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摘要 

 

  本篇論文主要是探討一類三次非線性正定問題 
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的全分支性及正解的確切個數。在適當的條件下，我們利用時間映射(time 

map)的方法來研究此一問題，並且證明在不同的演化參數下會有不同的分

支曲線圖，進一步來說這些分支曲線基本上有兩種，不是單調曲線就是我

們所稱的 S 型曲線。 
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Abstract 
 

    We study the global bifurcation and exact multiplicity of positive solutions of  
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Where λ ,ε>0 are two bifurcation parameters, and σ ,ρ>0, 0<κ ඥσρ are 
constants. We prove the global bifurcation of bifurcation curves for varying ε>0  
by developed some time-map techniques. More precisely, we prove that, for anyσ,ρ
>0, 0<κඥσρ, there exists ε෤ > 0 such that, on the (λ, ‖u‖ஶ)-plane, the bifurcation 
curve is S-shaped for 0<ε<ε෤ and is monotone increasing forε ε෤. (We also prove 
the global bifurcation of bifurcation curves for varyingλ>0.) Thus we are able to 
determine the exact number of positive solutions by the values of ε andλ. Our 
results extend those of Hung and Wang ( Trans. Amer. Math. Soc., accepted to appear 
under minor revision ) from κ0 to 0<κඥσρ. 
     Key words and phrases: Global bifurcation; Exact multiplicity; Positive 
solutions; Positone problem; S-shaped bifurcation curve; Time map 
     Running head: A positone problem with cubic nonlinearity 
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1. Introduction

In this paper we study the global bifurcation and exact multiplicity of positive solutions
of the positone problem with cubic nonlinearity�

u00(x) + �f"(u) = 0, � 1 < x < 1, u(�1) = u(1) = 0,
f"(u) = �"u3 + �u2 � �u+ �, �; "; �; � > 0,

(1.1)

where �; " are two bifurcation parameters, and �; � are given constants. Moreover, we
mainly consider that � satis�es

0 < � � p��: (1.2)

For any " > 0, it is easy to see that there exists a positive number �" which is the
unique positive zero of f"(u), and a positive number 
" = �=(3") < �", which is the
unique (positive) in�ection point of f"(u), such that cubic polynomial f" satis�es

(i) f"(0) = � > 0 (positone), f 0"(0) = �� < 0, f"(u) > 0 on (0; �") and f"(�") = 0,

(ii) f"(u) is strictly convex on (0; 
") and is strictly concave on (
";1). (So f" is convex-
concave on (0; �").)

Note that it is easy to see that �" is a continuous, strictly decreasing function of " > 0.
In addition, lim"!0+ �" =1 and lim"!1 �" = 0. Three possible graphs of f"(u) satisfying
(1.1), (1.2) are depicted in Fig. 1.

Fig. 1. Three possible graphs of f"(u) satisfying (1.1), (1.2).

For any " > 0, on the (�; kuk1)-plane, we study the shape and structure of bifurcation
curves S" of positive solutions of (1.1) with � �

p
��, de�ned by

S" � f(�; ku�k1) : � > 0 and u� is a positive solution of (1.1) with � �
p
��g .

We say that, on the (�; kuk1)-plane, the bifurcation curve S" is S-shaped if S" is a
continuous curve and there exist two positive numbers �� < �

� such that S" has exactly
two turning points at some points (��; ku��k1) and (��; ku��k1), and

(i) �� < �
� and ku��k1 < ku��k1,

user
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(ii) at (��; ku��k1) the bifurcation curve S" turns to the left,

(iii) at (��; ku��k1) the bifurcation curve S" turns to the right.

See Fig. 2(i) for example.

Fig. 2. Global bifurcation of bifurcation curves S" with varying " > 0.

Our results in this paper are extensions of those of Hung and Wang [3]. Hung and
Wang [3] developed some time-map techniques to study S-shaped bifurcation curve S" of
problem (1.1) with

� � 0: (1.3)

For problem (1.1), (1.3), Hung and Wang [3, Theorem 2.1] proved that there exists a
positive number ~" = ~"(�; �; �) satisfying

(
25

32
(
�3

27�
))1=2 < ~" < (

�3

27�
)1=2

such that, on the (�; kuk1)-plane,

(i) For 0 < " < ~", the bifurcation curve S" of (1.1), (1.3) is S-shaped (see Fig. 2(i)).

(ii) For " = ~", the bifurcation curve S~" of (1.1), (1.3) is monotone increasing. Moreover,
problem (1.1), (1.3) has exactly one (cusp type) degenerate positive solution u~� (see
Fig. 2(ii)).

(iii) For " > ~", the bifurcation curve S" of (1.1), (1.3) is monotone increasing. Moreover,
all positive solutions u� of (1.1), (1.3) are nondegenerate (see Fig. 2(iii)).

In Theorem 2.1 stated below for (1.1), (1.2) with varying " > 0, we prove the same
global bifurcation results of bifurcation curve S". Hence we are able to determine the
exact number of positive solutions by the values of " and �. In addition, we give lower
and upper bounds of the critical bifurcation value ~". See Fig. 2.
While for any � > 0, on the ("; kuk1)-plane, it is interesting to study the shape and

structure of bifurcation curves �� of positive solutions of (1.1) with � �
p
��, de�ned by

�� � f("; ku"k1) : " > 0 and u" is a positive solution of (1.1) with � �
p
��g .

2
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(Note that we allow that bifurcation curve �� consists of two (or more) connected compo-
nents.) We say that, on the ("; kuk1)-plane, the bifurcation curve �� is reversed S-shaped
if �� is a continuous curve and there exist two numbers "� < "� such that S" has exactly
two turning points at some points ("�; ku"�k1) and ("�; ku"�k1), and

(i) "� < "� and ku"�k1 < ku"�k1,

(ii) at ("�; ku"�k1) the bifurcation curve �� turns to the right,

(iii) at ("�; ku"�k1) the bifurcation curve �� turns to the left.

See Fig. 3(iii) for example.

Fig. 3. Global bifurcation of bifurcation curves �� with varying � > 0.

Hung and Wang [3, Theorem 2.3] proved that there exist two positive numbers �0
(= �0(�; �; �)) < ~� (= ~�(�; �; �)) such that, on the ("; kuk1)-plane,

(i) For 0 < � < �0, the bifurcation curve �� of (1.1), (1.3) has two disjoint connected
components, the upper branch is �-shaped with exactly one turning point, and the
lower branch is a monotone decreasing curve (see Fig. 3(i)).

(ii) For � = �0, the bifurcation curve ��0 of (1.1), (1.3) has two disjoint connected
components, the upper branch is �-shaped with exactly one turning point, and the
lower branch is a monotone decreasing curve (see Fig. 3(ii)).
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(iii) For �0 < � < ~�, the bifurcation curve �� of (1.1), (1.3) is reversed S-shaped (see
Fig. 3(iii)).

(iv) For � = ~�, the bifurcation curve �~� of (1.1), (1.3) is monotone decreasing. Moreover,
problem (1.1), (1.3) has exactly one (cusp type) degenerate positive solution u~" (see
Fig. 3(iv)).

(v) For � > ~�, the bifurcation curve �� of (1.1), (1.3) is monotone decreasing. Moreover,
all positive solutions u" of (1.1), (1.3) are nondegenerate (see Fig. 3(v)).

In Theorem 2.2 stated below for (1.1), (1.2) with varying � > 0, we prove the same
global bifurcation results of bifurcation curve ��. Hence we are able to determine the
exact number of positive solutions by the values of � and ". See Fig. 3.
We study, in the ("; �; kuk1)-space, the shape and structure of the bifurcation surface

� of positive solutions of (1.1), (1.2), de�ned by

� �
�
("; �; ku";�k1) : "; � > 0 and u";� is a positive solution of (1.1) with � �

p
��
	

which has the appearance of a folded surface with the fold curve

C� �
�
("; �; ku";�k1) : "; � > 0 and u";� is a degenerate positive solution of (1.1) with � �

p
��
	
.

Let Fq denote the �rst quadrant of the ("; �)-parameter plane. We also study, on Fq, the
bifurcation set

B� � f("; �) : "; � > 0 and u";� is a degenerate positive solution of (1.1) with � �
p
��g

which is the projection of the fold curve C� onto Fq. Let M denote the bounded, open
connected subset of Fq, which is �inside�B�.
Hung and Wang [3, Theorem 2.4] proved that the following assertions (i)�(v) (see Figs.

4 and 5):

(i) The fold curve C� is a continuous curve in the ("; �; kuk1)-space. Moreover, C� =
C1 [ C2 where

C1 �
�
("; ��(");



u";��(")

1) : 0 < " � ~"	 and C2 �
�
("; ��(");



u";��(")

1) : 0 < " � ~"	 .
(ii) The bifurcation set B� = B1 [B2 where

B1 � f("; ��(")) : 0 < " � ~"g and B2 � f("; ��(")) : 0 < " � ~"g .

(iii) ��(") and �
�(") are both continuous, strictly increasing on (0; ~"].

(iv) Problem (1.1), (1.3) has exactly three positive solutions for ("; �) 2M , exactly two
positive solutions for ("; �) 2 B� n f(~"; ~�)g, and exactly one positive solution for
("; �) 2 (Fq n (B� [M)) [ f(~"; ~�)g.

4



Fig. 4. The bifurcation surface � of with the fold curve C� = C1 [ C2, and the
projection of � onto Fq. B� = B1 [B2 is the bifurcation set and (~"; ~�) is the cusp

point on Fq.

Fig. 5. The projection of the bifurcation surface � onto Fq. B� = B1 [B2 is the
bifurcation set and (~"; ~�) is the cusp point on Fq.

In Theorem 2.3 for (1.1), (1.2) stated below, we prove the same structure of the
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bifurcation set B� and the fold curve C�. Hence we are able to determine the exact
number of positive solutions of (1.1), (1.2) by the values of " and �. See Figs. 4 and 5.
The paper is organized as follows. Section 2 contains statements of the main results:

Theorems 2.1�2.3. Section 3 contains several lemmas needed to prove Theorems 2.1�2.3.
Section 4 contains the proofs of Theorems 2.1�2.3. Finally, in Section 5, we give some
conjectures on shapes of bifurcation curves of problem (1.1) with evolution parameter
� >

p
��.

