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ABSTRACT

The main work of this thesis was giving a equivalent condition of the total
variation cutoff for Ehrenfest chains. The source of the question came from
my advisor Dr. Chen who had punished the paper, “The L?-cutoff for
reversible Markov processes”, in Journal-of Functional Analysis on 2010. And
the paper had proven the sufficient condition of the total variation cutoff. We
derived the sufficient condition for-no - cutoffs. Therefore, we proved the
contrapositive true.
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The total variation cutoff for Ehrenfest chains

Yang-Jen Fan

Abstract

We consider the family of Ehrenfest chains and provide the equivalent condition for a
total variation cutoff with specified initial states. If there is a cutoff, we also give a cutoff

time.

1 Introduction

A Markov process (X¢)ier is a stochastic process with the Markov property that, given the
value of X;, X, for s > t are conditionally independent of X, for s < t. T denotes the time and

mostly equals to {0,1,...} or [0,00). The Markov property says
P(th+1 = j’Xto = ig, e 7th—1 = in—lath = ’L) = P(th+1 = j’th = 7,), Vn Z 0,

where ig,41,..., 4, j belong to a state space S and tp < t1 < to < .-+ < tpy1. When
T = {0,1,2,...}, the process (Xi)ier is said to be a discrete time Markov chain with state
space S. The chain is called time-homogenous if P(X, 11 = j|X,, = i) = P(X1 = j|Xo = 1), for
all n > 0. The matrix K = (K(4,4))i jes with' K(%, j) = P(X1 = j|Xo = i) is called the one-step

transition matrix or Markov kernel.

If T = [0,00), the transition probability H:(i,j) = P(X; = j|Xo = ¢) forms a semigroup
ie. Hyps = HiHs and Hy = I. Suppose @ is an infinitesimal generator of H; and ¢ = sup
i€S
{—=Q(i,7)} < co. Then,
o0 n
_ N Q)"
Ht =€ —Z ol .
n=0

A realization of the semigroup (Hy)i>o is to consider a discrete time Markov chain (X,)02,

with transition matrix K = %

and a Poisson process (N (t));>o which has intensity ¢ and
is independent of (X,);2,. Then the process ¥; = Xy is a continuous time Markov chain

satisfying P(Y; = j|Yy =) = Hy(4i,7). A simple application of Bayes’ formula yields

R . N (') L .
1,G.) =3 P = 3N = mPOVE) =m) =3 e i ) vi 0 s
n=0 n=0 ’

For simplicity, when we state (X,,) as a continuous time Markov chain associated with a tran-

sition matrix K, we mean P(X; = j|Xo = i) = e *U=F)(4,5). That is, the semigroup of the



transition probability has K — I as the infinitesimal generator.

A probability 7 is called a stationary distribution for a Markov chain with transition matrix
K if tK = 7. The following two theorems display the convergence of ergodic Markov chains to

their stationary distribution. This should be related to the Perron-Frobenius theorem.

Theorem 1.1. Let K be an irreducible and aperiodic transition matrix on §. Suppose that K

has a stationary distribution 7. Then, for all x,y € S,

lim K"(z,y) = 7(y).

n—oo

Theorem 1.2. Let K be an irreducible transition matrix on S with stationary distribution .

Then, for all z,y € S,

Jim Hy(x,y) = 7(y),

In this paper, we consider Ehrenfest: chain on S,, = {0,1,... n} with transition matrix K,
given by
k k41
Kok, b+ 102 120 Kk + k) =21 vo<k<n (1.1)
n n

It is clear that K, is irreducible and has the unbiased binoemial distribution m,, as the stationary

n
distribution. That is 7, (k) = 27" In_discrete time case, since K, is of period 2, we

k
consider K;L instead, which is defined by

’ 1 n

-7 o
" oon+1 n+1+n+1

K, (1.2)
where I,, is the (n + 1) x (n + 1) identity matrix. In the above setting K, is irreducible and

aperiodic with stationary distribution m,,.

t(I—Kn)(

As a consequence of Theorem 1.1-1.2, K,!(x,%) and e~ x,y) converge to m,(y) as

t — oo. A natural question arises: How fast the convergence? The first thing is to set up a

measurement on distributions. For example, the total variation distance given by
1 (ks ) = () lrv = max {KG, (k, A) = m(A)}.

The L?(r)-distance is defined by

NI

1€Sn

Krtz(kai)_ 277' i



The convergence to stationarity has a cutoff in total variation if there is some sequence (¢, ) such

that

_ . 1 if ce(0,1)
lim [|[K;"(k, ) — () lry =
oo 0 if e>1

Similarly, in the L?(7)-distance, the cutoff means the existence of some sequence (t,) such that

. K&t (k, - oo if ce€(0,1)
lim || (k. ) — 1|2 =
oo T () 0 if e>1

(t,,) is closely related to the mixing time which is defined by
To(zp,e) = inf{t > 0|D,,(zp,t) < e},

where D,, is any distance we defined above. We refer the reader to Section 2.1 or the Chenl[1]

for more details.

We quote Chen and Saloff-Coste[2] for illustration. In the discrete time case, let ¢, =

(n/2)log(|2zn —n|//n), if

|22y, — 1|
v

then there are constant 5 >.0 and N suchthat for all n > N,

S 00, (1.3)

/tn—i-cn(w )
e o || AT A5 < BeT e,

The first inequality holds for ¢ < 0 and the second inequality is true for ¢ > 0. If (1.3) holds,
then there is a L?(7)-cutoff. In fact, (1.3) is also necessary for the L?(r)-cutoff. The main goal

of this thesis is to show the following theorem.

Theorem 1.3. Fix (zy)n>1 for all z, € S,,. Let F = {(Sn,K;,Wn)\n =1,2,...} be the family
of discrete time Ehrenfest chains and F. = {(Sy, Hy ¢, m™,)|n = 1,2,...} be the continuous time
case. The following three things are equivalent:

(i) F(resp, F.) has a total variation precutoff.

(ii) F(resp, F.) has a total variation cutoff.

(iii) |n — 2z,|//n — .



