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在生態學上的資源預算模型之數值模擬與分析

學生：吳冠緯 指導教授：張書銘 博士

國立交通大學應用數學系（研究所）碩士班

摘 要

本論文運用數學理論和電腦輔助來決定系統是否會具有混沌現象，使用拓樸熵 (topological

entropy) 以及黎阿普諾夫指數 (lyapunov exponents)，還有運用穩定性分析找出產生週期

解的參數的分界。系統擁有正拓樸熵則具有李-約克定義中的混沌，而正黎阿普諾夫指數

則表示系統具有德瓦尼 (Devaney) 混沌定義中的敏感性。在生態學上，佐竹曉子 (Akiko

Satake) 和巖佐庸 (Yoh Iwasa) 於 2000 年修改了井鷺裕司 (Yuji Isagi) 等人的資源預算模

型 (resource budget model)，建立更一般化的資源預算模型 (generalized resource budget

model)。本論文從數學和數值的角度去分析佐竹曉子 (Akiko Satake) 和巖佐庸 (Yoh Iwasa)

的資源預算模型，找出該模型產生同步的充分條件以及找出在某些情況下具有正拓樸熵與

正黎阿普諾夫指數，再利用拓樸熵去證明此模型會有李-約克定義的混沌現象。

關鍵詞：李-約克混沌、拓樸熵、資源預算模型。
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Abstract

In our work, we use mathematical theorem and computer-assists to determine whether

maps or systems are chaotic. We use topological entropy and lyapunov exponents, and

use stability analysis to find the boundary of parameters that has periodic solution. If

a system have positive topological entropy means that system is chaotic according to

the definition of Li and Yorke and if system have positive Lyapunov exponent means

sensitivity in Devaney’s chaos. In ecology, Satake and Iwasa’s generalized resource

budget model that modified from Isagi et al.’s resource budget model in 2000. In this

work, mathematical views and numerical analysis are presented to discover the suffi-

cient condition that synchronicity will happened and to discover the conditions that the

system have positive topological entropy and positive Lyapunov exponent on Satake

and Iwasa’s generalized resource budget model. Subsequently, topological entropy are

utilized to prove that the model is chaotic in Li and Yorke’s sense.

Keywords: Li-Yorke’s chaos, topological entropy, resource budget model.
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1 Introduction

In ecology, Satake and Iwasa’s generalized resource budget model that modified from Is-

agi et al.’s resource budget model in 2000 [24]. They do many analysis and explaination for

the simulation of the model generalized resource budget model. But, there is a strange phe-

nomenon that the result will become periodic when depletion coefficient κ is cross to positive

integer except for other places when κ > 1. So we guess that is happened by simulation’s

conuting error.

In recent decades, chaotic theory has advanced rapidly. Many mathematical tools can be

used to measure or describe the “chaotic” conditions. In [4], they has proved that General-

ized Resource Budget Model [24] has Devaney’s chaos when the depletion coefficient κ ∈ N

by snapback repellers. It is contradiction with numerical simulation because of conuting er-

ror, like use Matlab to simulate tent map when coefficient is 2. In this thesis we use two

mathematical tools, topological entropy and lyapunov exponent, with numerical simulation

by Matlab to analysis the generalized resource budget model.

1.1 Definitions of Chaos

The definitions of chaos of Devaney and of Li and Yorke are considered herein because

they are fundamental and widely accepted:

Definition 1.1 (Devaney [6]). Let X be a metric space. A continuous map f : X → X is

said to be chaotic on X if

(i) f is topologically transitive. That is, for any pair of nonempty open sets U, V ⊂ X there

exists k > 0 such that fk(U) ∩ V ̸= ∅;

(ii) periodic points are dense in X;

(iii) f has sensitive dependence on initial conditions,meaning that, there exists δ > 0 such

that, for any x ∈ X and any neighborhood U of x, there exists y ∈ U and m ∈ N such

that |fm(x)− fm(y)| > δ.

Definition 1.2 (Li and Yorke [18]). Let I be an interval of the real line and f : I → I a

continuous function. f is chaotic if f has an uncountable scrambled set S ⊂ I which satisfies

the following condition:

1



(i) for every p, q ∈ S with p ̸= q,

lim sup
m→∞

|fm(p)− fm(q)| > 0 and lim inf
m→∞

|fm(p)− fm(q)| = 0;

(ii) for every p ∈ S and periodic point q ∈ I,

lim sup
m→∞

|fm(p)− fm(q)| > 0.

The following are two ways to measure the chaos, which is “topological entropy” and

“Lyapunov exponents.”

1.2 Topological Entropy

Topological entropy is a quantitative measurement of how chaotic the map is. In fact,

it is determined by how many “different orbits” there are for a given map (or flow). To get

an intuitive idea of the concept, assume that you cannot distinguish points which are closer

together than a given resolution ϵ. Then, two orbits of length n can be so distinguished

provided there is some iterate between 0 and n for which they are distance greater than ϵ

apart. Let r(n, ϵ, f) be the number of such orbits of length n that can be so distinguished.

The entropy for a given ϵ, h(ϵ, f), is the growth rate of r(n, ϵ, f) as n goes to infinity. The

limit of h(ϵ, f) as ϵ goes to 0 is the entropy of f , h(f). The key idea in this sequence of limits

is the growth rate of the number of orbits of length n that are at least ϵ apart [23].

Definition 1.3 ([23]). Let f : X → X be a continuous map on the space X with metric d.

