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厄任菲斯特甕的相變現象 

 

 

學生：范揚仁                    指導教授：陳冠宇 

 

國立交通大學應用數學系（研究所）碩士班 

 

摘 要 

 

本論文主要為研究厄任菲斯特甕的相變現象，並證明了此現象存在

性的等價條件。資料來源起於指導教授陳冠宇於 2010 年發表在

Journal of Functional Analysis 的文章 The 2L -cutoff for reversible 

Markov processes，而此文章已證明厄任菲斯特甕的相變存在性之充

分條件。利用相變現象的存在性定義，我們先是證明了其不存在的充

分條件。借此我們去證明原命題的逆否命題為真。 



ii 
 

The total variation cutoff for Ehrenfest chains 

 
 

Student：Yang-Jen Fan            Advisor：Dr. Guan-Yu Chen 

 
 

Department（Institute）of Applied Mathematics 

National Chiao Tung University 
 
 

ABSTRACT 
 
 
 

  The main work of this thesis was giving a equivalent condition of the total 
variation cutoff for Ehrenfest chains. The source of the question came from 
my advisor Dr. Chen who had punished the paper, “The 2L -cutoff for 
reversible Markov processes”, in Journal of Functional Analysis on 2010. And 
the paper had proven the sufficient condition of the total variation cutoff. We 
derived the sufficient condition for no cutoffs. Therefore, we proved the 
contrapositive true. 
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The total variation cutoff for Ehrenfest chains

Yang-Jen Fan

Abstract

We consider the family of Ehrenfest chains and provide the equivalent condition for a

total variation cutoff with specified initial states. If there is a cutoff, we also give a cutoff

time.

1 Introduction

A Markov process (Xt)t∈T is a stochastic process with the Markov property that, given the

value of Xt, Xs for s > t are conditionally independent of Xs for s < t. T denotes the time and

mostly equals to {0, 1, . . .} or [0,∞). The Markov property says

P (Xtn+1 = j|Xt0 = i0, . . . , Xtn−1 = in−1, Xtn = i) = P (Xtn+1 = j|Xtn = i), ∀ n ≥ 0,

where i0, i1, . . ., i, j belong to a state space S and t0 < t1 < t2 < · · · < tn+1. When

T = {0, 1, 2, . . .}, the process (Xt)t∈T is said to be a discrete time Markov chain with state

space S. The chain is called time-homogenous if P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i), for

all n ≥ 0. The matrix K = (K(i, j))i,j∈S with K(i, j) = P (X1 = j|X0 = i) is called the one-step

transition matrix or Markov kernel.

If T = [0,∞), the transition probability Ht(i, j) = P (Xt = j|X0 = i) forms a semigroup

i.e. Ht+s = HtHs and H0 = I. Suppose Q is an infinitesimal generator of Ht and q = sup
i∈S

{−Q(i, i)} <∞. Then,

Ht = etQ :=

∞∑
n=0

(tQ)n

n!
.

A realization of the semigroup (Ht)t≥0 is to consider a discrete time Markov chain (Xn)∞n=0

with transition matrix K = Q+qI
q and a Poisson process (N(t))t≥0 which has intensity q and

is independent of (Xn)∞n=0. Then the process Yt = XN(t) is a continuous time Markov chain

satisfying P (Yt = j|Y0 = i) = Ht(i, j). A simple application of Bayes’ formula yields

Ht(i, j) =
∞∑
n=0

Pi(XN(t) = j|N(t) = n)P (N(t) = n) =
∞∑
n=0

e−qt
(qt)n

n!
Kn(i, j), ∀ t ≥ 0, i, j ∈ S.

For simplicity, when we state (Xn) as a continuous time Markov chain associated with a tran-

sition matrix K, we mean P (Xt = j|X0 = i) = e−t(I−K)(i, j). That is, the semigroup of the
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transition probability has K − I as the infinitesimal generator.

A probability π is called a stationary distribution for a Markov chain with transition matrix

K if πK = π. The following two theorems display the convergence of ergodic Markov chains to

their stationary distribution. This should be related to the Perron-Frobenius theorem.

Theorem 1.1. Let K be an irreducible and aperiodic transition matrix on S. Suppose that K

has a stationary distribution π. Then, for all x, y ∈ S,

lim
n→∞

Kn(x, y) = π(y).

Theorem 1.2. Let K be an irreducible transition matrix on S with stationary distribution π.

Then, for all x, y ∈ S,

lim
t→∞

Ht(x, y) = π(y),

In this paper, we consider Ehrenfest chain on Sn = {0, 1, . . . n} with transition matrix Kn

given by

Kn(k, k + 1) = 1− k

n
, Kn(k + 1, k) =

k + 1

n
, ∀ 0 ≤ k < n. (1.1)

It is clear that Kn is irreducible and has the unbiased binomial distribution πn as the stationary

distribution. That is πn(k) =

 n

k

 2−n. In discrete time case, since Kn is of period 2, we

consider K
′
n instead, which is defined by

K
′
n =

1

n+ 1
In+1 +

n

n+ 1
Kn, (1.2)

where In is the (n + 1) × (n + 1) identity matrix. In the above setting K
′
n is irreducible and

aperiodic with stationary distribution πn.

As a consequence of Theorem 1.1-1.2, K
′t
n (x, y) and e−t(I−Kn)(x, y) converge to πn(y) as

t → ∞. A natural question arises: How fast the convergence? The first thing is to set up a

measurement on distributions. For example, the total variation distance given by

‖Kt
n(k, ·)− πn(·)‖TV := max

A⊆Sn
{Kt

n(k,A)− πn(A)}.

The L2(π)-distance is defined by

‖K
t
n(k, ·)
πn(·)

− 1‖2 :=

(∑
i∈Sn

|K
t
n(k, i)

πn(i)
− 1|2πn(i)

) 1
2

.
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The convergence to stationarity has a cutoff in total variation if there is some sequence (tn) such

that

lim
n→∞

‖Kctn
n (k, ·)− πn(·)‖TV =

 1 if c ∈ (0, 1)

0 if c > 1
.

Similarly, in the L2(π)-distance, the cutoff means the existence of some sequence (tn) such that

lim
n→∞

‖K
ctn
n (k, ·)
πn(·)

− 1‖2 =

 ∞ if c ∈ (0, 1)

0 if c > 1
.

(tn) is closely related to the mixing time which is defined by

Tn(xn, ε) := inf{t ≥ 0|Dn(xn, t) ≤ ε},

where Dn is any distance we defined above. We refer the reader to Section 2.1 or the Chen[1]

for more details.

We quote Chen and Saloff-Coste[2] for illustration. In the discrete time case, let tn =

(n/2) log(|2xn − n|/
√
n), if

|2xn − n|√
n

−→∞, (1.3)

then there are constant β > 0 and N such that for all n ≥ N ,

e−c ≤ ‖K
′
n
tn+cn

(xn, ·)
πn(·)

− 1‖2 ≤ βe−2c.

The first inequality holds for c < 0 and the second inequality is true for c > 0. If (1.3) holds,

then there is a L2(π)-cutoff. In fact, (1.3) is also necessary for the L2(π)-cutoff. The main goal

of this thesis is to show the following theorem.

Theorem 1.3. Fix (xn)n≥1 for all xn ∈ Sn. Let F = {(Sn,K
′
n, πn)|n = 1, 2, . . .} be the family

of discrete time Ehrenfest chains and Fc = {(Sn, Hn,t, πn)|n = 1, 2, . . .} be the continuous time

case. The following three things are equivalent:

(i) F(resp, Fc) has a total variation precutoff.