In this section, �nally, we note that our main results (Theorems 2.1�2.3) in this paper
extend those of Hung and Wang [3, Theorem 2.1, 2.3, and 2.4] from � � 0 to � � p��,
and the proofs are more complicated. One of the main di¢ culties is that f"(u) could
initially decrease, but then increases to a peak before falling to zero on (0; �"], see Fig.
1(i).

2. Main results

Theorem 2.1. Consider (1.1), (1.2) with varying " > 0. There exists a positive number
~" = ~"(�; �; �) satisfying

(
25

32
(
�3

27�
))1=2 < ~" < (

�3

27�
)1=2

such that the following assertions (i)�(iii) hold:

(i) (See Fig. 2(i).) For 0 < " < ~", the bifurcation curve S" is S-shaped on the (�; kuk1)-
plane. Moreover, there exist two positive numbers �� < �� such that (1.1), (1.2)
has exactly one degenerate positive solution u�� and u�� for � = �� and � = ��,
respectively. More precisely, (1.1), (1.2) has:

(a) exactly three positive solutions u�, v�, w� with w� < u� < v� for �� < � < �
�,

(b) exactly two positive solutions w�, u� with w� < u� for � = ��, and exactly two
positive solutions u�, v� with u� < v� for � = �

�,

(c) exactly one positive solution w� for 0 < � < ��, and exactly one positive
solution v� for � > �

�.
Furthermore,

(d) lim�!0+ kw�k1 = 0 and lim�!1 kv�k1 = �".

(ii) (See Fig. 2(ii).) For " = ~", the bifurcation curve S~" is monotone increasing on
the (�; kuk1)-plane. Moreover, (1.1), (1.2) has exactly one (cusp type) degenerate
positive solution u~�. More precisely, for all � > 0, (1.1), (1.2) has exactly one positive
solution u� satisfying lim�!0+ ku�k1 = 0 and lim�!1 ku�k1 = �".

(iii) (See Fig. 2(iii).) For " > ~", the bifurcation curve S" is monotone increasing on the
(�; kuk1)-plane. Moreover, all positive solutions u� of (1.1), (1.2) are nondegener-
ate. More precisely, for all � > 0, (1.1), (1.2) has exactly one positive solution u�
satisfying lim�!0+ ku�k1 = 0 and lim�!1 ku�k1 = �".
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Theorem 2.2. Consider (1.1), (1.2) with varying � > 0. There exist two positive num-
bers �0 (= �0(�; �; �)) < ~� (= ~�(�; �; �)) such that the following assertions (i)�(v) hold:

(i) (See Fig. 3(i).) For 0 < � < �0, on the ("; kuk1)-plane, the bifurcation curve ��
has two disjoint connected components, the upper branch is �-shaped with exactly
one turning point, and the lower branch is a monotone decreasing curve. Moreover,
there exists a positive number "� such that (1.1), (1.2) has exactly one degenerate
positive solution u"� for " = "�. More precisely, problem (1.1), (1.2) has:

(a) exactly three positive solutions u", v", w" with w" < u" < v" for 0 < " < "�,

(b) exactly two positive solutions w", u" with w" < u" for " = "�,

(c) exactly one positive solution w" for " > "�.
Furthermore,

(d) 0 = lim"!1 kw"k1 < lim"!0+ kw"k1 < lim"!0+ ku"k1 < lim"!0+ kv"k1 =1.

(ii) (See Fig. 3(ii).) For � = �0, on the ("; kuk1)-plane, the bifurcation curve ��0 has
two disjoint connected components, the upper branch is �-shaped with exactly one
turning point, and the lower branch is a monotone decreasing curve. Moreover,
there exists a positive number "� such that (1.1), (1.2) has exactly one degenerate
positive solution u"� for " = "�. More precisely, problem (1.1), (1.2) has:

(a) exactly three positive solutions u", v", w" with w" < u" < v" for 0 < " < "�,

(b) exactly two positive solutions w", u" with w" < u" for " = "�,

(c) exactly one positive solution w" for " > "�.
Furthermore,

(d) 0 = lim"!1 kw"k1 < lim"!0+ kw"k1 = lim"!0+ ku"k1 < lim"!0+ kv"k1 =1.

(iii) (See Fig. 3(iii).) For �0 < � < ~�, the bifurcation curve �� is reversed S-shaped on
the ("; kuk1)-plane. Moreover, there exist two positive number "� < "� such that
(1.1), (1.2) has exactly one degenerate positive solution u"� and u"� for " = "� and
" = "�, respectively. More precisely, problem (1.1), (1.2) has:

(a) exactly three positive solutions u", v", w" with w" < u" < v" for "� < " < "�,

(b) exactly two positive solutions u", v" with u" < v" for " = "�, and exactly two
positive solutions w", u" with w" < u" for " = "�,

(c) exactly one positive solution v" for 0 < " < "�, and exactly one positive solution
w" for " > "�.
Furthermore,

(d) lim"!0+ kv"k1 =1 and lim"!1 kw"k1 = 0.

7



(iv) (See Fig. 3(iv).) For � = ~�, the bifurcation curve �~� is monotone decreasing on
the ("; kuk1)-plane. Moreover, problem (1.1), (1.2) has exactly one (cusp type)
degenerate positive solution u~". More precisely, for all " > 0, problem (1.1), (1.2) has
exactly one positive solution u" satisfying lim"!0+ ku"k1 =1 and lim"!1 ku"k1 =
0.

(v) (See Fig. 3(v).) For � > ~�, the bifurcation curve �� is monotone decreasing on the
("; kuk1)-plane. Moreover, all positive solutions u" of (1.1), (1.2) are nondegen-
erate. More precisely, for all " > 0, problem (1.1), (1.2) has exactly one positive
solution u" satisfying lim"!0+ ku"k1 =1 and lim"!1 ku"k1 = 0.

We give next remark to Theorem 2.2.

Remark 1. Considering (1.1), (1.2) with " > 0 generalized to " 2 R, we de�ne the
bifurcation curve

~�� � f("; ku"k1) : " 2 R and u" is a positive solution of (1.1) with � �
p
��g .

Actually, it can be easily proved that:

(i) For 0 < � < �0, the bifurcation curve ~�� is reversed S-shaped on the ("; kuk1)-
plane. Moreover, there exists "� < 0 such that (1.1), (1.2) has exactly two positive
solutions w", u" with w" < u" for "� < " � 0, and exactly one positive solution u"
for " = "�, and no positive solution for " < "�. See Fig. 6(i).

(ii) For � = �0, the bifurcation curve ~��0 is reversed S-shaped on the ("; kuk1)-plane.
Moreover, problem (1.1), (1.2) has exactly one positive solution u" for " = 0, and
no positive solution for " < 0. See Fig. 6(ii).

Fig. 6. Global bifurcation of bifurcation curves ~�� of (1.1), (1.2) with " > 0 generalized
to " 2 R and with varying � 2 (0; ~�).

Notice that, in Theorem 2.1, on the (�; kuk1)-plane, the bifurcation curve S" is S-
shaped for 0 < " < ~", see Fig. 2. While in Theorem 2.2 and Remark 1, on the ("; kuk1)-
plane, the bifurcation curve ~�� is reversed S-shaped for 0 < � < ~�, see Fig. 6.
Let ~" = ~"(�; �; �), �0 = �0(�; �; �), ~� = ~�(�; �; �), �� = ��("), �

� = ��("), "� = "�(�)
and "� = "�(�) be the values in Theorems 2.1 and 2.2 for (1.1), (1.2). We study the
structure of the bifurcation set B� in the next theorem.
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Theorem 2.3 (See Fig. 5). Consider (1.1), (1.2) with ("; �) 2 Fq. Then the bifurca-
tion set B� = B1 [B2 where

B1 � f("; ��(")) : 0 < " � ~"g and B2 � f("; ��(")) : 0 < " � ~"g .

Moreover, problem (1.1), (1.2) has exactly three positive solutions for ("; �) 2M , exactly
two positive solutions for ("; �) 2 B� n f(~"; ~�)g, and exactly one positive solution for
("; �) 2 (Fq n (B� [M)) [ f(~"; ~�)g. More precisely, the following assertions (i) and (ii)
hold:

(i) Functions ��(") and �
�(") are both continuous, strictly increasing on (0; ~"] and

satisfy 0 = lim"!0+ ��(") < lim"!0+ �
�(") = �0 < ~� = ��(~") = �

�(~").

(ii) Function "�(�) is continuous, strictly increasing on (0; ~�] and satis�es lim�!0+ "
�(�) =

0 and "�(~�) = ~". Function "�(�) is continuous, strictly increasing on (�0; ~�] and sat-
is�es lim�!�+0

"�(�) = 0 and "�(~�) = ~".

In next remark, we give a precise characterization of the fold curveC� in the ("; �; kuk1)-
space.

Remark 2 (See Fig. 4). Consider (1.1), (1.2). Then, by Theorem 2.3(i), the fold curve
C� = C1 [ C2 where

C1 �
�
("; ��(");



u";��(")

1) : 0 < " � ~"	 and C2 �
�
("; ��(");



u";��(")

1) : 0 < " � ~"	 .
Moreover, by applying (4.4)�(4.6) stated below, we are able to prove that:

(i)


u";��(")

1 > 

u";��(")

1 for 0 < " < ~" and



u~";��(~")

1 = 

u~";��(~")

1 = 

u~";~�

1.
(ii)



u";��(")

1 is a continuous, strictly decreasing function of " 2 (0; ~"] and


u";��(")

1

is a continuous, strictly increasing function of " 2 (0; ~"].

(iii) C� is a continuous curve in the ("; �; kuk1)-space.

Observe that both ��(") and ��(") have continuous inverse functions on (0; ~"]. Indeed,
"�(�) is the inverse function of �

�(") on (�0; ~�] and "�(�) is the inverse function of ��(")
on (0; ~�].

