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Abstract

In this thesis, we apply coupled logistic mapsto cryptography in Wireless Secure Com-
munication, and give some analyses in'numerical simulations to compare with the ex-
periments. In numerical simulations, we choose suitable parameters which have chaotic
behavior in the coupled logistc mapy.and then-apply it to Wireless Secure Communica-
tions. Wireless Secure Communication was realized in the experiment. In this thesis,
we simulate numerically to fit the results of the experiments, and propose an efficient

function for Wireless Secure Communication.

Keywords: Coupled logistic map, Wireless Secure Communication, asymptotical synchro-

nization.
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1 Introduction

Information security is a very important topic today. Personal information or company’s
documents or national security, we protect our secret hard. Mathematicians propose the
cryptography to secure those information. However, past cryptographic algorithm was con-
structed by algebra or number theory. But recently, some scientists construct a new type
cryptographic algorithm. It is different with past algorithm. The new type cryptographic al-
gorithm is built by dynamical system. There is a very special behavior in dynamical systems,
chaos. What is chaos? Chaos is in everywhere. Shape of smoke, shape of cream in a coffee
cup, erratic weather patterns, population of fish etc. Exactly, chaos is not only in the life, but
also in the mathematics. Mathematicians try to describe it and define it exactly[8, 20], and
study its behavior and find the characteristic movement. We apply its special behavior to
secure the communication system. Chaotic behavior exists in some orbits of dynamical sys-
tems, we call it chaotic orbit. A chaotic orbit is generated by a non-linear system is irregular,
aperiodic, unpredictable, and sensitive dependence on initial conditions. These characteris-
tics coincide with properties of the eryptography [2]. In recent years, chaos was been applied
widely to secure systems. In particular, 1-dimensional chaos has been thoroughly researched.
For example, logistic map, is used to generate a chaotic-masking sequence, which is applied

to the secure system [7, 15, 25,26, 27, 31, 38]. The logistic map L is defined by
20 — L( x(i—l)) = ,Yx(i—l)(l . x(i—l))’

i =1,2,..., where the initial value z(*) € [0, 1] and the parameter v € (0,4]. In recent years, so
many scientists construct a new crpto-system by dynamical system. Generally, we can divide
it into three kinds. First, scientists construct a crpto-system by electric circuit[15, 38]. Second,
some scientists construct a suitable crpto-system algorithm for dynamical systems[9, 10, 25].
Last, other scientists construct a crypto-system model by dynamical systems, and take a
simulation to analyse it[3, 23|. However, there are still some problems in the crypto-system
which is constructed by dynamical system. For example, the chaos is defined in the infinite
uncountable set, but the operation of cryptography is in the finite set. Chaotic behavior

maybe be weak with the finite precision. The problem will be discussed on the later section.



2 Stream Cipher

2.1 Stream Cipher

Vernam cipher (One-Time-Pad), is the predecessor of stream cipher. In 1917, Gilbert Vernam
constructed the system to communicate for applying in automatic encryption and decryption
of the telegraph messages. The One-Time-Pad was thought for many years to be an “un-
breakable” crypto-system, but there was no proof until Shannon appeared. In 1949, Claude
Shannon presented the “Communication Theory of Secrecy Theorems”. The paper greatly has
affected the development of the secure communication. Shannon applyed probability to build
the concept of the secure system. And according to the One-Time-Pad, Shannon propose a

more general algorithm, stream cipher.

In our work, we propose a crypto-system by stream cipher. Stream cipher converts plain-
text to ciphertext 1 bit at a time. In stream cipher algorithm, there is a keystream which is
generated by keystream generator. The keystream generator generates a series of keystream
through the key. We can regard the keystream as the encrypting sequence. We mix keystream
and plaintexts to produce ciphertexts by XOR: operator(exclusive or). Hence, this crypto-

system is suitable in hardware. . Hereds the definition of stream cipher.

Definition 2.1. (Stream Cipher)[34] . A stream eipher is a tuple (P,C.K,L,F,E, D),

where the following conditions are satisfied:
1. P is a finite set of the possible plaintexts.
2. C is a finite set of the possible ciphertexts.
3. K, the key space, is finite set of possible keys.
4. L is a finite set called the keysteam alphabet.

5. F=(f1, fa,...) is the keystream generator. Fori > 1,

f,'ZICX,Pi_l—>£.

6. For each z € L, there is an encryption rule e, € £ and a corresponding decryption Tule
d, €D. e, : P —Candd, :C — P are functions such that d,(e.(z)) = x for every

plaintext x € P.



Remark 2.2.

1. Following previous definition, we can figure out that the cryptography is operated on a

finite set.

2. In cryptography, a stream cipher is synchronous if the key stream is independent of the

plaintext string, that is, the key stream is generator as a function only of the key.

Example 2.3. Suppose m = 4 and the key stream is generated using the rule,
Zivm = 2Zi + Zit1 mod 2 (1)
If start with (1,0,0,0), the keystream is
L=100010,0,1,1,0,1,0,1,1,1,...

and we mix it with plaintexts to produce ciphertexts. In this example, the key is m, keystream

is L, keystream generator is (1).

