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Abstract

In our work, we use mathematical theorem-and computer-assists to determine whether
maps or systems'are chaotic. We use topological-entropy and lyapunov exponents, and
use stability analysis to find the boundary of parameters'that has periodic solution. If
a system have positive topological entropy means that systemis chaotic according to
the definition of Li_and Yorke and if system have ‘positive Liyapunov exponent means
sensitivity in Devaney’s chaos. In ecology, Satake and Iwasa’s generalized resource
budget model that modified from Isagi et al’s'resource budget model in 2000. In this
work, mathematical views and numerical analysis are presented to discover the suffi-
cient condition that synchronicity will happened and to discover the conditions that the
system have positive topological entropy and positive Lyapunov exponent on Satake
and Iwasa’s generalized resource budget model. Subsequently, topological entropy are

utilized to prove that the model is chaotic in Li and Yorke’s sense.
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1 Introduction

In ecology, Satake and Iwasa’s generalized resource budget model that modified from Is-
agi et al’s resource budget model in 2000 [24]. They do many analysis and explaination for
the simulation of the model generalized resource budget model. But, there is a strange phe-
nomenon that the result will become periodic when depletion coefficient k is cross to positive
integer except for other places when x > 1. So we guess that is happened by simulation’s
conuting error.

In recent decades, chaotic theory has advanced rapidly. Many mathematical tools can be
used to measure or describe the “chaotic” conditions. In [4], they has proved that General-
ized Resource Budget Model [24] has Devaney’s chaos when the depletion coefficient k € N
by snapback repellers. It is contradiction with numerical simulation because of conuting er-
ror, like use Matlab to simulate tentmap when coefficient is 2. In this thesis we use two
mathematical tools, topological entropy and lyapunov exponent, with numerical simulation

by Matlab to analysisithe generalized resource budget model.

1.1 Definitions of Chaos

The definitions of c¢haos of Devaney and of Li and Yorke are considered herein because

they are fundamental and widely accepted:

Definition 1.1 (Devaney [6]). Let X+ be a metri¢ space. A continuous map f: X — X is
said to be chaotic on X if

(i) fis topologically transitive. That is, for any pair of nonempty open sets U,V C X there
exists k > 0 such that f*(U) NV # (;

(ii) periodic points are dense in X;

(iii) f has sensitive dependence on initial conditions,meaning that, there exists § > 0 such

that, for any x € X and any neighborhood U of x, there exists y € U and m € N such
that [f™(x) — f™(y)| > 4.

Definition 1.2 (Li and Yorke [18]). Let I be an interval of the real line and f : [ — I a
continuous function. f is chaotic if f has an uncountable scrambled set S C I which satisfies

the following condition:



(i) for every p,q € S with p # g,

limsup | /" (p) = f™(g)] >0 and  liminf|f™(p) = f™(q)] = 0;

m— 00

(ii) for every p € S and periodic point ¢ € I,

limsup [ f™(p) — f™(q)| > 0.

m—00

The following are two ways to measure the chaos, which is “topological entropy” and

“Lyapunov exponents.”

1.2 Topological Entropy

Topological entropy is a quantitative measurement of how chaotic the map is. In fact,
it is determined by how many “different orbits” there are for a given map (or flow). To get
an intuitive idea of the concept, assume that you cannot distinguish points which are closer
together than a given resolution e. Then, two orbits of length n can be so distinguished
provided there is some iterate between 0 and. 7 for which they are distance greater than e
apart. Let r(n,e¢, f) be thenumber of such orbits of length n that can be so distinguished.
The entropy for a given €, h(e, f), is the growth rate of r(n, ¢, f) as n goes to infinity. The
limit of h(e, f) as € goes to 0 is the entropy of f, A(f). The key idea in this sequence of limits
is the growth rate of the mumber of orbits of length 7 that are at least € apart [23].

Definition 1.3 ([23]). Letf : X — X be a continuous map on the space X with metric d.
A set S C X is called (n, €)-séparated forf-for n_a positive integer and € > 0 provided that
for every pair of distinct points z,y € 'S,z # y, there is at least one k with 0 < k& < n such
that d(f*(x), f¥(y)) > e. Another way of expressing this concept is to introduce the distance
dy(z,y) = sup d(f*(z), f*(y)).
0<j<n

Using this distance, a set S C X is (n, €)-separated for f provided d,, (z,y) > € for every pair
of distinct points x,y € S, x # y.

The number of different orbits of length n (as measures by €) is defined by

r(n,e, f) = max{#(S) : S C X is a (n, €)-separated set for f},

where #(.5) is the number (cardinality) of elements in S.

