
國立交通大學 

 
應用數學系 

 

碩士論文 
 

 

離散漢米爾頓系統中二階差分方程的廣域吸引子

及拓樸混沌 

Global attractor and topological chaos of 

second-order difference equations in discrete 

Hamiltonian systems 
 

 

 

 

 

研 究 生：黃柏穎 

指導教授：李明佳 教授 

 

 

中 華 民 國 一 百 年 七 月 



離散漢米爾頓系統中二階差分方程的廣域吸引子

及拓樸混沌 

Global attractor and topological chaos of 
second-order difference equations in discrete 

Hamiltonian systems 

 
研 究 生：黃柏穎     Student: Po-Ying Huang 
指導教授：李明佳      Advisor: Ming-Chia Li 

 
 

國立交通大學 
應用數學系 
碩士論文 

 
 

A Thesis 
Submitted to Department of Applied Mathematics 

National Chiao Tung University 
in Partial Fulfillment of the Requirements 

for the Degree of 
Master 

in 
Applied Mathematics 

 
 

July 2011 
 

Hsinchu, Taiwan, Republic of China 
 
 
 

中 華 民 國 一 百 年 七 月 



離散漢米爾頓系統中二階差分方程的廣域吸引子

及拓樸混沌 

 

研究生：黃柏穎      指導教授：李明佳 教授 

 
 

國立交通大學應用數學系（研究所）碩士班 

 
 
 

摘要 

於本篇論文中，我們討論一個差分方程式兩種不同的動態： 

∆[𝑝∆𝑥(𝑡 − 1)] + 𝑞𝑥(𝑡) = 𝑓�𝑥(𝑡 − 1)�或𝑓�𝑥(𝑡)�, 𝑡 ∈ ℤ， 

其中∆𝑥(𝑡 − 1) = 𝑎𝑥(𝑡) − 𝑏𝑥(𝑡 − 1)。此兩種動態行為分別為廣域吸引

子與拓樸混沌。我們做出了多樣的結果。在參數a, b, p與q的某種條件

之下，此方程任意解的軌跡最終都將會收斂到一個廣域吸引子。請參

照定理2.2與2.3。在某個特定的參數值之下，若存在一個與f有關的函

數且此函數擁有不只一個簡單根或者正拓樸熵，則限制在此方程式解

集合上的轉移映射會具有拓樸混沌。請參照定理2.6、2.7、2.8及2.9。
最後，我們將此方程式經由變數變換轉變成參數化的連續函數。我們

也可將之表示成離散漢米爾頓系統的形式。針對 ( )( )f x t 的情況，定理

2.10表示會存在一個與f有關的函數且此函數擁有正拓樸熵使得對應

函數具有拓樸混沌。針對 ( )( )1f x t − 的情況，若滿足前面的條件並且此

與f有關的函數值域被局部性地限制住範圍，則定理2.11表示此對應函

數也會擁有拓樸混沌。 
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Abstract 
 

In this thesis, we discuss two distinct dynamics of the difference equation 

∆[𝑝∆𝑥(𝑡 − 1)] + 𝑞𝑥(𝑡) = 𝑓�𝑥(𝑡 − 1)� or 𝑓�𝑥(𝑡)�, 𝑡 ∈ ℤ, 

where ∆𝑥(𝑡 − 1) = 𝑎𝑥(𝑡) − 𝑏𝑥(𝑡 − 1) . These two dynamics are the 
behavior of globally attracting and topological chaos. We have several 
results. Under some conditions of a, b, p and q, every orbit of the equa- 
tion asymptotically converges to a global attractor. See theorems 2.2 and 
2.3. If there exists a function relating to f which has more than one simple 
zeros or positive topological entropy at an expected parametric value, 
then the shift map restricted to the set of solutions of this equation has 
topological chaos. See theorems 2.6, 2.7, 2.8 and 2.9. Finally, we trans- 
form this equation into a parameterized continuous function by changing 
variables. We can also write it as the form of a discrete Hamiltonian 
system. For the case ( )( )f x t , theorem 2.10 says that there exists a 
function relating to f which has positive topological entropy such that the 
corresponding function has topological chaos. For the case ( )( )1f x t − , 
with an additional assumption that the function relating to f is locally 
trapping, theorem 2.11 says that the corresponding function has also 
topological chaos. 
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1 Introduction

In this thesis, we mainly discuss the globally attracting and chaotic behavior in view of

topological entropy of the nonlinear second-order di�erence equation � [p (t)�x (t� 1)]+
q (t)x (t) = u (t; x (t)), t 2 Z. In 2006, Ma and Guo in [9] used variational methods
to study the existence of nontrivial homoclinic orbits emanating from 0 of this di�er-

ence equation. A homoclinic orbit emanating from 0 is a solution x (t) if x (t) ! 0

as t ! �1. This equation can also be written as an equivalent �rst order nonlinear
nonautonomous discrete Hamiltonian system �X (t) = JrHX (t; x (t+ 1) ; y (t)), where
X (t) = (x (t) ; y (t))T , y (t) = p (t)�x (t� 1), the Hamiltonian function H (t;X (t)) =
1

2p(t)
[y (t)]2 + 1

2
q (t) [x (t)]2 � V (t; x (t)), V (t; x) =

R x
0
u (t; s) ds, and the normal symplec-

tic matrix J =

"
0 1

�1 0

#
. They considered the assumption that the function u (t; x) grows

superlinearly both at origin and at in�nity or is odd with respect to x 2 R. There are
also other assumptions we don't mention here. There were some people discussing so-

lutions of continuous Hamiltonian systems in the past. In 1991, Zelati and Rabinowitz

in [6] considered a class of continuous second-order Hamiltonian systems of the form
::
z � L (t) z + Vz (t; z) = 0, where z 2 Rn, L 2 C (R;Rn�n) and V 2 C2 (R� Rn;R)
with other assumptions. They established the existence of in�nitely many homoclinic

orbits for the class. Tanaka in [13] studied the existence of nontrivial homoclinic or-

bits emanating from 0 of a �rst-order Hamiltonian system of the form
:
z = JHz (t; z),

where z 2 R2N , J =
"
0 IN

�IN 0

#
, and H 2 C1

�
R� R2N ;R

�
with other assumptions.

In this thesis, we suppose p (t) = p, q (t) = q and the di�erence operator � is de�ned

as �x (t� 1) = ax (t) � bx (t� 1) with two weighted numbers a and b. The function
u (t; x (t)) is of the forms u (t; x (t)) = f (x (t� 1)) or f (x (t)) for some continuous one-
variable function f with f (0) = 0.

In this paragraph, we briey introduce the goals of the papers we apply throughout

this thesis. In [1], a concept called dynamical networks is discussed. [1] states that each

dynamical network is characterized by three factors. These factors are respectively (1)

the network's topology (structure of a network), (2) the interactions between the elements

(local subsystems) and (3) the intrinsic dynamics of local subsystems. Afraimovich and

Bunimovich in [1] used the methods of symbolic dynamics and formalism to analyze the

stability of dynamical networks and their subnetworks with these three factors. Their

main result gives su�cient conditions to enable dynamical networks to possess a global

attractor. In [8, 12], the family of di�erence equations �� (yn; yn+1; � � � ; yn+m) = 0, n 2 Z,
with parameters � in some metric space is discussed. Li and Malkin in [12] proved that

if the di�erence equations have a singular limit of the form ��0 (y0; y1; � � � ; ym) = ' (yN)
as � ! �0 for some N with 0 � N � m and some function ' with k simple zeros, then

for � close enough to �0, the di�erence equation has a topological k-horseshoe. Indeed,
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there exists a closed (in the product topology) shift-invariant set �� such that �j�� is
conjugate to the full shift of k symbols �j�k . On the other hand, Juang, Li and Malkin
in [8] proved for another case that ��0 (y0; y1; � � � ; ym) = � (yN ; yN+L) for some N , L

with 0 � N;N + L � m and a function � in two variables as � ! �0, if � (x; y) = 0

has a branch y = ' (x) with htop (') > 0, then for � in some neighborhood of �0, there

exists a closed (in the product topology) invariant set to which the restriction of the shift

map has topological entropy close arbitrarily to htop(')

jLj . In [11], Li, Lyu and Zgliczy�nski

considered perturbations from a low-dimensional continuous map f to a family of high-

dimensional continuous maps F�. They proved at � = 0, if F0 satis�es one of two forms:

(1) F0 (x; y) = (f (x) ; g (x)) 2 R � Rn; (2) F0 (x; y) = (f (x) ; g (x; y)) 2 R � Rn with
g (R� U) � int (U) for some compact set U homeomorphic to the closed unit ball in

Rn, then lim inf�!0 htop (F�) � htop (f). Note that htop (f) here denotes the supremum of

topological entropies of f restricted to compact f -invariant sets.