A set S ⊂ X is called (n, ϵ)-separated for f for n a positive integer and ϵ > 0 provided that

for every pair of distinct points x, y ∈ S, x ̸= y, there is at least one k with 0 ≤ k < n such

that d(fk(x), fk(y)) > ϵ. Another way of expressing this concept is to introduce the distance

dn,f (x, y) = sup
0≤j<n

d(fk(x), fk(y)).

Using this distance, a set S ⊂ X is (n, ϵ)-separated for f provided dn,f (x, y) > ϵ for every pair

of distinct points x, y ∈ S, x ̸= y.

The number of different orbits of length n (as measures by ϵ) is defined by

r(n, ϵ, f) = max{#(S) : S ⊂ X is a (n, ϵ)-separated set for f},

where #(S) is the number (cardinality) of elements in S.

We want to measure the growth rate of r(n, ϵ, f) as n increases, so we define

h(ϵ, f) = lim sup
n→∞

log(r(n, ϵ, f))
n

.
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If r(n, ϵ, f) = enτ , then h(ϵ, f) = τ ; thus, h(ϵ, f) measures the “exponent” of the manner in

which r(n, ϵ, f) grows with respect to n.

Note that r(n, ϵ, f) ≥ 1 for any pair (n, ϵ), so 0 ≤ h(ϵ, f) ≤ ∞. Finally, we consider the way

that h(ϵ, f) varies as ϵ goes to 0 ,and define the topological entropy of f as

h(f) = lim
ϵ→0,ϵ>0

h(ϵ, f).

Theorem 1.4 ([17]). If a continuous map of the interval has positive topological entropy,

then it is chaotic according to the definition of Li and Yorke.

Definition 1.5 ([33]). Let f(x) be a real-valued function which is defined and finite for all x

in a closed bounded interval a ≤ x ≤ b. Let

Γ = x0, x1, ..., xm

be a partition of [a, b]; that is, Γ is a collection of points xi, i = 0, 1, ...,m. With each partition

Γ, we associate the sum

SΓ = SΓ[f ; a, b] =
m∑
i=1

|f(xi)− f(xi−1)|.

The variation of f over [a, b] is defined as

V = V [f ; a, b] = sup
Γ

SΓ,

where the supremum is taken over all partitions Γ of [a, b]. Since 0 ≤ SΓ < +∞, we have

0 ≤ V < +∞. If V < +∞, f is of unbounded variation on [a, b].

Example 1.6 ([33]). Suppose f is monotone in [a, b]. Then, clearly, each SΓ equals |f(b) −

f(a)|, and therefore V = |f(b)− f(a)|.

Example 1.7. The total variation of tent map for k = 2 on [0, 1].

t(x) =

 kx, if x < 1
2
,

k(1− x), if x ≥ 1
2
.

(1)

The invariant set is [0, 1]. And f is monotone in [0, 1
2
] and [1

2
, 1], so V (t; [0, 1]) = V (t; [0, 1

2
])+

V (t; [1
2
, 1]) = 2. It, together with all its iterates, has constant absolute value of the slope

which therefore gives the variation, that is,

V (tn) = 2n.

This argument applies to any map whose slope is of constant absolute value [33].

3



Corollary 1.8 ([13]). If f : I → I is a piecewise-monotone continuous map, then

lim
n→∞

1

n
logV (fn) = htop(f),

where V (fn) is total variation of fn in an invariant set I.

Example 1.9. We use Corollary 1.8 to compute topological entropy of tent map (1) for k = 2.

From Example 1.7 we obtain V (tn) = 2n, so

htop(t) = lim
n→∞

1

n
log 2n = log 2.

1.3 Lyapunov Exponents

In discussing chaos, we referred to Lyapunov exponents which measure the (infinitesimal)

exponential rate at which nearby orbits are moving apart.

We want to give an expression for determining the growth rate of the derivative of a function

f : R → R as the number of iterates increases. If |(fn)′(x0)| ∼ Ln, then log(|(fn)′(x0)|) ∼

log(Ln) = n log(L), or ( 1
n
) log(|(fn)′(x0)|) ∼ log(L). In the best situations, the limit of this

quantity exists as n goes to infinity. If we take the limsup, then it always exists as n goes to

infinity [23].

Definition 1.10 ([23]). Let f : R → R be a C1 function. For each point x0, define the

lyapunov exponents of x0, λ(x0), as follows:

λ(x0) = lim sup
n→∞

1

n
log(|(fn)′(x0)|) = lim sup

n→∞

1

n
Σn−1

j=0 log(|f ′(xj)|),

where xj = f j(x0). (The first and second limits are equal by the chain rule.) Note that

the right-hand side is an average along an orbit (a time average) of the logarithm of the

derivatives.

Remark 1.11. Assume λ(x0) > 0 which implies that

log(|(fn)′(x0)|) ≈ nλ(x0) or |(fn)′(x0)| ≈ enλ(x0) = L(x0)
n,

where L(x0) = eλ(x0) > 1, and

|fn(x0 + δ)− fn(x0)| ≈ |(fn)′(x0)|δ → ∞, as n → ∞.

Therefore, a positive Lyapunov exponent means sensitive dependence on initial conditions,

this result is very important and useful since it enables a single quantity to be computed to

determine whether a chaotic process is highly sensitive to initial conditions [23, 34].
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2 Ecological Models and Numerical Simulation

Many trees in forests reproduce intermittently, rather than at a constant rate [24]. A

number of flowers and fruits are produced in a particular year (called a mast year) but very

little reproductive activity occurs during several subsequent years until the next mast year.