2.2 Chaotic Stream Cipher

If a keystream of a stream cipher system- is generated by chaotic system, we call the crypto-
system is chaotic stream cipher system. -Mathematicians take an innovation in chaotic stream
cipher system by the dynamical system:.In-1989; Robert Matthews first applied the non-
linear function logistic map to cryptography|8|, he proposed a generalised logistic map and
replaced the keystream generator by the chaotic map to generator keystream, and given a
simple digital cryptographic example. In the 1990s, Chua etc.[15] study the chaotic system
by the experiment, and they created the Chua’ circuit. They replaced the keystream with a
chaotic analog string which was generated by Chua’ circuit. However, if we desire to perform
the chaotic string in the hardware widely, we have to modify the chaotic system to digitize.
In 1993, Douglas R. Frey popularized Matthews’s idea, he digitized the chaotic system and
built a more general crypto-algorithm “approach to secure communication”[10]. They con-
struct algorithms of chaotic stream cipher by the familiar chaotic systems or modified familiar
chaotic systems. All of them are very difference with the past stream cipher in cryptography.
No matter what, the purpose of keystream is that ciphertext looks like random string. But
sometimes, chaotic system can not reveal chaotic behavior on computers. Because the preci-
sion of the computer alphabet is finite, some chaotic system will be led into a short output

cycle length. To solve this problem, we will discuss some methods to solve that in Section 3.



Example 2.4. (Robert Matthews 1989) A general logistic map is defined by

let X = 8.198790355, a = 1, B = 2.53, and the initial value xo = 0.45, we have x| =
0.81298077, xo = 0.095875139, z3 = 0.609135158, x4 = 0.463757308. We take the last of
representation of value, and module it by 25. We get a keystream 2,14,8,8,23. CHAOS will
be EVIWQ.

3 Chaotic transmission

3.1 Chaos

Chaos is a complex behavior of dynamical systems. It appears to be random, yet it is determin-
istic. It is predictable over a short time, but it is not over a long time. Mathematicians identify
chaos behavior though the mathematie definition exactly. In 1963, Lorenz tried to model the
unpredictable behavior of the weather[22|, Lorenz attractor. In Lorenz attractor, we can see a
embryo of the chaotic behavior in the dynamical system. In 1979, Guckenheimer and Williams
proposed a geometric model to-describe the Lorenz attractor[12]. But mathematicians proved
that the Lorenz attractor exists until 1999 by Tucker[36]. However, the exactly mathematical
definition of chaos appeared from 4975. In 1975, chaes; the word appeared in the paper of Li
and Yorke[20](Definition 3.1). They describe the chaotic behavior through the mathematic
analysis. In 1989, Devaney propose another definition of the chaos[8](Definition3.2). In 1994,
Robinson modifies the Devaney definition, and giving a reason in his book[29]. In our work,
we theorize about the chaotic behavior of dynamical systems through computing Lyapunov
exponents. Based on a coupled map lattice [4, 5, 6, 14, 17, 19, 21, 23], a coupled logistic
map will be constructed in our model. This coupled logistic map possesses hyperchaos under
choosing suitable parameters. We apply the coupled logistic map in a masking sequence to

secure communications.

Definition 3.1. (Li and Yorke sense 1975)[1] A system is chaotic if it contains infintely

many periodic orbits whose periods are arbitrarily large.
Definition 3.2. (Devaney 1989)[1] A map f on an invariant set J is chaotic if
1. f|J is topologically transitive.

2. f has sensitive dependence of initial conditions on J.



3. periodic points are dense in J.

Remark 3.3. Robinson [1, 29] identified the definition (1) (2) which is defined by Devaney,
but he deleted (3). He given some suggestions about his argument in his book[29].

3.2 Lyapunov exponent

The definition of Lyapunov exponents (2) can be traced back to the dissertation of Lyaponov
in 1892 [24]. Lyapunov exponents measure the exponential rate at which nearby orbits are
moving apart [29]. According to Birkhof Ergodic Theorem (Theorem 3.12), it shows that
Lyapunov exponents is constant almost everywhere. And by the Multiplicative Ergodic The-
orem (Theorem 3.13), there are at most n-different Lyapunov exponents for an n-dimensional
dynamical system. A dynamical system is chaotic, if it has at least one positive Lyapunov
exponent and invariant on a bounded region [32]. Moreover, if there are equal to or more

than two positive Lyapunov exponents, the system is called hyperchaos [30].

Definition 3.4. (Lyapunov exponent one-dimension)[29] Let f : R — R be a C' function.

For each point o, define the Lyapunov-exponent of xo, Mzo), as follows:

() < o sup (| (/Y (o)) )

n—o0

n—o0

n—1
' 1
= limsup = log(| f'(;)]),
n =
where x; = f7(xo).

From the previous definition, we can infer it simply. log |(f™) (xo)| &= n\(xq) or [(f™) (x0)| =

em\(#0) = [(x0)", where L(zo) = *(®0). By the fundamental calculus theorem,

/" (w0 +0) = " (o) | ~ |(f")'(wo)| = [6] L(0)"- (3)

If AM(zo) < 0, the equation (3) will converge to 0. Similarly, if A(zg) > 0, the equation (3)
will diverge. We can image that the orbit will diverge in a bounded region. The orbit is
restricted in the bounded region, but the orbit still grow up. The orbit will be very sensitive
dependence on initial conditions. Hence, when Lyapunov exponent is negative, nearby orbits

converge; and when it is positive, nearby orbit diverge. And it conform to the Devaney’s

(Definition 3.2).



Example 3.5. (tent map) Let

2x for 0<x<0.5,

2(1—xz) for 05<z<1

T(x)=

If xy is such that x; = T(xg) = 0 for some j, then the X(xq) does not exist. Since the tent map
is not smooth at x = 0.5. For other xo € [0,1], |f'(x;)| = 2 for all j, so by (Definition 3.4),

the Lyapunov exponent is log(2).