In this thesis, by applying these results, we have several results to �nd su�cient con-

ditions to make the di�erence equation mentioned in the beginning of this section have a

global attractor at the origin and be topologically chaotic in the set of its solutions with

parameter perturbation. Notice that the (di�erence) equation mentioned in this para-

graph means the equation in the beginning of this section if no additional explanation is

involved. See the next section. Theorems 2.2 and 2.3 state that under some conditions

we �nd, the equation has the behavior of global attracting in the set of its solutions. Sec-

ondly, the remaining results concern with the topological chaos of the equation. Theorems

2.6 and 2.7 connect the dynamic of the shift map restricted to the set of the solutions of

the equation involving parameter perturbing with symbolic dynamics of full shift, while

theorems 2.8 and 2.9 connect it with the topological entropy of some function relating

to the function f . In theorems 2.10 and 2.11, we consider the behavior of topological

chaos of the di�erence equation in terms of its corresponding discrete Hamiltonian sys-

tem. Moreover, it can be written as the dynamical system of an iterated function. The

two theorems state that if one can �nd a function which relates to the function f and

possesses positive topological entropy at an expected value of the parameter we concern,

then the iterated system must own topological chaos as the parameter is near enough to

this expected value.

This thesis is organized as follows. In section 2, we state some de�nitions we use in

our results and the details of these results. In section 3, we state the preliminary for the

proofs of theorems 2.2 and 2.3, mainly from the work of [1]. In section 4, we prove if a,

b, p, q and f satisfy some conditions, then our di�erence equation has a global attractor

at the origin. See theorems 2.2 and 2.3. In section 5, we state the main results about the

family of di�erence equations �� (yn; yn+1; � � � ; yn+m) = 0, n 2 Z, from [8, 12]. In section

6, we apply the results in section 5 to the proofs of theorems 2.6, 2.7, 2.8 and 2.9. In

section 7, we state the main results in [11] and some corollaries. In section 8, we prove

2



theorems 2.10 and 2.11 by using the corollaries in section 7. In section 9, we �nd some

numerical examples to verify the applicability of our results.
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2 De�nitions and the statements of main theorems

Following [9], we now consider two special cases of the nonlinear di�erence equation

de�ned on R
� [p (t)�x (t� 1)] + q (t)x (t) = u (t; x (t)) , t 2 Z. (1)

Let �x (t� 1) = ax (t) � bx (t� 1), a; b > 0, p (t) = p, q (t) = q, where a; b; p and q are
real parameters independent of t, and a continuous function u (t; x (t)) = f (x (t� 1)) or
f (x (t)) with f (0) = 0, which means u is real-valued and dependent only on x. Then one

can see that �x (t� 1) is a weighted di�erence with the weights a and b. Let xn denote
x (t). Then we get the form of recursive sequence of one variable

a2pxn+2 + b
2pxn � (2abp� q)xn+1 � f (xn+1) = 0; n 2 Z (2)

for the case u (t; x (t)) = f (x (t)) and

a2pxn+2 + b
2pxn � (2abp� q)xn+1 � f (xn) = 0; n 2 Z (3)

for the case u (t; x (t)) = f (x (t� 1)).
We also call the equations (2) and (3) di�erence equations in this thesis.

Next, we denote a new sequence y (t� 1) = p�x (t� 1). Then x (t) = b
a
x (t� 1) +

1
ap
y (t� 1). On the other hand, consider the equation (1). We have two consequences for

y (t) below.

1. if u (t; x (t)) = f (x (t)), then y (t) = � bq
a2
x (t� 1) + 1

a

�
b� q

ap

�
y (t� 1) + 1

a
�

f
�
b
a
x (t� 1) + 1

ap
y (t� 1)

�
;

2. if u (t; x (t)) = f (x (t� 1)), then y (t) = � bq
a2
x (t� 1) + 1

a

�
b� q

ap

�
y (t� 1) + 1

a
�

f (x (t� 1)).

For these two consequences, we get two dynamical systems which is de�ned on R2.
For all n 2 Z,

xn+1 =
b

a
xn +

1

ap
yn (4)

yn+1 = �bq
a2
xn +

1

a

�
b� q

ap

�
yn +

1

a
f

�
b

a
xn +

1

ap
yn

�
and

xn+1 =
b

a
xn +

1

ap
yn (5)

yn+1 = �bq
a2
xn +

1

a

�
b� q

ap

�
yn +

1

a
f (xn)

4



respectively. Transform them into the dynamics of maps in the form Xn+1 = F (Xn),

where Xn = (xn; yn) 2 R2 and F is a continuous function with parameters a; b; p; q such
that

F (x; y) =

�
b

a
x+

1

ap
y;�bq

a2
x+

1

a

�
b� q

ap

�
y +

1

a
f

�
b

a
x+

1

ap
y

��
(6)

and

F (x; y) =

�
b

a
x+

1

ap
y;�bq

a2
x+

1

a

�
b� q

ap

�
y +

1

a
f (x)

�
: (7)

Let  : D � E ! E be a function, where E is a metric space endowed with a metric

�. Recall that  is Lipschitz if L = supx6=y
�((x);(y))
�(x;y)

<1. Such L is called the Lipschitz
constant. We state the de�nition of a global attractor as follows.

De�nition 2.1. A function  : E ! E has a global attractor x0 2 E if � (n (x) ; n (x0))
! 0 as n!1 for all x 2 E.

Given a di�erentiable dynamical system � : D ! D, where D � Rn. we know that
if the derivative of � at a point x0 has all eigenvalues with absolute values less than one,

then x0 is an attractor. But in this thesis, by Contraction Mapping Principle, we use the

main result in [1] to guarantee each of the systems (4) and (5) without di�erentiability

to have a global attractor in terms of contraction. We state the conditions and results in

theorems 2.2 and 2.3 and the proofs of them are showed in section 4.

Theorem 2.2. Let p; q 2 R, p 6= 0; and M > 0 be the Lipschitz constant of a continuous

function f . If max
�
b
a
;
��� 1ap ����+max��� bqa2 ��+ bM

a2
; 1
a

���b� q
ap

���+ M
ja2pj

�
< 1, then the dynamical

system (6) has a global attractor.

Theorem 2.3. Let p; q 2 R, p 6= 0; and M > 0 be a Lipschitz constant of the continuous

function f . If max
�
b
a
;
��� 1ap ����+max��� bqa2 ��+ M

a
; 1
a

���b� q
ap

���� < 1, then the dynamical system
(7) has a global attractor.

Secondly, we de�ne a simple zero of a function. Let  be a C1 function on a subset

of R. We say a point x0 is a simple zero if  (x0) = 0 and 0 (x0) 6= 0. This means that
x0 is a zero of  with multiplicity one. We recall the de�nition of topological entropy of

a continuous map  : X ! X, where (X; �) is a compact metric space. The main work

comes from Bowen [5]. Let n 2 N and " > 0. First de�ne a metric �n : X �X ! R by
�n (x; y) = max0�i<n � (

i (x) ; i (y)) for any x; y 2 X.

De�nition 2.4 ([5]).

1. A set S � X is said to be (n; ")-separated if �n (x; y) � " for any distinct points

x; y 2 S.
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2. Denote the maximum cardinality of an (n; ")-separated set for  by sep (n; "; ).

Since X is compact, sep (n; "; ) is �nite. The topological entropy of  is

htop () = lim
"!0

�
lim sup
n!1

1

n
ln sep (n; "; )

�
:

We de�ne topological chaos of a system  as the following statement, which can be

found in page 137 of [10].