We want to measure the growth rate of r(n, e, f) as n increases, so we define

h(e, f) = limsup w.

n—00 n



If r(n,e, f) = e, then h(e, f) = 7; thus, h(e, f) measures the “exponent” of the manner in
which r(n, e, f) grows with respect to n.
Note that r(n,€, f) > 1 for any pair (n,€), so 0 < h(e, f) < co. Finally, we consider the way

that h(e, f) varies as € goes to 0 ,and define the topological entropy of f as

h(f) = lim h(e, f).

e—0,e>0

Theorem 1.4 ([17]). If a continuous map of the interval has positive topological entropy,

then it is chaotic according to the definition of Li and Yorke.

Definition 1.5 ([33]). Let f(z) be a real-valued function which is defined and finite for all =

in a closed bounded interval a < x <b. Let
[l =g, 140e., T

be a partition of [a, b]; that isy I is a-€ollection of points 24, 4= 0, 1, ..., m. With each partition

I', we associate the sum

m

Sr = Sebfra, 8= DoAf () 2 Fii )l

i=1

The variation of f over [a, b] is defined as
V = V[fa,b] = sup Sr.
T

where the supremum is taken over all partitions I' of [a;b]. Since 0 < Sp < +oo, we have

0<V <+4o0. f V<400, fis of unbounded variation on|a, b|.

Example 1.6 ([33]). Suppose f is monotone in [a,b]. Then, clearly, each Sr equals |f(b) —
f(a)|, and therefore V = |f(b) — f(a)|.

Example 1.7. The total variation of tent map for k£ =2 on [0, 1].

kx, if x

<
t(z) = .
k(1 —x), ifz>

’ (1)

Nl= NI

The invariant set is [0,1]. And f is monotone in [0, 5] and [, 1], so V(£;[0,1]) = V(¢ [0, 3]) +

V (t; [%, 1]) = 2. It, together with all its iterates, has constant absolute value of the slope

which therefore gives the variation, that is,
V(") =2".

This argument applies to any map whose slope is of constant absolute value [33].



Corollary 1.8 ([13]). If f: I — I is a piecewise-monotone continuous map, then

lim l log V(fn) = htop(f)7

n—oo N,

where V(f™) is total variation of f™ in an invariant set I.

Example 1.9. We use Corollary 1.8 to compute topological entropy of tent map (1) for k = 2.
From Example 1.7 we obtain V(") = 2", so

1
hiop(t) = lim —log2™ = log 2.

n—oo M

1.3 Lyapunov Exponents

In discussing chaos, we referred to Lyapunov exponents which measure the (infinitesimal)
exponential rate at which nearby orbits are moving apart.
We want to give an expression for determining the growth rate of the derivative of a function
f : R — R as the number of iterates inéreases: If |(f")"(xo)| ~ L", then log(|(f™) (zo)|) ~
log(L™) = nlog(L), or‘(&)log(|(f™)(zo)|) ~ log(L). In the best situations, the limit of this
quantity exists as n goes to.infinity. If we take the limsup, then it always exists as n goes to

infinity [23].

Definition 1.10 ([23]). Let f # R= R be a C" function.  For each point z,, define the

lyapunov exponents of Toy A(xo), as follows:

(o) = lim S ow(|( ") () ) = i, <5714 log(1f'(z,))

n—00 n—oo N
where x; = f/(xq). (The first and second limits are equal by the chain rule.) Note that
the right-hand side is an average along an orbit (a time average) of the logarithm of the

derivatives.

Remark 1.11. Assume A(xp) > 0 which implies that
log(|(f")(z0)]) = nA(wo) or [(f")(xo)| = e = L(xo)",
where L(zg) = e*®) > 1, and
| (xo +6) — f(m0)] = |(f") (20)|0 — o0, as n — oo.

Therefore, a positive Lyapunov exponent means sensitive dependence on initial conditions,
this result is very important and useful since it enables a single quantity to be computed to

determine whether a chaotic process is highly sensitive to initial conditions [23, 34].



2 Ecological Models and Numerical Simulation

Many trees in forests reproduce intermittently, rather than at a constant rate [24]. A
number of flowers and fruits are produced in a particular year (called a mast year) but very
little reproductive activity occurs during several subsequent years until the next mast year.
This “synchronous production of highly variable amount of seeds from year to years by a
population of plants” is called masting [24]. Perfect periodicity in reproduction is rarely
observed, and the intervals between masting are rather irregular.

Several explanations of the masting phenomenon have been proposed [3, 25, 26, 31, 14,
11, 12, 28, 2, 21, 30, 19, 8, 9, 16, 14, 22, 29, 5, 27, 15]. They involve environmental fluctu-
ations, weather conditions, swamping predators, the weight of young deer, bird populations,
the reproductive success of bears, increased efficiency of wind pollination, attraction to seed
distributions, cue masting, and the dispersing amimals: However, most of these hypothe-
ses explain neither the mechanism of masting nor the mechanism by which the timing of

reproduction varies ameng individuals [24].