1.1 Description of the paper

In section 2, we have two parts. At the first part, we introduce the distance between two
probabilities on finite set and the mixing time. At the second part, we introduce the notion
of the total variation cutoff and precutoff. Theorem 2.1 provides an equivalent condition on
precutoff. In section 3, we introduce the technique of spectral analysis and the coupling method

to bound the total variation. The main results including theorem 1.3 are discussed in section 4.

2 Terminology

This section will give some definitions and propositions which concern the cutoff.

2.1 Distances and mixing times
In the introduction, we mention the total variation distance and the L?(m)-distance which is
related to the chi-square distance. ‘Actually, those come from more general definitions.

Definition 2.1. Let u,v berprobabilities on a finite set €.

1. The total variation distance betweenu-andwv is defined by

I = vllrvissup |u(A)=w(A)] =sup {n(A) —v(A)}.
AcQ ACQ

In the following, assume that v > 0 and set h = L.
2. For p € [1,00), the LP(v)-distance between p and v is defined by

1

p

1B =1l = (Z () — 1|pV(93)> :
€N

3. The L*°(v)-distance is given by

|h(x) — 1|00 :=sup |h(x) — 1].
e

Proposition 2.1. [3, Lemma 2.4.1] Let v and u be probabilities on a finite set ). Assume that

v>0andset h=~%

v

1. Set v, =inf v(x). For 1 <r < s < oo,
zeN

1_1
[ =1l < [lh=1fls <w "[[h =1},



2. [l —vllry = 3Ih = 1]

Let (X,,) be an irreducible Markov chain on a finite state space S with initial distribution p
and stationary distribution w. Let K be the transition matrix and | - ||, be the measurements
introduced in Definition 2.1. The LP(7)-distance of the chain (X,,) is defined to be a real
valued function D) (p,n) := ||uK™ — 7||,. If p is a dirac mass function J,, i.e. dy(x) = 1 and
dz(y) = 0 if y # x, we write briefly D,(x,n) for Dy,(d;,n). The max-LP(r)-distance is defined

by Dp(n) :=sup Dp(u,n). Clearly, Dp(n) :=sup Dp(z,n).
n T

Definition 2.2. Let D,(u,n) and Dy(n) be the LP-distance.

1. The LP(m)-mixing time is defined to be
Tp(p,e) :=1inf{n > 0|Dy(u,n) < e}, Ve >0,
and inf() := co.
2. The max-LP(m)-mixing time is-defined by
Tp(e) == inf{n > 0|Dp(n) < e} =sup Ty, ) =sup Tp(x,e), Ve > 0.
n x

The case for continuous-time chainsgoes in the same way except the domain is replaced by [0, 00)
and we use Dy, and T to represent the LP(r)-distance.and LP(r)-mixing time respectively.

Proposition 2.2. Suppose Dy(p, ), Dp(*), Tp(p,-), Tp(-) are those in Definition 2.2.

1. Dy(p,-), Dp() are non-increasing.
2. T,(u,-), Tp(-) are non-increasing.
3. If Ty(p,€) < oo, then Dy(p, Tp(p,e)) < e. If Tp,(e) < oo, then Dp(T,(e)) < e.

Remark 2.1. The above proposition also applies for the continuous time case. In Proposition

2.2, if 0 < Ty (p,€) < oo, then Dy(u, Ty (11,€)) = €. Similarly, if 0 < T7(e) < oo, Dy(T;(¢)) = €.

Remark 2.2. The definition of the distance and mixing time in total variation is the same as

in Definition 2.2. Proposition 2.2 and Remark 2.1 also apply for the total variation.

2.2 Cutoffs

Let F = {(Sm, Km,m™m);m = 1,2,...} be a family of ergodic Markov chains.



Definition 2.3. We called F has a total variation cutoff if for all ,6 € (0, 1),

lim Trv(xm,€)

=1.
m—c0 Ty (X, )

Remark 2.3. The continuous time case is defined by the similar way.

The following proposition provides an equivalent description on the total variation cutoff. When

discussing the discrete time family F, we assume
lim Try(xm,d0) = oo for some 0 < §p < 1. (2.1)
m—r0o0

Proposition 2.3. Assume (2.1) holds. F has a total variation cutoff if and only if there is a

sequence of positive integers (a,,) s.t.

lim Dry(xm, |cam]) =1 if ¢€(0,1),

m—r0o0

and

lim Dyy(#m,{ean]) =0 if ¢> 1.

m—0o0

In particular, (an)5°_; can be ¢hosen to (v (xm, 0))or for any 0 < 6 < 1.

Proof. Suppose there is a total variation cutoff: Fix ¢ € (0,1) and § < §yg. Given n € (0, %),

there is a M > 0 such that,

— 1| <myvVm > M.
TTV(wrm(S) | ¢

Expand the above inequality, we obtain

Trv(zm,0)(1 —n) < Try(zm, ) < Trv(zm,6)(1+n). (2.2)

By the first inequality of (2.2), we have

DTV(fL'm, LTTV(:cm,é)(l — U)J) 2 DTV(xmaTTV($m75) — 1) Z E.

Take the limit inferior, we have

lim Dry (zm, | Trv (Tm,0)(1 —2n)]) = 1.

m—ro0

By the second inequality of (2.2), we have

€ 2> Dry(xm, Trv(@m, €)) = Drv(zm, [Trv(2m, 6)(1 +n1)]).

This implies
lim DTv(l“ym [TTV(xma 5)(1 + 77)~|) <0.

m—o0



For the converse, at first, we have observed if € > §g, then

— T ms
m TV (Zm, €)

< 1. 2.3
A @m80) (2:3)

And if € < §g, then

. TTV(:L‘m7€)
lim ————2 >1. 2.4
m—0o TTV(xm,(SO) - ( )

Fix ¢ > 1. Given ¢ € [dy, 1), there exists a M > 0 such that for all m > M

Drv(2m, [cam]) < 00 < Doy (Tm, Trv (zm,do) — 1),

and

1
1 — Dry(zm, LgamJ) <1—e<1—=Drv(@m, Trv(Tm,e)).