3. Lemmas

To prove our results (Theorems 2.1�2.3), we need the following Lemmas 3.1�3.8 in which
we develop new time-map techniques di¤erent from those developed in [3]. In particular,
Lemma 3.3 is a key lemma in the proofs of Theorems 2.1�2.3. In Lemma 3.3, for any �xed
" > 0, we prove that the bifurcation curve S" is either monotone increasing or S-shaped on
the (�; kuk1)-plane. To apply the time-map techniques for (1.1), (1.2), in the following,
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we consider " � 0. The time map formula which we apply to study (1.1), (1.2) takes the
form as follows:

p
� =

1p
2

Z �

0

[F"(�)� F"(u)]�1=2 du � T"(�) for 0 < � < �" and " � 0, (3.1)

where F"(u) �
R u
0
f"(t)dt and �" the unique positive zero of cubic polynomial f"(u) for

" > 0, and we let �"=0 � 1. Observe that positive solutions u";� for (1.1), (1.2) correspond
to

ku";�k1 = � and T"(�) =
p
�: (3.2)

Thus, studying of the exact number of positive solutions of (1.1), (1.2) for �xed " � 0 is
equivalent to studying the shape of the time map T"(�) on (0; �"); and studying the exact
number of positive solutions of (1.1), (1.2) for �xed � > 0 is equivalent to studying the
number of roots of the equation T"(�) =

p
� on (0; �") for varying " > 0. Note that it

can be proved that T"(�) is a thrice di¤erentiable function of � 2 (0; �") for " � 0. The
proof is easy but tedious and we omit it.
We call a positive solution u";� of (1.1), (1.2) is degenerate if T 0"(ku";�k1) = 0 and is

nondegenerate if T 0"(ku";�k1) 6= 0. So to �nd the degenerate positive solutions of (1.1),
(1.2), we only need to �nd the critical points of T"(�) on (0; �"). It is known that a
degenerate positive solution u";� of (1.1), (1.2) is of cusp type if T 00" (ku";�k1) = 0 and
T 000" (ku";�k1) 6= 0, see Shi [9, p. 497] and [10, p. 214].
The main di¢ culty in proving our main results is to determine the exact number of

critical points of the time map T"(�) on (0; �") for all " > 0. This question is partially
answered in the following Lemmas 3.1 and 3.2. Lemma 3.1 follows from [8, Theorems 2.6,
2.9 and 3.2] and Lemma 3.2 mainly follows by applying [4, Theorem 2.1]. We omit the
proofs.

Lemma 3.1. Consider (1.1), (1.2). For any �xed " > 0, the following assertions (i) and
(ii) hold:

(i) lim�!0+ T"(�) = 0 and lim�!��" T"(�) =1.

(ii) If T"(�) is not strictly increasing on (0; 
"), then T"(�) is strictly increasing on (0; ~
")
and strictly decreasing on (~
"; 
") for some ~
" 2 (0; 
").

Lemma 3.2. Consider (1.1), (1.2). Then the following assertions (i) and (ii) hold:

(i) For any �xed " � ( �3
27�
)1=2, T"(�) is a strictly increasing function on (0; �").

(ii) For any �xed positive " � ( 7
10
( �

3

27�
))1=2, T"(�) has exactly one local maximum and

one local minimum on (0; �").

However, there is a gap, what about the case where " is between ( 7
10
( �

3

27�
))1=2 and

( �
3

27�
)1=2? First, in the next Lemma 3.3, we prove
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Lemma 3.3. Consider (1.1), (1.2). For any �xed " > 0, T"(�) is either a strictly increas-
ing function or has exactly two critical points, a local maximum and a local minimum,
on (0; �").

To prove Lemma 3.3, we develop some new time-map techniques. First, for time-map
function T"(�) with � 2 (0; �") in (3.1), letting u = �v, we have

T"(�) =
�p
2

Z 1

0

1

[F"(�)� F"(�v)]1=2
dv.

For any �xed " > 0, we compute that

T 0"(�) =
1p
2

Z 1

0

1

[F"(�)� F"(�v)]1=2
dv � �

2
p
2

Z 1

0

f"(�)� f"(�v)v
[F"(�)� F"(�v)]3=2

dv (3.3)

and

T 00" (�) = � 1p
2

Z 1

0

f"(�)� f"(�v)v
[F"(�)� F"(�v)]3=2

dv � �

2
p
2

Z 1

0

f 0"(�)� f 0"(�v)v2

[F"(�)� F"(�v)]3=2
dv

+
3�

4
p
2

Z 1

0

[f"(�)� f"(�v)v]2

[F"(�)� F"(�v)]5=2
dv. (3.4)

We de�ne the auxiliary function

G"(�) = 8
p
2�

5
2T

00

" (�): (3.5)

Then we have the following lemma. The proof of Lemma 3.4 is rather long and technical,
therefore we postpone it to the Appendix.

Lemma 3.4. Consider (1.1), (1.2). For any �xed " 2 [( 7
10
( �

3

27�
))1=2; ( �

3

27�
)1=2], G0"(�) > 0

for � 2 [
"; �").

For any �xed � > 0, let

I� = f" > 0 : � 2 (0; �")g .

Since �" is a continuous, strictly decreasing function of " > 0, and lim"!0+ �" = 1
and lim"!1 �" = 0, we obtain that I� = (0; "(�)) where � = �"(�), and "(�) is strictly
decreasing in �.

Lemma 3.5. Consider (1.1), (1.2). For any �xed � > 0, T 0"(�) is a continuously di¤er-
entiable, strictly increasing function of " 2 I� [ f0g.

Proof of Lemma 3.5. First, for any �xed � > 0, it can be proved that T 0"(�) is a
continuously di¤erentiable function of " 2 I� [f0g. The proof is easy but tedious and we
omit it.

11



Secondly, since f"(u) = �"u3 + �u2 � �u + �, F"(u) =
R u
0
f"(t)dt and by (3.3), we

compute that

T 0"(�) =
1p
2

Z 1

0

1

[F"(�)� F"(�v)]1=2
dv � �

2
p
2

Z 1

0

f"(�)� f"(�v)v
[F"(�)� F"(�v)]3=2

dv

=
1

2
p
2�

Z �

0

2 [F"(�)� F"(u)]� [�f"(�)� uf"(u)]
[F"(�)� F"(u)]3=2

du

=
1

2
p
2�

Z �

0

" (�
4�u4)
2

� � (�
3�u3)
3

+ �(�� u)h
�" (�4�u4)

4
+ � (�

3�u3)
3

� � (�2�u2)
2

+ �(�� u)
i3=2du

and

@

@"
T 0"(�)

=
1

96
p
2�

Z �

0

(�4 � u4) [3"(�4 � u4) + 2�(�3 � u3)� 12�(�2 � u2) + 42�(�� u)]h
�" (�4�u4)

4
+ � (�

3�u3)
3

� � (�2�u2)
2

+ �(�� u)
i5=2 du

>
1

48
p
2�

Z �

0

(�4 � u4)(�� u) [�(�2 + �u+ u2)� 6�(�+ u) + 21�]h
�" (�4�u4)

4
+ � (�

3�u3)
3

� � (�2�u2)
2

+ �(�� u)
i5=2 du. (3.6)

Let

H(u) � �(�2 + �u+ u2)� 6�(�+ u) + 21�
= �u2 + (��� 6�)u+ (��2 � 6��+ 21�):

Therefore, the proof is complete if we can prove that

H(u) > 0 for any given numbers �; �; � > 0; 0 < � � p��: (3.7)

Note that the discriminant of quadratic polynomial H(u) is �3�2�2 + 12��� + (36�2 �
84��) � ~H(�): By the assumption that � � p

��, the discriminant of quadratic poly-
nomial ~H(�) is 144�2(4�2 � 7��) < 0. So ~H(�) < 0 for any given numbers �; � > 0,
0 < � � p

��. This implies that (3.7) holds. By (3.6) and (3.7), for any �xed � > 0,
T 0"(�) is a strictly increasing function of " 2 I� [ f0g.
This completes the proof of Lemma 3.5.
We are now in a position to prove Lemma 3.3.

Proof of Lemma 3.3. First, we prove that for any �xed " > 0, T"(�) is either a strictly
increasing function or has a local maximum and a local minimum, on (0; �"). By Lemma
3.2, we only need to consider the case ( 7

10
( �

3

27�
))1=2 < " < ( �

3

27�
)1=2.

For any �xed ( 7
10
( �

3

27�
))1=2 < " < ( �

3

27�
)1=2, by Lemma 3.1(ii) (resp. Lemma 3.4), we

know that all (possible) critical points of T"(�) on (0; 
"] (resp. on [
"; �")) are discrete.
Moreover, since lim�!0+ T"(�) = 0 and lim�!��" T"(�) = 1 and by Lemma 3.1(i), we
obtain that T 0"(�) changes sign an even number of times or in�nitely times. Assume that
T"(�) is neither a strictly increasing function nor does it have exactly one local maximum
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and one local minimum on (0; �"). Then there exist numbers �1; �2; �3 2 (0; �") such
that �1 < �2 < �3 are critical points of T"(�), �1; �3 are local maxima, and �2 is a local
minimum. Thus T 00" (�1); T

00
" (�3) � 0 and T 00" (�2) � 0.

By Lemma 3.4, for any �xed ( 7
10
( �

3

27�
))1=2 < " < ( �

3

27�
)1=2, G"(�) = 8

p
2�

5
2T

00
" (�) is a

strictly increasing function on [
"; �"). Since �2 � 
" by Lemma 3.1(ii), we obtain that

8
p
2�

5
2
3 T

00
" (�3) = G"(�3) > G"(�2) = 8

p
2�

5
2
2 T

00
" (�2) � 0.

Therefore T 00" (�3) > 0. This contradicts to that T
00
" (�3) � 0. So T"(�) is either a strictly

increasing function or has exactly one local maximum and one local minimum on (0; �").
Next, suppose that T"(�) has exactly a local maximum �M and a local minimum �m

for some �xed " > 0, then 0 < �M < �m < �" by Lemma 3.1(i). We can prove that T"(�)
has exactly two critical points �M ; �m on (0; �") by applying similar arguments used in
the proof of [3, Lemma 3.3]; we omit it. (Note that Lemma 3.5 was used in the skipped
part.)
This completes the proof of Lemma 3.3.
Let

E =

�
" > 0 : T"(�) has exactly two critical points,
a local maximum and a local minimum, on (0; �")

�
.

