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Abstract

We study the global bifurcation and-exact multiplicity of positive solutions of

W' () +Af,(u)=0, -1<x<1, u(-1)=u(l)=0,
f.(w)=—¢eu’ +ou’ —ku+p, A,e,0,p>0, 0< Kk <\/op.

Where A, € >0 are two bifurcation parameters, and o, 0 >0, 0<k S\/cj—p are
constants. We prove the global bifurcation of bifurcation curves for varying & >0
by developed some time-map techniques. More precisely, we prove that, for any o, p
>0, 0<k S\/G_ , there exists € > 0 such that, on the (A, ||lu||,)-plane, the bifurcation
curve is S-shaped for 0< ¢ <€ and is monotone increasing for ¢ >€. (We also prove
the global bifurcation of bifurcation curves for varying A >0.) Thus we are able to
determine the exact number of positive solutions by the values of &€ and A. Our
results extend those of Hung and Wang ( Trans. Amer. Math. Soc., accepted to appear
under minor revision ) from x <0 to 0<xg S\/G_p.

Key words and phrases: Global bifurcation; Exact multiplicity; Positive
solutions; Positone problem; S-shaped bifurcation curve; Time map

Running head: A positone problem with cubic nonlinearity
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1. Introduction

In this paper we study the global bifurcation and exact multiplicity of positive solutions
of the positone problem with cubic nonlinearity

{ u'(z) + Me(u) =0, —1<z<l1, u(-1)=u(l)=0, (1.1)

fo(u) = —eud + ou® — ku+p, \e,0,p>0,
where A, ¢ are two bifurcation parameters, and o, p are given constants. Moreover, we

mainly consider that x satisfies
0 <k < \Jop. (1.2)

For any € > 0, it is easy to see that there exists a positive number 3. which is the
unique positive zero of f.(u), and a positive number v, = o0/(3¢) < [, which is the
unique (positive) inflection point of f.(u), such that cubic polynomial f. satisfies

(i) f-(0) = p > 0 (positone), f/(0) = —x < 0, f-(u) > 0 on (0,5,) and f.(5.) =0,

(ii) f.(u) is strictly convex on (0,,) and is strictly concave on (7., 00). (So f. is convex-
concave on (0, 5,).)

Note that it is easy to see that . is'a continuous, strictly decreasing function of € > 0.

In addition, lim. o+ 5, = oo and lim.",, 5. = 0. Three possible graphs of f.(u) satisfying
(1.1), (1.2) are depicted in Fig. 1

A A

f-(u) f.(u) 1
' \/
u :

\/ 0 ﬂi BEV
(i) (if) (i)

Fig. 1. Three possible graphs of f.(u) satisfying (1.1), (1.2).
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For any € > 0, on the (A, |Ju|| )-plane, we study the shape and structure of bifurcation
curves S. of positive solutions of (1.1) with x < ,/op, defined by

Se = {(\, |Juall,) : A > 0 and uy is a positive solution of (1.1) with x < \/op}.

We say that, on the (A, |lul|)-plane, the bifurcation curve S, is S-shaped if S, is a
continuous curve and there exist two positive numbers A\, < A" such that S, has ezxactly
two turning points at some points (A", [|uy+|| ) and (A, [Jua, || ), and

(i) A < A" and [Jux[|o, < flur. o
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(i) at (A™, [|urs

the bifurcation curve S, turns to the left,
o0

(it)) at (A, [ua,

the bifurcation curve S, turns to the right.
oo

See Fig. 2(i) for example.
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(i) 0<e<é (i) e =& (iii) € > &

Fig. 2. Global bifurcation of bifurcation curves S, with varying ¢ > 0.

Our results in this paper are extensions of those of Hung and Wang [3]. Hung and
Wang [3] developed some time-map techniques to study S-shaped bifurcation curve S, of
problem (1.1) with

K < 0. (1.3)
For problem (1.1), (1.3), Hung and Wang |3, Theorem 2.1] proved that there exists a
positive number & = &(o, k, p) Satisfying

25 o3

Gl et

27p
such that, on the (A, ||ul|)-plane,
(i) For 0 < € < &, the bifurcation curve S. of (1.1), (1.3) is S-shaped (see Fig. 2(i)).

(ii) For € = &, the bifurcation curve Sz of (1.1), (1.3) is monotone increasing. Moreover,
problem (1.1), (1.3) has exactly one (cusp type) degenerate positive solution u; (see

Fig. 2(ii)).

(iii) For e > &, the bifurcation curve S; of (1.1), (1.3) is monotone increasing. Moreover,
all positive solutions uy of (1.1), (1.3) are nondegenerate (see Fig. 2(iii)).

In Theorem 2.1 stated below for (1.1), (1.2) with varying € > 0, we prove the same
global bifurcation results of bifurcation curve S.. Hence we are able to determine the
exact number of positive solutions by the values of € and A. In addition, we give lower
and upper bounds of the critical bifurcation value . See Fig. 2.

While for any A > 0, on the (e, ||ul|, )-plane, it is interesting to study the shape and
structure of bifurcation curves X, of positive solutions of (1.1) with x < ,/op, defined by

Yy ={(e, |Juell,) : € > 0 and u,. is a positive solution of (1.1) with v < \/op}.
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(Note that we allow that bifurcation curve ¥ consists of two (or more) connected compo-
nents.) We say that, on the (¢, ||ul|)-plane, the bifurcation curve X is reversed S-shaped
if 3y is a continuous curve and there exist two numbers €, < €* such that S, has ezactly
two turning points at some points (e, ||u., || ) and (e*, [|ue ||, ), and

(1) 8* < 8* and HUE* fe'e) < HUE* 00

(ii) at (e, ||ue,||) the bifurcation curve 3, turns to the right,

(iii) at (e*, ||uer

) the bifurcation curve ¥y turns to the left.

See Fig. 3(iii) for example.

el fillulle [ elle
| : '
— L ¢ | ¢
0 £* ' 0 £* ' 0 & e
(1) 0 < A < Ao (i) A = Ag (iil) Ag < A < A

fi el fi el

v

3
=)
0 g 0

(v) A= X (V) A > A

Fig. 3. Global bifurcation of bifurcation curves X, with varying A > 0.

Hung and Wang [3, Theorem 2.3] proved that there exist two positive numbers Ao
(= Xo(0, K, p)) <A (= Ao, K, p)) such that, on the (¢, ||ul|_)-plane,

(i) For 0 < A < Ao, the bifurcation curve X, of (1.1), (1.3) has two disjoint connected
components, the upper branch is D-shaped with exactly one turning point, and the
lower branch is a monotone decreasing curve (see Fig. 3(i)).

(ii) For A = \g, the bifurcation curve X, of (1.1), (1.3) has two disjoint connected
components, the upper branch is D-shaped with exactly one turning point, and the
lower branch is a monotone decreasing curve (see Fig. 3(ii)).

3



(iii) For A\g < A < A, the bifurcation curve ¥, of (1.1), (1.3) is reversed S-shaped (see
Fig. 3(iii)).

(iv) For A = A, the bifurcation curve ¥ of (1.1), (1.3) is monotone decreasing. Moreover,
problem (1.1), (1.3) has exactly one (cusp type) degenerate positive solution uz (see
Fig. 3(iv)).

(v) For A > A, the bifurcation curve X, of (1.1), (1.3) is monotone decreasing. Moreover,
all positive solutions u. of (1.1), (1.3) are nondegenerate (see Fig. 3(v)).

In Theorem 2.2 stated below for (1.1), (1.2) with varying A > 0, we prove the same
global bifurcation results of bifurcation curve X,. Hence we are able to determine the
exact number of positive solutions by the values of A\ and . See Fig. 3.

We study, in the (e, A, ||ul| )-space, the shape and structure of the bifurcation surface
I" of positive solutions of (1.1), (1.2), defined by

I'={(e, A\ [|lueplly,) s €A > 0 and u. , is a positive solution of (1.1) with k < \/5p}
which has the appearance of a folded surface with the fold curve
Cr = {(e,\, |lusplly,) - €, A > 0 and u. s andegenerate positive solution of (1.1) with k < \/op} .

Let F, denote the first quadrant of the (e,)-parameter plane. We also study, on F,, the
bifurcation set

Br ={(g,\) : e, A > 0 and u, xis a degenerate positive solution of (1.1) with x < \/op}

which is the projection of the fold curve Cy onto. F;./ Let M denote the bounded, open
connected subset of F}, which is “inside’ Br.

Hung and Wang [3, Theorem 2.4] proved. that the following assertions (i)—(v) (see Figs.
4 and 5):

(i) The fold curve Cr is a continuous curve in the (e, A, ||u|| )-space. Moreover, Cr =
01 U 02 where

C1 = {(e, M\(e), Hu&A*(g)Hw) :0<e<é} and Oy = {(g,\"(e), ||u€,)\*(5)Hoo) 10 <e<e}.

(ii) The bifurcation set Br = B; U By where

B ={(g,\(e)): 0<e <&} and By={(e,\"(¢)) : 0 <e <E&}.

(iii) A«(¢) and A*(e) are both continuous, strictly increasing on (0, &].