This “synchronous production of highly variable amount of seeds from year to years by a

population of plants” is called masting [24]. Perfect periodicity in reproduction is rarely

observed, and the intervals between masting are rather irregular.

Several explanations of the masting phenomenon have been proposed [3, 25, 26, 31, 14,

11, 12, 28, 2, 21, 30, 19, 8, 9, 16, 14, 22, 29, 5, 27, 15]. They involve environmental fluctu-

ations, weather conditions, swamping predators, the weight of young deer, bird populations,

the reproductive success of bears, increased efficiency of wind pollination, attraction to seed

distributions, cue masting, and the dispersing animals. However, most of these hypothe-

ses explain neither the mechanism of masting nor the mechanism by which the timing of

reproduction varies among individuals [24].

2.1 Isagi’s Resource Budget Model

Figure 1: Resource budget model of an individual plant.

Isagi, Sugimura, Sumidaa and Ito proposed a simple model of the mechanism of masting
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that was based on the resource budget of an individual tree [10]. As in Figure 1. From

photosynthesis, a mature tree gains net production PS per year, which is accumulated in the

trunk or branches. When the energy reserve exceeds a critical level for reproduction, the tree

sets flowers and produces seeds and fruits. Let S(t) be the amount of energy reserve at the

beginning of year t. If the sum S(t)+Ps is below a critical level Lt, the tree does not reproduce

and saves all the energy reserve for the following year.However, if the sum exceeds Lt, the tree

uses energy for flowering. They assumed that the energy expenditure for flowering is exactly

as same as the excess [10], a(S(t) + Ps − LT ), in which a is a positive constant. Flowering

plants may be pollinated and set seeds and fruits. It is assumed that the cost for fruits is

proportional to the cost of flowers, and is expressed as Rca(S(t) + Ps − LT ), in which Rc is

the ratio of fruiting cost to flowering cost. After the reproductive stage, the energy reserves

of the tree falls to S(t) + Ps − a(Rc + 1)(S(t) + Ps − LT ). Hence, we have

S(t+ 1) =

 S(t) + Ps, if S(t) + Ps ≤ LT ,

S(t) + Ps − a(Rc + 1)(S(t) + Ps − LT ), if S(t) + Ps > LT ,
(2)

(S(t+ 1) + Ps − LT )

Ps

=


(S(t)+Ps−LT )

Ps
− 1, if S(t) + Ps ≤ LT ,

(1−a(Rc+1))(S(t)+Ps−Lt)
Ps

+ 1, if S(t) + Ps > LT .

Then introduce a non-dimensionalized variable Y (t) = (S(t)+Ps−LT )/Ps. Then equation (2)

is rewritten as

Y (t+ 1) =

 Y (t) + 1, if Y (t) ≤ 0,

−κY (t) + 1, if Y (t) > 0,
(3)

in which κ = a(Rc + 1)− 1. The parameter κ indicates the degree of resource depletion after

a reproductive year divided by the excess amount of energy reserve before the year. We call

κ the depletion coefficient, and assume that κ > 0. From equation (3), Y (t) ≤ 1 holds. We

also note that the quantity Y (t) is positive if and only if the tree invests some reproductive

activity in year t.

After this rescaling,the dynamics of equation (3) include only a single parameter κ. Other

parameter such as the annual productivity Ps or the critical level of reproduction LT do not

affect the essential features of the dynamics if κ remains the same. In [24] and [4], authors

proposel many theoretical and numerical results for the model (3). In this thesis , we will

focus on the models of two or more trees and introduce the model later.
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2.2 Coupling of Trees Through Pollen Availability

In the model described above, when κ > 1, small initial differences in energy reserves

between individuals increase with time. This makes it difficult for different trees to synchronize

their reproduction. However, synchronized reproduction of trees is often reported in many

forests. Fruiting efficiency may depend on the flowering activity of the other trees in a forest

because pollination efficiency changes with the number of plants flowering in a population [20].

This effect can lead to the intermittent flowering of trees to become synchronized as shown

by the Isagi et al. (1997) computer simulation. Using our notations, pollen coupling can be

formalized as follows: consider a forest including N individuals with index i (i = 1, 2, . . . , N).

To model the pollen limitation of reproduction, we replace κ in equation (3) by κPi(t). Pi(t)

is a factor smaller than or equal to 1, and it indicates pollen availability for the i-th tree.

Then the non-dimensionalized energy reserve of the i-th tree is

Yi(t+ 1) =

 Yi(t) + 1, if Yi(t) ≤ 0,

−kYi(t)Pi(t)
β + 1, if Yi(t) > 0,

(4)

in which Pi(t) is given by

Pi(t) =

(
1

N − 1

∑
j ̸=i

[Yj(t)]+

)
, (5)

where [Y ]+ = Y if Y > 0; [Y ]+ = 0 if Y ≤ 0. Pi(t) = 1 holds when all the other trees

reproduce at full intensity (Yj(t) = 1 for all j ̸= i). The smallness of factor Pi(t) indicates the

strength of pollen limitation in seed and fruit production. In calculating pollen availability,

Isagi et al. [10] summed up over all the individuals in the forest, but we exclude tree i itself

from the sum in equation (5) because only outcrossed pollen is assumed to contribute seed

and fruit sets.