(ii) F(resp, Fc) has a total variation cutoff.

(iii) |n− 2xn|/
√
n→∞.
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1.1 Description of the paper

In section 2, we have two parts. At the first part, we introduce the distance between two

probabilities on finite set and the mixing time. At the second part, we introduce the notion

of the total variation cutoff and precutoff. Theorem 2.1 provides an equivalent condition on

precutoff. In section 3, we introduce the technique of spectral analysis and the coupling method

to bound the total variation. The main results including theorem 1.3 are discussed in section 4.

2 Terminology

This section will give some definitions and propositions which concern the cutoff.

2.1 Distances and mixing times

In the introduction, we mention the total variation distance and the L2(π)-distance which is

related to the chi-square distance. Actually, those come from more general definitions.

Definition 2.1. Let µ,ν be probabilities on a finite set Ω.

1. The total variation distance between µ and ν is defined by

‖µ− ν‖TV :=sup
A⊆Ω

|µ(A)− ν(A)| =sup
A⊆Ω

{µ(A)− ν(A)}.

In the following, assume that ν > 0 and set h = µ
ν .

2. For p ∈ [1,∞), the Lp(ν)-distance between µ and ν is defined by

‖h− 1‖p :=

(∑
x∈Ω

|h(x)− 1|pν(x)

) 1
p

.

3. The L∞(ν)-distance is given by

‖h(x)− 1‖∞ :=sup
x∈Ω
|h(x)− 1|.

Proposition 2.1. [3, Lemma 2.4.1] Let ν and µ be probabilities on a finite set Ω. Assume that

ν > 0 and set h = µ
ν .

1. Set ν∗ = inf
x∈Ω

ν(x). For 1 ≤ r ≤ s ≤ ∞,

‖h− 1‖r ≤ ‖h− 1‖s ≤ ν
1
s
− 1

r
∗ ‖h− 1‖r.
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2. ‖µ− ν‖TV = 1
2‖h− 1‖1.

Let (Xn) be an irreducible Markov chain on a finite state space S with initial distribution µ

and stationary distribution π. Let K be the transition matrix and ‖ · ‖p be the measurements

introduced in Definition 2.1. The Lp(π)-distance of the chain (Xn) is defined to be a real

valued function Dp(µ, n) := ‖µKn − π‖p. If µ is a dirac mass function δx, i.e. δx(x) = 1 and

δx(y) = 0 if y 6= x, we write briefly Dp(x, n) for Dp(δx, n). The max-Lp(π)-distance is defined

by Dp(n) :=sup
µ
Dp(µ, n). Clearly, Dp(n) :=sup

x
Dp(x, n).

Definition 2.2. Let Dp(µ, n) and Dp(n) be the Lp-distance.

1. The Lp(π)-mixing time is defined to be

Tp(µ, ε) := inf{n ≥ 0|Dp(µ, n) ≤ ε}, ∀ε > 0,

and inf∅ :=∞.

2. The max-Lp(π)-mixing time is defined by

Tp(ε) := inf{n ≥ 0|Dp(n) ≤ ε} =sup
µ
Tp(µ, ε) =sup

x
Tp(x, ε), ∀ε > 0.

The case for continuous-time chains goes in the same way except the domain is replaced by [0,∞)

and we use Dc
p and T cp to represent the Lp(π)-distance and Lp(π)-mixing time respectively.

Proposition 2.2. Suppose Dp(µ, ·), Dp(·), Tp(µ, ·), Tp(·) are those in Definition 2.2.

1. Dp(µ, ·), Dp(·) are non-increasing.

2. Tp(µ, ·), Tp(·) are non-increasing.

3. If Tp(µ, ε) <∞, then Dp(µ, Tp(µ, ε)) ≤ ε. If Tp(ε) <∞, then Dp(Tp(ε)) ≤ ε.

Remark 2.1. The above proposition also applies for the continuous time case. In Proposition

2.2, if 0 < T cp (µ, ε) <∞, then Dc
p(µ, T

c
p (µ, ε)) = ε. Similarly, if 0 < T cp (ε) <∞, Dc

p(T
c
p (ε)) = ε.

Remark 2.2. The definition of the distance and mixing time in total variation is the same as

in Definition 2.2. Proposition 2.2 and Remark 2.1 also apply for the total variation.

2.2 Cutoffs

Let F = {(Sm,Km, πm);m = 1, 2, . . .} be a family of ergodic Markov chains.

5



Definition 2.3. We called F has a total variation cutoff if for all ε, δ ∈ (0, 1),

lim
m→∞

TTV (xm, ε)

TTV (xm, δ)
= 1.

Remark 2.3. The continuous time case is defined by the similar way.

The following proposition provides an equivalent description on the total variation cutoff. When

discussing the discrete time family F , we assume

lim
m→∞

TTV (xm, δ0) =∞ for some 0 < δ0 < 1. (2.1)

Proposition 2.3. Assume (2.1) holds. F has a total variation cutoff if and only if there is a

sequence of positive integers (am) s.t.

lim
m→∞

DTV (xm, bcamc) = 1 if c ∈ (0, 1),

and

lim
m→∞

DTV (xm, dcame) = 0 if c > 1.

In particular, (am)∞m=1 can be chosen to (TTV (xm, δ))
∞
m=1 for any 0 < δ < 1.

Proof. Suppose there is a total variation cutoff. Fix ε ∈ (0, 1) and δ ≤ δ0. Given η ∈ (0, 1
2),

there is a M > 0 such that,

|TTV (xm, ε)

TTV (xm, δ)
− 1| < η ∀ m ≥M.

Expand the above inequality, we obtain

TTV (xm, δ)(1− η) < TTV (xm, ε) < TTV (xm, δ)(1 + η). (2.2)

By the first inequality of (2.2), we have

DTV (xm, bTTV (xm, δ)(1− η)c) ≥ DTV (xm, TTV (xm, ε)− 1) ≥ ε.

Take the limit inferior, we have

lim
m→∞

DTV (xm, bTTV (xm, δ)(1− 2η)c) ≥ 1.

By the second inequality of (2.2), we have

ε ≥ DTV (xm, TTV (xm, ε)) ≥ DTV (xm, dTTV (xm, δ)(1 + η)e).

This implies

lim
m→∞

DTV (xm, dTTV (xm, δ)(1 + η)e) ≤ 0.

6



For the converse, at first, we have observed if ε ≥ δ0, then

lim
m→∞

TTV (xm, ε)

TTV (xm, δ0)
≤ 1. (2.3)

And if ε ≤ δ0, then

lim
m→∞

TTV (xm, ε)

TTV (xm, δ0)
≥ 1. (2.4)

Fix c > 1. Given ε ∈ [δ0, 1), there exists a M > 0 such that for all m ≥M

DTV (xm, dcame) < δ0 < DTV (xm, TTV (xm, δ0)− 1),

and

1−DTV (xm, b
1

c
amc) < 1− ε < 1−DTV (xm, TTV (xm, ε)).

Those imply

b1
c
amc ≤ TTV (xm, ε) ≤ TTV (xm, δ0) ≤ dcame+ 1, ∀ m ≥M.

According the last inequality, we know am −→∞. Besides, we get

TTV (xm, ε)

TTV (xm, δ0)
≥
b1
camc

dcame+ 1
, ∀ m ≥M.

