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三維面著色的熵三維面著色的熵三維面著色的熵三維面著色的熵    

    

學生：張育慈 

 

指導教授：林松山教授

國立交通大學應用數學學系﹙研究所﹚碩士班 

摘        要 

 

這個研究主要是要去計算三維度兩個顏色的熵，但首先必須利用有序矩

陣以及矩陣自乘的性質所發展出來的遞迴公式去解決三維度兩個顏色下面

著色的花樣生成問題。 

接下來，給一個限制集則就可以定義出轉移矩陣而且它的遞迴公式也會

被表現出來。最後，只需去計算矩陣的最大特徵值即可計算出熵的問題。 
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student：Yu-Tzu Chang Advisors：Dr. Song-Sun Lin
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National Chiao Tung University 

ABSTRACT 

 

The work investigates spatial Entropy of 3-dimensional face coloring, but we 
need to solve three-dimensional pattern generation problem with edge- coloring 
by using the properties of ordering and self-multiply matrices to establish some 
recursive formulas, first.  

Now, given admissible set of local patterns then the transition matrix is defined 
and the recursive formulas are presented. Finally the spatial entropy is obtained 
by computing the maximum eigenvalues of a sequence of transition matrices. 
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1 Introduction

Here, we consider the problem of 2 symbols, then will get the set of all
patterns Σ3

2
, first, give any admissible set B ⊆ Σ3

2
and denote Σ3

2
(B) be Σ3

2

which is restricted in B, secondly, denote Γm×n×k(B) is the quality of Σ3
2
(B),

and finally, need to calculate spatial entropy of 3-dimensional face coloring,

h(B) = lim
m,n,k→∞

log Γm×n×k(B)

mnk
(1.1)

clearly, how to calculate Γm×n×k(B) is the first problem we encountered from
the equation (1.1). In order to solve the problem we face, we must study
the problem of 3-dimensional pattern generation of 2 symbols in section 2
and find a way to control the colors of different directions by the matrix,
Y2.
Now, split section 2 into 3 steps as following:

Step 1 : find the recursive formula,Y2×n×2, of y-direction by Y2×2×2, for n ≥ 3
Step 2 : denote X2×n×2 ≡ Y2×n×2 and find the recursive formula ,Xm×n×2 by

X2×n×2, for n ≥ 3
Step 3 : denote Zm×n×2 ≡ Ym×n×2 and we will get Zm×n×k by Zm×n×2

which is self-multiply.

In section 3, we defined Ty;2×2×2;iy as the transition matrix of Y2×2×2;iy , for
1 ≤ iy ≤ 4 and find that the main problem will be converted into finding
Γz;m×n×2(B) by Peronn Fubini’s theorem. Finally, using the result to calculus
the entropy of (1.1) where the details will be presented in theorem 1.
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2 Three-Dimensional Pattern Generation

Problems

This section describes three-dimensional pattern generation problem. Here
m, n, k ≥ 2 are fixed and indices for brevity. Let S be a set of p colors, and
Zm×n×k be a fixed finite rectangular sublattice of Z3, where Z3 denotes the
integer lattice onR3 and (m, n, k) be a three-tuple of positive integer. Func-
tion U : Z3 −→ S and Um×n×k : Zm×n×k −→ S are called global patterns
and locally patterns respectively. The set of all patterns U is denoted by

Σ
3
p ≡ SZ3

, such thatΣ3
p is the set of all patterns with p different colors in

a three-dimensional lattice. For clarity, two symbols, S = {0, 1} are con-
sidered. Let x, y and z coordinate represent 1st-, 2st- and 3st-coordinates
respectively as in Fig.1. Six orderings [w] ordering are represented as the
following:

[x] : [1] � [2] � [3]
[y] : [2] � [1] � [3]
[z] : [3] � [1] � [2]
[̂x] : [1] � [3] � [2]
[ŷ] : [2] � [3] � [1]
[̂z] : [3] � [2] � [1]

(2.1)

X

Y

z

Figure 1. Three-dimension coordinate system.
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On a fixed lattice Zm×n×k, an ordering [w] � [ j] � [k] is obtained on
Zm×n×k, which is any one of the above ordering on Zm×n×k. Therefore, the
six ordering of Z2×2×2 are presented as Fig.2, where αi = {0, 1}.