The parameter β determines the shape of the function Pi(t) in equation (5) and controls

the degree of dependence of fruit production on outcross pollen availability. If β is close to

zero, fruit production is almost independent of the reproductive activity of the other trees

in a forest. Small β corresponds to either a high pollination efficiency or a high density of

trees because a small fraction of flowering in the rest of the forest is sufficient to achieve

good fruiting success. In contrast, a large β implies a strong dependence of seed and fruit

production on the reproductive activity of other trees in the forest. Consider a tree that

flowers in a year in which only a small fraction of other trees flower. The tree will fail to

produce many fruits because of pollen limitation, and it will not experience a heavy resource

7



depletion. The tree will continue to flower in the following years, until the year comes in

which many other trees in the forest also flower at a high blooming intensity. Then they all

experience a large fruit set and resource depletion, which gives a mechanism to make different

individual trees synchronized in the face of chaotic tendency of each individual. Hence we

call β the coupling strength [10].

Then we compute the phase plane of this model as shown in Fig. 2. First we iterate

the model for 1500 steps, then to see the situation of the next 1000 steps. Every parts

depends on colors according to the color bar indicates the period, and the navy blue part is

desynchronized, between the synchronized part and desynchronized part, there is black blue

part represents clustering, and red part is high period.

Figure 2: Phase plane for model (4).
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2.3 Two Trees’ Model

In order to analyze this model, first we consider two trees, this way there are not clustering

part. So, the model becomes

(Y1(t+ 1), Y2(t+ 1)) =



(Y1(t) + 1, Y2(t) + 1), if Y1(t) ≤ 0, Y2(t) ≤ 0,

(Y1(t) + 1, 1), if Y1(t) ≤ 0, Y2(t) > 0,

(1, Y2(t) + 1), if Y1(t) > 0, Y2(t) ≤ 0,

(−κY1(t)Y
β
2 (t) + 1,−κY2(t)Y

β
1 (t) + 1), if Y1(t) > 0, Y2(t) > 0.

(6)

And the bifurcation diagram of these two trees is shown as Fig. 3. It looks like period

doubling, but when k close to nature number, it will become periodic.

Figure 3: Bifurcation diagram for model (6).

Then we compute the phase plane of this model (6) as shown in Fig. 4 and Fig. 5. First

we iterate the model for 1500 steps, then to see the situation of the next 1000 steps. In this

pair of figures, Every parts depends on colors according to the color bar indicates the period,

and the navy blue part is desynchronized. We can see that the model will go into a period

cycle when κ cross to N. And the width of these periodic parts will become wider when β

become bigger, the first Lyapunov exponent on these parts are also negative.

9



Figure 4: Phase plane for model (6) when β ≤ 2.

Lemma 2.1. When κ|β − 1| ≤ 1, the model (6) will become synchronized.

Proof. If x(t) and y(t) are negative, then the distance of x(t+1) and y(t+1) will not change.

So, the distance will change when x(t) and y(t) ∈ (0, 1]. And from model(6), there exist

time t such that y(t), x(t) ∈ (0, 1]. This way, we suppose in time t, we have x(t) < y(t)

y(t), x(t) ∈ (0, 1] and they are close. And in time t + 1 they become synchronized. That is,

let x(t) = m, y(t) = m+ ϵ, |x(t)− y(t)| = ϵ, ϵ is small. Then,

x(t+ 1) = −κm(m+ ϵ)β + 1 = −κm(mβ + Cβ
1m

β−1ϵ+ o(ϵ)) + 1

= −κmβ+1 − κβmβϵ− κm ∗ o(ϵ) + 1,

y(t+ 1) = −κ(m+ ϵ)mβ + 1 = −κmβ+1 − κϵmβ + 1,

|x(t+ 1)− y(t+ 1)| = |(−κmβ+1 − κβmβϵ− κm ∗ o(ϵ) + 1)− (−κmβ+1 − κϵmβ + 1)|

= | − κ(β − 1)mβϵ− κm ∗ o(ϵ)|

≈ | − κ(β − 1)mβϵ| = κ|β − 1|mβϵ

because mβ < 1, we can find a sufficient condition κ|β−1| ≤ 1 such that |x(t+1)−y(t+1)| ≈

κ|β − 1|mβϵ < ϵ.

10



Figure 5: Phase plane for model (6) when β > 2.

Then we compute the desynchronized part of model (6) and the curve κ|β − 1| ≤ 1 as

Fig. 6.

2.4 Synchronized of N Trees’ Model

Theorem 2.2. When κ|1 − β
n−1

| < 1, the resource budget model (4) with N-trees will syn-

chronized.

Proof. Suppose there are N trees at time t, x1(t), x2(t), ..., xN(t) ∈ (0, 1] such that x1(t) ≤

x2(t) ≤ · · · ≤ xN(t), N ≥ 2. Let ϵ = max
m=2,··· ,N

{|xm(t) − xm−1(t)|}, and let xm(t)
′ = x1(t) +

11



Figure 6: The blue part is desynchronized and the red line is κ|β − 1| ≤ 1.

(m− 1)ϵ for m = 1, ..., N then we have |xN(t)− x1(t)| ≤ |x′
N(t)− x′

1(t)| ≤ (N − 1)ϵ, and

x′
1(t+ 1) = −κx1(t)(

(N − 1)x1(t) +
1+(N−1)(N−1)

2
ϵ

N − 1
)β + 1

= −κx1(t)(x1(t) +
Nϵ

2
)β + 1

= −κxβ+1
1 (t)− kβxβ

1 (t)
Nϵ

2
+ o(ϵ) + 1,

x′
N(t+ 1) = −κ(x1(t) + (N − 1)ϵ)(

(N − 1)x1(t) +
1+(N−2)(N−2)

2
ϵ

N − 1
)β + 1

= −κ(x1(t) + (N − 1)ϵ)(x1(t) +
N − 2

2
ϵ)β + 1

= −κxβ+1
1 (t)− κxβ

1 (t)ϵ(
N − 2

2
β + (N − 1)) + o(ϵ) + 1.