Take limit inferior

lim
m→∞

TTV (xm, ε)

TTV (xm, δ0)
≥ 1

c2
, ∀ c > 1.

By (2.3), we have

lim
m→∞

TTV (xm, ε)

TTV (xm, δ0)
= 1, ∀ ε ∈ [δ0, 1).

Given ε ∈ (0, δ0), there is a M
′
> 0 such that for all m ≥M ′

DTV (xm, dcame) < ε ≤ DTV (xm, TTV (xm, ε)− 1),

and

1−DTV (xm, b
1

c
amc) < 1− δ0 ≤ 1−DTV (xm, TTV (xm, δ0)).

We have inequalities

b1
c
amc ≤ TTV (xm, δ0) ≤ TTV (xm, ε) ≤ dcame+ 1, ∀ m ≥M ′

.

Hence, we will similarly have

lim
m→∞

TTV (xm, ε)

TTV (xm, δ0)
≤ c2, ∀ c > 1.

By (2.4), we have

lim
m→∞

TTV (xm, ε)

TTV (xm, δ0)
= 1, ∀ ε ∈ (0, δ0).

7



Remark 2.4. The Proposition 2.3 also holds in continuous time cases without the assumption

(2.1).

Definition 2.4. We called F has a total variation precutoff if there exists constants c ≥ 1 and

ε > 0 s.t. for all 0 < δ < ε,

lim
m→∞

TTV (xm, δ)

TTV (xm, ε)
≤ c. (2.5)

Proposition 2.4. Assume (2.1) holds. F has a total variation precutoff if and only if there is

a sequence of positive integers (am) and c > 1 s.t.

lim
m→∞

DTV (xm, dcame) = 0 and lim
m→∞

DTV (xm, bamc) > 0. (2.6)

Proof. Suppose F has a precutoff. Let ε1 = min{ε, δ0}. By (2.5), given δ ∈ (0, ε1), we may find

a M > 0 s.t.

sup
m≥M

TTV (xm, δ)

TTV (xm, ε1)
≤ 2c.

This implies

TTV (xm, ε1) ≤ TTV (xm, δ) ≤ 2cTTV (xm, ε1), ∀ m ≥M. (2.7)

By the second inequality of (2.7),

DTV (xm, d2cTTV (xm, ε1)e) ≤ DTV (xm, TTV (xm, δ)) ≤ δ, ∀ m ≥M.

Then

lim
m→∞

DTV (xm, d2cTTV (xm, ε1)e) ≤ δ, ∀ δ ∈ (0, ε1).

Let δ tend to 0, we get

lim
m→∞

DTV (xm, d2cTTV (xm, ε1)e) = 0.

Since TTV (xm, δ0) ≤ TTV (xm, ε1), we know TTV (xm, ε1) −→∞. Therefore,

TTV (xm, ε1)− 1

TTV (xm, ε1)
−→ 1.

Choose M
′
> 0 s.t., for all m ≥M ′

,

1

2c
TTV (xm, ε1) ≤ TTV (xm, ε1)− 1.

Then

DTV (xm, b
1

2c
TTV (xm, ε1)c) ≥ DTV (xm, TTV (xm, bε1)− 1c) ≥ ε1 > 0, ∀ m ≥M ′

.

It implies

lim
m→∞

DTV (xm, b
1

2c
TTV (xm, ε1)c) > 0

8



Choosing am = b 1
2cTTV (xm, ε1)c and the new c is 2c2 > 1 gives the desired (2.6).

To show the converse, suppose there are a sequence (am) and c > 1 s.t. (2.6) holds. Given

ε ∈ (0, δ0), we can find M > 0 s.t.

sup
m

DTV (xm, dcame) < ε < δ0 ≤ DTV (xm, TTV (xm, δ0)− 1), ∀ m ≥M.

Hence, we know

dcame ≥ TTV (xm, δ0)− 1, ∀ m ≥M.

Then am −→∞.

By the inequality of (2.6), there exists a 0 < ε ≤ lim
m→∞

DTV (xm, bamc). Let δ ∈ (0, ε), we find a

M
′
> 0 s.t.

sup
m

DTV (xm, dcame) ≤ δ < ε ≤inf
m
DTV (xm, bamc), ∀ m ≥M

′
.

Observe that for all m ≥M ′
,

sup
m

DTV (xm, dcame) ≥ DTV (xm, dcame+ 1),

and

inf
m
DTV (xm, bamc) ≤ DTV (xm, bamc − 1).

Therefore, we have following inequalities

dcame+ 1 ≥ TTV (xm, δ) ≥ TTV (xm, ε) ≥ bamc − 1, ∀ m ≥M ′
.

And then
TTV (xm, δ)

TTV (xm, ε)
≤ dcame+ 1

bamc − 1
, ∀ m ≥M ′

.

Hence

lim
m→∞

TTV (xm, δ)

TTV (xm, ε)
≤ c.

Remark 2.5. If am −→∞, then it makes no difference to replace b c to d e or d e to b c.

Remark 2.6. The definition of the total variation precutoff also applies for continuous times

and Proposition 2.4 holds without the assumption (2.1).

For two sequences of positive integers, sm and tm, sm = O(tm) means that there are C > 0

and M > 0 such that sm ≤ Ctm for all m ≥ M . sm � tm means that sm = O(tm) and

tm = O(sm).
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Theorem 2.1. Fix a sequence (xm) for all xm ∈ Sm. Assume (2.1) holds, and the sequence

(am) satisfying am � TTV (xm, ε) for all ε > 0. We say F has a total variation precutoff if and

only if there is a constant c > 1 s.t.

lim
m→∞

DTV (xm, dcame) = 0. (2.8)

Proof. Assume F has a precutoff. By definition 2.4, we have constants c > 1, ε > 0 and let

ε1 = min{ε, δ0}; therefore, when we give a δ ∈ (0, ε1), there is a M1 > 0 s.t.

TTV (xm, ε1) ≤ TTV (xm, δ) ≤ cTTV (xm, ε), ∀ m ≥M1. (2.9)

And there are two constants 0 < A, M2 <∞ s.t. for all m ≥M2,

TTV (xm, ε1) ≤ dAame.

Let M = max{M1,M2}. By (2.9), for all m ≥M ,

TTV (xm, δ) ≤ cTTV (xm, ε1) ≤ cdAame.

By above two inequalities, we have

DTV (xm, cdAame) ≤ DTV (xm, TTV (xm, δ)) ≤ δ, ∀ m ≥M.

Then

lim
m→∞

DTV (xm, cdAame) = 0.

To show the converse, assume there is c > 1 s.t. (2.8) holds. We have given δ0 > 0, then there

is a M0 > 0 s.t. for all m ≥ M0, DTV (xm, dcame) < δ0. And then dcame ≥ TTV (xm, δ0) for all

m ≥M0. We have am −→∞.

Since am � TTV (xm, ε) for all ε > 0, we fix ε > 0, there are 0 < c
′
< 1 and M1 > 0 s.t.

inf
m≥M1

TTV (xm, ε)

am
≥ c′ > 0.

That is

TTV (xm, ε) ≥ c
′
am, ∀ m ≥M1.

Let δ ∈ (0, ε), and we can find a M2 > 0 s.t.

sup
m≥M2

DTV (xm, dcame) < δ < ε.

Let M = max{M1,M2}. We have

dcame ≥ TTV (xm, δ) ≥ TTV (xm, ε) ≥ c
′
am, ∀ m ≥M.
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Then
TTV (xm, δ)

TTV (xm, ε)
≤ dcame+ 1

c′am
, ∀ m ≥M.