[ ] orderingx  

2 
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3 4 
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 [ ] orderingx  

4 

[ ] orderingy  

2 

1 

3 5 6 

[ ] orderingz  
 

2 
1 

3 

4 

5 6 

 [ ] orderingy  

6 1 

3 

4 

5 

2 

[ ] orderingz  
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3 

4 
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Y

z

xxx
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Y Y

Y Y Y

zzz

zz

,

Figure 2.
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2.1 Ordering Matrices

By using the six forms can get six different ordering matrices of Z2×2×2 and
denote the order of matrices as equation (2.2)

iα = 1 +
6

Σ
i=1
αi2

6−i, where αi ∈ {0, 1}. (2.2)

Here, we choose [z] as the order for convenience, and we can denote
the order of x, y and z-directions by ix, iy and iz (2.3) respectively, where
1 6 ix, iy and iz ≤ 4.



ix = 1 + α2 + α1 × 2
iy = 1 + α4 + α3 × 2
iz = 1 + α6 + α5 × 2

(2.3)

For convenience again, we have to define the matrix Y2×2×2 (2.4) below
which present the relation between colors and each directions.

2 2 2Y  =  

3 3

2 2 2;1 2 2 2;2

2 2 2;i;j 2 2
2 2 2;3 2 2 2;4

Y Y
=  [y  ]     =   

Y Y

    

   
    

! "
# $
% &

(2.4)

4



It’s not different to discover that the colors of each direct of Z2×2×2

be controlled in each layer of Y2×2×2 respectively. It means that Y2×2×2 is
divided into three layers by matrix partitioning as figure 3 and the colors
of y-, x-and z-direction are controlled in first, second and the third layer
respectively as figure 3 below.

y
i

x
i

x
ix

i

x
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

z
i

Figure 3. relation between colors and layers.
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The process of investigating the pattern generation problem should be
broken down in the following steps:

Step 1. find the recursive formula Y2×2×2 → Y2×3×2 → ...→ Y2×n×2,
that is extend on the y-direction.

Step 2. here replaces X2×n×2 with Y2×n×2, it means that X2×n×2 is really
to extend the x-direction and we get the recursive formula like

X2×n×2 → X3×n×2 → ...→ Xm×n×2 that is extend the x-direction by
Y2×n×2.

Step 3. here replaces Zm×n×2 with Xm×n×2, it means that Xm×n×2 is really
to extend the z − direction. By using the matrix to self-multiply,

we can generate Zm×n×2 → Zm×n×3 → ...→ Zm×n×k,
that is extend the z-direction by Xm×n×2.

STEP 1.

  

2 2 2Y
  2 3 2Y

  

 

2 n 2Y
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STEP 2.

3 2X
n  4 2X

n  
2X

m n  

 

 

STEP 3.

Zm×n×2 · · · Zm×n×k
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Proposition 2.1.

(1) If we only consider the colers of the z-direction of those matrices, Z2×2×2;1,
Z2×2×2;2, Z2×2×2;3 and Z2×2×2;4 with ignoring x- and y- directions, we can represent

this scenario as Z2. Moreover, we denote Zn = Z2⊗Z2⊗ ...⊗Z2 and discover that
Zn is self-multiply, where

Z2×2×2 =

(
Z2×2×2;1 Z2×2×2;2

Z2×2×2;3 Z2×2×2;4

)
,

Z2×2×2;l =




(
Y(rez)

2×2×2;1;l

)
4×4

(
Y(rez)

2×2×2;2;l

)
4×4(

Y(rez)

2×2×2;3;l

)
4×4

(
Y(rez)