(iv) Problem (1.1), (1.3) has exactly three positive solutions for (¢, \) € M, exactly two
positive solutions for (¢,\) € Br \ {(§,\)}, and exactly one positive solution for
(e,A) € (Fy \ (Br UM)) U{(E )}



(& ez 5 llo)

0

Fig. 4. The bifurcation.surface I of with the fold-curve Cr = C; U §'2, and the
projection of I" onto F,.-Br = By U By s the bifurcation set and (€, A) is the cusp
point on F,.

7' N
A 1 positive solution - =
) (€0
2 positive solutionsy N .
A ( 8) N 4 1 positive solution
Ao B,
.. . K
3 positive solutions,”” 2 positive solutions
M
1 positive solution
A(€)

€
0 4

Fig. 5. The projection of the bifurcatign surface I onto Fj,. Br = By U Bs is the
bifurcation set and (&, \) is the cusp point on Fj,.

In Theorem 2.3 for (1.1), (1.2) stated below, we prove the same structure of the
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bifurcation set Br and the fold curve Cr. Hence we are able to determine the exact
number of positive solutions of (1.1), (1.2) by the values of ¢ and A. See Figs. 4 and 5.

The paper is organized as follows. Section 2 contains statements of the main results:
Theorems 2.1-2.3. Section 3 contains several lemmas needed to prove Theorems 2.1-2.3.
Section 4 contains the proofs of Theorems 2.1-2.3. Finally, in Section 5, we give some
conjectures on shapes of bifurcation curves of problem (1.1) with evolution parameter
K> \/op.

In this section, finally, we note that our main results (Theorems 2.1-2.3) in this paper
extend those of Hung and Wang [3, Theorem 2.1, 2.3, and 2.4] from x < 0 to x < |/op,
and the proofs are more complicated. One of the main difficulties is that f.(u) could
initially decrease, but then increases to a peak before falling to zero on (0, .|, see Fig.

1(0).

2. Main results

Theorem 2.1. Consider (1.1), (1.2) with varying € > 0. There exists a positive number

g = &(o, K, p) satisfying

25 o3

(557
32°27p

such that the following assertions (i)-(iii) hold:

D2 <& < (T2
27p

(i) (See Fig. 2(i).) For 0 < € < €, the bifurcation curve S, is S-shaped on the (A, ||u||)-
plane. Moreover, there exist-two positive numbers A\, < \* such that (1.1), (1.2)
has exactly one degenerate positive solution uy, and uy- for A = A\, and A = \*,
respectively. More precisely, (11),(1.2) has:

(a) exactly three positive solutions uy, vy, wy With wy < uy < vy for A\, < A < A,

(b) exactly two positive solutions wy, wy with wy < uy for A = \,, and exactly two
positive solutions uy, vy with uy < vy for A = \*,

(c) exactly one positive solution wy for 0 < A < A, and exactly one positive
solution vy for A > \*.

Furthermore,

(d) limy_o+ ||wall, = 0 and limy_. [|va|| . = 5..

(ii) (See Fig. 2(ii).) For ¢ = &, the bifurcation curve S: is monotone increasing on
the (A, ||u||)-plane. Moreover, (1.1), (1.2) has exactly one (cusp type) degenerate
positive solution us. More precisely, for all A > 0, (1.1), (1.2) has exactly one positive
solution uy satisfying limy_o+ ||un|l, = 0 and limy_. [Jus||, = B.-

(iii) (See Fig. 2(iii).) For ¢ > &, the bifurcation curve S. is monotone increasing on the
(A, |lull . )-plane. Moreover, all positive solutions uy of (1.1), (1.2) are nondegener-
ate. More precisely, for all A > 0, (1.1), (1.2) has exactly one positive solution u,

satisfying limy_o+ [[ux[l, = 0 and limy_co [lua|,, = B-.



Theorem 2.2. Consider (1.1), (1.2) with varying A > 0. There exist two positive num-
bers \g (= Xo(0,k,p)) <X (= Ao, K, p)) such that the following assertions (i)—(v) hold:

(1)

(i)

(iii)

(See Fig. 3(i).) For 0 < XA < Ag, on the (¢, ||u|| )-plane, the bifurcation curve X,
has two disjoint connected components, the upper branch is D-shaped with exactly
one turning point, and the lower branch is a monotone decreasing curve. Moreover,
there exists a positive number €* such that (1.1), (1.2) has exactly one degenerate
positive solution u. for € = £*. More precisely, problem (1.1), (1.2) has:

(a) exactly three positive solutions u., v, w. with w. < u. < v, for 0 < & < &*,
(b) exactly two positive solutions w., u. with w. < u. for e = &*,

(c) exactly one positive solution w. for e > &*.
Furthermore,

(d) 0=1lim. o ||Jwell . < lme_o+ [Jwel|l, <lim. o+ [Juell, < lime_o+ [|ve], = 0.

(See Fig. 3(ii).) For A = X, on the (e, ||ul| )-plane, the bifurcation curve ¥, has
two disjoint connected components, the upper branch is D-shaped with exactly one
turning point, and the lower branch is a monotone decreasing curve. Moreover,
there exists a positive number €* such that.(1.1), (1.2) has exactly one degenerate
positive solution u.» for € = a*.-More precisely; problem (1.1), (1.2) has:

(a) exactly three positive solutions e, V., we with w. < u. < v, for 0 < e < £¥,
(b) exactly two positive solutions we., w. with w. < u. for ¢ = &*,

(c) exactly one positive Solution w_for e > £*.

Furthermore,

(d) 0=1lm. o |Jwell, < lmasoedlwe|| =Tm: o+ ||uell, < lm._ o+ [|ve] = 0.

(See Fig. 3(iii).) For A\g < A < \, the bifurcation curve ¥, is reversed S-shaped on
the (e, ||u||,)-plane. Moreover, there exist two positive number €, < €* such that
(1.1), (1.2) has exactly one degenerate positive solution u., and u. for e = ¢, and
e = €*, respectively. More precisely, problem (1.1), (1.2) has:

(a) exactly three positive solutions u., v., w. with w. < u. < v, for e, < € < &*,

(b) exactly two positive solutions u., v. with u. < v. for ¢ = ¢,, and exactly two
positive solutions w,, u, with w. < u. for ¢ = €*,

(c) exactly one positive solution v. for 0 < e < &, and exactly one positive solution
w, for e > &*.
Furthermore,

(d) lim._o+ [Jve]| . = o0 and lim._, [|w,||, = 0.



(iv) (See Fig. 3(iv).) For A = ), the bifurcation curve ¥ is monotone decreasing on
the (e, ||ul|)-plane. Moreover, problem (1.1), (1.2) has exactly one (cusp type)
degenerate positive solution uz. More precisely, for alle > 0, problem (1.1), (1.2) has
exactly one positive solution u. satisfying lim._o+ |lu.||, = 0o and lim._,« |Juc||, =

0.

(v) (See Fig. 3(v).) For A > X, the bifurcation curve ¥, is monotone decreasing on the
(¢, ||ull,)-plane. Moreover, all positive solutions u. of (1.1), (1.2) are nondegen-
erate. More precisely, for all € > 0, problem (1.1), (1.2) has exactly one positive
solution u. satisfying lim. g+ ||uc||, = 0o and lim._,« ||uc||, = 0.

We give next remark to Theorem 2.2.

Remark 1. Considering (1.1), (1.2) with ¢ > 0 generalized to ¢ € R, we define the
bifurcation curve

Y5 = {(&, ||uell,) : € € R and u, is a positive solution of (1.1) with x < \/op} .
Actually, it can be easily proved that:

(i) For 0 < X\ < ), the bifurcation curve ¥y is reversed S-shaped on the (e, ||ul|.)-
plane. Moreover, there exists ¢, < 0 such that (1.1), (1.2) has exactly two positive
solutions w., u. with w. < u. _for e, < e <0, and exactly one positive solution u,.
for € = ¢,, and no positive selution for ¢ < £,. See Fig. 6(i).

(ii) For A = ), the bifurcation curve 3y, is reversed S-shaped on the (s, ||u||_)-plane.
Moreover, problem (1.1),.(1.2) has exactly one positive solution u. for ¢ = 0, and
no positive solution for &< 0. See Fig. 6(ii).

4 4

[ 1l N el | 112l oo
1
1 ! !
< . | |
I I € I £ 1 , €
€x 0 e* ' 0 e* ’ 0 &« e
1) 0 << A (i) A = A (i) Ag < A < A

Fig. 6. Global bifurcation of bifurcation curves ¥y of (1.1), (1.2) with £ > 0 generalized

to e € R and with varying A € (0, \).

Notice that, in Theorem 2.1, on the (A, ||u||,,)-plane, the bifurcation curve S, is S-
shaped for 0 < € < &, see Fig. 2. While in Theorem 2.2 and Remark 1, on the (e, ||u||)-
plane, the bifurcation curve X, is reversed S-shaped for 0 < A < A, see Fig. 6.

Let £ = (0, K, p), Ao = Mo(0, K, p)s A= M0, K, p), A = M), A = A*(e), &, = e.(N)
and €* = €*(\) be the values in Theorems 2.1 and 2.2 for (1.1), (1.2). We study the
structure of the bifurcation set Br in the next theorem.
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Theorem 2.3 (See Fig. 5). Consider (1.1), (1.2) with (¢, \) € F,. Then the bifurca-
tion set Br = By U By where

By ={(e, () :0<e <2} and By ={(e,\"(g)): 0 <e <E}.