Because model (4) is strictly decreasing so |xN(t+ 1)− x1(t+ 1)| ≤ |x′
N(t+ 1)− x′

1(t+ 1)| ≤

|κxβ
1 (t)ϵ(N − 1 − β) + o(ϵ)| ≈ |κxβ

1 (t)ϵ(N − 1 − β)| = κ|N − 1 − β|xβ
1 (t)ϵ. And xβ

1 (t) ≤ 1,

so we can find a sufficient condition κ|1 − β
N−1

| < 1 such that |xN(t + 1) − x1(t + 1)| ≤

|x′
N(t+ 1)− x′

1(t+ 1)| ≈ κ|N − 1− β|xβ
1 (t)ϵ < (N − 1)ϵ.

This way we compute the desynchronized part of model (4) and this curve for N = 3, 4 as

Fig. 7 and Fig. 8.

So, in order to analyze the behavior of model (4), we rewrite the model as

Y (t+ 1) =

 Y (t) + 1, if Y (t) ≤ 0,

−κY (t)β+1 + 1, if Y (t) > 0.
(7)
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Figure 7: The desynchronized part and curve for 3 trees.

After we rewrite the model, the phase plane become Fig. 9. Instead of Fig. 2’s desynchronized

part, the behavior of these two models are almost identical.

3 Mathematical Analysis

The following are some mathematical analysis of Isagi’s resource budget model. We sup-

pose the trees are synchronized as model (7).

3.1 Stability Analysis

Suppose F (x) has a period-n solution. If |(F (n))′(x)| < 1, then the solution is stable. If

|(F (n))′(x)| = 1, then the solution is unstable.

Corollary 3.1 ([7]). Suppose x0, x1, ..., xn lie on a cycle of period n for F with xi = F i(x0).

Then

(F n)′(x0) = F ′(xn−1) · · ·F ′(x1) · F ′(x0).

For κ ≤ 1 on the Fig. 2, we can see that this part is fulled by period-1 and period-2. And

in the period-1’s district, the solution satisfies

x = −κxβ+1 + 1. (8)
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Figure 8: The desynchronized part and curve for 4 trees.

This solution is stable if |(β + 1)κxβ| < 1, so |(β + 1)κxβ| = (β + 1)κxβ < 1. Then by

equation (8), (β + 1)κxβ+1 < x = −κxβ+1 + 1, (β + 2)κxβ+1 < 1, x <
(

1
κ(β+2)

) 1
β+1 So we

have (β + 1)κ(κ(β + 2))
−β
β+1 < 1, κ < (β+2)β

(β+1)β+1 . Therefore, the boundary between stable part

and unstable part of model (7) when κ ∈ [0, 1] is

κ =
(β + 2)β

(β + 1)β+1
.

Let f(κ) = β, then

κ = f−1(β) =
(β + 2)β

(β + 1)β+1
, (9)

f−1(0) = 1, and we show the equation (9) as Fig. 10.

Question 3.2. Does f−1(β) belong to L1?

Proof. Because
∫∞
0

1
β+1

dβ = lim
t→∞

∫ t

0

1

β + 1
dβ = lim

t→∞
(ln(t+1)− ln 1) = lim

t→∞
ln(t+1) is diver-

gent. And lim
β→∞

(β+2)β

(β+1)β+1

1
β+1

= lim
β→∞

(β + 2)β

(β + 1)β
= e

lim
β→∞

β ln β + 2

β + 1 , lim
β→∞

β ln β + 2

β + 1
= lim

β→∞

ln β+2
β+1

β−1
=

lim
β→∞

β+1
β+2

β+1−(β+2)
(β+1)2

−β−2
= lim

β→∞

β2

(β + 1)(β + 2)
= 1, that is, lim

β→∞

(β+2)β

(β+1)β+1

1
β+1

= e. So, κ = f−1(β) =

(β+2)β

(β+1)β+1 is not in L1.

Question 3.3. Does f−1(β) belong to L2?

14



Figure 9: Phase plane for model (7).

Proof. Because
∫∞
0

1
(β+1)2

dβ = lim
t→∞

∫ t

0

1

(β + 1)2
dβ = lim

t→∞
((t + 1)−1 − 1) = 1 is convergent.

And lim
β→∞

(
(β+1)β

(β+1)β+1

)2
(

1
β+1

)2 = lim
β→∞

(β+1)2β

(β+1)2β+2

1
(β+1)2

= lim
β→∞

(β + 2)2β

(β + 1)2β
= e

lim
β→∞

2β ln β + 2

β + 1 = e2. So, κ =

f−1(β) = (β+2)β

(β+1)β+1 is in L2.

Proposition 3.4. Let κ1(β) = 1
β

N−1
−1

and κ2(β) = (β+2)β

(β+1)β+1 , then κ1 and κ2 will intersect

when N = 2, 3 as shown in Fig. 11.

Proof. We know κ1(2(N −1)) = 1, and (κ2)
′(β) = (β+2)β

(β+1)β+1 (ln(β+2
β+1

)− 2
β+2

), because ln(β+2
β+1

) =

log(1 + 1
β+1

) < 1
β+1

, so (κ2)
′(β) < (β+2)β

(β+1)β+1 (
1

β+1
− 2

β+2
) < 0. And κ2(0) = 1, so we have
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Figure 10: The line that separates period-1 and period-2.