De�nition 2.5 ([10]). We say  : X ! X exhibits topological chaos if it has positive

topological entropy.

From now on, we discuss the property of topological chaos of systems (6) and (7).

In [12], Li and Malkin proved that a di�erence equation has the same dynamic as its

corresponding map. (in [12], de�nition 3.1 describes how a di�erence equation corresponds

a map. Furthermore, the item (iii) of theorem 3.3 describes a commutative diagram which

claims that the topological entropies of the di�erence equation and the map are identical.)

Since the maps (6) and (7) correspond to the di�erence equations (2) and (3) respectively,

we just exhibit the dynamics of the maps in the results of theorems 2.6, 2.7, 2.8 and 2.9.

Theorems 2.6 and 2.7 below show us how to �nd some special parameters and make

a small perturbation such that the di�erence equations (2) and (3) both possess chaotic

behavior in view of simple zeros of some function associated with f and by applying the

main theorems in [12].

Theorem 2.6. Let f be C1 on Q = InV for some compact interval I � R and some open
set V � I. Suppose that �qx+ f (x) has k � 2 simple zeros in int (Q). Then there exists
� > 0 such that for any p 2 (0; �), there exists a closed �-invariant subset �p of Yp, the set
of solutions of the di�erence equation (2) with the topology of pointwise convergence, such

that �j�p is topologically conjugate to �j�k . In particular, htop
�
�jYp

�
� log k and thus (6)

exhibits topological chaos.

Theorem 2.7. Let f be C1 on Q = InV for some compact interval I � R and some open
set V � I. If f has k � 2 simple zeros in int (Q), then there exists � > 0 such that for p; q
satisfying p 6= 0 and

p
p2 + q2 < �, there exists a closed �-invariant subset �p;q of Yp;q,

the set of solutions of di�erence equation (3) with the topology of pointwise convergence,

such that �j�p;q is topologically conjugate to �j�k . In particular, htop
�
�jYp;q

�
� log k and

thus (7) exhibits topological chaos.

The constants � and � in theorems 2.6 and 2.7 are mainly chosen as �0 in theorem 5.1.

Di�erent from theorems 2.6 and 2.7. Theorems 2.8 and 2.9 below show the chaos

property of (2) and (3) in view of topological entropy of some function associated with f

and by applying the main theorems in [8].
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Theorem 2.8. Let b; p 6= 0 (a; p 6= 0). Suppose that

1. f is analytic on Q = InV for some compact interval I = [�; �] � R, � < �, and

some set V which is a union of �nitely many open subintervals in I;

2. � q
b2p
x+ 1

b2p
f (x) ( � q

a2p
x+ 1

a2p
f (x)): Q! I has positive topological entropy.

Then there exists � > 0 such that for any a 2 (0; �) (or b 2 (0; �)), �j�a (or �j�b) has
positive topological entropy for some closed (in the product topology) �-invariant subset �a

(or �b) of the set of solutions of (2). Thus, the dynamical system (6) exhibits topological

chaos.

Theorem 2.9. Let q 6= 0 be a constant. Suppose that

1. f is analytic on Q = InV for some compact interval I = [�; �] � R, � < �, and

some set V which is a union of �nitely many open subintervals in I

2. 1
q
f : Q! I has positive topological entropy.

Then there exists � > 0 such that for any p with 0 < jpj < �, �j�p has positive
topological entropy for some closed (in the product topology) �-invariant subset �p of the

set of solutions of (3). Thus, the dynamical system (7) exhibits topological chaos.

The constants � and � in theorems 2.8 and 2.9 are mainly chosen as � in theorem 5.3.

Finally, discuss the chaos of multidimensional-function form of (1) directly (refer to (6)

and (7)). The following theorems tell us that some lower-dimensional function associated

with f a�ects the higher-dimensional function F .

Theorem 2.10. Let p 6= 0 be constant. Suppose that f is a continuous function and
�q
a2p
y + 1

a
f
�
1
ap
y
�
has positive topological entropy. Then there exists �0 > 0 such that the

dynamical system (6) exhibits topological chaos for 0 < b < �0.

Theorem 2.11. Let p 6= 0 be constant. Suppose that f is continuous and �1
a2p
f (�U1) �

int (U1) and
1
a
f
�
1
ap
U2

�
� int (U2) for some compact intervals U1 = [�1; �1] � R and

U2 = [�2; �2], where �1 < �1 and �2 < �2. If max
�
htop

�
1
a2p
f
�
; htop (g)

�
> 0 with

g (y) = 1
a
f
�
1
ap
y
�
, then there exists �0 > 0 such that the dynamical system (7) exhibits

topological chaos for 0 <
p
b2 + q2 < �0.
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3 Preliminary I

In this section, we introduce the preliminary of proving theorems 2.2 and 2.3 which mainly

appears in [1].

Let Ti : R ! R, i 2 Z, be a family of maps and each Ti satis�es the Lipschitz
condition, i.e., Li = supx6=y

jTix�Tiyj
jx�yj < 1. Next, de�ne a function H : RZ ! RZ, RZ =

f(� � � r�1r0r1 � � � ) : rj 2 R; j 2 Zg, which satis�es the following statements:

1. for each i 2 Z, there exists a �nite set Z � Ki 3 i;

2. for any i 2 Z, there exists a continuous function Hi :
Q
j2Ki

Xj ! Xi, Xj = R for
all j, which satis�es the Lipschitz condition of the form

jHi (xj2Ki
)�Hi (yj2Ki

)j � �i
X
j2Ki

jxj � yjj

for any xj; yj 2 Xj and for some constant �i > 0.

If Ki = fig, we suppose Hi is an identity map.

3. (H (xj))i = Hi (xj2Ki
) for all i 2 Z.

Let T : RZ ! RZ be de�ned by (T (x))i = Ti (xi) for x 2 RZ and F :RZ ! RZ be
de�ned by F = H � T . F is called the dynamical network [1].
Set a �nite subset B of Z. A graph G = G (B;H) means that it contains elements in

B called vertices and edges i! j (starting from i and ending to j) if and only if i 2 Kj.

We say G is directed if and only if every edge of G is directive. A path is called a simple

path if each vertex on the path appears exactly once. Hereafter we assume G is connected,

i.e., for any pair of vertices i and j, there exists a simple path from i to j without the

directivity of G. For this graph, we can make a representation of it by a transition matrix

A = [aij] with aij = 1 if there is an edge i ! j and aij = 0 otherwise. Next, we de�ne a

chain called Topological Markov Chain (TMC) as �+A =
�
(i0i1i2 � � � ) : aij�1ij = 1; j 2 N

	
with a left-shift map � : �+A ! �+A with � (i0i1i2 � � � ) = (i1i2i3 � � � ). We embed a metric d
to �+A by for any i; j 2 �+A;

d
�
i; j
�
=

1X
n=0

jin � jnj
qn

,

where q > 1 is a constant.

Let [i0i1 � � � ir] =
�
(j0j1 � � � ) 2 �+A : j0 = i0; � � � ; jr = ir

	
be a subset of the TMC�

�+A; �
�
, which is called a cylinder. A word (i0 � � � ir) is allowable if the cylinder [i0i1 � � � ir] 6=

;. For two vertices i; j of G, we can de�ne a partial order and a relation of equivalence
on them. We say i � j if there exists a cylinder [i0i1 � � � ir] 6= ; with i0 = j and ir = i

for some r 2 N and i � j if i � j � i. By this relation, the set of the vertices of G
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can be divided into classes of equivalence. Let symbols 1; 2; � � � ; N be the vertices of the

connected graph G. Then f1; 2; � � � ; Ng = E1 [ E2 [ � � � [ Es is a partition of classes of
equivalence \�" for some s 2 N. We also de�ne a partial order on Em's: Em � Ek if and
only if for every p 2 Em and q 2 Ek, p � q.
Next, we state the de�nition of a nonwandering point and topological transitivity of a

dynamical system  : X ! X, where X is a phase space.

De�nition 3.1. A point x0 2 X is nonwandering if for any neighborhood O of x0, there

exists a point y 2 O and m 2 N such that m (y) 2 O; otherwise, x0 is wandering.