And we have

lim
m→∞

TTV (xm, δ)

TTV (xm, ε)
≤ c

c′
.

Corollary 2.1. [4, Corrollary 2.3] Suppose that there is ε > 0 and am → ∞ such that

TTV (xm, ε) � am and TTV (xm, δ) = O(am) for all 0 < δ < ε. Then, the following are equivalent:

1. No subfamily of F has a total variation precutoff.

2. For all c > 0,

lim
m→∞

DTV (xm, bcamc) > 0.

3. As δ → 0,

lim
m→∞

TTV (xm, δ)

am
=∞.

Remark 2.7. The Theorem 2.1 still holds in the continuous time case without the assumption

(2.1).

Remark 2.8. Definitions of Lp-cutoff and Lp-precutoff, 1 < p ≤ ∞, are similar to the cutoff

in total variation. All propositions and theorems in this subsection hold for the Lp-cutoff and

Lp-precutoff. See [1] for details.

3 Bounding the mixing time in total variation

3.1 Spectral analysis of reversible Markov chains

We perform the spectral information to describe the transition matrix.

Lemma 3.1. [3, Lemma 1.2.9] Let K be an irreducible Markov kernel on Ω with stationary

distribution π. Suppose that K is reversible and β0 = 1, β1, . . . , β|Ω|−1 are eigenvalues of K with

associated L2(π)-orthonormal eigenvectors ψ0 = 1, ψ1, . . . , ψ|Ω|−1. Then, for x, y ∈ Ω,

Kn(x, y)

π(y)
=

|Ω|−1∑
i=0

βni ψi(x)ψi(y)

and

e−t(I−K)(x, y)

π(y)
=

|Ω|−1∑
i=0

e−t(1−βi)ψi(x)ψi(y).
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Proposition 3.1. [3, Lemma 1.3.3] Let K be an irreducible and reversible Markov kernel on a

finite set Ω with a stationary distribution π. If β0 = 1, β1, . . . , β|Ω|−1 are eigenvalues of K and

ψ0 = 1, ψ1, . . . , ψ|Ω|−1 are corresponding L2(π)-orthonormal eigenvectors, then

D2(µ, n) =

∑
i≥1

|µ(ψi)|2β2n
i

 1
2

and

Dc
2(µ, t) =

∑
i≥1

|µ(ψi)|2e−2t(1−βi)

 1
2

.

Proposition 3.1 gives us the formula of L2-distance, then, by Proposition 2.1, we make L2-

distance be the upper bound of total variation distance. And we use the following proposition

to get a lower bound.

Proposition 3.2. Let Ω be a finite set and µ, ν be probabilities on Ω. Assume that f is a

function on Ω (complex values are allowed) satisfying µ(f) 6= 0 and ν(f) = 0. Then

‖µ− ν‖TV ≥ 1− 4(V arµ(f)− V arν(f))

|µ(f)|
1
2

.

Proof. Set s = |µ(f)|
2 and A = {x ∈ Ω||f(x)| ≥ s}. Then for x ∈ Ac, |f(x) − µ(f)| ≥ s. This

implies

µ(Ac) = µ(I{Ac}) ≤ µ(I{Ac}
|f − µ(f)|2

s2
) ≤ V arµ(f)

s2
.

Using the Chebyshev inequality, it is obvious that

ν(A) = Pν(|f | ≥ s) = Pν(|f − ν(f)| ≥ s) ≤ V arν(f)

s2
.

Putting all above together gives the desired inequality.

We give a examples to illustrate how to use them.

Example 3.1 (The continuous-time case). Let G = (Z2)n and P : G −→ [0, 1] be defined by

P(ei) = 1
n , for all 1 ≤ i ≤ n, where ei is the vector which only the ith entry is 1 and others are

0. Let βn,x = 1− 2|x|
n and φn,x(y) = (−1)x·y.

Dc
TV (δx, t) ≤ Dc

2(δx, t) =

√√√√√ n∑
i=1

 n

i

 e
−4ti
n =

√
(1 + e

−4t
n )n − 1.

Clearly,
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lim
n→∞

Dc
2(δx,

1
4n(log n+ c)) =

√
ee−c − 1

⇒ T cTV (ε) ≤ T c2 (ε) = 1
4n log n+Oε(n) as n −→∞ for all ε > 0.

Set f =
n∑
i=1

φn,ei. That is, f(y) =
n∑
i=1

(−1)yi for y = (y1, y2, . . . , yn). By letting µ = Ht(0, ·) and

ν = π, we have

µ(f) = ne−2t/n, ν(f) = 0, µ(f2) = n(n− 1)e−4t/n + n, ν(f2) = n.

By proposition 3.2,

Dc
TV (0, t) ≥ 1− 4n(2− e−4t/n)

n2e−4t/n
≥ 1− 8

ne−4t/n

and

lim
n→∞

Dc
TV (0,

1

4
n(log n+ c)) ≥ 1− 8ec.

⇒ T cTV (ε) ≥ 1
4n log n+Oε(n) as n −→∞.

Consequently, we obtained T cTV (ε) = 1
4n log n+Oε(n). Noted that T c2 (ε) ≥ T cTV (ε), the T c2 (ε) =

1
4n log n+Oε(n).

3.2 Coupling of Markov chains

From the viewpoint of probability, the coupling is useful in bounding the total variation distance.

The coupling provides a probabilistic character on the total variation distance.

Definition 3.1. Let K be a transition matrix on a finite state space S. A coupling of Markov

chains with K is a process (Xt, Yt)t≥0 of which marginals Xt, Yt are Markov chains with K and

initial distributions µ, ν, respectively; besides, the coupling satisfies following.

If Xt = Yt, then Xt+k = Yt+k for all k ≥ 0.

And we define the coupling time T := inf{t ≥ 0|Xt = Yt}.

Remark 3.1. We write Pµ,ν if X0, Y0 have distributions µ, ν and simplify it as Px,y if X0 = x

and Y0 = y.

Theorem 3.1. Let (Xt, Yt) be a coupling with X0 = x and Y0
∼= π, where π is a stationary

distribution. Then,

DTV (x, t) ≤ Px,π(T > t).

Example 3.2. Let Ω = Zn and K be the kernel of the lazy simple random walk on the n-cycle.

That is, K(x, x) = 1
2 and K(x, x ± 1 (mod n)) = 1

4 for all x ∈ Ω. Consider the following
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coupling. Let {Wk, Zk|k = 0, 1, . . .} be independent fair coins, where 1 and 0 denote heads and

tails. Set X0 = x, Y0
∼= π ≡ 1/n and

Xk+1 = Xk +Wk · (−1)Zk (mod n), ∀k = 0, 1, . . . .

If Xk 6= Yk, define

Yk+1 = Yk + (1−Wk) · (−1)Zk (mod n),

while Yk+1 = Xk+1 if Xk = Yk. Noted that Xk and Yk forms a Markovian coupling of lazy

random walks on n-cycles.

Consider the clockwise distance Ck from x to y, that is, Ck = Yk−Xk (mod n). It is easy to

check that Ck is a simple random walk on {0,1,. . . ,n} with absorbing states 0 and n and initial

state y−x (mod n). As a conclusion of Gambler’s ruin problem, if T is the coupling time, then

DTV (k) ≤max
x

Px,π(T > k) ≤
sup
x
Ex,π[T ]

k
≤ sup

0≤i≤n

i(n− i)
k

≤ n2

4k
,

where the last second inequality is derived from

Ex,π[T ] =
1

n

∑
y

Ex,π[T |Y0 = y] ≤sup
x,y

Ex,y[T ].