2.1 Isagi’s Resource Budget Model

Photosynthate

| — Respiracion

| — Turnoverf leaxes,
branches, roots.,.,

-
s Surplus phetosynthate
C";-
-~ L .-
= P
i" 5
.
Accumulation
of P, | |
t t+1 t+2 t+3
Flowers Fruits
R = CJC;

Figure 1: Resource budget model of an individual plant.

Isagi, Sugimura, Sumidaa and Ito proposed a simple model of the mechanism of masting



that was based on the resource budget of an individual tree [10]. As in Figure 1. From
photosynthesis, a mature tree gains net production Pg per year, which is accumulated in the
trunk or branches. When the energy reserve exceeds a critical level for reproduction, the tree
sets flowers and produces seeds and fruits. Let S(t) be the amount of energy reserve at the
beginning of year t. If the sum S(t)+ P; is below a critical level L, the tree does not reproduce
and saves all the energy reserve for the following year.However, if the sum exceeds L;, the tree
uses energy for flowering. They assumed that the energy expenditure for flowering is exactly
as same as the excess [10], a(S(t) + Ps — L), in which a is a positive constant. Flowering
plants may be pollinated and set seeds and fruits. It is assumed that the cost for fruits is
proportional to the cost of flowers, and is expressed as R.a(S(t) + P; — Ly), in which R, is
the ratio of fruiting cost to flowering cost. After the reproductive stage, the energy reserves
of the tree falls to S(t) + Ps — a(R. + 1)(S(t) # £s.— Lr). Hence, we have
S(t) + Ps, it S(t) + Ps < Ly,

Sit+1) = ‘ (2)
S(t)4+P, —a(R.+ 1)(S(t)+ P, — Ly), if S(t)+ P, > Lr,

(S(t+1) +P5 = Ly) e il (£) + P < L,
2 = (Lﬂ@hﬂ%f@+&_h)+l,ifsa)+}%>>LT

Then introduce a non-dimensionalized variable Y (¢).=(S(t)+ P —Lr)/Ps. Then equation (2)

is rewritten as

Y £1)= Y(t)+ 1, it ¥ (t) <0, )
—kY (6) + 1, i Y(t) >0,
in which k = a(R. + 1) — 1. The parameter « indicates the degree of resource depletion after
a reproductive year divided by the excess amount of energy reserve before the year. We call
r the depletion coefficient, and assume that x > 0. From equation (3), Y'(¢) < 1 holds. We
also note that the quantity Y (¢) is positive if and only if the tree invests some reproductive
activity in year t.

After this rescaling,the dynamics of equation (3) include only a single parameter . Other
parameter such as the annual productivity P or the critical level of reproduction Ly do not
affect the essential features of the dynamics if £ remains the same. In [24] and [4], authors
proposel many theoretical and numerical results for the model (3). In this thesis , we will

focus on the models of two or more trees and introduce the model later.



2.2 Coupling of Trees Through Pollen Availability

In the model described above, when x > 1, small initial differences in energy reserves
between individuals increase with time. This makes it difficult for different trees to synchronize
their reproduction. However, synchronized reproduction of trees is often reported in many
forests. Fruiting efficiency may depend on the flowering activity of the other trees in a forest
because pollination efficiency changes with the number of plants flowering in a population [20].
This effect can lead to the intermittent flowering of trees to become synchronized as shown
by the Isagi et al. (1997) computer simulation. Using our notations, pollen coupling can be
formalized as follows: consider a forest including N individuals with index i (i = 1,2,..., N).
To model the pollen limitation of reproduction, we replace x in equation (3) by kP;(t). Pi(t)
is a factor smaller than or equal to 1, and it indicates pollen availability for the i-th tree.

Then the non-dimensionalized energy reserve of the i-th tree is

Yt ¥1) = T NG @
: TR 0P + 1 if %il6) > 0,

in which P;(t) is given by,

P1)= (ﬁ Z[Yj(m) , )

JFi
where [Y] =Y if Y »0; [Y]p =0if ¥ <0. Pi(t) =1 holds when all the other trees
reproduce at full intensity (Y;(#) =1 for all j # i). The'smallness of factor P;(¢) indicates the
strength of pollen limitation in seed and.fruit production. In calculating pollen availability,
Isagi et al. [10] summed up over all the individuals in the forest, but we exclude tree 7 itself
from the sum in equation (5) because only outcrossed pollen is assumed to contribute seed
and fruit sets.