Those imply

1
I_EamJ < TTV(J;T)’HE) < TTV(:UmvéO) < [Ca‘m—| + 17 v m > M.

According the last inequality, we know a,, —> oco. Besides, we get

1
T = Ty VM
Take limit inferior
Try(x 1
m@@%zg, Ve > 1.
By (2.3), we have
lim T (@m,€) =1/ Ye € [0, 1).

m=0 Ly (T, o)
Given ¢ € (0,4p), there is a M > 0 such that for all m > M’

Dry(zm, [cam]) < € < Dry(xm, Trv(Tm,€) — 1),

and
1
1 — Dpy (zm, LEGmJ) <1—100 <1— Dry(xm, Try(Tm,do)).

We have inequalities
1 /
I_EamJ < Trv(wm,00) < Try(zm,e) < [cam] +1, Vm > M.

Hence, we will similarly have

— T
lim M§c2,Vc>l.
m—c0 Ty (2, 00)

By (2.4), we have
1 TTV(x’ma 8)
im ————=

=1, Vee (0,d).
m—o0 Ty (X, 00) (0,00)



Remark 2.4. The Proposition 2.3 also holds in continuous time cases without the assumption

(2.1).

Definition 2.4. We called F has a total variation precutoff if there exists constants ¢ > 1 and
e>0s.t. forall0 < <e,
— T
e TV (T, 6)
m—00 Ty (T, €)

<c (2.5)
Proposition 2.4. Assume (2.1) holds. F has a total variation precutoff if and only if there is
a sequence of positive integers (a,,) and ¢ > 1 s.t.

lim Dry(am,[cam]) =0 and lim Dry(zm, [am]) > 0. (2.6)

m—o0 m—00

Proof. Suppose F has a precutoff. Let e; = min{e, dp}. By (2.5), given § € (0,£1), we may find
a M >0 s.t.

T 5
sup Lrv(@m0) o,

m>M Trv(2m,€1)
This implies
TTV(xmagl) < TT\/(LEm, (5) < 2CTTv(£L‘m,€1), Vm > M. (27)

By the second inequality of (2:7),
Drv (zm, [2¢Tpy(2m, €1)]) < Doy (2m, Trv(rm, 0)) < 0, V. m > M.

Then

@ DTv(wm, [QCTTv((L'm,Elﬂ) <46, Voe (0,81).

Let ¢ tend to 0, we get
lim DTv(CCm, [QCTTV(xmagl)—D =0.

m—0o0

Since Ty (Tm, 00) < Ty (zm, 1), we know Ty (24, 1) —> oo. Therefore,

Try (Tm,e1) — 1
TTV(xm7 61)

— 1.

Choose M’ > 0 s.t., for all m > M,

%TTV(J:m@l) < Ty (m, 1) — 1.
Then
Dy (2m, %TTV(a:m,gl)J) > Doy (@m, Trv (@m, le1) —1]) > e1 >0, Vm > M .
It implies

) 1
lim Dry(zpm, L%TTV(CUmﬂ?l)J) >0

m—r o0



Choosing am = | £Trv (2m,c1)] and the new c is 2¢ > 1 gives the desired (2.6).
To show the converse, suppose there are a sequence (a,,) and ¢ > 1 s.t. (2.6) holds. Given
e € (0,0p), we can find M > 0 s.t.

sup Dry (zm, [cam]) < e < 0o < Dry (m, Try (Tm, d0) — 1), ¥ m > M.

m
Hence, we know

[cam]| > Try(Tm,00) — 1, Vm > M.

Then a,, — 0.

By the inequality of (2.6), there exists a 0 < e < lim Dpy (2, [am]). Let 6 € (0,¢), we find a

m—0o0

M >0 s.t.

sup Dry (2, [canm]) < 0 < e <inf Dry(zm, lam]), Vm > M.
m m
Observe that for all m > M,
sup D7y (Zmy[€am]) > Drv(xm, [cam] + 1),
m

and

ITI}Lf DTV(J/'m’ [amJ) < DTv(xm, LamJ — 1).

Therefore, we have following inequalities

’Vcam-| +12> TTV(mmpfs) > TTV(xme) > LamJ -1, Vm2> M/-

And then
vl S fond =172
Hence
lim M <ec

m—o0 Try (Tm, €)

Remark 2.5. If a,, — o0, then it makes no difference to replace | | to| | or [ | to | |.

Remark 2.6. The definition of the total variation precutoff also applies for continuous times

and Proposition 2.4 holds without the assumption (2.1).

For two sequences of positive integers, s, and t,,, s, = O(t,,) means that there are C' > 0
and M > 0 such that s,, < Ct,, for all m > M. s, < t, means that s,, = O(t,,) and

tm = O(8m)-



Theorem 2.1. Fix a sequence (z,,) for all x,, € Sp,. Assume (2.1) holds, and the sequence
(am) satistying ap, < Try(xm,e) for all e > 0. We say F has a total variation precutoff if and

only if there is a constant ¢ > 1 s.t.
m@oo Dry (zm, [cam]) = 0. (2.8)
Proof. Assume F has a precutoff. By definition 2.4, we have constants ¢ > 1, ¢ > 0 and let
e1 = min{e, dp }; therefore, when we give a § € (0,e1), there is a M; > 0 s.t.
Trv(xm,e1) < Try(zm,0) < cTry(Tm,e), ¥ m > M. (2.9)
And there are two constants 0 < A, My < oo s.t. for all m > Mo,
Trv(Tm,e1) < [Aan].
Let M = max{Mj, M>}. By (2.9), for all m > M,
Try (m:0) < Elpyi(@, 1) < c[Aan].
By above two inequalities, weshave
Dry (zm, €[Aam]) < Drv(@m; Trv(Tm,0)) <, V.- m > M.

Then
h_}E Dy (2m, cjAan]) = 0.