This implies TTV (ε) ≤ dn2/4εe. In fact, the exact order of the total variation mixing time is

n2. To see this, note that f(x) = cos(2πx/n) is an eigenvector of the transition matrix with

eigenvalue [1 + cos(2π/n)]/2. This implies

2DTV (k) = sup
x
D1(x, k) =sup

x
‖Kk(x, ·)/π − 1‖1

≥
〈K

k(0,·)
π − 1, f〉π
‖f‖∞

= Kk(0, f) =

(
1 + cos(2π/n)

2

)k
.

Using the inequality cos θ ≥ 1− θ2

2 for all θ ∈ R implies that

DTV (k) ≥ 1
2(1− π2

n2 )k ≥ 1
2e
−2π2k/n2

, ∀ n ≥ 7,

where the last inequality applies the fact ln(1 − θ) ≥ −2θ for θ < 1/2. Thus, TTV (ε) ≥

[(ln(1/2ε))/2π2]n2. Putting the upper and lower bounds together, one may conclude that the

lazy simple random walk on n-cycles has no total variation cutoff.
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4 The total variation cutoff of Ehrenfest chains

At the beginning, we recall (1.1). The Ehrenfest chain on Sn = {0, 1, . . . , n} with the transition

matrix Kn satisfying

Kn(k, k + 1) = 1− k
n , Kn(k + 1, k) = k+1

n , ∀ 0 ≤ k < n,

and its stationary distribution is πn(k) =

 n

k

 2−n for all 0 ≤ k ≤ n. Concerning the

periodicity, we consider K
′
n in the discrete time case, given by

K
′
n =

1

n+ 1
In +

n

n+ 1
Kn,

where In is an (n + 1) × (n + 1) identity matrix. In the continuous time case, we consider the

semigroup accosiated witn Kn i.e.

Hn,t = e−t(I−Kn) =
∞∑
j=0

(
e−t

tj

j!

)
Kj
n.

There is a result giving a description on the eigenvalues and eigenvectors of Kn in Chen and

Saloff-Coaste[2].

Lemma 4.1. [2, Theorem 6.1] The matrix Kn has eigenvalues

βn,i = 1− 2i
n , ∀ 0 ≤ i ≤ n,

with L2(πn)-normalized right eigenvectors

ψn,i(x) =

 n

i

−1/2
i∑

k=0

(−1)k

 x

k

 n− x

i− k

 , ∀ 0 ≤ i, x ≤ n.

Remark 4.1. Krawtchouk polynomials[5] defined by

Pi(x, p, n) = 2F1

 −i,−x
−n

∣∣∣∣∣∣ 1
p

 , ∀ i ∈ {0, 1, . . . , n},

then the eigenvector ψn,i of Kn can be rewritten as

ψn,i(x) =

 n

i

1/2

Pi(x, 1/2, n).

Remark 4.2. By lemma 4.1, K
′
n has eigenvalues β

′
n,i = 1− 2i

n+1 with corresponding eigenvectors

ψn,i given by Kn.
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4.1 The order of total variation mixing time

In this section, we treat the case |n−2xn|√
n
→ B and derive the order of total variation mixing

time for B > 0.

By proposition 2.1, 2DTV (xn, t) ≤ D2(xn, t) and 2Dc
TV (xn, t) ≤ Dc

2(xn, t), where

[D2(xn, t)]
2 =

n∑
i=1

|ψn,i(xn)|2|1− 2i

n+ 1
|2t

≤ 2

bn
2
c∑

i=1

|ψn,i(xn)|2|1− 2i

n+ 1
|2t + |1− 2

n+ 1
|2t

≤ 2

bn
2
c∑

i=1

|ψn,i(xn)|2e−4ti/(n+1) + e−4nt/(n+1), (4.1)

where the first inequality is derived from ψn,n−i(x) = (−1)xψn,i(x) for all x, i ∈ {0, . . . , n}[2].

By recurrence relation of Pi(x, 1/2, n), we have, for all i ∈ {1, . . . , n− 1},

ψn,i+1(xn) =
n− 2xn√

n
An,iψn,i(xn)−Bn,iψn,i−1(xn),

where An,i =
√

n
(i+1)(n−i) , Bn,i =

√
i(n−i+1)

(i+1)(n−i) .

Observe that An,i ≤ 1, Bn,i ≤ 1 for all 1 ≤ i < n. Let γ =sup
n
{|n− 2xn|/

√
n} ∨ 1 <∞. Then

|ψn,i+1(xn)| ≤ γ|ψn,i(xn)|+ |ψn,i−1|, ∀ 1 ≤ i < n, n ≥ 1.

Since we know the initial state |ψn,0(xn)| = 1, we use induction to obtain, for all i ∈ {0, 1, . . . , n},

|ψn,i(xn)| ≤ (γ + 1)i.

Let t = c(n+ 1), where c ≥ 1
4 ln2(γ + 1)2, we have

(4.1) ≤ 2

bn
2
c∑

i=1

[
|(γ + 1)|2e−4c

]i
+ e−4nc ≤ 2

∞∑
i=1

[
|(γ + 1)|2e−4c

]i
= 2

[
(γ + 1)2e−4c

1− (γ + 1)2e−4c

]
≤ 2

[
(γ + 1)2e−4c

1− 1
2

]
≤ 4(γ + 1)2e−4c.

Since 2DTV (xn, t) ≤ D2(xn, t), DTV (xn, c(n+ 1)) ≤ (γ + 1)e−2c for all c ≥ 1
4 ln2(γ + 1)2. Then,

for all ε ∈ (0, 1),

TTV (xn, ε) ≤
1

2
(ln

γ + 1

ε
)(n+ 1).

Recall the proposition 3.2, let f(x) = ψn,1(x), µ = K
′
n
m

(xn, ·) and ν = πn.
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µ(f) = (β
′
n,1)mψn,1(xn) = (1− 2

n+1)m(n−2xn√
n

).

ν(f) =
n∑
k=0

ψn,1(k)π(k) =
n∑
k=0

(n−2k√
n

)

 n

k

 2−n = 0

µ(f2) =
n∑
k=0

ψ2
n,1(k)Km

n (xn, k) =
n∑
k=0

(c1ψn,2(k) + c2)Km
n (xn, k) = c1β

m
n,2ψn,2(xn) + c2,

where c1 =
√

2(1− 1/n) and c2 = 1.

ν(f2) =

n∑
k=0

ψ2
n,1(k)νn(k) =

n∑
k=0

(n− 2k)2

n

 n

k

 (
1

2
)n

=
1

n

n∑
k=0

(n2 − 4nk + 4k2)

 n

k

 (
1

2
)n

=
1

n

n2 − 4n
n∑
k=0

k

 n

k

 (
1

2
)n + 4

n∑
k=0

k2

 n

k

 (
1

2
)n

 = 1

Hence, V arµ(f) = (1− 4
n+1)m

[
(n−2xn√

n
)2 − 1

]
+ 1− (n−2xn√

n
)2(1− 2

n+1)2m and V arν(f) = 1.