κ2(2(N − 1)) < 1 = κ1(2(N − 1)). Then when β > 2(N − 1)

κ2(β)− κ1(β) =
(β + 2)β

(β + 1)β+1
− 1

β
N−1

− 1

=
1

β + 2
(1 +

1

β + 1
)β+1 − N − 1

β − (N − 1)

≤ e

β + 2
− N − 1

β − (N − 1)

=
β(e−N + 1)− (e+ 2)(N − 1)

(β + 2)(β − (N − 1))
< 0, for N ≥ 4.

(i) When N = 2, choose β = 4, we have κ2(4) ≈ 0.4147 > κ1(4) ≈ 0.3333.

(ii) When N = 3, choose β = 20, we have κ2(20) ≈ 0.1207 > κ1(20) ≈ 0.1111.

Therefore, κ1 and κ2 have an intersection on [2,∞) when N = 2, 3 and has no intersection

when N ≥ 4.

In order to look the stability for other κ and β, we use MATLAB to make a figure to show

the stability for a pair of κ and β by Corollary 3.1 which is,

|(F (n))′(x0)| = |F ′(xn−1) · · ·F ′(x1) · F ′(x0)|),
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Figure 11: The blue line is κ2, and the others are κ1, red is N = 2, cyan is N = 3, green is

N = 4, yellow is N = 5.

and the equation

F ′(x) =

 1, x < 0,

−(β + 1)κxβ, x > 0.

Then we get a figure as shown in Fig. 12. In Fig. 12, green part represents stable, cyan part

represents high period, and navy blue part represents unstable.

Now we let Y (t) = ϵ be the initial value of deviation from Y (t) = 0, and assume that these

are small in magnitude. In the next step, Y (t + 1) are slightly smaller or equal to 1, which

leads to the conclusion that Y (t + 2) are slightly larger or equal to 1 − κ. In the following

steps, Y (t + 2) is simply added by 1 per unit time. Hence Y (t + κ + 1) is close to 0 but is

positive. This implies that starting from any value close to 0, after κ+ 1 steps, Y (t+ κ+ 1)

is small positive.

So, if Y (t) = ϵ, then Y (t + κ + 1) = −κ(−κϵβ+1 + 1)β+1 + κ = −κ(1 + Cβ+1
1 (−κϵβ+1) +

o(ϵβ+1) + κ = κ2(β + 1)ϵβ+1.

And the ratio of |Y (t+ κ+ 1)| and |Y (t)| is

|Y (t+ κ+ 1)|
|Y (t)|

=
κ2(β + 1)ϵβ+1

ϵ
= κ2(β + 1)κϵβ → 0 as ϵ → 0.

Hence Y (t) will converge to 0 at every κ+1 times. That is, when κ ∈ N, there is a periodic
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Figure 12: The stability for a pair of κ and β.

solution (−κ+ 1,−κ+ 2, . . . , 0, 1). From this, we can conclude that this periodic solution is

stable as long as β > 0.

When κ is close to but not the same as an integer, we consider κ is close to 2. The exact

periods of these cycles are 3, 6, 12 or still longer one. But the numerical values of all of these

cycles are close to a cycle of period 3, being close to 0, 1,-1 and close to 0 again. To examine

the exact location of these branches and their local stability, we must calculate each candidate

cycle and its stability condition.

So, we first consider period 3 cycle starting from a small positive value. Let Y (t) = ϵ,

where ϵ is small positive value. Then Y (t+ 1) = −κϵβ+1 + 1, which is close to 1. Y (t+ 2) =

−κ(−κϵβ+1 + 1)
β+1

+ 1, which is close to -1. Y (t + 2) = −κ(−κϵβ+1 + 1)
β+1

+ 2, which

is close to 0. So the period 3 cycle satisfy ϵ = −κ(−κϵβ+1 + 1)
β+1

+ 2, and this equation

has positive solution ϵ > 0 if 1.881 < κ < 2 [24]. And this cycle’s stability condition is

| − (β + 1)κϵβ|| − (β + 1)κ(−κϵβ+1 + 1)β| = κ2(β + 1)2ϵβ(−κϵβ+1 + 1)β < 1 as ϵ sufficiently

small.

Then we consider period 3 cycle starting from a small negative value. Let Y (t) = −ϵ,
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where ϵ is small positive value. Then Y (t + 1) = −ϵ + 1, which is close to 1. Y (t + 2) =

−κ(−ϵ + 1)
β+1

+ 1, which is close to -1. Y (t + 3) = −κ(−ϵ + 1)
β+1

+ 2, which is close to 0.

So the period 3 cycle satisfy −ϵ = −κ(−ϵ+ 1)
β+1

+2, and this equation has positive solution

ϵ > 0 if κ > 2, no positive solution ϵ > 0 if κ ≤ 2. And this cycle’s stability condition is

| − (β + 1)κ(−ϵ+ 1)β|, which cannot be satisfied whether (β + 1)κ(−ϵ+ 1)β is bigger or less

than 1 if ϵ is small because κ is close to 2. So, it is unstable.