Definition 3.6. (Lyapunov exponent high-dimension) [29] Let Let f : Ml — M be a diffeo-
morphism on a manifold of dimension m. Let||-|| be the norm on the tangent vectors induced

by a Riemannian metric (inner product on tangent vectors) on M. For each x € M and

v e T,M, let
1 k
Az, v) = lim —log(||Df;v]]) (4)
—00
whenever this limit exists.
We consider that || D f*v|| in.(4):

IDf3ol® = (Dfz0)"D fiw
= o {(Dfz) DSz v.

The matrix [(Df*)TD f*] is symmetric and positive definite. Therefore, [(Df*)7D f*]*/2 mea-
sures how much lengths are changed by Df* and [(Df*)TDf*]'/%* measure the average
amount vectors are stretched, the limit

lim [(Df5)TDfEI = A,

k—o00

exits[29]. The logarithm of the eigenvalues of A, are the Lyapunov exponents. The eigenvalues
of A, is the singular values of D f*. Hence, we also can compute the Lyapunov exponents in

high dimension by singular value decomposition.

Definition 3.7. [33] Let A be an m X n matriz of rank r with positive singular values
o1 > 09>+ > 0. A factorization A = UXV™ where U and V' are unitary matrices and X

is the m X n matriz defined by

o, ifi=7<r,
5 = fi=3
0 ortherwise.

is called a singular value decomposition of A.



Definition 3.8. (Lyapunov exponent high-dimension (Ruelle))29]  Let Jp .z, = D f™(x) =
Df™(2)|p=ze- N is an unit ball. r! = the length of the i-th orthogonal azes of the ellipsoid
JoN for an orbit with initial point xo. The i-th Lyapunov exponent of f with initial point x

18
n
Inr;

lim sup
n—00 n

where ' 1 the singular value of J,,.

Example 3.9. (Lyapunov exponents of Coupled logistic map)

4 4 1—¢ c1 T2y (1 —x
i+1 i+1 1 1
(2" 2§t = (5)

and

1—01 T1 1—21’1 C1T9 1—2.1'2
DF(xy,25) = ( il ) ( ) ; (6)
C2T1<1 — 2%1) (1 — CQ)TQ(l — 21’2)

given a vector u® € [0,1] x [0,1]. andwe have that

DEy=DFy (- DFg, (7)

L1

where x; = FI(x)

Set

62D = DF, u®,

u(i+1) — 5$(i+1)/”5£€i+1‘|,

by the equation (7), we have

DF¥uY = DF,, -+ DF,u!”
= DF,,_, -+ DF,0zW
= DFy, -+ DFy, (ulV]|52V]))

_ ||5$(kr)|| . ||5x(1)||u(k)’

and by the definition of Lyapunov exponent (Definition 3.6), we have



o1
A(w,u) = lim - log(||Dful)
1
= lim —log||6z®]| - [|6zM |Ju®)
k—oo k

1 .
— lim =1 (k) (@)
Jim - log ||u HZ‘_|1|.kH5$ I

1 .
= lim =|lu® ()
Tim = [u®) 3 log 529,

i=1:k

and the result in the figure (1). The algorithm is from reference [28].

4 — 1
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Figure 1: Lyapunov exponent. The horizontal axis represents the parameter ~; in the coupled
logistic map. The vertical axis represents the parameter 7, in the coupled logistic map. Each
site represents the rate of chaotic behavior in the coupled logistic map, i.e. the figure represents

the key space of the crypto-system.
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Figure 2: Lyapunov exponent. It is the part of Figure 1. We observe that there is a high

density region of the chaotic behavior.

Definition 3.10. (Measure preserving transformation) [29] A measure p is a invariant for
a map [ : X — X provided u(f=5(A)) = u(A) for-all measurable sets A. If u is an invariant

measure for f, f is also said to be a measure-preserving transformation for pu.

Definition 3.11. (Ergordic with respect to an invariant measure) [29] A map f: X — X is
called ergordic with respect to invariant measure p provided p(X\A) = 0 for any measurable

invariant set A for fwith pu(A) > 0.

Theorem 3.12. (Birkhof Ergodic Theorem) [29] Assume f : X — X is measure preserving

transformation for the measure p. Assume g : X — R is a p-integrable function. Then,

1. limn_m(%) Z] "0 90 fi(x) converges i — almost everywhere to an intergrable function

*

qg*.
2. g* is [ invariant wherever it is defined, i.e., g* o f(x) = g*(z) for p-almost all z.

8. if W(X) < oo, then [y g*(x) = [y g( ),and if p is an ergodic measure for f,

then g* is a constant u—almost everywhere.

[ fdm

) It means that time

In addition, if f is ergodic, then g* is constant a.e., and so g* =

average equal space average.



To correspond to (Definition 2), Let f be f in (Theorem 3.12), g(z) = log(z). If we find
the measure p such that f be a measure preserving transformation for u, g(x) is p-integrable
function. Then we can apply Theorem 3.12 to realize that Lyapunov exponent is constant

a.e..