By Lemma 3.3, for any " > 0, T"(�) is either a strictly increasing function or has exactly
two critical points, a local maximum and a local minimum, on (0; �"). Thus

E =

�
" > 0 : T"(�) has exactly two critical points,
a local maximum and a local minimum, on (0; �")

�
= f" > 0 : T 0"(�) < 0 for some � 2 (0; �")g . (3.8)

We obtain the following two lemmas by modifying the same arguments used in the proof
of [3, Lemmas 3.7�3.8]; we omit the proofs.

Lemma 3.6. The set E is open and connected.

Lemma 3.7. (0; (25
32
( �

3

27�
))1=2] � E.

The following Lemma 3.8(i) determine the shape of T"=0(�) on (0;1), and Lemma
3.8(ii) is a basic comparison theorem for the time map formula. Lemma 3.8(i) follows
from [8, Theorem 3.2] and Lemma 3.8(ii) by modifying [8, Theorems 2.3 and 2.4]. We
omit the proofs.

Lemma 3.8. Consider (1.1), (1.2). The following assertions (i) and (ii) hold:

(i) T"=0(�) has exactly one critical point at some �0, a maximum, on (0;1). Moreover,
lim�!0+ T"=0(�) = lim�!1 T"=0(�) = 0.

(ii) For any �xed � > 0, T"(�) is a continuous, strictly increasing function of " 2 I�[f0g.
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4. Proofs of the main results

We �rst recall that a positive solution u";� of (1.1) is degenerate if T 0"(ku";�k1) = 0 and
is nondegenerate if T 0"(ku";�k1) 6= 0. Also, a degenerate positive solution u";� of (1.1) is
of cusp type if T 00" (ku";�k1) = 0 and T 000" (ku";�k1) 6= 0.
Proof of Theorem 2.1. To prove Theorem 2.1, by (3.1) and Lemma 3.1(i), it su¢ ces
to prove that there exists a positive number ~" = ~"(�; �; �) such that the following parts
(I)�(III) hold:

(I) For 0 < " < ~", on (0; �"), T"(�) has exactly two critical points, a local maximum at
some ��" and a local minimum at some �+" (> �

�
" ), satisfying �

� = (T"(�
�
" ))

2 and
�� = (T"(�

+
" ))

2.

(II) For " = ~", T~"(�) is a strictly increasing function and has exactly one critical point, at
some ~�, on (0; �~"). Moreover, T

0
~"(~�) = 0, T

0
~"(�) > 0 for � 2 (0; �~") n f~�g, T 00~" (~�) = 0

and T 000~" (~�) 6= 0 (So (1.1), (1.2) has exactly one (cusp type) degenerate positive
solution u~� with ~� � (T~"(~�))2 and ~� = ku~�k1.)

(III) For " > ~", T"(�) is a strictly increasing function and has no critical point on (0; �").
Moreover, T 0"(�) > 0 for � 2 (0; �").

Note that, by (3.2) and the above parts (I)�(III), we obtain immediately the exact
multiplicity result of positive solutions of (1.1), (1.2) for 0 < " < ~" and the uniqueness
result of positive solution of (1.1), (1.2) for " � ~". Moreover, ordering properties and
asymptotic behaviors of positive solutions of (1.1), (1.2) in parts (I)�(III) can be obtained
easily. We then prove parts (I)�(III) as follows.
By Lemma 3.2, we obtain that the set E is nonempty and bounded above by ( �

3

27�
)1=2.

By Lemmas 3.6 and 3.7, E = (0; ~") where ~" = supE satis�es (25
32
( �

3

27�
))1=2 < ~" < ( �

3

27�
)1=2.

So, for 0 < " < ~", on (0; �"), T"(�) has exactly two critical points, a local maximum
at some ��" and a local minimum at some �+" (> ��" ), satisfying �

� = (T"(�
�
" ))

2 and
�� = (T"(�

+
" ))

2. So part (I) holds.
For " > ~", by Lemma 3.5 and (3.8), we obtain that

T 0"(�) > T
0
~"(�) � 0 for � 2 (0; �") � (0; �~"),

and hence T"(�) has no critical point on (0; �"). So part (III) holds.
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Fig. 7. Graphs of T"(�) for � 2 (0; �") with varying " � 0:

We prove the remaining part (II). For " = ~", we know that

T 0~"(�) � 0 on (0; �~"). (4.1)

We �rst prove the existence of a critical point of T~"(�) on (0; �~"). Choose a sequence
f"ng � E = (0; ~") such that "n % ~" as n ! 1. Let ��"n < �+"n be two critical points of
T"n(�) on (0; �"n) for each n 2 N (see Fig. 7). Then by Lemma 3.5 again, we obtain that

T 0"n(�
�
"n+1

) < T 0"n+1(�
�
"n+1

) = 0 and T 0"n(�
+
"n+1

) < T 0"n+1(�
+
"n+1

) = 0.

Hence ��"n < �
�
"n+1

< �+"n+1 < �
+
"n and

��"n < ~�
� � lim

n!1
��"n � ~�+ � lim

n!1
�+"n < �

+
"n for all n 2 N.

These imply that
T 0"n(~�

�); T 0"n(~�
+) < 0 for all n 2 N.

By Lemma 3.5, we obtain that T 0"(�) is a continuous function of " 2 I�. Thus

T 0~"(~�
�) = lim

n!1
T 0"n(~�

�) � 0 and T 0~"(~�
+) = lim

n!1
T 0"n(~�

+) � 0. (4.2)

So T 0~"(~�
�) = T 0~"(~�

+) = 0 by (4.1) and (4.2), and hence T~"(�) has critical points at ~��; ~�+

on (0; �~").
We then prove the uniqueness of critical point of T~"(�) on (0; �~"). That is, we prove

that ~� � ~�� = ~�+ is the unique critical point of T~"(�) on (0; �~"). Suppose that �̂ < �� are
two critical points of T~"(�) on (0; �~"). We know that all (possible) critical points of T"(�)
on (0; �") are discrete as in the proof of Lemma 3.3. Hence there exist positive numbers
�1 < �̂ < �2 < �� such that

T 0~"(�1); T
0
~"(�2) > 0.
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By Lemma 3.5, we obtain that T 0"(�) is a continuous, strictly increasing function of " 2 I�.
Hence there exists a positive "̂ < ~" such that

T 0"̂(�1) > 0, T
0
"̂(�̂) < 0, T

0
"̂(�2) > 0, T

0
"̂(��) < 0.

Thus T"̂(�) has at least two local maxima on (0; � "̂), which contradicts to the facts that
"̂ 2 E and T"̂(�) has exactly one local maximum on (0; � "̂). So T~"(�) has at most one
critical point on (0; �~"). By the above analysis,

T 0~"(~�) = 0 and T 0~"(�) > 0 for � 2 (0; �~") n f~�g . (4.3)

Next, if T 00~" (~�) > 0 (resp. T
00
~" (~�) < 0), then T~"(�) has a local minimum (resp. a local

maximum) at ~�, which contradicts to (4.3). So T 00~" (~�) = 0. By Lemma 3.1(ii), we have

�+"n � 
"n > 
~" for all n 2 N,

and hence ~� = limn!1 �
+
"n � 
~". By Lemma 3.4, G0~"(�) > 0 for all � 2 [
~"; �~"). So

G0~"(~�) = ~�
3
2

h
20
p
2T 00~" (~�) + 8

p
2~�T 000~" (~�)

i
> 0.

Therefore T 000~" (~�) > 0 since T
00
~" (~�) = 0. This completes the proof of part (II).

The proof of Theorem 2.1 is complete.
Proof of Theorem 2.2. Recall (3.1) with " � 0,

p
� =

1p
2

Z �

0

[F"(�)� F"(u)]�1=2 du � T"(�) for 0 < � < �",

where �" the unique positive zero of cubic polynomial f"(u) for " > 0 and �"=0 = 1.
Thus, studying the exact number of positive solutions of (1.1), (1.2) for �xed � > 0 is
equivalent to studying the number of roots of the equation T"(�) =

p
� on (0; �") for

varying " > 0. Since we have studied the behaviors of T"(�) for all varying " � 0 (see the
proofs of Theorem 2.1 and Lemma 3.8(i) and Fig. 7), there exist two positive numbers
�0 (= �0(�; �; �)) < ~� (= ~�(�; �; �)) such that the following parts (I)�(III) hold:

(I) For 0 < � � �0, there exists a positive number "� = "�(�) such that the equation
T"(�) =

p
� has exactly three roots on (0; �") for 0 < " < "

�, exactly two roots on
(0; �") for " = "

�, and exactly one root on (0; �") for " > "
�.

(II) For �0 < � < ~�, there exist two positive number "� (= "�(�)) < "� (= "�(�)) such
that the equation T"(�) =

p
� has exactly three roots on (0; �") for "� < " < "�,

exactly two roots on (0; �") for " = "� and " = "
�, and exactly one root on (0; �")

for 0 < " < "� and " > "�.

(III) For � � ~�, the equation T"(�) =
p
� has exactly one root on (0; �") for all " > 0.

Notice that �0 = (T"=0(�0))2 and ~� = (T~"(~�))2, where �0 is the unique critical point
of T"=0(�) and ~� be the unique critical point of T~"(�). Hence (3.2) and the above parts
(I)�(III) imply immediately the exact multiplicity result of positive solutions of (1.1),
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(1.2) for � 2 (0; ~�) and the uniqueness result of positive solution of (1.1), (1.2) for � � ~�.
Moreover, ordering properties and asymptotic behaviors of positive solutions of (1.1),
(1.2) in parts (I)�(III) can be obtained easily.
The proof of Theorem 2.2 is complete.

Proof of Theorem 2.3. By Theorem 2.1, for any " � ~", we obtain that (1.1), (1.2) has
exactly one positive solution for all � > 0. In addition, for any " 2 (0; ~"), there exist two
positive numbers ��(") < �

�(") such that (1.1), (1.2) has exactly three positive solutions
for ��(") < � < �

�("), exactly two positive solutions for � = ��(") and �
�("), and exactly

one positive solution for 0 < � < ��(") and � > ��("), where ��(") = (T"(�
+
" ))

2 and
��(") = (T"(�

�
" ))

2 in which ��" < �
+
" are two critical points of T"(�) on (0; �").

