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摘 要 

Sine-Gordon 方程 𝑢𝑥𝑥 − 𝑢𝑦𝑦 + sin 𝑢 = 0是被廣泛應用的偏微分方程

式，而其某些特殊解滿足非線性二階微分方程 
𝑑2𝑢

𝑑𝑡2
+ sin 𝑢 = 0，此為

單擺運動方程式。當求解 
𝑑2𝑢

𝑑𝑡2
+ sin 𝑢 = 0 我們首先利用 sin 𝑢  的

Maclaurin 級數來替代 sin 𝑢 使得原微分方程變為 
𝑑2𝑢

𝑑𝑡2
+ 𝑃(𝑢) = 0，

其中 P(u) 為多項式。此方程的解存在於 N 相黎曼空間。我們利用正

確的代數結構來建構這些黎曼空間，使我們可以在黎曼空間中執行路

徑積分進而得到方程數值解。之後我們研究古典橢圓函數，利用 

Jacobian 橢圓函數來分析單擺運動方程。最後，我們利用 Jacobian 橢

圓函數來導出此方程式的確切解與週期。 

 

 

 

中 華 民 國 一 百 零 一 年 六 月 
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Abstract 

The Sine-Gordon equation 𝑢𝑥𝑥 − 𝑢𝑦𝑦 + sin 𝑢 = 0  is a well-known 

Partial differential equation, and there are some special solutions satisfy 

the nonlinear second-order differential equation 
𝑑2𝑢

𝑑𝑡2
+ sin 𝑢 = 0 which 

is the Pendulum motion. As we solving the differential equation 

𝑑2𝑢

𝑑𝑡2
+ sin 𝑢 = 0. We first replace sin 𝑢 by the Maclaurin Series of sin 𝑢 

to get the differential equation of the form 
𝑑2𝑢

𝑑𝑡2
+ 𝑃(𝑢) = 0 , where 

P(u) is a polynomial. Solutions of such equations reside in Riemann 

Surfaces of genus N.  We construct these Riemann Surfaces with the 

correct algebraic structures. So we can perform path integrals on the 

Riemann Surfaces to get the numerical solution of the equation. Next, we 

investigate the classical Elliptic functions, and use the Jacobian Elliptic 

function to analyze this nonlinear pendulum motion. Finally, we derive 

the exact solutions and the periods of those solutions by the Jacobian 

Elliptic functions. 
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1 Introduction of the Riemann Surface.

When we want to solve the di¤erential equation u00 + sinu = 0.

) u00 + sinu = 0

) (1=2)(u0)2 � cosu = k
) (1=2)(u0)2 = cosu+ k

) (u0)2 = 2 cos u+ 2k

) u0 =
du

dt
=
p
2 cosu+ 2k

)
Z

1p
2 cosu+ 2k

du =

Z
1dt = t

where k is a constant.
There is di¢ cult to integrate

Z
1p

2 cosu+ 2k
du

into a normal function.
By the Maclaurin Series

sinu =
1
�
n=0
(�1)n u2n+1

(2n+ 1)!
� u

1

1!
� u

3

3!
+
u5

5!
� u

7

7!
+
u9

9!
� u

11

11!

When we replace sinu by

u1

1!
� u

3

3!
+
u5

5!
� u

7

7!
+
u9

9!
� u

11

11!

then the di¤erential equation becomes

1



) u00 +
u1

1!
� u

3

3!
+
u5

5!
� u

7

7!
+
u9

9!
� u

11

11!
= 0

) u0u00 +
u0u1

1!
� u

0u3

3!
+
u0u5

5!
� u

0u7

7!
+
u0u9

9!
� u

0u11

11!
= 0

) 1

2
(u0)2 +

1
2
u2

1!
�

1
4
u4

3!
+

1
6
u6

5!
�

1
8
u8

7!
+

1
10
u10

9!
�

1
12
u12

11!
= k

) (u0)2 = �u
2

1
+
u4

12
� u6

360
+

u8

20160
� u10

1814400
+

u12

239500800
+ 2k

) du

dt
=

r
�u

2

1
+
u4

12
� u6

360
+

u8

20160
� u10

1814400
+

u12

239500800
+ 2k

)
Z

1q
�u2

1
+ u4

12
� u6

360
+ u8

20160
� u10

1814400
+ u12

239500800
+ 2k

du =

Z
1dt

where k is a constant.
We need to compute the integral

Z
1q

�u2

1
+ u4

12
� u6

360
+ u8

20160
� u10

1814400
+ u12

239500800
+ 2k

du

Before we compute the integral , we need to investigate the space where
u reside.
Because

f(z) =

r
n

�
k=1
(z � zk)

is a two-valued function of z on complex plane C. We use algebra and
analysis to develop a new surface such that f becomes a single-valued function
on this surface , namely , a Riemann Surface.

1.1 The construction of the corresponding Riemann
Surface.

Suppose w; z 2 C and wk = z , we �nd the solution of wk = z in polar form

) wk = z = jzj ei� = jzjei(�+2n�)

) w = jzj 1k e
i(�+2n�)

k

2



where � 2 [��; �) and n 2 Z.
We will take f(z) =

p
z = (z)

1
2 for example �rst , where f(z) : C ! C.

We will still use polar form , let

z = jzjei� = jzjei(�+2n�); n 2 Z

then

f(z) =
p
z = jzj 12 ei( �+2n�2

)

=

(
jzj 12 ei( �2+n�) = jzj 12 ei( �2 ) , if n is even
jzj 12 ei( �2+n�) = (�1)jzj 12 ei( �2 ) , if n is odd

This means that f(z) is a two-valued function. We need to let f(z)
becomes a single valued function now , so we modify its domain C to develop
the corresponding Riemann Surface such that f becomes a single-valued and
analytic function on this surface.

Figure 1. The idea of two sheets.

We start at some z = jzjei� , and then we have f(z) =
p
z =

p
jzjei( �2 ); jzj 6=

0. Fixing jzj and continuing along a closed path once around the origin so
that � increases by 2� , f(z) comes to the value

p
jzjei( �+2�2 ) = �

p
jzjei( �2 )

which is just the negative of its original value. When we continuing same
way above , we �nd that as � increases by 2� again , then f(z) comes to
oringinal value.
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First , we image two sheets lying over the complex plane and cut the plane
along negative real axis ( i.e. from 0 to �1 ) and restrict ourselves such that
never to continue f(z) over this cuts , we get single-valued branches of f(z).
De�ne that

f(z) = jzj 12 e i�2 ;�� � � < �
f(z) = jzj 12 e i�2 ; � � � < 3�

called sheet-I and sheet-II , respectively. There are two edges for every
cut on each sheet , we label the starting edge with (+)-edge and the terminal
edge with (�)-edge. (Show in Figure 2)

Figure 2. Complex plane and extended complex plane.

Moreover , when crossing the cut , we pass from one sheet to another.
Second , we extend the plane of complex numbers with one additional

point at in�nity constitute a number system known as the extended complex
numbers. Use stereographic projection , we can consider the two sheets to
be a spheres. And we image that the spheres are made of rubber and stretch
each cut into circular holes.

4



Figure 3. Place the cuts open.

We rotate the spheres to let the holes face each other , and paste two cuts
together where (+)-edge of sheet-I with (�)-edge of sheet-II and (�)-edge of
sheet-I with (+)-edge of sheet-II. So we can derive a new sphere now. We
called this sphere to be "Riemann surface of genus 0" and denoted this sphere
by R0. Show in Figure 4.

Figure 4. Construct R0.

Notice that in Riemann Surface (+)-edge of sheet-I is equivalent to (�)-edge
of sheet-II and (�)-edge of sheet-I is equivalent to (+)-edge of sheet-II.
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We could using similar way to develop the corresponding Riemann Surface
for

f(z) =

r
n

�
k=1
(z � zk)

We use two examples to show this , one have odd roots , and the other
have even roots.

Example 1 Suppose there are 7 roots where the function f(z) have. Con-

struct the Riemann Surface of f(z) =

r
7

�
k=1
(z � zk) =

7

�
k=1

p
(z � zk); zk 2 R

where z7 < z6 < z5 < z4 < z3 < z2 < z1 and we cut plane starts from zk to
�1 , k = 1; 2; 3; 4; 5; 6; 7.

Figure 5. Cut plane start from zk to �1.

When crossing one cut , we pass from one sheet to another. And at this
time the argument of z increases by 2� , so the argument of f(z) increases
by � which is just the negative of its original value. So when crossing one cut
we need to change the sign , using (�1) represent that. So when crossing odd
times we will change sign and when crossing even times we will not change
sign eventually.
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Figure 6. The cut structure.

There are branch cuts in (�1; z7] , [z6; z5] , [z4; z3] , [z2; z1] and then
using same idea to construct the corresponding Riemann Surface.

Figure 7. Placing the cuts open.

Finally , we pull the cuts open and paste two sheet together with the rule
(+)-edge with (�)-edge so we obtain corresponding Riemann Surface of genus
3 eventually.

7



Figure 8. Geometric graph of R3.

Example 2 Suppose there are 8 roots where the function f(z) have. Con-

struct the Riemann Surface of f(z) =

r
8

�
k=1
(z � zk) =

8

�
k=1

p
(z � zk); zk 2 R

where z8 < z7 < z6 < z5 < z4 < z3 < z2 < z1 and we cut plane starts from zk
to �1 , k = 1; 2; 3; 4; 5; 6; 7; 8.
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Figure 9. Cut plane start from zk to �1.

When crossing one cut , we pass from one sheet to another. And at this
time the argument of z increases by 2� , so the argument of f(z) increases
by � which is just the negative of its original value. So when crossing one cut
we need to change the sign , using (�1) represent that. So when crossing odd
times we will change sign and when crossing even times we will not change
sign eventually.

Figure 10. The cut structure.

There are branch cuts in [z8; z7] , [z6; z5] , [z4; z3] , [z2; z1] and then using
same idea to construct the corresponding Riemann Surface.
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Figure 11. Placing the cuts open.

Finally , we pull the cuts open and paste two sheet together with the rule
(+)-edge with (�)-edge so we obtain corresponding Riemann Surface of genus
3 eventually.
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Figure 12. Geometric graph of R3.

Although there are di¤erent algebraic structures between 7 roots and 8
roots that f(z) have. But they both have the same geometric graph with 3
holes. This means that no matter 7 or 8 roots , we can construct correspond-
ing Riemann Surface of genus 3.

1.2 The relationship of curve between algebraic struc-
ture and geometric structure.

We will use algebraic to compute the integrals and discuss the integrals later
for convenience. We already know the relation of algebraic and geometric

structure with f(z) =

r
n

�
k=1
(z � zk) and how to create the Riemann Surface.
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We give some examples to show that the curve in algebraic structure and its
corresponding in geometric structure.
We de�ned something as following:

1. The curve in sheet-I is solid line and the curve in sheet-II is dash line
in algebraic structure.

2. The curve in overhead Riemann Surface is solid line and the curve in
ventral Riemann Surface is dash line in geometric structure.

Example 3 r1 is the curve from a point at (I;+) to (I;�) in sheet-I and r2
is the curve from a point at (II;�) to (II;+) in sheet-II.

Figure 13. The �gure for Example 3.

Example 4 The curve r is start from point A in sheet-I and cross the cut
to point B on sheet-II.

12



Figure 14. The �gure for Example 4.

1.3 The a,b cycles and its equivalent paths.

We know every closed curve on Riemann Surface Rk can be deformed into
an integral combination of the loop-cut ai and bi; i = 1; 2; :::; k. So in this
paper , we will consider the integrals of f(z) over a-cycles and b-cycles help
us to obtain the integrals easier.

Example 5 Suppose f(z) =
p
(z � 0)(z � 1)(z � 2)(z � 3). Construct the

a-cycle , b-cycle and the corresponding geometric structure.

Figure 15. a,b-cycles of f(z) =
p
(z � 0)(z � 1)(z � 2)(z � 3) and the cut
plane.

Because f(z) has four roots , so we can construct two cuts and one a-
cycle and one b-cycle. Notice that in this example , the numbers of a-cycle
and the numbers of b-cycle are the same.
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Figure 16. Draw a,b-cycle in each sheet and then pull the cuts open.

Figure 17. Corresponding geometric structure and cycles.

Finally , we paste two sheets with open cuts and gained corresponding
geometric structure and cycles.
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It is di¢ cult to write out the parameters of curves sometimes. But the
straight lines are easy to write out their parameters for us. So using homo-
topic of curves to �nd the equivalent paths of curves could help us to obtain
the integrals over the curves easier and quicker.

Figure 18. Homotopic curves.

Because the curve C is homotopic to the curve C1 , we denotes C t C1.
We have

R
C

1
f(z)
dz =

R
C1

1
f(z)
dz by Cauchy-Goursat theorem. In Figure 18 ,

we see that C t C1 t C2 t C3 t �1 [ �2.
So we have
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Z
C

1

f(z)
dz =

Z
C1

1

f(z)
dz

=

Z
C2

1

f(z)
dz

=

Z
C3

1

f(z)
dz

=

Z
�1[�2

1

f(z)
dz

=

Z
�1

1

f(z)
dz +

Z
�1

1

f(z)
dz

We will use this method in the whole paper.

1.4 Conclusion of Riemann Surface.

Although the result and statement we discuss with above are all in horizontal
cut. But the method which handleing other styles of cut is the same as in
horizontal cut. We take !2 = c(z � z1)(z � z2)(z � z3) for an example ,
where z1; z2; z3 2 C are distinct and c is a constant. Because

p
c does not

in�uence the cut , so we omit
p
c and let f(z) =

p
(z � z1)(z � z2)(z � z3) =p

(z � z1)
p
(z � z2)

p
(z � z3). Remembering when arg(z � zk) changes by

2� , the factor
p
(z � zk) will change the sign. In the �gure 19 we label left

of cut with (+)-edge and right of cut with (�)-edge.

Figure 19. The cut-plane and a; b cycles in each sheets.

We construct the Riemann Surface in similar way before. Imageing both
two sheets are made of rubber , and pull cuts to be holes. We rotate the

16



sheets to let the holes face each other , and paste two cuts together where
(+)-edge of sheet-I with (�)-edge of sheet-II and (�)-edge of sheet-I with
(+)-edge of sheet-II. We will get the corresponding Riemann Surface R1.
The a; b curves are corresponding to the meridian curve a and latitude curve
b on Rienann Surface R1 , respectively.

Figure 20. Corresponding Riemann Surface.

2 The integrations of 1=f(z) over a; b cycles
for cuts on Riemann Surface.

When we known the geometric structure of Riemann Surface. It is usefull to
know the integration of a function on Riemann Surface. Especially , the a; b
cycles for cuts on Riemann Surface.

2.1 The integrations of 1=f(z) over a; b cycles of the
Riemann Surface with horizontal cut-structure.

We will use Mathematica help us to obtain the values of integrations of
1=f(z) over a; b cycles. First, We discuss the values in sheet-I, sheet-II and
Mathematica for horizontal cuts.
In using polar form

1

f(z)
= [

n

�
k=1
(z � zk)]�

1
2 = (rei�)�

1
2

17



Let �1 denotes � in sheet-I and �2 denotes � in sheet-II. Clearly that
�2 = �1 + 2� , so we have

(
1

f(z)
)j(II) = r�

1
2 ei(�

�2
2
)

= r�
1
2 ei(�

�1+2�
2

)

= r�
1
2 ei(�

�1
2
)ei(��)

= (�1)r� 1
2 ei(�

�1
2
)

= (�1)( 1

f(z)
)j(I)

where ( 1
f(z)
)j(I) denote the value of 1

f(z)
with z in sheet-I and ( 1

f(z)
)j(II)

denote the value of 1
f(z)

with z in sheet-II. Because the di¤erence of argument
between z in sheet-I and in sheet-II is 2�, so the di¤erence between ( 1

f(z)
)j(I)

and ( 1
f(z)
)j(II) is (��). Hence ,

(
1

f(z)
)j(II) = (�1)(

1

f(z)
)j(I)

Now we discuss the di¤erence over sheet-I in theory and in Mathematica.
First , we consider

p
�1. See Figure 21 , in theory we know that

p
�1 =

�i by the de�nition of argument in sheet-I. But in Mathematica , when we
compute

p
�1 , we will obtain

p
�1 Math

= i. Actually , we found that rei�

where � 2 (��; �] in Mathematica. This means for any other � of rei� which
does not belong to (��; �] , Mathematica will converse rei� into rei�� where
�� 2 (��; �] and rei� = rei��.

18



Figure 21. Domain and range of square function in Theory and in
Mathematica.

Compare the value of (1=f(z)) with z in sheet-I and in Mathematica , we
discover that

Lemma 6 If (1=f(z)) = [
n

�
k=1
(z � zk)]�

1
2 = (rei�)�

1
2 in sheet-I for horizontal

cut , then

(
1

f(z)
)j(I) =

(
( 1
f(z)
)jMathematica , if � 2 (��; �)

(�1)( 1
f(z)
)jMathematica , if � = ��

Proof. Since (��) does not in (��; �] , then Mathematica will converse
rei(��) into rei� and rei(��) = rei�. We compute (1=f(z)) in theory and in
Mathematica.