Theorem 3.13. (Multiplicative Ergodic Theorem)[29] Let M be a compact manifold of di-
mension m, [ be the o-algebra generates by the Borel subsets of M, and f : M — M be
C? diffeomorphism. Then, there is an invariant set By € [ of the full measure for every
€ M(f) such that the Lyapunov exponents exist for all points x € By. Where M(f) is the
set of all invariant Borel probability measures for f. More precisely, the following properties

are true.
1. The set By is invariant, f(By) = By, and of full measure, u(By) = 1 for all p € M(f).
2. For each x € By, the tangent space at x can be written as an increasing set of subspaces
{0y 2V CcVIicde Vi@ =T, M

such that for v € VI\VI=t ithe limit defining \(x,v) exists and \;(x) = ANz, v) is the

same value for all such v, and the bundle of subspaces
{Vi''r € By and s(x) > 1}
are invariant in the sense that D f,VI'= ij(x) foralll < j < s(x).
3. The function s : By — {1,...,m} is a measurable function and invariant, so f = s.

4. If x € By, the exponents satisfy
—00 < A7) < Xo(x) < -+ < Ay ().

(Note that we allow M\ (x) = —o0.) For 1 < j < m, the function \;(-) is defined and
measurable on the set

{z € By :s(z) 2 j},

and is invariant, \jo f = A;.

From previous (Theorem 3.13), it states that there are at most n different Lyapunov
exponents in n-dimensional space. And the limit (4) exists for almost all points x in (Defini-

tion 3.6)

10



3.3 Quasi Chaos

There is a problem about the application of chaos in cryptography. Chaos is defined in the
uncountable infinite set, but the operation of cryptography is in the finite set. The behavior
of chaos maybe be lost on the computer, even the system has a positive Lyapunov exponents.
For example, in (Example 3.5), the tent map is Devaney’s sense chaos, and it has a positive
Lyapunov exponents log 2. However, the representation of tent map converges to 0 at every
points on computers. Because the computer alphabet is finite precision and binary. When we
operate the tent map on computers, the tent map will be carried reluctantly at every iteration.
Finally, it will converge to 0. Obviously, there is a difference between theory and reality on
operation of chaos in hardware. For solving this problem, scientists propose several methods
to maintain the chaotic behavior. Directly, we can add precisions, but the operation will be
complicated and the cost will be raised. In [37], author suggested that digital chaotic system
implented with more digits can solve the problem of short output cycle length. Another,
let the dynamical system be perturbed. . For example, the spatiotemporal chaotic system
[17, 18, 19, 23|, authors add a independent perturbed sequence to perturb the chaotic system,
it can avoid that the system be-short cycle length. In [6], authors add the dimension of the
chaotic system, they coupled several maps to construct multi-dimensional system to increase
the complexity of the chaotic dynamics and add the output cycle length. In our work, we
add the precisions and couple twodogistic maps to add'the dimension to maintain the chaotic

behavior.

Example 3.14. (Logistic map) Let f = yz(1 —x) be a logistic. In figure (3), we observe that
period three occurs where v between 3.8 and 3.9. By Li and Yorke theorem, it implies that
chaos will happen over there, but there are only a simply periodic orbit. The chaotic behavior
disappear over vy between 3.8 and 3.9. When we operate the chaotic dynamical system on
computer, all numbers are finite. However, the chaos is defined on infinite set. Fvery system
is not chaos, when we operate it on computer. But the display s still complex on computer.

So we call it quast chaos.

3.4 Synchronization

Synchronization is timekeeping which requires the coordination of events to operate a system
in unison. For example, the plants flower, the light of fireflies, and migratory birds’ flying array
etc. This phenomenon was discovered by Christiaan Huygens in the seventeenth century. He

observed that a coupled of pendulum clocks hanging from a common support had same period.

11



Figure 3: Logistic Map:Birfurcation diagram of a logistic map, and Lyapunov exponents of a
logistic map from 3 to 4. The horizontal axis/ vepresents the parameters of logistic map. The

vertical axis represents the values‘of logistic map and‘the values of Lyapunov exponents.

And he purposely destroy period of one of them; but they synchronized in few minutes. In

dynamical systems, we give a definition as-follows:

Definition 3.15. (Synchronization) Let F(x) = (fisf2) : X x X — X x X be a 2-dimensional
dynamical system. We call F' is synchronization, if for any € > 0, there exist Ny € N such

that | f1(x) — f3(x)] <€, for n > Ny.

However, there does not exist synchronization in any system. it must have a bridge in the
system, if the system is synchronization. In a word, synchronization is a relation between a
function and other function(or a system and other system), and they are connected by some
operations or some methods. After several iterations, they have same behavior. We use the be-
havior to connect with encryption and decryption, and add the complication of the system to
raise the security by algorithm construction. In our work, we use construct the crypto-system
by asymptotical synchronization. Asymptotical synchronization is like synchronization, but
they are still a little different. The system F is asymptotical synchronization with system
G. After serval iterations, then 0 < ||F(z) — G(x)|| < k for some small k. It is weaker than

synchronization. But it will be helpful to reduce cost of computation.
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3.5 Asymptotical Synchronization

In this subsection, we will present that how to operate asymptotical synchronization[3]. The

Asymptotical Synchronizaticn

1 T T T T T
% < i L .
0.8 [ l -
0.7 - —
i E
06| Tt -
> E
T os [
o o o
£
oal s -
0.3 -
--;- 410
|
02—t | )
o= =
0.1 ——=—- Xy inthe coupled logisite map
# ¥, inthe coupled logisitc map
a 1 1 1 1 1 1 1 1
[ 2 4 =] ] 10 12 14 15 18 20

times

Figure 4: Simulation of the asymptotical synchronization. In numerical simulation, we obtain

the average of the asymptotical synchronization. It is 4.7.in 5000 simulations.