De�nition 3.2.  : X ! X is topologically transitive if for any nonempty open sets

O1; O2 � X, there exists n � 0 such that n (O1) \O2 6= ;.

Notice that y in de�nition 3.1 is possibly chosen to be x0. We then have the following

well-known theorem.

Theorem 3.3 (Spectral Decomposition Theorem [1, 4]).

1. Let NW be the set of nonwandering points of
�
�+A,�

�
. Then NW has a decomposi-

tion

NW = �1 [ �2 [ � � � [ �s

such that for any k = 1; � � � ; s,

i. �j�k , � restricted to �k, is a TMC corresponding to Ek and �k has a corre-
sponding transition matrix A (k),

ii. �j�k is topologically transitive,

iii. de�ne a partial order � on �k's by �k � �m if and only if Ek � Em. Then it
is well-de�ned.

2. Let W be the set of wandering points of
�
�+A,�

�
. Then W can be written as a

composition

W =
s[

k;m=1

Wkm,

where

i. Wkm 6= ; if and only if k 6= m and �k � �m,

ii. if i = (i0i1 � � � ) 2 Wkm, then i0 2 Ek and �n (i) 2 �m for some n 2 N,

iii. if �k � �m, then for any j 2 �k, i 2 �m and � > 0 there exist w 2 Wkm and

n 2 N such that d
�
w; j

�
< � and �n (w) = i.
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We use these two decompositions of NW and W to de�ne two kinds of sets. For each

k 2 f1; � � � ; sg, let Pk = fm : Em � Ekg[fkg and 	k =
�S

m2Pk �
m
�
[
�S

m1 6=m2;m22PkWm1m2

�
.

Then �j	k is a TMC and denote it by
�
�+Rk ; �

�
with the corresponding transition matrix

Rk.

Let G be a directed graph with vertices 1; 2; � � � ; N . De�ne metric spaces Y (k) =Q
m2Pk;i2Em Xi with sup-metric d (x; y) = supj jxj � yjj for all k 2 f1; � � � ; sg. We can

show that Y (k) is F -invariant in the sense that for m 2 Pk, (F (x))j = (F (y))j if j 2 Em
for all x; y 2 RZ with xi = yi if i 2 Em.

Lemma 3.4 ([1]). Let x; y 2 RZ with xi = yi for any m 2 Pk and i 2 Em. Then

(F (x))i = (F (y))i for any m
0 2 Pk and i 2 Em0. Thus, Y (k) is said to be F-invariant.

Proof. Let m 2 Pk and i 2 Em. If j 2 Ki, then the class of equivalence, say Em0 ,

containing j is a predecessor of Em in the order �, i.e., Em0 � Em. Since m 2 Pk,

Em � Ek and then m0 2 Pk. This implies xj = yj for any j 2 Ki.

(F (x))i = (H � T (x))i = Hi
�
(T (x))j2Ki

�
= Hi

�
(T (x))j2Ki

�
= Hi (fTj (xj) : j 2 Kig)

= Hi (fTj (yj) : j 2 Kig) = (F (y))i.

By this lemma, F restricted to Y (k) is well-de�ned. We denote it by Fk.

By the lemma 3 in [1], Afraimovich and Bunimovich estimated the Lipschitz constant

of Fnk , n 2 N, with this consequence:

d (Fnk (x) ;F
n
k (y)) �

0@ X
(i0���in)

n�1Y
l=0

�ilil+1

1A d (x; y) , (8)

where the sum is taken over the number of all the allowable words of length (n+ 1) in

�+Rk , in 2 Ek, and �ilil+1 = Lil�il+1 .
De�ne a function ' : �+Rk ! R by ' (i0i1i2 � � � ) = ln�i0i1 . We rewrite the estimated

Lipschitz constant �k (n; ') of F
n
k showed in (8) as

�k (n; ') =
X
(i0���in)

n�1Y
l=0

�ilil+1 =
X

w2[i0���in]

exp

n�1X
l=0

'
�
�l (w)

�
;

where the sum is taken over the same set as in (8) and for each cylinder [i0 � � � in] we
choose only one sequence w as a representation. Next, de�ne the topological pressure

P k (') of ' over the TMC
�
�+Rk ; �

�
by

P k (') = lim
n!1

ln �k (n; ')

n
:

This limit exists by proposition 2.5.1 in [3]. Therefore, we have a de�nition and a

theorem as follows.
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De�nition 3.5. Let  : D � Rn ! Rn be a function.  is said to be a contraction if there
exists a constant 0 � � < 1 such that for any points x; y 2 D, j (x)�  (y)j � � jx� yj.

Theorem 3.6 ([1]). If P k (') < 0, then there exists n0 2 N such that Fnk is a contraction
for all n > n0.

Finally, to evaluate the topological pressure, in [1], we may simplify the formula of

the pressure by making the function ' which depends originally on the �rst two sym-

bols of a sequence depend only on the �rst one symbol. De�ne a new transition matrix

A whose symbols are the edges of G and which transits (ij) to (lm) i� j = l. Then�
�+
A
; �
�
forms a new TMC. From [4], we know that the two TMCs

�
�+A; �

�
and

�
�+
A
; �
�

are topologically conjugate. Let �+
Rk
be the image of �+Rk and then

�
�+
Rk
; �
�
is the cor-

responding TMC. Denote the symbols of A by 1; 2; � � � ; N . For each m = 1; 2; � � � ; N ,
there is a corresponding edge (ij) of G and then we set � (m) = ' (ij). De�ne a new

function � : �+
Rk
! R by � (i0i1 � � � ) = � (i0). Set � (m) = ln�m, m = 1; 2; � � � ; N . Then

�k (n; ') = �k (n; �) =
P

(i0���in)
Qn
m=0 �m [1, 3]. We use such method of evaluation to

prove our main result in this section.

Proposition 3.7 ([1]). �k (n; �) = R
�
Rkdiag (�1; � � � ; �N)

�n
ET , where R = (�1; � � � ; �N)

and E = (1; 1; � � � ; 1).

Corollary 3.8 ([1]). P k (') = ln rk , where rk is the maximal absolute value of all the

eigenvalues of Rkdiag (�1; � � � ; �N).
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4 Proofs of theorems 2.2 and 2.3

In this section, we show that the dynamical systems (6) and (7) have global attractors

individually as follows.

Proof of theorem 2.2. For any i 2 Z, let Ti : R ! R be de�ned by Ti (z) = z, for all

z 2 R. Set K1 = K2 = f1; 2g and Ki = fig for all i 6= 1; 2: De�ne Hi :
Q
j2Ki

Xj ! Xi,

i 2 Z and Xi = R, by

H1 (z1; z2) =
b

a
z1 +

1

ap
z2;

H2 (z1; z2) = �bq
a2
z1 +

1

a

�
b� q

ap

�
z2 +

1

a
f

�
b

a
z1 +

1

ap
z2

�
;

Hi (zi) = zi; i 6= 1; 2:

Then Hi is continuous and Li = supx6=y
jTix�Tiyj
jx�yj = 1 for all i. Next, we want to �nd

constants �i > 0 satisfying jHi (z1; z2)�Hi (w1; w2)j � �i
P

j2Ki
jzj � wjj. Let zi; wi 2

Xi;

jH1 (z1; z2)�H1 (w1; w2)j =
����� baz1 + 1

ap
z2

�
�
�
b

a
w1 +

1

ap
w2

�����
� b

a
jz1 � w1j+

���� 1ap
���� jz2 � w2j

� max

�
b

a
;

���� 1ap
����� X

j2K1

jzj � wjj

jH2 (z1; z2)�H2 (w1; w2)j =
������bqa2 z1 + 1a

�
b� q

ap

�
z2 +

1

a
f

�
b

a
z1 +

1

ap
z2

��
�
�
�bq
a2
w1 +

1

a

�
b� q

ap

�
w2 +

1

a
f

�
b

a
w1 +

1

ap
w2

������
=

�����bqa2 (z1 � w1) + 1a
�
b� q

ap

�
(z2 � w2) +

1

a

�
f

�
b

a
z1 +

1

ap
z2

�
�f

�
b

a
w1 +

1

ap
w2

������
�

����bqa2
���� jz1 � w1j+ 1a

����b� q

ap

���� jz2 � w2j+ Ma
����� baz1 + 1

ap
z2

�
�
�
b

a
w1 +

1

ap
w2

�����
�

����bqa2
���� jz1 � w1j+ 1a

����b� q

ap

���� jz2 � w2j+ bMa2 jz1 � w1j
+

����Ma2p
���� jz2 � w2j
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� max