In theory : �r = rei(��)
1p
�! (rei(��))�

1
2 = ir�

1
2

In Mathematica : �r = rei(��) Math:
= rei�

1p
�! (rei�)�

1
2
Math:
= (�1)ir� 1

2

Hence , (1=f(z))j(I)
Math:
= (�1)(1=f(z))jMathematica where � = ��.
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In this whole paper , (1=f(z)) Math:
= (�1)(1=f(z)) denotes the function

(1=f(z)) in front of Math:
= is the value of (1=f(z)) in theory and the function

(1=f(z)) behind the Math:
= is the value of (1=f(z)) in Mathematica. After we

known the state above, we must modify the computation when we want to
use Mathematica to calculate the value. Take examples to explain.

Example 7 Evaluate
R
r

1
f(z)
dz where f(z) =

p
(z � 1)(z � 2)(z � 3); z 2 R

and r = r1 [ r2 where r1 is the path on a horizontal cut from 2 to 3 with
(+)-edge of sheet-I and r2 is the path on a horizontal cut from 3 to 2 with
(�)-edge of sheet-I.

Figure 22. Cuts in complex plane of f(z) =
p
(z � 1)(z � 2)(z � 3) .

Solution 8 Since f(z) =
p
(z � 1)(z � 2)(z � 3) =

p
z � 1

p
z � 2

p
z � 3

1. If z 2 r1 :

(1) In theory :

z � 1 � 0) 1p
z � 1

= jz � 1j� 1
2

z � 2 � 0) 1p
z � 2

= jz � 2j� 1
2

z � 3 < 0) z � 3 = jz � 3je�i� ) 1p
z � 3

= jz � 3j� 1
2 ei

�
2 = ijz � 3j� 1

2

we have

Z
r1

1

f(z)
dz = i

Z 3

2

jz � 1j� 1
2 jz � 2j� 1

2 jz � 3j� 1
2dz
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(2) In Mathematica :

z � 1 � 0) 1p
z � 1

= jz � 1j� 1
2

z � 2 � 0) 1p
z � 2

= jz � 2j� 1
2

z � 3 < 0) z � 3 = jz � 3jei� ) 1p
z � 3

= jz � 3j� 1
2 e�i

�
2 = �ijz � 3j� 1

2

we have

Z
r1

1

f(z)
dz = �i

Z 3

2

jz � 1j� 1
2 jz � 2j� 1

2 jz � 3j� 1
2dz

Compare (1) and (2) , we found there is a di¤erence of minus sign with
the value in sheet-I and in Mathematica.

2. If z 2 r2 :

(1) In theory :

z � 1 � 0) 1p
z � 1

= jz � 1j� 1
2

z � 2 � 0) 1p
z � 2

= jz � 2j� 1
2

z � 3 < 0) z � 3 = jz � 3jei� ) 1p
z � 3

= jz � 3j� 1
2 e�i

�
2 = �ijz � 3j� 1

2

we have

Z
r2

1

f(z)
dz = �i

Z 2

3

jz � 1j� 1
2 jz � 2j� 1

2 jz � 3j� 1
2dz

(2) In Mathematica :

z � 1 � 0) 1p
z � 1

= jz � 1j� 1
2

z � 2 � 0) 1p
z � 2

= jz � 2j� 1
2

z � 3 < 0) z � 3 = jz � 3jei� ) 1p
z � 3

= jz � 3j� 1
2 e�i

�
2 = �ijz � 3j� 1

2
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we have

Z
r2

1

f(z)
dz = �i

Z 2

3

jz � 1j� 1
2 jz � 2j� 1

2 jz � 3j� 1
2dz

Compare (1) and (2) , the value is the same.

By 1; 2 we have

R
r

1
f(z)
dz =

�
2i
R 3
2
jz � 1j�

1
2 jz � 2j�

1
2 jz � 3j�

1
2 dz in sheet-I .

0 in Mathematica .

=

�
0:+ 5:24412i in sheet-I .
0 in Mathematica .

Clearly, there is a mistake when � = ��. When we use Mathematica to
get the value of integration we want , we need modify some range where the
value will wrong. Determine the di¤erence of sign(f) (same or negative) and
then modify the computation of Mathematica to get right value. Because
sometimes the form of integration is complex , if we could simplify the way
about modify the di¤erence of sign(f) , it will help us to get right value
easier.

Example 9 Same f(z) as the example before , using Lemma in this section
to modify.

Solution 10 .

1. If z 2 r1; z : 2! 3

z � 1 � 0) arg(z � 1) = 0) 1p
z � 1

Math:
=

1p
z � 1

z � 2 � 0) arg(z � 2) = 0) 1p
z � 2

Math:
=

1p
z � 2

z � 3 < 0) arg(z � 3) = �� ) 1p
z � 3

Math:
= � 1p

z � 3

we have

Z
r1

1

f(z)
dz

Math:
= �

Z 3

2

1p
z � 1

1p
z � 2

1p
z � 3

dz
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2. If z 2 r2; z : 3! 2

z � 1 � 0) arg(z � 1) = 0) 1p
z � 1

Math:
=

1p
z � 1

z � 2 � 0) arg(z � 2) = 0) 1p
z � 2

Math:
=

1p
z � 2

z � 3 < 0) arg(z � 3) = � ) 1p
z � 3

Math:
=

1p
z � 3

we have

Z
r2

1

f(z)
dz

Math:
=

Z 2

3

1p
z � 1

1p
z � 2

1p
z � 3

dz

By 1; 2 we have

Z
r

1

f(z)
dz

Math:
= �2

Z 3

2

1p
z � 1

1p
z � 2

1p
z � 3

dz = 0:+ 5:24412i

Example 11 Evaluate
R

1
f(z)
dz over a1 , a2 and a3 cycles where f(z) =p

(z + 4)(z + 2)(z � 2)(z � 4)(z � 5)(z � 7)(z � 8). We analysis the integral
in Mathematica and in theory to compare the result and using the result of
angle to modify the computation to get value. Let z1 = 8 , z2 = 7 , z3 = 5 ,
z4 = 4 , z5 = 2 , z6 = �2 , z7 = �4.

Figure 23. a-cycles and their equivalent path a�.

Solution 12 The detail is in appendix. And we just only give numerical
solution here.
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Z
a1

1

f(z)
dz

Math:
= 0:+ 0:0890282iZ

a2

1

f(z)
dz

Math:
= 0:+ 0:1832730iZ

a3

1

f(z)
dz

Math:
= 0:+ 0:1115720i

Example 13 Evaluate
R

1
f(z)
dz over b1 , b2 and b3 cycles where f(z) =p

(z + 4)(z + 2)(z � 2)(z � 4)(z � 5)(z � 7)(z � 8). We analysis the inte-
gral in Mathematica and in theory to compare the result and using the result
of angle to modify the computation to get value. Let z1 = 8 , z2 = 7 , z3 = 5
, z4 = 4 , z5 = 2 , z6 = �2 , z7 = �4.

Figure 24. b1 , b2 and b3 cycles.

Solution 14 The detail is in appendix. And we just only give numerical
solution here.

Z
b1

1

f(z)
dz

Math:
= 0:4132335Z

b2

1

f(z)
dz

Math:
= 0:2196815Z

b3

1

f(z)
dz

Math:
= 0:0372385

2.2 The integrations of 1=f(z) over a; b cycles of the
Riemann Surface with vertical cut-structure.

After knowing the integrations in horizontal cut , we will discuss the integra-
tions for vertical cuts. In this case , we de�ne that
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z � zk =
�
rei�; � 2 [�3�

2
; �
2
) i¤ z in sheet-I

rei�; � 2 [�
2
; 5�
2
) i¤ z in sheet-II

the cut in each sheet has two edges , label the starting edge with (+)-edge
and the terminal edge with (�)-edge and zk is the end point of the vertical
cut.
First , we will analysis the value of 1=f(z) on sheet-I and sheet-II in

theory.
Second , we will discuss the di¤erence between the value of 1=f(z) in

theory and in Mathematica and �nd out how to modify the computation.

1. Analysis the value of 1=f(z) on sheet-I and sheet-II in theory :

For a simple case f(z) =
p
z , by the �gure below , we know that

if
�
z = jzj ei� where � 2 [�3�

2
; �
2
) i.e. z = jzj ei� 2 sheet-I

z = jzj ei� where � 2 [�
2
; 5�
2
) i.e. z = jzj ei� 2 sheet-II

, then

( p
z = jzj

1
2 e

i�
2 ; �

2
2 [�3�

4
; �
4
)

p
z = jzj

1
2 e

i�
2 ; �

2
2 [�

4
; 5�
4
)

Figure 25. Case of f(z) =
p
z.

and

(
1=
p
z = jzj�

1
2 ei(�

�
2
);� �

2
2 (��

4
; 3�
4
]

1=
p
z = jzj�

1
2 ei(�

�
2
);� �

2
2 (�5�

4
;��

4
]
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Figure 26. Case of f(z) = 1=
p
z.

For the general case , suppose f(z) =

r
n

�
k=1
(z � zk)

, then

8><>:
n

�
k=1
(z � zk) = rei�1 ; �1 2 [�3�

2
; �
2
) in sheet-I

n

�
k=1
(z � zk) = rei�2 ; �2 2 [�2 ;

5�
2
) in sheet-II

From the idea of de�nition , rei�1 = rei�2 and �2 = �1 + 2� , we have

(
1

f(z)
)j(II) = r�

1
2 ei(�

�2
2
)

= r�
1
2 ei(�

�1+2�
2

)

= r�
1
2 ei(�

�1
2
)ei(��)

= (�1)r� 1
2 ei(�

�1
2
)

= (�1)( 1

f(z)
)j(I)

2. Discuss the di¤erence between the value of 1=f(z) in theory and in
Mathematica and �nd out how to modify the computation :

In the Figure below , we see the value of f(z) =
p
z in sheet-I and the

value of f(z) =
p
z in Mathematica. So we need to modify the compu-

tation in Mathematica such that the numerical result of Mathematica
is identical to the numerical result of theory when � 2 [�3�

2
;��].
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Figure 27. The value of f(z) =
p
z in sheet-I and in Mathematica.

Lemma 15 When z in sheet-I for vertical cut whose one of the end points
is zk , we have

1p
z � zk

Math:
=

(
(�1) 1p

z�zk if arg(z � zk) 2 [�3�
2
;��] ,

1p
z�zk if arg(z � zk) 2 (��; �2 )

Proof. Let z in sheet-I and using polar form z�zk = rei�. When � 2 (��; �2 )
, the argument in theory or Mathematica is the same. When � 2 [�3�

2
;��]

, Mathematica will conversion � 2 [�3�
2
;��] into � + 2� 2 [�

2
; �] and rei� =

rei(�+2�) = rei�+i(2�) , but

(
In theory : (z � zk)�

1
2 = (rei�)�

1
2 = r�

1
2 ei(�

�
2
)

In Mathematica : (z � zk)�
1
2 = (rei�+i(2�))�

1
2 = (�1)r� 1

2 ei(�
�
2
)

So if � 2 [�3�
2
;��] , we have

1p
z � zk

Math:
= (�1) 1p

z � zk

As same as horizontal cut , we �rst discuss the di¤erence of values of
1=f(z) between sheet-I and sheet-II in theory. And discuss the value of
1=f(z) in theory and in Mathematica , compare their sign(f) is di¤erent
or not? Using statement before and modify to get the value. The result is
similar to horizontal cut.
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Example 16 Evaluate the integrals of 1=f(z) over a1 cycle for vertical cut
where f(z) =

p
(z � i)(z � 2i)(z � 3i)(z � 5i)(z � 6i)(z � 8i).

Figure 28. path a and its equivalent path a�.

Solution 17 In the Figure 28. , we know that a�1 is an equivalent path for
a1 and a�1 is the path along vertical cut from 2i to i on (+)-edge of sheet-I
(called a�11) and then back from i to 2i on (�)-edge of sheet-I (called a�12). So
we compute

R
a�1

1
f(z)
dz.

1. a�11 : Let z = ri where r : 2
+! 1 and dz = idr

(1) Analysis in theory :
Since z � ki = jz � kij ei arg(z�ki) , so we consider arg(z � ki).

arg(z � i) = �3
2
� ) arg(

1p
z � i

) =
3�

4

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 2; 3; 5; 6; 8

we have
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1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e2�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )

= R

(2) Analysis in Mathematica (no matter in which sheet) :
Since z � ki = jz � kij ei arg(z�ki) , so we consider arg(z � ki).

arg(z � i) =
1

2
� ) arg(

1p
z � i

) = ��
4

arg(z � ki) = �1
2
� ) arg(

1p
z � i

) =
�

4
; k = 2; 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R

Compare with (1) and (2) we �nd that when we want to obtain true
value, the value which we have from Mathematica should multiply (�1)
, i.e. sign(f(z)j(I)) = (�1)sign(f(z)jMathematica).

(3) Using the Lemma 15 to modify :

arg(z � i) = �3
2
� ) 1p

z � i
Math:
= (�1) 1p

z � i

arg(z � ki) = �1
2
� ) 1p

z � i
Math:
=

1p
z � ki

; k = 2; 3; 5; 6; 8

we have
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1

f(z)
Math:
= (�1) 1

f(z)

The same result as above di¤erence between in theory and in Math-
ematica , the di¤erence is a minus sign.

2. a�12 : Let z = ri where r : 1
�! 2 and dz = idr

(1) Analysis in theory :
Since z � ki = jz � kij ei arg(z�ki) , so we consider arg(z � ki).

arg(z � i) =
1

2
� ) arg(

1p
z � i

) = ��
4

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 2; 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R

(2) Analysis in Mathematica (no matter in which sheet) :
Since z � ki = jz � kij ei arg(z�ki) , so we consider arg(z � ki).

arg(z � i) =
1

2
� ) arg(

1p
z � i

) = ��
4

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 2; 3; 5; 6; 8

we have
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1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R

Compare with (1) and (2) we �nd the value is same.

(3) Using the Lemma 15 to modify :

arg(z � i) =
1

2
� ) 1p

z � i
Math:
=

1p
z � i

arg(z � ki) = �1
2
� ) 1p

z � i
Math:
=

1p
z � ki

; k = 2; 3; 5; 6; 8

we have

1

f(z)
Math:
=

1

f(z)

The same result as above.

By 1: and 2: above , we have

Z
a1

1

f(z)
dz =

Z
a�1

1

f(z)
dz

=

Z
a�11

1

f(z)
dz +

Z
a�12

1

f(z)
dz

= �2
Z 1

2

(
8

�
k=1;k 6=4;7

jri� kij�
1
2 )idr

= 0:� 0:531987i

Example 18 Evaluate the integrals of 1=f(z) over a; b cycles for vertical cut
where f(z) =

p
(z � i)(z � 2i)(z � 3i)(z � 5i)(z � 6i)(z � 8i).

Solution 19 The detail is in appendix.
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We can integrate 1=f(z) over a; b cycles of the Riemann Surface with
horizontal cut-structure and with vertical cut-structure. We give some more
examples here , and the solution could see in appendix.

Example 20 Compute the integrals of 1=f(z) over every cycles in the Figure
below where

f(z) =
p
(z � z1)(z � z2)(z � z3)(z � z4)(z � z5)(z � z6)(z � z7)(z � z8)

for z1 = �2 � i; z2 = �2 + i; z3 = �1 � i; z4 = �1 + i; z5 = 0 + 0i; z6 =
0 + i; z7 = 1 + i; z8 = 1 + 2i.

Figure 29. cycles a1; a2; a3 and equivalent pathes a�1; a
�
2; a
�
3.

Figure 30. Cycle b2 and equivalent path b�2.
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Figure 31. Cycle b3 and equivalent path b�3.

2.3 The integrations of the Sine-Gordon Equation over
a; b cycles.

Now we want to compute the integral

Z
1q

(�1)u2
1
+ u4

12
� u6

360
+ u8

20160
� u10

1814400
+ u12

239500800
+ 2k

du

over a; b cycles.
Let k = 1 , and compute the roots of the equation

(�1)u
2

1
+
u4

12
� u6

360
+

u8

20160
� u10

1814400
+

u12

239500800
+ 2k = 0

We have the roots of the equation

(�1)u
2

1
+
u4

12
� u6

360
+

u8

20160
� u10

1814400
+

u12

239500800
+ 2 = 0

are similar to Z1 = �6:58948 + 5:23118i , Z2 = �6:58948 � 5:23118i ,
Z3 = �6:31381+1:46139i , Z4 = �6:31381�1:46139i , Z5 = �4:68652+0:0i
, Z6 = �1:57080 + 0:0i , Z7 = 1:57080 + 0:0i , Z8 = 4:68652 + 0:0i , Z9 =
6:31381 + 1:46139i , Z10 = 6:31381 � 1:46139i , Z11 = 6:58948 + 5:23118i ,
Z12 = 6:58948� 5:23118i.
So we draw the roots and its cuts in the Firure 32 below
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Figure 32. Zi; i 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g and its cuts.