DTV (xn,m) ≥ 1− 4 ·
2 + (1− 4

n+ 1
)m[(

n− 2xn√
n

)2 − 1]− (
n− 2xn√

n
)2(1− 2

n+ 1
)2m

(1− 2

n+ 1
)2m(

n− 2xn√
n

)2

Let m = c(n+ 1), c > 0. Then

DTV (xn,m) ≥ 1− 4 ·
2 + (1− 4

n+ 1
)c(n+1)[(

n− 2xn√
n

)2 − 1]− (
n− 2xn√

n
)2(1− 2

n+ 1
)2c(n+1)

(1− 2

n+ 1
)2c(n+1)(

n− 2xn√
n

)2

We have

lim
n→∞

DTV (xn, c(n+ 1)) ≥ 1− 4

B2
(2e4c − 1).

Therefore, TTV (xn, ε) � n for all ε small enough and B large enough if |n − 2xn|/
√
n → B,

where 0 < B <∞.

By proposition 3.1 and lemma 4.1,

[Dc
2(xn, t)]

2 =

n∑
i=1

|ψn,i(xn)|2e−4ti/n ≤
n∑
i=1

|ψn,i(xn)|2e−4ti/(n+1)

≤ 4(γ + 1)2e−4c,
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where the last inequality is given by the discrete time case when t = c(n+ 1), c ≥ 1
4 ln2(γ + 1)2.

In the similar way, we use proposition 3.2, let f(x) = ψn,1(x), µ = Hn,t(xn, ·), ν = πn.

µ(f) = e−t(1−βn,1)ψn,1(xn) = e−2t/n(n−2xn√
n

).

ν(f) = 0.

µ(f2) = c1e
−t(1−βn,2)ψn,2(xn) + c2, where c1 =

√
2(1− 1/n) and c2 = 1.

ν(f2) = 1.

Hence, V arµ(f) = e−4t/n
[
(n−2xn√

n
)2 − 1

]
+ 1− e−4t/n(n−2xn√

n
)2 and V arν(f) = 1.

Let t = cn, c > 0, we obtain

lim
n→∞

DTV (xn, c(n+ 1)) ≥ 1− 4

B2
(2e4c − 1).

Observe that the continuous time case has the same bound with the discrete time case, T cTV (xn, ε) �

n for all ε small enough and B large enough. If γ < 1
4

√
B2 + 4−1, then there is no total variation

cutoff. But it’s not sufficient to conclude the precutoff.

For B = 0, we can find the upper bound of the total variation distance,

DTV (xn, c(n+ 1)) ≤ (γ + 1)e−2c,

where c ≤ 1
4 ln 2(γ + 1)2. But the lower bound is not available to use the same method.

4.2 Proof of Theorem 1.3

We have known (iii)⇒ (ii) by Chen[2] and (ii)⇒ (i) by their definitions. Therefore, it remains

to show (i) ⇒ (iii). For that purpose, our idea is to show the contrapositive true. Suppose

|n − 2xn|/
√
n is bounded for all n > 0, we need to show F and Fc have no total variation

precutoff. The proof is divided into two cases.

1. The discrete time case.

The discrete time Ehrenfest chain K
′
n still has a probability n/(n + 1) to develop to the chain

Kn, and it’s more possible than staying still. The period of a reversible and irreducible chain

is just 1 or 2. Since a reversibility, a chain is periodic if and only if −1 is an eigenvalue
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of its transition matrix. By lemma 4.1, the respective eigenvector is ψn,n(x) = (−1)x. Let

An = {x ∈ Sn|x is even}. Clearly, ψn,n = 2 · IAn − 1.

DTV (xn,m) ≥ |K ′n
m

(xn, An)− πn(An)|

=
1

2
|[K ′n

m
(xn, ·)− πn(·)](2 · IAn − 1)|

=
1

2

∣∣∣∣∣∣
n∑
y=0

n∑
i=0

β
′
n,i

m
ψn,i(xn)ψn,i(y)ψn,n(y)−

n∑
y=0

πn(y)ψn,n(y)

∣∣∣∣∣∣
=

1

2
|(−1)xnβ

′
n,n

m
| = 1

2
|1− 2n

n+ 1
|m

≥ 1

2
e−2m/(n+1),

for n ≥ 3, where the last inequality is given by ln(1− t) ≥ −2t for t ∈ [0, 1/2].

Then, for 0 < ε ≤ 1
2e2

and n ≥ 3,

TTV (xn, ε) ≥ b
1

2
ln(

1

2ε
)c(n+ 1).

It’s important that we don’t need to assume |n− 2xn|/
√
n converge to a nonzero real value. By

subsection 4.1, we have TTV (xn, ε) � n, 0 < ε ≤ 1
2e2

. For n ≥ 3 and c ≥ 1,

DTV (xn, bcnc) ≥ DTV (xn, bc(n+ 1)c) ≥ 1

2
e−b2cc.

By Corollary 2.1, there is no total variation precutoff.

2. The continuous time case.

By Corollary 2.1, we need to show

lim
n→∞

Dc
n,TV (xn, an) > 0, ∀ a > 0.

At the beginning, we consider the Ehrenfest chain (Xn)∞n=0 on S2n = {0, 1, . . . , 2n} and a

sequence (x2n) satisfying |2n− 2x2n|/
√

2n→ c.

Part 1. c > 0

By the symmetry of Ehrenfest chain, we assume the initial states x2n = n− cn
√
n, cn → c/

√
2

and choose the proper testing set A2n = {0, 1, . . . , n} s.t.

‖H2n,t(x2n, ·)− π2n(·)‖TV ≥ H2n,t(x2n, A2n)− π2n(A2n)

= e−t
∞∑
j=0

tj

j!
Kj

2n(x2n, A2n)− π2n(A2n). (4.2)
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Set Tn = inf{t ≥ 0|Xt = n}. Using the strong Markov property, the Kj
2n(x2n, A2n) can be

derived as follow.

Kj
2n(x2n, A2n) =

∞∑
i=0

Px2n(Xj ∈ A2n|Tn = i)Px2n(Tn = i)

=

j∑
i=0

Kj−i
2n (n,A2n)Px2n(Tn = i) + Px2n(Tn > j) (4.3)

The next inequality will apply the following proposition.

Proposition 4.1. Let Kn is the transition matrix of the Ehrenfest chain on Sn. Suppose

A = {0, 1, . . . , dn/2e}. Then Kt
n(x,A) ≥ 1/2 for all x ∈ A, t ≥ 0.

See the appendix for a proof of this proposition. Using Proposition 4.1, we have

(4.3) ≥ 1

2
Px2n(Tn ≤ j) + Px2n(Tn > j) =

1

2
+

1

2
Px2n(Tn > j).

Observe that π2n(A2n) = 1
2 + 1

2π2n(n) = 1
2 + O( 1√

n
). And then we combine above information

to (4.2),

Dc
TV (x2n, t) ≥

1

2
e−t

∞∑
j=0

tj

j!
Px2n(Tn > j) +O(

1√
n

)

≥ 1

2
e−t

l∑
j=0

tj

j!
Px2n(Tn > l) +O(

1√
n

), (4.4)

where for all l ≥ 0.

Note that if we let l = dbne, b > a > 0, then

lim
n→∞

Dc
TV (x2n, an) ≥ 1

2
lim
n→∞

Px2n(Tn > dbne).

That exhibits that we suffice to show lim
n→∞

Px2n(Tn > dbne) ≥ C for some C > 0. For that

reason, we compare the Ehrenfest chain with the simple random walk on Z.