Moreover, problem (1.1), (1.2) has exactly three positive solutions for (¢, \) € M, exactly
two positive solutions for (¢,\) € Br \ {(§,)\)}, and exactly one positive solution for
(e,A) € (F,\ (BrUM))U{(¢,\)}. More precisely, the following assertions (i) and (ii)
hold:

(i) Functions \.(¢) and \*(¢) are both continuous, strictly increasing on (0,&] and
satisfy 0 = lim, o+ Ax(g) < lim. o+ A"(€) = Mg < A = A (E) = A*(8).

(ii) Functione*(\) is continuous, strictly increasing on (0, ] and satisfies limy_o+ £*(A) =

0 and €*()\) = &. Function €,(\) is continuous, strictly increasing on (o, A] and sat-
isfies lim,_,,+ €,(A) = 0 and €,()) = &.

In next remark, we give a precise characterization of the fold curve Cr in the (e, A, ||lul| . )-
space.

Remark 2 (See Fig. 4). Consider (1.1); (1.2)./Then, by Theorem 2.3(i), the fold curve
Cr = C1 U Cy where

01 = {(6,/\*(5>,

UEA*(E)HOO) :0<e <2} and Oy = {(es ) (o), ||ug7y(5)||oo) 0<e<e}.

Moreover, by applying (4.4)—(4.6) stated below, we are able to prove that:

@) [leen @l > @l Tor0 e <@amdifusiie |, = lluznell = lluas

) Hoo'

(i) Hu&,\*(g) HOO is a continuous, strictly decreasing function of € € (0,&| and Hu€7)‘*(8)Hoo
is a continuous, strictly increasing function of € € (0, £].

(iii) Cr is a continuous curve in the (e, A, ||u|| . )-space.

Observe that both A*(¢) and A.(e) have continuous inverse functions on (0, £]. Indeed,

£.(A) is the inverse function of A\*(¢) on (Ao, A] and £*()) is the inverse function of A,(e)
on (0, A].

3. Lemmas

To prove our results (Theorems 2.1-2.3), we need the following Lemmas 3.1-3.8 in which
we develop new time-map techniques different from those developed in [3]. In particular,
Lemma 3.3 is a key lemma in the proofs of Theorems 2.1-2.3. In Lemma 3.3, for any fixed
€ > 0, we prove that the bifurcation curve S; is either monotone increasing or S-shaped on
the (A, ||ul|,)-plane. To apply the time-map techniques for (1.1), (1.2), in the following,



we consider € > 0. The time map formula which we apply to study (1.1), (1.2) takes the
form as follows:

VA= % /Oa [F.(0) — F.(w)] Y du=T.(a) for 0<a<pB. ande >0, (3.1

where F.(u) = fou fe(t)dt and . the unique positive zero of cubic polynomial f.(u) for
e > 0, and we let 5._, = co. Observe that positive solutions u,.  for (1.1), (1.2) correspond
to

[tierlloe = @ and Ti(a) = V. (3.2)

Thus, studying of the exact number of positive solutions of (1.1), (1.2) for fixed e > 0 is
equivalent to studying the shape of the time map 7.(«) on (0, 8,); and studying the exact
number of positive solutions of (1.1), (1.2) for fixed A > 0 is equivalent to studying the
number of roots of the equation T-(a) = v/ on (0, 5.) for varying ¢ > 0. Note that it
can be proved that T.(«) is a thrice differentiable function of o € (0, 5.) for € > 0. The
proof is easy but tedious and we omit it.

We call a positive solution u. y of (1.1), (1.2) is degenerate if T(||uc|lo) = 0 and is
nondegenerate if T!(||uzz]l«) # 0. So to find the degenerate positive solutions of (1.1),
(1.2), we only need to find the critical points of T.(«) on (0,3,.). It is known that a
degenerate positive solution wu. , of (L.1);/(1:2)ris of cusp type if T (||u:|lco) = 0 and
T (|uer|loo) # 0, see Shi [9, p. 497] and [10, p. 214]

The main difficulty in proving our main results is to determine the exact number of
critical points of the time map.7;(«) on (0,5.) for.all € > 0. This question is partially
answered in the following Lemmas'3.1 and 3.2. Lemma 3.1 follows from [8, Theorems 2.6,
2.9 and 3.2] and Lemma 3.2 mainly follows by applying-{4, Theorem 2.1]. We omit the
proofs.

Lemma 3.1. Consider (1.1), (1.2). For any fixed’e > 0, the following assertions (i) and
(ii) hold:

(i) lim, o+ T:(a) = 0 and lim,,_,5- T:(a) = oo.

(ii) IfT.(«) is not strictly increasing on (0,.), then T.(«) is strictly increasing on (0, 7,)
and strictly decreasing on (7.,7,) for some 7. € (0,7,).

Lemma 3.2. Consider (1.1), (1.2). Then the following assertions (i) and (ii) hold:

(i) For any fixed ¢ > (:Z-)'/2, T.(«) is a strictly increasing function on (0, 3.).

o3

27p

(ii) For any fixed positive ¢ < (%(;—;}))1/2, T.(«) has exactly one local maximum and
one local minimum on (0, 3,).

However, there is a gap, what about the case where ¢ is between (1—70(2"—7?;)))1/ 2 and

(;_7?:0)1/2? First, in the next Lemma 3.3, we prove

10



Lemma 3.3. Consider (1.1), (1.2). For any fixed ¢ > 0, T.(«) is either a strictly increas-
ing function or has exactly two critical points, a local maximum and a local minimum,

on (0,[.).

To prove Lemma 3.3, we develop some new time-map techniques. First, for time-map
function 7. («) with a € (0, 5,) in (3.1), letting u = awv, we have

dv.

2 / ow)]l/2

For any fixed € > 0, we compute that

oy L[ 1 o [ R = flewe
TE(O‘)_\@ /0 [Fs(oz)—FE(ow)]l/Qd 22 /0 [Fs(a)—FE(av)]gmd (3:3)
and
" fs felovp a1 fi(a) - fi(av)e®
el = \/_/ Fe(ozv)]g/?dv 2\/5/0 [Fg(a)—FE(ozv)]S/zd
[ ( ) — fo(av)o]’
—}—4\/_ o) Fs(av)]f’/?du (3.4)
We define the auxiliary function
G(a) = 8203 T (a), (3.5)

Then we have the following lemma. The proof of Lemma, 3.4 is rather long and technical,
therefore we postpone it to the Appendix.

Lemma 3.4. Consider (1.1), (1.2). For'any fixed ¢ € [(10(2—7/)))1/2, (%)1/2], G (a) >0
fora S [75’65)'

For any fixed o > 0, let
I,={e>0:a€(0,5,)}.

Since [, is a continuous, strictly decreasing function of ¢ > 0, and lim. o+ 8, = o0
and lim. o, 8, = 0, we obtain that I, = (0,e(«)) where a = ), and e(a) is strictly
decreasing in «.

Lemma 3.5. Consider (1.1), (1.2). For any fixed a > 0, T!(«) is a continuously differ-
entiable, strictly increasing function of ¢ € 1, U {0}.

Proof of Lemma 3.5. First, for any fixed a > 0, it can be proved that T!(«) is a
continuously differentiable function of ¢ € I, U{0}. The proof is easy but tedious and we
omit it.

11



Secondly, since f.(u) = —eu® + ou® — ku + p, Fo(u) = [} f-(t)dt and by (3.3), w
compute that

/ _ 1 f-(a) = fe(av)v ”
o) = f/ e s o)
)~ afic)  ur 0

: / 2P ) —ufiu),,
2\/_04 0 [Fe(a) = Fe(u)]
1 a 8(04;“4) _ O.(Ofsgus) + p(a _ u)
= 2\/§a (a4_ 4) (a3_u3) (az_uQ) 3/2 d’LL
0 [—6 T to e — kK —I—p(a—u)]
and
0
~T
5 Le(@)
B 1 /a (a* —u?) [3e(a* — u?) + 20(a® — ud) — 12k(a® — u?) + 42p(a — u)]du
o 5/2
96\/50{ |:_€(a42u4) + O_(a3;u3) B K(QZ_UQ) + p(a _ u)]
- \1/_ /a (a* —ut)(a —u) [o(a® + au + u?) — 6k(a + u) —I;/zlp] . (3.6)
4 4 2
484/ 2« [ 6(04 u)_|_ (oc3—u) H(a _u)+p(OZ—U)
Let
Hu) = a0+ au+v?)=6kr(a+u)+21p
au’ + (o= 6k)u + (ca® =6ra + 21p).
Therefore, the proof is complete if we ¢an prove that
H(u) > 0 for any given numbers o, p,a >0, 0 < x < /op. (3.7)

Note that the discriminant of quadratic polynomial H(u) is —30%a? + 120k + (36K% —
840p) = H (). By the assumption that x < |/op, the discriminant of quadratic poly-
nomial H(a) is 1440%(4k? — Top) < 0. So H(a) < 0 for any given numbers o,p > 0,
0 < x < /op. This implies that (3.7) holds. By (3.6) and (3.7), for any fixed o > 0,
T!(«) is a strictly increasing function of e € I, U {0}.