�����bqa2
����+ bMa2 ; 1a

����b� q

ap

����+ M

ja2pj

�X
j2K2

jzj � wjj

jHi (zi)�Hi (wi)j = jzi � wij =
X
j2Ki

jzj � wjj ; i 6= 1; 2:

Then �1 = max
�
b
a
;
��� 1ap ����, �2 = max

��� bq
a2

��+ bM
a2
; 1
a

���b� q
ap

���+ M
ja2pj

�
and �i = 1 if

i 6= 1; 2. Thus,

�11 = �21 = �1 = max

�
b

a
;

���� 1ap
����� ;

�12 = �22 = �2 = max

�����bqa2
����+ bMa2 ; 1a

����b� q

ap

����+ M

ja2pj

�
:

Now let B = f1; 2g be a �nite subset of Z and consider the connected graph G =

G (B;H) corresponding to ourH de�ned above. Then its transition matrix is A =

"
1 1

1 1

#
.

So the two symbols in B are in the same class of equivalence, say E1. We have that P1 =

fm : Em � E1g[f1g = f1g, 	1 =
�S

m2P1 �
m
�
[
�S

m1 6=m2;m22P1Wm1m2

�
= �1[; = �1 =

�+A, R1 = A, and Y
(1) =

Q
m2P1;i2Em Xi = X1�X2 = R2. Let I = (11) ; II = (12) ; III =

(21) and IV = (22) be the new symbols of the new TMC
�
�+
A
; �
�
corresponding to

A =

266664
1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1

377775. Clearly, R1 = A, �I = �III = �1 and �II = �IV = �2.

R1diag (�I ; �II ; �III ; �IV ) =

266664
1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1

377775
266664
�1 0 0 0

0 �2 0 0

0 0 �1 0

0 0 0 �2

377775 =
266664
�1 �2 0 0

0 0 �1 �2

�1 �2 0 0

0 0 �1 �2

377775 .
(9)

The eigenvalues of (9) are 0 and �1 + �2. Since

P (1) (') = ln j�1 + �2j

= ln

�
max

�
b

a
;

���� 1ap
�����+max�����bqa2

����+ bMa2 ; 1a
����b� q

ap

����+ M

ja2pj

��
< 0

by the hypotheses and corollary 3.8, Fn is a contraction on X1 �X2 = R2 if n > n1 for
some n1 2 N . Hence, by Contraction Mapping Principle, the dynamical system (6) has

a global attractor.
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Remark 4.1. Let p; q 2 R, p 6= 0; and M > 0 be a Lipschitz constant of a continuous

function f on R. If q = 0_ 2abp and b
a
+
��� 1ap ���+max��� bqa2 ��+ bM

a2
; M
a2p

�
< 1, then (6) has a

global attractor.

Proof of theorem 2.3. For any i 2 Z, let Ti : R ! R be de�ned by Ti (z) = z, for all

z 2 R. Set K1 = K2 = f1; 2g and Ki = fig for all i 6= 1; 2: De�ne Hi :
Q
j2Ki

Xj ! Xi,

i 2 Z and Xi = R, by

H1 (z1; z2) =
b

a
z1 +

1

ap
z2;

H2 (z1; z2) = �bq
a2
z1 +

1

a

�
b� q

ap

�
z2 +

1

a
f (z1) ;

Hi (zi) = zi; i 6= 1; 2:

Then Hi is continuous and Li = supx6=y
jTix�Tiyj
jx�yj = 1 for all i. Next, we can �nd �1 =

max
�
b
a
;
��� 1ap ����, �2 = max��� bqa2 ��+ M

a
; 1
a

���b� q
ap

���� and �i = 1 for all i 6= 1; 2.
Let B = f1; 2g. Since the graph of H and its corresponding transition matrix are the

same as the ones in the proof of theorem 2.2, Y (1) =
Q
m2P1;i2Em Xi = X1�X2 = R2 and

P (1) (') = ln j�1 + �2j = ln
�
max

�
b

a
;

���� 1ap
�����+max�bqa2 + Ma ; 1a

����b� q

ap

������ < 0:
By theorem 3.6 and Contraction Mapping Principle, (7) has a global attractor.

Remark 4.2. Let p; q 2 R, p 6= 0; and M > 0 be a Lipschitz constant of f . If q = 0_2abp
and b

a
+
��� 1ap ���+ jbqj

a2
+ M

a
< 1, then (7) has a global attractor.
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5 Preliminary II

In this section, we introduce the preliminary of proving theorems 2.6, 2.7, 2.8 and 2.9.

At �rst, we must know how a di�erence equation

� (yn; yn+1; � � � ; yn+m) = 0, (10)

n 2 Z and � :
Qm+1
i=1 Di ! R, D1; D2; � � � ; Dm+1 � E for some metric space E, has

chaotic behavior. A bi-sequence fyngn2Z is a solution of the di�erence equation (10) i�
for all n 2 Z, (yn; yn+1; � � � ; yn+m) is a zero of �. Moreover, (10) has chaotic behavior i�
the left-shift map � restricted to the set of solutions for (10) has chaotic behavior. In the

next step, we consider a special kind of parametric di�erence equations.

Let S1 =
�
y = (� � � y�2y�1y0y1 � � � ) 2 RZ :

y = supn2Z jynj <1	 be the space of all
bounded sequences with the topology of uniform convergence and let � be the left-shift

map on S1. Let �� (yn; yn+1; � � � ; yn+m) = 0 be a family of di�erence equations corre-

sponding to parameters � 2 [�0; �1] for some real numbers �0 < �1. For every � 2 [�0; �1],
�� : Q

m+1 ! R is a C1 function of (m+ 1) variables, where Q = InV for some compact
nondegenerate interval I � R and some open subset V of I. Moreover, �� and every par-
tial derivative @i�� with respect to the i-th variable, 1 � i � m+1, are also continuous in
�. We set Y� =

�
(� � � y�2y�1y0y1 � � � ) 2 QZ : �� (yn; yn+1; � � � ; yn+m) = 0 for all n 2 Z

	
to

be the set of solutions of �� (yn; yn+1; � � � ; yn+m) = 0. Then Y� is closed in S1. Endow IZ

and Y� with the product topology, i.e., the topology of pointwise convergence, and denote

such spaces by IZprod and Y�;prod. Then Y�;prod is a closed subset of I
Z
prod and is compact by

the Tychono�'s Theorem. Tychono�'s theorem states that the product of any collection

of compact topological spaces is compact.

For all � 2 [�0; �1], Y�;prod is �-invariant and we may de�ne the topological entropy
of �jY�;prod by htop

�
�jY�;prod

�
. Li and Malkin in [12] proved an important result about the

chaos of �� (yn; yn+1; � � � ; yn+m) = 0, a part of whose detail is shown below.

Theorem 5.1 ([12]). Let

�� (yn; yn+1; � � � ; yn+m) = 0; n 2 Z (11)

be a family of di�erence equations with parameters � 2 [�0; �1] and �� : Qm+1 ! R with
Q = InV for some compact interval I � R and some open set V � I satis�es

1. for each �, �� is C
1 on Qm+1,

2. �� is continuous in � and

3. each partial derivative @i��,which corresponds to the i-th variable, is also continuous

in �, i = 1; � � � ;m+ 1.

15



Suppose that ��0 (x1; � � � ; xm+1) = ' (xN) for some C1 function ' : Q! R which has
k simple zeros in int (Q), k 2 N, and some N 2 N with 1 � N � m + 1. Then there

exists �0 > 0 such that for any � 2 [�0; �0 + �0] there exists a closed �-invariant subset
�� � Y�;prod such that �j�� is topologically conjugate to the full shift of k symbols �j�k . In
particular, htop (�jY�) � log k.

