is directed if and only if every edge.of G is directive. A path is called a simple
path if each vertex on the path appears exactly once. Hereafter we assume G is connected,
i.e., for any pair of vertices ¢ and j, there exists a simple path from 7 to j without the
directivity of G. For this graph, we can make a representation of it by a transition matrix
A = [a;;] with a;; = 1 if there is an edge ¢ — j and a;; = 0 otherwise. Next, we define a
chain called Topological Markov Chain (TMC) as ¥} = {(ioz’lig ) rag =15 € N}
with a left-shift map o : % — S} with o (igi1dg - - ) = (i1iziz---). We embed a metric d

to X} by for any i,j € ¥,
a(ig) =Y,
n=>0 q

where ¢ > 1 is a constant.

Let [igi1---i,] = {(joj1--+) € XL jo=1t0, - ,jr =iy} be a subset of the TMC
(Ej, 0), which is called a cylinder. A word (ig - - - i,) is allowable if the cylinder [igiy - - - i,] #
(). For two vertices 7, j of G, we can define a partial order and a relation of equivalence
on them. We say i < j if there exists a cylinder [igiy - --4,] # () with ig = j and 4, = i

for some r € N and ¢ ~ j if i < j < ¢. By this relation, the set of the vertices of G

8



can be divided into classes of equivalence. Let symbols 1,2,--- , N be the vertices of the
connected graph G. Then {1,2,--- N} = F; U E; U --- U E; is a partition of classes of

113

equivalence “~” for some s € N. We also define a partial order on F,,’s: F,, < E} if and

only if for every p € E,,, and g € Ey, p < q.
Next, we state the definition of a nonwandering point and topological transitivity of a

dynamical system v : X — X, where X is a phase space.

Definition 3.1. A point z¢o € X is nonwandering if for any neighborhood O of xq, there
exists a point y € O and m € N such that v (y) € O; otherwise, xo is wandering.

Definition 3.2. v : X — X s topologically transitive if for any nonempty open sets
01,0, C X, there exists n > 0 such that 4™ (O1) N Oy # 0.

Notice that y in definition 3.1 is possibly chosen to be zy. We then have the following

well-known theorem.

Theorem 3.3 (Spectral Decomposition Theorem [1, 4]).

1. Let NW be the set of nonwandering points of (ELU). Then NW has a decomposi-
tion

NW =32'UX2U -« Ux®

such that for any k =1,---8,

i. olsk, o restricted to X, dis a TMC-corresponding to E), and 3* has a corre-

sponding transition matriz' A (k),
ii. 0|k is topologically transitive,

iii. define a partial order < on ¥¥’s by XF < ™ if and only if E, < E,,. Then it
1s well-defined.

2. Let W be the set of wandering points of (Zj,a). Then W can be written as a

composition

W = O ka;

k,m=1

where

i. Wim # 0 if and only if k # m and XF = ¥™,
it. if i = (igiy -+ ) € Wi, then ig € Ey, and o™ (i) € ¥™ for some n € N,

iii. if XF = X, then for any J € Yk i€ X™ and € > 0 there exist w € Wy, and
n € N such that d (w,l’) < e and o™ (w) = i.



We use these two decompositions of NW and W to define two kinds of sets. For each
R {1, shlet o= {m: By o= Bdulk and B = (Upner, =) (Unny smpamer, Winms ).
Then oy, is a TMC and denote it by (Z;S%, 0) with the corresponding transition matrix
Ry.

Let G be a directed graph with vertices 1,2,---, N. Define metric spaces Y*®) =
[Lnep,icr,, Xi with sup-metric d (z,y) = sup; |z; — y;| for all k € {1,---,s}. We can
show that Y*) is § -invariant in the sense that for m € Py, (§ (), = (8 (y);if j € By,
for all ,y € R? with x; =y, if i € E,,,.

Lemma 3.4 ([1]). Let x,y € RZ with x; = y; for any m € Py, and i € E,,. Then
(F (2); = (F (v)), for any m’ € Py, and i € E,y. Thus, Y® is said to be F-invariant.

Proof. Let m € P, and i« € FE,,. If j € K;, then the class of equivalence, say F,,,
containing j is a predecessor of FE,, in the order >, i.e., F,, = FE,. Since m € P,
E,, = Ej and then m' € P;. This implies z; = y; for any j € K;.
(5 (@), = (HoT (), = H; (T @));ex,) = Hi (T (0))ex,) = Hi (T () : j € Ki})
=H; ({1 (y;) : j € Ki}) = (T (), 0

By this lemma, § restricted to Y ¥\ is well-defined. We denote it by .
By the lemma 3 in [1], Afraimoyich and Bunimovich estimated the Lipschitz constant

of §, n € N, with this consequence:

43 (). 510) 2 T (o). ®)

(30 +++in ) 1=0

where the sum is taken over the number of all the allowable words of length (n+ 1) in
ZEk, i, € E, and A = L; A
Define a function ¢ : X3 — R by ¢ (igi1iz---) = In )i, We rewrite the estimated

141 i41e

Lipschitz constant I'y, (n, ¢) of F} showed in (8) as

Ly (n7 @) = Z ]i[)\ilil+1 = Z exp 290 (gl (M)) )

(i0++in) 1= wElig-+in]

where the sum is taken over the same set as in (8) and for each cylinder [ig---i,] we
choose only one sequence w as a representation. Next, define the topological pressure

P* () of @ over the TMC (X}, ,0) by

InT
PF(p) = iy L% (0, 0)

n—o00 n

This limit exists by proposition 2.5.1 in [3]. Therefore, we have a definition and a

theorem as follows.
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Definition 3.5. Letv: D C R" — R" be a function. ~ is said to be a contraction if there
exists a constant 0 < ( < 1 such that for any points x,y € D, |y (x) — v (y)| < (|z —yl.