This completes the proof of Lemma 3.5. B

We are now in a position to prove Lemma 3.3.
Proof of Lemma 3.3. First, we prove that for any fixed ¢ > 0, T.(«) is either a strictly
increasing function or has a local maximum and a local mlmmum on (0,5,). By Lemma
3.2, we only need to consider the case (170(27 N2 <e < (& )1/2

For any fixed (15(% ))1/2 <e< (27p)1/2, by Lemma 3.1(11) (resp. Lemma 3.4), we
know that all (posable) critical points of T.(«) on (0,7,.] (resp. on [v., 53.)) are discrete.
Moreover, since lim, o+ T:(a) = 0 and lim,_5- T:(a) = oo and by Lemma 3.1(i), we
obtain that 7(«) changes sign an even number of times or infinitely times. Assume that
T.(«) is neither a strictly increasing function nor does it have exactly one local maximum

12



and one local minimum on (0, 3.). Then there exist numbers a1, s, a3 € (0,3.) such
that oy < ae < ag are critical points of T.(«), a1, a3 are local maxima, and ay is a local
minimum. Thus 7/ (ay), T/ (a3) < 0 and T/ (as) > 0.

By Lemma 3.4, for any fixed (£(£))"/? < ¢ < (£5)"/%, G-(a) = 82037/ () is a
strictly increasing function on [v,, 5.). Since ap > 7, by Lemma 3.1(ii), we obtain that

8v203 T (a5) = G-(as) > Ge(as) = 8v203 T () > 0.

Therefore T/ (ca3) > 0. This contradicts to that T/ (a3) < 0. So T.(«) is either a strictly
increasing function or has exactly one local maximum and one local minimum on (0, 3.).

Next, suppose that T.(a) has exactly a local maximum «; and a local minimum .,
for some fixed £ > 0, then 0 < ayp; < oy, < . by Lemma 3.1(i). We can prove that T, («)
has exactly two critical points ays, ay, on (0, 8.) by applying similar arguments used in
the proof of [3, Lemma 3.3|; we omit it. (Note that Lemma 3.5 was used in the skipped
part.)

This completes the proof of Lemma 3.3. B

Let
o { e > 0: T.(«) has exactly two critical points, }

~ | alocal maximum and a local minimum, on (0, 3.)

By Lemma 3.3, for any € > 0, T.(«).is either a strictly increasing function or has exactly
two critical points, a local maximam and a local minimum, on (0, 5_). Thus

5 _ { e > 0: T:(er) has exactly two critical points, }

a local maximum and a local minimum, on (0, 3,)
= {e>0:T4a) < 0'for some a. € (0,5:)} . (3.8)

We obtain the following two lemmas. by modifying the same arguments used in the proof
of [3, Lemmas 3.7-3.8|; we omit the proofs.

Lemma 3.6. The set E is open and connected.

o3
Lemma 3.7. (0, (%(m))lﬂ] C E.

The following Lemma 3.8(i) determine the shape of T._¢(«) on (0,00), and Lemma
3.8(ii) is a basic comparison theorem for the time map formula. Lemma 3.8(i) follows
from [8, Theorem 3.2] and Lemma 3.8(ii) by modifying [8, Theorems 2.3 and 2.4]. We
omit the proofs.

Lemma 3.8. Consider (1.1), (1.2). The following assertions (i) and (ii) hold:

(i) T.—o(«) has exactly one critical point at some c, a maximum, on (0, 00). Moreover,
lim,, o0+ Teeo(@) = limy o0 Teep(@) = 0.

(ii) For any fixed a > 0, T.(«v) is a continuous, strictly increasing function of ¢ € 1,U{0}.

13



4. Proofs of the main results

We first recall that a positive solution wu.  of (1.1) is degenerate if T.(||uc|l) = 0 and
is nondegenerate if T!(||u.|lo) # 0. Also, a degenerate positive solution u. » of (1.1) is
of cusp type if T (||uer|loo) = 0 and T7"(||ter||o0) # O.

Proof of Theorem 2.1. To prove Theorem 2.1, by (3.1) and Lemma 3.1(i), it suffices
to prove that there exists a positive number & = (o, K, p) such that the following parts
(I)—(III) hold:

(I) For 0 < e <&, on (0,5.), T-(«) has exactly two critical points, a local maximum at
some a_ and a local minimum at some o} (> o), satisfying \* = (T.(a7))? and
A = (Te(a))?.

(IT) For e = &, T:(«v) is a strictly increasing function and has exactly one critical point, at
some &, on (0, 5z). Moreover, TZ(&) = 0, T%Z(a) > 0 for o € (0, 5z) \ {a}, T¥ (&) =0
and TY"(&) # 0 (So (1.1), (1.2) has exactly one (cusp type) degenerate positive
solution u; with A = (T%(&))? and & = ||uz]|so-)

(III) For € > &, T.(«) is a strictly increasing function and has no critical point on (0, 3,).
Moreover, T!(a) > 0 for a € (0, 5,).

Note that, by (3.2) and the abeve parts (I)—(IIl), we obtain immediately the exact
multiplicity result of positive solutions-of (1.1); (1.2) for 0 < & < & and the uniqueness
result of positive solution of (1:1), (L.2) for £ > &. Moreover, ordering properties and
asymptotic behaviors of positive solutions of (1:1); (1.2) in parts (I)~(III) can be obtained
easily. We then prove parts (I)=(III) as follows.

By Lemma 3.2, we obtain that the set-# is nonempty and bounded above by (2"—71)1/ 2,
By Lemmas 3.6 and 3.7, E' = (0,€) where ¢ = sup £ satisfies (%(%))1/2 <E< (2"—7?;))1/2.
So, for 0 < ¢ < &, on (0,5.), T.(a) has-exactly two critical points, a local maximum
at some a_ and a local minimum at some a (> a7 ), satisfying \* = (T.(a7))? and
A = (T.(aF))? So part (I) holds.

For € > &, by Lemma 3.5 and (3.8), we obtain that

T(e) > Ti(a) 2 0 for a € (0,5,) C (0, 52),

and hence T («) has no critical point on (0, 3,). So part (III) holds.
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Fig. 7. Graphs of T.(«) for o € (0, 8.) with varying € > 0.

O = = e - -

o

We prove the remaining part (II). For € = &, we know that
e = 0 on (0,60, (4.1)

We first prove the existence of & critical point of 7:(a)-on (0,3:). Choose a sequence

{en} C £ = (0,&) such that ¢, /& as n — co0. Let o7 ~< o be two critical points of
T.,(a) on (0,4, ) for each n €N (see Fig. 7). Then by Lemma 3.5 again, we obtain that

’ — / z - / + / + o
Tan(agnH) < T5n+1(045n+1) =0 and TEn(aanH) < Tan+1(asn+1) =0.
Hence o, <o, < a;+ . <o and
o <a =lim o, <& = lim ol <af forallneN.
These imply that
T (@7),T. (&") < 0 for all n € N.
By Lemma 3.5, we obtain that 7”(«) is a continuous function of € € I,. Thus
Ti{a") = lim 7] (&7) <0 and Ti(a")= lim 7. (&") <0. (4.2)
So TY(a~) = Ti(a") = 0 by (4.1) and (4.2), and hence T:(«) has critical points at &, a™
on (07 ﬁé)
We then prove the uniqueness of critical point of Tz(«) on (0, 5:). That is, we prove
that & = @~ = & is the unique critical point of Tx(«) on (0, 3z). Suppose that & < & are

two critical points of T:(a) on (0, 5z). We know that all (possible) critical points of T, («)
on (0, 3.) are discrete as in the proof of Lemma 3.3. Hence there exist positive numbers
a1 < & < ap < @ such that

Té(Ozl),TgI(OéQ) > 0.
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By Lemma 3.5, we obtain that 7! («) is a continuous, strictly increasing function of ¢ € I,,.
Hence there exists a positive é < € such that

Té(ozl) > 0, Té(d) < 0, Té(OZQ) > 0, Té(d) < 0.

Thus T:(a) has at least two local maxima on (0, 5:), which contradicts to the facts that
¢ € F and T:(«) has exactly one local maximum on (0, ;). So T:(«) has at most one
critical point on (0, 5:). By the above analysis,

Ti(@) =0 and T:(a) >0 for a € (0,8:) \{a}. (4.3)

Next, if T (&) > 0 (resp. T (&) < 0), then T:(«) has a local minimum (resp. a local
maximum) at &, which contradicts to (4.3). So T¥(&) = 0. By Lemma 3.1(ii), we have

of >, >7; forallneN,

and hence & = lim,, . of > v:. By Lemma 3.4, G%(«) > 0 for all « € [, 5;). So
GL(@) = &t [QOﬁTg(@) + 8\/§@Tg"(@)] > 0.

Therefore 77" (&) > 0 since T (&) = 0. Thiscompletes the proof of part (II).
The proof of Theorem 2.1 is complete: ®
Proof of Theorem 2.2. Recall«(3.1) with-e.>.0,

V= % /Oa [F.(a) = Fg(u)]_l/2 du=T.(a) for 0 < <f,,

where (. the unique positive zero of cubic polynomial f.(u) for ¢ > 0 and 5., = oo.
Thus, studying the exact number of positive solutions. of (1.1), (1.2) for fixed A > 0 is
equivalent to studying the number of roots of the ‘equation T.(a) = v/A on (0,3.) for
varying € > 0. Since we have studied the behaviors of 7. («) for all varying € > 0 (see the
proofs of Theorem 2.1 and Lemma 3.8(i) and Fig. 7), there exist two positive numbers
Xo (= Xo(0, 5, p)) < X (= Mo, k, p)) such that the following parts (I)~(III) hold:

(I) For 0 < A < ), there exists a positive number ¢* = £*(\) such that the equation
T.(e)) = VX has exactly three roots on (0, 3.) for 0 < & < *, exactly two roots on
(0, 5,) for e = €*, and exactly one root on (0, 5,) for ¢ > &*.