2×2×2;4;l

)
4×4




2×2

, 1 ≤ l ≤ 4,

Z̄2 =

,

and Z̄n =

8



(2) As the ideal of (1) above, we consider the colors of the x-direction of those matri-
ces, X2×2×2;1, X2×2×2;2, X2×2×2;3 and X2×2×2;4 with ignoring y- and z- directions, then

we can represent this scenario as X2. Moreover, we define Xn = X2⊗X2 ⊗ ...⊗X2

and discover that Xn is a matrix which control the colors of the front and rear faces
by the columns and rows respectively, where

X2×2×2 =

(
X2×2×2;1 X2×2×2;2

X2×2×2;3 X2×2×2;4

)
;

X2×2×2;l =




(
Y(rez)

2×2×2;1;l

)
4×4

(
Y(rez)

2×2×2;2;l

)
4×4(

Y(rez)

2×2×2;3;l

)
4×4

(
Y(rez)

2×2×2;4;l

)
4×4




2×2

, 1 ≤ l ≤ 4

X2 =

,

and X2;n =

9



Example 2.2. As n = 3

(1) We focus on the colors of z-direction, and the order be presented as Z2:

Z2 =

Now, consider

Z3 =

Here Z3 is a self-multiply matrix.

10



(2) We focus on the colors of x-direction, and the order be presented as X2:

X2 =

Now, consider

X3 =

Here X3 is a matrix which controls the the colors of front and rear faces
by columns and rows respectively.
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Now, we talk about the details of those steps. First, the recursive
formula can be developed by using the properties of Y2×2×2 as the following:

Y2×3×2 =




Y2×2×2;1 ⊗ Y2×2×2;1

+Y2×2×2;2 ⊗ Y2×2×2;3

Y2×2×2;1 ⊗ Y2×2×2;2

+Y2×2×2;2 ⊗ Y2×2×2;4

Y2×2×2;3 ⊗ Y2×2×2;1

+Y2×2×2;4 ⊗ Y2×2×2;3

Y2×2×2;3 ⊗ Y2×2×2;2

+Y2×2×2;4 ⊗ Y2×2×2;4




2×2

=

(
Y2×3×2;1 Y2×3×2;2

Y2×3×2;3 Y2×3×2;4

)

2×2

,

where Y2×3×2;l is 42 × 42 matrix, 1 ≤ l ≤ 4.

Y2×n×2 =




Y2×2×2;1 ⊗ Y2×n−1×2;1

+Y2×2×2;2 ⊗ Y2×n−1×2;3

Y2×2×2;1 ⊗ Y2×n−1×2;2

+Y2×2×2;2 ⊗ Y2×n−1×2;4

Y2×2×2;3 ⊗ Y2×n−1×2;1

+Y2×2×2;4 ⊗ Y2×n−1×2;3

Y2×2×2;3 ⊗ Y2×n−1×2;2

+Y2×2×2;4 ⊗ Y2×n−1×2;4




2×2

=

(
Y2×n×2;1 Y2×n×2;2

Y2×n×2;3 Y2×n×2;4

)

2×2

,

where Y2×n×2;l is a 4n−1 × 4n−1 matrix , 1 ≤ l ≤ 4.

(2.5)

Secondly, we denote X2×n×2 =
4

Σ
iy=1

Y2×n×2;iy and find that the order of the

colors of each layers which be controlled by X2×n×2 as iz1
→ ix1

→ iz2
→

ix2
→ ... → izn−2

→ ixn−2
→ izn−1

→ ixn−1
, for n ≥ 3, so need to rearrange the

order as iz1
→ iz2

→ · · · → izn−2
→ ix1

→ ix2
→ · · · → ixn−2

→ izn−1
→ ixn−1

.
For fixing any z and it’s the fact that change the view of x- into y-direction
by property 1 ,where the method of the detail will be presented by items
below:

12



• (1.) Rearrange iz1

(X
(riz2

)

2×n×2
)iz1
= (X2×n×2)ix1

; iz1

• (2.) Rearrange iz2
, for iz1

(X
(riz2

)

2×n×2
)iz1;iz2

= (X2×n×2)iz1
;ix1

;iz2

• (3.) Rearrange iz3
, for iz1

, iz2

(X
(riz2 ;iz3

)

2×n×2
)iz1

;iz2
;iz3
= (X

(riz2
)

2×n×2
)iz1

;iz2
;ix1

;ix2
;iz3

...