The parameter 3 determines the shape of the function P;(¢) in equation (5) and controls
the degree of dependence of fruit production on outcross pollen availability. If 3 is close to
zero, fruit production is almost independent of the reproductive activity of the other trees
in a forest. Small g corresponds to either a high pollination efficiency or a high density of
trees because a small fraction of flowering in the rest of the forest is sufficient to achieve
good fruiting success. In contrast, a large § implies a strong dependence of seed and fruit
production on the reproductive activity of other trees in the forest. Consider a tree that
flowers in a year in which only a small fraction of other trees flower. The tree will fail to

produce many fruits because of pollen limitation, and it will not experience a heavy resource



depletion. The tree will continue to flower in the following years, until the year comes in
which many other trees in the forest also flower at a high blooming intensity. Then they all
experience a large fruit set and resource depletion, which gives a mechanism to make different
individual trees synchronized in the face of chaotic tendency of each individual. Hence we
call 8 the coupling strength [10].

Then we compute the phase plane of this model as shown in Fig. 2. First we iterate
the model for 1500 steps, then to see the situation of the next 1000 steps. Every parts
depends on colors according to the color bar indicates the period, and the navy blue part is
desynchronized, between the synchronized part and desynchronized part, there is black blue

part represents clustering, and red part is high period.

Figure 2: Phase plane for model (4).



2.3 Two Trees’ Model

In order to analyze this model, first we consider two trees, this way there are not clustering

part. So, the model becomes

;

(Yi(t) + 1, Ya(t) + 1), if Yi(t) < 0,Ya(t) <0,

Vit 1), Vol 4+ 1)) = (Yi(t) +1,1), if Yy (t) < 0,Ys(t) > 0,
(L, Y3(t) + 1), if Y1(t) > 0,Ya(t) <0,

(=kY1()YL (1) + 1, —cYa ()Y () + 1), if Yi(t) > 0,Y3(t) > 0.

(6)
And the bifurcation diagram of these two trees is shown as Fig. 3. It looks like period

doubling, but when £ close to nature number, it will become periodic.

Figure 3: Bifurcation diagram for model (6).

Then we compute the phase plane of this model (6) as shown in Fig. 4 and Fig. 5. First
we iterate the model for 1500 steps, then to see the situation of the next 1000 steps. In this
pair of figures, Every parts depends on colors according to the color bar indicates the period,
and the navy blue part is desynchronized. We can see that the model will go into a period
cycle when x cross to N. And the width of these periodic parts will become wider when [

become bigger, the first Lyapunov exponent on these parts are also negative.



Figure 4: Phase plane for model (6) when < 2.

Lemma 2.1. When r|f — 1| <L, the-model (6) will-become synchronized.

Proof. 1f z(t) and y(t) are negative, then the distance of z(t+ 1) and y(¢+ 1) will not change.
So, the distance will changée when #(t) and y(t).€ (0;1). "And from model(6), there exist
time ¢ such that y(t),z(t) € (0,1]. ZThis way, we suppose in time ¢, we have z(t) < y(t)
y(t), z(t) € (0,1] and they are close. And in time ¢ + 1 they become synchronized. That is,
let x(t) =m, y(t) =m+e, |x(t) —y(t)| =€, €issmall. Then,
(t+1) = —em(m +€)’ +1 = —km(m® + CPmP e + o(e)) + 1
= —rmP T — kBmPe — km x o(e€) + 1,
y(t+1) = —s(m +e)m? + 1 = —em? ™ — kem” + 1,
lz(t 4+ 1) —y(t + 1) = |(=emP ™ — kBmPe — km x o(€) + 1) — (—em” T — kem” + 1)|
= | — k(B — 1)mPe — km x o(e)|
~ | — k(B — 1)mPe| = k| — 1|mPe
because m” < 1, we can find a sufficient condition |3 —1| < 1 such that |z(t+1)—y(t+1)| ~
k|3 — 1lmPe < e. O

10



Figure 5: Phase plane for model (6) when g 2.

Then we compute ‘the desynchronized part of model (6)/and the curve x| — 1] < 1 as
Fig. 6.

2.4 Synchronized of N Trees’ Model

Theorem 2.2. When k|1 — %\ < 1, the resource budget model (4) with N-trees will syn-

chronized.

Proof. Suppose there are N trees at time t, x(t), xo(t),...,zn(t) € (0,1] such that z;(t) <
xo(t) < -+- < an(t),N > 2. Let e = gaXNﬂxm(t) — Tm—1(D)|}, and let x,,(t) = zq1(t) +

11
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Figure 6: The blue part is desynchronized and the red line is |8 — 1| < 1.

(m — 1)e for m =1, ..., Nuthen wehave |zn(t) — 21(t)] < |2\ (6)— 21 (t)] < (N — 1)¢, and

(=1 ma(t) st - DD ¢
N <1

i (t+ 1) = =kzp(t)( !

= a7 (0) — BB+ ofe) 4 L

(N = 1)z, (t) + wgw O
N—1

—2
)’ +1

oy (t+1) = —r(@i(t)+ (N — 1)e)(

= —k(z1 (O (N =) (@)
N2

= —ray (1) =y (1)e(

+ (N =1)) +ofe) +1.