To show the converse, assume there is ¢ >1's.t. (2.8) holds. We have given dp > 0, then there
is a My > 0 s.t. for all m > My, Dpy (2, [cam|) < do. And then [can,] > Try(zm,dp) for all

m > My. We have a,, — oo.
Since a, < Ty (zm, ) for all e > 0, we fix € > 0, there are 0 < ¢ <1and My >0 s.t.

inf TTV(‘Tma 6)
m> My (07%%)

ZC/>O.

That is

Try (Tm,€) > ¢ am, ¥ m > M.

Let ¢ € (0,¢), and we can find a My > 0 s.t.
sup Dy (Tm, [cam]) <6 <e.
m>Mo

Let M = max{Mi, Ms}. We have

(CCL”{I > TTV(xmaé) > TTv(JZm,€) > Clamv V'm > M.

10



Then

< ; , Vm=>M
TTV(xm,s) - C Qy,
And we have
m TTV(xmvé) S E/
m—o0 Try(Tm,e) ~ ¢

]

Corollary 2.1. [/, Corrollary 2.3] Suppose that there is ¢ > 0 and a,, — oo such that

Trv(Tm, €) X am and Try (T, 0) = O(ay,) for all 0 < § < e. Then, the following are equivalent:
1. No subfamily of F has a total variation precutoff.

2. For all ¢ > 0,

lim Dpy(Zm, [cam]) > 0.

m—00
3. As§ — 0,
T
li_m TV(xmy 5) — o0,
m—00 Qm

Remark 2.7. The Theorem 2.1.still holds in the continuous time case without the assumption

(2.1).

Remark 2.8. Definitions of LP-cutoff and’ LP-precutoff,1 < p < oo, are similar to the cutoff
in total variation. All propositions and-theorems-in this'subsection hold for the LP-cutoff and

LP-precutoff. See [1] for details.

3 Bounding the mixing time in total variation

3.1 Spectral analysis of reversible Markov chains

We perform the spectral information to describe the transition matrix.

Lemma 3.1. /3, Lemma 1.2.9] Let K be an irreducible Markov kernel on ) with stationary

distribution w. Suppose that K is reversible and 8y = 1, 81, ..., Bj—1 are eigenvalues of K with
associated L(r)-orthonormal eigenvectors 1o = 1,1, ..., Yiq—1- Then, for z,y € Q,
Q-1
Kn( 12|

T,y) _ R
7_[_(y> ; IBZ wl(m)wl(y)
and

e y) A

= e Py (@) ei(y).

m(y) —

11



Proposition 3.1. [3, Lemma 1.3.3] Let K be an irreducible and reversible Markov kernel on a
finite set () with a stationary distribution m. If Sy = 1,51,..., Bjg—1 are eigenvalues of K and

Yo = 1,91,...,%q—1 are corresponding L?(7)-orthonormal eigenvectors, then

1
2

D )8

i>1

and

D5, t) = | Y lu(as)[Pe2 0=

i>1

Proposition 3.1 gives us the formula of L?-distance, then, by Proposition 2.1, we make L2-
distance be the upper bound of total variation distance. And we use the following proposition

to get a lower bound.

Proposition 3.2. Let ) be a finite set and i, v be probabilities on ). Assume that f is a
function on 2 (complex values are allowed) satisfying u(f) # 0 and v(f) = 0. Then

A(Varall) - Var,(f))
u(f)?

ln=vpy-=1~

Proof. Set s = ‘“(Qf)l and A= {z € Q||f(z)[ = s}. Then for z € A, |f(z) — u(f)| > s. This

e [f Z )P

52

p(A) = i Lpgey) < p(Iacy ) <

Using the Chebyshev inequality, it is obvious that
v(A) =Pu(If| =2 s) =Pu(If —v(f)| 2 8) < —5—

Putting all above together gives the desired inequality. O

We give a examples to illustrate how to use them.

Example 3.1 (The continuous-time case). Let G = (Z2)" and P : G — [0,1] be defined by
P(e;) = %, for all 1 <i < n, where e; is the vector which only the ith entry is 1 and others are

0. Let Bpqo=1— 22l nd Onz(y) = (—1)¥Y.

n

= n —ati _
D%V(axat) SDg((Sx,t) == Z e% = \/(14—6#)"—1,

Clearly,

12



. 1 . ¢
nh_>ngo D5(0z, gn(logn +¢c)) = Vet —1

= Ty (e) < T5(e) = inlogn + O:(n) as n — oo for all € > 0.

n

Set f =3 ¢ne;- Thatis, f(y) =>_ (=1)¥ fory = (y1,y2,...,Yyn). By letting p = H(0,-) and
=1 i=1
v =m, we have

p(f) =ne /™ u(f) =0, u(f*)=nn-1e*""+n, v(f*)=n.

By proposition 3.2,

4n(2 — e~ /™) > 8
n2e—4t/n = ne—4t/n

D%V(()?t) Z 1-
and

1
lim D7y(0, Zn(logn +c)) >1— 8.

n—oo
= T, () > tnlogn + O:(n) as n — oo.
Consequently, we obtained Ty, (c) = tnlogn + Oc(n). Noted that T§(e) > T4y, (€), the T5(e) =
inlogn + O(n).

3.2 Coupling of Markov chains

From the viewpoint of probability, the coupling is useful in-bounding the total variation distance.

The coupling provides a probabilistic character-on the total variation distance.

Definition 3.1. Let K be a transition-matrix-on a finite state space S. A coupling of Markov
chains with K is a process (X¢, Y:)¢>0 of which marginals X;, Y; are Markov chains with K and

initial distributions p, v, respectively; besides, the coupling satisfies following.
If X; =Y, then Xy, = Yiqy for all k > 0.

And we define the coupling time T := inf{t > 0|X; = Y;}.

Remark 3.1. We write P, , if X, Yy have distributions u, v and simplify it as P, , if Xo = x
and Yy = y.

Theorem 3.1. Let (Xy,Y;) be a coupling with Xg = = and Yy = 7w, where 7 is a stationary
distribution. Then,
Dry(z,t) < P (T > t).

