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ABSTRACT

The work investigates spatial Entropy of 3-dimensional face coloring, but we
need to solve three-dimensional pattern generation problem with edge- coloring
by using the properties of ordering and self-multiply matrices to establish some
recursive formulas, first.

Now, given admissible set of local patterns then the transition matrix is defined
and the recursive formulas are presented. Finally the spatial entropy is obtained
by computing the maximum eigenvalues of a sequence of transition matrices.
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1 Introduction

Here, we consider the problem of 2 symbols, then will get the set of all
patterns X3, first, give any admissible set B C X3 and denote X3(B) be X3
which is restricted in B, secondly, denote I';x,x«(B) is the quality of ZS(B),
and finally, need to calculate spatial entropy of 3-dimensional face coloring,

log Tk (B
WB) = lim 10g Lixnxk(B)

1.1
m,n,k— o0 mnk ( )

clearly, how to calculate I'xuxk(B) is the first problem we encountered from
the equation (1.1). In order to solve the problem we face, we must study
the problem of 3-dimensional pattern generation of 2 symbols in section 2
and find a way to control the colors of different directions by the matrix,
Y.

Now, split section 2 into 3 steps as following:

Step1: find the recursive formula, Yo,,x», of y-direction by Y., forn >3

Step2: denote Xoxux2 = Yoxnxe and find the recursive formula , X,uxux2 by
Xownxa, forn >3

Step 3: denote Z,xnx2 = Yisnxe and we will get Z,unsk BY Ziscnxa
which is self-multiply.

In section 3, we defined Ty;gxzxg;,’y as the transition matrix of YzXzXz;,-y, for
1 <i, <4 and find that the main problem will be converted into finding
I'uxnx2(B) by Peronn Fubini’s theorem. Finally, using the result to calculus
the entropy of (1.1) where the details will be presented in theorem 1.



2 Three-Dimensional Pattern Generation
Problems

This section describes three-dimensional pattern generation problem. Here
m,n,k > 2 are fixed and indices for brevity. Let S be a set of p colors, and
Z x5k be a fixed finite rectangular sublattice of Z?, where Z° denotes the
integer lattice on R® and (m, 1, k) be a three-tuple of positive integer. Func-
tion U : Z° — S and Uk : Zmxnxk — S are called global patterns
and locally patterns respectively. The set of all patterns U is denoted by

I = S%, such thatY) is the set of all patterns with p different colors in
a three-dimensional lattice. For clarity, two symbols, S = {0, 1} are con-
sidered. Let x, y and z coordinate represent 1st-, 2st- and 3st-coordinates
respectively as in Fig.1. Six orderings [w] ordering are represented as the
following:

(2] : [1] > [2] > [3]

[yl [2] > [1] > [3]

21 : 3] > [1] > [2] o)
1 (11> [3] > [2] '
[y1: [21 > 3] > [1]

21 8] > 21> [1]

Figure 1. Three-dimension coordinate system.



On a fixed lattice Z,,xnx, an ordering [w] > [j] > [k] is obtained on
Zuxnxk, Which is any one of the above ordering on Z,,.,x. Therefore, the
six ordering of Z,,,, are presented as Fig.2, where ; = {0, 1}.

z
a, a a,
OZS a4 6
Olas a&ag. % o a |,
Lo | — ¥ Lo sy a "y
X X _
[x]—ordering [y]-ordering X [z]—ordering
7 z 7
2 e v
A g |% o) a, [% o, a, |%
S —=>Y 2> Y a& Y

[;c] Lo [;,] —ordering [z]—ordering

Figure 2.



2.1 Ordering Matrices

By using the six forms can get six different ordering matrices of Z.,, and
denote the order of matrices as equation (2.2)

6 .
in =1+ Xa2°", where a; € {0,1}. (2.2)

i=1

Here, we choose [z] as the order for convenience, and we can denote
the order of x, y and z-directions by i,,i, and 7, (2.3) respectively, where
1<iy i jand i, < 4.

= 1+ar+a; X2
l+as+a3%x2 (2.3)
1+ag+asXx2

-
N
Il

For convenience again, we have to define the matrix Y,,0x; (2.4) below
which present the relation between colors and each directions.

(OOB0 0000 )

OO0 U000
2000 90050
. .| ODO0 000D
=" gge0 9080
COo0C U000
0080 0080

\poe0 0000 )

Y.