• (n-1.) Rearrange izn−1
, for iz1

, iz2
, · · · , izn−2

(X
riz1 ;iz2 ;··· ;izn−1

2×n×2
)iz1

;iz2
;··· ;izn−1

= (X
(reiz2 ;iz3 ;··· ;izn−2

)

2×n×2 )iz1
;iz2

;··· ;izn−2
;ix1

;ix2
;··· ;ixn−1

;izn−1

here (X
(reiz2;iz3;...;iz n−2

)

2×n×2
)iz1

;iz2
;...;izn−2

is abbreviated as (Xr
2×n×2)z, for n ≥ 4.

For convenience, we need to define some forms of matrices as the orders

below, before entering the second step:

13



1. For any z, (Xr
2×n×2)z controls the orders i1, i2 by rows and columns

respectively, where i2 and i1 are the orders of the front and rear faces
respectively, 1 ≤ i1, i2 ≤ 2n−1.

[(Xr
2×n×2

)z]2n−1×2n−1 =




a1,1 a1,2 · · · a1,2n−1

a2,1 a2,2n−1

...
. . .

...

a2n−1 ,1 · · · a2n−1,2n−1




2n−1×2n−1

Now, the order becomes z1 → z2 → · · · zn−2 → zn−1 → i1 → i2 from the
previous discussion, but is not well enough to control the order, so we still
need to complete the following items as below before entering second step.

2. For any z and i1, we denote [(Xr
2,n)z;i1]

(ri2
).

[(Xr
2×n×2

)z;i1]
(ri2

)
=




ai1 ,1 · · · ai1 ,2
k2

...
. . .

...

ai1 ,(2
k1−1)(2k2 )+1 · · · ai1 ,2

k1+k2




2k1×2k2

,

where



k1 =
n−1

2
, k2 =

n−1
2

, n is odd.

k1 =
n
2
, k2 =

n−2
2

, n is even.

14



3. To assign the seats of i1 is the goal in this item.

[(Xr
2×n×2

)z]
(ri2

)
=




[(Xr
2×n×2

)z;1](ri2
)[(Xr

2×n×2
)z;2](ri2

) · · · [(Xr
2×n×2

)z;22k2 ](ri2
)

...
...

[
(Xr

2×n×2)z;(2k1−1)(2k2 )+1

](ri2
)
· · ·

[
(Xr

2×n×2)z;2k1+k2

](ri2
)




2k1×2k2

,

∀z ,where



k1 =
n−1

2
, k2 =

n−1
2

n is odd.

k1 =
n−2

2
, k2 =

n
2

n is even.

Here, we denote the process from (1) to (3) as (Xr
2;n)(ri2

) which controls the
color of each direction in each layer respectively, iz1

→ iz2
→ · · · → izn−2

→
izn−1
→ i1 → i2. For convenience again, we need to rearrange i1 and i2 as the

define as following:

•
[(Xr

2×n×2)(ri2
)](ri1

) is called rearrangement matrix of i1 of
(Xr

2×n×2)(ri2
), if ([(Xr

2×n×2)(ri2
)](ri1

))i1;z = [(Xr
2×n×2)(ri2

)]z;i1 ,
for 1 ≤ i1, izl

≤ 4, 1 ≤ l ≤ n − 2.

•
([(Xr

2×n×2
)(ri2

)](ri1
))(ri2

) is called rearrangement matrix of i2

of [(Xr
2×n×2)(ri2

)]r(i1)

if ([(Xr
2×n×2)(ri2

)](ri1
))

(ri2
)

i1 ;i2;z
= [(Xr

2×n×2)(ri2
)]

(rei1
)

i1 ;z;i2

for 1 ≤ i1, i2, izl
≤ 4, 1 ≤ l ≤ n − 2, n ≥ 3.