(II) For \g < A < A, there exist two positive number ¢, (= &,()\)) < &* (= *(\)) such
that the equation T.(a) = v/A has exactly three roots on (0,3.) for &, < € < ¥,
exactly two roots on (0, 3,) for ¢ = ¢, and ¢ = ¢*, and exactly one root on (0, /.)
for 0 <e <e,and e > e".

(IIT) For A > X, the equation T-(a) = v/X has exactly one root on (0, 3.) for all £ > 0.
Notice that Ay = (T.—o(g))? and A = (T:(&))?, where ay is the unique critical point

of T.—o(a) and & be the unique critical point of T:(«r). Hence (3.2) and the above parts
(D)—(IIT) imply immediately the exact multiplicity result of positive solutions of (1.1),
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(1.2) for A € (0,) and the uniqueness result of positive solution of (1.1), (1.2) for A
Moreover, ordering properties and asymptotic behaviors of positive solutions of (
(1.2) in parts (I)—(III) can be obtained easily.

The proof of Theorem 2.2 is complete. B
Proof of Theorem 2.3. By Theorem 2.1, for any ¢ > &, we obtain that (1.1), (1.2) has
exactly one positive solution for all A > 0. In addition, for any ¢ € (0, ), there exist two
positive numbers A, (g) < A\*(¢) such that (1.1), (1.2) has exactly three positive solutions
for A.(e) < A < X*(g), exactly two positive solutions for A = A.(¢) and A*(¢), and exactly
one positive solution for 0 < A < A.(¢) and A > \*(¢), where \.(¢) = (T.(a))? and
N(g) = (T-(a7))? in which aZ < a7 are two critical points of T.(«) on (0, 3,).

First, letting oz = of = &, we prove that aZ (resp. o) is a continuous, strictly
increasing (resp. strictly decreasing) function on (0,&] and lim. .o+ a7 = ag (resp.
lim. g+ af = o0) as follows. By similar arguments in the proof of Theorem 2.1, we
obtain that a_ (resp. o) is a strictly increasing (resp. strictly decreasing) function on
(0,&]. For any fixed a € (ay, &), by Theorem 2.1(ii) and Lemma 3.8(i), we obtain that

>\
1.1),

T!_o(a) <0 and Ti(a) > 0.

Then by Lemma 3.5, T!(«) is a continuously differentiable, strictly increasing function of
e € [0,&]. This implies that there exists a unique € € (0,&) such that T/(«) = 0. So

a_ :(0,€] = (ap,a] isastrictly increasing, surjective function, (4.4)

and hence o is a continuous function-on (0,&] and lim.. .o+ o = «p. Similarly, we can
prove that

al :(0,8] — [&, 0c0) is astrictly decreasing, surjective function,

and hence o is also a continuous function on (0, £]-and lim, g+ af = oo.
Secondly, letting

A (0) = 0, M(0) = Ao = (Too(a0))?, and A (8) = X*(8) = A = (T2(a))%,

we then show A\, (g) and A\*(¢) are both strictly increasing functions on [0, &]. By Lemma
3.8(ii), T-(«) is a continuous, strictly increasing function of ¢ € I, U{0}. So for any &1, &5
satisfying 0 < g1 < g5 < &, we obtain that

N(e2) =T, (ag,) > T, (ag,) > T (ag,) = VA (61)
and
Aile2) = To, () > Tey (o) > Ty (o) =V Au(e);
(

cf. Fig. 7. Hence \.(g) and \*(¢) are both strictly increasing functions on [0,&]. Note
that T.—o(ag ) = /A (0) = Treo() and Tig(ag) = /A(0) = 0.

Thirdly, we show A, (¢) and \*(¢) are both continuous functions on [0, £]. By Lemma
3.5, for any fixed o > 0, T7(«v) is a continuously differentiable, strictly increasing function
of e € 1,U{0}. So for any ¢ € (0,¢] and for any given n > 0, there exists § > 0 such that

Te(az) —n <T.(az) <T:(az) foralle € (2—4,8).
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By Theorem 2.1(i) and the fact that \*(¢) is a strictly increasing function on [0, &], we
have that

Te(aD) —n < Te(aZ) < To(aD) = /A () < VA (E) = Te(ag) foralle € (E—6,2).

Hence

‘\/)\*(5) . \/)\*(é)‘ < foralle € (- 6,2).

This implies that \/\*(¢) is left continuous on (0, £], and so is A*(¢). By similar arguments,
we can prove that A, () is right continuous on [0, &).

Now, assume that A\*(¢) is not right continuous at some point & € [0, ), then there
exist 7; > 0 and a sequence {e,} C (&,¢) such that &, \, & as n — oo, and

T, (02,) = Telop)| = |[VATen) = VATE)

Then for any positive integers m > n, by Lemma 3.9(ii),

>, foralln e N.

Ten (a;m) > Tem (aé_m) Z Té(aé_) + T]l'
By (4.4), a_

- is a continuous function on (0, &, so

T, (oz) = lim T, (a_ ) > T:(az) +n, foralln € N.

Em
Note that oy = ap = lim. o+ o .. Then by Lemma 3.8(ii) again, we have that

T:(az) = lim T, (oz ) 2 T(0z) +my > Te(y),

and we obtain a contradiction. This implies that /\"(g) is right continuous on [0, £), and
so is A\*(¢). By similar arguments, we can prove that \.(¢) is left continuous on (0, &].
By the above analysis, we conclude that

A*(€) : [0,€] — [Mo, A] is‘a continuous, strictly increasing function (4.5)
and .
Ae(€) 1 [0,€] — [0, A] is a continuous, strictly increasing function. (4.6)
Moreover, 3
lir(]§1+ A*(e) = Ao, lirg1+ A(€) =0, and A\(E) = N"(€) = A. (4.7)

Finally, by (4.5)-(4.7), A*(¢) and . () both have continuous inverse functions on (0, &].

Indeed, by Theorem 2.2 and (3.1), £.(A) = (A")7'(¢) on (A, A] and £*(A) = (A\,)7'(¢) on
(0, A] where e,(A\) = £*(\) = &. So we obtain that

£*(\) : (0,A] — (0,2] is a continuous, strictly increasing function

and

£+(A) : (Ao, A\] = (0,2] is a continuous, strictly increasing function.
Moreover,
lim e*(\) = lim ,(\) =0.

A—0+ A=Ad

The proof of Theorem 2.3 is complete. B
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5. Conclusions and conjectures

We consider the problem

{ W'(@) + M) =0, 1<z <1, u(-1)=u(l) =0, (5.1)

f-(u) = —eu? + ou® — ku+p, Ae > 0.

Problem (5.1) was first systematically studied by a celebrated paper by Smoller and
Wasserman [11]. In particular, they consider (5.1) with ¢ = 1 and that cubic nonlinearity
fe=1(u) has three real zeros a < b < c. In this section we discuss the general case with
e > 0 and 0,p,k € R, so that f.(u) may have exactly one positive zero, two distinct
positive zeros or three distinct positive zeros. First, note that, if ¢ < 0 or p < 0, we can
show that the structure of bifurcation curve S; of positive solutions for (5.1) is one of the
following cases:

(i) The bifurcation curve S. of (5.1) is an empty set (that is, (5.1) has no positive
solution for all A > 0).

(ii) The bifurcation curve S, of (5.1) is a monotone curve on the (A, ||ul|,)-plane.

(iii) The bifurcation curve S. of (5.1). has exactly one turning point where the curve
turns to the right on the (A, ||} )-plane.

Thus problem (5.1) has at most two positive solutions if o < 0 or p < 0. See [5] for
the details of the above results:

Ifo > 0and p > 0, then (5.1) reduces to (1.1). It is more difficult to determine precisely
the exact multiplicity of (1.1)since problem (1.1) may have three positive solutions for
some positive numbers ¢, k, . We analyze (1.1) more precisely in this section. First, if

R<en/ TP,

the exact multiplicity results of positive solutions for problem (1.1) was determine precisely
by Theorem 2.1 and [3, Theorem 2.1]. By some numerical simulations, we give next
three conjectures on the shape of bifurcation curves S. of positive solutions of (1.1) with
k > /0p, defined by

Se = {(\ JJually,) : A > 0 and wy is a positive solution of (1.1) with k > \/ap} .

Conjecture 5.1. Consider (1.1) where

Vop <k < y\/3op.