2x2x2;1 Y2><2><2;2 :|

2x2x2;4

= Vaoaig by = [

<
<

2x2x2;3

(2.4)



It's not different to discover that the colors of each direct of Zyyoxo
be controlled in each layer of Y,.ox» respectively. It means that Yoy, is
divided into three layers by matrix partitioning as figure 3 and the colors
of y-, x-and z-direction are controlled in first, second and the third layer
respectively as figure 3 below.

s \ | R |
: ]
X X
ZZ g lz lz
l v -
lZ lz lz lz
X 1 "
1 = I, lz lz
\

Figure 3. relation between colors and layers.



The process of investigating the pattern generation problem should be
broken down in the following steps:

Step 1. find the recursive formula Youoxo = Yoxsxe = ... = Younxa,
that is extend on the y-direction.
Step 2. here replaces Xoxuxa With Youxo, it means that Xoy,xo is really
to extend the x-direction and we get the recursive formula like
Xoxnxa = Xaxnxz = .. = Xxaxz that is extend the x-direction by
Y2><n><2-
Step 3. here replaces Z,,xux2 With Xj,xux2, it means that X,x.x; is really
to extend the z — direction. By using the matrix to self-multiply,
we can genel‘ate Zm><n><2 - Zm><n><3 - ... Zm><n><k/
that is extend the z-direction by Xxxo.

STEP 1.



STEP 2.

X} = X4xn 5 = = Xm 2
STEP 3.
pd |
p— ://
g
menx2 — te — menxk



Proposition 2.1.
(1) If we only consider the colers of the z-direction of those matrices, Zyxox21,
Zosox2:2, Loxaxa:s ANd Zysoxo.a With i zgnormg x-and y- directions, we can represent

this scenario as Z,. Moreover, we denote Z, = Zo® Z» ® ... ® Z, and discover that
Z,, is self-multiply, where

7 _ Z2><2><2;1 Z2><2><2;2
2X2X2 — s
Z2><2><2;3 Z2><2><2;4

Y(rgz) Y(’ez)
Z2><2><2;l — ( 2%2x2;1;1 )4><4 ( 2%2x2;2;1 )4)(4 4 1< I < 4/
2%x2

( Y<2r>izz)><231 )4><4 ( Y(Zrizz)xﬂl )4><4

88

ol

{88,858, [00
PO @O jitft



(2) As the ideal of (1) above, we consider the colors of the x-direction of those matri-
ces, Xoxoxa:1, Xoxaxa:2, Xaxaxa:s Ad Xoxoxo.a With ignoring y-and z- directions, then

we can represent this scenario as X,. Moreover, we define X, =X0X®...0Xs
and discover that X, is a matrix which control the colors of the front and rear faces
by the columns and rows respectively, where

X _ X2><2><2;1 X2><2><2;2 .
2X2X2 — ’
X2><2><2;3 X2><2><2;4

(re;) (rez)

Xoson) = ( (2><2)><2;1;l )4><4 ( 2x2%2;2; )4><4 1<1<4

; re, re; A

( Y2><2><2,'3;l 4x4 ( 2X2X241 Jaxa |2x2
X, =
- N N r -
andXZ;n— 5 i i®‘ (i 7;“" ®...® P
’ 1 & l_ 7 (t p I
]
9. § - % i L



Example 2.2. Asn =3

(1) We focus on the colors of z-direction, and the order be presented as Z,:

0 1
_ 0 0
/o =
0 1
1 1
y,
Now, consider
00| 011011
| 00| 00/ 00|00
1 0 1 00| 01]10(11
— 0 0 0 0 01| 01/01|01
Z3— ® =
0 1 0 1 00| 011011
1 1 1 1 10/10/10[10
\\
00| 011011
11|11{11f11 )
=y /

Here Z; is a self-multiply matrix.

10



(2) We focus on the colors of x-direction, and the order be presented as Xj:

0 0

_ 0 1

X, =
1 1
0 1
Now, consider

\
00 oloo| 0o
00 111011
0 0 0 1 01 1/01|01
o 0 1 0 0 00 1l10{11

X3 = @ -
1 1 0 1 10[10[1 1
0 1 1 1 o0lo1l|1 11
1111|1111
oojo1/lol11)

Here X, is a matrix which controls the the colors of front and rear faces
by columns and rows respectively.

11



Now, we talk about the details of those steps. First, the recursive
formula can be developed by using the properties of Y,,,x» as the following:

Yoxox21 ® Yoxoxza Yoxox21 ® Yoxoxon
+Yox0x02 ® Yoxoxos +Yoxox2:2 ® Yoxoxoa

Y2><3><2 =

You2x2:3 ® Yoxoxo1 Y2u2x2:3 ® Yoxoxo2
+Y20004 ® Yooz Y2004 ® Yoxouou ),y

Y2><3><2;1 Y2><3><2;2
7
Y2><3><2;3 Y2><3><2;4 %2

where Yauaxo; is 42 X 4% matrix, 1 <1< 4.