First, letting ��~" = �+~" � ~�, we prove that ��" (resp. �
+
" ) is a continuous, strictly

increasing (resp. strictly decreasing) function on (0; ~"] and lim"!0+ �
�
" = �0 (resp.

lim"!0+ �
+
" = 1) as follows. By similar arguments in the proof of Theorem 2.1, we

obtain that ��" (resp. �
+
" ) is a strictly increasing (resp. strictly decreasing) function on

(0; ~"]. For any �xed � 2 (�0; ~�), by Theorem 2.1(ii) and Lemma 3.8(i), we obtain that

T 0"=0(�) < 0 and T 0~"(�) > 0.

Then by Lemma 3.5, T 0"(�) is a continuously di¤erentiable, strictly increasing function of
" 2 [0; ~"]. This implies that there exists a unique " 2 (0; ~") such that T 0"(�) = 0. So

��" : (0; ~"]! (�0; ~�] is a strictly increasing, surjective function, (4.4)

and hence ��" is a continuous function on (0; ~"] and lim"!0+ �
�
" = �0. Similarly, we can

prove that

�+" : (0; ~"]! [~�;1) is a strictly decreasing, surjective function,

and hence �+" is also a continuous function on (0; ~"] and lim"!0+ �
+
" =1.

Secondly, letting

��(0) � 0, ��(0) � �0 = (T"=0(�0))2, and ��(~") = ��(~") � ~� = (T~"(~�))2,

we then show ��(") and �
�(") are both strictly increasing functions on [0; ~"]. By Lemma

3.8(ii), T"(�) is a continuous, strictly increasing function of " 2 I� [f0g. So for any "1; "2
satisfying 0 � "1 < "2 � ~", we obtain thatp

��("2) = T"2(�
�
"2
) > T"2(�

�
"1
) > T"1(�

�
"1
) =

p
��("1)

and p
��("2) = T"2(�

+
"2
) > T"1(�

+
"2) > T"1(�

+
"1
) =

p
��("1);

cf. Fig. 7. Hence ��(") and �
�(") are both strictly increasing functions on [0; ~"]. Note

that T"=0(��0 ) �
p
��(0) = T"=0(�0) and T"=0(�+0 ) �

p
��(0) = 0.

Thirdly, we show ��(") and �
�(") are both continuous functions on [0; ~"]. By Lemma

3.5, for any �xed � > 0, T 0"(�) is a continuously di¤erentiable, strictly increasing function
of " 2 I� [ f0g. So for any �" 2 (0; ~"] and for any given � > 0, there exists � > 0 such that

T�"(�
�
�" )� � < T"(���" ) < T�"(���" ) for all " 2 (�"� �; �").
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By Theorem 2.1(i) and the fact that ��(") is a strictly increasing function on [0; ~"], we
have that

T�"(�
�
�" )� � < T"(���" ) < T"(��" ) =

p
��(") <

p
��(�") = T�"(�

�
�" ) for all " 2 (�"� �; �").

Hence ���p��(")�p��(�")��� < � for all " 2 (�"� �; �").

This implies that
p
��(") is left continuous on (0; ~"], and so is ��("). By similar arguments,

we can prove that ��(") is right continuous on [0; ~").
Now, assume that ��(") is not right continuous at some point "̂ 2 [0; ~"), then there

exist �1 > 0 and a sequence f"ng � ("̂; ~") such that "n & "̂ as n!1, and��T"n(��"n)� T"̂(��"̂ )�� = ���p��("n)�p��("̂)��� � �1 for all n 2 N.
Then for any positive integers m > n, by Lemma 3.9(ii),

T"n(�
�
"m) > T"m(�

�
"m) � T"̂(�

�
"̂ ) + �1.

By (4.4), ��" is a continuous function on (0; ~"], so

T"n(�
�
"̂ ) = lim

m!1
T"n(�

�
"m) � T"̂(�

�
"̂ ) + �1 for all n 2 N.

Note that ��0 � �0 = lim"!0+ �
�
" . Then by Lemma 3.8(ii) again, we have that

T"̂(�
�
"̂ ) = lim

n!1
T"n(�

�
"̂ ) � T"̂(��"̂ ) + �1 > T"̂(��"̂ ),

and we obtain a contradiction. This implies that
p
��(") is right continuous on [0; ~"), and

so is ��("). By similar arguments, we can prove that ��(") is left continuous on (0; ~"].
By the above analysis, we conclude that

��(") : [0; ~"]! [�0; ~�] is a continuous, strictly increasing function (4.5)

and
��(") : [0; ~"]! [0; ~�] is a continuous, strictly increasing function. (4.6)

Moreover,
lim
"!0+

��(") = �0, lim
"!0+

��(") = 0, and ��(~") = �
�(~") = ~�. (4.7)

Finally, by (4.5)�(4.7), ��(") and ��(") both have continuous inverse functions on (0; ~"].
Indeed, by Theorem 2.2 and (3.1), "�(�) = (�

�)�1(") on (�0; ~�] and "�(�) = (��)�1(") on
(0; ~�] where "�(~�) = "�(~�) � ~". So we obtain that

"�(�) : (0; ~�]! (0; ~"] is a continuous, strictly increasing function

and
"�(�) : (�0; ~�]! (0; ~"] is a continuous, strictly increasing function.

Moreover,
lim
�!0+

"�(�) = lim
�!�+0

"�(�) = 0.

The proof of Theorem 2.3 is complete.
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5. Conclusions and conjectures

We consider the problem�
u00(x) + �f"(u) = 0, � 1 < x < 1, u(�1) = u(1) = 0,
f"(u) = �"u3 + �u2 � �u+ �, �; " > 0.

(5.1)

Problem (5.1) was �rst systematically studied by a celebrated paper by Smoller and
Wasserman [11]. In particular, they consider (5.1) with " = 1 and that cubic nonlinearity
f"=1(u) has three real zeros a < b < c. In this section we discuss the general case with
" > 0 and �; �; � 2 R, so that f"(u) may have exactly one positive zero, two distinct
positive zeros or three distinct positive zeros. First, note that, if � � 0 or � � 0, we can
show that the structure of bifurcation curve S" of positive solutions for (5.1) is one of the
following cases:

(i) The bifurcation curve S" of (5.1) is an empty set (that is, (5.1) has no positive
solution for all � > 0).

(ii) The bifurcation curve S" of (5.1) is a monotone curve on the (�; kuk1)-plane.

(iii) The bifurcation curve S" of (5.1) has exactly one turning point where the curve
turns to the right on the (�; kuk1)-plane.

Thus problem (5.1) has at most two positive solutions if � � 0 or � � 0. See [5] for
the details of the above results.
If � > 0 and � > 0, then (5.1) reduces to (1.1). It is more di¢ cult to determine precisely

the exact multiplicity of (1.1) since problem (1.1) may have three positive solutions for
some positive numbers "; �; �. We analyze (1.1) more precisely in this section. First, if

� � p��;

the exact multiplicity results of positive solutions for problem (1.1) was determine precisely
by Theorem 2.1 and [3, Theorem 2.1]. By some numerical simulations, we give next
three conjectures on the shape of bifurcation curves Ŝ" of positive solutions of (1.1) with
� >

p
��, de�ned by

Ŝ" � f(�; ku�k1) : � > 0 and u� is a positive solution of (1.1) with � >
p
��g .

Conjecture 5.1. Consider (1.1) where

p
�� < � �

p
3��:

Then there exists a positive number ~" = ~"(�; �; �) satisfying satisfying

(
25

32
(
�3

27�
))1=2 < ~" < (

�3

27�
)1=2

such that all results in Theorem 2.1(i)�(iii) hold.
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While
� >

p
3��; (5.2)

we remark that there exists some �" > 0 such that cubic nonlinearity f�"(u) has three
positive zeros 0 < a < b < c and

R c
a
f�"(t)dt > 0 (see Fig. 8(i).) For these f�"(u), it is easy

to check that a+ c > 2b and there exists � 2 (b; c) such that
R �
a
f�"(t)dt = 0. So problem

(1.1), (5.2) can be written as�
u00(x) + ��"(u� a)(u� b)(c� u) = 0, � 1 < x < 1, u(�1) = u(1) = 0;
�; �" > 0, 0 < a < b < c, a+ c > 2b.

(5.3)

Fig. 8. (i) The graph of f�"(u) satisfying (5.3). (ii) The conjectured bifurcation curve of
problem (5.3).

It was conjectured that the bifurcation curve of positive solution of problem (5.3) is broken
S-shaped (see Fig. 8(ii)) on the (�; kuk1)-plane. A proof was claimed by Smoller and
Wasserman [11, Theorem 2.1], but their proof has a gap. Assuming di¤erent conditions
on constants a, b and c, Wang [12] and Korman, Li and Ouyang [6] gave partial proof
of the above conjecture independently. For this conjecture, Korman, Li and Ouyang [7]
gave a computer-assisted proof. Further investigation on this conjecture is needed. We
give two conjectures about problem (1.1), (5.2) which is more general than problem (5.3).

Conjecture 5.2. Consider (1.1) wherep
3�� < � < 2

p
��: (5.4)

Then there exist two positive numbers ~"0 = ~"0(�; �; �) < "0 = "0(�; �; �) such that the
following assertions (i)�(iii) hold:

(i) (See Fig. 2(i).) If 0 < " < ~"0, then the bifurcation curve Ŝ" is S-shaped on the
(�; kuk1)-plane. Moreover, the exact multiplicity results of positive solutions in
Theorem 2.1(i) hold.

(ii) (See Fig. 8(ii).) If ~"0 � " < "0, then the bifurcation curve Ŝ" is broken S-shaped
on the (�; kuk1)-plane. Moreover, there exist �

� > 0 such that problem (1.1), (5.4)
has exactly three positive solutions for � > ��, exactly two positive solutions for
� = ��, and exactly one positive solution for 0 < � < ��.
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(iii) (See Fig. 2(iii).) If " � "0, then the bifurcation curve Ŝ" is a monotone curve on the
(�; jjujj1)-plane. Moreover, problem (1.1), (5.4) has exactly one positive solution
for all � > 0.