And consider period 3 cycle starting from a small positive value Y (t) = ϵ+, comes back

to a small negative Y (t + 3) = −ϵ− after 3 steps, and then comes back to the starting small

positive value after another 3 steps Y (t + 6) = ϵ+. And this cycle’s stability condition is

| − (β + 1)κϵβ+|| − (β + 1)κ(−κϵβ+1
+ + 1)β|| − (β + 1)κ(1 − ϵ−)

β|, according to the numerical

analysis, the branch of period 6 is stable for 1.982 < κ < 2.018 but unstable outside of this

range [24].

In a similar manner, we can calculate the periodic cycles and its local stability for a longer

period.

3.2 Topological Entropy of the Model

By corollary 1.8, if f : I → I is a piecewise-monotone continuous map then lim
n→∞

(
1

n
logV (fn)) =

htop(f) [13].

V (fn) is total variation of fn in an invariant set I. In order to compute the total variation,

we first cut the invariant set into m disjoint parts, and these parts will exactly cover another

part or union of some parts through the function. Then we count the number of these parts

as the total length of the iteration.

Example 3.5. The total variation of n times iterated of tent map 1 for k = 2.

t(x) =

 2x, if x < 1
2
,

2− 2x, if x ≥ 1
2
.

The invariant set is [0, 1], then we separate I = [0, 1] to I1 = [0, 1
2
] and I1 = [1

2
, 1], t(I1) = I,

t(I2) = I,

V (t(I1)) = V (I) = I1 + I2, V (t(I2)) = V (I) = I1 + I2.

So, V (t0) = V (I) = I1 + I2, the total length is generated by the length of I1, I2.

V (t1) = V (t(I1)) + V (t(I2)) = 2I1 + 2I2,
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the total length is generated by the length of 2I1, 2I2,

V (t2) = 2V (t(I1)) + 2V (t(I2)) = 4I1 + 4I2,

the total length is generated by the length of 4I1, 4I2.

Follow this way, then we distribute a matrix that represent the transition of the quantity

of every parts. That is, let T =

 1 1

1 1

, so we can compute the total variation by

V (tn) =
[
V (I1) V (I2)

] 1 1

1 1

n  1

1

 =
[

1
2

1
2

] 1 1

1 1

n  1

1

 = 2n.

From this example, we can see that if we define the graph of the model (as Fig. 13), then

we can use this graph to distribute the transition matrix to compute the total variation.

Figure 13: The graph of tent map when coefficient is 2.

Consider the model (7) for κ ∈ N, κ ≥ 2, the invariant set is [−κ+1, 1]. Now we separates

this set into κ parts, that is,

I = [−κ+ 1, 1] = [−κ+ 1,−κ+ 2] ∪ [−κ+ 2,−κ+ 3] ∪ · · · ∪ [−1, 0] ∪ [0, 1] =
κ∪

m=1

Im,

and by the definition of this model, f(Im−1) = Im, for m = 1, · · · , κ − 1, f(Iκ) = I,

V (f(Im−1)) = V (Im), for m = 1, · · · , κ− 1, V (f(Iκ)) = V (I) = V (I1) + V (I2) + · · ·+ V (Iκ).

So, V (f 0) = V (I) = V

( ∪
m=1,··· ,κ

Im

)
= I1 + I2 + · · · + Iκ = κ. Now the total length is

generated by the length of I1, I2, . . . , Iκ. Then V (f 1) = V (f(I)) = V

( ∪
m=1,··· ,κ

f(Im)

)
=

V

( ∪
m=1,··· ,κ−1

f(Im)

)
+V (f(Iκ)) = (I2+ I3+ · · ·+ Iκ)+ (I1+ I2+ · · ·+ Iκ) = I1+2I2+ · · ·+

2Iκ−1 + 2Iκ the total length is generated by the length of 2I1, 2I2, . . . , 2Iκ−1, Iκ.

Follow this way, Then we can distribute a matrix that represent the transition of the

quantity of every parts (also can by the graph as Fig. 14).
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Figure 14: The graph of model (7).

That is, let eκ denotes the vector that (eκ)j = δκ,j, then

T =
[
eT2 eT3 · · · eTn

∑n
i=1 e

T
i

]T
κ×κ

,

such that

V (fn) =
[
V (I1) V (I2) · · · V (Iκ)

]
1×κ

T n
(∑n

i=1 e
T
i

)
=
[
1 1 · · · 1

]
1×κ

T n
(∑n

i=1 e
T
i

)
= ET nET , where E =

∑n
i=1 ei.

Proposition 3.6. If f : I → I is a piecewise-monotone continuous map, and the change

of the variation of f can be represent as a matrix T , then htop(f) = logλ1, λ1 > 0, where

λi, i = 1, . . . , n are eigenvalues of T and λ1 > |λm|.

Proof. Because this T is irreducible, so by Perron-Frobenius Theorem [1], there exists λ1 >

0, and λ1 > |λm|, for all m ̸= 1, λ1, . . . , λm are eigenvalues of T. And let v1, . . . , vn are

eigenvectors corresponding to λ1, . . . , λn, then (v1, E
T ) = Ev1 > 0. Represent ET in the

form ET = (Ev1)v1 + b, b belongs to eigenspace corresponding to λm , for all m ̸= 1. Now,

V (fn) = ET nET = E((Ev1)λ
n
1v1 + T nb) = λn

1 ((Ev1)
2 + αn), αn tends to 0 as n tends to

infinity. So,

htop(f) = lim
n→∞

(
1

n
logV (fn))

= lim
n→∞

(
log(λn

1 ((Ev1)
2+αn))

n

)

= lim
n→∞

(
logλn

1

n
+

log ((Ev1)
2+αn)

n

)

= lim
n→∞

(
n log(λ1) + βn

n
)

= logλ1 (because βn → 0 as n → ∞).
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Definition 3.7 ([32]). The matrix

A =



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

· · · ·

· · · ·

· · · ·

0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1



,

is called the companion matrix of the characteristic polynomial

f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk).