Theorem 3.6 ([1]). If P¥(¢) < 0, then there exists ng € N such that Y is a contraction

for all n > ny.

Finally, to evaluate the topological pressure, in [1], we may simplify the formula of
the pressure by making the function ¢ which depends originally on the first two sym-
bols of a sequence depend only on the first one symbol. Define a new transition matrix
A whose symbols are the edges of G and which transits (ij) to (Im) iff j = [. Then
(Z%, a) forms a new TMC. From [4], we know that the two TMCs (X7}, 0) and (Z}, a)

are topologically conjugate. Let E%k be the image of ngk and then <E%k, 0) is the cor-
responding TMC. Denote the symbols of A by 1,2,---  N. For each m = 1,2,--- | N,
there is a corresponding edge (ij) of G and then we set ¢ (m) = ¢ (ij). Define a new
function ¢ : Z%k — R by ¢ (igi1---) = ¢ (ig). Set ¢ (m) =1Inpu,,, m =1,2,--- N. Then
Ty (n,p) = T (n,0) = >0y Tlmzo tm [L, 3] We use such method of evaluation to

prove our main result in this section.

PI‘OpOSitiOH 3.7 ([]‘])' L'y (n7 (b) =R (Ekdzag (:u’la . 7/1’ﬁ))n ET7 where R = (:U“lv e nuN)
and E = (1,1,---,1).

Corollary 3.8 ([1]). P*(p) = lum,", where ry, is the mazimal absolute value of all the
eigenvalues of Rydiag (piy, -+ , ji5)-

11



4 Proofs of theorems 2.2 and 2.3

In this section, we show that the dynamical systems (6) and (7) have global attractors

individually as follows.

Proof of theorem 2.2. For any ¢ € Z, let T; : R — R be defined by T;(z) = z, for all
z € R. Set Ky = Ky = {1,2} and K; = {i} for all i # 1,2. Define H; : [[;cx, X; — X;,
1 € Z and X; =R, by

b 1
Hy(z1,20) = -2+ —2,
a ap
b 1 1 b 1
Hy (z1,22) = ——62121 + = <b — i) 2+ —f <—21 + —Zz> )
a a ap a” \a ap
Then H; is continuous and L; = sup,, % = 1 for all <. Next, we want to find
constants A; > 0 satisfying |H; (21, 22) — Hi (w1, w2)| < Ai D2k [25 —wj|. Let 2, w; €
X
b 1 b 1
|Hy (21, 22) — Hy (w1, wq)| = ‘ (—21 + —2’2) B <—w1 e —w2)
a ap a ap
< =z —wi| + ‘— |29 — |
bl
< “fa .
< max <a’ S ) Z 125 — i
JEK1
b 1 1 b 1
|Hy (21, 20) — Ha (wi,wa)| = ‘ [——321 * (b T i) 2+ —f (—21 + —22)}
a a ap a” \a ap
b 1 1 b 1
[ By o)
a a ap a” \a ap
1

b 1 M|/b 1
S —Z‘Zl—wl|+—b—i|22—ZU2’+—‘(—21+—22)
a ap a
(25
— | —w; + —ws
a ap
b 1 bM
< —g|zl—w1|—|——‘b—i|22—w2|+—2|zl—w1
a a
M
+T|2’2—w2|
asp

12



bg bM 1 q M
< e (2] + o |+ ) o
JEK>
Hi () — Hi (w))| = |z —wil = Y |z —wjl i # 1,2
JEK;

1 q

Then A; = max(b

>7 Ay = max<(2_g}+m 1

+%) and A, = 1 if

a’|ap a?’a ap
1 # 1,2. Thus,
b |1
An = A1 = Ay = max <—7 —1 />
a’ |ap
b bM 1 M
)\12 = )\22:A2:max<—g 5 —i—F 5 )
a a?’a ap| |a?p|
Now let B = {1,2} be a finite subset of Z and consider the connected graph G =
11
G (B, H) corresponding to our H defined above. Then its transition matrix is A = L

So the two symbols in B are in the same class of equivalence, say F;. We have that P, =
{m : Em - El}U{l} = {1}7 \I]]- - (UmEPl Zm)U(Uml;ﬁmg,mgepl Wmlm2> = ZlU@ = El =
Sh Ry = A, and YO =T cp icpoXi = XX Xy= R Let [ = (11), 11 = (12),I1] =
(21) and IV = (22) be the new symbols of the new TMC <E}, 0) corresponding to