First , we will compute the integral of 1=f(z) over a1; a2; a3; a4; a5 cycles
in the Figure 33 below where

f(z) =
12

�
k=1

p
(z � zk)

and Z1 = �6:58948 + 5:23118i , Z2 = �6:58948 � 5:23118i , Z3 =
�6:31381 + 1:46139i , Z4 = �6:31381 � 1:46139i , Z5 = �4:68652 + 0:0i
, Z6 = �1:57080 + 0:0i , Z7 = 1:57080 + 0:0i , Z8 = 4:68652 + 0:0i ,
Z9 = 6:31381+1:46139i , Z10 = 6:31381�1:46139i , Z11 = 6:58948+5:23118i
, Z12 = 6:58948� 5:23118i.
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Figure 33. a1; a2; a3; a4; a5 cycles and its equivalent path a�1; a
�
2; a
�
3; a
�
4; a
�
5.

We will just write solution here , and the calculation is putted in appendix.
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Z
a1

1

f(z)
dz = 9:52646� 10�18 + 0:000197837iZ

a2

1

f(z)
dz = 2:31913� 10�14 � 0:000472233iZ

a3

1

f(z)
dz = �2:23575� 10�14 + 0:000472233iZ

a4

1

f(z)
dz = 9:52151� 10�18 � 0:000197837iZ

a5

1

f(z)
dz = �1:54107� 10�17 + 0:000262034i

Second , we will compute the integral of 1=f(z) over b1; b2; b3; b4; b5 cycles
in the Figure 34 below where

f(z) =
12

�
k=1

p
(z � zk)

and Z1 = �6:58948 + 5:23118i , Z2 = �6:58948 � 5:23118i , Z3 =
�6:31381 + 1:46139i , Z4 = �6:31381 � 1:46139i , Z5 = �4:68652 + 0:0i
, Z6 = �1:57080 + 0:0i , Z7 = 1:57080 + 0:0i , Z8 = 4:68652 + 0:0i ,
Z9 = 6:31381+1:46139i , Z10 = 6:31381�1:46139i , Z11 = 6:58948+5:23118i
, Z12 = 6:58948� 5:23118i.

Figure 34. b1; b2; b3; b4; b5 cycles.
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Similarly , we will just write solution here , and the calculation is putted
in appendix.

Z
b1

1

f(z)
dz = �0:0000106043� 0:0000764721iZ

b2

1

f(z)
dz = 0:00025277 + 0:0000169501iZ

b3

1

f(z)
dz = �0:000226449 + 0:0000169501iZ

b4

1

f(z)
dz = 0:0000523241 + 0:000115868iZ

b5

1

f(z)
dz =

The integrations of the equation over a; b cycles above are all numerical
approximation. Can we get exact solution of the Sine-Gordon equation? We
need more tools in Mathematics.

3 The Elliptic functions , the Theta functions
, and the Jacobian Elliptic functions.

When we handle the problem before. It is useful for us to know about the
Elliptic functions , the Theta functions and the Jacobian Elliptic functions.

3.1 The Elliptic Functions.

De�nition 21 A function f(z) is called a doubly-periodic function of z with
periods 2!1 , 2!2 , if function f(z) satis�es the equations below for all values
of z for which f(z) exists.

�
f(z + 2!1) = f(z)
f(z + 2!2) = f(z)

Where !1 , !2 are any two numbers (complex or real) whose ratio is not
purely real.

De�nition 22 A doubly-periodic function which is analytic (except at poles)
, and which has no singularities other than poles in the �nite part of the plane
, is called an elliptic function.
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In mathematics , a singularity is in general a point at which a given
mathematical object is not de�ned , or a point of an exceptional set where
it fails to be well-behaved in some particular way , such as di¤erentiability.

Remark 23 Suppose f is a complex di¤erentiable function de�ned on some
neighborhood Np around point p , excluding point p i.e. Np�fpg , where Np
is an open subset of the complex numbers C , and the point p is an element
of Np. There are four classes of singularities in complex analysis.

1. Isolated singularities : Suppose the function f is not de�ned at p ,
although it does have values de�ned on Np � fpg.

(1) The point p is a removable singularity of f if there exists a holo-
morphic function g de�ned on all of Np such that f(z) = g(z) for
all z in Np�fpg. The function g is a continuous replacement for
the function f .

(2) The point p is a pole or non-essential singularity of f if there exists
a holomorphic function g de�ned on Np and a natural number n
such that f(z) = g(z)

(z�p)n for all z in Np � fpg. The derivative at a
non-essential singularity may or may not exist. If g(p) is nonzero
, then we say that p is a pole of order n.

(3) The point p is an essential singularity of f if is neither a removable
singularity nor a pole. The point p is an essential singularity if and
only if the Laurent series has in�nitely many powers of negative
degree.

2. Branch points are generally the result of a multi-valued function, such
as
p
z or log(z) being de�ned within a certain limited domain so that

the function can be made single-valued within the domain. The cut
is a line or curve excluded from the domain to introduce a technical
separation between discontinuous values of the function. When the cut
is genuinely required , the function will have distinctly di¤erent values
on each side of the branch cut. The location and shape of most of the
branch cut is usually a matter of choice , with perhaps only one point
(like z = 0 for log(z)) which is �xed in place.

De�nition 24 A period-parallelogram is called a cell if there are none of the
poles of the integrands considered on the sides of the parallelogram.

De�nition 25 A set is called an irreducible set if it is a set of poles ( or
zeros ) of an elliptic function in any given cell.
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Remember that all other poles ( or zeros ) of the elliptic function outside
the irreducible set are congruent to one or other of them.
There are some simple properties of elliptic functions.

1. The number of poles of an elliptic function in any cell is �nite.

Proof. Suppose that the number of poles of an elliptic function f(z)
in some cell is not �nite , then the poles must have a limit point p.
Clearly , this point p is a singularity but not a pole. So by de�nition of
elliptic function , the function f(z) is not an elliptic function. (! )

2. The number of zeros of an elliptic function in any cell is �nite.

Proof. Suppose the number of zeros of an elliptic function f(z) in
some cell is not �nite , then 1=f(z) is an elliptic function which have
in�nite poles in this cell. But this is a contradiction by elliptic function
simple property 1.

3. The sum of the residues of an elliptic function , f(z) , at its poles in
any cell is zero.

Proof. Suppose the corners of the cell are t; t+2!1; t+2!1+2!2; t+2!2.
Let C be the contour formed by the edges of the cell. The sum of the
residues of f(z) at its poles inside C is

1

2�i

Z
C

f(z)dz =
1

2�i

�Z t+2!1

t

+

Z t+2!1+2!2

t+2!1

+

Z t+2!2

t+2!1+2!2

+

Z t

t+2!2

�
f(z)dz

Let x = z � 2!1 , then dz = dx , thus

1

2�i

Z t+2!1+2!2

t+2!1

f(z)dz =
1

2�i

Z t+2!2

t

f(x+ 2!1)dx

=
1

2�i

Z t+2!2

t

f(z + 2!1)dz

=
1

2�i

Z t+2!2

t

f(z)dz

Let y = z � 2!2 , then dz = dy , thus
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1

2�i

Z t+2!2

t+2!1+2!2

f(z)dz =
1

2�i

Z t

t+2!1

f(y + 2!2)dy

=
1

2�i

Z t

t+2!1

f(z + 2!2)dz

=
1

2�i

Z t

t+2!1

f(z)dz

So we have

1

2�i

Z
C

f(z)dz =
1

2�i

�Z t+2!1

t

+

Z t+2!2

t

+

Z t

t+2!1

+

Z t

t+2!2

�
f(z)dz

= 0

4. (Liouville�s Theorem) An elliptic function , f(z) , with no poles in a
cell is merely a constant.

Proof. Suppose f(z) has no poles inside the cell. * f(z) is analytic
inside and on the boundary of the cell. ) f(z) is bounded inside and
on the boundary of the cell. )there exists a number K 2 R such that
jf(z)j < K when z is inside or on the boundary of the cell. * f(z) is
a doubly-periodic function and f(z) is analytic and jf(z)j < K for all
values of z. ) f(z) is a constant.

Let f(z) be an elliptic function and C be any cell with corners t; t +
2!1; t + 2!1 + 2!2; t + 2!2 and a be any constant. Because the di¤erence
between the number of zeros of f(z)� a and the number of poles of f(z)� a
which lie in the cell C is

1

2�i

Z
C

f 0(z)

f(z)� adz

When we try to compute its value. Since f(z) is an elliptic function ,
thus f 0(z + 2!1) = f 0(z + 2!2) = f 0(z).
Let x = z � 2!1 , then dz = dx , so we have
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1

2�i

Z t+2!1+2!2

t+2!1

f 0(z)

f(z)� adz =
1

2�i

Z t+2!2

t

f 0(x+ 2!1)

f(x+ 2!1)� a
dx

=
1

2�i

Z t+2!2

t

f 0(z + 2!1)

f(z + 2!1)� a
dz

=
1

2�i

Z t+2!2

t

f 0(z)

f(z)� adz

Let y = z � 2!2 , then dz = dy , so we have

1

2�i

Z t+2!2

t+2!1+2!2

f 0(z)

f(z)� adz =
1

2�i

Z t

t+2!1

f 0(y + 2!2)

f(y + 2!2)� a
dy

=
1

2�i

Z t

t+2!1

f 0(z + 2!2)

f(z + 2!2)� a
dz

=
1

2�i

Z t

t+2!1

f 0(z)

f(z)� adz

Hence , we have

1

2�i

Z
C

f 0(z)

f(z)� adz = 0

Therefore the number of zeros of f(z)� a is equal to the number of poles
of f(z)�a. Because any pole of f(z)�a is also a pole of f(z) and conversely.
Hence the number of zeros of f(z)�a is equal to the number of poles of f(z)
, which is independent of a. So we have the following de�nition.

De�nition 26 The order of an elliptic function f(z) is the number n of
roots of the equation

f(z) = a

which lie in any cell depends only on f(z) , but not on a. And this number
n is also equal to the number of poles of f(z) in the cell.

Remark 27 The order of an elliptic function is never less than 2.
Proof. Suppose an elliptic function f(z) of order 1 would have a single
irreducible pole ; and if this point actually were a pole ( and not an ordinary
point ) the residue there would not be zero , which is contrary to the simple
property 3 of elliptic functions.
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Remark 28 The simplest elliptic functions are those of order 2. There are
two classes of such functions :

1. Function have a single irreducible double pole with residue is 0.

2. Function have two simple poles with the residues are numerically equal
but opposite in sign.

Lemma 29 The sum of the a¢ xes of the zeros minus the sum of the a¢ xes
of the poles is a period.
Proof. With the notation previously employed. Because the di¤erence be-
tween the sums of the zeros and the sums of the poles is

1

2�i

Z
C

zf 0(z)

f(z)
dz =

1

2�i

Z t+2!1

t

�
zf 0(z)

f(z)
� (z + 2!2)f

0(z + 2!2)

f(z + 2!2)

�
dz

� 1

2�i

Z t+2!2

t

�
zf 0(z)

f(z)
� (z + 2!1)f

0(z + 2!1)

f(z + 2!1)

�
dz

=
1

2�i

�
�2!2

Z t+2!1

t

f 0(z)

f(z)
dz + 2!1

Z t+2!2

t

f 0(z)

f(z)
dz

�
=

1

2�i

�
�2!2

�
log f(z)jt+2!1t

�
+ 2!1

�
log f(z)jt+2!2t

�	
=

1

2�i

�
�2!2

�
log

f(t+ 2!1)

f(t)

�
+ 2!1

�
log

f(t+ 2!2)

f(t)

��
=

1

2�i

�
�2!2

�
log

f(t)

f(t)

�
+ 2!1

�
log

f(t)

f(t)

��
=

1

2�i
f�2!2 [log(1)] + 2!1 [log(1)]g

on making use of the substitutions used in simple property 3 of elliptic
functions and of the periodic properties of f(z) and f 0(z).
*

e2k�i = cos(2k�) + i sin(2k�)

= 1

)

log(1) = log(e2k�i)

= 2k�i
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for all k 2 Z. Thus ,

1

2�i

Z
C

zf 0(z)

f(z)
dz =

1

2�i
f�2!2 [log(1)] + 2!1 [log(1)]g

=
1

2�i
f�2!2(�2n�i) + 2!1(2m�i)g

= 2m!1 + 2n!2

where m;n 2 Z.

3.2 Weierstrass Elliptic function.

After knowing some basic properties of elliptic function. We will introduce
the Weierstrass elliptic function.

De�nition 30 The Weierstrass elliptic function }(z) is de�ned by the equa-
tion

}(z) =
1

z2
+
X
m;n

0
�

1

(z � 2m!1 � 2n!2)2
� 1

(2m!1 + 2n!2)2

�
The summation extends over all integer values ( positive , negative , and

zero ) of m and n , but simultaneous zero values of m and n excepted.

Throughout this paper we will use the notation
P
m;n

to denote a summation

over all integer values of m and n , and using
P
m;n

0 when the term for which

m = n = 0 has to be omitted from the summation. Sometimes , for brevity
, we write 
m;n in place of 2m!1 + 2n!2 , so that

}(z) =
1

z2
+
X
m;n

0
�

1

(z � 2m!1 � 2n!2)2
� 1

(2m!1 + 2n!2)2

�
= z�2 +

X
m;n

0 �
(z � 
m;n)�2 � 
�2m;n

	
Remark 31 When m;n such that j
m;nj is large , the general terms of the
series de�ning }(z) is O(j
m;nj�3). Hence }(z) converges absolutely and
uniformly.
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Remark 32 }(z) is analytic except the poles , namely the points 
m;n and
the points 
m;n are all double poles.

We now proceed to discuss properties of }(z) and properties of }0(z).

1. Periodicity and other properties of }(z).

Since }(z) is a uniformly convergent series of analytic functions , term-
by-term di¤erentiation is legitimate , hence

}0(z) =
d

dz
}(z)

= �2 1
z3
+
X
m;n

0
� 2 1

(z � 
m;n)3

= �2
X
m;n

1

(z � 
m;n)3

Since the set of points �
m;n is the same as the set 
m;n , and the
series for }0(z) being absolutely convergent. The derangement of the
terms does not a¤ect its sum , thus

}0(�z) = �2
X
m;n

1

(�z � 
m;n)3

= �
"
�2
X
m;n

1

(z + 
m;n)3

#

= �
"
�2
X
m;n

1

(z � 
m;n)3

#
= �}0(z)

Hence the function }0(z) is an odd function of z.

In similar manner , the series for }(z) being absolutely convergent. The
derangement of the terms does not a¤ect its sum , thus
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}(�z) =
1

(�z)2 +
X
m;n

0
�

1

(�z � 
m;n)2
� 1

(
m;n)2

�
=

1

(z)2
+
X
m;n

0
�

1

(z + 
m;n)2
� 1

(
m;n)2

�
=

1

(z)2
+
X
m;n

0
�

1

(z � 
m;n)2
� 1

(
m;n)2

�
= }(z)

Hence the function }(z) is an even function of z.

In similar manner , the series for }0(z) being absolutely convergent.
The derangement of the terms does not a¤ect its sum , thus

}0(z + 2!1) = �2
X
m;n

1

(z � 
m;n + 2!1)3

= �2
X
m;n

1

(z � 2m!1 � 2n!2 + 2!1)3

= �2
X
m;n

1

(z � 2(m� 1)!1 � 2n!2)3

= �2
X
m;n

1

(z � 
m�1;n)3

= �2
X
m;n

1

(z � 
m;n)3

= }0(z)

Hence the function }0(z) has the period 2!1 , in similar manner the
function }0(z) has the period 2!2.

Since }0(z) is analytic except at its poles , and }0(z) is a doubly-periodic
function. Hence }0(z) is an elliptic function.

If we integrate the equation }0(z + 2!1) = }0(z) , we get

}(z + 2!1) = }(z) +K
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whereK is a constant. Putting z = �!1 into the equation }(z+2!1) =
}(z) +K , we have

}(�!1 + 2!1) = }(�!1) +K

Since }(z) is an even function , we have

}(!1) = }(�!1) +K
= }(!1) +K

) K = 0 , this shows that }(z + 2!1) = }(z). In similar manner
}(z + 2!2) = }(z). Since }(z) is a doubly-periodic function , and
}(z) has no singularities but poles , it follows that }(z) is an elliptic
function.

We give the following table as conclusion.