Then there exists a positive number & = &(o, Kk, p) satisfying satisfying

25 o3

(—(%

12 _ = ‘7_31/2
S <E< (o)

27p
such that all results in Theorem 2.1(i)—(iii) hold.
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While
K> \/30p, (5.2)

we remark that there exists some & > 0 such that cubic nonlinearity f:(u) has three
positive zeros 0 < a < b < c and [ f:(¢)dt > 0 (see Fig. 8(i).) For these f:(u), it is easy
to check that a + ¢ > 2b and there exists p € (b, ¢) such that [ f:(¢)dt = 0. So problem
(1.1), (5.2) can be written as

u'(z)+A(u—a)(u—>b)(c—u)=0, —1<z<l, u(-1)=u(l)=0, (5.3)
MNE>D, O0<a<b<e a+c>20. ’
Afé (u) “”u”oo
Cbmm ..

= _—

| Mofp==mmmmmmmm e T
; w OfTTTToooooooooeomomene
of a\_/p K C\ g A
0 .o :
6) (11)

Fig. 8. (i) The graph of f:(u) satisfying (5:3)« (ii) The conjectured bifurcation curve of
problem (5.3).

It was conjectured that the bifurcation curve of positive solution of problem (5.3) is broken
S-shaped (see Fig. 8(ii)) on the (A, |ull,)-plane. A proof was claimed by Smoller and
Wasserman [11, Theorem 2.1], but their proof has a gap. Assuming different conditions
on constants a, b and ¢, Wang [12]-and Korman, lii'and Ouyang [6] gave partial proof
of the above conjecture independently. For-this conjecture, Korman, Li and Ouyang [7]
gave a computer-assisted proof. Further investigation on this conjecture is needed. We
give two conjectures about problem (1.1), (5.2) which is more general than problem (5.3).

Conjecture 5.2. Consider (1.1) where

V3op < K < 2\/ap. (5.4)

Then there exist two positive numbers &y = &y(o, Kk, p) < €9 = €o(0, K, p) such that the
following assertions (i)—(iii) hold:

(i) (See Fig. 2(i).) If 0 < e < &y, then the bifurcation curve S. is S-shaped on the
(A, ||lull,)-plane. Moreover, the exact multiplicity results of positive solutions in
Theorem 2.1(i) hold.

(i) (See Fig. 8(ii).) If &y < ¢ < &, then the bifurcation curve S. is broken S-shaped
on the (A, ||u|| . )-plane. Moreover, there exist \* > 0 such that problem (1.1), (5.4)
has exactly three positive solutions for A > \*, exactly two positive solutions for
A = X\, and exactly one positive solution for 0 < A < \*.
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(iii) (See Fig. 2(iii).) If ¢ > &, then the bifurcation curve S. is a monotone curve on the

(A, [|u]|oo)-plane. Moreover, problem (1.1), (5.4) has exactly one positive solution
for all A > 0.

Conjecture 5.3. Consider (1.1) where

K 2> 2y/op. (5.5)

Then there exists a positive number £y = £¢(0, k, p) such that the following assertions (i)
and (ii) hold:

(i) (See Fig. 8(ii).) If 0 < € < &, then the bifurcation curve S. is broken S-shaped on

the (A, ||ul|,,)-plane. Moreover, there exist \* > 0 such that problem (1.1), (5.5)
has exactly three positive solutions for A > \*, exactly two positive solutions for
A = X\, and exactly one positive solution for 0 < A < \*.

(i) (See Fig. 2(iii).) If ¢ > &y, then the bifurcation curve S. is a monotone curve on the

(A, ||u||s)-plane. Moreover, problem (1.1), (5.5) has exactly one positive solution
for all A > 0.

Acknowledgments. Most of the computation in this paper has been checked using the

symbolic manipulator Mathematica 7.0.
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6. Appendix

Proof of Lemma 3.4.

The proof of Lemma 3.4 is rather long and technical, we divide the proof into next
Steps 1-5.

Step 1. We compute G.(«):

By (3.3)—(3.5), we compute-that

G(a) = 8\/§agT: ()

s (1 fola) 2 folaw)y 2 [
= —8az dv —4a2 dv
/0 [F.(o) = Ex(aw)]*? /0 [Fe(a) — Fe(av)]*?
% ! [fs(a) - fE(Oﬂ))’U]2 v
S v

and

~—
I
"3
~—~ O
Q
<
~—
S
w
lo
o\
—
s
~—~ 0
Q
~—
I
o
—~
Q
<
~— | —
>
[N}
U
<

O R
e dv + 33
“ /o (F(a) — Fuan)2 0 70

1 / " fe(@) = fe(av)o] [f2(e) = fiav)e?] |
0 [

+18« )
F(a) = F.(av)] /

z ! [fe(a>_fa(av)vg
—15a2 dv
/0 [F.(o) — F.(aw)]"?
_ L [P Rl
- = /0 NG (6.1)
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where

K(a,u) = —20(AF)X(Af) = 22(AF)Af) —4(AFR)(AS)
+33(AFE)(Afe) + 18(AF )(Afa)(Afe) - 15(Afa)37 (62)
AF, = F.(a) — F.(u), (6.3)
Afe = af(a) —uf(u), (6.4)
Af. = a*f(a) — utf!(u), (6.5)
Af. = a® f(a) = 2 (u). (6.6)

Since f.(u) = —eu® + ou® — ku + p, we have that

F.(u) = —eu*/4 + ou®/3 — ku?/2 + pu, (6.7)
uf.(u) = —eu + ou® — ku® + pu, (6.8)
u?fl(u) = —3eu* + 20u® — Ku®, (6.9)
ud f(u) = —6eu* + 200>, (6.10)

For 0 < u < a, we let A=c¢(a*—u?), B=o(a®—u?), C =k(a?—1u?), D= pla—u).
Then A, B,C, D > 0. By (6.3)—(6.10), we obtain that

AF. = “AJA¥ BJ3 ~ C/2-+ D, (6.11)
Afe==A+B~C+D, (6.12)
Af. = —34%2B - C, (6.13)
Af.'= —6A+2B, (6.14)
Substitute (6.11)—(6.14) into (6.2),"we have
1
K.(o,u) = 72(168AB(J — 1356 ABD — 504ACD — 168BCD
+9A% — 144D° — 2AB?* 4+ 124°B + 90AC?
—207A%C — 60B%C + 2646 AD? + 1134A%D
—1248 BD?* 4 56082 D + 468C D* + 72C*D). (6.15)

So Lemma 3.4 holds if we can prove that K. (a,u) > 0 for any fixed ¢ € [(10(%))1/2 (27p)1/2]
a€ly,B.) and 0 < u < a.

Step 2. We make a transformation for K. (a,u).

Although both T.(a) and G.(«) are only defined for a € (0,5.), K.(o,u) is well
defined for all & € R. So Lemma 3.4 holds if we can prove K (o, u) > 0 for any fixed
£ € [(7(27[)))1/2 (27p)1/2], a>7,0<k<Jfopand 0 < u < a. Sincey, = Z, we

consider K (o, u) when a > 7., 0 <k < \/_5%7 Eévg <p<ey?,and 0 <u < a. Let

a=(r+1), rel0,)
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k= sey?, s € [0,V3)],

7
p=terd, te[—1],

10’
u=yy., y <€ 0,r+1).
Thus

Substitute (6.16)—(6.19) into (6.15), we obtain

1 ~
K.(a,u) = 863722(7“ +1—y)PK.(r,s,t,9),

where
9

[?E(r,s,t,y) Sk (rst)

,7:

ko(r,s,t) = (3 —122t% + 105> 161> + 852t 4 234t — 275 + 52st* — 112st)

]{31<T, S, t) -

+(—392st + 1657t + 50¢2 £ 736t + 505> + 27 — 1255 + 52st%)r
+(100s + 4661* + 8571 — 2435 4= 730t~ 5045t + 106)r* + (—280st
+238 4 294¢> + 240t + 1005” — 2855)7> + (—2655 — 565t + 505>
+336 + 1908)r? + (—-207s + 304t + 308 + 10s*)r® + (126t — 1055
+182)7r% 4 (66 =238)r" + 13¢5+ 17,

(9 + 525t + 468t + 305 815 — 224st — 122t* + 165%t) + (165%t
+172t% — 560st + 72 — 2945 + 1004t + 120s%)r + (294¢* + 180s>
—4355 — 448st + 456t + 246)7% + (—112st + 24t + 468 + 1205
—4208)r® + (30s® + 356t + 540 — 375s)r* + (252t + 384 — 2465)r°
+(162 — 69s)7® + 3677 + 3r®,

ko(r,s,t) = (18 +40s% — 1355 + 702t — 224st + 85t — 122t?) + (126 + 294t

kB(ra S, t) =

+804t + 1205* — 3555 — 336st)r 4 (—370s — 120t + 366 — 112st
+1205%)r* + (40s* + 156t — 330s + 570)7* + (—295s + 378t + 510)r*
+(258 — 1155)7° + 667° + 677,

(—125s + 40s% + 268t — 168st + 30 + 294t*) + (—236s — 80t + 805
+176 — 112st)7 + (—258s + 156t + 405> + 414)r* + (496 — 308s
+504t)r® + (314 — 161s)r* + 967° + 1075,
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ka(r,s,t) = (36 — 61s — 56st + 34t + 30s%) + (172 — 148t — 103s + 30s*)r
+(—203s 4 378t + 312)r* 4 (264 — 161s)r® + 100r* + 12r°,

ks(r,s,t) = (=Ts+10s% 4 36 — 200t) + (252t + 132 — 62s)r + (168 — 115s)7?
+84r® 4+ 12r%,
ke(r,s,t) = (—13s + 28 + 126t) + (72 — 69s)r + 54r* + 10r°,
k7(r,s,t) = 16 — 235 4 24r + 612,
ks(r,s,t) =7+ 3r,
ko(r,s,t) = 1.