coupled logistic map, defined by

L (xgl)) O — 1—¢ C1

F(r,x,C)=C o
Jra(y”) 2 l—oc

where x = [z1,75]", 1 = [y1,7%]" and C is a coupling matrix with coupling strengths c;, ¢, €
[0,1].
Let G be another coupled logistic map defined by

T (ygi))

G(r,y,C)=C i
f72<y2 )

Y

where y = [y1,72] " and the parameters r and C' are the same as in F. Now we want to build
up a system of communication between F and G, called the Transmitter and Receiver, respec-
tively. We utilize simplex partial coupling to reach synchronization between the Transmitter
and Receiver. More precisely, for given initial datum J:&O), xéo), yﬁo), yéo) € (0,1), we define the

communication system and :

x = F(r,x",0), (8)
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9 =G(ry " 0),
(i) (@) - iT )
y = [ 1 7y2] ’
where x = [z{7 2|7 and @ for i = 1,2,.... The vector x®) and y@ of the Transmitter
and Receiver can be synchronized by the partial portion a;gi) with a suitable coupling strength
C, as i is sufficiently large. Under the usual metric on R/Z,we obtain a sufficient condition
for synchronization below.

Let | - |1 be the usual metric on R/Z defined by
|£L’ - yll = an“‘r - y|7 1- ’l’ - y|} fOT T,y € [07 1)
For convenience, we define a function §(7),

i(y) = maxxe[o,lﬂfé(?c)‘

Theorem 3.16. [3] If 1 — @ < ey < 1, then ]a:g) — ygi)h — 0 as i — oo.

4 Chaotic transmission medel

4.1 Coupled logistic map

A coupled logistic map is defined by

f’Yj (1‘1) 1 7jx1(1 - xl)?

]_—Cl C1

C= ’
Co 1-— C2
i i ! (I(i))
(f)fgﬂ),xgﬂ)) = F(c1, ¢co,71, 72,71, 72) = C " ii)
f72(x2 )

where ¢; € (0,1],7 = 1,2. v; € [3.573,4],7 = 1,2. x; € (0,1),5 = 1,2 It is constructed by
coupling two logistic maps. In figure 3,the bifurcation diagram and Lyapunov exponent of a
logistic map. The chaotic behavior happen from + > 3.573. We use the coupled logistic map
to build the crypto-system.

4.2 Crypto-System

A wireless communication scheme is sketched in Figure 6. Information is transmitted by a

transmitter through a wireless channel after encryption. A receiver recovers the information

14



Location of coupled logistic map # of points 22768

Figure 5: Coupled Logistic-Map: It is the image of the digital coupled logistic map.

Informion Iy Sowoe e " e
Suirve [ V] Encoding ::> Eberypiic :D -l &

Modukien

Transmitter

Chanrel

Informtice Soume ——
Sink K= Decoding —  Demplion

Receiver

Figure 6: Wireless Communication Scheme. The channel is wireless in the scheme. The

coupled logistic maps are in the Encryption and Decryption, respectively.
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by decryption. In this section, we will present a crypto-system, which consists of the trans-
mitter and the receiver by two coupled logistic maps, respectively. A coupled logistic map F

is defined by

2@ = F(r,20D,C) = CL(r, z07Y), (10)

i=1,2,...,where 2® = [z{7 207 v = |71, 70]7, L(r, 20D) = [Ly (71, 2V 7), Lo(ya, 28T,

in which L;, j = 1,2, are logistic maps in (10) , and

1—-c c
O 1 1
Cy 1— Cy
is a coupling matrix with coupling coefficients 0 <¢; <1, 7 =1,2.

A masking sequence 2 is defined by
2D =ald =12, (11)

At the same time, we need to construct an unmasking sequence. Therefore, let G be a

coupled logistic map defined by

YD = Gy N C) = Ch(ryy T i =1,2,.. ., (12)

where y® = [yy),yéi)]T. Here, C'and r-are-the same as F in (10). Then the unmasking

sequence 2 is defined by
20 =y 5 =12 ... (13)

In Figure 7, we present a crypto-system from Encryption layer and Decryption layer in the
wireless communication scheme by chaotic coupled logistic maps (defined in (10) and (12)),
respectively. There are two stages in the crypto-system. First, the transmitter takes sim-
plex direction to the receiver until Encryption layer and Decryption layer reach asymptotical
synchronization. Second, the transmitter begins to encrypt a plaintext to a ciphertext, and
preserves asymptotically synchronous between F in Encryption layer and G in Decryption
layer. Therefore in the first stage, we randomly create initial values x§~0) and y](-o), 7=1,2in
F and G, respectively. The transmitter transmits partial xgi) to the receiver, and the receiver
receives it to update ygi). After « iterations (i = 1,2,...,«), F and G will reach asymptotical

synchronization. This stage is called pre-iteration. In the second stage, the transmitter begins

to transmit signals, at the same time we have to preserve asymptotically synchronous between
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Figure 7: Crypto-system. The part of therFigure 6. p is plaintext, p is the decipher, ¢ is
ciphertext, z, z are the masking sequence and the unmasking sequence, respectively. x,y are

the values of F and G, respectively.
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Figure 8: Trajectory. It is the trajectory of z; in the coupled logistic map. And it is the

masking sequence of the crypto-system.