Function De�nition Periods Parity Poles

}(z) 1
z2
+
P
m;n

0
n

1
(z�
m;n)2 �

1
(
m;n)2

o
2!1; 2!2 even 
m;n

}0(z) �2
P
m;n

1
(z�
m;n)3 2!1; 2!2 odd 
m;n

2. The di¤erential equation satis�ed by }(z).

Let f(z) = }(z) � z�2 =
P
m;n

0 �(z � 
m;n)�2 � 
�2m;n	 is analytic in
a region of which the origin is an internal point , and it is an even
function of z. By Taylor�s theorem , we have
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f(z) =
1X
k=0

f (k)(0)

k!
zk

= f(0) + f 0(0)z +
f (2)(0)

2!
z2 +

f (3)(0)

3!
z3 +

f (4)(0)

4!
z4 + � � �

=
X
m;n

0 �
�2(�
m;n)�3

	
z +

X
m;n

0f6(�
m;n)�4g
2

z2

+
X
m;n

0f�24(�
m;n)�5g
6

z3 +
X
m;n

0f120(�
m;n)�6g
24

z4 + � � �

=
X
m;n

0 �
�2(�
m;n)�3

	
z +

X
m;n

0 �
3(�
m;n)�4

	
z2

+
X
m;n

0 �
�4(�
m;n)�5

	
z3 +

X
m;n

0 �
5(�
m;n)�6

	
z4 + � � �

Since f(z) is an even function of z , )

f(z) = f(�z)
=

X
m;n

0 �
+2(�
m;n)�3

	
z +

X
m;n

0 �
3(�
m;n)�4

	
z2

+
X
m;n

0 �
+4(�
m;n)�5

	
z3 +

X
m;n

0 �
5(�
m;n)�6

	
z4 + � � �

When we compute f(z) + f(�z) , we have
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2f(z) = f(z) + f(�z)
=

X
m;n

0 �
�2(�
m;n)�3

	
z +

X
m;n

0 �
3(�
m;n)�4

	
z2

+
X
m;n

0 �
�4(�
m;n)�5

	
z3 +

X
m;n

0 �
5(�
m;n)�6

	
z4

+
X
m;n

0 �
+2(�
m;n)�3

	
z +

X
m;n

0 �
3(�
m;n)�4

	
z2

+
X
m;n

0 �
+4(�
m;n)�5

	
z3 +

X
m;n

0 �
5(�
m;n)�6

	
z4 + � � �

= 2

(X
m;n

0 �
3(�
m;n)�4

	
z2 +

X
m;n

0 �
5(�
m;n)�6

	
z4 + � � �

)

So we have }(z)� z�2 = 1
20
g2z

2 + 1
28
g3z

4 +O(z6) for su¢ ciently small
values of jzj where

g2 = 60
X
m;n

0
(
m;n)

�4; g3 = 140
X
m;n

0
(
m;n)

�6

and

}(z) = z�2 +
1

20
g2z

2 +
1

28
g3z

4 +O(z6)

di¤erentiating the equation , we have

}0(z) = �2z�3 + 1

10
g2z +

1

7
g3z

3 +O(z5)

Cubing }(z) and squaring }0(z) respectively , we have

(}(z))3 = z�6 +
3

20
g2z
�2 +

3

28
g3 +O(z

2)

(}0(z))2 = 4z�6 � 2
5
g2z
�2 � 4

7
g3 +O(z

2)
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Hence

(}0(z))2 � 4(}(z))3 = �g2z�2 � g3 +O(z2)

and so

(}0(z))2 � 4(}(z))3 + g2}(z) + g3 = O(z2)

) the function (}0(z))2�4(}(z))3+g2}(z)+g3 is analytic at the origin.
Since the function (}0(z))2�4(}(z))3+g2}(z)+g3 is an elliptic function ,
so it is also analytic at all congruent points about the origin point. Since
such points are the only possible singularities , so the function (}0(z))2�
4(}(z))3+g2}(z)+g3 is an elliptic function with no singularities. Hence
(}0(z))2 � 4(}(z))3 + g2}(z) + g3 is a constant by the simple property
4 of elliptic functions. And we can make z ! 0 to gain the di¤erential
equation

(}0(z))2 = 4(}(z))3 � g2}(z)� g3

Hence the function }(z) satis�es the di¤erential equation

(y0)2 = 4y3 � g2y � g3

where

g2 = 60
X
m;n

0
(
m;n)

�4; g3 = 140
X
m;n

0
(
m;n)

�6

Conversely , if numbers !1; !2 can be determined such that

g2 = 60
X
m;n

0
(
m;n)

�4; g3 = 140
X
m;n

0
(
m;n)

�6

then the general solution of the di¤erential equation (dy
dz
)2 = 4y3�g2y�

g3 is
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y = }(�z + �)

where � is the constant of integration. Since }(z) is an even function
of z , we can write y = }(z + �) without loss of generality.

3. The integral formula for }(z).

When we consider the equation

z =

Z 1
�

(4t3 � g2t� g3)�
1
2dt

where the path of integration may be any curve which does not pass
through a zero of 4t3 � g2t� g3.
By The Fundamental Theorem Of Calculus , when we di¤erentiate the
equation

z =

Z 1
�

(4t3 � g2t� g3)�
1
2dt

we get the equation

(
d�

dz
)2 = 4�3 � g2� � g3

and so

� = }(z + �)

where � is a constant. Since z =
R1
�
(4t3�g2t�g3)�

1
2dt! 0 as � !1.

So � is a pole of the function }(z) i.e. � is of the form 
m;n , thus

� = }(z + �)

= }(z + 
m;n)

= }(z)
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So the equation z =
R1
�
(4t3�g2t�g3)�

1
2dt is called the integral formula

for }(z) , and it is sometimes written as

z =

Z 1
}(z)

(4t3 � g2t� g3)�
1
2dt

4. The addition-theorem for the function }(z).

We want to express }(z + y) as an algrbraic function of }(z) and }(y)
for general values of z and y. Consider the equations

}0(z) = A}(z) +B;}0(y) = A}(y) +B

which determine A and B in terms of z and y unless }(z) = }(y) , i.e.
unless z � �y(mod :2!1; 2!2). Since

}(z) =
1

z2
+
X
m;n

0
�

1

(z � 
m;n)2
� 1

(
m;n)2

�
; }0(z) = �2

X
m;n

1

(z � 
m;n)3

, so the function

}0(x)� A}(x)�B

has a triple pole at x = 0 and it has three , and only three , irreducible
zero.( the number of roots of f(z) is equal to the number of poles of
f(z) ).

Since the sum of the zeros minus the sum of the poles is a period.
So if x = z; x = y are two zeros , the third irreducible zero must be
congruent to �z� y , i.e. �z� y is a zero of }0(x)�A}(x)�B. Thus

}0(�z � y) = A}(�z � y) +B

Eliminating A and B from the equations
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}0(z) = A}(z) +B

}0(y) = A}(y) +B

}0(�z � y) = A}(�z � y) +B

we have

������
}(z) }0(z) 1
}(y) }0(y) 1

}(z + y) �}0(z + y) 1

������ = 0
It is called an addition-theorem for the function }(z).

Remark 33 The following equation is another form of the addition-
theorem

}(z + y) =
1

4

�
}0(z)� }0(y)
}(z)� }(y)

�2
� }(z)� }(y)

This equation expresses }(z + y) explicitly in terms of functions of z
and y.

5. The duplication formula for }(z).

Taking the limiting form of the equation }(z + y) = 1
4

n
}0(z)�}0(y)
}(z)�}(y)

o2
�

}(z)� }(y) when y approaches z , we have

lim
y!z
}(z + y) =

1

4
lim
y!z

�
}0(z)� }0(y)
}(z)� }(y)

�2
� }(z)� lim

y!z
}(y)

If 2z is not a period , we have
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}(2z) =
1

4
lim
h!0

�
}0(z)� }0(z + h)
}(z)� }(z + h)

�2
� 2}(z)

=
1

4
lim
h!0

�
�h}00(z)
�h}0(z)

�2
� 2}(z)

=
1

4

�
}00(z)

}0(z)

�2
� 2}(z)

by the de�nition of derivative.

When 2z is not a period , the equation

}(2z) =
1

4

�
}00(z)

}0(z)

�2
� 2}(z)

is called the duplication formula.

6. The constants e1; e2; e3.

We want to claim that if }(!1) = e1; }(!2) = e2; }(!3) = e3 are all
unequal where !3 = �!1 � !2 , then e1; e2; e3 are the roots of the
equation

4y3 � g2y � g3 = 0

(1) Since }0(z) is an odd periodic function , we have

}0(!1) = }0(�(�!1))
= �}0(�!1)
= �}0(�!1 + 2!1)
= �}0(!1)

and so

}0(!1) = 0

53



Similarly ,

}0(!2) = }
0(!3) = 0

This means that }0(z) has three zeros. Since }0(z) = �2
P
m;n

1
(z�
m;n)3

is an elliptic function whose only singularities are triple poles at
points congruent to the origin. Therefore that }0(z) has three
, and only three irreducible zeros which are points congruent to
!1; !2; !3.

(2) Since }0(z) has three irreducible zeros , thus }(z) has only two
irreducible poles. Clearly , }(!1) � e1 = e1 � e1 = 0. It follows
that the only zero of }(z)� e1 is a double zero at point congruent
to !1. Similarly , the only zeros of }(z)� e2; }(z)� e3 are double
zeros at points congruent to !2; !3 respectively.

(3) Suppose e1 = e2 , then }(z) � e1 has zero at !2 which is a point
not congruent to !1. Thus , e1 6= e2. Similarly , e2 6= e3 and
e3 6= e1. Hence e1 6= e2 6= e3.
Clearly (}0(z))2 = 4}3(z)� g2}(z)� g3 , By (1) , we have

4}3(!1)� g2}(!1)� g3 = (}0(!1))
2 = 0

4}3(!2)� g2}(!2)� g3 = (}0(!2))
2 = 0

4}3(!3)� g2}(!3)� g3 = (}0(!3))
2 = 0

This is to say , by (2) , (3) , e1; e2; e3 are the roots of the equation

4y3 � g2y � g3 = 0

Use the formula connecting roots of equations with their coe¢ -
cients , we have

e1 + e2 + e3 = 0

e2e3 + e3e1 + e1e2 = �1
4
g2

e1e2e3 =
1

4
g3
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7. The addition of a half-period to the argument of }(z).

The form of the addition-theorem is }(z+y) = 1
4

n
}0(z)�}0(y)
}(z)�}(y)

o2
�}(z)�

}(y) , let y = !1 , we have

}(z + !1) =
1

4

�
}0(z)� }0(!1)
}(z)� }(!1)

�2
� }(z)� }(!1)

Since [}0(z)]2 = 4}3(z)�g2}(z)�g3 = 4[}(z)�e1][}(z)�e2][}(z)�e3]
and e1 + e2 + e3 = 0 and }0(!1) = }0(!2) = }0(!3) = 0 , we have

}(z + !1) =
1

4

�
}0(z)� }0(!1)
}(z)� }(!1)

�2
� }(z)� }(!1)

=
1

4

[}0(z)]2

[}(z)� e1]2
� }(z)� e1

=
[}(z)� e2][}(z)� e3]

}(z)� e1
� }(z)� e1

= e1 +
�(e1 + e2 + e3)}(z) + e2e3 + e1(�e2 � e3) + e21

}(z)� e1

= e1 +
(e1 � e2)(e1 � e3)

}(z)� e1

Using similar method , we have

}(z + !2) = e2 +
(e2 � e3)(e2 � e1)

}(z)� e2

}(z + !3) = e3 +
(e3 � e1)(e3 � e2)

}(z)� e3

We collect the addition of a half-period to the argument of }(z) as
following

55



}(z + !1) = e1 +
(e1 � e2)(e1 � e3)

}(z)� e1

}(z + !2) = e2 +
(e2 � e3)(e2 � e1)

}(z)� e2

}(z + !3) = e3 +
(e3 � e1)(e3 � e2)

}(z)� e3

Afetr we introduce some properties about the Weierstrass elliptic func-
tion , we will introduce the Jacobian elliptic function. The Weierstrass
elliptic function }(z) is one of the simplest example for the elliptic
function with single double pole.

3.3 Jacobian Elliptic Functions.

We will �rst discuss the Theta-functions before discussing the Jacobian el-
liptic functions.

De�nition 34 The theta function is de�ned by the series

#(z; q) =
1X

n=�1
(�1)nqn2e2niz

= 1 + 2
1X
n=1

(�1)nqn2 cos(2nz)

where q = e�i� with jqj < 1 , and � is a constant complex number whose
imaginary part is positive. It is customary to write #4(z; q) (Tannery�s and
Molk�s notation) in place of #(z; q) (Jacobi�s notation).

Before we de�ne the other three types of Theta-functions , we give some
properties of #4(z; q).

Remark 35 By simple computation for #4(z; q) =
1P

n=�1
(�1)nqn2e2niz , we

have

#4(z + �; q) = #4(z; q)

#4(z + ��; q) = (�q�1e�2iz)#4(z; q)
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By the Remark , we say that #4(z; q) is a quasi doubly-periodic function
of z. The numbers 1 and �q�1e�2iz are called the multipliers or periodicity
factors associated with the periods � and �� respectively.

De�nition 36 The other three types of Theta-functions are de�ned as fol-
lows :

#1(z; q) = �ieiz+ 1
4
�i�#4(z +

1

2
��; q)

#2(z; q) = #1(z +
1

2
�; q)

#3(z; q) = #4(z +
1

2
�; q)

#4(z; q) =
1X

n=�1
(�1)nqn2e2niz

and in series form

#1(z; q) = 2
1X
n=0

(�1)nq(n+ 1
2
)2 sin(2n+ 1)z

#2(z; q) = 2
1X
n=0

q(n+
1
2
)2 cos(2n+ 1)z

#3(z; q) = 1 + 2
1X
n=1

qn
2

cos 2nz

#4(z; q) = 1 + 2

1X
n=1

(�1)nqn2 cos(2nz)

Remark 37 .

1. By De�nition above and the parity of trigonometric functions , we have

function #1(z; q) #2(z; q) #3(z; q) #4(z; q)
parity odd even even even

2. The parameter q will not usually be speci�ed , so we will write #1(z) ,
#2(z) , #3(z) , #4(z) for #1(z; q) , #2(z; q) , #3(z; q) , #4(z; q) respec-
tively.
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3. By De�nition in series form above and simple computation , we have

#3(z; q) = #3(2z; q
4) + #2(2z; q

4)

#4(z; q) = #3(2z; q
4)� #2(2z; q4)

4. By De�nition in series form above and simple computation , we have
relations between four types of Theta-functions

#1(z) = �#2(z +
1

2
�) = �iM#3(z +

1

2
� +

1

2
��) = �iM#4(z +

1

2
��)

#2(z) = M#3(z +
1

2
��) =M#4(z +

1

2
� +

1

2
��) = #1(z +

1

2
�)

#3(z) = #4(z +
1

2
�) =M#1(z +

1

2
� +

1

2
��) =M#2(z +

1

2
��)

#4(z) = �iM#1(z +
1

2
��) = iM#2(z +

1

2
� +

1

2
��) = #3(z +

1

2
�)

where M = q
1
4 eiz.

5. The periodicity factors of the four types of Theta-functions associated
with the periods �; �� are made by the table below

#1(z) #2(z) #3(z) #4(z)
� -1 -1 1 1
�� -N N N -N

where N = q�1e�2iz.

6. The Theta-function #(z) satisfy the following equations

#0(z + �)

#(z + �)
=

#0(z)

#(z)

#0(z + ��)

#(z + ��)
= �2i+ #

0(z)

#(z)

where #(z) is any one of the four Theta-functions and #0(z) its derivate
with respect to z.
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In this paper we will interpret to mean e��i� for the many-valued function
q�.
Suppose #(z0) = 0 where #(z) is any one of the four types of Theta-

functions. Then

#(z0 +m� + n��) = 0

from the quasi-periodic properties of the Theta-functions for allm;n 2 Z.

Theorem 38 If C be a cell with corners t; t + �; t + � + ��; t + �� , then
#(z) has one and only one zero inside C , where #(z) is any one of the four
Theta-functions.
Proof. Since #(z) is analytic throughout the �nite part of the z-plane , thus
the number of its zeros inside C is

1

2�i

Z
C

#0(z)

#(z)
dz =

1

2�i

�Z t+�

t

+

Z t+�+��

t+�

+

Z t+��

t+�+��

+

Z t

t+��

�
#0(z)

#(z)
dz

1. Let x = z � � , then dx = dz
and since

#0(z + �)

#(z + �)
=
#0(z)

#(z)

we have

1

2�i

Z t+�+��

t+�

#0(z)

#(z)
dz =

1

2�i

Z t+��

t

#0(x+ �)

#(x+ �)
dx

=
1

2�i

Z t+��

t

#0(x)

#(x)
dx

=
1

2�i

Z t+��

t

#0(z)

#(z)
dz

2. Let y = z � �� , then dy = dz
and since
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#0(z + ��)

#(z + ��)
= �2i+ #

0(z)

#(z)

we have

1

2�i

Z t+��

t+�+��

#0(z)

#(z)
dz =

1

2�i

Z t

t+�

#0(y + ��)

#(y + ��)
dy

= � 1

2�i

Z t+�

t

#0(y + ��)

#(y + ��)
dy

= � 1

2�i

Z t+�

t

�2i+ #
0(y)

#(y)
dy

= � 1

2�i

Z t+�

t

�2i+ #
0(z)

#(z)
dz

= 1� 1

2�i

Z t+�

t

#0(z)

#(z)
dz

By 1: , 2: , we have

1

2�i

Z
C

#0(z)

#(z)
dz =

1

2�i

�Z t+�

t

+

Z t+�+��

t+�

+

Z t+��

t+�+��

+

Z t

t+��

�
#0(z)

#(z)
dz

= 1

Hence #(z) has one and only one zero inside C.