Because model (4) is strictly decreasing so |zy(t 4+ 1) —x(t +1)| < |2y (t+1) — 2 (t+1)] <
Raf (B)e(N — 1= 8) + ole)] = [ral (B)e(N — 1 B)] = lN — 1 — Bla(B)e. And a5(t) <
so we can find a sufficient condition x|l — +2=| < 1 such that |on(t + 1) — z4(t + 1)| <
2y (t+1) — 2/ (t +1)| = &|N — 1 — Bla? (t)e < (N — 1)e.

—_

O

This way we compute the desynchronized part of model (4) and this curve for N = 3,4 as
Fig. 7 and Fig. 8.

So, in order to analyze the behavior of model (4), we rewrite the model as

Vit - Y()+1, i Y() <0, -
| —RY@)P 1, WY () > 0.

12
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Figure 7: The desynchronized part and curve for 3 trees.

After we rewrite the model; the phase plane become Fig. 9. Instead of Fig. 2’s desynchronized

part, the behavior of these two models are almost identical.

3 Mathematical Analysis

The following are some mathematical analysis of Isagi’sresource budget model. We sup-

pose the trees are synchronized as model (7).

3.1 Stability Analysis

then the solution is stable. If

) <1,

™Y (2

F

(

-n solution. If |

a period

has

)

T

(
1

Suppose F

|(F(n)

then the solution is unstable.

)

=z

)

/(x

)

FZ<JZ0)

. Ty lie on a cycle of period n for F' with x;

1 ([7]). Suppose xo, z1, ..

Corollary 3

Then

- F'(x1) - F'(20).

= Fl(mn—l) ..

(F") (o)

g. 2, we can see that this part is fulled by period-1 and period-2. And

For k <1 on the Fi

in the period-1’s district, the solution satisfies

r= -k 4+ 1.

13



Figure 8: The desynchronized part and curve for 4 trees.

This solution is stable if.[(8 + D&zl < 1, so (B + 1)kz’|.= (8 + 1)kz” < 1. Then by
1

equation (8), (8+ ket < z ==k + 1, (8 +2k’ <1, z < (@)m So we

have (8 + 1)k(k(5 + 2))19%51 <1, k< %. Therefore, the boundary between stable part

and unstable part of model (7) when s €0, 1] is

o (B+2)°
BNCESTEEE
Let f(k) = 3, then
-1 (B2
K= 1(B) = BE1)F (%)

f710) = 1, and we show the equation (9) as Fig. 10.

Question 3.2. Does f~!(3) belong to L'?

t
1
oo 1 T 1 . 1 . . :
Proof. Because | 77145 tlggo/o —6+1dﬁ tli)rgo(ln(t—i-l) In1) tlggoln(t—l—l) is diver

(8+2)° li 1 p+2 B+2
) 928 im $1n ) In 2=
gent. And lim M: lim M:eﬁHOO 6+1, lim Blnﬁ+ = lim 5? =
B—r00 ) B—o0 (ﬁ + 1)6 B—00 6+1 B—oo [~
B+1 54-(1—(,5;-21—2) 3 ((B+)2gi1
. B2 (B+l : .o (BF1 _1
lim 75— — 1, that is, lim &7 _ _
P g7 AR ErnEey ML T S =0
% is not in L'. O]

Question 3.3. Does f~1(3) belong to L??

14



Figure 9: Phase plane for model (7).

t

: 1 1 .
Proof. Because [;° 5“ —==df = tli>rg) L EET ——d} = tliglo(< 1)~ — 1) = 1 is convergent.
(B+1)# )2 (B+1)28 p+2
And 1im((ﬁ+L+12= li M— hmM—eﬂlgl"lc’Qﬁlnﬁ"'1 =€’ So, k =
f—ro0 1 B—o0 B—oo (B + )
m) B-H1)” =R
sl
f~4B) = (5@:)2;“ is in L2 [
Proposition 3.4. Let x1(3) = Ll_l and ky(B) = %, then k1 and ko will intersect

N-1

when N = 2,3 as shown in Fig. 11.

8
Proof. We know k1(2(N —1)) =1, and (ko) (8) = (éﬂfgﬂ (ln(gﬁ) ﬂ+2) because ln(gﬁ)

5
log(1 + ﬁ) < ﬁ, so (k2)'(B) < (éﬂ'?gﬂ(ﬁ — ﬁ) < 0. And k2(0) = 1, so we have

15
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Figure 10: The line that separates period-1 and period-2.

k2(2(N — 1)) < 1 = ki(2(N — 1)). Thenswhen B:>2(N — 1)

(32)? !
K2 (B) — k1 (B) = (8.4 1)8+1 B %—1
v L O N1
L E | 3 ANy
(& N —1

S5+2_f3—(N—1)
_Ble=N+1)—(e+2)(N—1)
a (B+2)(B—(N—-1))

(i) When N = 2, choose § = 4, we have k(4) ~ 0.4147 > k(4) ~ 0.3333.