By Definition 3.7 the transpose of the matrix Tκ∗κ we obtain before is a companion matrix

with a0 = a1 = · · · = ak−1 = −1, and because T and T T has same eigenvalues, so the

eigenvalues of Tκ×κ satisfies −λκ + λκ−1 + λκ−2 + · · ·+ λ+ 1 = 0.

Proposition 3.8. The topological entropy of model (7) is bigger than 0 for κ ∈ N \ {1}.

Proof. Because −λκ+λκ−1+λκ−2+ · · ·+λ+1 = −λκ+1+2λκ−1
λ−1

= 0. Let f(λ) = −λκ+λκ−1+

λκ−2 + · · · + λ + 1 = −λκ+1+2λκ−1
λ−1

= −λκ + λκ−1
λ−1

, then f(1) = κ − 1 > 0, f(2) = −1
2

< 0,

so by Intermediate Value Theorem, there exists a root in the interval (1, 2).Because f ′(λ) =

−κλκ−1 + κλκ−1(λ−1)−(λκ−1)

(λ−1)2
= −κλκ−1 + κλκ−1

λ−1
− λκ−1

(λ−1)2
= −((1 − 1

λ−1
)κλκ−1 + λκ−1

(λ−1)2
) < 0 for

λ > 1, so we know f(λ) is strictly decreasing for λ > 1. More precisely, we suppose the root

λ = 2− ϵ then f(2− ϵ) = −(2−ϵ)κ+1+2(2−ϵ)κ−1
(2−ϵ)−1

= ϵ(2−ϵ)κ−1
1−ϵ

= 0 , ϵ(2− ϵ)κ − 1 = 0, (2− ϵ)κ = 1
ϵ
,

κ is increase as ϵ decrease, so the root is close to 2 when κ is sufficiently large.

Therefore, htop(f) = logλ1 > log(1) = 0.

By Theorem 1.4 and Corollary 1.8, we can obtain that the model (7) is chaotic in Li and

Yorke’s sense for κ ∈ N \ {1}.

4 Numerical Analysis

By Definition 1.10 to compute the Lyapunov Exponents of two trees’ model (6), first we

need to compute ∥Df(x)∥, then the Lyapunov Exponents

λ(x0) = lim sup
n→∞

ln |Dfn(x0)|
n

= lim sup
n→∞

∑n−1
j=0 ln |Df(xj)|

n
, where xj = f j(x0).
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We use MATLAB to compute the Lyapunov Exponents of model (6) as shown in Fig. 15,

Fig. 16, Fig. 17, and Fig. 18.

Figure 15: Lyapunov Exponents of model (6) when β = 2.

In Fig. 15, fixed β = 2, and red line is the first Lyapunov exponents and blue line is the

second Lyapunov exponents, then we can see that the first Lyapunov exponents are almost

positive when κ > 1 except κ ∈ N, and second Lyapunov exponents are negative. In Fig. 16

and Fig. 17, these two figures show that the first and the second Lyapunov exponents for a

pair of κ and β, we can see that the second Lyapunov exponents are negative. In Fig. 18,

the first subfigure is the first Lyapunov exponents for a pair of κ and β, the second subfigure

is the phase plane of the model (6) and the period is corresponding to color bar. This way,

we can see more careful that the Lyapunov exponents is negative appear in the period part.

Then we compute the Lyapunov exponents of model (7) as shown in Fig. 19, we can also see

that the first Lyapunov exponents are negative for κ ∈ N, too.

5 Future Work

For κ > 0, when κ ∈ N, there are period solution there, but except here, this model are

almost high period. And these solutions are stable, Lyapunov exponents are also negative,
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Figure 16: First Lyapunov exponents for a pair of κ and β.

but the topological entropy are bigger than 1. We guess this is computer’s numerical error

like tent map when κ = 2.

The line κ|1− β
N−1

| = 1 for n-trees seperates the region to two parts, which is synchronized

by the sense of contraction and others. If we make the condition looser, like become dispersed

in next m − 1 steps and closer at m step. This way we may can seperates the synchronized

part and desynchronized part more accurately.

In original model (5), when a tree is bigger than one, and others are smaller than one.

Next time this tree will become one until another tree is bigger than one. We think this is

not reasonable because if one the other tree spent much time to become bigger than one, this

model tell us the first tree will stay one and always wait but not withered. So we think this

model can be improved. And some plants can flowering itself like papaya, this means it will

not wait other trees until they can produce pollen. This way we rewrite model (4) as

Yi(t+ 1) =

 Yi(t) + 1, if Yi(t) ≤ 0,

−κYi(t)Pi(t)
β + 1, if Yi(t) > 0,

(10)
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Figure 17: Second Lyapunov exponents for a pair of k and β.

in which Pi(t) is given by

Pi(t) =

(
1

N

N∑
j=1

[Yj(t)]+

)
, (11)

where [Y ]+ = Y if Y > 0; [Y ]+ = 0 if Y ≤ 0. Then we compute the phase plane of this model

for two trees as Fig. 20. This is deiiferent as Fig. 4 and the analysis of this model can be an

extention of this paper.
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Figure 18: Lyapunov exponents and the phase plane of the model (6).
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