Set the T = inf{m ≥ 0|Xm = n or Xm = 2x2n−n}. Clearly, Px2n(Tn > l) ≥ Px2n(T > l) for

all l ≥ 0. Let (Ym)∞m=0 be the simple random walk on Z and T̃ = inf{m ≥ 0|Ym = n or Ym =

2x2n − n}. Write

Px2n(T > l) ≥ αn(l)P̃x2n(T̃ > l),

where

αn(l) =

(
1− 2n− 2x2n

n

)n−x2n [
1−

(
2n− 2x2n

n

)2
]l
.
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We call w is a path if w is a sequence (wi)
∞
i=0 for all wi ∈ Z satisfying |wi+1−wi| = 1 for all i ≥ 0

and 2x2n − n < wi < n for all 0 ≤ i ≤ l. And we use the notion (wi, wi+1) to describe a edge

in w from wi to wi+1. Clearly, the probability of (wi, wi+1) is K2n(wi, wi+1). Define p(x : y, l),

∀x, y ∈ {2x2n − n+ 1, . . . , n− 1}, l ∈ Z+, be a collection of paths of length l which started at x

and ended at y. Hence

Px2n(T > l) =
∑

2x2n−n<k<n
Px2n(p(x2n : k, l)).

In each w ∈ p(x2n : k, l) for 2x2n−n < k < n, we collect all edges of w and we can partition this

collection into two subcollections. One is A(w) = {(i, i + 1)|x2n ≤ i < k} if k > x2n; instead,

A(w) = {(i, i− 1)|x2n ≥ i > k}. And the other one B(w) is a union of {(i, i+ 1), (i+ 1, i)} for

2x2n − n+ 1 < i < n− 1. For all 2x2n − n < i < n,

1− i

2n
≥ i

2n
≥ 1

2

(
2x2n − n

n

)
=

1

2

(
1− 2n− 2x2n

n

)
,

and

i

2n

(
1− i− 1

2n

)
=

2ni− i2 + i

4n2
≥ 1

4

(
n2 − n2 + 2ni− i2

n2

)
≥ 1

4

[
1−

(
2n− 2x2n

n

)2
]
.

Now we can make a conclusion that Px2n(w) ≥ αn(l)P̃x2n(w) for all w ∈ p(x2n : k, l) and

2x2n − n < k < n, where

αn(l) =

(
1− 2n− 2x2n

n

)n−x2n [
1−

(
2n− 2x2n

n

)2
]l
.

Let b = da+ c2

2 e,

Px2n(T > bn) ≥ αn(bn)P̃x2n(T̃ > bn)

= αn(bn)P̃0(T̃bcn
√
nc > bn)

≥ αn(bn) exp

{
−2b

bcnc2

}
.

where T̃bcn
√
nc = inf{m ≥ 0|Ym = bcn

√
nc or Ym = −bcn

√
nc} and the last inequality is given

by Lemma A.1. Applying this to (4.4), we have

Dc
TV (x2n, an) ≥ 1

2
e−an

 bn∑
j=0

(an)j

j!

αn(bn) exp

{
−2b

bcnc2

}
+O(

1√
n

).

By the Lemma A.2, we obtain

lim
n→∞

Dc
TV (x2n, an) ≥ 1

2e
−(3c2+2/c2)b > 0, ∀ b > max{c2, 1}.
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By Corollary 2.1, no subfamily of Fc has total variation precutoff if c > 0.

When the state space is {0, 1, . . . , 2n + 1}, we choose the proper testing set A2n+1 =

{0, 1, . . . , n+ 1} and do the same argument again. There is no total variation precutoff.

Part 2. c=0

Recall the Lemma 3.1, we have

Hn,t(x, y)

πn(y)
− 1 =

n∑
i=1

e−t(1−βn,i)ψn,i(x)ψn,i(y)

We set
Hn,t(xn, y)
πn(y)

− 1 = fn(t, y) + gn(t, y), where

fn(t, y) = e−t(1−βn,2)ψn,2(xn)ψn,2(y) and gn(t, y) =
n∑

i=1,i6=2

e−t(1−βn,i)ψn,i(x)ψn,i(y)

By Proposition 2.1, 2Dc
TV (x, t) = ‖Hn,t(x,·)

πn(·) − 1‖1 = ‖fn(t, ·) + gn(t, ·)‖1.

Observe that

‖fn(t, ·) + gn(t, ·)‖1 =

n∑
k=0

|fn(t, k) + gn(t, k)|πn(k)

≥
n∑
k=0

|fn(t, k)|πn(k)−
n∑
k=0

|gn(t, k)|πn(k)

≥ ‖fn(t, ·)‖1 − ‖gn(t, ·)‖2,

where the first inequality is given by the triangle inequality and the second inequality is given

by Proposition 2.1.

Therefore, we suffice to show that, for all c > 0,

lim
n→∞

(‖fn(t, ·)‖1 − ‖gn(t, ·)‖2) > 0.

Then

‖gn(t, ·)‖22 =

n∑
k=0

∣∣∣∣∣∣
n∑

i=1,i6=2

e−t(1−βn,i)ψn,i(x)ψn,i(k)

∣∣∣∣∣∣
2

πn(k)

=
n∑
k=0

∣∣∣∣∣(ψn,1(xn))2e−4t/n+
n∑
i=3

(ψn,i(xn))2e−4ti/n

∣∣∣∣∣πn(k)

=

∣∣∣∣∣(n− 2xn√
n

)2e−4t/n+

n∑
i=3

(ψn,i(xn))2e−4ti/n

∣∣∣∣∣ .
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By the argument in section 4.1, let γ = supn{|n− 2xn|/
√
n}∨ 1 <∞, then we have |ψn,i(xn)| ≤

(γ + 1)i for all 0 ≤ i ≤ n.

‖gn(t, ·)‖2 ≤

∣∣∣∣∣(n− 2xn√
n

)2e−4t/n+

n∑
i=3

(γ + 1)2ie−4ti/n

∣∣∣∣∣
1/2

≤

∣∣∣∣∣(n− 2xn√
n

)2e−4t/n+
∞∑
i=3

(γ + 1)2ie−4ti/n

∣∣∣∣∣
1/2

≤

∣∣∣∣∣(n− 2xn√
n

)2e−4t/n +
[(γ + 1)2e−4t/n]3

1− (γ + 1)2e−4t/n

∣∣∣∣∣
1/2

Then

‖gn(cn, ·)‖2 ≤
∣∣∣∣(n− 2xn√

n
)2e−4c +

[(γ + 1)2e−4c]3

1− (γ + 1)2e−4c

∣∣∣∣1/2
if (γ + 1)2 < e4c. Therefore, for (γ + 1)2 < e4c,

lim
n→∞

‖gn(cn, ·)‖2 =

∣∣∣∣ (γ + 1)3e−12c

1− (γ + 1)2e−4c

∣∣∣∣1/2 . (4.5)

Note that |ψn,2(xn)| = |
√

1
2(1−1/n) [(n−2xn√

n
)2 − 1]|, and since n−2xn√

n
→ 0, we can choose N > 0

s.t. for all n ≥ N

|ψn,2(xn)| ≥
√

1

2
(1− 1

n
).