Remark 39 (The zeros of the Theta-functions.) The zeros of #1(z) ,
#2(z) , #3(z) , #4(z) are the points congruent to 0 , 1

2
� , 1

2
� + 1

2
�� , 1

2
��

respectively.

Proof. Clearly , z = 0 is a zero of #1(z; q) = 2
1P
n=0

(�1)nq(n+ 1
2
)2 sin(2n + 1)z

by de�nition. Hence z = 0 + m� + n�� is also a zero of #1(z; q) for all
m;n 2 Z. This means the zeros of #1(z) are the points congruent to 0. By
the relations between four types of Theta-functions

#1(z) = �#2(z +
1

2
�) = �iM#3(z +

1

2
� +

1

2
��) = �iM#4(z +

1

2
��)

60



where M = q
1
4 eiz. We �nd that

#1(0) = �#2(
1

2
�) = �iM#3(

1

2
� +

1

2
��) = �iM#4(

1

2
��) = 0

where M = q
1
4 eiz , thus

#1(0) = #2(
1

2
�) = #3(

1

2
� +

1

2
��) = #4(

1

2
��) = 0

So z = 1
2
�; 1

2
� + 1

2
��; 1

2
�� are zeros of #2(z); #3(z); #4(z) respectively.

Hence , the zeros of #1(z); #2(z); #3(z); #4(z) are the points congruent to
0; 1

2
�; 1

2
� + 1

2
��; 1

2
�� respectively.

We summarized the result as the following table.

Zeros Relations

#1(z; q) z = 0mod(�; ��) 2
1P
n=0

(�1)nq(n+ 1
2
)2 sin(2n+ 1)z

#2(z; q) z = 1
2
�mod(�; ��) #1(z; q) = �#2(z + 1

2
�; q)

#3(z; q) z = 1
2
� + 1

2
�� mod(�; ��) #1(z; q) = �iq

1
4 eiz#3(z +

1
2
� + 1

2
��; q)

#4(z; q) z = 1
2
�� mod(�; ��) #1(z; q) = �iq

1
4 eiz#4(z +

1
2
��; q)

Theorem 40 It is possible to express any Theta-function in terms of any
other pair of Theta-functions by the following equations.

#24(0)#
2
1(z) = #22(0)#

2
3(z)� #23(0)#22(z)

#24(0)#
2
2(z) = #22(0)#

2
4(z)� #23(0)#21(z)

#24(0)#
2
3(z) = #23(0)#

2
4(z)� #22(0)#21(z)

#24(0)#
2
4(z) = #23(0)#

2
3(z)� #22(0)#22(z)

Proof. Since each of the four functions #21(z); #
2
2(z); #

2
3(z); #

2
4(z) is analytic

and has periodicity factors 1; q�2e�4iz associated with the periods �; �� . Thus
each of the functions

a#21(z) + b#
2
4(z)

#22(z)
;
a0#21(z) + b

0#24(z)

#23(z)
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is a doubly-periodic function ( with periods �; �� ) where the constants
a; b; a0; b0 are suitably chosen.
Since each of the four functions #21(z); #

2
2(z); #

2
3(z); #

2
4(z) has a double zero

( and no other zeros ) in any cell. Thus each of the functions

a#21(z) + b#
2
4(z)

#22(z)
;
a0#21(z) + b

0#24(z)

#23(z)

have at most only a simple pole in each cell where the constants a; b; a0; b0

are suitably chosen. But the order of an elliptic function is never less than 2
otherwise such a function is merely a constant.
So we assume that there exist a; b; a0; b0 such that

a#21(z) + b#
2
4(z)

#22(z)
= 1;

a0#21(z) + b
0#24(z)

#23(z)
= 1

i.e.

#22(z) = a#
2
1(z) + b#

2
4(z); #

2
3(z) = a

0#21(z) + b
0#24(z)

Using the relations between four types of Theta-functions

#1(z) = �#2(z +
1

2
�) = �iM#3(z +

1

2
� +

1

2
��) = �iM#4(z +

1

2
��)

#2(z) = M#3(z +
1

2
��) =M#4(z +

1

2
� +

1

2
��) = #1(z +

1

2
�)

#3(z) = #4(z +
1

2
�) =M#1(z +

1

2
� +

1

2
��) =M#2(z +

1

2
��)

#4(z) = �iM#1(z +
1

2
��) = iM#2(z +

1

2
� +

1

2
��) = #3(z +

1

2
�)

where M = q
1
4 eiz.

We have

#1(
1

2
��) = iq�

1
4#4(0)

#2(
1

2
��) = q�

1
4#3(0)

#3(
1

2
��) = q�

1
4#2(0)

#4(
1

2
��) = 0
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To determine a; b; a0; b0 , let z = 1
2
�� and z = 0 into the equations #22(z) =

a#21(z) + b#
2
4(z) , #

2
3(z) = a

0#21(z) + b
0#24(z) respectively. Then we have

#23 = �a#24; #22 = b#24(z);#22(z) = �a0#24; #23 = b0#24

So we obtained the relations

#24(0)#
2
2(z) = #22(0)#

2
4(z)� #23(0)#21(z)

#24(0)#
2
3(z) = #23(0)#

2
4(z)� #22(0)#21(z)

Replace z by z + 1
2
� , we have

#24(0)#
2
1(z) = #22(0)#

2
3(z)� #23(0)#22(z)

#24(0)#
2
4(z) = #23(0)#

2
3(z)� #22(0)#22(z)

Corollary 41 In the last relation , we write z = 0 to get the equation

#42(0) + #
4
4(0) = #

4
3(0)

Remark 42 The addition-formula for the Theta-functions is in the following
equation.

#3(z + y)#3(z � y)#23 = #23(y)#23(z) + #21(y)#21(z)

Proof. Clearly the function #3(z + y)#3(z � y) of z has periodicity factors
associated with the periods � and �� are 1 and q�1e�2i(z+y) � q�1e�2i(z�y) =
q�2e�4iz , and the function a#23(z) + b#

2
1(z) has the same periodicity factors

where a; b 2 C are constants. So we can choose the ratio a : b such that the
doubly-periodic function

a#23(z) + b#
2
1(z)

#3(z + y)#3(z � y)

has no poles at the zeros of #3(z� y) , then it at most has a single simple
pole in any cell. And this simple is the zero of #3(z + y) in that cell. Since
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the order of an elliptic function is never less than 2 otherwise such a function
is merely a constant. So we may choose suitable a; b for the ratio a : b such
that

a#23(z) + b#
2
1(z)

#3(z + y)#3(z � y)
= 1

i.e.

a#23(z) + b#
2
1(z) = #3(z + y)#3(z � y)

To determine a and b , we put z = 0 and z = 1
2
�+ 1

2
�� into the equation

a#23(z) + b#
2
1(z) = #3(z + y)#3(z � y) respectively. Since #3(z) is an even

function , so we get

a#23 = #
2
3(y); b#

2
1(
1

2
� +

1

2
��) = #3(

1

2
� +

1

2
�� + y)#3(

1

2
� +

1

2
�� � y)

Using the relations between Theta-functions

#3(z) = q
1
4 eiz#1(z +

1

2
� +

1

2
��); #1(z) = �iq

1
4 eiz#3(z +

1

2
� +

1

2
��)

we have

#21(
1

2
�+

1

2
��) = q�

1
2#23; #3(

1

2
�+

1

2
�� + y)#3(

1

2
�+

1

2
�� � y) = q� 1

2#21(y)

So we get

a =
#23(y)

#23
; b =

#21(y)

#23

Hence

#3(z + y)#3(z � y)#23 = #23(y)#23(z) + #21(y)#21(z)
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Remark 43 (Jacobi�s fundamental formula.) Suppose

2w0 = �w + x+ y + z
2x0 = w � x+ y + z
2y0 = w + x� y + z
2z0 = w + x+ y � z

and let

[r] = #r(w)#r(x)#r(y)#r(z); [r]
0 = #r(w

0)#r(x
0)#r(y

0)#r(z
0)

where we will consider [r]; [r]0 qua functions of z. Then we have

2[3] = �[1]0 + [2]0 + [3]0 + [4]0

2[4] = [1]0 � [2]0 + [3]0 + [4]0

2[2] = [1]0 + [2]0 + [3]0 � [4]0

2[1] = [1]0 + [2]0 � [3]0 + [4]0

Proof. By the simple computation , the e¤ect of increasing z by � or �� is
to transform the functions in the �rst row of the following table into those in
the second row respectively.

[3] [1]0 [2]0 [3]0 [4]0

� [3] �[2]0 �[1]0 [4]0 [3]0

�� N [3] �N [4]0 N [3]0 N [2]0 �N [1]0

where N = q�
1
2 e�2iz.

In the table , we know that both �[1]0 + [2]0 + [3]0 + [4]0 and [3] have
periodicity factors 1 and N . Thus the quotient

�[1]0 + [2]0 + [3]0 + [4]0
[3]

is a doubly-periodic function. And in any cell this function have at most
a single simple pole namely the zero of #3(z) in that cell. Since the order of
an elliptic function is never less than 2 otherwise such a function is merely a
constant. So this quotient is merely a constant ; i.e. independent of z. And by
considerations of symmetry , we know that this quotient is also independent
of w; x; y. So we let
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A[3] = �[1]0 + [2]0 + [3]0 + [4]0

where A is independent of w; x; y; z. Let w = x = y = z = 0 , then we
get

A#43 = #
4
2 + #

4
3 + #

4
4

By the corollary before , because #42 + #
4
4 = #

4
3 ,we get A = 2. Therefore

2[3] = �[1]0 + [2]0 + [3]0 + [4]0

Increasing w; x; y; z by 1
2
� and therefore w0; x0; y0; z0 will also increase by

1
2
� , then we get

2[4] = [1]0 � [2]0 + [3]0 + [4]0

Increasing w; x; y; z by 1
2
�� in

2[3] = �[1]0 + [2]0 + [3]0 + [4]0

2[4] = [1]0 � [2]0 + [3]0 + [4]0

we will get

2[2] = [1]0 + [2]0 + [3]0 � [4]0

2[1] = [1]0 + [2]0 � [3]0 + [4]0

Remark 44 We can express Theta-functions as in�nite products in the fol-
lowing

#1(z) = 2Gq
1
4 sin z

1
�
n=1
(1� 2q2n cos 2z + q4n)

#2(z) = 2Gq
1
4 cos z

1
�
n=1
(1 + 2q2n cos 2z + q4n)

#3(z) = G
1
�
n=1
(1 + 2q2n�1 cos 2z + q4n�2)

#4(z) = G
1
�
n=1
(1� 2q2n�1 cos 2z + q4n�2)
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where G is independent of z.
Proof. Let

f(z) =
1
�
n=1
(1� q2n�1e2iz)

1
�
n=1
(1� q2n�1e�2iz)

=
1
�
n=1
(1� 2q2n�1 cos 2z + q4n�2)

Since
1P
n=1

q2n�1 is convergent absolutely , thus each of the two products

converges absolutely and uniformly in any bounded domain of values of z.
Hence f(z) is analytic throughout the �nite part of the z-plane , and so it is
an integral function.
The zeros of f(z) are simple zeros at the points where

e2iz = e(2n+1)�i� ; (n 2 Z)

i.e. where

2iz = (2n+ 1)�i� + 2m�i

, thus f(z) and #4(z) have the same zeros. Hence the quotient #4(z)=f(z)
has neither zeros nor poles in the �nite part of the plane.
Clearly , f(z + �) = f(z) and

f(z + ��) =
1
�
n=1
(1� q2n+1e2iz)

1
�
n=1
(1� q2n�3e�2iz)

= f(z)
1� q�1e�2iz
1� qe2iz

= �q�1e�2izf(z)

, thus f(z) and #4(z) have the same periodicity factors. Therefore #4(z)=f(z)
is a doubly-periodic function with no zeros or poles , so it is a constant G.
Hence

#4(z) = Gf(z)

= G
1
�
n=1
(1� 2q2n�1 cos 2z + q4n�2)
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Write z + 1
2
� for z , we get

#3(z) = G
1
�
n=1
(1 + 2q2n�1 cos 2z + q4n�2)

And

#1(z) = �iq 14 eiz#4(z +
1

2
��)

= �iq 14 eizG
1
�
n=1
(1� q2ne2iz)

1
�
n=1
(1� q2n�2e�2iz)

= 2Gq
1
4 sin z

1
�
n=1
(1� q2ne2iz)

1
�
n=1
(1� q2ne�2iz)

= 2Gq
1
4 sin z

1
�
n=1
(1� 2q2n cos 2z + q4n)

so

#2(z) = #1(z +
1

2
�)

= 2Gq
1
4 cos z

1
�
n=1
(1 + 2q2n cos 2z + q4n)

Remark 45 We may regard any one of four type of Theta-functions as a
function #(zj�) of two independent variables z and � . By compute directly
we have

@2#(zj�)
@z2

= � 4
�i

@#(zj�)
@�

Therefore the Theta-functions #(zj�) satis�es the partial di¤erential equa-
tion

1

4
�i
@2y

@z2
+
@y

@�
= 0

Remark 46 (A relation between Theta-functions of zero argument)
For Theta-functions , we have the following relation

#01(0) = #2(0) � #3(0) � #4(0)
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Remark 47 (The value of the constant G.) The constant G in the fol-
lowing equations

#1(z) = 2Gq
1
4 sin z

1
�
n=1
(1� 2q2n cos 2z + q4n)

#2(z) = 2Gq
1
4 cos z

1
�
n=1
(1 + 2q2n cos 2z + q4n)

#3(z) = G
1
�
n=1
(1 + 2q2n�1 cos 2z + q4n�2)

#4(z) = G
1
�
n=1
(1� 2q2n�1 cos 2z + q4n�2)

have the value

G =
1
�
n=1
(1� q2n)

Remark 48 The quotient of Theta-functions #1(z)=#4(z) is a solution of
the following equation

(
d�

dz
)2 = (#22 � #23 � �2)(#23 � #22 � �2)

Proof. By the table below

#1(z) #2(z) #3(z) #4(z)
� -1 -1 1 1
�� -N N N -N

we know that the function #1(z)=#4(z) has periodicity factors (�1); (+1)
associated with the periods (�); (��) respectively. So its derivative

d

dz
(
#1(z)

#4(z)
) =

#01(z)#4(z)� #04(z)#1(z)
#24(z)

also has periodicity factors (�1); (+1) associated with the periods (�); (��)
respectively.
By the same table we verify that

#2(z) � #3(z)
#24(z)
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has periodicity factors (�1); (+1) associated with the periods (�); (��)
respectively. So the function

�(z) =
#01(z)#4(z)� #04(z)#1(z)

#2(z) � #3(z)

is doubly-periodic with periods � and �� ; and the only possible poles of
�(z) are simple poles at points congruent to (1=2)� and (1=2)� + (1=2)�� .
By the relations between four types of Theta-functions

#1(z +
1

2
��) = iq�

1
4 e�iz#4(z)

#4(z +
1

2
��) = iq�

1
4 e�iz#1(z)

#2(z +
1

2
��) = q�

1
4 e�iz#3(z)

#3(z +
1

2
��) = q�

1
4 e�iz#2(z)

we can see that

�(z +
1

2
��) =

�#04(z)#1(z) + #01(z)#4(z)
#3(z) � #2(z)

= �(z)

Hence �(z) is doubly-periodic with periods � and (1=2)�� , and the only
possible poles of �(z) are simple poles at points congruent to (1=2)� relative
to these periods. Because the order of an elliptic function is never less than
2 , otherwise a constant. So �(z) = A is a constant , and making z ! 0 ,
we get that

�(z) = A =
#01 � #4
#2 � #3

= #24

by the relation #01 = #2 � #3 � #4. So we have

#01(z)#4(z)� #04(z)#1(z)
#2(z) � #3(z)

= #24

i.e.
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#01(z)#4(z)� #04(z)#1(z) = #24#2(z)#3(z)

thus we get

d

dz
(
#1(z)

#4(z)
) =

#01(z)#4(z)� #04(z)#1(z)
#24(z)

= #24
#2(z)

#4(z)
� #3(z)
#4(z)

Let � � #1(z)=#4(z) , and by the relation #
0
1 = #2 � #3 � #4 again , we

eventually get the di¤erential equation

(
d�

dz
)2 = (#22 � #23 � �2)(#23 � #22 � �2)

Now , we could introduce the Jacobian elliptic functioms.