< 0,for N > 4.

(ii) When N = 3, choose 8 = 20, we have k2(20) ~ 0.1207 > x1(20) ~ 0.1111.

Therefore, k1 and ko have an intersection on [2,00) when N = 2,3 and has no intersection

when N > 4. ]

In order to look the stability for other x and 3, we use MATLAB to make a figure to show

the stability for a pair of k and § by Corollary 3.1 which is,

[(F™) (0)] = |F'(xp-1) - - F'(a1) - F'(wo)]),

16



i 0.1 0z 0.3 0.4 5, 0.6 0.7 na 09 1

Figure 11: The blue line is ks, and-the others are wy, red is N.= 2, cyan is N = 3, green is

N =4, yellow is N =/5.

and the equation
Py 1, r <0,
—(B =)kl x>0
Then we get a figure as shown in Fig. 12. In Fig. 12, green part represents stable, cyan part
represents high period, and navy blue part represents unstable.

Now we let Y (t) = € be the initial value of deviation from Y (¢) = 0, and assume that these
are small in magnitude. In the next step, Y (¢ 4+ 1) are slightly smaller or equal to 1, which
leads to the conclusion that Y (¢ 4+ 2) are slightly larger or equal to 1 — k. In the following
steps, Y (t + 2) is simply added by 1 per unit time. Hence Y (¢ + k + 1) is close to 0 but is
positive. This implies that starting from any value close to 0, after x + 1 steps, Y (t + x + 1)
is small positive.

So, if Y(t) =€, then Y(t + k + 1) = —r(—re®t1 £ 1)PH 4k = —k(1 + OV (—rePtl) +
o(e*T1) + k = K2(B + 1)ePH1,

And the ratio of |Y (¢t + x + 1)| and |Y(¢)| is

Y (t 1 2(8 4 1)t
| (|;;(:)—|i_ )|:/<;(B—|- )e = k(B4 1)ke” = 0ase— 0.
€

Hence Y (t) will converge to 0 at every k+1 times. That is, when x € N, there is a periodic

17



0.8

06

0.4

0.2

m

solution (—k + 1, —k

stable as long as [ > 0.

onclud i at this periodic solution is
\K 1896 /

When & is close to but nof ’1. sider k is close to 2. The exact
periods of these cycles are 3, 6, O ne. % 1t the numerical values of all of these
cycles are close to a cycle of period 3, being close to 0, 1,-1 and close to 0 again. To examine
the exact location of these branches and their local stability, we must calculate each candidate
cycle and its stability condition.

So, we first consider period 3 cycle starting from a small positive value. Let Y (t) = e,
where ¢ is small positive value. Then Y (t + 1) = —xe®*! 4 1, which is close to 1. Y (t +2) =
—k(—rePt +1)" + 1, which is close to -1. Y (t +2) = —k(—re®' +1)""" + 2, which
is close to 0. So the period 3 cycle satisfy € = —r(—re’T! + 1)ﬁ+1 + 2, and this equation
has positive solution € > 0 if 1.881 < sk < 2 [24]. And this cycle’s stability condition is
| — (B+ Dre?|| — (B + Dr(—re® + 1)°| = k(B + 1)2€®(—rePTL + 1) < 1 as e sufficiently
small.

Then we consider period 3 cycle starting from a small negative value. Let Y (t) = —e,

18



where € is small positive value. Then Y(t + 1) = —e + 1, which is close to 1. Y (t +2) =

B+1

—k(—e+ 1" +1, which is close to -1. Y(t +3) = —r(—e + 1)""" + 2, which is close to 0.

GRS 2, and this equation has positive solution

So the period 3 cycle satisfy —e = —k(—e+1)
e > 0if Kk > 2, no positive solution ¢ > 0 if K < 2. And this cycle’s stability condition is
| — (B + 1)k(—e + 1)?|, which cannot be satisfied whether (3 + 1)k(—e + 1)? is bigger or less
than 1 if € is small because « is close to 2. So, it is unstable.

And consider period 3 cycle starting from a small positive value Y (t) = €, , comes back
to a small negative Y (¢t + 3) = —e_ after 3 steps, and then comes back to the starting small
positive value after another 3 steps Y (¢ + 6) = e,. And this cycle’s stability condition is
| — (B4 Drel|| = (B4 Dr(—rel™ + 1)P|| = (8 + 1)k(1 — €_)?|, according to the numerical
analysis, the branch of period 6 is stable for 1.982 < xk < 2.018 but unstable outside of this
range [24].

In a similar manner, we can caleulate the periodic e¢ycles and its local stability for a longer

period.

3.2 Topological Entropy-of the Model

By corollary 1.8, if f: I — I is a piecewise-monotone continuous map then nhi& (% logV(f")) =
hio(f) [13].