Yoxox2:1 ® Yoxn-1x2;1 Yoxox2:1 ® Yoxn—1x22
+You0x22 ® Yoxn-1x2:3 +You0x22 ® Youn-1x2:4

Y2><n><2 =

Yox2x23 ® Yoxn-1x2;1 Y2x0x23 ® Yoxn-1x22
Y2004 ® Yoxn-1x03  +Y20004 ® Yoxu-104  )pyy  (2.5)

Y2><n><2;1 Y2><n><2,~2
Y b/ . 4
2xXnx2;3 2xnx2;4 2%2

where Yoy,xos isa 477! x 4" matrix,1<1<4.

4
Secondly, we denote Xpy;x2 = _21Y2><n><2;iy and find that the order of the
Zy:

colors of each layers which be controlled by Xouuxo as i;, = 1y, — 1, =
lyy = oo = Iy, = Iy, — I, — Iy, for n > 3, so need to rearrange the
order as i, — iy, = +r Dy, D Iy iy — DIy, > I = iy .
For fixing any z and it’s the fact that change the view of x- into y-direction
by property 1 ,where the method of the detail will be presented by items
below:

12



e (1.) Rearrange i,,

(riz,) )
(XZ;;XZ)izl = (sznxz)ixl}lzl

e (2.) Rearrange i,,, for iy,

(riz,)
2><n><2)iz1 izy (XZX”XZ)iﬁ ;iX1 ?izz

e (3.) Rearrange i.,, fori,,i,,

(Tiy, siza ) (rizy)
(X e )izl?izz?i23 = (X i 1

2XNX2 2XNX2 121; ~z;lx1;lx2;123

e (n-1.) Rearrange i, ,, for i, i,,, -+ iz, ,

(X Iz Azy 7z ) i .
2Xnx2 Lzy lzy i bz g

“n

iz 5izn 3 5z )
— (X(re N3 n-2 )i

2XNnX2 Z1 ;izz?"' ;izn—Z ;ixl ?ixz"“' ’.ixn—l ;izll—l

(reizz;izgs?»»»?iznfz) . . 7
here (X, "> )ic,jiyso.iiz, , 16 abbreviated as (X5, )., for n > 4.

For convenience, we need to define some forms of matrices as the orders

below, before entering the second step:

13



1. For any z, (X, ,). controls the orders i},i, by rows and columns
respectively, where i, and i; are the orders of the front and rear faces
respectively, 1 < iy, i, < 2"

a1 ayp - allzm
a2,1 azlzn—l
T —
[(XZanz)z]Z'l-lxzn-l -
a2n—1,1 - B a2n—1,2n—1

n—=1yon-1
2n=1x2

Now, the order becomes z; — 2z, — ---2,.0 — z,.1 — i; — I from the
previous discussion, but is not well enough to control the order, so we still
need to complete the following items as below before entering second step.

2. For any z and i1, we denote [(X} )., 1",

i 1 e A, 2k
[(Xr )z ](”z) = : .. .
2xnx2/%1 . . X ’

Aj) @2k -1)2k2)+1 j-t A, pkvka )oky oty

=%k =21, nisodd.
where
,k, =52 niseven.

14



3. To assign the seats of i; is the goal in this item.
[( ZXan)Z](riz) =

[(ngnxz)zﬂ](riz)[(ngnxz)z;Z](riz) T [(ngnxz)z;zzkz](riz)

(riy)

(712)
[(Xﬁwz)z,-(zkl—1)(2k2>+1] [(ngnxz)zﬂ"l *kZ] 212k

ki =54k =51 nisodd.
Yz ,where

ki = %,kQ — n is even.

SR

Here, we denote the process from (1) to (3) as (Xj,,)"%) which controls the
color of each direction in each layer respectively, i,, — i,, = -+ = i, , =
i, , — Iy — Ip. For convenience again, we need to rearrange i; and i, as the
define as following;:

[ ]
[( 2W2)(”2)](r"1) is called rearrangement matrix of i; of
( anz)‘rlz).l lf ([( XHXZ) rlZ) (rll))ll 7 er”xz)(riz)]z}ill
forl<iyi, <4,1<I<n-2.