Example 3.2. Let Q = Z,, and K be the kernel of the lazy simple random walk on the n-cycle.
That is, K(z,z) = 3 and K(z,x £1 (mod n)) = % for all z € Q. Consider the following

13



coupling. Let {Wy, Zylk = 0,1,...} be independent fair coins, where 1 and 0 denote heads and
tails. Set Xo =z, Yo = m=1/n and

Xpp1 = Xp+ Wi+ (=%  (mod n),Vk =0,1,....
If Xy # Y3, define
Yigr =Y + (1= Wy) - (=1)%  (mod n),

while Y41 = Xp41 of Xk = Yi. Noted that Xy and Yy forms a Markovian coupling of lazy

random walks on n-cycles.

Consider the clockwise distance Cy from x to y, that is, Cy, = Y — Xj, (mod n). It is easy to
check that Cy, is a simple random walk on {0,1,...,n} with absorbing states 0 and n and initial

state y —x (mod n). As a conclusion of Gambler’s ruin problem, if T is the coupling time, then

[\

Sup i x[T] i(n—1i) _n

Dyy (k) <max Py (T > k) &———— < sup < —,
P k o<i<n kK 4

where the last second inequality.is derived from
1
Epall| S =3 By o[T|Yo =] Ssup iy [T].
y 1‘7y

This implies Try () < [n?/4e]. In faet, the exact order of the total variation mizing time is
n?. To see this, note that f(x) = cos(2wx/n) is-an eigenvector of the transition matriz with

eigenvalue [1 4 cos(2w/n)]/2. This implies

2Dry (k) = sup Dy(x, k) =sup |[K*(x,-)/m — 1|

k(..
> <w_17f>ﬂ
- [1flloo

_ KRN0, ) = <1+cos2(2w/n))’“_

Using the inequality cos > 1 — % for all 6 € R implies that

2

Dry(k) > 3(1 — )k > Le=2m0/m 0y > 7,

where the last inequality applies the fact In(1 — 0) > —20 for 6 < 1/2. Thus, Try(e) >
[(In(1/2¢))/27%n2. Putting the upper and lower bounds together, one may conclude that the

lazy simple random walk on n-cycles has no total variation cutoff.

14



4 The total variation cutoff of Ehrenfest chains

At the beginning, we recall (1.1). The Ehrenfest chain on S,, = {0, 1,...,n} with the transition

matrix K, satisfying

Kny(kk+1)=1-% K (k+1,k) =51 vo<k<n,

n ?

n
and its stationary distribution is m,(k) = 27" for all 0 < k& < n. Concerning the
k

periodicity, we consider K;L in the discrete time case, given by

/ ]. n
K = I K
" n+1n+n+1 "

where I, is an (n + 1) x (n + 1) identity matrix. In the continuous time case, we consider the
semigroup accosiated witn K, i.e.

HI-K = t/ '
Hyy=e K0 =% <e—t,l> K.
J]°

J=0

There is a result giving a description on the eigenvalues and eigenvectors of K, in Chen and

Saloff-Coaste[2].

Lemma 4.1. [2, Theorem 6.4] The matrix I, has eigenvalues
/Bn,’i: _%a VOSZSH,

with L?(m,)-normalized right eigenvectors
—1/2

Una(z) = [ 2(—1)k ‘ , YO<i,z<n.

Remark 4.1. Krawtchouk polynomials[5] defined by

—i, —
Pi(xapan)ZQFl % R ViG{O,l,...,n},
—nNn

then the eigenvector vy, ; of K, can be rewritten as

1/2

boa() = " | P 1/2.m).
1

24

Remark 4.2. By lemma 4.1, K,,L has eigenvalues B;w‘ =1-5

with corresponding eigenvectors

Y given by K.
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4.1 The order of total variation mixing time

In this section, we treat the case Lfg"' — B and derive the order of total variation mixing

time for B > 0.

By proposition 2.1, 2Dy (zy,,t) < Da(xp,t) and 2Dy, (z,,t) < DS(xp,t), where

. 2i
D nt2 = n,i n21_ 2
[Da(n, 1)} gw),(x)u el

15

21 2
< 9 ()21 — 2 |1 _ 2t
< ;W,(ﬂﬂ)H n+1| + | n+1|
5]
< 2 Z ’¢n,i($n)|2€_4ti/(n+1) +€—4nt/(n+1)’ (4'1)

=1

where the first inequality is derived from ¢y, —i(x) = (—1)%yi(z) for all z,i € {0, ..., n}[2].

By recurrence relation of P;(x,1/2;n), we have; for all i € {1,...,n — 1},

n — 2x,

¢n,i+1(xn) = \/ﬁ An,iwn,i(xn) - Bn,ﬂ/}n,i—l(xn)y

n Bn,i _ i(n—i+1)

where A,,; = (IR (+D)(n—=i)"

Observe that A, ; <1, By, ; <A forall 1 <i < n.Let y=sup {|n — 2z, |/\/n} V1 < co. Then
n

[Yniv1(@n)| < V[na@)lHlnial, V1I<i<n, n>1

Since we know the initial state |¢, o(2,)| = 1, we use induction to obtain, for all i € {0,1,...,n},

|wn,z(xn)| § (7 + 1)i'

Let t = c(n + 1), where ¢ > $In2(y + 1)2, we have

5] 00 .
(1) < 23 [+ D) e e <23 (| + D]’
1 i=1
2 _—4c
_ o (v+1)%e <9
1—(y+1)%2e 4

< A(y+ 1)

0[3

%

— 1

(v+ 1)26‘41

2

Since 2Dry (2, t) < Da(zn,t), Dry(zn, c(n+ 1)) < (v + 1)e? for all ¢ > $In2(y + 1), Then,

for all e € (0, 1),

v+1

TT\/(l‘n, 6) S (ln

1
Recall the proposition 3.2, let f(z) = ¥p 1(x), p = K. (#n,-) and v = m,.
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v =S n,1(K)T _3 (ne2 " -n—
(f) kgow,uf) (k) kZ(\/,;)( )2 0

w(f?) Zé) Vi 1 (R) K (2, ) :z;o (1¢n2(k) + c2) K" (2n, k) = 18,9 2(20) + c2,

where ¢; = 1/2(1 —1/n) and ¢z = 1.