Remark 49 (The genesis of the Jacobian Elliptic function.) Let y =
(#3=#2)� , u = #

2
3z , � = (#2=#3)

2 , then the equation

(
d�

dz
)2 = (#22 � #23 � �2)(#23 � #22 � �2)

would be written as

(
dy

du
)2 = (1� y2)(1� �2y2)

It is customary to regard the solution y as a function of u and � , so we
denote y = sn(u; �) or simply y = sn(u). Evidently , sn(u; �) is an elliptic
function and sn(u; �)! sinu as �! 0. The constant � = (#2=#3)2 is called
the modulus , and the constant �0 = (#4=#3)

2 is called the complementary
modulus. Because #42 + #

4
4 = #

4
3 ,we get (�)

2 + (�0)2 = 1.
The function

y =
#3
#2
� =

#3
#2

#1(#
�2
3 u)

#4(#
�2
3 u)

has periodicity factors (�1); (+1) associated with the periods (�#23); (��#23)
, therefore it is a doubly-periodic function with periods (2�#23); (��#

2
3). It has
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two simple poles at the points congruent to (1
2
��#23) and (�#

2
3 +

1
2
��#23) in

any cell. The zeros of the function are the points congruent to 0 and �#23 ,
and on account of the nature of the quasi-periodicity of y , the residues at
these points are equal and opposite in sign. The quasi-periods (�#23); (��#

2
3)

are usually written (2K); (2iK 0) , so that sn(u; k) has periods (4K); (2iK 0).
On the other version , the equation

(
dy

du
)2 = (1� y2)(1� �2y2)

can be written as the integral form

u =

Z y

0

(1� t2)� 1
2 (1� �2t2)� 1

2dt

where y = sn(u; �) satis�es it.

De�nition 50 The Jacobian elliptic functions sn(u); cn(u); dn(u) are de-
�ned as following

sn(u) =
#3
#2

#1(#
�2
3 u)

#4(#
�2
3 u)

cn(u) =
#4
#2

#2(#
�2
3 u)

#4(#
�2
3 u)

dn(u) =
#4
#3

#3(#
�2
3 u)

#4(#
�2
3 u)

where u = #23z , � = (#2=#3)
2.

Remark 51 (Relations between the Jacobian elliptic functions.) We
have some relations between the Jacobian elliptic functions as following

cn(u) � dn(u) =
d

du
sn(u)

sn2(u) + cn2(u) = 1

�2sn2(u) + dn2(u) = 1

cn(0) = 1

dn(0) = 1
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Proof. By

d

dz
(
#1(z)

#4(z)
) = #24

#2(z)

#4(z)
� #3(z)
#4(z)

we have

d

du
sn(u) = cn(u) � dn(u)

By

#24(0)#
2
2(z) = #22(0)#

2
4(z)� #23(0)#21(z)

#24(0)#
2
3(z) = #23(0)#

2
4(z)� #22(0)#21(z)

we have

sn2(u) + cn2(u) = 1

�2sn2(u) + dn2(u) = 1

By compute directly and de�nition , cn(0) = dn(0) = 1 is obvious.

Remark 52 (Simple properties of sn(u),cn(u),dn(n).) We summarize
simple properties of sn(u) , cn(u) , dn(u) by the following table.

sn(u) cn(u) dn(u)
Periods 4K; 2iK 0 4K; 4iK 0 2K; 4iK 0

Poles iK 0; 2K + iK 0 iK 0; 2K + iK 0 iK 0; K + iK 0

mod(4K; 2iK 0) mod(4K; 4iK 0) mod(2K; 4iK 0)
Zeros 0 K K + iK 0

mod(2K; 2iK 0) mod(2K; 2iK 0) mod(2K; 2iK 0)
Parity odd even even

Derivative cn(u) � dn(u) �sn(u) � dn(u) ��2sn(u) � cn(u)

4 The Exact Theory of the Sine-Gordon Equa-
tion.

When we discussed with the simple properties of the Jacobian elliptic func-
tions. We will discuss the exact theory of the Sine-Gordon equation.
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4.1 The Exact Theory.

The form of partial di¤erential equation

uxx � uyy + sinu = 0

is called Sine-Gordon equation. We want to �nd the traveling wave solu-
tion of uxx � uyy + sinu = 0. Let t = mx� ny , then we have

ux =
du

dt
� dt
dx
=
du

dt
�m

uy =
du

dt
� dt
dy
=
du

dt
� (�n)

Using the same method again , we have

uxx = utt �m2

uyy = utt � n2

So the equation uxx � uyy + sinu = 0 becomes

(m2 � n2) � utt + sinu = 0

Assume m2 � n2 = 1 , then we get

utt + sinu = 0

Multiplying du
dt
to utt + sinu = 0 , then we get

du

dt
� utt +

du

dt
� sinu = 0

Integrating it with respect to t , the equation will become

1

2
(
du

dt
)2 � cosu = E

where E is a constant. The square roots of du
dt
are �

p
2(E + cosu). We

will focus on the equation of positive sign

74



du

dt
=
p
2(E + cosu)

Using the relation of trigonometric function that cosu = 1� 2 sin2(u=2).
We get the equation

du

dt
=

r
2(E + 1� 2 sin2(u

2
))

Since the equation is a separable equation , we could get

t =

Z U(t)

0

1q
2(E + 1)� 4 sin2(u

2
)
du

Our goal is to �nd its solution i.e. we want to �nd the representation of
U(t) in terms of t. We will discuss it in three di¤erent cases according to
di¤erent E.

Case 1. �1 < E < 1
Suppose E 2 (�1; 1) , then

t =

Z U(t)

0

1q
2(E + 1)� 4 sin2(u

2
)
du

=

r
2

E + 1

Z U(t)
2

0

1q
1� 2

E+1
sin2(u

2
)
d(
u

2
)

Let s =
q

2
E+1

sin(u
2
) , then

d(
u

2
) =

1q
2

E+1
� s2

ds

Thus ,
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t =

r
2

E + 1

Z U(t)
2

0

1q
1� 2

E+1
sin2(u

2
)
d(
u

2
)

=

Z p 2
E+1

sin(
U(t)
2
)

0

1p
1� s2

1q
1� (E+1

2
) � s2

ds

Let � =
q

E+1
2
, then

t =

Z ��1 sin(U(t)
2
)

0

1p
1� s2

1p
1� �2 � s2

ds

By Jacobian elliptic function sn(u; �) , the equation implies that

sn(t; �) = ��1 sin(
U(t)

2
)

So we have

U(t) = 2 sin�1(� � sn(t; �))

where � =
q

E+1
2
.

Remark 53 Since E 2 (�1; 1) , thus
q

E+1
2
2 (0; 1) i.e. 0 < � < 1.

Furthermore , � _ E.

Case 2. E = 1

Suppose E = 1 , then
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t =

Z U(t)

0

1q
2(E + 1)� 4 sin2(u

2
)
du

=

Z U(t)

0

1q
4� 4 sin2(u

2
)
du

=

Z U(t)
2

0

1q
1� sin2(u

2
)
d(
u

2
)

Let s =
q

2
E+1

sin(u
2
) = sin(u

2
) , then

d(
u

2
) =

1p
1� s2

ds

Thus ,

t =

Z U(t)
2

0

1q
1� sin2(u

2
)
d(
u

2
)

=

Z sin(
U(t)
2
)

0

1p
1� s2

� 1p
1� s2

ds

Let � =
q

E+1
2
= 1 , then

t =

Z sin(
U(t)
2
)

0

1p
1� s2

� 1p
1� s2

ds

=

Z ��1 sin(U(t)
2
)

0

1p
1� s2

1p
1� �2 � s2

ds

By Jacobian elliptic function sn(u; �) , the equation implies that
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sn(t; 1) = sin(
U(t)

2
)

So we have

U(t) = 2 sin�1(sn(t; 1))

where � = 1.

Remark 54 If we do not use Jacobian elliptic function , we also can
get the solution by Calculus in this case. And the solution would be

U(t) = 2 sin�1(tanh t)

Case 3. E > 1

Suppose E 2 (1;1) , then

t =

Z U(t)

0

1q
2(E + 1)� 4 sin2(u

2
)
du

=

r
2

E + 1

Z U(t)
2

0

1q
1� 2

E+1
sin2(u

2
)
d(
u

2
)

= �

Z U(t)
2

0

1q
1� �2 sin2(u

2
)
d(
u

2
)

where � =
q

2
E+1

. Let s = sin(u
2
) , then

d(
u

2
) =

1p
1� s2

ds

Thus ,
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t = �

Z U(t)
2

0

1q
1� �2 sin2(u

2
)
d(
u

2
)

= �

Z sin(
U(t)
2
)

0

1p
1� s2

p
1� �2s2

ds

i.e.

t

�
=

Z sin(
U(t)
2
)

0

1p
1� s2

p
1� �2s2

ds

By Jacobian elliptic function sn(u; �) , the equation implies that

sn(
t

�
; �) = sin(

U(t)

2
)

So we have

U(t) = 2 sin�1(sn(
t

�
; �))

where � =
q

2
E+1

.

Remark 55 Since E 2 (1;1) , thus
q

2
E+1
2 (0; 1) i.e. 0 < � < 1.

Furthermore , � _ 1
E
.

4.2 The Periods.

We had found the solutions for the ordinary di¤erential equation in the form
of Jacobian elliptic function with di¤erent constant E. In this section , we
want to �nd the period of solution. The idea is to �nd the rest position
U(t0) and the period is the four times time of the particle moves from U(0)
to U(t0).
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Case 1. �1 < E < 1
In this case , the solution is

U(t) = 2 sin�1(� � sn(t; �))

where � =
q

E+1
2
.

The velocity of the particle is

Ut =

r
2(E + 1� 2 sin2(U

2
))

=

r
2(E + 1)� 4 sin2(U

2
)

Let Ut = 0 , we have

U(t) = �2 sin�1(�)

Hence , by the equation

t =

Z ��1 sin(U(t)
2
)

0

1p
1� s2

1p
1� �2 � s2

ds

The period for this case is

T = 4t

= 4

Z ��1 sin(U(t)
2
)

0

1p
1� s2

1p
1� �2 � s2

ds

= 4

Z ��1 sin(sin�1(�))

0

1p
1� s2

1p
1� �2 � s2

ds

= 4

Z 1

0

1p
1� s2

1p
1� �2 � s2

ds

= 4K
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Remark 56 The constant K here is de�ned as K =
R 1
0
(1� s2)� 1

2 (1�
�2s2)�

1
2ds , where � = ((E + 1)=2)

1
2 is the modulus.

Remark 57 The constant K _ � implies that the period T _ �. It is
not di¢ cult to calculate that if � = 0 , then T = 2�. This means that
the period T > 2� , 8� 2 (0; 1).

Remark 58 U(t) = �2 sin�1(�) < 2 sin�1(1) = � , 8� 2 (0; 1).

Case 2. E = 1

In this case , the solution is

U(t) = 2 sin�1(sn(t; 1))

where � = 1.

The velocity of the particle is

Ut =

r
2(E + 1� 2 sin2(U

2
))

=

r
2(1 + 1� 2 sin2(U

2
))

=

r
4� 4 sin2(U

2
)

Let Ut = 0 , we have

U(t) = ��

Hence , by the equation

t =

Z sin(
U(t)
2
)

0

1p
1� s2

� 1p
1� s2

ds

The period for this case is
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T = 4t

= 4

Z sin(
U(t)
2
)

0

1p
1� s2

� 1p
1� s2

ds

= 4

Z sin(�
2
)

0

1p
1� s2

� 1p
1� s2

ds

= 4

Z 1

0

1

1� s2ds
= 1

Although it is not a periodic solution , the period of this case could
be regarded as 1. This means that if we release the particle at the
position �� , it needs in�nity time to approach the position �.

Case 3. E > 1

The velocity of the particle is

Ut =

r
2(E + 1� 2 sin2(U

2
))

>

r
4� 4 sin2(U

2
)

� 0

This means that each position U(t) , the pendulum always has velocity ,
so the pendulum will never stop. This implies that it has no periodicity.

We construct a table to collect the results we had gotten in the end of
this section.

Energy (E) �1 < E < 1 E = 1 E > 1
Solution U(t) 2 sin�1(�sn(t; �)) 2 sin�1(sn(t; 1)) 2 sin�1(sn((t=�); �))

Modulus (�) ((E + 1)=2)
1
2 1 (2=(E + 1))

1
2

Period (T ) 4K 1 No periodicity
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4.3 The Phase Portraits.

The oridinary di¤erential equation we had discussed is the mathematical
model of ideal pendulum. Now we try to plot the relation between U and Ut
and the graph is called phase portrait. Before drawing the phase portrait ,
we see back to the equation

1

2
(
du

dt
)2 � cosu = E

where E is a constant �rst. It shows that

1

2
(
du

dt
)2 � cosu

is a constant. It can be regarded as a conservation law in the view point
of mathematics since � cos(u) is not always larger than 0. (But this case can
be transferred to the conservation law in the view point of physics by plus a
constant a � 1 for equation 1

2
(du
dt
)2 � cosu = E.).This means that its total

energy is a constant and the former part 1
2
(du
dt
)2 can be regarded as kinetic

energy and the latter part � cos(u) can be regarded as potential energy. The
following we discuss the potential energy and phase portrait with di¤erent
cases.

Case 1. �1 < E < 1
We set E = 0 to analyze the case. By the equation

1

2
(
du

dt
)2 � cosu = E

we have the equation

du

dt
= �
p
2 cosu

The following graphs are potential energy and phase portrait , respec-
tively. This means that they are the relation between u and cosu and
the relation between u and du

dt
.
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Figure 35. The potential energy and phase portrait for E = 0.

Remark 59 From the graph of the phase portrait , the red curve means
that the velocity at those position are positive and the blue curve means
that the velocity at those position are negative. The positive velocity is
de�ned by rotating counterclockwise and the negative velocity is de�ned
by rotating clockwise.

Remark 60 By the graph of potential energy , we can �nd out that the
maximum of amplitude , u(t) , for the pendulum is �

2
and it oscillates

forth and back.

Case 2. E = 1

Now we focus on the case with E = 1. By the equation

1

2
(
du

dt
)2 � cosu = E

we have the equation

du

dt
= �

p
2(1 + cosu)

We see the potential energy and phase portrait as following.
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Figure 36. The potential energy and phase portrait for E = 1.

Notation 61 By the graph of potential energy , we can �nd out that
the maximum of amplitude , u(t) , for the pendulum is �. If we release
the pendulum at position � , the particle will approach to the position
�� after in�nite time.

Case 3. E > 1

Last , we see the case E > 1 with E = 3
2
. By the equation

1

2
(
du

dt
)2 � cosu = E

we have the equation

du

dt
= �

r
2(
3

2
+ cosu)

We see the potential energy and phase portrait as following.

Figure 37. The potential energy and phase portrait for E = 3
2
.
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Remark 62 From the graph of the phase portrait , we know that the
pendulum of this case will never stop since the phase portrait has no
intersection with the u-axis.

Remark 63 By the graph of potential energy , we observe that the
kinetic energy is never equal 0. This implies that the case has no pe-
riodic solution and the result is corresponded to the property which we
had discussed.

By our discussion , there are three kinds of the phase portraits. Before
fnishing the section , we combine the three phase portraits and the vector
�eld together.

Figure 38. Global phase portrait.

We can make some conclusions from the Figure 38. :

1. There are three di¤erent kinds of phase portraits with di¤erent energy
E. The outer curve corresponds to larger energy E. They are separated
by the phase portrait with E = 1 and the phase curve is called the
separatrix with periods 1. The phase curves outer the separatrix are
called the wave train and they has no period. The phase curves inside
the separatrix are periodic and their period T satis�es 2� < T <1.

2. The direction of the phase curves which are upper the u-axis toward the
right on the phase plane and it means the pendulum rotates counter-
clockwise. Similarly, the direction of the phase curves which are below
the u-axis toward the left and it means the pendulum rotates clockwise.

3. The points (n�; 0) are also the solutions for all n 2 Z. They are
classi�ed into two classes. The �rst is the points with n is even. These
points are stable and with energy E = �1. The other is the points
with n is odd and these points are unstable and with energy E = 1.
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5 Appendix

We placed here the details of the previous examples , and placed here for
more examples.

5.1 The details of the previous examples in section 2.1
.

Example 64 Evaluate the integrals of 1=f(z) over a1 , a2 and a3 cycles
where f(z) =

p
(z + 4)(z + 2)(z � 2)(z � 4)(z � 5)(z � 7)(z � 8). We analy-

sis the integral in Mathematica and in theory to compare the result and using
the result of angle to modify the computation to get value. Let z1 = 8 , z2 = 7
, z3 = 5 , z4 = 4 , z5 = 2 , z6 = �2 , z7 = �4.

Figure 39. a-cycles and their equivalent path a�.

Solution 65 :
a1 : Let a1 is a cycle center at 152 with radius 1 and enclosed the cut [7; 8].

So let z = 15
2
+ ei� , we have

Z
a1

1

f(z)
dz =

Z �

��

iei�

7

�
k=1

q
15
2
+ ei� � zk

d�

= 0:+ 0:0890282i

By Cauchy Theorem. Since ak cycle is simple connected , we can use
some equivalent paths , say a�k , to easily compute the integrals for ak cycle.