[ ]

([(XZan )i2)]0i))0) is called rearrangement matrix of i
of G0 0T

. , )1 )y i) (reiy)
if ([(X12><11><2)(r2)](r1))11 32 G [( ><n><2)(1 )]11 zlzz
fOI’lSil,lQ,lZl_41<l<i’l 21’l>3

By doing step 2, we need to denote X )]0y ) and

2Xnx2 ([( 2X1nX2

ngnxz = Z ngnle ,;, to develop the recursive formula of Xﬁ,i’)n as following
2.6), (2.7).
@) ) (b)
XanXZ;il;iz - X2><n><2;z'1;i2 ® Xm—anXZ;i2 (2.6)
) )
XmX"XZ i lemxnxb i’ forall m > 3. (2.7)

15



Zn—l
Finally, denote Z,xux> = 'ZlX(b) which records the colors of the
n=

MXNnX2;ip
z-direction as i,, — i, = ... = i,,_, and we know that Z,,.,x> is a self-
) . _ k-1 ;
multiply matrix by property 1, therefore Z,xx = Z, . ... Here, we give a

method to solve the problem of 3-d pattern generation.

3 Transition Matrices and Spatial Entropy

3.1 Transition Matrices

Based on the process of the ordering matrix, we have to define transition
matrix as the following :

1. Given an admissible set B C ¥

2X2X2°
2.Define
tyoxoxzi =1, Yosoxzsisjk € B
tyosaxai = 0, Yasoxosisjk & B
3. Define ng;z}/;iz;ix = Ty,iigigiwhere 1 < ;i i, < 4.

4. The recursive formula for y-direction is as following:

Y;2X2X2; 2X2X2; Y;2X2%2; 1;2X2%2;
T'y2x2x2;1 @ Tyoxox2,1 T'y2x2x2;1 ® Tyaxoxo2
+Tyox0x02 ® Typsaxaz T ypxax02 @ Tyoxoxou

T o =

Y;2X3%2

Tyaxox23 ® Tyoxoxa Tyaxox23 ® Tyoxoxa
+Tyoxax0a ® Tyoxoxas T yaxaxan ® Tyoxaxon ),y

Ty;2><3><2;1 Ty;2><3><2;2)
Ty;2><3><2;3 Ty;2><3><2;4 %2

16



where Tyy3x0y is 4% X 42matrix,1 <1< 4.

Ty2x2x2;1 @ Tyoxn-1x2;1 Ty2xax2;1 ® Tyoxn-1x2;2
+Tax0x02 @ Typsn-1x23  +Tyxox22 ® Tyoxn-1x214
T,. =

Y;2XnX2

Tyaxox23 ® Tyoxn-1x2:1 Tyaxox23 ® Tyoxn-1x22
+T x4 @ Typxn-1x03 T yaxox2a ® Tyon-1x24 )y

Ty;2><n><2;1 Ty;2><n><2;2
7
Ty,'2><n><2;3 Ty,'2><n><2;4 %2

where Yoy is 4" X 4" \matrix, 1 <1 < 4.

5. Rearrangement.

e (1.) Rearrange i,,

("'z ) ‘
(Tx;l2>2<n)<2)izl J (T ;ZXnXZ)iX]; lzl

e (2.) Rearrange i,, for i,

(T(rizz)

x;ZXHXZ)izl;izz = (TX;ZX”XZ)iZ1 il itz

e (3.) Rearrange i.,, fori,, i,

(Fisy sizy ) (riz,)
(T s zl}izz}i23 = (T <

x;2xnx2/1 x;2><n><2)lz1 iz ilxq lxy slzy

e (n-1.) Rearrange i,, ,, for iy, iz, " , iz, ,

( rizl dzy iz, _q ) ) )
X;2XnX2 Iz ilzg s iz, g

_ (T(reizz sizg

“iz, o ))
X;2X1nX2 lzq itz 5 iz o slxq slxg 5 Sy, _q 12, 4

(Vi sizg iz ) . .
Here (T izg jizg jmilz -2 )izl gtz is abbreviated as (T;;

X;2XNnX2 ,'2><n><2)z :

17



6. For convenience, we need to define some forms of matrices as the fol-
lowing:

1)
tih tip e £y on-1
tz/] t2,2”_1
» _ .
[(Tx,-Zanz)z]Z"-lxzn-l -
t2n—1,1 cte tzn—llzn—l on—1yon-1

¥z, here the colors of the front and rear faces are represent as i, and i; respectively,

where 1 < iy,i, < 2",

()

ti1 e ti ok

[(T;;ZX;’lxz)Z?il ](h‘z) = i - ’

i b ok +k
1
1,8 —1)2k2)41 2072 Joky s oky

ki =54k =%l andnis odd.
Vz,i, ,where
ki =%k =%% andniseven



3)
[(T7,

2><n><2)Z](ri2) =

[(T;;ZXnXZ)Z?l ](riz) [(T;rc,-2><n><2)x;2><n><2](ri2)

(riz)
[(T;;anxz)z;(Zkl—1)(2k2)+1]

[(T;

(riz)
[(Tr 2xnx2)z24 *kZ]

ki = %=,k =5 andnis odd.