n " — 2 n
V(12 = 302 (Kvak) = (%)(k)ﬁ"

— :L|:n24nZk(:>(;)"+4Zk2(:>(;)"] =1
k=0 k=0

Hence, Var,(f) = (1 - ) (=32 S S0 (82220021 — 22,2 and Van, (f) = 1.

n+1 n vn n+1
47 n = 2%, n — 2xy, 2 om
2+ (1= L P ] = 2P -
1= )" )
n+1 vn
Let m = c¢(n+ 1), ¢ > 0. Then
4 n — 2x n —2x 2
24 (11— ) EIR gy (P22 - Sy
Dry(@n,m) > 1—4. n+1 \/rg n_z\éﬁ n+1
(1 - 7)2c(n+1)(7n)2
n+1 vn
We have
lim Dyy(zn,c¢(n+1)) > 1 — — (2% - 1)

B?
n—0o0
Therefore, Ty (zy,€) < n for all € small enough and B large enough if |n — 2x,|//n — B,

where 0 < B < o0.

By proposition 3.1 and lemma 4.1,

D5 OF = 3 W) Pe~ 0% <3 gl 040
=1 =1
< A(y+1)%et

17



where the last inequality is given by the discrete time case when ¢t = ¢(n + 1), ¢ > ian(*y +1)2.

In the similar way, we use proposition 3.2, let f(z) = ¢ 1(x), p = Hpt(xn,-), v = mp.

M(f) — eft(lfﬁn,l)wml(xn) — 672t/n(n?/2%vn).
v(f) = 0.
u(f?) = Cleit(liﬁn’2)¢n,2(l‘n) + ¢, where ¢ = \/m and co = 1.

v(f2) = 1.

Hence, Var,(f) = e~4/" [(7"?/25”)2 — 1] +1-— 6_4'5/”(”7\/27%”)2 and Var,(f) = 1.

Let t = ¢n, ¢ > 0, we obtain

. 4
lim Dry(zp,c(n+1)) >1— ?(2648 —1).
n—oo

Observe that the continuous time case has the same bound with the discrete time case, T7y, (zp, €) <
n for all € small enough and B.large enough. If v < 711\/ B2 + 4—1, then there is no total variation

cutoff. But it’s not sufficient to conclude the precutoff.

For B = 0, we can find the upper bound of thetotal variation distance,
DTv(JIn, c(n + 1)) < (’Y + 1)6726,

where ¢ < %ln 2(y + 1)%2. But the lower bound is not available to use the same method.

4.2 Proof of Theorem 1.3

We have known (i7i) = (i) by Chen[2] and (i7) = (i) by their definitions. Therefore, it remains
to show (i) = (i4i). For that purpose, our idea is to show the contrapositive true. Suppose
|n — 22,|/4/n is bounded for all n > 0, we need to show F and F. have no total variation

precutoff. The proof is divided into two cases.
1. The discrete time case.

The discrete time Ehrenfest chain K, still has a probability n/(n 4+ 1) to develop to the chain
K, and it’s more possible than staying still. The period of a reversible and irreducible chain

is just 1 or 2. Since a reversibility, a chain is periodic if and only if —1 is an eigenvalue
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of its transition matrix. By lemma 4.1, the respective eigenvector is ¥, n(z) = (—1)*. Let

A, ={z € S|z is even}. Clearly, ¢, =214, — 1.

Dy (wn,m) > |K," (0, An) = mn(A))|
1 ' m
= §|[Kn (Tn, ) = ()2 14, — 1)
= ZZ an wnz Tn ﬂm i(y )wn,n(y)_ Z ﬂ'n(y)@bn,n(y)
y=01=0 y=0
1 Zn A m _1 _ 2n m

> %e—2m/(n+1)’

for n > 3, where the last inequality is given by In(1 —¢) > —2¢ for t € [0, 1/2].
Then, for0<€§ﬁandn23,

1 1
TTV(xnvs) > Lf ]n(—

S In()J(n+ 1),

It’s important that we don’t need 0 assume {n.— an] /+/n converge to a nonzero real value. By

subsection 4.1, we have Ty (z,;€) <n,0 <€ < 5. Forn >3 and c > 1,
1
DTV(xna I_C'I'LJ) > DTV('TTM I_C(n + 1)J) > §e_|'ZCJ-

By Corollary 2.1, there is no total variation precutoff,

2. The continuous time case.

By Corollary 2.1, we need to show

lim Dy py(zy,an) >0, Va>0.

n—oo

At the beginning, we consider the Ehrenfest chain (X,)7%, on Sz, = {0,1,...,2n} and a
sequence (zoy,) satisfying |2n — 2x9,|/vV2n — c.

Part 1. ¢ >0
By the symmetry of Ehrenfest chain, we assume the initial states 2o, = n — ¢,/ ¢ — ¢/V/2
and choose the proper testing set As, = {0,1,...,n} s.t.

HHQn,t(fEQn? ) - 7r2n(')HTV > H2n,t(x2n7A2n) - 7T2n(A2n>

0o
g
- e_t Z ﬁKgn(l?m A2n) - 7T2n(A2n)- (4.2)
j=0 7"
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Set T,, = inf{t > 0/X; = n}. Using the strong Markov property, the Kgn(:ngn,Agn) can be
derived as follow.

K%n(x%, A2n) = PxQn (XJ S A2n|Tn = /l:)Pm2n (Tn = Z)

K3 (n, Asy) Pay, (Tyy = 0) + Pay, (T > ) (4.3)

M= L[+

Il
o

)

The next inequality will apply the following proposition.
Proposition 4.1. Let K, is the transition matrix of the Ehrenfest chain on S,. Suppose

A={0,1,...,[n/2]}. Then K (z,A) >1/2 for allx € A, t > 0.

See the appendix for a proof of this proposition. Using Proposition 4.1, we have

. . 1 1 .
(4.3) = S Pu,y, (Tn < J) + Puy, (Tn > j) = 9 + EPan(Tn > j).