So Lemma, 3.4 holds if we can prove I?E(r, s,t,y) > 0 for any fixed y € (0,7 + 1), (r,t) €
Q=[0,00) x [5,1] and s € [0, V3].

Step 3. For any fixed y € (0,7+1) and (r,t) € 2 = [0, 00) X [1—70, 1], we show I?E(r, s, t,y)
is strictly decreasing with respect to s on [0, v/3].

From (6.15), we have

0K,

2oe = —207A% —60B* — 504 AD—~168 B D+ 180AC + 468 D> +144C' D +168AB (6.22)
and /-
72—~ = 1804 + 144D >0.
502 80A + >
By (6.16)—(6.20), we compute that
PK. 8 O’
0s2  Sy2(r4+1—y)3 0s?
B 8 OPK. (0C\*  0K.0*C
Sy 2(r+1—y)3 | 902 \ Os oC 0s?
1 2

=T — (180A + 144D) [evi((r +1)* — ¢*)]

= {20[(r+ 1> + (r + D’y + (r + Dy + y°] + 18t} (r + 1 +y)* > 0.

This implies that for any fixed y € (0,7 + 1) and (r,t) € Q, [?E(r,s,t,y) is concave up
as a function of s € [0,/3], hence K.(r, s,t,y) is strictly decreasing with respect to s on
[0,/3] if we can prove

K.
88—8(7’, V3,t,y) <0 for any y € (0,7 + 1), (r,t) € Q. (6.23)
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By (6.16)—(6.19) and (6.22), we compute that
OK.
Os

8 0K, 0C
e3y2(r+1—-y)3 oC s
[—207A2 — 60B? —504AD — 168BD + 180AC + 468D? + 144CD + 168AB] (T +1+ y)
9eyE(r + 1 - y)?

)

and

oK. 6 .
5 (T V3,ty) = (r+1+vy) Zogj(h )y, (6.24)
f=

where

go(r,t) = 23r% +82r° + (125 — 20v/3)r* + (140 — 80v/3 + 56¢)r°
+(145 — 120V/3 4 224t)r% + (98 — 80V/3 + 280t — 16/3t)r
+(27 — 20V/3 + 112t — 16V/3t — 52t2),

gi(r, ) = 46r° +118r" + (132 — 40v/3)r® 4 (148 — 120v/3 + 561)r
+(142 — 120V/3 % 1688)r4 (54 — 40v/3 + 112t — 16+/3t),
ga(r, 1) = 691 + 1087 + (90 —40v/3)r2 4 (182 = 80v/3 + 561)r + (81 — 40v/3 + 112¢),
g3(r, 1) = 92r® 410872 + (60 — 40/3)r + (44 — 40/3 + 561),
ga(rit) = 6972 4267 + (17 = 20~/3),
gs(r, t) = 461 — 10,
ge(r,t) = 23.
In order to prove (6.23), we claim that for any fixed y € (0,7 + 1) and (r,t) € Q,

J

S g (r, by > <L> Gu(r,t) >0, n=0,1,2,3,4,5,6, (6.25)
j=0 T —|— 1
where .
Gn(r,t) = > (r +1)g;(r,t), n=0,1,2,3,4,5,6.

0
First, we compute go(r,t) = go(r,t) and
Gi(r,t) = 69r° + 246r° + (375 — 60v/3)r* + (420 — 240v/3 + 112t)r
+(435 — 360V/3 4 4481)r? 4 (294 — 240v/3 + 560t — 32v/3t)r
+(81 — 60V/3 + 224t — 32v/3t — 5212),

Go(rt) = 138r% 4 492r° 4 (750 — 100v/3)r* + (840 — 400V/3 + 168t
+(870 — 600V/3 + 672t)r + (588 — 400+/3 + 840t — 32v/3t)r
+(162 — 100v/3 + 336t — 32v/3t — 52t?),
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Gs(r,t) = 230r° + 876r° 4 (1410 — 140v/3)r* + (1480 — 560v/3 + 224¢)r°
+(1290 — 840v/3 + 840t)r2 + (780 — 560+/3 + 1008t — 32v/3t)r
+(206 — 140v/3 + 392t — 32v/3t — 52t%),

Ga(r,t) = 299r% 4+ 11787° + (1945 — 160v/3)r* + (1980 — 640+/3 + 224t )1
+(1565 — 960v/3 + 840t )12 + (874 — 640v/3 4 1008 — 32v/3t)r
+(223 — 160V/3 + 392t — 32v/3t — 52t%),

Gs(r,t) = 345r% 4+ 1398r° + (2355 — 160v/3)r + (2340 — 640v/3 + 224t)r®
+(1695 — 960v/3 + 840t)r> + (870 — 640v/3 + 1008t — 32v/3t)r
+(213 — 160/3 + 392t — 32/3t — 52%),

Gs(r,t) = 368r° 4+ 15367° + (2700 — 160v/3)r* + (2800 — 640v/3 + 224¢t)r
+(2040 — 960v/3 + 840t)r? + (1008 — 640v/3 + 1008¢ — 32v/3t)r
+(236 — 160v/3 4 392t — 32v/3t — 52t%).

As a polynomial of r, it is easy to check that the coefficients of g, (r,t) are all positive for
n€{0,1,2,3,4,5,6}, where t € [-5, 1] So for any fixed y € (0,r + 1) and (r, ) € €,

Gn(rst) >0, 1=20,1,2,3/4,5,6. (6.26)

Suppose (6.25) holds for n = [ where [ € {0,1,2,3,4,5}, by (6.26) and 0 <y < r+ 1,
we have

S 0 = Sty AR (e

(-25) 30| (LY w800

+1
= (7’ Y 1 + <—y ) (7" + 1)l+1gl+1(r, t)

) r+1
_ (Hl)lﬂé 1ig;(r,t)

Y
= . 2
(7, + 1) gH—l(ra t) (6 7)
So (6.25) holds for n = [+ 1 where [ € {0,1,2,3,4,5}. By (6.24)—(6.27), we obtain (6.23)

v

ér#—l Y g;(r,t)

<+

oK. 6 .
E(ra \/§7tay> = —(T’—F 1 +y) Zgj(rat)y] <0 for any y € (O,’l“—l— 1)7 (’f’,t) € Q.

j=

o

So for any fixed y € (0,7 + 1) and (r,t) € Q = [0, 00) X [1—70, 1], K.(r,s,t,y) is strictly
decreasing with respect to s on [0, v/3].
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Step 4. We show K.(r,s,t,y) > 0 for any fixed y € (0,7 + 1), (r,t) € Q = [0, 00) x
[,1] and s € [0,V/3].

10°
By Step 3, Step 4 holds if we can prove

K.(r,v/3,t,y) >0 forany y € (0,r + 1), (r,t) € Q. (6.28)

By (6.21) in Step 2,
~ 9 .
K.(r,V3,t,y) = 3 hy(r, )y, (6.29)
=0

J
where
ho(r,t) = 1°+13r 4 (66 — 23v/3)r7 + (182 — 105V/3 + 126¢)r° + (338 — 207v/3 + 304¢)r°
+(486 — 265V/3 4 190t — 56v/3t)r* + (538 — 285v/3 + 240t — 280v/3t 4 294¢%)7°
+(406 — 243V/3 + 754t — 504V/3t + 466t2)r? + (177 — 125v/3 + 784t — 392V/3¢
+501% + 52v/3t%)r + (33 — 27V/3 + 258t — 112V/3t + 52v/3t2 — 122t — 161%),

ha(r,t) = 3r+36r7 + (162 — 69v/3)rS + (384 — 246v/3 + 252t)r°
+(630 — 375V/3 + 356t )i +£ (828 — 420/3 + 24¢ — 112V/3t)r°
+(786 — 435V/3 + 456t — 448V/3t +294t*)r% + (432 — 294V/3 + 1052t
—560V/3t + 172t2)7 (997~ 811/3 + 5161 — 224+/3t + 52v/3t> — 122t2),

ho(r,t) = 6r7 +66r° + (258 — 115v/3)r® 4 (510 —295v/3 + 378t)r* + (690 — 330v/3
+156t)r% 4 (726 = 370V/3 =120t = 112y/3t)r? + (486 — 355v/3 + 804t
—336v/3t + 294t2)7 +(138 — 135v/3 #7261 — 224+/3t — 122¢),

hs(r,t) = 107 +96r° + (314 — 161v/3)r* + (496 — 308v/3 + 504¢)7r°
+(534 — 258v/3 4 156t)r° + (416 — 2361/3 — 112v/3t — 80t)r
+(150 — 125v/3 4 268t — 168v/3t 4 2941?),

ha(r,t) = 12r° +100r* + (264 — 161V/3)r® + (312 — 203V/3 + 378¢t)r?
+(262 — 103v/3 — 148t)r + (126 — 61v/3 + 34t — 56v/3¢),
hs(r,t) = 12r* + 8473 4 (168 — 115v/3)r? 4 (132 — 62v/3 4 252t)r + (66 — 7/3 — 200t),
he(r,t) = 10r° + 54r% + (72 — 69v/3)r + (28 — 13v/3 + 126t),
ha(r,t) = 6r2 + 24r + (16 — 23V/3),
hg(r,t) =3r+7,
ho(r,t) = 1.
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In order to prove (6.28), we claim that for any fixed y € (0,7 + 1) and (r,t) € Q,

where

Zhj<7“,t)yj > < Yy ) ﬁn(r, t)>0, n=0,1,2,---,9, (6.30)
J=0 r+1
Po(r,t) = S (r 4+ 1)7hi(r,t), n=0,1,2,--- 9.