1100
_ 0011 — v
A= . Clearly, Ry ="A, up =iy =Avand wy; = ppy = As.
1100
0011
110 0] |A;, O O O Al Ay 0O O
Ed'( )0011 0 Ay 0 O 0 0 Ay Ao
wa s Hrrs ; = -
rarag \foys s Brrrs Brv 1100 0 0 A; O Al Ay 0 O
001 1[0 0 0 A, 0 0 Ay Ay

The eigenvalues of (9) are 0 and A; + As. Since

P(l)(@) = 1n|A1+A2|

P
= In |max | —,
a

< 0

bq

)+
+ max
a

a_p a2

bM 1
a2’ a

q

ap

! |cf\2fo|)]

by the hypotheses and corollary 3.8, §" is a contraction on X; x Xy = R? if n > n, for
some n; € N . Hence, by Contraction Mapping Principle, the dynamical system (6) has
a global attractor. O

13



Remark 4.1. Let p,q € R, p # 0, and M > 0 be a Lipschitz constant of a continuous
function f on R. If ¢ =0V 2abp and  + + max (‘Z—Z| 4 o M) <1, then (6) has a

W ap
global attractor.

1
ap

Proof of theorem 2.3. For any ¢ € Z, let T; : R — R be defined by T;(z) = z, for all
z € R. Set Ky = Ky = {1,2} and K; = {i} for all i # 1,2. Define H; : [[;cx, X; — X;,
1 € Z and X; =R, by

b 1
Hy(z1,22) = —2z1+ —2,
a ap
b 1 1
Hy (21,22) = __(2]21 +- (b - i) 2+ —f (1),
a a ap a
Hi (ZZ) - Zlaz# 172
Then H; is continuous and L; = sup,_, % = 1 for all 7. Next, we can find A; =

max (£,

1

L b— L|) and Ay =1 for all i £ 1,2,
Let B = {1,2}. Since the graph of H and its corresponding transition matrix are the
XZ':X1><X2:R2 and

),Ag:rrlaw((‘(l;—gh—M 1

a’a

same as the ones in the proof of theorem 2.2, Y1) = [Lncpics,

b-11 bg M 1
PO (o) = nfs+ o] = I [ma (2 o) (2 + 21— )] <o
a-—-|ap a a’ a ap
By theorem 3.6 and Contraction Mapping Principle, (7) has a global attractor. O

Remark 4.2. Let p,q € R, p # 0yand M >0 be-a-Lipschitz constant of f. If ¢ = 0V 2abp
and & + + 'Z—Z' + 2 <1, then (7) has a global attractor.

L
ap
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5 Preliminary II

In this section, we introduce the preliminary of proving theorems 2.6, 2.7, 2.8 and 2.9.

At first, we must know how a difference equation

I (yn7 Yn+1, " " ayn+m> = 07 (10)

n € Z and I : H:’:{l D; —- R, Di,Ds,---,D,,,1 C FE for some metric space F, has
chaotic behavior. A bi-sequence {y,}, ., is a solution of the difference equation (10) iff
forall n € Z, (Yn, Yns1,** s Ynim) is a zero of I'. Moreover, (10) has chaotic behavior iff
the left-shift map o restricted to the set of solutions for (10) has chaotic behavior. In the
next step, we consider a special kind of parametric difference equations.

Let Sy = {g = (- y_oy_1%oy1---) € RZ: HQH = SUp,.cz |Yn| < oo} be the space of all
bounded sequences with the topology of uniform convergence and let ¢ be the left-shift
map on Se. Let @y (Yn, Ynt1, s Yntm) = 0 be a family of difference equations corre-
sponding to parameters A € [Ag, A1 for some real numbers \g < A;. For every A\ € [Ag, A},
®) : Q™ — Ris a C! function of (m + 1) variables, where @ = I\V for some compact
nondegenerate interval / C R and some opensubset V' of I. Moreover, ®, and every par-
tial derivative 0;®, with respect to the i-th variable, 1'<i < m+1, are also continuous in
A We set Y, = {( Y oY 1YoUr ) € QL TPy (Yny Yrit 157, Ynam) = 0 for all n € Z} to
be the set of solutions of @y (Y, Yrgds+=* s Yntm) =0. Then'Y) is closed in S,,. Endow IZ
and Y, with the product topology,i.e., the topology of pointwise convergence, and denote
such spaces by [Emd and Y) proq. Then Yygsaisia-closed subset of [fmd and is compact by
the Tychonoff’s Theorem. Tychonoft’s.theorem statesthat the product of any collection
of compact topological spaces is compact.

For all A € [\, M1}, Yo proa is o-invariant and we may define the topological entropy
of |y, ,roa BY hiop (01v4,,00)- Li and Malkin in [12] proved an important result about the

chaos of @y (Yn, Ynt1, " »Ynim) = 0, a part of whose detail is shown below.