DN |

Observe that 72, (A2n) = 4 + 3m2n(n) = 3 + O(—=). And then we combine above information

to (4.2),

B

JelSa e ,
Dy (i) =53 5B > 5) + O

Y

7/ tJ
o N ﬁP@n(Tn > 1) +0(—), (4.4)

where for all I > 0.

Note that if we let | = [bn], b > a > 0, then

1
lim Dy (230,an) > 5 lim Py, (T, > [bn]).

n—oo n—oo

That exhibits that we suffice to show lim Py, (7, > [bn]) > C for some C' > 0. For that

n—oo
reason, we compare the Ehrenfest chain with the simple random walk on Z.

Set the T' = inf{m > 0|X,,, = n or X,;, = 2x9,, — n}. Clearly, P,,, (T, > 1) > Py, (T >1) for
all | > 0. Let (Y,,)%_, be the simple random walk on Z and T = inf{m > 0|Y,, = n or ¥;, =
2x9, —n}. Write

Po, (T > 1) > an(l) Py, (T > 1),

2n

where l

o n—=ron - 2
aan=<1—”’f”%) P_(mlf”%>].
n n
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We call w is a path if w is a sequence (w;)$2,, for all w; € Z satisfying |w;1 —w;| =1 for alli > 0
and 2z9, —n < w; < n for all 0 < i <. And we use the notion (w;, w;t+1) to describe a edge
in w from w; to w;41. Clearly, the probability of (w;,w;t1) is Kop(wj, wit1). Define p(z : y,1),
Vao,y € {2x9, —n+1,...,n—1}, 1 € Z*, be a collection of paths of length [ which started at x
and ended at y. Hence
Pop(T>1)= Y Puy,(plazn : k1))

29y, —n<k<n
In each w € p(xay, : k,1) for 229, —n < k < n, we collect all edges of w and we can partition this
collection into two subcollections. One is A(w) = {(4,7 + 1)|z2n, < i < k} if & > x9y; instead,
A(w) = {(i,7 — 1)|x2, > i > k}. And the other one B(w) is a union of {(i,7+ 1), (i + 1,4)} for
229, —n+1 <t <n—1. For all 2z4, —n <1 < n,

1_i>i>1 2T9, — M :1 1_2n—2932n 7
2n — 2n — 2 n 2 n

and

i, i-t L=t 1 (n?—n?+2ni —i?
2n on o 4n? L n?
2
oI <2n—2x2n> ] |
! n
Now we can make a conclusion that Py (w) > an(l)ﬁmn (w) for all w € p(xg, : k,l) and

219, — n < k < n, where

Let b = (a—i—%},

P, (T >bn) > an(bn)P,, (T > bn)

= an(bn)ﬁo(ﬂ%\/ﬁj > bn)

> an(bn) exp{;f?}.

where TLC” vm| = inf{m > 0[Y;, = [eny/n] or Y, = —[cpy/n]} and the last inequality is given
by Lemma A.1. Applying this to (4.4), we have

l\D\}—t
|
M*

an bn)exp{ _2b2} +o(-L).

Cn

D%y (z2n, an)

Bl

By the Lemma A.2, we obtain

lim D%y (zon,an) > %6_(362+2/62)b >0, Vb>max{c 1}.

n—oo
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By Corollary 2.1, no subfamily of F. has total variation precutoff if ¢ > 0.

When the state space is {0,1,...,2n + 1}, we choose the proper testing set Ag,+1 =

{0,1,...,n+ 1} and do the same argument again. There is no total variation precutoff.

Part 2. ¢c=0

Recall the Lemma 3.1, we have

M—l—Ze (1=Bn.i)y, i ()i (1)

7Tny

We set Dntlfnb) _y ¢ (1 4y 4 gu(t,y), where

Tn(Y)

fn(t7y) = e_t(l_’gn’z)wn,2(xn)wn,2(y) and gn(ta y) = Z e_t(l_ﬁn’i)wn,i(x)djn,i(y)
i=1,i#2

By Proposition 2.1, 2D5.,(z,t) = ||H"t(m — e =lfn(t, ) + gn(t, )]

Observe that

() + galts )l = D Afalt, k) galt, k) |ma (k)

k=0

>N TR R Eak) = > |gn(t k) ma (k)
k=0 k=0
= A = Mlgn ()2,

where the first inequality is given by the triangle inequality and the second inequality is given

by Proposition 2.1.

Therefore, we suffice to show that, for all ¢ > 0,

dim ([l ()l = llgn(t)l2) >

Then
n n 2
lgn@E 3 = Do D e Py (@) (k)| ma(k)

k=0 |i=1,i#2

= <wn,1(xn))2ei4t/n+ Z (wn,i(xn))Qeillti/n Wn(k)
k=0 i=3

_ n—=2Tn o _aim - , 2 _—dti/n

= |5 +Z§;<¢n,z<xn>>e :
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By the argument in section 4.1, let v = sup,, {|n — 2z,|/v/n} V1 < oo, then we have [y, ;(z,)| <
(y+ 1) for all 0 < i < n.

1/2
n—2x “ .
lon(t. Mz < |(Fo= e M S (1)
vn i=3
n—2zx > V2
< — “Tn\2 —at/n 1)2i—4ti/n
< | 7 )2em Mty ; (v +1)%e
1/2
< (n - 2xn)2€—4t/n + [(7 + 1)2674{//”]3
- vn 1— (y+1)2e4t/n
Then 12
n—2x _ v+ 1)2e 43
lgulen, ) < [(= 2zt (0 H e A
vn 1—(y+1)%
if (v + 1)% < e*c. Therefore, for (y+ 1)% < e,
_ 1/2
(,Y+ 1)36 12¢
lim Hgn(cn, )H2 = ‘1 — (’Y + 1)26_4c (45)
Note that |t 2(x,)| = | M[(”};n? —1]|;,and since % — 0, we can choose N > 0

s.t. foralln > N

a3 | 301 ).