By doing step 2, we need to denote X(a)
2×n×2

= ([(Xr
2×n×2

)(ri2
)](ri1

))(ri2
) and

X(b)
2×n×2

=
2n−1

Σ
i2=1

X(a)

2×n×2;i1 ;i2
to develop the recursive formula of X(b)

m,n as following

(2.6), (2.7):

X(2)

m×n×2;i1 ;i2
= X(a)

2×n×2;i1 ;i2
⊗ X(b)

m−1×n×2;i2
(2.6)

X(b)

m×n×2;i1
=

2n−1

Σ
i2=1

X(2)

m×n×2;i1 ;i2
, for all m ≥ 3. (2.7)

15



Finally, denote Zm×n×2 =
2n−1

Σ
i1=1

X(b)

m×n×2;i1
which records the colors of the

z-direction as iz1
→ iz2

→ . . . → izn−1
and we know that Zm×n×2 is a self-

multiply matrix by property 1, therefore Zm×n×k = Zk−1
m×n×2

. Here, we give a
method to solve the problem of 3-d pattern generation.

3 Transition Matrices and Spatial Entropy

3.1 Transition Matrices

Based on the process of the ordering matrix, we have to define transition
matrix as the following :

1. Given an admissible set B ⊆ Σz3

2×2×2
.

2.Define {
ty;2×2×2;i = 1 , y2×2×2;i; j;k ∈ B
ty;2×2×2;i = 0 , y2×2×2;i; j;k < B

3. Define Tr
y2;iy ;iz;ix

= Ty2 ;iy;ix ;iz ,where 1 ≤ iy; ix; iz ≤ 4.

4. The recursive formula for y-direction is as following:

Tr
y;2×3×2

=




Ty;2×2×2;1 ⊗ Ty;2×2×2;1

+Ty;2×2×2;2 ⊗ Ty;2×2×2;3

Ty;2×2×2;1 ⊗ Ty;2×2×2;2

+Ty;2×2×2;2 ⊗ Ty;2×2×2;4

Ty;2×2×2;3 ⊗ Ty;2×2×2;1

+Ty;2×2×2;4 ⊗ Ty;2×2×2;3

Ty;2×2×2;3 ⊗ Ty;2×2×2;2

+Ty;2×2×2;4 ⊗ Ty;2×2×2;4




2×2

=

(
Ty;2×3×2;1 Ty;2×3×2;2

Ty;2×3×2;3 Ty;2×3×2;4

)

2×2

,

16



where Ty;2×3×2;l is 42 × 42matrix, 1 ≤ l ≤ 4.

Ty;2×n×2 =




Ty;2×2×2;1 ⊗ Ty;2×n−1×2;1

+Ty;2×2×2;2 ⊗ Ty;2×n−1×2;3

Ty;2×2×2;1 ⊗ Ty;2×n−1×2;2

+Ty;2×2×2;2 ⊗ Ty;2×n−1×2;4

Ty;2×2×2;3 ⊗ Ty;2×n−1×2;1

+Ty;2×2×2;4 ⊗ Ty;2×n−1×2;3

Ty;2×2×2;3 ⊗ Ty;2×n−1×2;2

+Ty;2×2×2;4 ⊗ Ty;2×n−1×2;4




2×2

=

(
Ty;2×n×2;1 Ty;2×n×2;2

Ty;2×n×2;3 Ty;2×n×2;4

)

2×2

,

where Yy;2×n×2;l is 4n−1 × 4n−1matrix, 1 ≤ l ≤ 4.

5. Rearrangement.

• (1.) Rearrange iz1

(T
(riz2

)

x;2×n×2
)iz1
= (Tx;2×n×2)ix1

; iz1

• (2.) Rearrange iz2
, for iz1

(T
(riz2

)

x;2×n×2
)iz1;iz2

= (Tx;2×n×2)iz1
;ix1

;iz2

• (3.) Rearrange iz3
, for iz1

, iz2

(T
(riz2 ;iz3

)

x;2×n×2
)iz1

;iz2
;iz3
= (T

(riz2
)

x;2×n×2
)iz1

;iz2
;ix1

;ix2
;iz3

...