Remark 5.2. In fact, we may extend the space of � to a general metric space E. At the

moment, [�0; �0 + �0] is replaced by a �0-ball B (�0; �0) in E.

In [8], there is another conclusion about the chaotic behavior of the di�erence equa-

tion (11). Indeed, at a speci�c value � = �0, (11) is of the form ��0 (x1; � � � ; xm+1) =
� (xN ; xN+L) for some distinct integers 1 � N;N + L � m+ 1. Under a certain situation
of �, a perturbation on � is able to force (11) to obtain topological chaos. We write it in

detail in theorem 5.3.

Theorem 5.3 ([8]). Consider the family of di�erence equations (11), with parameters

� in a neighborhood of a speci�c value �0 in a metric space, satisfying the following

assumptions:

1. for each �, �� : Q
m+1 ! R with Q = InV for some compact nondegenerate interval

I � R and some set V which is a union of �nitely many open subintervals in I,

2. for each �, �� is C
1 in Qm+1,

3. �� and @i��, i = 1; � � � ;m+ 1, are continuous in � and

4. ��0 (x1; � � � ; xm+1) = � (xN ; xN+L) for some 1 � N;N + L � m+ 1:

Suppose that there exists a piecewise analytic function ' : Q ! I with htop (') > 0

such that � (x; ' (x)) = 0 for all x 2 Q. Then for any " > 0, there exists � > 0 such that
for each � in the �-neighborhood of �0, htop (�j��) > 1

jLjhtop (')� " for some closed (in the
product topology) �-invariant subset �� of Y�;prod.

Remark 5.4. Let D � R be the domain of . We say a function  : D ! R is analytic
(on D) if for any x0 2 D, there exists a sequence of real numbers fakg1k=0 such that
 (x) =

P1
k=0 ak (x� x0)

k in a neighborhood of x0.  is said to be piecewise analytic

(on D) if D is a union of �nitely many disjoint sets Di and  is analytic on each Di. In

particular, an analytic function is also piecewise analytic. For instance, all of polynomials

are analytic on R and  (x) = jxj is piecewise analytic on (�1; 1).
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6 Proofs of theorems 2.6, 2.7, 2.8 and 2.9

In this section, we prove theorems 2.6, 2.7, 2.8 and 2.9. The following two proofs are

shown according to theorem 5.1.

Proof of theorem 2.6. Let a; b and q be �xed numbers and �p (x1; x2; x3) = a
2px3+b

2px1�
(2abp� q)x2 � f (x2). It's easy to check that (i) for each p 2 R, �p is C1 on Q3 and
(ii) �p and @i�p are continuous in p since f is C

1 on Q. By applying p = 0, we get that

�0 (x1; x2; x3) = qxn+1 � f (xn+1), which is a C1 function of xn+1.
Let Yp be the set of solutions of �p with the topology of pointwise convergence. Since

�qx + f (x) has k � 2 simple zeros in int (Q), by theorem 5.1, there exists � > 0 such

that for any p 2 (0; �), there exists a closed subset �p of Yp such that �j�p is conjugate to
�j�k and so system (6) exhibits topological chaos.

Proof of theorem 2.7. Let a and b be �xed numbers. If p = q = 0, then �p;q (xn; xn+1; xn+2)
let
= a2pxn+2 + b

2pxn � (2abp� q)xn+1 � f (xn) = �f (xn), which is a C1 function of one
variable. f has k � 2 simple zeros in int (Q), and so does �f . Let Yp;q be the set of
solutions of �p;q with the topology of pointwise convergence. By theorem 5.1, there exists

� > 0 such that if p 6= 0 and
p
p2 + q2 < � then for some closed �-invariant subset �p;q of

Yp;q, �j�p;q is conjugate to �j�k , and htop
�
�jYp;q

�
� log k. Thus, system (7) is topologically

chaotic.

The two proofs below are shown according to theorem 5.3.

Proof of theorem 2.8. We discuss the case the constants b; p 6= 0. Denote �a (x1; x2; x3) =
a2px3+b

2px1�(2abp� q)x2�f (x2). Since f is analytic onQ, �a is also analytic and so C1

on Q3. �0 (x1; x2; x3) = b
2px1 + qx2 � f (x2)

set
= � (x1; x2). For the equation � (x1; x2) = 0,

x1 can be expressed as x1 = � q
b2p
x2 +

1
b2p
f (x2)

set
= ' (x2), which is analytic on Q.

Since � q
b2p
x+ 1

b2p
f (x) has positive topological entropy, by theorem 5.3, for any " > 0,

there exists � > 0 such that for each a 2 (0; �), htop (�j�a) > htop (') � " for some closed
(in the product topology) �-invariant subset �a of the set of solutions for �a. Therefore,

if " > 0 is chosen to be su�ciently small, then (6) has topological chaos.

Proof of theorem 2.9. De�ne �p (x1; x2; x3) = a
2px3+b

2px1�(2abp� q)x2�f (x1). Then
�0 (x1; x2; x3) = qx2 � f (x1)

set
= � (x1; x2). The equation � (x1; x2) = 0 has an implicit-

functioned solution x2 =
1
q
f (x1). Assume q 6= 0. Since 1

q
f is analytic on Q, it is also C1

on Q.

By the hypothesis that htop

�
1
q
f
�
> 0 and theorem 5.3, for any " > 0, there exists

� > 0 such that for each p with 0 < jpj < �, htop
�
�j�p

�
> 1

jLjhtop (')� " for some closed
(in the product topology) �-invariant subset �p of the set of solutions for �p such that

htop
�
�j�p

�
> htop

�
1
q
f
�
� ". If " > 0 is small enough, then (7) has topological chaos.
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7 Preliminary III

In this section, we introduce the preliminary of proving theorems 2.10 and 2.11. In

[11], it mainly discuss the multidimensional perturbations to a family of high-dimensional

functions F� on R �Rn with parameters � 2 Rk at a speci�c value �0. For simplicity,
set �0 = 0. Next, suppose F0 has two forms: F0 (x; y) = (f (x) ; g (x)) and F0 (x; y) =

(f (x) ; g (x; y)). The following two theorems (see the beginning of section 2 in [11]) explain

the relation between f and F�. Moreover, two corollaries implied by these two theorems

respectively follow immediately and we apply the results of them to our dynamical systems

of function form. Notice that topological entropy of a map T here means the supremum

of topological entropies of T restricted to compact T -invariant sets.

Theorem 7.1 ([11]). Let F� be a family of continuous functions on R �Rn with pa-
rameters �. Suppose that F� (x; y) is continuous as a function jointly of � 2 Rk and
(x; y) 2 R �Rn and F0 (x; y) = (f (x) ; g (x)) with f : R ! R and g : Rn ! Rn. Then
lim inf�!0 htop (F�) � htop (f).

Corollary 7.2. Let F� be a family of continuous functions on R �R with parameters �.
Suppose that F� (x; y) is continuous as a function jointly of � 2 Rk and (x; y) 2 R �R
and F0 (x; y) = (f (y) ; g (y)) with f; g : R! R. Then lim inf�!0 htop (F�) � htop (g).

Proof. De�ne a new family of functions eF� by eF� = L�1�F��L, where L : (x; y)! (�y; x)
is a linear map. Then eF0 (x; y) = (g (x) ;�f (x)) and htop

� eF�� = htop (F�) for all �.

Hence, lim inf�!0 htop (F�) = lim inf�!0 htop

� eF�� � htop (g).
Theorem 7.3 ([11]). Let F� be a family of continuous functions on R �Rn with parame-
ters �. Suppose that F� (x; y) is continuous as a function jointly of � 2 Rk and (x; y) 2 R
�Rn and F0 (x; y) = (f (x) ; g (x; y)) with f : R! R and g : R �Rn ! Rn which satis�es
g (R� U) � int (U) for some compact set U � Rn homeomorphic to the closed unit ball
of Rn. Then lim inf�!0 htop (F�) � htop (f).