V(f™) is total variation of ™ in an invariant-set I. In order/to compute the total variation,
we first cut the invariant set inte m disjoint parts, and these parts will exactly cover another
part or union of some parts through the function:"Then we count the number of these parts

as the total length of the iteration.
Example 3.5. The total variation of n times iterated of tent map 1 for k£ = 2.

2¢, ifx

1

<35
t(z) = ?
2—2x, ifx>3.

The invariant set is [0, 1], then we separate I = [0,1] to I; = [0, 5] and I = [3,1], ¢(I1) = I,
t(lp) =1,

So, V(t°) = V(I) = I, + I, the total length is generated by the length of I, .

V(') = V(t(1)) + V(t(I2)) = 21 + 21,

19



the total length is generated by the length of 217, 215,
V(t?) =2V (t(I1)) + 2V (t(L)) = 4L, + AL,

the total length is generated by the length of 417, 41,.

Follow this way, then we distribute a matrix that represent the transition of the quantity

1
of every parts. That is, let T' = , so we can compute the total variation by
11
V() [ (1) VD) 11 1 L 11 1 5
=V V(D) | =13 4] =2
11 1 22l 1

From this example, we can see that if we define the graph of the model (as Fig. 13), then

we can use this graph to distribute the transition matrix to compute the total variation.

Figure 13: The graph-of tentsmapswhen coefficient is 2.

Consider the model (7)for k'€ N,k > 2, the invariant set is [—x+ 1, 1]. Now we separates
this set into s parts, that is,

I=[-k+11]=[-k+1,-c+2)U[-k+2,—k+3]U---U[-1,00U[0,1] = UIm,

m=1
and by the definition of this model, f(I,_1) = L, for m = 1,---  k — 1, f(l,) = I,
V(f(Im-1)) =V(Up), form=1--- k=1 V(f(ly)=V({I)=V()+ V() +- -+ V().

So, V(f°) = V() =V U IL,| =6L+ 1,4+ ---+ I, = k. Now the total length is
m=1, K
generated by the length of I}, I5,...,I,. Then V(f') = V(f(I)) = V( U f(]m)> =
m=1, K

% ( U f(Im)> +V(f) =L+ L+ -+ L)+ L+ L+ -+ 1) =L +2L+- -+
m=1,- ,k—1

21,1 + 21, the total length is generated by the length of 211,215, ...,21,._ 1, I..
Follow this way, Then we can distribute a matrix that represent the transition of the

quantity of every parts (also can by the graph as Fig. 14).
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070060

Figure 14: The graph of model (7).

That is, let e,; denotes the vector that (e); = 0, then
T

_ T T T n T
T = [ € €3 - - € Zi:l € } )
KXK

such that

VU = V) V) - VA g FASe) = (11 1] T ()
= ET"E", where E =Y " e

Proposition 3.6. If f "I — [ is a piecewise-monotone. continuous map, and the change
of the variation of f can be represent as a matriz 1, then hyy,(f) = logAi, Ay > 0, where

Aiyi=1,...,n are eigenvalues of T and Ay > [N

Proof. Because this T"is irreducible, so by Perron-Frobenius Theorem [1], there exists A\; >
0, and Ay > |A\,|, forall m # 1A, .. Ay are eigenvalues of T. And let vy,...,v, are
eigenvectors correspondifig to Ay, . .4, Ay, then (v EY) = Evp > 0. Represent ET in the
form ET = (Evy)v; + b, bbelongs to eigenspace corresponding to A, , for all m # 1. Now,
V(f") = ET"ET = E((Ev)) Ny +T7b) = N (Bv)*+ ), a, tends to 0 as n tends to
infinity. So,

haopl(f) = lim (~ log V(1))

n—oo M

MlC%Mﬁ@Mﬁmwv

n

n—oo

n 2
— im (log)\1 N log ((Evy) —i—ozn))
n n

n—oo

_ Jim (108 £ 5,

n—oo n

)

= log A\; (because 3, — 0 as n — 00).
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Definition 3.7 ([32]). The matrix

00 0 —ag

1 0 -0 —aq

0 1 -0 —a
A= :

o0 - - -0 —Qak—2

00 - - -1 —apq

is called the companion matrix of the characteristic polynomial
f(t) = (=1)*(ag +agt + - - + ap_it" 1 +t*).

By Definition 3.7 the transpose of the matrix 7T} ;s We obtain before is a companion matrix
with ag = a1 = -+ = dpy = —1, and because 7" and. 77 has same eigenvalues, so the

eigenvalues of T}, satisfies —\7 =Xt £ NF 72 L LA +1.=0.
Proposition 3.8. The topological entropy of model (7) is bigger.than 0 for k € N\ {1}.