• (n-1.) Rearrange izn−1
, for iz1

, iz2
, · · · , izn−2

(T
riz1 ;iz2 ;··· ;izn−1

x;2×n×2
)iz1

;iz2
;··· ;izn−1

= (T
(reiz2 ;iz3 ;··· ;izn−2

)

x;2×n×2
)iz1

;iz2
;··· ;izn−2

;ix1
;ix2

;··· ;ixn−1
;izn−1

Here (T
(riz2 ;iz3 ;...;izn−2

)

x;2×n×2
)iz1

;iz2
;...;izn−2

is abbreviated as (Tr
x;2×n×2)z.
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6. For convenience, we need to define some forms of matrices as the fol-
lowing:

(1)

[(Tr
x;2×n×2)z]2n−1×2n−1 =




t1,1 t1,2 · · · t1,2n−1

t2,1 t2,2n−1

...
. . .

...

t2n−1,1 · · · t2n−1 ,2n−1




2n−1×2n−1

∀z,here the colors of the front and rear faces are represent as i2 and i1 respectively,

where 1 ≤ i1, i2 ≤ 2n−1.

(2)

[(Tr
x;2×n×2)z;i1]

(ri2
)
=




ti1 ,1 · · · ti1,2
k2

...
. . .

...

ti
1,(2k1−1)(2k2 )+1

· · · ti1 ,2
k1+k2




2k1×2k2

,

∀z, i1 ,where



k1 =
n−1

2
, k2 =

n−1
2

and n is odd.

k1 =
n
2
, k2 =

n−2
2

and n is even.
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(3)

[(Tr
x;2×n×2

)z]
(ri2

)
=




[(Tr
x;2×n×2)z;1](ri2

) [(Tr
x;2×n×2)x;2×n×2](ri2

) · · · [(Tr
x;2×n×2)z;22k2 ](r)

...
. . .

...

[
(Tr

x;2×n×2)z;(2k1−1)(2k2 )+1

](ri2
)

· · ·
[
(Tr

x;2×n×2)z;2k1+k2

](ri2
)




2k1×2k2

,

∀z ,where



k1 =
n−1

2
, k2 =

n−1
2

and n is odd.

k1 =
n−2

2
, k2 =

n
2

and n is even.

7.Rearrange i1, and i2 as the define as following:

[(Tr
x;2×n×2

)(ri2
)](ri1

) is called rearrangement matrix of i1 of (Tr
2;n

)(ri2
),

if ([(Tr
x;2×n×2)(ri2

)](rei1
))i1 ;z = [(Tr

x;2×n×2)(ri2
)]z;i1 , for 1 ≤ i1, izl

≤ 4,1 ≤ l ≤ n − 2.

8. Rearrange i2 as the define as following:

([(Tr
x;2×n×2)(ri2

)](rei1
))(rei2

) is called rearrangement matrix of i2 of [(Tr
x;2×n×2)(ri2

)]re(i1)

if ([(Tr
x;2×n×2

)r](rei1 ))
(rei2

)

i1 ;i2;z
= [(Tr

x;2×n×2
)(ri2

)]
rei1

i1 ;z;i2

for 1 ≤ i1, i2, izl
≤ 4, 1 ≤ l ≤ n − 2, n ≥ 3.

9.

T(a)
x;2×n×2

= ([(Tr
2×n×2

)(ri2
)]re(i1))re(i2) and T(b)

x;2×n×2
=

2n−1

Σ
i2=1

T(a)

x;2,n;i1;i2

to develop the recursive formula of T(b)
x;m,n as following:

T(2)

x;m×n×2;i1;i2
= T(a)

x;2×n×2;i1 ;i2
⊗ T(b)

x;m−1×n×2;i2
and T(b)

x;m×n×2;i1
=

2n−1

Σ
i2=1

T(2)

x;m×n×2;i1 ;i2
,∀m ≥ 3.
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10.