1. If z 2 a�1 on sheet-I in theory where a�1 = 7
+! 8 [ 7 � 8

(a) 7 +! 8 : the path along x-axis from 7 to 8 on sheet-I with (+)-edge.

z � 8 = � jz � 8j = jz � 8j ei(��) then 1p
z�8 = jz � 8j

� 1
2 ei(

�
2
) =

i jz � 8j�
1
2

87



z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 2; 3; 4; 5; 6; 7

Z
7
+!8

1

f(z)
dz =

Z 8

7

i
7

�
k=1
jz � zkj�

1
2 dz

(b) 7 � 8 : the path along x-axis from 8 to 7 on sheet-I with (�)-edge.
z � 8 = � jz � 8j = jz � 8j ei� then 1p

z�8 = jz � 8j
� 1
2 ei(�

�
2
) =

(�i) jz � 8j�
1
2

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 2; 3; 4; 5; 6; 7

Z
7
� 8

1

f(z)
dz =

Z 7

8

(�i)
7

�
k=1
jz � zkj�

1
2 dz

By (a) and (b) we obtain the value

R
a�1

1
f(z)
dz = (2i)

R 8
7

7

�
k=1
jz � zkj�

1
2 dz

Math:
= 0:+ 0:0890282i

2. Analysis the integration over a�1 in Mathematica

(a) 7 +! 8 : the path along x-axis from 7 to 8 on sheet-I with (+)-edge.

z � 8 = � jz � 8j = jz � 8j ei� then 1p
z�8 = jz � 8j

� 1
2 ei(�

�
2
) =

(�i) jz � 8j�
1
2

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 2; 3; 4; 5; 6; 7

Z
7
+!8

1

f(z)
dz =

Z 8

7

(�i)
7

�
k=1
jz � zkj�

1
2 dz

A di¤erence of a minus sign with in sheet-I.

(b) 7 � 8 : the path along x-axis from 8 to 7 on sheet-I with (�)-edge.
z � 8 = � jz � 8j = jz � 8j ei� then 1p

z�8 = jz � 8j
� 1
2 ei(�

�
2
) =

(�i) jz � 8j�
1
2

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 2; 3; 4; 5; 6; 7
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Z
7
� 8

1

f(z)
dz =

Z 7

8

(�i)
7

�
k=1
jz � zkj�

1
2 dz

as same as in sheet-I.
But in Mathematica

Z
a�1

1

f(z)
dz = 0

3. Using Lemma 6 to modify

(a) 7 +! 8 : the path along x-axis from 7 to 8 on sheet-I with (+)-edge.

arg(z � z1) = �� then
p
z � z1

Math:
= �

p
z � z1

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 2; 3; 4; 5; 6; 7

So f(z) Math:
= �f(z)

(b) 7 � 8 : the path along x-axis from 8 to 7 on sheet-I with (�)-edge.
arg(z � z1) = � then

p
z � z1

Math:
=
p
z � z1

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 2; 3; 4; 5; 6; 7

So f(z) Math:
= f(z)

We have

R
a1

1
f(z)
dz =

R
a�1

1
f(z)
dz

Math:
= �2

R 8
7

1
f(z)
dz

= 0:+ 0:0890282i

a2 : Let a2 is a cycle center at 92 with radius 1 and enclosed the cut [4; 5].
So let z = 9

2
+ ei� , we have

Z
a2

1

f(z)
dz =

Z �

��

iei�

7

�
k=1

q
9
2
+ ei� � zk

d�

= 0:+ 0:1832730i

Same as a1 , by Cauchy Theorem to compute equivalent path a�2 where
a�2 = 4

+! 5 [ 4 � 5
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1. Analysis the integration over a�2 on sheet-I

(a) 4 +! 5 : the path along x-axis from 4 to 5 on sheet-I with (+)-edge.
z � zk = � jz � zkj = jz � zkj ei(��)

then 1p
z�zk = jz � zkj

� 1
2 ei

�
2 = i jz � zkj�

1
2 ; k = 1; 2; 3

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 4; 5; 6; 7

Z
4
+!5

1

f(z)
dz =

Z 5

4

i3
7

�
k=1
jz � zkj�

1
2 dz

(b) 4 � 5 : the path along x-axis from 5 to 4 on sheet-I with (�)-edge.
z � zk = � jz � zkj = jz � zkj ei�

then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) = (�i) jz � zkj�

1
2 ; k = 1; 2; 3

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 4; 5; 6; 7

Z
4
� 5

1

f(z)
dz =

Z 4

5

(�i)3
7

�
k=1
jz � zkj�

1
2 dz

By (a) and (b) we obtain the value

R
a�2

1
f(z)
dz = (�2i)

R 5
4

7

�
k=1
jz � zkj�

1
2 dz

Math:
= 0:+ 0:1832730i

2. Analysis the integration over a�2 in Mathematica

(a) 4 +! 5 : the path along x-axis from 4 to 5 on sheet-I with (+)-edge.
z � zk = � jz � zkj = jz � zkj ei�

then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) = (�i) jz � zkj�

1
2 ; k = 1; 2; 3

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 2; 3; 4; 5; 6; 7

Z
4
+!5

1

f(z)
dz =

Z 5

4

(�i)3
7

�
k=1
jz � zkj�

1
2 dz
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(b) 4 � 5 : the path along x-axis from 5 to 4 on sheet-I with (�)-edge.
z � zk = � jz � zkj = jz � zkj ei�

then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) = (�i) jz � zkj�

1
2 ; k = 1; 2; 3

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 4; 5; 6; 7

Z
4
� 5

1

f(z)
dz =

Z 4

5

(�i)3
7

�
k=1
jz � zkj�

1
2 dz

By (a) and (b) we obtain di¤erent value in Mathematica

Z
a�2

1

f(z)
dz = 0

3. Using Lemma 6 to modify

(a) 4 +! 5 : the path along x-axis from 4 to 5 on sheet-I with (+)-edge.

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 4; 5; 6; 7

So f(z) Math:
= �f(z)

(b) 4 � 5 : the path along x-axis from 5 to 4 on sheet-I with (-) edge.

arg(z � zk) = � then
p
z � zk

Math:
=
p
z � zk; k = 1; 2; 3

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 4; 5; 6; 7

So f(z) Math:
= f(z)

We have

R
a2

1
f(z)
dz =

R
a�2

1
f(z)
dz

Math:
= �2

R 5
4

1
f(z)
dz

= 0:+ 0:1832730i

a3 : Let a3 is a cycle center at 0 with radius 52 and enclosed the cut [�2; 2].
So let z = 5

2
ei� , we have

Z
a3

1

f(z)
dz =

Z �

��

(5
2
i)ei�

7

�
k=1

q
(5
2
)ei� � zk

d�

= 0:+ 0:1115720i
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Same as a1 , by Cauchy Theorem to compute equivalent path a�3 where
a�3 = �2

+! 2 [ �2 � 2

1. Analysis the integration over a�3 on sheet-I

(a) �2 +! 2 : the path along x-axis from -2 to 2 on sheet-I with (+)-
edge.
z � zk = � jz � zkj = jz � zkj e�i�

then 1p
z�zk = jz � zkj

� 1
2 ei

�
2 = i jz � zkj�

1
2 ; k = 1; 2; 3; 4; 5

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 6; 7

Z
�2+!2

1

f(z)
dz =

Z 2

�2
i5

7

�
k=1
jz � zkj�

1
2 dz

(b) �2 � 2 : the path along x-axis from 2 to -2 on sheet-I with (�)-
edge.
z � zk = � jz � zkj = jz � zkj ei�

then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) = (�i) jz � zkj�

1
2 ; k = 1; 2; 3; 4; 5

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 6; 7

Z
�2� 2

1

f(z)
dz =

Z �2
2

(�i)5
7

�
k=1
jz � zkj�

1
2 dz

By (a) and (b) we obtain the value

R
a�3

1
f(z)
dz = (2i)

R 2
�2

7

�
k=1
jz � zkj�

1
2 dz

Math:
= 0:+ 0:1115720i

2. Analysis the integration over a�3 in Mathematica

(a) �2 +! 2 : the path along x-axis from -2 to 2 on sheet-I with (+)-
edge.
z � zk = � jz � zkj = jz � zkj ei�

then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) = (�i) jz � zkj�

1
2 ; k = 1; 2; 3; 4; 5
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z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 6; 7

Z
�2+!2

1

f(z)
dz =

Z 2

�2
(�i)5

7

�
k=1
jz � zkj�

1
2 dz

(b) �2 � 2 : the path along x-axis from 2 to -2 on sheet-I with (�)-
edge.
z � zk = � jz � zkj = jz � zkj ei�

then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) = (�i) jz � zkj�

1
2 ; k = 1; 2; 3; 4; 5

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 , k = 6; 7

Z
�2� 2

1

f(z)
dz =

Z �2
2

(�i)5
7

�
k=1
jz � zkj�

1
2 dz

By (a) , (b) we obtain di¤erent value in Mathematica

Z
a�3

1

f(z)
dz = 0

3. Using Lemma 6 to modify

(a) �2 +! 2 : the path along x-axis from -2 to 2 on sheet-I with (+)-
edge.

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4; 5

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 6; 7

So f(z) Math:
= �f(z)

(b) �2 � 2 : the path along x-axis from 2 to -2 on sheet-I with (�)-
edge.

arg(z � zk) = � then
p
z � zk

Math:
=
p
z � zk; k = 1; 2; 3; 4; 5

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 6; 7

So f(z) Math:
= f(z)

We have

R
a3

1
f(z)
dz =

R
a�3

1
f(z)
dz

Math:
= �2

R 2
�2

1
f(z)
dz

= 0:+ 0:1115720i
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Example 66 Evaluate the integrals of 1=f(z) over b1 , b2 and b3 cycles where
f(z) =

p
(z + 4)(z + 2)(z � 2)(z � 4)(z � 5)(z � 7)(z � 8). We analysis the

integral in Mathematica and in theory to compare the result and using the
result of angle to modify the computation to get value. Let z1 = 8 , z2 = 7 ,
z3 = 5 , z4 = 4 , z5 = 2 , z6 = �2 , z7 = �4.

Figure 40. b1 , b2 and b3 cycles.

Solution 67 :
b3 : Let b3 is a cycle which center at �3 with radius 2. So we could write

down the parameter, let z = �3 + 2ei�; � 2 [��; 0) [ [2�; 3�) . Notice that
f(z) j(II)= �f(z) j(I),so we have

Z
b3

1

f(z)
dz =

Z 0

��

2iei�

7

�
k=1

p
�3 + 2ei� � zk

d� �
Z �

0

2iei�

7

�
k=1

p
�3 + 2ei� � zk

d�

= 0:0372385

Since bk cycle is simple connected , we can use some equivalent paths ,
say b�k , such that bk � b�k to easily compute the integrals for bk cycle. Here
b3 � b�3.

Figure 41. The equivalent path b�3.

1. Analysis the integration over b�3 on sheet-I in theory
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(a) �4! �2 : the path along x-axis from �4 to �2 on sheet-I.
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5; 6

Z
�4!�2

1

f(z)
dz =

Z �2
�4

i6
7

�
k=1
jz � zkj�

1
2 dz

= �
Z �2
�4

7

�
k=1
jz � zkj�

1
2 dz

(b) �4 L99 �2 : the path along x-axis from �2 to �4 on sheet-II.
We known in theory that f(z) j(II)= �f(z) j(I) , so we consider
�4 �2 ,
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5; 6

Z
�4L99�2

1

f(z)
dz = �

Z
�4 �2

1

f(z)
dz

= �
Z �4
�2

i6
7

�
k=1
jz � zkj�

1
2 dz

=

Z �4
�2

7

�
k=1
jz � zkj�

1
2 dz

= �
Z �2
�4

7

�
k=1
jz � zkj�

1
2 dz

By (a) and (b) , we obtain

Z
b3

1

f(z)
dz =

Z
b�3

1

f(z)
dz

=

Z
�4!�2

1

f(z)
dz +

Z
�4L99�2

1

f(z)
dz

= �2
Z �2
�4

7

�
k=1
jz � zkj�

1
2 dz

= 0:0372385
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2. Analysis the integration over b�3 in Mathematica

(a) �4! �2 : the path along x-axis from �4 to �2 on sheet-I.
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5; 6

Z
�4!�2

1

f(z)
dz =

Z �2
�4
(�i)6

7

�
k=1
jz � zkj�

1
2 dz

= �
Z �2
�4

7

�
k=1
jz � zkj�

1
2 dz

(b) �4 L99 �2 : the path along x-axis from �2 to �4 on sheet-II.
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5; 6

R
�4L99�2

1
f(z)
dz

Math:
=

R
�4 �2

1
f(z)
dz

=
R �4
�2 (�i)

6
7

�
k=1
jz � zkj�

1
2 dz

=
R �2
�4

7

�
k=1
jz � zkj�

1
2 dz

) in Mathematica
R
b�3

1
f(z)
dz = 0

3. Using Lemma 6 to modify

(a) �4! �2 : the path along x-axis from �4 to �2 on sheet-I.
arg(z � zk) = �� then

p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4; 5; 6

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 7

) f(z) Math:
= f(z)

(b) �4 L99 �2 : the path along x-axis from �2 to �4 on sheet-II.
We known in theory that f(z) j(II)= �f(z) j(I) , so we consider
�4 �2
arg(z � zk) = �� then

p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4; 5; 6
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arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 7

* f(z) j�4 �2Math:
= f(z)

) f(z) j�4L99�2= �f(z) j�4 �2Math:
= �f(z)

)

R
b3

1
f(z)
dz =

R
b�3

1
f(z)
dz

=
R
�4!�2

1
f(z)
dz +

R
�4L99�2

1
f(z)
dz

Math:
=

R �2
�4

7

�
k=1
jz � zkj�

1
2 dz �

R �4
�2

7

�
k=1
jz � zkj�

1
2 dz

= 2
R �2
�4

7

�
k=1
jz � zkj�

1
2 dz

= 0:0372385

b2 : Let b2 is a cycle which center at 0 with radius 9
2
. So we could

write down the parameter, let z = 9
2
ei�; � 2 [��; 0) [ [2�; 3�) . Notice that

f(z) j(II)= �f(z) j(I),so we have

R
b2

1
f(z)
dz =

R 0
��

9
2
iei�

7
�
k=1

p
9
2
ei��zk

d� �
R �
0

9
2
iei�

7
�
k=1

p
9
2
ei��zk

d�

= 0:2196815

Using the same way before. Consider equivalent path b�2 = b�3 [ �2
+!

2 [ �2 �L99 2 [ 2! 4 [ 2 L99 4

Figure 42. The equivalent path b�2.

1. Analysis the integration over b�2 on sheet-I in theory

(a) �2 +! 2 : the path along x-axis from �2 to 2 on sheet-I.
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5;
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Z
�2+!2

1

f(z)
dz =

Z 2

�2
i5

7

�
k=1
jz � zkj�

1
2 dz

(b) �2 �L99 2 � �2 + 2 i.e. the path on horizontal cut from 2 to �2
on (�)-edge in sheet-II equals the path on horizontal cut from 2 to
�2 on (+)-edge in sheet-I. So we consider z 2 �2 + 2.

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5

Z
�2 �L992

1

f(z)
dz =

Z
�2+ 2

1

f(z)
dz

=

Z �2
2

i5
7

�
k=1
jz � zkj�

1
2 dz

(c) 2! 4 : the path along x-axis from 2 to 4 on sheet-I.

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 5; 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3; 4;

Z
2!4

1

f(z)
dz =

Z 4

2

i4
7

�
k=1
jz � zkj�

1
2 dz

(d) 2 L99 4 : the path along x-axis from 4 to 2 on sheet-II. We known
in theory that f(z) j(II)= �f(z) j(I) , so we consider 2 4

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 5; 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3; 4;

Z
2L994

1

f(z)
dz = �

Z
2 4

1

f(z)
dz

= �
Z 2

4

i4
7

�
k=1
jz � zkj�

1
2 dz
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By (a) , (b) , (c) , (d) , we have

Z
b�2

1

f(z)
dz =

Z
b�3

1

f(z)
dz + 2

Z 4

2

i4
7

�
k=1
jz � zkj�

1
2 dz

= 0:2196815

2. Analysis the integration over b�2 in Mathematica

(a) �2 +! 2 :

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5;

Z
�2+!2

1

f(z)
dz =

Z 2

�2
(�i)5

7

�
k=1
jz � zkj�

1
2 dz

(b) �2 �L99 2 :
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3; 4; 5;

Z
�2 �L992

1

f(z)
dz =

Z �2
2

(�i)5
7

�
k=1
jz � zkj�

1
2 dz

(c) 2! 4 :

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 5; 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3; 4;

Z
2L994

1

f(z)
dz =

Z 2

4

(�i)4
7

�
k=1
jz � zkj�

1
2 dz
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But in Mathematica we obtain di¤erent value

Z
b�2

1

f(z)
dz = 0

3. Using Lemma 6 to modify

(a) �2 +! 2 :

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4; 5

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 6; 7

) f(z) Math:
= �f(z)

(b) �2 �L99 2 � �2 + 2 i.e. the path on horizontal cut from 2 to �2
on (�)-edge in sheet-II equals the path on horizontal cut from 2 to
�2 on (+)-edge in sheet-I. So we consider z 2 �2 + 2

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4; 5

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 6; 7

) f(z) Math:
= �f(z)

(c) 2! 4 :

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 5; 6; 7

) f(z) Math:
= f(z)

(d) 2 L99 4 : We known that f(z) j(II)= �f(z) j(I) , so we consider
2 4

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3; 4

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 5; 6; 7

* f(z) j2 4Math:
= f(z)

) f(z) j2L994= �f(z) j2 4Math:
= �f(z)

By 1: , 2: , 3: and Cauchy Integral Theorem

R
b2

1
f(z)
dz =

R
b�2

1
f(z)
dz

Math:
=

R
b�3

1
f(z)
dz + 2

R 4
2

7

�
k=1
jz � zkj�

1
2 dz

= 0:2196815
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b1 : Let b1 is a cycle which center at 32 with radius 6. So we could write
down the parameter, let z = 3

2
+ 6ei�; � 2 [��; 0) [ [2�; 3�) . Notice that

f(z) j(II)= �f(z) j(I),so we have

Z
b1

1

f(z)
dz =

Z 0

��

6iei�

7

�
k=1

q
(3
2
+ 6ei�)� zk

d� �
Z �

0

6iei�

7

�
k=1

q
(3
2
+ 6ei�)� zk

d�

= 0:4132335

Using the same way before. Consider equivalent path b�1 = b
�
3 [ b�2 [ 4

+!
5 [ 4 �L99 5 [ 5! 7 [ 5 L99 7

Figure 43. The equivalent path b�1.