F and G. Thus, in Encryption layer to encrypt information sources by the masking sequence
2 (11). In Decryption layer, to decrypt the ciphertext by the unmasking sequence %) (13).
In order to decode the ciphertext correctly, the unmasking sequence 2 must be identical to
the masking sequence z(*). For preserving asymptotical synchronization between F and G, the
receiver needs to keep updating y%i) by the partial argi). However, in a wireless channel, noise
accumulates in signals. In order to prevent that from happening, we need to reset the initial
values of F and G per [ transmissions by the pre-iteration. It is called resynchronization in

this strategy.

Spectrum of Coupled Logistic Map # of points 32768

legl[Y )

100 ! ! ) ! \
0 H00 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 9: FFT of the Coupled Logistic Map. We compute the fast Fourier transform of the
x1 in the coupled logistic map. The horizontal axis represents the Frequency. The vertical

axis represents the values of the FFT.

Theorem 4.1. [3] Using suitable previous tactics with 1 — @ < ¢y < 1, there exists isy, € N

such that

s’ — 2 < |1+

625(71) —-n
1—u—@wwgkﬂ’

as i > loyn.

Theorem 4.2. [3] For j > 1 and i = iy, + j, then

c1¢20(71)0(72) n
1—@—@wwgb“

w@—ﬂ%<[u—qun+q&wwr
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Following previous theorems(Theorem 4.1, 4.2), the connection which is constructed by
asymptotical synchronization can be realized. And we also simulate the asymptotical synchro-

nization numerically. It works, and the average of iterations is 4.7 in 5000 times simulation.

5 Simulation Setups

In the crypto-system, all numbers are represented in finite digits. Assume that .rgi) and xg)

(y%i) and yéi)) in the vector ¥ () are represented in m digits, the transmitted signal ¢

) are represented in n digits, and length of each plaintext p® is

and the received signal rg
represented in [ digits, where m > n > [. The parameters 7, and the coupling coefficients c;,
7 = 1,2, are represented in r digits and k digits, respectively.

Then the encryption process follows: i = a4+ 1, a+2,...,
20 = xgi)(l :n),
(L) =200 ",
tO 4=2=n) = 2O b : n),
where € is an XOR operation (Exclusive or)and xgi)(l : m) denotes dropping the first n digits

from :)sgi). At the same time, in"Decryption layer-a:decipher p needs to be defined. Then the

decryption process follows: i = a4+ 1,a+2,...

where p is the decipher. Since it will keep asymptotical synchronization between F in the

transmitter and G in the receiver, and n > [, the decipher (¥ can be identical to plaintext

o),
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Figure 10: Simulation. The horizontal axis represents the resynchronization timeunder the
intrinsic error rate 282.5ppm. The vertical ‘axis represents the chaotic error rate under the
intrinsic error rate 282.5ppm. The experiment is represented by e. The numerical simulation

is represented by ——.

6 Hypothesis Test

In our work, we apply the hypothesis test to find the relation between the numerical simulation
and the experiment. The hypothesis test is‘a statistical method. Hypothesis Test is applied
to find the relation between data and data or data and a standard. There are two kinds of
hypothesis test, one sample and two sample. The hypothesis test is builded on the conditional
probability and Central Limit Theorem. In different situation, we will propose different way
to solve our problem. That is conditional probability sense. Central Limit Theorem can
arrange the random variable to the standard normal distribution. It is helpful to compute
the probability about the hypothesis test. Based on those theory, there are five steps about
the hypothesis test. It follows that

D=

1. Set the null hypothesis and the alternative hypothesis. ex. Hy: p = é, Hy:p<
2. Set the significance level of a.
3. Compute the statistics about the sample and compare the statistics with the standard.

4. Compute the probability of type I error and type II error.

20



5. Determine to reject or accept the null hypothesis.

However, hypothesis test only provides the selection, it can not guarantee the determination
absolutely. When we decide to reject the alternative hypothesis, we maybe mistake. There

are four situations in the blow table.

Acc\ Real | Hy H,
Hy Right | Typell
H, Typel | Right

The type I error is that rejecting Hy and accepting H; when Hj is true. The type II error
is that Failing to reject Hy when H; is true, that is Hj is false. The probability which the
type I error happened is p-value. The p-value associated with a test is the probability, under
the null hypothesis Hy, that the test statistic is equal to or exceeds observed value of the test

statistic in the direction of the alternative hypothesis.

Example 6.1. (Dice) We will check that dice is fair or not. Let p equal the probability of

rolling a 6 with one of these dice. To test Hy @ p = % against the alternative Hy : p > %,
several of these dice will be rolled to yield a total of n = 8000 observation. LetY equal the
number of times that six resulted in the 8000 trials. The. test statistic is
7 Y /n—1/6 _ Y /8000 — 1/6 .
v (1/6)(5/6)/n—3/(1/6)(5/6) /8000

If we use a significance level of o = 0.05, the critical region is

z Z 20.005 — 1.645.

The results of the experiment yielded y = 1389, so that the calculated value of the test statistic
18

1389/8000 — 1/6

V/(1/6)(5/6)/8000

Since

z =1.670 > 1.645,

the null hypothesis is rejected.

6.1 Wilcoxon Test

In our work, we use Wilcoxon test. Wilcoxon test is a kind of the hypothesis tests. In our case,

we don’t know the population of the data(the experiment and numerical simulation), and do
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not know the statistic of the population. We do not suppose distribution of the data. So we
use the non-parametric(distribution-free) statistic method to analyse our data. Wilcoxon test
is suitable in our case. Wilcoxon test does not need to know the population of the data, it
only operates the data to determine that the relation between the experiment and numerical
simulation exists or does not.