Theorem 5.1 ([12]). Let

@y (Yn, Ynt1,* »Ynim) = 0,n € Z (11)

be a family of difference equations with parameters X € (Ao, \1| and ®y : Q™ — R with
Q = I\V for some compact interval I C R and some open set V C I satisfies

1. for each A\, ® is C* on Q™mH!,
2. @, is continuous in \ and

3. each partial deriwvative 0; P, which corresponds to the i-th variable, is also continuous
mM i=1,--- . m-+1.
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Suppose that @y, (z1,- -+ ,Tmy1) = ¢ (xn) for some C! function ¢ : Q — R which has
k simple zeros in int (Q), k € N, and some N € N with 1 < N < m + 1. Then there
exists 09 > 0 such that for any \ € [No, Ao + 0o| there ezists a closed o-invariant subset
'y C Y proa sSuch that o|p, is topologically conjugate to the full shift of k symbols o|s, . In
particular, hiy, (oly,) > logk.

Remark 5.2. In fact, we may extend the space of A to a general metric space E. At the
moment, (Ao, Ao + 00| is replaced by a dg-ball B (Mg, dg) in E.

In [8], there is another conclusion about the chaotic behavior of the difference equa-
tion (11). Indeed, at a specific value A = Xg, (11) is of the form @y, (z1, -+ ,Tpmi1) =
¢ (zn,xnyr) for some distinct integers 1 < N, N + L < m + 1. Under a certain situation
of £, a perturbation on \ is able to force (11) to obtain topological chaos. We write it in

detail in theorem 5.3.

Theorem 5.3 ([8]). Consider the family of difference equations (11), with parameters
A in a neighborhood of a specific value Ao in a metric space, satisfying the following

assumptions:

1. for each A\, @ : Q™ — R with @ = I\V for seme compact nondegenerate interval

I C R and some set V' which is a union. of finitely many open subintervals in I,
2. for each X\, ®y is O in Q"*H,
3. @, and 0;®,, i =1,--- ,m+1, are continuous in X and

4. Oy, (21, Tmg1) =& (N, onip) forsome LN, N + L < m+ 1.

Suppose that there exists a piecewise analytic function ¢ : QQ — I with hyy (@) > 0
such that & (z, 9 (x)) =0 for all x € Q. Then for any € > 0, there exists 6 > 0 such that
for each X in the §-neighborhood of Ao, hiop (o)1, ) > ﬁhtop (p) — ¢ for some closed (in the
product topology) o-invariant subset T'x of Y3 prod-

Remark 5.4. Let D C R be the domain of v. We say a function v : D — R is analytic
(on D) if for any xy € D, there exists a sequence of real numbers {ay};., such that
v(x) = 2% ak (x —20)* in a neighborhood of xo. v is said to be piecewise analytic
(on D) if D is a union of finitely many disjoint sets D; and 7y is analytic on each D;. In
particular, an analytic function is also piecewise analytic. For instance, all of polynomials

are analytic on R and v (x) = |x| is piecewise analytic on (—1,1).
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6 Proofs of theorems 2.6, 2.7, 2.8 and 2.9

In this section, we prove theorems 2.6, 2.7, 2.8 and 2.9. The following two proofs are

shown according to theorem 5.1.

Proof of theorem 2.6. Let a, b and ¢ be fixed numbers and ®, (1, 22, ¥3) = a®pr3+b?pr —
(2abp — q) w2 — f (z2). It’s easy to check that (i) for each p € R, ®, is C' on @* and
(ii) @, and 9;®,, are continuous in p since f is C' on Q. By applying p = 0, we get that
g (21, T2, 3) = qTni1 — f (Tny1), which is a C* function of z,,;.

Let Y, be the set of solutions of ®, with the topology of pointwise convergence. Since
—qz + f (z) has k > 2 simple zeros in int (Q)), by theorem 5.1, there exists § > 0 such
that for any p € (0,0), there exists a closed subset I', of ¥}, such that o|r, is conjugate to

0|y, and so system (6) exhibits topological chaos. O

Proof of theorem 2.7. Let a and b be fixed numbers. If p = g = 0, then @, , (¥, Tpy1, Tni2)
U 2pa, o + bPpT, — (2abp — q) i1 — [ (2,) = —f (z,), which is a C! function of one
variable. f has k > 2 simple zeros in int (Q)), and so does —f. Let Y, , be the set of
solutions of @, , with the topology of pointwise convergence. By theorem 5.1, there exists
1 > 0 such that if p # 0 and \/}m < n then for some closed o-invariant subset II, , of
Y,
chaotic. O]

> 0lm,, is conjugate to ox, , and Ay (0|yp’q) > log k. Thus, system (7) is topologically

The two proofs below are shown according to theorem 5.3.

Proof of theorem 2.8. We discuss the case the constants b, p # 0. Denote ®, (1, o, x3) =
a*pr3+b*pri—(2abp — q) vo— f (x2).“Since f is analyticon Q, ®, is also analytic and so C*!
on Q3. @ (z1, 2, x3) = b?*pw1 + qro — [ (1) g (1, z2). For the equation & (x1, ) = 0,
x1 can be expressed as T = —b%pxg + lepf (x2) et ¢ (x2), which is analytic on Q.

Since —b%pa: + lep f (z) has positive topological entropy, by theorem 5.3, for any € > 0,
there exists 0 > 0 such that for each a € (0,9), hiop (0|r,) > hiop (@) — € for some closed
(in the product topology) o-invariant subset I';, of the set of solutions for ®,. Therefore,

if € > 0 is chosen to be sufficiently small, then (6) has topological chaos. ]

Proof of theorem 2.9. Define @, (z1, x2, x3) = a*pr3+b°pr1 — (2abp — q) 2 — f (x1). Then
Dq (21, x2,x3) = qrg — f(21) et ¢ (z1,22). The equation & (z1,x2) = 0 has an implicit-
functioned solution xy = % f (z1). Assume ¢ # 0. Since % f is analytic on @, it is also C*
on (.