Then, for n > N,

Ialt, i 2 (e (Z lwn,zw)m(k))
> e et {kZ:O S - 1]wn<k>}
> (= et {§+ =)~ Ui
> S0 Dyt (1 -k < )

By the central limit theorem,

1
) Y, —n/2 1 ) Y, —n/2 1 2 2 9
Hm 7 (|2 < 2) = lm (|2l < ) = e Ry > 1/3.
T (Z2EE) < ) = i m (P < ) = = [ e > 3
Hence

, 1 _ (v +1)3/2e7 %

lim n(en, )1 — |lgn(cn, - > —ete -

T (|l fuen, s = llgn(en. i) 5 Jl—(r1)e &

el (1)) 2
= e <8 \/1—(74—1)26_4‘3) >0
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if ¢ > L In{(v +1)[64(y + 1) + 1]}. By the total variation is non-increasing, we have

lim D%y (zn,cn) >0, Vec>0.

n—oo

By Corollary 2.1, no subfamily has a total variation precutoff if ¢ = 0.

A Appendix

The following proposition is the Proposition 4.1 in section 4.

Proposition A.l1. Let K, is the transition matrix of the Ehrenfest chain on S,. Suppose

A={0,1,...,[n/2]}. Then K]*(z,A) > 1/2 for allz € A, m > 0.

Proof. Let S,, = {0,1,...,2n}. Obviously, A is more elements than A°. By the symmetry
of the Ehrenfest chain, K7 (z,A) > 1
{0,1,,...,2n + 1}. Note K, (i,i + 1) 21 Ka(igir1) if i < n, and Kn(i,i + 1) < Kn(i,i — 1) if
i >n,and K,(n,n+1) = K,,(n+1yn) = (n+1)/(2n+1). That implies K*(z, A) > K"(n+1, A)
for all z € A, m > 0. We show that K2™(n, n— 2i).> K2™(n,n + 2i +2) > K2"(n,n — 2i — 2)

for all x € A, m > 0. Consider the state space is

for all i > 0, m > 0.
Let m = 1. K%(n,n) > K2(nyn+ 2) > K?*(n,n —2).

Let m = w, for all ¢ > 0,
K*(n,n —2i) > K**(n,n + 2i + 2) > K*“(n,n — 2i — 2).

Case 1: show K?L(w—’_l)(n, n) > Kg(w+1)(n, n+ 2).

Expand K2 (n,n) =5 K29(n,i)K2(i,n) and K2 (n,n+2) =5 K29(n,i)K2(i,n + 2).

3 3
Since we know

2
a K%(n,n) — K*(n,n+2) = "(2‘5175"21

2
b K2(n+2,n)—K2(n+2,n+2):é‘T’f)§5

c K?(n—2,n)— K*(n+4,n+2)= éﬁiﬁ%

And a+b+c=0. Comparison entries of > K*¥(n,i)K2(i,n) and > K**(n,i)K?(i,n + 2), then

we obtain Kg(wﬂ)(n, n) > Kg(wﬂ)(n, n+2).
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Case 2: show K2 (n, n42i) > K2t (n, n—2i) > K2+t (n,n+2i+2), Vi > 1. Observe

that, for i > 1,

K2t (nn+2i) = K2(n,n+2(i — 1)K2(n+2(i — 1),n + 2i)
+ K*(n,n+20)K?(n+ 2i,n + 2i)

+ K*(n,n+2(i+1)K*n+ 23+ 1),n + 2i),

K2 (n,n —2i) = K*“(n,n—2(i — 1))K*(n — 2(i — 1),n — 2i)
+ K*(n,n—2i)K?(n — 2i,n — 2i)

+ K*(n,n—2(i+1)K?*(n—2(i+1),n — 2i),

K2(w+1)(n,n+2i+2) = K2w(n,n—|—2i)K2(n—|—2i,n+2i+2)
+ K®™(n,n+2i+2)K2(n+2i+2,n+2i +2)

+ K?(n,n+2i +4)K*(n+ 2i +4,n + 2i +2).

We claim that suppose a + b+¢ = d+e+ f, where a >d >0,b>e >0, f>c>0
and A >D > B >FE > C > F-> 0, then Aa + Bb + Cc > Dd + Fe + Ff. It’s easy
to prove if let a —d = &; > 0'and b — e = €3 > 0. Thus, it implies K2+ (n, n 4+ 2i) >
K2wth(n n — 2i) > K2@ED(n n 4 2 42), ¥i > 1. By an induction, K>™(n,n — 2i) >
K2 (n,n + 2i +2) > K2 (nym—2i = 2), Vi > 0/m > 0. Then K" l(n 4+ 1,n — 2i) >
K2 (n +1,n+2i+2) > K2 nd 1,n —2i=2), Vi > 0, m > 0. Since the symmetry of
Ehrenfest chains, K?™(n + 1,n + 1 —2i) > K**(n+ 1,n+ 3 +2i) > K*"(n + 1,n — 1 — 24),

Vi >0, m > 0.

For a discrete time simple random walk (X,,)7°, on Z, the first passage time to {£m} is

defined by
T, = inf{n > 0|X,, =m or X,, = —m}
For a continuous time simple random walk on Z, let N (t) be a Poisson process with parameter

1 and independent of X, and set Y; = Xy). Thus, the first passage time to {+m} is defined
by

T, = inf{t > 0]Y; = m or Y; = —m}.

Lemma A.1. [}, Theorem 3.1] Let T,,, Ty, be defined above and Py be the conditional probability

given the initial state is 0. Then, for any b > 1 and m > 5,

min{ Py (T, > bm?), Po(Tp > bm?)} > e~ 2.
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Lemma A.2. [1, Lemma A.1] For n > 0, let a, € RT, b, € Z*, ¢, = =% and d, =

Van

e‘a”Zfloaii!i. Assume that a,, + b, — co. Then

i d, =@ (Tm c,), lim dn=<1>(hm cn),
n—00 n—00 n—00 n—00

where ®(z) = \/%f‘fooe*’gﬂdt.

In particular, if ¢, converges (the limit can be +oco0 and —o0), then lim d, = ® ( lim cn).
n—oo n—o0
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