Yz ,where

7.Rearrange i;, and i, as the define as following;:

(T}

2xnx2)

and n is even.

x;2><n><2)z;22k2 ](r)

(2)]¢) s called rearrangement matrix of i; of (e ),

lf ([(Tr 2><yl><2)(r12) rgll)) Z = (Tr 2><n><2)(r )]Z l]l for 1 < lll ZZ/ < 4 1 < l < n— 2'

8. Rearrange i, as the define as following:

(I( ;2X”X2)("2 ]ea))(e) is called rearrangement matrix of i, of [(T”

)17

r rei, \\ (7€) Tr
lf ([(T 2><n><2) ]( ))zlelzzz [( x2><n><2) ]zl;z;iz
for1<iy, iy i, <4,1<I<n-2,n>3.

9.

_ ([( 2xnx2)(ri2)]re(il))re(iz) and T(b) _ Z T(a)

X2Xnx2 =1 % 2,1;11;ip

T(ﬂ)

X;2XnX2

to develop the recursive formula of chh,)m as following:

n—l

™ 7@ e T® and T = z T

X;MXNX2;0q;ip X;2XnX2;1q ;ip x;m—1Xnx2;ip X;MXNX2;1

19

2

X;2XnX

,VYm > 3.

-1 % MXNX2;iy ;i

2k1 % 2k2

)(712)]73(1‘1)



10.

on= 1
T mxnxa = Z_', T;b;xnle which record the colors of the z-direction as
Iy — 1 = ... 1, , by property 1. Ty xnx2 is self-multiply, therefore T..,xuxx =

Theorem 3.1. Let At

Z;MXNX2

be the maximum eigenvalue of T .uxnx2, then

log At
I’l(B) — lim g Tz,mxnx
mn—co N

Proof. By the same arguments as in [Chow et al., 1996a], the limit Eq.
(1) is well-defined and exists.
From
zZ; m><n><k(B) Z(Tz mxnxk)l = |(T]Z< mlxnxz

1<i ]<2(m 1)(n-1)
As in the one-dimensional case,

log [(T%,.:

. ><n><2)|
ling — e ., .

m—00

as for example[Ban Lin,2005]. Hence,

].im log ‘Tz m><n><21

m,n,k— oo

h(B)

mnk
10g |Tz m><n><2|

= lim -Llim—

m,n—00 LY NS

log At

Z;MXNX2
mn

= lim

m,n— oo

20
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Z;mXnX2"



3.2 Computation of Ar,,,xux2 and entropy

o 13] e-[1 ]

Here, p(E) = 2, p(G) = g, where g = 1+2‘/§.

Let

LetT;, = EQGand T{y_l. = GQ®E, then we will get the following formula:

LT, usai, = 2" (GO E)" @ (E®G).

2. Thpr = iélTW;iy =2"(G®E)"?®(E®QG).
3. Tl = 2"(G)' 2 ® (E)" ' ®G.

4. (T, )™ = 2"[(G)" 2 ® (E)" ! ® G].

n-1 n-1

P(E)2 ® (G2 ® (E)T ®(G)"?] ,mis odd.

() @1 =
2ME w2 4 ®(G)"?®E 4 > ®G] ,niseven.
272 X22 22x2 2

6. ([T, ) 1)) = (B & (GY'], 2 3,

7 (T )i = 21(G)" .
®) 27 @
a — — — —
8. (TV) )i = izél(Tx;ZX”XZ iy = 207D (@)D=,
zn—l b
9 T = z-El(ch;anxz)il e A (€

21



10. TZ;anxk — Tk—l — 2(k—1)(m—1)n+m(n—1)G(m—l)(n—l)(k—l).

Z;MXNX2

Now, we calculate the entropy,

hB) = lim -L1og(o(Tmxnx2))

-

= lim olog(p(@mGinheh))
= i mn—n—m) ¢ 1+ VB \ (m—1)(n—
= Jlim ﬁlog(z(z )(+T)( D(n-Dy)

m,n— o0

= 2log2+logg=>0

22
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