By the hypothesis that 7, (éf ) > 0 and theorem 5.3, for any ¢ > 0, there exists
n > 0 such that for each p with 0 < |p| <7, hyp (0],) > ﬁhtop () — € for some closed
(in the product topology) o-invariant subset II, of the set of solutions for @, such that
Riop (O’|Hp) > hiop (%f) —e. If € > 0 is small enough, then (7) has topological chaos. [
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7 Preliminary III

In this section, we introduce the preliminary of proving theorems 2.10 and 2.11. In
[11], it mainly discuss the multidimensional perturbations to a family of high-dimensional
functions F) on R xR" with parameters A € R¥ at a specific value \y. For simplicity,
set A\g = 0. Next, suppose Fy has two forms: Fy(x,y) = (f (z),g(z)) and Fy(x,y) =
(f (z),g(z,y)). The following two theorems (see the beginning of section 2 in [11]) explain
the relation between f and F). Moreover, two corollaries implied by these two theorems
respectively follow immediately and we apply the results of them to our dynamical systems
of function form. Notice that topological entropy of a map T here means the supremum

of topological entropies of 7" restricted to compact T-invariant sets.

Theorem 7.1 ([11]). Let F\ be a family of continuous functions on R xXR™ with pa-
rameters \. Suppose that Fy (z,y) is continuous as a function jointly of A € R and
(z,y) € R xR" and Fy (z,y) = (f (x),g9(z)) with f : R — R and g : R* — R". Then
lHminfy o heep (FN) > hiop (f)-

Corollary 7.2. Let F be a family of continuous functions on R xR with parameters \.
Suppose that Fy (z,y) is continuous as<d function jointly of X € R¥ and (z,y) € R xR
and Fy (z,y) = (f (v), 9 (y)) with f;g9:R — R. Then Hminf) . hyop (F)) > hiop (9)-

Proof. Define a new family of functions Fy by Fr = Lo FaoL, where L : (z,y) — (—y, )
is a linear map. Then Fy (x,y):= (9(x),—f(x)) and. Ay (ﬁ)\> = hiop (F) for all A

Hence, iminfy .o hyop (F)) = liminfyeo hgep (ﬁ)\> > Btop (9) O

Theorem 7.3 ([11]). Let F\ be a family of continuous functions on R xR™ with parame-
ters \. Suppose that Fy (x,y) is continuous as a function jointly of A € R and (z,y) € R
xR"™ and Fy (z,y) = (f (x),9(x,y)) with f : R — R and g : R xR" — R™ which satisfies
g(R xU) Cint(U) for some compact set U C R™ homeomorphic to the closed unit ball
of R™. Then Uminfy_.q hiop (E)) > iy (f)-

Corollary 7.4. Let F) be a family of continuous functions on R xR with parameters
\. Suppose that F) (z,y) is continuous as a function jointly of A € R¥ and (x,y) € R
xR and Fy (z,y) = (f(x,y),9(y)) with f : R — R and g : R xR — R which satisfies
—f((=U) xR) C int (U) for some compact set U C R homeomorphic to [—1,1]. Then
lim infy_,g heop (F\) > hiop (9)-

Proof. Define F) in the same way as in the proof of corollary 7.2 and then Fj (x,y) =
(9 (z),—f (—y,x)). Thus, liminfy_q hsp (Fi) = liminfy_q Aoy (FA> > hiop (9)- H

Remark 7.5.
1. Note that rU = {ru:u € U} for any r € R.
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2. Such compact set U is actually a compact interval [, 5] for some a, f € R, a < f3,
since any continuous map on the Fuclidean spaces keeps the compactness and the

connectedness of a set.

v
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8 Proofs of theorems 2.10 and 2.11

In this section, we regard F' (see (6) and (7)) as a map with one or two real parameters.
In order to avoid misunderstanding, we write the parameter as the subscript of F' at
appropriate moments.

For the first proof, we regard F as a family of maps F, : R? — R? by F (z,y) =
Fy(z,y) = <§x + a—lpy, —Z—gx +1 (b - ap) y+=<f ( x+ y)), where b is a real parameter
and a > 0,p # 0, g are constants. Then F} corresponds to the weighted difference equation

(1) for case 1 ( see (6)). The proof below is applied by corollary 7.2.