There are four steps for testing a hypothesis by Wilcoxon test[11, 13]:

State the null hypothesis Hy : my = my, and the alternative hypothesis H; : mx # my.

o Determine the significance level a.

Compute the testing statistic.

Reject or do not the null hypothesis.

Proposition 6.2. (two-sample) There two identical independent distribution samples, X1, Xa, . ..

and Y1,Ys, ..., Y,,. Assign to the ordered values.the ranks 1,2,...,n1 + ng. In the case of
ties, assign the average of the ranks assiociated with the tied values . Let W equal the sum of
the ranks Y1,Ys, ..., Y,,. Let mx and-my are the respective medians, the critical region for
testing Hy : mx = my against Hy : mx < my (mx > my Jwould be of the form w > c(w < ¢).

The mean and variance of W are

nl(nl —+ m) =+ 1)
2

Hw =

and
- nan(nl + ng + 1)
N 12

Var(W)

and the statistic
W — n1<n1 + ng + 1)/2

B \/nlng(nl —+ ng + 1)/12

Z

is approzimately N(0,1).

Alternative Rejection Region

mx —my <0 Wy > w,
mx —my >0 WNSMIQ

mx —my # 0 I/VNgw’oé/2 or Wy 2> was

where w,, is right tail, w/, is left tail.
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Example 6.3. X is results of the experiment of the crypto-system. Y is results of the
numerical simulation of the crypto-system. In the wireless channel, the noise increase along
with the distance. However, in the numerical simulation, it does not have the factor about
distance. We have to produce the noise to simulate effect of the distance. So in the numerical,
there are two factors, resynchronization, change rate. In the experiment, there are also two

factors, resynchronization, distance. The data are
X :55.95 69.79 69.00 69.79 55.04 56.41 64.70 72.20 60.75 82.70.

Y :81.25 40.13 54.81 89.49 65.80 55.61 62.33 33.41 69.23 31.08.

The critical region for testing Hy : mx = my against Hy : mx # my at a = 0.05. Letn;+ny =
N The pooled array with X values underlined is 31.08,33.41,40.13, 54.81, 55.04, 55.61, 55.95, 56.41,
60.75,62.33,64.70, 65.80, 69, 69.23, 69.79, 69.79, 72.20, 81.25, 82.70, 89.49, and Wy = 5+7+8+
9+11+ 13414+ 15+ 16+ 19 = 117. The right tail:

Wasa =11 (N + 1) /26005 + 242/ Rama( N + 1)/12 = 131.4284.

The left tail:

Wy =n1(N +1)/2 = 05 <2, p\/rung(N +1)/12 = 78.5716

and

w;/z <Wn < Wao.

So, we accept the Hy.
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Table 1: We theorize about the error of the distance by hypothesis test in the experiments.
Where SQ is from least square method.

resyn\dist | 0.4 | 2 5 7 7.5 7.7 8
2 23 23 | 26.5 | 37 86 159 226
4 39 41 43 62 199 288 | 419.5
8 42 43 44 56 | 221.5 | 289 430
16 40 40 42 43 | 173.5 | 303 477
32 43 43 44 |1 45.5 | 210.5 | 282.5 | 429
64 34.5 | 34.5| 36 40 159 269 405
128 275285 31.5 | 31.5 | 74.5 | 198.5 | 300.5
256 19 20 20 | 21.5 | 96.5 142 | 215.5
512 11.5 | 11.5 | 11.5 | 11.5 o8 96.5 | 136.5
1024 8.5 | 9.67].10.5 |'10.5 51 77.5 99
SQ 43 43 44 1. 45:57.210.5 | 282.5 | 429
0
E -0.5} 1
[ak] o .
® -1
2 -1 P e
= o
= -2 e —
X=] i .
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=
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e
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Figure 11: Simulation. The horizontal axis represents the intrinsic error rate. The error is
intrinsic in the channel under each distance. The vertical axis represents that the results of
the communication was effected by the intrinsic error. The experiment is represented by e.

The numerical simulation is represented by ——.

24



7 Results and Conclusion

7.1 Parameter Space

In a dynamical system, a chaotic behavior is determined by the parameter. When we draw a
bifurcation diagram of the logistic map, we observe the chaotic behavior for v > ~,,. However,
all parameters are not equally strong. Sometimes, the orbit diagram reveals an unexpected
mixture of order and chaos, with periodic windows interspersed between chaotic clouds of
dots[35]. Thus, we have to choose a suitable set of parameters such that the coupled logistic
maps F and G are chaotic. There are many parameters in the coupled logistic map in (2) and
(4), 71, 72, ¢1 and co. Let S = (71,72, ¢1, ¢2) be a parameter space of the coupled logistic map.
The values of v; or v, are chosen from 3.573 to 4 and the values of ¢; or ¢y are chosen from 0
to 1. We check that the coupled logistic map is chaotic by Lyapunov exponents. There are 86

percent of the parameters in S which has positive Lyapunov exponents, while the remainders

are periodic windows (Figure 1).

7.2 Simulation Resultand Experiment

distance 7.7m

o8s-  eeem== T 1

09k ~ S

Q.85 -
»

Q.75 |- *F

efficient
i
b

0,65 -
0.6

0.55
————— line 282.5

- experiment data

0.5

L
#

1 2 3 4 5 =1
resynchronization

Figure 12: Simulation. The horizontal axis represents the resynchronization time. The vertical

axis represents the efficient of the crypto-system. The experiment is represented by e. The

numerical simulation is represented by ——.