Then, for n ≥ N ,

‖fn(t, ·)‖1 ≥ 1√
2

(1− 1

n
)e−4t/n

(
n∑
k=0

|ψn,2(k)|πn(k)

)

≥ 1√
2

(1− 1

n
)e−4t/n

{
n∑
k=0

| 1√
2

[(
n− 2k√

n
)2 − 1]|πn(k)

}

≥ 1√
2

(1− 1

n
)e−4t/n


n∑

n
2
−
√
n
4
<k<n

2
+
√
n
4

| 1√
2

[(
n− 2k√

n
)2 − 1]|πn(k)


≥ 3

8
(1− 1

n
)e−4t/nπn({k : |n

2
− k| <

√
n

4
})

By the central limit theorem,

lim
n→∞

πn(|Yn − n/2√
n
| < 1

4
) = lim

n→∞
πn(|Yn − n/2√

n/2
| < 1

2
) =

2√
2π

∫ 1
2

0
e−u

2/2du > 1/3.

Hence

lim
n→∞

(‖fn(cn, ·)‖1 − ‖gn(cn, ·)‖2) ≥ 1

8
e−4c − (γ + 1)3/2e−6c√

1− (γ + 1)2e−4c

= e−4c

(
1

8
− (γ + 1)3/2e−2c√

1− (γ + 1)2e−4c

)
> 0
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if c > 1
4 ln{(γ + 1)[64(γ + 1)2 + 1]}. By the total variation is non-increasing, we have

lim
n→∞

Dc
TV (xn, cn) > 0, ∀ c > 0.

By Corollary 2.1, no subfamily has a total variation precutoff if c = 0.

A Appendix

The following proposition is the Proposition 4.1 in section 4.

Proposition A.1. Let Kn is the transition matrix of the Ehrenfest chain on Sn. Suppose

A = {0, 1, . . . , dn/2e}. Then Km
n (x,A) ≥ 1/2 for all x ∈ A, m ≥ 0.

Proof. Let Sn = {0, 1, . . . , 2n}. Obviously, A is more elements than Ac. By the symmetry

of the Ehrenfest chain, Km
n (x,A) ≥ 1

2 for all x ∈ A, m ≥ 0. Consider the state space is

{0, 1, , . . . , 2n + 1}. Note Kn(i, i + 1) ≥ Kn(i, i − 1) if i ≤ n, and Kn(i, i + 1) ≤ Kn(i, i − 1) if

i > n, and Kn(n, n+1) = Kn(n+1, n) = (n+1)/(2n+1). That implies Km
n (x,A) ≥ Km

n (n+1, A)

for all x ∈ A, m ≥ 0. We show that K2m
n (n, n− 2i) ≥ K2m

n (n, n+ 2i+ 2) ≥ K2m
n (n, n− 2i− 2)

for all i ≥ 0, m > 0.

Let m = 1. K2(n, n) ≥ K2(n, n+ 2) ≥ K2(n, n− 2).

Let m = w, for all i ≥ 0,

K2w(n, n− 2i) ≥ K2w(n, n+ 2i+ 2) ≥ K2w(n, n− 2i− 2).

Case 1: show K
2(w+1)
n (n, n) ≥ K2(w+1)

n (n, n+ 2).

Expand K
2(w+1)
n (n, n) =

∑
i
K2w(n, i)K2(i, n) and K

2(w+1)
n (n, n+ 2) =

∑
i
K2w(n, i)K2(i, n+ 2).

Since we know

a K2(n, n)−K2(n, n+ 2) = n2+3n+1
(2n+1)2

b K2(n+ 2, n)−K2(n+ 2, n+ 2) = −n2−n+5
(2n+1)2

c K2(n− 2, n)−K2(n+ 4, n+ 2) = −2n−6
(2n+1)2

And a+b+c=0. Comparison entries of
∑
i
K2w(n, i)K2(i, n) and

∑
i
K2w(n, i)K2(i, n+ 2), then

we obtain K
2(w+1)
n (n, n) ≥ K2(w+1)

n (n, n+ 2).
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Case 2: show K2(w+1)(n, n+2i) ≥ K2(w+1)(n, n−2i) ≥ K2(w+1)(n, n+2i+2), ∀i ≥ 1. Observe

that, for i ≥ 1,

K2(w+1)(n, n+ 2i) = K2w(n, n+ 2(i− 1))K2(n+ 2(i− 1), n+ 2i)

+ K2w(n, n+ 2i)K2(n+ 2i, n+ 2i)

+ K2w(n, n+ 2(i+ 1))K2(n+ 2(i+ 1), n+ 2i),

K2(w+1)(n, n− 2i) = K2w(n, n− 2(i− 1))K2(n− 2(i− 1), n− 2i)

+ K2w(n, n− 2i)K2(n− 2i, n− 2i)

+ K2w(n, n− 2(i+ 1))K2(n− 2(i+ 1), n− 2i),

K2(w+1)(n, n+ 2i+ 2) = K2w(n, n+ 2i)K2(n+ 2i, n+ 2i+ 2)

+ K2w(n, n+ 2i+ 2)K2(n+ 2i+ 2, n+ 2i+ 2)

+ K2w(n, n+ 2i+ 4)K2(n+ 2i+ 4, n+ 2i+ 2).

We claim that suppose a + b + c = d + e + f , where a ≥ d > 0, b ≥ e > 0, f ≥ c > 0

and A ≥ D ≥ B ≥ E ≥ C ≥ F > 0, then Aa + Bb + Cc ≥ Dd + Ee + Ff . It’s easy

to prove if let a − d = ε1 > 0 and b − e = ε2 > 0. Thus, it implies K2(w+1)(n, n + 2i) ≥

K2(w+1)(n, n − 2i) ≥ K2(w+1)(n, n + 2i + 2), ∀i ≥ 1. By an induction, K2m
n (n, n − 2i) ≥

K2m
n (n, n + 2i + 2) ≥ K2m

n (n, n − 2i − 2), ∀i ≥ 0, m > 0. Then K2m+1
n (n + 1, n − 2i) ≥

K2m+1
n (n + 1, n + 2i + 2) ≥ K2m+1

n (n + 1, n − 2i − 2), ∀i ≥ 0, m > 0. Since the symmetry of

Ehrenfest chains, K2m(n + 1, n + 1 − 2i) ≥ K2m(n + 1, n + 3 + 2i) ≥ K2m(n + 1, n − 1 − 2i),

∀i ≥ 0, m > 0.

For a discrete time simple random walk (Xn)∞n=0 on Z, the first passage time to {±m} is

defined by

Tm = inf{n ≥ 0|Xn = m or Xn = −m}

For a continuous time simple random walk on Z, let N(t) be a Poisson process with parameter

1 and independent of Xn and set Yt = XN(t). Thus, the first passage time to {±m} is defined

by

T̃m = inf{t ≥ 0|Yt = m or Yt = −m}.

Lemma A.1. [4, Theorem 3.1] Let Tm, T̃m be defined above and P0 be the conditional probability

given the initial state is 0. Then, for any b > 1 and m ≥ 5,

min{P0(Tm > bm2), P0(T̃m > bm2)} ≥ e−2b.
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Lemma A.2. [1, Lemma A.1] For n > 0, let an ∈ R+, bn ∈ Z+, cn = bn−an√
an

and dn =

e−an
∑bn

i=0
ani

i! . Assume that an + bn →∞. Then

lim
n→∞

dn = Φ
(

lim
n→∞

cn

)
, lim

n→∞
dn = Φ

(
lim
n→∞

cn

)
,

where Φ(x) = 1√
2π

∫ x
−∞e

−t2/2dt.

In particular, if cn converges (the limit can be +∞ and −∞), then lim
n→∞

dn = Φ
(

lim
n→∞

cn

)
.
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