Proof of theorem 2.10. First, we have Fy(x,y) = (apy, =Y+ 1f< >) Clearly, Fj
is of the form in corollary 7.2. By corollary 7.2, liminf, .o hsop (Fy) > hiop (9), where

9)=ZAy+.f (fpy>
Let hiop (9) > 0. Given € > 0,

htop (g) —& < htop (g)

< lill}l iglf htop (E5)

= sup [ inf hi,p (Fb)] :

Then there exists dg > 0 such that infocp<s, Aeop (Fp). > higp(g) — €. Thus, if 0 < b < &,
then hyop (Fy) > infocpes, Prop (F5) 2> hiop (g) — & Choose & < higy, (9), We get hiop (F3) > 0
for 0 < b < §p and so the result holds. O

Next, regard F' as another family of maps
b 1 bq 1 q 1
F = F =4+ —y, ——ax+-(b— = -
(2,y) = Foq (2,y) (ax M ke ( ap) y+—f (l’))

with constants a,p # 0. Think about the twice iteration of Fj,, denoted by Fb%q. Espe-

cially, F2o (v, ) = Foo (. 1/ (2)) = (5 (@), 1f (&v)) when b= q =0,
Before prove theorem 2.11, we recall a well-known property about topological entropy.

Proposition 8.1. Let T' be a map defined on compact metric space. Then hiy, (T") =
n - hiop (T) for all n > 0.

The proof below is applied by corollary 7.4 and proposition 8.1.

Proof of theorem 2.11. Let a,p be fixed. Both F;, and Flfq are continuous in (b, q) and
(z.y) € R%. Denote [ (z,y) = [ (x) = b/ (x) and §(w,y) = §(y) = 1/ (Ly). Since
~F((~U) xR) = ZLf (=) C int(U3) and §(R x Uy) = Lf (L03) C int (U3), by
theorem 7.3 and corollary 7.4, liminfy, ;0 htop (Fb%q) > max (htop (f) s Pop (ﬁ)) > 0.
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Given € > 0,

max (htop (f) ) htOp (@) —& < lili?_i)%fhtop (Fb%q)

= sup L<inf Ntop (Fb%q)} .

>0 (b,g)l<n

Then inf0<\/m<n0 hiop (Fb%q) > max <ht0p <f> s hiop (ﬁ)) — ¢ for some 1, > 0. This
implies that Ay, (Fl?,q) > Py = max (htop <f> . (ﬁ)) —e>0for 0 < \/m < My
and € > 0 is small enough. By the definition of supremum and for any b,q with 0 <
V2 + ¢ < 1, we can find a compact F2-invariant set A, such that hu, (FZla,,) >
Fo. Let A, = Apg U Fyy(Ayy). Since Fy, is continuous, A7 is compact. Moreover,
Fog (M) = Frg (M) UFZ (Mpg) = Fog (M) UNyg = AL . So A is Fy g-invariant and
also [y} -invariant. By proposition 8.1, 0 < Py < hy,p (Fz?,q|A;,$q) =2 higp (Fbﬁq\%q). Thus,
hiop (Fbq) > 0 and so Fy, has topological chaos for 0 < /b2 + ¢% < 7,. O
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9 Numerical verification

In this section, we give some examples and their figures of iterations which agree with
our main theorems mentioned in section 2. Moreover, these examples make our theorems
applicable. From now on, we show their results by running 1500 iterations of F' (see
(6) and (7)) numerically and printing the points of the last 1000 times in the zy-plane.
Finally, they are arranged into three subsections. Notice that case 1 and 2 mentioned in
the subsections mean the hypothesis of u of (1), i.e., u (t,z (t)) = f (z (¢)) and u (¢t,z (t)) =
f (z (t — 1)) respectively.

9.1 Examples for theorems 2.2 and 2.3

First, consider the dynamic of an example for theorem 2.2. Let a =1, b = 0.1, p = 10
and ¢ = 0. Define f(z) = sinz. It’s clear that f is Lipschitz on R and the Lipschitz
constant M = 1. We check whether a, b, p and ¢ satisfy the hypothesis of theorem 2.2.

b4 ) +max<|2—g‘ + 19 —i—%) = 0.3 < 1. So the hypothesis is

a’|ap a?’a ap

satisfied. Set the initial point (zg,yo) = (2000,1000) and let F' iterate with it. Figure
1(a) exhibits that (0,0) is the global attractors .One can see that the first and second

components of F' both converge to 0 quickly as the-iteration increases in figure 1(b) and

max (

1(c) (notice that variable n represents the-times of iteration).

1
05
¥ o0 *
-05
_1 - =
-1 03 0 0.3 1
h
(@)
I I I I I I I I
0.08F & 0081 i
0.06 =1 0.06 &l
¥
X, 004t 4 Mook -
0.02F . 0.02f .
[ ] | ] | ot ] ] ] ]
100 200 300 400 300 100 200 300 400 500
hu | b |
(b} (c)

Figure 1: the dynamic diagram and the iterate diagrams of two components of the example
for theorem 2.2

22



n X, e

0 2:103 1-103
1 300 99
2 39.9 10.708
3 5.061 0.131
4 0.519 0.509
5 0.103 0.154
6 0.026 0.041
7 6.664°10°3 0.011
8 1.743:10-3 2.819°10-3
9 4.562:10% 7.381-10°%
10 1194104 1.932:104
11 3.127-10°5 5.059-10°5
12 8.186°10% 1.325°10°5
13 2.143-106 3.468°106
14 5.611°10°7 9.078°10°7
15

table 1 : iterations of the finction
(6) from 0 to 14 at (2000,1000)