Tz;m×n×2 =
2n−1

Σ
i1=1

T(b)

x;m×n×2;i1
which record the colors of the z-direction as

iz1
→ iz2

→ . . .→ izn−1
, by property 1. Tz;m×n×2 is self-multiply, therefore Tz;m×n×k = Tk−1

z;m×n×2.

Theorem 3.1. Let λTz;m×n×2
be the maximum eigenvalue of Tz;m×n×2, then

h(B) = lim
m,n→∞

logλTz;m×n×2

mn

Proof. By the same arguments as in [Chow et al., 1996a], the limit Eq.
(1) is well-defined and exists.
From

Tz;m×n×k(B) =
∑

(Tz;m×n×k)i, j

1≤i, j≤2(m−1)(n−1)

= |(Tk−1
z;m×n×2B)|

As in the one-dimensional case,

lim
m→∞

log |(Tk−1
z;m×n×2)|
m

= logλTz;m,n,k
,

as for example[Ban Lin,2005]. Hence,

h(B) = lim
m,n,k→∞

log |Tk−1
z;m×n×2

|
mnk

= lim
m,n→∞

1
mn

lim
k→∞

log |Tk−1
z;m×n×2

|
k

= lim
m,n→∞

logλTz;m×n×2

mn
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3.2 Computation of λTz;m×n×2 and entropy

Let

G =

[
1 1
1 0

]
, E =

[
1 1
1 1

]

Here, ρ(E) = 2, ρ(G) = g, where g = 1+
√

5
2

.

Let Tiy ;i = E⊗G and Tr
iy ;i
= G⊗E, then we will get the following formula:

1. Tr
y;2×n×2;iy

= 2(n−2)(G ⊗ E)(n−2) ⊗ (E ⊗ G).

2. Tr
x;2×n×2 =

4

Σ
iy=1

Ty;n;iy = 2n(G ⊗ E)(n−2) ⊗ (E ⊗ G).

3. Tr
x;2×n×2 = 2n(G)n−2 ⊗ (E)n−1 ⊗ G.

4. (Tr
x;2×n×2

)(ri2
)
= 2n[(G)n−2 ⊗ (E)n−1 ⊗G].

5.

[(Tr
x;2×n×2)(ri2

)](rei1
)
=



2n[(E)
n−1

2 ⊗ (G)n−2 ⊗ (E)
n−1

2 ⊗ (G)n−2] , n is odd.

2n[E
2

n−2
2 ×2

n
2
⊗ (G)n−2 ⊗ E

2
n
2 ×2

n−2
2
⊗ G] ,n is even.

6. ([(Tr
x;2×n×2

)(ri2
)](rei1

))(rei2
)
= 2n[(E)n−1 ⊗ (G)n−1], n ≥ 3.

7. (T(a)

x;2×n×2
)i1 ;i2 = 2n(G)n−1.

8. (T(b)

x;m×n×2
)i1 =

2n−1

Σ
i2=1

(T(a)

x;2×n×2
)i1 ;i2 = 2(m−1)(2n−1)(G)(m−1)(n−1).

9. Tz;m×n×2 =
2n−1

Σ
i1=1

(T(b)
x;m×n×2

)i1 = 2(m−1)n+m(n−1)(G)(m−1)(n−1).
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10. Tz;m×n×k = Tk−1
z;m×n×2 = 2(k−1)(m−1)n+m(n−1)G(m−1)(n−1)(k−1).

Now, we calculate the entropy ,

h(B) = lim
m,n→∞

1
mn

log(ρ(Tz;m×n×2))

= lim
m,n→∞

1
mn

log(ρ(2(2mn−n−m)G(m−1)(n−1)))

= lim
m,n→∞

1
mn

log(2(2mn−n−m)(1+
√

5
2

)(m−1)(n−1)))

= 2 log 2 + log g ≥ 0
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