Conjecture 5.3. Consider (1.1) where

� � 2p��: (5.5)

Then there exists a positive number "0 = "0(�; �; �) such that the following assertions (i)
and (ii) hold:

(i) (See Fig. 8(ii).) If 0 < " < "0, then the bifurcation curve Ŝ" is broken S-shaped on
the (�; kuk1)-plane. Moreover, there exist �

� > 0 such that problem (1.1), (5.5)
has exactly three positive solutions for � > ��, exactly two positive solutions for
� = ��, and exactly one positive solution for 0 < � < ��.

(ii) (See Fig. 2(iii).) If " � "0, then the bifurcation curve Ŝ" is a monotone curve on the
(�; jjujj1)-plane. Moreover, problem (1.1), (5.5) has exactly one positive solution
for all � > 0.

Acknowledgments. Most of the computation in this paper has been checked using the
symbolic manipulator Mathematica 7.0.

References

[1] K.J. Brown, M.M.A. Ibrahim, R. Shivaji, S-shaped bifurcation curves, Nonlinear
Anal. 5 (1981) 475�486.

[2] M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and
linearized stability, Arch. Rational Mech. Anal. 52 (1973) 161�180.

[3] K.-C. Hung, S.-H. Wang, Global bifurcation and exact multiplicity of positive solu-
tions for a positone problem with cubic nonlinearity and their applications, Trans.
Amer. Math. Soc., accepted to appear under minor revision.

[4] K.-C. Hung, S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone
problem with convex-concave nonlinearity and its applications to the perturbed
Gelfand problem, J. Di¤erential Equations 251 (2011) 223�237.

[5] K.-C. Hung, S.-H. Wang, Exact multiplicity of positive solutions for a Dirichlet prob-
lem with cubic nonlinearity, preprint.

[6] P. Korman, Y. Li, T. Ouyang, Exact multiplicity results for boundary value problems
with nonlinearities generalising cubic. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996)
599�616.

[7] P. Korman, Y. Li, T. Ouyang, Computing the location and direction of bifurcation,
Math. Res. Lett. 12 (2005) 933�944.

21



[8] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,
Indiana Univ. Math. J. 20 (1970) 1�13.

[9] J. Shi, Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169 (1999)
494�531.

[10] J. Shi, Multi-parameter bifurcation and applications, in: H. Brezis, K.C. Chang,
S.J. Li, P. Rabinowitz (Eds.), ICM2002 Satellite Conference on Nonlinear Functional
Analysis: Topological Methods, Variational Methods and Their Applications, World
Scienti�c, Singapore, 2003, pp. 211�222.

[11] J. Smoller, A. Wasserman, Global bifurcation of steady-state solutions, J. Di¤erential
Equations 39 (1981) 269�290.

[12] S.-H. Wang, A correction for a paper by J. Smoller and A. Wasserman, J. Di¤erential
Equations 77 (1989) 199-202.

6. Appendix

Proof of Lemma 3.4.
The proof of Lemma 3.4 is rather long and technical, we divide the proof into next

Steps 1�5.
Step 1. We compute G0"(�).

By (3.3)�(3.5), we compute that

G"(�) = 8
p
2�

5
2T

00

" (�)

= �8� 5
2

Z 1

0

f"(�)� f"(�v)v
[F"(�)� F"(�v)]3=2

dv � 4� 7
2

Z 1

0

f 0"(�)� f 0"(�v)v2

[F"(�)� F"(�v)]3=2
dv

+6�
7
2

Z 1

0

[f"(�)� f"(�v)v]2

[F"(�)� F"(�v)]5=2
dv

and

G0"(�) = �20� 3
2

Z 1

0

f"(�)� f"(�v)v
[F"(�)� F"(�v)]3=2

dv � 22� 5
2

Z 1

0

f 0"(�)� f 0"(�v)v2

[F"(�)� F"(�v)]3=2
dv

�4� 7
2

Z 1

0

f 00" (�)� f 00" (�v)v3

[F"(�)� F"(�v)]3=2
dv + 33�

5
2

Z 1

0

[f"(�)� f"(�v)v]2

[F"(�)� F"(�v)]5=2
dv

+18�
7
2

Z 1

0

[f"(�)� f"(�v)v] [f 0"(�)� f 0"(�v)v2]
[F"(�)� F"(�v)]5=2

dv

�15� 7
2

Z 1

0

[f"(�)� f"(�v)v]3

[F"(�)� F"(�v)]7=2
dv

=
1p
�

Z �

0

K"(�; u)

[4F"]7=2
du; (6.1)
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where

K"(�; u) = �20(4F")2(4f")� 22(4F")2(4 ~f")� 4(4F")2(4f̂")
+33(4F")(4f")2 + 18(4F")(4f")(4 ~f")� 15(4f")3, (6.2)

4F" = F"(�)� F"(u), (6.3)

4f" = �f"(�)� uf"(u), (6.4)

4 ~f" = �2f 0"(�)� u2f 0"(u), (6.5)

4f̂" = �3f 00" (�)� u3f 00" (u). (6.6)

Since f"(u) = �"u3 + �u2 � �u+ �, we have that

F"(u) = �"u4=4 + �u3=3� �u2=2 + �u, (6.7)

uf"(u) = �"u4 + �u3 � �u2 + �u, (6.8)

u2f 0"(u) = �3"u4 + 2�u3 � �u2, (6.9)

u3f 00" (u) = �6"u4 + 2�u3. (6.10)

For 0 < u < �, we let A � "(�4 � u4), B � �(�3 � u3), C � �(�2 � u2), D � �(� � u).
Then A;B;C;D > 0. By (6.3)�(6.10), we obtain that

4F" = �A=4 +B=3� C=2 +D, (6.11)

4f" = �A+B � C +D, (6.12)

4 ~f" = �3A+ 2B � C, (6.13)

4f̂" = �6A+ 2B. (6.14)

Substitute (6.11)�(6.14) into (6.2), we have

K"(�; u) =
1

72
(168ABC � 1356ABD � 504ACD � 168BCD

+9A3 � 144D3 � 2AB2 + 12A2B + 90AC2

�207A2C � 60B2C + 2646AD2 + 1134A2D

�1248BD2 + 560B2D + 468CD2 + 72C2D). (6.15)

So Lemma 3.4 holds if we can prove thatK"(�; u) > 0 for any �xed " 2 [( 710(
�3

27�
))1=2; ( �

3

27�
)1=2],

� 2 [
"; �") and 0 < u < �.

Step 2. We make a transformation for K"(�; u).

Although both T"(�) and G"(�) are only de�ned for � 2 (0; �"), K"(�; u) is well
de�ned for all � 2 R. So Lemma 3.4 holds if we can prove K"(�; u) > 0 for any �xed
" 2 [( 7

10
( �

3

27�
))1=2; ( �

3

27�
)1=2], � � 
", 0 � � � p

�� and 0 < u < �. Since 
" =
�
3"
, we

consider K"(�; u) when � � 
", 0 � � �
p
3"
2",

7
10
"
3" � � � "
3", and 0 < u < �. Let

� = (r + 1)
", r 2 [0;1),
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� = s"
2", s 2 [0;
p
3],

� = t"
3", t 2 [
7

10
; 1],

u = y
", y 2 (0; r + 1).
Thus

A = "(�4 � u4) = "
4"[(r + 1)4 � y4], (6.16)

B = �(�3 � u3) = 3"
4"[(r + 1)3 � y3], (6.17)

C = �(�2 � u2) = s"
4"[(r + 1)2 � y2], (6.18)

D = �(�� u) = t"
4"(r + 1� y). (6.19)

Substitute (6.16)�(6.19) into (6.15), we obtain

K"(�; u) =
1

8
"3
12" (r + 1� y)3 eK"(r; s; t; y); (6.20)

where eK"(r; s; t; y) =
9P
j=0

kj(r; s; t)y
j; (6.21)

k0(r; s; t) = (3� 122t2 + 10s2 � 16t3 + 8s2t+ 234t� 27s+ 52st2 � 112st)
+(�392st+ 16s2t+ 50t2 + 736t+ 50s2 + 27� 125s+ 52st2)r
+(100s2 + 466t2 + 8s2t� 243s+ 730t� 504st+ 106)r2 + (�280st
+238 + 294t2 + 240t+ 100s2 � 285s)r3 + (�265s� 56st+ 50s2

+336 + 190t)r4 + (�207s+ 304t+ 308 + 10s2)r5 + (126t� 105s
+182)r6 + (66� 23s)r7 + 13r8 + r9,

k1(r; s; t) = (9 + 52st2 + 468t+ 30s2 � 81s� 224st� 122t2 + 16s2t) + (16s2t
+172t2 � 560st+ 72� 294s+ 1004t+ 120s2)r + (294t2 + 180s2

�435s� 448st+ 456t+ 246)r2 + (�112st+ 24t+ 468 + 120s2

�420s)r3 + (30s2 + 356t+ 540� 375s)r4 + (252t+ 384� 246s)r5

+(162� 69s)r6 + 36r7 + 3r8,

k2(r; s; t) = (18 + 40s2 � 135s+ 702t� 224st+ 8s2t� 122t2) + (126 + 294t2

+804t+ 120s2 � 355s� 336st)r + (�370s� 120t+ 366� 112st
+120s2)r2 + (40s2 + 156t� 330s+ 570)r3 + (�295s+ 378t+ 510)r4

+(258� 115s)r5 + 66r6 + 6r7,

k3(r; s; t) = (�125s+ 40s2 + 268t� 168st+ 30 + 294t2) + (�236s� 80t+ 80s2

+176� 112st)r + (�258s+ 156t+ 40s2 + 414)r2 + (496� 308s
+504t)r3 + (314� 161s)r4 + 96r5 + 10r6,
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k4(r; s; t) = (36� 61s� 56st+ 34t+ 30s2) + (172� 148t� 103s+ 30s2)r
+(�203s+ 378t+ 312)r2 + (264� 161s)r3 + 100r4 + 12r5,

k5(r; s; t) = (�7s+ 10s2 + 36� 200t) + (252t+ 132� 62s)r + (168� 115s)r2

+84r3 + 12r4,

k6(r; s; t) = (�13s+ 28 + 126t) + (72� 69s)r + 54r2 + 10r3,
k7(r; s; t) = 16� 23s+ 24r + 6r2,

k8(r; s; t) = 7 + 3r,

k9(r; s; t) = 1.