Next, consider the dynamic of another example for theorem 2.3. Define f(z) =
|z| and let @ = 2, b = 0.1, p = 10 and ¢ = 0. Then M = 1 and max(c%, (}p) +
max <Z—g %,é b— aip ) = 0.55 < 1, which satisfies the hypothesis of theorem 2.3. We
also set the initial point (zo, 7o) = (2000, 1000). Figure 2(a) exhibits (0,0) is the global

attractor and figure 2(b),(c) exhibit the situation that two components of F' converge.

o T T T T 0.1 T T T
0,08 ot n
oy D06F ¥, 0.06f a
004 004 7]
0.02F 0.0k .

ok 1 I 1 L = 1 I I

100 200 300 400 500 TTl00 200 300 400 500
i n

i) ]

Figure 2: the dynamic diagram and the iterate diagrams of two components of the example
for theorem 2.3
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M Xy X,

0 2:103 1-103
1 150 1.05-103
2 60 127.5
3 9.375 36.375
4 2,288 6.506
5 0.44 1.469
6 0.005 0.203
7 0.019 0.062
8 4,001+10°3 0.013
9 8.464-10-4 2.687-10-3
10 1.767-10-% 5.576°10"%
11 3.671°10°5 1.162-10-4
12 7.647°10% 2.417°10°5
13 1.591-106 5.032-106
14 3.311°107 1.047-10%
15

table 2 : iterations of the map (7)
from 0 to 14 at (2000,1000)

Therefore, the two examples verify the validity and the practicability of theorems 2.2
and 2.3.

9.2 Examples for theorems 2.6,.2.7, 2.8 and 2.9

First, we produce an example for theorem 2.6. Choose a sét of special values of a, b, p, ¢ and
fasa=1,b=0.1,p=0.01, ¢ =0 and f(z)=0.95msin@. Now we check whether such
values and f can satisfy the hypotheses of the theorem. Clearly, 0.957 sin = has countably
many simple zeros on R. We choose I = [5F, 2] and V =9. Then —qz + f (z) = f (z)
is C* on [, %1 1) = (55, %). The result
p € (0,0) means that p approaches €0 0. very closely. Since the system (6) is undefined

L,

2.

—T

] and has two simple zeros 0, 7 in int ([

when p = 0, we just consider the dynami¢ for p'= 0.01. Observe the dynamic in figure
(0.01,0.02). We see that there is an

irregular graph in the zy-plane. We can also see the graphs of iteration of z- and y-

3 for theorem 2.6 with an initial point (zo, o)

components of (6) in figures 4 and 5.
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%
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Figure 3: the dynamic diagram the example for theorem 2.6
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Figure 4: the graph of iteration of x-component of (6) with iterating times from 1 to 500
for theorem 2.6

. +
Vi O« e gt L te &t

(o]

Figure 5: the graph of iteration of y-component of (6) with iterating times from 1 to 500
for theorem 2.6

To observe whether the perturbation of parameter does work, figure 6 shows the
bifurcation about p around p = 0.01. We choose the interval of variation of p as [0.001, 1]
and also fix ¢ = 0. With a different value of p, the system begins with a randomly-selected
initial point. Afterward, print the second component of the 1000th to 1500th iterations.
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2

Figure 6: the bifurcation diagram of 2nd component of the map (6) about p of the example
for theorem 2.6

Next, for theorem 2.7, we let a = 6,b = 1,p = 0.01,¢ = 0 and define f (z) = z(1 — x).
Then f is C* on [—0.1,1.1] and has two.simple zerés 0, 1 in int ([—0.1,1.1]) = (—0.1,1.1).
Figure 7 informs us that the system (7) also exhibits.a messy diagram with an initial point

(0.01,0.02). We also show the graphs of iteration of two components of (7) in figures 8
and 9.

0.05 -
ity ﬁg 5‘5,‘ %
Ii_i' ¥ ?;*ﬁ
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o Y
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0.00 SR - 3
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358
%
0.0
b2 0z 06 03 1
X

Figure 7: the dynamic diagram the example for theorem 2.7
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Figure 8: the graph of iteration of z-component of (7) with iterating times from 1 to 500
for theorem 2.7
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Figure 9: the graph of iteration of y-component of (7) with iterating times from 1 to 500
for theorem 2.7

Additionally, we also show the bifurcation diagrams of the second component about
p and ¢ individually as follows (see figure 10 for p and figure 11 for ¢ with random initial
points). Choose the intervals of variation of p and ¢ as [0.009,0.012] and [—0.01,0.01]

respectively.
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9x107° 001 0.011 0.012
Z

Figure 10: the bifurcation diagram of 2nd component of the map (7) about p of the
example for theorem 2.7 and ¢ = 0 fixed

0.06
003,208
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Y; 003

0,02
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—001 - 5ei0? 0 51072 0.01
g

Figure 11: the bifurcation diagram of 2nd component of the map (7) about ¢ of the
example for theorem 2.7 and p = 0.01 fixed