Corollary 7.4. Let F� be a family of continuous functions on R �R with parameters

�. Suppose that F� (x; y) is continuous as a function jointly of � 2 Rk and (x; y) 2 R
�R and F0 (x; y) = (f (x; y) ; g (y)) with f : R ! R and g : R � R ! R which satis�es
�f ((�U)� R) � int (U) for some compact set U � R homeomorphic to [�1; 1]. Then
lim inf�!0 htop (F�) � htop (g).

Proof. De�ne eF� in the same way as in the proof of corollary 7.2 and then eF0 (x; y) =
(g (x) ;�f (�y; x)). Thus, lim inf�!0 htop (F�) = lim inf�!0 htop

� eF�� � htop (g).
Remark 7.5.

1. Note that rU = fru : u 2 Ug for any r 2 R.
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2. Such compact set U is actually a compact interval [�; �] for some �; � 2 R, � < �,
since any continuous map on the Euclidean spaces keeps the compactness and the

connectedness of a set.
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8 Proofs of theorems 2.10 and 2.11

In this section, we regard F (see (6) and (7)) as a map with one or two real parameters.

In order to avoid misunderstanding, we write the parameter as the subscript of F at

appropriate moments.

For the �rst proof, we regard F as a family of maps Fb : R2 ! R2 by F (x; y) =
Fb (x; y) =

�
b
a
x+ 1

ap
y;� bq

a2
x+ 1

a

�
b� q

ap

�
y + 1

a
f
�
b
a
x+ 1

ap
y
��
, where b is a real parameter

and a > 0; p 6= 0; q are constants. Then Fb corresponds to the weighted di�erence equation
(1) for case 1 ( see (6)). The proof below is applied by corollary 7.2.

Proof of theorem 2.10. First, we have F0 (x; y) =
�
1
ap
y; �q

a2p
y + 1

a
f
�
1
ap
y
��
. Clearly, F0

is of the form in corollary 7.2. By corollary 7.2, lim infb!0 htop (Fb) � htop (g), where

g (y) = �q
a2p
y + 1

a
f
�
1
ap
y
�
.

Let htop (g) > 0. Given " > 0,

htop (g)� " < htop (g)

� lim inf
b!0

htop (Fb)

= sup
�>0

�
inf
0<b<�

htop (Fb)

�
:

Then there exists �0 > 0 such that inf0<b<�0 htop (Fb) > htop (g) � ". Thus, if 0 < b < �0,
then htop (Fb) � inf0<b<�0 htop (Fb) > htop (g)� ". Choose " < htop (g), we get htop (Fb) > 0
for 0 < b < �0 and so the result holds.

Next, regard F as another family of maps

F (x; y) = Fb;q (x; y) =

�
b

a
x+

1

ap
y;�bq

a2
x+

1

a

�
b� q

ap

�
y +

1

a
f (x)

�
with constants a; p 6= 0. Think about the twice iteration of Fb;q, denoted by F 2b;q. Espe-
cially, F 20;0 (x; y) = F0;0

�
1
ap
y; 1

a
f (x)

�
=
�

1
a2p
f (x) ; 1

a
f
�
1
ap
y
��

when b = q = 0.

Before prove theorem 2.11, we recall a well-known property about topological entropy.

Proposition 8.1. Let T be a map de�ned on compact metric space. Then htop (T
n) =

n � htop (T ) for all n � 0.

The proof below is applied by corollary 7.4 and proposition 8.1.

Proof of theorem 2.11. Let a; p be �xed. Both Fb;q and F
2
b;q are continuous in (b; q) and

(x; y) 2 R2. Denote bf (x; y) = ef (x) = 1
a2p
f (x) and bg (x; y) = eg (y) = 1

a
f
�
1
ap
y
�
. Since

� bf ((�U1)� R) = �1
a2p
f (�U1) � int (U1) and bg (R� U2) = 1

a
f
�
1
ap
U2

�
� int (U2), by

theorem 7.3 and corollary 7.4, lim infb;q!0 htop
�
F 2b;q

�
� max

�
htop

� ef� ; htop (eg)� > 0.
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Given " > 0,

max
�
htop

� ef� ; htop (eg)�� " < lim inf
b;q!0

htop
�
F 2b;q

�
= sup

�>0

�
inf

0<j(b;q)j<�
htop

�
F 2b;q

��
:

Then inf
0<
p
b2+q2<�0

htop
�
F 2b;q

�
> max

�
htop

� ef� ; htop (eg)� � " for some �0 > 0. This

implies that htop
�
F 2b;q

�
> P0 = max

�
htop

� ef� ; htop (eg)� � " > 0 for 0 <
p
b2 + q2 < �0

and " > 0 is small enough. By the de�nition of supremum and for any b; q with 0 <p
b2 + q2 < �0, we can �nd a compact F

2
b;q-invariant set �p;q such that htop

�
F 2b;qj�p;q

�
>

P0. Let �
0
p;q = �p;q [ Fb;q (�p;q). Since Fb;q is continuous, �0p;q is compact. Moreover,

Fb;q
�
�0p;q

�
= Fb;q (�p;q)[F 2b;q (�p;q) = Fb;q (�p;q)[�p;q = �0p;q. So �0p;q is Fb;q-invariant and

also F 2b;q-invariant. By proposition 8.1, 0 < P0 < htop
�
F 2b;qj�0p;q

�
= 2 �htop

�
Fb;qj�0p;q

�
. Thus,

htop (Fb;q) > 0 and so Fb;q has topological chaos for 0 <
p
b2 + q2 < �0.
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9 Numerical veri�cation

In this section, we give some examples and their �gures of iterations which agree with

our main theorems mentioned in section 2. Moreover, these examples make our theorems

applicable. From now on, we show their results by running 1500 iterations of F (see

(6) and (7)) numerically and printing the points of the last 1000 times in the xy-plane.

Finally, they are arranged into three subsections. Notice that case 1 and 2 mentioned in

the subsections mean the hypothesis of u of (1), i.e., u (t; x (t)) = f (x (t)) and u (t; x (t)) =

f (x (t� 1)) respectively.

9.1 Examples for theorems 2.2 and 2.3

First, consider the dynamic of an example for theorem 2.2. Let a = 1, b = 0:1, p = 10

and q = 0. De�ne f (x) = sin x. It's clear that f is Lipschitz on R and the Lipschitz
constant M = 1. We check whether a; b; p and q satisfy the hypothesis of theorem 2.2.

max
�
b
a
;
��� 1ap ���� + max��� bqa2 ��+ bM

a2
; 1
a

���b� q
ap

���+ M
ja2pj

�
= 0:3 < 1. So the hypothesis is

satis�ed. Set the initial point (x0; y0) = (2000; 1000) and let F iterate with it. Figure

1(a) exhibits that (0; 0) is the global attractor. One can see that the �rst and second

components of F both converge to 0 quickly as the iteration increases in �gure 1(b) and

1(c) (notice that variable n represents the times of iteration).

Figure 1: the dynamic diagram and the iterate diagrams of two components of the example
for theorem 2.2
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Next, consider the dynamic of another example for theorem 2.3. De�ne f (x) =

jxj and let a = 2, b = 0:1, p = 10 and q = 0. Then M = 1 and max
�
b
a
;
��� 1ap ���� +

max
�
bq
a2
+ M

a
; 1
a

���b� q
ap

���� = 0:55 < 1, which satis�es the hypothesis of theorem 2.3. We

also set the initial point (x0; y0) = (2000; 1000). Figure 2(a) exhibits (0; 0) is the global

attractor and �gure 2(b),(c) exhibit the situation that two components of F converge.

Figure 2: the dynamic diagram and the iterate diagrams of two components of the example
for theorem 2.3
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Therefore, the two examples verify the validity and the practicability of theorems 2.2

and 2.3.

9.2 Examples for theorems 2.6, 2.7, 2.8 and 2.9

First, we produce an example for theorem 2.6. Choose a set of special values of a; b; p; q and

f as a = 1, b = 0:1, p = 0:01, q = 0 and f (x) = 0:95� sin x. Now we check whether such

values and f can satisfy the hypotheses of the theorem. Clearly, 0:95� sin x has countably

many simple zeros on R. We choose I =
���
2
; 3�
2

�
and V = ;. Then �qx + f (x) = f (x)

is C1 on
���
2
; 3�
2

�
and has two simple zeros 0; � in int

����
2
; 3�
2

��
=
���
2
; 3�
2

�
. The result

p 2 (0; �) means that p approaches to 0 very closely. Since the system (6) is unde�ned

when p = 0, we just consider the dynamic for p = 0:01. Observe the dynamic in �gure

3 for theorem 2.6 with an initial point (x0; y0) = (0:01; 0:02). We see that there is an

irregular graph in the xy-plane. We can also see the graphs of iteration of x- and y-

components of (6) in �gures 4 and 5.