So Lemma 3.4 holds if we can prove eK"(r; s; t; y) > 0 for any �xed y 2 (0; r + 1), (r; t) 2

 � [0;1)� [ 7

10
; 1] and s 2 [0;

p
3].

Step 3. For any �xed y 2 (0; r+1) and (r; t) 2 
 � [0;1)�[ 7
10
; 1], we show eK"(r; s; t; y)

is strictly decreasing with respect to s on [0;
p
3].

From (6.15), we have

72
@K"

@C
= �207A2�60B2�504AD�168BD+180AC+468D2+144CD+168AB (6.22)

and

72
@2K"

@C2
= 180A+ 144D > 0:

By (6.16)�(6.20), we compute that

@2 eK"

@s2
=

8

"3
12" (r + 1� y)3
@2K"

@s2

=
8

"3
12" (r + 1� y)3

"
@2K"

@C2

�
@C

@s

�2
+
@K"

@C

@2C

@s2

#
=

1

9"3
12" (r + 1� y)3
(180A+ 144D)

�
"
4"((r + 1)

2 � y2)
�2

=
�
20
�
(r + 1)3 + (r + 1)2y + (r + 1)y2 + y3

�
+ 18t

	
(r + 1 + y)2 > 0.

This implies that for any �xed y 2 (0; r + 1) and (r; t) 2 
, eK"(r; s; t; y) is concave up
as a function of s 2 [0;

p
3], hence eK"(r; s; t; y) is strictly decreasing with respect to s on

[0;
p
3] if we can prove

@ eK"

@s
(r;
p
3; t; y) < 0 for any y 2 (0; r + 1), (r; t) 2 
. (6.23)
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By (6.16)�(6.19) and (6.22), we compute that

@ eK"

@s

=
8

"3
12" (r + 1� y)3
@K"

@C

@C

@s

=
[�207A2 � 60B2 � 504AD � 168BD + 180AC + 468D2 + 144CD + 168AB] (r + 1 + y)

9"2
8"(r + 1� y)2
;

and

�@
eK"

@s
(r;
p
3; t; y) = (r + 1 + y)

6P
j=0

gj(r; t)y
j; (6.24)

where

g0(r; t) = 23r6 + 82r5 + (125� 20
p
3)r4 + (140� 80

p
3 + 56t)r3

+(145� 120
p
3 + 224t)r2 + (98� 80

p
3 + 280t� 16

p
3t)r

+(27� 20
p
3 + 112t� 16

p
3t� 52t2);

g1(r; t) = 46r5 + 118r4 + (132� 40
p
3)r3 + (148� 120

p
3 + 56t)r2

+(142� 120
p
3 + 168t)r + (54� 40

p
3 + 112t� 16

p
3t),

g2(r; t) = 69r
4 + 108r3 + (90� 40

p
3)r2 + (132� 80

p
3 + 56t)r + (81� 40

p
3 + 112t);

g3(r; t) = 92r
3 + 108r2 + (60� 40

p
3)r + (44� 40

p
3 + 56t);

g4(r; t) = 69r
2 + 26r + (17� 20

p
3);

g5(r; t) = 46r � 10;
g6(r; t) = 23:

In order to prove (6.23), we claim that for any �xed y 2 (0; r + 1) and (r; t) 2 
,
nP
j=0

gj(r; t)y
j �

�
y

r + 1

�n
~gn(r; t) > 0; n = 0; 1; 2; 3; 4; 5; 6; (6.25)

where
~gn(r; t) =

nP
j=0

(r + 1)jgj(r; t); n = 0; 1; 2; 3; 4; 5; 6:

First, we compute ~g0(r; t) = g0(r; t) and

~g1(r; t) = 69r6 + 246r5 + (375� 60
p
3)r4 + (420� 240

p
3 + 112t)r3

+(435� 360
p
3 + 448t)r2 + (294� 240

p
3 + 560t� 32

p
3t)r

+(81� 60
p
3 + 224t� 32

p
3t� 52t2);

~g2(r; t) = 138r6 + 492r5 + (750� 100
p
3)r4 + (840� 400

p
3 + 168t)r3

+(870� 600
p
3 + 672t)r2 + (588� 400

p
3 + 840t� 32

p
3t)r

+(162� 100
p
3 + 336t� 32

p
3t� 52t2);
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~g3(r; t) = 230r6 + 876r5 + (1410� 140
p
3)r4 + (1480� 560

p
3 + 224t)r3

+(1290� 840
p
3 + 840t)r2 + (780� 560

p
3 + 1008t� 32

p
3t)r

+(206� 140
p
3 + 392t� 32

p
3t� 52t2);

~g4(r; t) = 299r6 + 1178r5 + (1945� 160
p
3)r4 + (1980� 640

p
3 + 224t)r3

+(1565� 960
p
3 + 840t)r2 + (874� 640

p
3 + 1008t� 32

p
3t)r

+(223� 160
p
3 + 392t� 32

p
3t� 52t2);

~g5(r; t) = 345r6 + 1398r5 + (2355� 160
p
3)r4 + (2340� 640

p
3 + 224t)r3

+(1695� 960
p
3 + 840t)r2 + (870� 640

p
3 + 1008t� 32

p
3t)r

+(213� 160
p
3 + 392t� 32

p
3t� 52t2);

~g6(r; t) = 368r6 + 1536r5 + (2700� 160
p
3)r4 + (2800� 640

p
3 + 224t)r3

+(2040� 960
p
3 + 840t)r2 + (1008� 640

p
3 + 1008t� 32

p
3t)r

+(236� 160
p
3 + 392t� 32

p
3t� 52t2):

As a polynomial of r, it is easy to check that the coe¢ cients of ~gn(r; t) are all positive for
n 2 f0; 1; 2; 3; 4; 5; 6g, where t 2 [ 7

10
; 1]. So for any �xed y 2 (0; r + 1) and (r; t) 2 
,

~gn(r; t) > 0; n = 0; 1; 2; 3; 4; 5; 6: (6.26)

Suppose (6.25) holds for n = l where l 2 f0; 1; 2; 3; 4; 5g, by (6.26) and 0 < y < r + 1,
we have

l+1P
j=0

gj(r; t)y
j =

lP
j=0

gj(r; t)y
j + gl+1(r; t)y

l+1

�
"�

y

r + 1

�l
~gl(r; t)

#�
y

r + 1

�
+ gl+1(r; t)y

l+1

=

�
y

r + 1

�l+1 " lP
j=0

(r + 1)jgj(r; t)

#
+

�
y

r + 1

�l+1
(r + 1)l+1gl+1(r; t)

=

�
y

r + 1

�l+1 l+1P
j=0

(r + 1)jgj(r; t)

=

�
y

r + 1

�l+1
~gl+1(r; t). (6.27)

So (6.25) holds for n = l+1 where l 2 f0; 1; 2; 3; 4; 5g. By (6.24)�(6.27), we obtain (6.23)

@ eK"

@s
(r;
p
3; t; y) = �(r + 1 + y)

6P
j=0

gj(r; t)y
j < 0 for any y 2 (0; r + 1), (r; t) 2 
.

So for any �xed y 2 (0; r + 1) and (r; t) 2 
 � [0;1)� [ 7
10
; 1], eK"(r; s; t; y) is strictly

decreasing with respect to s on [0;
p
3].
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Step 4. We show eK"(r; s; t; y) > 0 for any �xed y 2 (0; r + 1), (r; t) 2 
 � [0;1) �
[ 7
10
; 1] and s 2 [0;

p
3].

By Step 3, Step 4 holds if we can prove

eK"(r;
p
3; t; y) > 0 for any y 2 (0; r + 1), (r; t) 2 
. (6.28)

By (6.21) in Step 2, eK"(r;
p
3; t; y) =

9P
j=0

hj(r; t)y
j, (6.29)

where

h0(r; t) = r9 + 13r8 + (66� 23
p
3)r7 + (182� 105

p
3 + 126t)r6 + (338� 207

p
3 + 304t)r5

+(486� 265
p
3 + 190t� 56

p
3t)r4 + (538� 285

p
3 + 240t� 280

p
3t+ 294t2)r3

+(406� 243
p
3 + 754t� 504

p
3t+ 466t2)r2 + (177� 125

p
3 + 784t� 392

p
3t

+50t2 + 52
p
3t2)r + (33� 27

p
3 + 258t� 112

p
3t+ 52

p
3t2 � 122t2 � 16t3),

h1(r; t) = 3r8 + 36r7 + (162� 69
p
3)r6 + (384� 246

p
3 + 252t)r5

+(630� 375
p
3 + 356t)r4 + (828� 420

p
3 + 24t� 112

p
3t)r3

+(786� 435
p
3 + 456t� 448

p
3t+ 294t2)r2 + (432� 294

p
3 + 1052t

�560
p
3t+ 172t2)r + (99� 81

p
3 + 516t� 224

p
3t+ 52

p
3t2 � 122t2),

h2(r; t) = 6r7 + 66r6 + (258� 115
p
3)r5 + (510� 295

p
3 + 378t)r4 + (690� 330

p
3

+156t)r3 + (726� 370
p
3� 120t� 112

p
3t)r2 + (486� 355

p
3 + 804t

�336
p
3t+ 294t2)r + (138� 135

p
3 + 726t� 224

p
3t� 122t2),

h3(r; t) = 10r6 + 96r5 + (314� 161
p
3)r4 + (496� 308

p
3 + 504t)r3

+(534� 258
p
3 + 156t)r2 + (416� 236

p
3� 112

p
3t� 80t)r

+(150� 125
p
3 + 268t� 168

p
3t+ 294t2),

h4(r; t) = 12r5 + 100r4 + (264� 161
p
3)r3 + (312� 203

p
3 + 378t)r2

+(262� 103
p
3� 148t)r + (126� 61

p
3 + 34t� 56

p
3t),

h5(r; t) = 12r
4 + 84r3 + (168� 115

p
3)r2 + (132� 62

p
3 + 252t)r + (66� 7

p
3� 200t),

h6(r; t) = 10r
3 + 54r2 + (72� 69

p
3)r + (28� 13

p
3 + 126t),

h7(r; t) = 6r
2 + 24r + (16� 23

p
3),

h8(r; t) = 3r + 7,

h9(r; t) = 1.
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In order to prove (6.28), we claim that for any �xed y 2 (0; r + 1) and (r; t) 2 
,
nP
j=0

hj(r; t)y
j �

�
y

r + 1

�n
~hn(r; t) > 0; n = 0; 1; 2; � � � ; 9; (6.30)

where
~hn(r; t) =

nP
j=0

(r + 1)jhj(r; t); n = 0; 1; 2; � � � ; 9:

First, we compute eh0(r; t) = h0(r; t) and
~h1(r; t) = 4r9 + 52r8 + (264� 92

p
3)r7 + (728� 420

p
3 + 378t)r6 + (1352� 828

p
3

+912t)r5 + (1944� 1060
p
3 + 570t� 168

p
3t)r4 + (2152� 1140

p
3

+720t� 840
p
3t+ 588t2)r3 + (1624� 972

p
3 + 2262t� 1512

p
3t

+932t2)r2 + (708� 500
p
3 + 2352t� 1176

p
3t+ 100t2 + 104

p
3t2)r

+(132� 108
p
3 + 774t� 336

p
3t+ 104

p
3t2 � 244t2 � 16t3); (6.31)

~h2(r; t) = 10r9 + 130r8 + (660� 207
p
3)r7 + (1820� 945

p
3 + 756t)r6 + (3320

�1863
p
3 + 1824t)r5 + (4560� 2385

p
3 + 1140t� 280

p
3t)r4 + (4780

�2565
p
3 + 1440t� 1400

p
3t+ 882t2)r3 + (3460� 2187

p
3 + 4476t

�2520
p
3t+ 1398t2)r2 + (1470� 1125

p
3 + 4608t� 1960

p
3t+ 150t2

+104
p
3t2)r + (270� 243

p
3 + 1500t� 560

p
3t+ 104

p
3t2 � 366t2 � 16t3);

eh3(r; t) = 20r9 + 256r8 + (1292� 368
p
3)r7 + (3556� 1736

p
3 + 1260t)r6 + (6380

�3528
p
3 + 3492t)r5 + (8380� 4480

p
3 + 3040t� 392

p
3t)r4 + (8276

�4480
p
3 + 2440t� 1904

p
3t+ 1176t2)r3 + (5692� 3528

p
3 + 5196t

�3360
p
3t+ 2280t2)r2 + (2336� 1736

p
3 + 5332t� 2576

p
3t+ 1032t2

+104
p
3t2)r + (420� 368

p
3 + 1768t� 728

p
3t+ 104

p
3t2 � 72t2 � 16t3);

eh4(r; t) = 32r9 + 404r8 + (2028� 529
p
3)r7 + (5572� 2583

p
3 + 1638t)r6 + (9886

�5409
p
3 + 4856t)r5 + (12582� 6815

p
3 + 4750t� 448

p
3t)r4 + (11864

�6315
p
3 + 3200t� 2128

p
3t+ 1176t2)r3 + (7808� 4509

p
3 + 5186t

�3696
p
3t+ 2280t2)r2 + (3102� 2083

p
3 + 5320t� 2800

p
3t+ 1032t2

+104
p
3t2)r + (546� 429

p
3 + 1802t� 784

p
3t+ 104

p
3t2 � 72t2 � 16t3);

eh5(r; t) = 44r9 + 548r8 + (2736� 644
p
3)r7 + (7504� 3220

p
3 + 1890t)r6 + (13192

�6876
p
3 + 5916t)r5 + (16344� 8620

p
3 + 6270t� 448

p
3t)r4 + (14768

�7580
p
3 + 3720t� 2128

p
3t+ 1176t2)r3 + (9296� 5004

p
3 + 4446t

�3696
p
3t+ 2280t2)r2 + (3564� 2180

p
3 + 4572t� 2800

p
3t+ 1032t2

+104
p
3t2)r + (612� 436

p
3 + 1602t� 784

p
3t+ 104

p
3t2 � 72t2 � 16t3);
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eh6(r; t) = 54r9 + 662r8 + (3282� 713
p
3)r7 + (8974� 3647

p
3 + 2016t)r6 + (15670

�7989
p
3 + 6672t)r5 + (19074� 10195

p
3 + 8160t� 448

p
3t)r4 + (16742

�8875
p
3 + 6240t� 2128

p
3t+ 1176t2)r3 + (10202� 5613

p
3 + 6336t

�3696
p
3t+ 2280t2)r2 + (3804� 2327

p
3 + 5328t� 2800

p
3t+ 1032t2

+104
p
3t2)r + (640� 449

p
3 + 1728t� 784

p
3t+ 104

p
3t2 � 72t2 � 16t3);

eh7(r; t) = 60r9 + 728r8 + (3592� 736
p
3)r7 + (9800� 3808

p
3 + 2016t)r6 + (17056

�8472
p
3 + 6672t)r5 + (20600� 11000

p
3 + 8160t� 448

p
3t)r4 + (17848

�9680
p
3 + 6240t� 2128

p
3t+ 1176t2)r3 + (10712� 6096

p
3 + 6336t

�3696
p
3t+ 2280t2)r2 + (3940� 2488

p
3 + 5328t� 2800

p
3t+ 1032t2

+104
p
3t2)r + (656� 472

p
3 + 1728t� 784

p
3t+ 104

p
3t2 � 72t2 � 16t3);

eh8(r; t) = 63r9 + 759r8 + (3732� 736
p
3)r7 + (10164� 3808

p
3 + 2016t)r6 + (17658

�8472
p
3 + 6672t)r5 + (21258� 11000

p
3 + 8160t� 448

p
3t)r4 + (18324

�9680
p
3 + 6240t� 2128

p
3t+ 1176t2)r3 + (10932� 6096

p
3 + 6336t

�3696
p
3t+ 2280t2)r2 + (3999� 2488

p
3 + 5328t� 2800

p
3t+ 1032t2

+104
p
3t2)r + (663� 472

p
3 + 1728t� 784

p
3t+ 104

p
3t2 � 72t2 � 16t3);

eh9(r; t) = 64r9 + 768r8 + (3768� 736
p
3)r7 + (10248� 3808

p
3 + 2016t)r6 + (17784

�8472
p
3 + 6672t)r5 + (21384� 11000

p
3 + 8160t� 448

p
3t)r4 + (18408

�9680
p
3 + 6240t� 2128

p
3t+ 1176t2)r3 + (10968� 6096

p
3 + 6336t

�3696
p
3t+ 2280t2)r2 + (4008� 2488

p
3 + 5328t� 2800

p
3t+ 1032t2

+104
p
3t2)r + (664� 472

p
3 + 1728t� 784

p
3t+ 104

p
3t2 � 72t2 � 16t3):

As polynomials of r, it is easy to check that the coe¢ cients of ehn(r; t) are all positive for
n 2 f0; 1; 2; � � � ; 9gn f1g, where t 2 [ 7

10
; 1]. So for any �xed y 2 (0; r + 1) and (r; t) 2 
,

ehn(r; t) > 0; n 2 f0; 1; 2; � � � ; 9gn f1g :
Note that for n = 1 and t 2 [ 7

10
; 1], it is easy to check that the coe¢ cients of eh1(r; t) are

all positive besides that of r3. By (6.31), we obtain that

eh1(r; t)
> 52r8 + (2152� 1140

p
3 + 720t� 840

p
3t+ 588t2)r3

� 52r3 + (2152� 1140
p
3 + 720t� 840

p
3t+ 588t2)r3

= (2204� 1140
p
3 + 720t� 840

p
3t+ 588t2)r3 > 0 for t 2 [ 7

10
; 1] and r � 1;
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and eh1(r; t)
> (2152� 1140

p
3 + 720t� 840

p
3t+ 588t2)r3 + (1624� 972

p
3

+2262t� 1512
p
3t+ 932t2)r2

� (2152� 1140
p
3 + 720t� 840

p
3t+ 588t2)r3 + (1624� 972

p
3

+2262t� 1512
p
3t+ 932t2)r3

= (3776� 2112
p
3 + 2982t� 2352

p
3t+ 1520t2)r3 � 0 for t 2 [ 7

10
; 1] and 0 � r < 1:

So, for any �xed y 2 (0; r + 1) and (r; t) 2 
,ehn(r; t) > 0; n = 0; 1; 2:::; 9: (6.32)

Suppose (6.30) holds for n = l where l 2 f0; 1; 2; � � � ; 8g, by (6.32) and since 0 < y <
r + 1, we have that

l+1P
j=0

hj(r; t)y
j =

lP
j=0

hj(r; t)y
j + hl+1(r; t)y

l+1

�
"�

y

r + 1

�l
~hl(r; t)

#�
y

r + 1

�
+ hl+1(r; t)y

l+1

=

�
y

r + 1

�l+1 " lP
j=0

(r + 1)jhj(r; t)

#
+

�
y

r + 1

�l+1
(r + 1)l+1hl+1(r; t)

=

�
y

r + 1

�l+1 l+1P
j=0

(r + 1)jhj(r; t)

=

�
y

r + 1

�l+1
~hl+1(r; t).

So (6.30) holds for n = l + 1 where l 2 f0; 1; 2; � � � ; 8g. By (6.29) and (6.30), we obtain
(6.28) eK"(r;

p
3; t; y) =

9P
j=0

hj(r; t)y
j > 0 for any y 2 (0; r + 1), (r; t) 2 
.

By Step 3 and (6.28), eK"(r; s; t; y) > 0 for any �xed y 2 (0; r + 1), (r; t) 2 
 �
[0;1)� [ 7

10
; 1] and s 2 [0;

p
3].

Step 5. Finally, we prove the lemma by the above analyses.

By Step 4 and (6.20) in Step 2, we haveK"(�; u) > 0 for any �xed " 2 [( 710(
�3

27�
))1=2; ( �

3

27�
)1=2],

� 2 [
"; �") and 0 < u < �. In addition to (6.1) in Step 1, we obtain that for any �xed
" 2 [( 7

10
( �

3

27�
))1=2; ( �

3

27�
)1=2],

G0"(�) =
1p
�

Z �

0

K"(�; u)

[4F"]7=2
du > 0 on [
"; �"):

So Steps 1�5 complete the proof of Lemma 3.4.
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