Proof. Because —A\* FATL 4 XF2 fuol f\ of = =X g et FO) = = 4+ 4

P
Kk— _\+~t1 KL 3 K_ _
A2 p o N L =2l = s 4 A fhen f(1)/=R—1> 0, f(2) =3 <0,
so by Intermediate Value Theorem, there exists a root in the interval (1,2).Because f'(\) =
P RAPTIA=1)—(\F—1) K— gL -1 & 1 K— A1
—KA ! + ()\_1)2 = —RKA ! + —1 (}\_1)2 F g —((1 — m)/‘i)\ ! + ()\_1)2) < 0 for

A > 1, so we know f(\) is strictly decreasing for X > 1. More precisely, we suppose the root

A=2—cthen f(2—¢) = A EITTdB a2 0 (2" —1=0, 2" = 1,

k is increase as € decrease, so the root is close to 2 when « is sufficiently large.

Therefore, hio(f) = log A1 > log(1) = 0. O

By Theorem 1.4 and Corollary 1.8, we can obtain that the model (7) is chaotic in Li and
Yorke’s sense for k € N\ {1}.

4 Numerical Analysis

By Definition 1.10 to compute the Lyapunov Exponents of two trees’ model (6), first we
need to compute | D f(z)||, then the Lyapunov Exponents

n—1
In[Df" oIn|Df(x;
Aro) = limsup IS @ o 2ema IIDF ;)]

" - , where ; = f7 (o).
n—00 n—00

22



We use MATLAB to compute the Lyapunov Exponents of model (6) as shown in Fig. 15,
Fig. 16, Fig. 17, and Fig. 18.

cp LE: p = 2 pre-iter = 1500 view-iter = 1000 nseed = 56943801
1 \ \ \ \ \

08— —

06— —

: /\/\V - W AF

-0.2— =

LE
=}

-0.4 — =

-0.6 — =

-0.8 — —

Figure 15: Lyapunov-Exponents of model (6) when 5 = 2.

In Fig. 15, fixed § = 2, and red line is the first Lyapunov exponents and blue line is the
second Lyapunov exponents, then.we can see that the first Lyapunov exponents are almost
positive when k > 1 except x € N, and second Lyapunov exponents are negative. In Fig. 16
and Fig. 17, these two figures show that the first and the second Lyapunov exponents for a
pair of k and (3, we can see that the second Lyapunov exponents are negative. In Fig. 18,
the first subfigure is the first Lyapunov exponents for a pair of x and /3, the second subfigure
is the phase plane of the model (6) and the period is corresponding to color bar. This way,
we can see more careful that the Lyapunov exponents is negative appear in the period part.
Then we compute the Lyapunov exponents of model (7) as shown in Fig. 19, we can also see

that the first Lyapunov exponents are negative for k € N, too.

5 Future Work

For k > 0, when k € N, there are period solution there, but except here, this model are

almost high period. And these solutions are stable, Lyapunov exponents are also negative,
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cp 1st: LE +: pre-iter = 1500 view-iter = 1000 nseed = 54007860

181
161
1.4

12+
=y
0.8
06
04
02+

18+
161
14+
12F
=9
0.8
0.6
04r
0.2F

Figure 16: First Lyapunov exponents for a pairof x and 5.

but the topological entropy are bigger than 1. We guess this is computer’s numerical error
like tent map when xk = 2.

The line x|1— %\ =1 for n-trees seperates the region to two parts, which is synchronized
by the sense of contraction and others. If we make the.condition looser, like become dispersed
in next m — 1 steps and closer at m step. Thissway we may can seperates the synchronized
part and desynchronized part more accurately.

In original model (5), when a tree is bigger than one, and others are smaller than one.
Next time this tree will become one until another tree is bigger than one. We think this is
not reasonable because if one the other tree spent much time to become bigger than one, this
model tell us the first tree will stay one and always wait but not withered. So we think this
model can be improved. And some plants can flowering itself like papaya, this means it will

not wait other trees until they can produce pollen. This way we rewrite model (4) as

Vit +1) = Yi(t) + 1, if Y;(t) <0, (10)
’ —RY,(OB)P +1, i Yi(t) > 0,
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cp 2nd: LE +: pre-iter = 1500 view-iter = 1000 nseed = 54007860

Figure:17: Second Lyapunov exponents for a pairof £ and /5.
in which P;(t) is given by

PO~ (%Zmam) , (1)

where [Y]; =Y if Y > 0; [Y]= 0.if ¥.< 0. Then'we ¢compute the phase plane of this model
for two trees as Fig. 20. This is deiiferent as Fig. 4 and the analysis of this model can be an

extention of this paper.
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cp 1st: LE +: pre-iter = 1500 view-iter = 1000 nseed = 56943801

161
1.4
1.2
a 4L
08r
061
04r
021

Figure 18::Lyapunov exponents and the phase plane of the model (6).
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