For theorem 2.8, since a cannot be zero, we consider the case that a = 0.0025, b =
0.001, p =1, ¢ = 0 and f(z) = 1.1r x 10 sinz. It’s clear that f is analytic on
[0, 7]\ (r1,72) for 0 < r; <7y < 7 and llwsinry = llwsinry = m. The parametric map
gu (z) = wsin z has period-doubling property (see figure 12 with u from 0 to 35). We have
—55T + b%pf(a:) = llmsinz ~ 34.56sinz and 1.1wsin ([0, 7]\ (r1,72)) = [0,7]. Since
—%ﬁ + ﬁf () has a 3-periodic point, whose period is not a power of 2, by theorem A
in [7], we get that h,, (—b%px + b%pf (r)) > 0. Thus, the hypothesis 2 of theorem 2.8 is
satisfied.
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40

Figure 12: the bifurcation diagram of g, with u from 0 to 35

Next, its dynamic diagram with the initial point (0.001,0.002) is shown in figure 13.
We can see that its shape curls and the pointsron the graph are not uniformly dense.
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Figure 13: the dynamic diagram the example for theorem 2.8
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The graphs of the two components of this example are shown in figures 14 and 15. It

is observable that the situations of iterating of them act not so regularly.
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Figure 14: the graph of iteration of z-component of (6) with iterating times from 1 to 500
for theorem 2.8
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Figure 15: the graph of iteration of y-component of (6) with iterating times from 1 to 500
for theorem 2.8

For theorem 2.9, consider a =5, b =1, p=0.01, ¢ = 11~ and f () = sinz. Then f is
analytic on [0, 7]\ (r1,72) for 0 < 7, < ry < mand 1l.17wsinr; = 1.17wsinry = 7. Moreover,
since %f(x) = l.l7sinz, %f([O,ﬂ]\(rl,rg)) = [0, 7] and hyp <%f) > 0. Similarly, we
also show its dynamic diagram and the graphs of iteration of components with the initial
point (0.001,0.002) (see figures 16, 17 and 18).
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Figure 16: the dynamic diagram the example for theorem 2.9
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Figure 17: the graph of iteration of x-component of (7) with iterating times from 1 to 500
for theorem 2.9
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Figure 18: the graph of iteration of y-component of (7) with iterating times from 1 to 500
for theorem 2.9

We set its bifurcation diagram about the parameter p in the interval of variation

[0.009,0.02] in figure 19. The system (7) has the similar dynamic for a = 5, b = 1,
q =

1

== and f (x) = sinz when p is around 0.01.

0.3

-03

-1
31077 0.01 0.013 0.02
r

Figure 19: the bifurcation diagram of 2nd component of the map (7) about p of the
example for theorem 2.9

Therefore, theorems 2.8 and 2.9 are applicable.

9.3 Examples for theorems 2.10 and 2.11

We give two examples for theorems 2.10 and 2.11 respectively in this subsection.
For theorem 2.10, consider the case a = 55,b=0,p =3.9,¢ =0 and f (z) = z (1 — ).
Then we see that f is continuous on R and Ly + 1f (a—lpy> =39y (1 —y). It’'s known

that 3.9y (1 — y) has positive topological entropy (it has 3-periodic points).
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Now we see the dynamic diagram in figure 20 and the graphs of iteration of two

components in figures 21 and 22. Choose the initial point (x¢,yo) = (0.01,0.02).

VRN
1/ \
.

Figure 20: the dynamic diagram the example for theorem 2.10
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Figure 21: the graph of iteration of x-component of (6) with iterating times from 1 to 500
for theorem 2.10
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Figure 22: the graph of iteration of y-component of (6) with iterating times from 1 to 500
for theorem 2.10

The shape of figure 20 is like a part of a parabola and its distribution is not uniform.
So it satisfies some characteristics of chaotic graphs. Figure 23 is the bifurcation diagram
about b in [—0.01,0.01].

-05 - -
—001 - 5x107? 0 3107 001

Figure 23: the bifurcation diagram of 2nd component of the map (6) about b of the
example for theorem 2.10

For theorem 2.11, consider another casea = 1,b=0,p=1,¢ =0and f (z) = %7? sin .
Clearly, f is continuous on R. Since a%;f (—2)=—f(—2)=f(z)and 1 f (éx) = f(x),
we have that £ ([5,27]) = [7 (5) . %) © (5.%5) (£(5) = (%) ~ 0415,
0.15). The parametric map g, (x) = wusin(x) has also period-doubling property and
hiop (f) > 0 (it has 3-periodic points). Thus, the hypothesis of theorem 2.11 is satisfied.
Next, see the dynamic diagram in figure 24. Moreover, figures 25 and 26 are the graphs

of iteration of z- and y-components of (7).
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Figure 25: the graph of iteration of z-component of (7) with iterating times from 1 to 500
for theorem 2.11
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Figure 26: the graph of iteration of y-component of (7) with iterating times from 1 to 500

for theorem 2.11

Due to the result /b2 + ¢ < 1, for some 7, > 0, we print two bifurcation diagrams
about b and ¢ respectively (see figures 27 and 28). So we can observe the chaotic property.

- 001 —5%1077 0 51077 0.01

Figure 27: the bifurcation diagram of 2nd component of the map (7) about b of the

example for theorem 2.11 and ¢ =0
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-001 —5x1073 0 1073 0.01
q

Figure 28: the bifurcation diagram of 2nd component of the map (7) about ¢ of the
example for theorem 2.11 and b =0

Conclusively, theorems 2.10 and 2.11 do work.
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