7=0

First, we compute ho(r, t) = ho(r,t) and

hl(’f‘, t) =

ha(r,t) =

ha(r,t) =

hs(r,t) =

4r + 5218 4 (264 — 92v/3)r7 4 (728 — 4201/3 4 378t)r® + (1352 — 828+/3
+912t)r° + (1944 — 1060v/3 4 570t — 168+/3t)r + (2152 — 1140v/3

+720t — 840V/3t + 588t%)r® + (1624 — 972v/3 + 2262t — 1512v/3¢
1+932t2)r2 + (708 — 500V/3 4 2352t — 1176v/3t + 100¢> + 104+/3t%)r

+(132 — 108V/3 + 774t — 336V/3t + 104V/3t> — 244¢> — 16¢°), (6.31)

107° + 1307 + (660 — 207v/3)r" 4 (1820 — 945v/3 + 756¢)r° 4 (3320
—1863v/3 + 1824¢)r° + (4560 — 2385+v/3 + 1140t — 280v/3t)r* + (4780
—2565v/3 + 1440t — 14003/3t +88262)7* + (3460 — 2187+/3 + 4476¢
—25201/3t 4 1398¢%)72 4 (1470, — 11253+ 4608t — 1960+/3t + 1501
+104V/38%)r + (270~ 243v/3 + 1500t — 5603/3t + 104+/3t> — 366> — 16%),

20r° + 2561° 4 (1292 — 368v/3)r" +.(3556 = 1736V/3 + 1260t)7° + (6380
—3528V/3 + 34920)r> +(8380 — 4480v/3 4 3040t — 392v/3t)r* + (8276
—4480/3 + 2440t —1904\/3t + 1176t2)r® + (5692 — 3528+/3 + 5196t
—3360/3t + 2280¢%)r? + (2336 — 1736\/3 4 5332t — 2576+/3t + 1032t
+104V/38%)r + (420 — 368v/3 + 1768t — 728v/3t + 104+/3t2 — 721> — 16t%),

32r9 4 4047® + (2028 — 529v/3)r7 + (5572 — 2583V/3 + 1638t)r5 4 (9886
—5409v/3 + 48561)r° 4 (12582 — 6815v/3 4 4750t — 448v/3t)r + (11864
—6315v/3 + 3200t — 2128v/3¢ + 1176t)r* + (7808 — 4509+/3 + 5186t
—3696v/3t + 2280¢%)7% + (3102 — 2083v/3 + 5320t — 2800v/3¢ + 1032t
+104v/382)r + (546 — 429v/3 + 1802t — 784+/3t + 104+/3t> — 72¢* — 16t%),

441° + 54878 + (2736 — 644V/3)r7 + (7504 — 3220V/3 + 1890t)r° 4 (13192
—6876V/3 + 5916t)r° 4 (16344 — 8620v/3 + 6270t — 448+/3t)r* + (14768
—7580V/3 4 3720t — 2128V/3t + 1176t2)r* + (9296 — 5004+/3 + 4446t
—3696+/3t + 2280¢%)r + (3564 — 2180v/3 + 4572t — 2800v/3t + 1032¢°
+104V/38%)r + (612 — 436V/3 + 1602t — 784+/3t + 104+/3t2 — 721> — 16t%),
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he(r,t) = 54r° +662r° 4 (3282 — T13v/3)r" + (8974 — 3647V/3 + 20161)r° + (15670
—7989V/3 + 6672t)r° + (19074 — 10195V/3 4 8160t — 448v/3t)r* + (16742
—8875v/3 + 6240t — 2128V/3t + 1176t%)r® + (10202 — 5613+/3 + 6336t
—3696+/3t + 2280¢%)r? + (3804 — 2327V/3 + 5328t — 2800+/3t + 1032¢°
+104v/38)r + (640 — 449+/3 + 1728t — 784+/3t + 104+/3t> — 72t — 16t%),

ha(r,t) = 601" 4+ 7281 + (3592 — 736v/3)r7 + (9800 — 3808v/3 + 2016t)r5 + (17056
—84724/3 + 6672t)r° + (20600 — 11000v/3 + 8160t — 448+/3t)r* + (17848
—9680V/3 + 6240t — 2128v/3t + 1176t%)r® + (10712 — 6096V/3 + 6336t
—3696+/3t + 2280¢%)r? + (3940 — 2488v/3 + 5328t — 2800+/3t + 1032t
+104v/38)r + (656 — 472/3 + 1728t — 784+/3t + 104+/3t2 — 72t — 16t%),

hs(r,t) = 63r° + 759 4 (3732 — 736v/3)r" + (10164 — 3808v/3 + 2016t)r° + (17658
—8472v/3 + 6672¢)r° + (21258 — 11000v/3 + 8160t — 448+/3t)r* + (18324
—9680V/3 + 6240t — 2128v/3t + 1176t)r* 4 (10932 — 6096v/3 + 6336t
—3696v/3t + 22801%)r? + (3999 =+2488v/3 + 5328t — 2800+/3¢ + 1032t
+104v/382)r + (663 =472V/3 + 1728t =784/3t + 104+/3t> — 72t — 16t%),

ho(r,t) = 64r° + 768r° + (3768%= 736v/3)r" 4 (10248 — 3808v/3 + 2016t)r° + (17784
—8472v/3 + 6672¢)r° + (21384 = 11000v/3 + 8160t — 448+/3t)r* + (18408
—9680V/3 + 6240t~ 2128V/3t 11761 )1 4 (10968 — 6096v/3 + 6336t
—3696+/3t 4 2280t2)r2 4 (4008 — 24884/3 + 5328t — 2800v/3t + 1032t
+104v/382)r + (664 — 472v/3 17281 — 784V/3t 4 104+/3t2 — 7212 — 16t°).

As polynomials of r, it is easy to check that the coefficients of En(r, t) are all positive for
ne{0,1,2,--,9}\ {1}, where t € [, 1]. So for any fixed y € (0,7 + 1) and (r,t) € £,
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hn(rit) >0, ne{0,1,2,-- 90\ {1}.

Note that for n =1 and ¢ € [, 1], it is easy to check that the coefficients of ha(r,t) are

all positive besides that of 3. By (6.31), we obtain that

’El(ra t)
> 52r% 4 (2152 — 1140V/3 + 720t — 840V/3¢ + 588t%)r*
52r% + (2152 — 1140v/3 + 720t — 840+/3t + 588t2)r

7
— (2204 — 1140V/3 + 720t — 840+/3t + 588t%)1® > 0 for t € g Jandr > 1,

v
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and

hy(r,t)
> (2152 — 1140V/3 + 720t — 840v/3t + 5881%)r® + (1624 — 972V/3
+2262t — 1512V/3t + 932t%)r?
(2152 — 1140V/3 + 720t — 840v/3t + 588t2)r° + (1624 — 972V/3
12262t — 1512v/3t + 932¢%)r

A%

7
— (3776 — 2112V/3 4 2982t — 2352V/3t + 1520t*)r> > 0 for t € [E’ 1 and 0 <7 < 1.
So, for any fixed y € (0,7 + 1) and (r,t) € €,
h(r,t) >0, n=0,1,2.,9. (6.32)

Suppose (6.30) holds for n =1 where [ € {0,1,2,---,8}, by (6.32) and since 0 < y <
r + 1, we have that

141 , I
Zohj(ﬁt)yj = Zohg(r )Y A g (r, )y
Jj= j=
I
) Y I+1
> AFEN
> () g2 ) g et
I | y +1
Zo(r + 1) hy(rt)| + <r n 1) (r+ 1) (1)
‘7:

i > lf(r 1)k (r, 1)

So (6.30) holds for n =1 + 1 where | € {0,1,2,---,8}. By (6.29) and (6.30), we obtain
(6.28)
~ 9 )
K.(r,V3,t,y) = 3. hi(r,t)y’ > 0 for any y € (0,7 + 1), (r,t) € Q.
j=0
By Step 3 and (6.28), I?E(r,s,t,y) > 0 for any fixed y € (0,7 + 1), (r,;t) € Q =
[0, 00) % [5,1] and s € [0,V/3].
Step 5. Finally, we prove the lemma by the above analyses.
By Step 4 and (6.20) in Step 2, we have K. (a, u) > 0 for any fixed ¢ € [(+ (270))1/2, (%)1/2],
['ys, B%) and 0 < u < «. In addition to (6.1) in Step 1, we obtain that for any fixed

e € [(H(FNY2, (2"73;)1/2],
du >0 on [y.,0.).

\/_/ [AF] 7/2

So Steps 1-5 complete the proof of Lemma 3.4. R

31



	我的封面+主體.pdf
	碩論完整版
	我的封面+主體
	part 1