Figure 3: the dynamic diagram the example for theorem 2.6
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Figure 4: the graph of iteration of x-component of (6) with iterating times from 1 to 500
for theorem 2.6

Figure 5: the graph of iteration of y-component of (6) with iterating times from 1 to 500
for theorem 2.6

To observe whether the perturbation of parameter does work, �gure 6 shows the

bifurcation about p around p = 0:01. We choose the interval of variation of p as [0:001; 1]

and also �x q = 0. With a di�erent value of p, the system begins with a randomly-selected

initial point. Afterward, print the second component of the 1000th to 1500th iterations.
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Figure 6: the bifurcation diagram of 2nd component of the map (6) about p of the example
for theorem 2.6

Next, for theorem 2.7, we let a = 6; b = 1; p = 0:01; q = 0 and de�ne f (x) = x(1� x).
Then f is C1 on [�0:1; 1:1] and has two simple zeros 0; 1 in int ([�0:1; 1:1]) = (�0:1; 1:1).
Figure 7 informs us that the system (7) also exhibits a messy diagram with an initial point

(0:01; 0:02). We also show the graphs of iteration of two components of (7) in �gures 8

and 9.

Figure 7: the dynamic diagram the example for theorem 2.7
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Figure 8: the graph of iteration of x-component of (7) with iterating times from 1 to 500
for theorem 2.7

Figure 9: the graph of iteration of y-component of (7) with iterating times from 1 to 500
for theorem 2.7

Additionally, we also show the bifurcation diagrams of the second component about

p and q individually as follows (see �gure 10 for p and �gure 11 for q with random initial

points). Choose the intervals of variation of p and q as [0:009; 0:012] and [�0:01; 0:01]
respectively.
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Figure 10: the bifurcation diagram of 2nd component of the map (7) about p of the
example for theorem 2.7 and q = 0 �xed

Figure 11: the bifurcation diagram of 2nd component of the map (7) about q of the
example for theorem 2.7 and p = 0:01 �xed

For theorem 2.8, since a cannot be zero, we consider the case that a = 0:0025, b =

0:001, p = 1, q = 0 and f (x) = 1:1� � 10�5 sin x. It's clear that f is analytic on

[0; �] n (r1; r2) for 0 < r1 < r2 < � and 11� sin r1 = 11� sin r2 = �. The parametric map
gu (x) = u sin x has period-doubling property (see �gure 12 with u from 0 to 35). We have

� q
b2p
x + 1

b2p
f (x) = 11� sin x � 34:56 sinx and 1:1� sin ([0; �] n (r1; r2)) = [0; �]. Since

� q
b2p
x + 1

b2p
f (x) has a 3-periodic point, whose period is not a power of 2, by theorem A

in [7], we get that htop

�
� q
b2p
x+ 1

b2p
f (x)

�
> 0. Thus, the hypothesis 2 of theorem 2.8 is

satis�ed.
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Figure 12: the bifurcation diagram of gu with u from 0 to 35

Next, its dynamic diagram with the initial point (0:001; 0:002) is shown in �gure 13.

We can see that its shape curls and the points on the graph are not uniformly dense.

Figure 13: the dynamic diagram the example for theorem 2.8
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The graphs of the two components of this example are shown in �gures 14 and 15. It

is observable that the situations of iterating of them act not so regularly.

Figure 14: the graph of iteration of x-component of (6) with iterating times from 1 to 500
for theorem 2.8

Figure 15: the graph of iteration of y-component of (6) with iterating times from 1 to 500
for theorem 2.8

For theorem 2.9, consider a = 5, b = 1, p = 0:01, q = 1
1:1�

and f (x) = sin x. Then f is

analytic on [0; �] n (r1; r2) for 0 < r1 < r2 < � and 1:1� sin r1 = 1:1� sin r2 = �. Moreover,
since 1

q
f (x) = 1:1� sin x, 1

q
f ([0; �] n (r1; r2)) = [0; �] and htop

�
1
q
f
�
> 0. Similarly, we

also show its dynamic diagram and the graphs of iteration of components with the initial

point (0:001; 0:002) (see �gures 16, 17 and 18).
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Figure 16: the dynamic diagram the example for theorem 2.9

Figure 17: the graph of iteration of x-component of (7) with iterating times from 1 to 500
for theorem 2.9

31



Figure 18: the graph of iteration of y-component of (7) with iterating times from 1 to 500
for theorem 2.9

We set its bifurcation diagram about the parameter p in the interval of variation

[0:009; 0:02] in �gure 19. The system (7) has the similar dynamic for a = 5, b = 1,

q = 1
1:1�

and f (x) = sin x when p is around 0:01.

Figure 19: the bifurcation diagram of 2nd component of the map (7) about p of the
example for theorem 2.9

Therefore, theorems 2.8 and 2.9 are applicable.

9.3 Examples for theorems 2.10 and 2.11

We give two examples for theorems 2.10 and 2.11 respectively in this subsection.

For theorem 2.10, consider the case a = 1
3:9
; b = 0; p = 3:9; q = 0 and f (x) = x (1� x).

Then we see that f is continuous on R and �q
a2p
y + 1

a
f
�
1
ap
y
�
= 3:9y (1� y). It's known

that 3:9y (1� y) has positive topological entropy (it has 3-periodic points).
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Now we see the dynamic diagram in �gure 20 and the graphs of iteration of two

components in �gures 21 and 22. Choose the initial point (x0; y0) = (0:01; 0:02).

Figure 20: the dynamic diagram the example for theorem 2.10

Figure 21: the graph of iteration of x-component of (6) with iterating times from 1 to 500
for theorem 2.10
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Figure 22: the graph of iteration of y-component of (6) with iterating times from 1 to 500
for theorem 2.10

The shape of �gure 20 is like a part of a parabola and its distribution is not uniform.

So it satis�es some characteristics of chaotic graphs. Figure 23 is the bifurcation diagram

about b in [�0:01; 0:01].

Figure 23: the bifurcation diagram of 2nd component of the map (6) about b of the
example for theorem 2.10

For theorem 2.11, consider another case a = 1; b = 0; p = 1; q = 0 and f (x) = 19
20
� sin x.

Clearly, f is continuous on R. Since �1
a2p
f (�x) = �f (�x) = f (x) and 1

a
f
�
1
ap
x
�
= f (x),

we have that f
��

�
21
; 20�
21

��
=
�
f
�
�
21

�
; 19�
20

�
�
�
�
21
; 20�
21

�
( f

�
�
21

�
= f

�
20�
21

�
� 0:445, �

21
�

0:15). The parametric map gu (x) = u sin (x) has also period-doubling property and

htop (f) > 0 (it has 3-periodic points). Thus, the hypothesis of theorem 2.11 is satis�ed.

Next, see the dynamic diagram in �gure 24. Moreover, �gures 25 and 26 are the graphs

of iteration of x- and y-components of (7).

34



Figure 24: the dynamic diagram the example for theorem 2.11

Figure 25: the graph of iteration of x-component of (7) with iterating times from 1 to 500
for theorem 2.11
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Figure 26: the graph of iteration of y-component of (7) with iterating times from 1 to 500
for theorem 2.11

Due to the result
p
b2 + q2 < �0 for some �0 > 0, we print two bifurcation diagrams

about b and q respectively (see �gures 27 and 28). So we can observe the chaotic property.

Figure 27: the bifurcation diagram of 2nd component of the map (7) about b of the
example for theorem 2.11 and q = 0
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Figure 28: the bifurcation diagram of 2nd component of the map (7) about q of the
example for theorem 2.11 and b = 0

Conclusively, theorems 2.10 and 2.11 do work.
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