In this thesis, all results of experiments are offered by [16]. In the numerical simulations,
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we set digital variable: m = 24, r = 16, k = 8, n = 16 and [ = 8, and the size of a plaintext is
0.24 million bytes. We suppose that the noise is uniformly distributive in the wireless channel
and there are the different intrinsic error rates with the different distances on the wireless
channel. In order to maintain the asymptotical synchronization between the transmitter and
the receiver, we need to operate resynchronization per 5 ms. In the Professor James Juane’s
experiments, 16 bytes plaintexts can be transmitted per 1 ms. In Figure 11, it shows the
relation between the intrinsic error rate and the chaotic transmission error rate. Those dots
denote results of the experiment with 7 different distance. The dashed line comes from nu-
merical simulations with different intrinsic error rates and it tests 100 times per intrinsic
error rate. In this figure, we set 2°ms resynchronization. In Figure 10, it shows the relation
between the resynchronization and the chaotic transmission error rate. Those dots denote
results of the experiment data and the dashed line comes from numerical simulations. The
result reveals that the chaotic transmission error rate will increase with the distance (intrin-
sic error rate). Next, we will propose an efficiency function of the crypto-system to find out
the optimal resynchronization for the erypto-system in Wireless Secure Communication. The

efficiency function F(k) is defined as follow:

Ef= o

where x is the number of the ciphertext which we expect to decrypt successfully,

T is the cost, when the chaotic transmission error rate is € and we expect to decrypt s
ciphertexts successfully. And 7 is the times of the resynchronization which is equal to T" over
B. Here ( is resynchronization. In Figure (12), it shows the length of per resynchronization
vs. the efficiency as the intrinsic error rate is 282.5 ppm (that is the distance between the
transmitter and the receiver with 7.7 m). Those dots denote experiment data and the dashed
line comes from numerical simulations. The result reveals that the optimal efficiency occurs

on the resynchronization with 32 ms.

Appendix

There are two stages in the algorithm. First, the transmitter takes one-way connection

to the receiver until Encryption layer and Decryption layer are synchronized. Second, the
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transmitter begins transmitting plaintexts to the receiver, and keeps the one-way connection

for preserving with the synchronization between Encryption layer and Decryption layer.

Setup

Parameters: ¢; , v;,2 =1, 2.
Initial values:xl(o) and ygo) are represented in x digits, i = 1, 2.
Carrier (transmitted signal): ¢, is represented in car digits.
Discharger (received signal): r, is represented in car digits.
Plaintext signal: sgn is represented in n digits.
Decipher: decipher is represented in n digits.

Pre-iterations: S times.

First step

The transmitter connects the receiver in-only one direction, and to take several pre-
iterations until Encryption layer.and Decryption layer are synchronized asymptotically. We
create initial values $§O) and yi(o) randomly in Encryption layer and Decryption, ¢ = 1, 2.

In the transmitter: j =1,2,...5,

Generating a hyper-chaotic string, .and choosing a carrier,
xgj)(l L x), gj)(l s car).

The system F:

7 =malV (1 -2,

Ty =y V(1 -2y ),
x(lj) =T1 + c1(ZT2 — 71),
2 = Ty + co(T1 — o),

t;(,;j)(l sear) = xgj)(l s car).

Send t,

In the receiver: j =1,2,...0,

Generating a hyper-chaotic string, producing a discharger,

v (1: )
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The system G:

_ —1 1—1
7=yl VA -y,

_ i1 i—1
go = oys V(1= Y),
4 _ 5 = =
yr’ =0+ ey — ),
yéj) = 1o + ca(y1 — ),
Receive rl(,j )(1 : car) and update the y; by rl(,j ),
y%j)(l Lca) = rg(,j)(l :car).

And repeat the step § times until F and G are synchronized asymptotically.

Second Step

The transmitter begins transmitting signals, and we have to keep the connection between
the transmitter and the receiver for preserving synchronization between Encryption layer and
Decryption layer. Reset the initial wvalues x§°) and yi(o) in F and G by first step xz(ﬂ ) and yzw )
which is after Encryption layer and Decryption layer synchronization.

In the transmitter: £ =1,2,. ..,

1. Generating masking sequence z*)(1': car) and.the carrier ték)(l : car) by the system F

D,

i’l = ’Ylng_l)(l — .Tgk_l
k—1
> ),

Ty = 723:5’“‘”(1 —x
.Tgk) =T+ Cl(fg — 531),
$gk) = To + c2(T1 — Ta),

2M(1: car) = xgk)(l :car),

2. Load signals sgn(1 : n).

3. Combine the signals and the masking sequence z*), ték)(l n) =20 (1:n)Psgn(l:n),
4. Edit the carrier t{, t%) (n+1:car) =2®(n+1:car).

5. Send ¥ to the receiver.

In the receiver: k=1,2,...,
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1. Generating unmaking sequence 2*)(1 : car) by the system G.

7=yl =y,

-1)
Yo = 729& (1 y )

yg)—y1+01( Y2 — 1),
(y

yé)—yrl-cz U — Ya),

2M(1: car) = y§ )(1 > car).

2. Receive ?{,’“)

3. Decode the cipher by the unmasking sequence 2*)(1 : car), get decipher(1 : n),
decipher(1:n) =7 (1:n) @ 20 (1 : n),

4. Update the initial value y§k)(1 : car) in G by ?“{yk),

y§k)(1 'n) = r@(,k)(l :n) @ decipher(1 : n).

B+ 11 car) =i (k) (n+1: car).

5. Save the decipher.
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