1. Analysis the integration over b�1 on sheet-I in theory

(a) 4 +! 5 : the path along x-axis from 4 to 5 on sheet-I.

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 4; 5; 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3;

Z
4
+!5

1

f(z)
dz =

Z 5

4

i3
7

�
k=1
jz � zkj�

1
2 dz

(b) 4
�L99 5 � 4 + 5 i.e. the path on horizontal cut from 5 to 4 on

(�)-edge in sheet-II equals the path on horizontal cut from 5 to 4
on (+)-edge in sheet-I. So we consider z 2 4 + 5

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 4; 5; 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2; 3;
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Z
4
�L995

1

f(z)
dz =

Z
4
+ 5

1

f(z)
dz

=

Z 4

5

i3
7

�
k=1
jz � zkj�

1
2 dz

(c) 5! 7 : the path along x-axis from 5 to 7 on sheet-I.

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 3; 4; 5; 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2;

Z
5!7

1

f(z)
dz =

Z 7

5

i2
7

�
k=1
jz � zkj�

1
2 dz

(d) 5 L99 7 : the path along x-axis from 7 to 5 on sheet-II. We known
in theory that
f(z) j(II)= �f(z) j(I) , so we consider 5 7

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 3; 4; 5; 6; 7

z�zk = � jz � zkj = jz � zkj ei(��) then 1p
z�zk = jz � zkj

� 1
2 ei(

�
2
) =

i jz � zkj�
1
2 ; k = 1; 2;

Z
5L997

1

f(z)
dz = �

Z
5 7

1

f(z)
dz

= �
Z 5

7

i2
7

�
k=1
jz � zkj�

1
2 dz

By (a) , (b) , (c) , (d) , we have

Z
b�1

1

f(z)
dz =

Z
b�2

1

f(z)
dz + 2

Z 7

5

i2
7

�
k=1
jz � zkj�

1
2 dz

= 0:4132335

2. Analysis the integration over b�1 in Mathematica
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(a) 4 +! 5 :

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 4; 5; 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3;

Z
4
+!5

1

f(z)
dz =

Z 5

4

(�i)3
7

�
k=1
jz � zkj�

1
2 dz

(b) 4
�L99 5 :

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 4; 5; 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2; 3;

Z
4
�L995

1

f(z)
dz =

Z 4

5

(�i)3
7

�
k=1
jz � zkj�

1
2 dz

(c) 5! 7 :

z � zk = jz � zkj then 1p
z�zk = jz � zkj

� 1
2 ; k = 3; 4; 5; 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2;

Z
5!7

1

f(z)
dz =

Z 7

5

(�i)2
7

�
k=1
jz � zkj�

1
2 dz

(d) 5 L99 7 :
z � zk = jz � zkj then 1p

z�zk = jz � zkj
� 1
2 ; k = 3; 4; 5; 6; 7

z � zk = � jz � zkj = jz � zkj ei� then 1p
z�zk = jz � zkj

� 1
2 ei(�

�
2
) =

(�i) jz � zkj�
1
2 ; k = 1; 2;

Z
5L997

1

f(z)
dz =

Z 5

7

(�i)2
7

�
k=1
jz � zkj�

1
2 dz
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But in Mathematica we obtain di¤erent value

Z
b�1

1

f(z)
dz = 0

3. Using Lemma 6 to modify

(a) 4 +! 5 :

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3;

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 4; 5; 6; 7

) f(z) Math:
= �f(z)

(b) 4
�L99 5 � 4 + 5 i.e. the path on horizontal cut from 5 to 4 on

(-)edge in sheet-II equals the path on horizontal cut from 5 to 4
on (+)edge in sheet-I. So we consider z 2 4 + 5

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2; 3;

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 4; 5; 6; 7

) f(z) Math:
= �f(z)

(c) 5! 7 :

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2;

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 3; 4; 5; 6; 7

) f(z) Math:
= f(z)

(d) 5 L99 7 : We known that f(z) j(II)= �f(z) j(I) , so we consider
5 7

arg(z � zk) = �� then
p
z � zk

Math:
= �

p
z � zk; k = 1; 2;

arg(z � zk) = 0 then
p
z � zk

Math:
=
p
z � zk; k = 3; 4; 5; 6; 7

* f(z) j5 7Math:
= f(z)

) f(z) j5L997= �f(z) j5 7Math:
= �f(z)

By 1: , 2: , 3: and Cauchy Integral Theorem

R
b1

1
f(z)
dz =

R
b�1

1
f(z)
dz

Math:
=

R
b�2

1
f(z)
dz + 2

R 7
5

7

�
k=1
jz � zkj�

1
2 dz

= 0:4132335
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5.2 The details of the previous examples in section 2.2
.

Example 68 Evaluate the integrals of 1=f(z) over a; b cycles for vertical cut
where f(z) =

p
(z � i)(z � 2i)(z � 3i)(z � 5i)(z � 6i)(z � 8i).

Figure 44. path a and its equivalent path a�.

Solution:

1. Compute
R
a�1

1
f(z)
dz where a�1 is an equivalent path for a1 and a

�
1 is the

path along vertical cut from 2i to i on (+)-edge of sheet-I (called a�11)
and then back from i to 2i on (�)-edge of sheet-I (called a�12).

(a) a�11 : Let z = ri where r : 2
+! 1 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � i) = �3
2
� ) arg(

1p
z � i

) =
3�

4

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 2; 3; 5; 6; 8

we have
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1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e2�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )

= R

ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � i) =
1

2
� ) arg(

1p
z � i

) = ��
4

arg(z � ki) = �1
2
� ) arg(

1p
z � i

) =
�

4
; k = 2; 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R
Compare with (i:) and (ii:) we �nd that when we want to
obtain true value, the value which we have from Mathematica
should multiply (�1) , i.e.

sign(f(z)j(I)) = (�1)sign(f(z)jMathematica)

iii. Using the Lemma 15 to modify :

arg(z � i) = �3
2
� ) 1p

z � i
Math:
= (�1) 1p

z � i

arg(z � ki) = �1
2
� ) 1p

z � i
Math:
=

1p
z � ki

; k = 2; 3; 5; 6; 8

we have

1

f(z)
Math:
= (�1) 1

f(z)
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The same result as above di¤erence between in theory and in
Mathematica , the di¤erence is a minus sign.

(b) a�12 : Let z = ri where r : 1
�! 2 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � i) =
1

2
� ) arg(

1p
z � i

) = ��
4

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 2; 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R
ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � i) =
1

2
� ) arg(

1p
z � i

) = ��
4

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 2; 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )(e

�
4 )5

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R
Compare with (i:) and (ii:) we �nd the value is same.

iii. Using the Lemma 15 to modify :
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arg(z � i) =
1

2
� ) 1p

z � i
Math:
=

1p
z � i

arg(z � ki) = �1
2
� ) 1p

z � i
Math:
=

1p
z � ki

; k = 2; 3; 5; 6; 8

we have

1

f(z)
Math:
=

1

f(z)

The same result as above.

By (a) and (b) above , we have

Z
a1

1

f(z)
dz =

Z
a�1

1

f(z)
dz

=

Z
a�11

1

f(z)
dz +

Z
a�12

1

f(z)
dz

= �2
Z 1

2

(
8

�
k=1;k 6=4;7

jri� kij�
1
2 )idr

= 0:� 0:531987i

2. Compute
R
a�2

1
f(z)
dz where a�2 is an equivalent path for a2 and a

�
2 is the

path along vertical cut from 5i to 3i on (+)-edge of sheet-I (called a�21)
and then back from 3i to 5i on (�)-edge of sheet-I (called a�22)

(a) a�21 : Let z = ri where r : 5
+! 3 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) = �3
2
� ) arg(

1p
z � ki

) =
3�

4
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 5; 6; 8

we have
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1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )3(e

�
4 )3

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e3�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= �R
ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )3(e

�
4 )3

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e0�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )

= R

Compare with (i:) and (ii:) we �nd that when we want to
obtain true value, the value which we have from Mathematica
should multiply (�1) , i.e.

sign(f(z)j(I)) = (�1)sign(f(z)jMathematica)

iii. Using the Lemma 15 to modify :

arg(z � ki) = �3
2
� ) 1p

z � ki
Math:
= (�1) 1p

z � ki
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 5; 6; 8

we have

1

f(z)
Math:
= (�1) 1

f(z)
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The same result as above di¤erence between in theory and in
Mathematica , the di¤erence is a minus sign.

(b) a�22 : Let z = ri where r : 3
�! 5 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )3(e

�
4 )3

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e0�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )

= R

ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )3(e

�
4 )3

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e0�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )

= R

Compare with (i:) and (ii:) we �nd the value is same.
iii. Using the Lemma 15 to modify :
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arg(z � ki) =
1

2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 1; 2; 3

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 5; 6; 8

we have

1

f(z)
Math:
=

1

f(z)

The same result as above.

By (a) and (b) above , we have

Z
a2

1

f(z)
dz =

Z
a�2

1

f(z)
dz

=

Z
a�21

1

f(z)
dz +

Z
a�22

1

f(z)
dz

= �2
Z 3

5

(
8

�
k=1;k 6=4;7

jri� kij�
1
2 )idr

= 0:+ 0:996888i

3. Compute
R
b�2

1
f(z)
dz where b�2 is an equivalent path for b2 and b

�
2 is the

path along vertical line from 6i to 5i on sheet-I (called b�21) and then
back from 5i to 6i on sheet-II (called b�22)
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Figure 45. b and equivalent path b�.

(a) b�21 : Let z = ri where r : 6! 5 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) = �3
2
� ) arg(

1p
z � ki

) =
3�

4
; k = 1; 2; 3; 5

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )4(e

�
4 )2

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

7
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�i)

= (�i)R
ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).
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arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2; 3; 5

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )4(e

�
4 )2

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

1
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�i)

= (�i)R
Compare with (i:) and (ii:) we �nd the value is same.

iii. Using the Lemma 15 to modify :

arg(z � ki) = �3
2
� ) 1p

z � ki
Math:
= � 1p

z � ki
; k = 1; 2; 3; 5

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 6; 8

we have

1

f(z)
Math:
=

1

f(z)

The same result as above.

(b) b�22 : We known that f(z) j(II)= �f(z) j(I) , so we can consider
b��22 is the path along vertical line from 5i to 6i on sheet-I .
Let z = ri where r : 5! 6 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) = �3
2
� ) arg(

1p
z � ki

) =
3�

4
; k = 1; 2; 3; 5

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 6; 8

we have
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1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )4(e

�
4 )2

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

7
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�i)

= (�i)R
Hence

1
f(z)
jb�22 = (�1) 1

f(z)
jb��22

= (�1)(
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�i)

= (i)R

ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2; 3; 5

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )4(e

�
4 )2

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

1
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�i)

= (�i)R
Compare with (i:) and (ii:) we �nd that when we want to
obtain true value, the value which we have from Mathematica
should multiply (�1) , i.e.

sign(f(z)j(I)) = (�1)sign(f(z)jMathematica)

iii. Using the Lemma 15 to modify :
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arg(z � ki) = �3
2
� ) 1p

z � ki
Math:
= � 1p

z � ki
; k = 1; 2; 3; 5

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 6; 8

we have

1

f(z)
jb��22

Math:
=

1

f(z)

and

1

f(z)
jb�22= �

1

f(z)
jb��22

Math:
= � 1

f(z)

HenceZ
b2

1

f(z)
dz =

Z
b�2

1

f(z)
dz

=

Z
b�21

1

f(z)
dz +

Z
b�22

1

f(z)
dz

=

Z 5

6

i

f(ri)
dr +

Z 6

5

� i

f(ri)
dr

= �2
Z 6

5

(
8

�
k=1;k 6=4;7

jri� kij�
1
2 )idr

= �0:645057 + 0:i

4. Compute
R
b�1

1
f(z)
dz where b�1 is an equivalent path for b1 and b

�
1 = b

�
2 [

b�11 [ b�12 [ b�13 [ b�14 where b�11 is the path along vertical cut from 5i to 3i
on (+)-edge of sheet-I , b�12 is the path along vertical cut from 3i to 5i
on (�)-edge of sheet-II , b�13 is the path along vertical line from 3i to 2i
on sheet-I , b�14 is the path along vertical line from 2i to 3i on sheet-II .

(a) b�11 � a�21 : Done .
(b) b�12 � the path along vertical cut from 3i to 5i on (+)-edge of

sheet-I .
Let z = ri where r : 3! 5 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).
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arg(z � ki) = �3
2
� ) arg(

1p
z � ki

) =
3�

4
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )3(e

�
4 )3

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e3�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(�1)

= (�1)R
ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )3(e

�
4 )3

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e0�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )

= R

Compare with (i:) and (ii:) we �nd that when we want to
obtain true value, the value which we have from Mathematica
should multiply (�1) , i.e.

sign(f(z)j(I)) = (�1)sign(f(z)jMathematica)

iii. Using the Lemma 15 to modify :
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arg(z � ki) = �3
2
� ) 1p

z � ki
Math:
= (�1) 1p

z � ki
; k = 1; 2; 3

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 5; 6; 8

we have

1

f(z)
Math:
= (�1) 1

f(z)

The same result as above di¤erence between in theory and in
Mathematica , the di¤erence is a minus sign.

(c) b�13 : Let z = ri where r : 3! 2 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) = �3
2
� ) arg(

1p
z � ki

) =
3�

4
; k = 1; 2

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

3�
4 )2(e

�
4 )4

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

5
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(i)

= (i)R

ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 3; 5; 6; 8

we have
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1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )2(e

�
4 )4

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

1
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(i)

= (i)R

Compare with (i:) and (ii:) we �nd the value is same.
iii. Using the Lemma 15 to modify :

arg(z � ki) = �3
2
� ) 1p

z � ki
Math:
= (�1) 1p

z � ki
; k = 1; 2

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 3; 5; 6; 8

we have

1

f(z)
Math:
=

1

f(z)

The same result as above.

(d) b�14 : We known that f(z) j(II)= �f(z) j(I) , so we can consider
b��14 is the path along vertical line from 2i to 3i on sheet-I .
Let z = ri where r : 2! 3 and dz = idr

i. Analysis in theory :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )2(e

�
4 )4

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

1
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(i)

= (i)R
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Hence

1
f(z)
jb�14 = (�1) 1

f(z)
jb��14

= (�1)(
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(i)

= (�i)R

ii. Analysis in Mathematica (no matter in which sheet) :
Since z� ki = jz � kij ei arg(z�ki) , so we consider arg(z� ki).

arg(z � ki) =
1

2
� ) arg(

1p
z � ki

) = ��
4
; k = 1; 2

arg(z � ki) = �1
2
� ) arg(

1p
z � ki

) =
�

4
; k = 3; 5; 6; 8

we have

1

f(z)
= (

8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e�

�
4 )2(e

�
4 )4

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(e

1
2
�)

= (
8

�
k=1;k 6=4;7

jz � kij�
1
2 )(i)

= (i)R

Compare with (i:) and (ii:) we �nd that when we want to
obtain true value, the value which we have from Mathematica
should multiply (�1) , i.e.

sign(f(z)j(I)) = (�1)sign(f(z)jMathematica)

iii. Using the Lemma 15 to modify :

arg(z � ki) =
1

2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 1; 2

arg(z � ki) = �1
2
� ) 1p

z � ki
Math:
=

1p
z � ki

; k = 3; 5; 6; 8

we have

1

f(z)
jb��14

Math:
=

1

f(z)
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and

1

f(z)
jb�14= (�1)

1

f(z)
jb��14

Math:
= (�1) 1

f(z)

Hence , by (a) , (b) , (c) , (d) and Cauchy Integral Theorem
, we haveZ

b1

1

f(z)
dz =

Z
b�1

1

f(z)
dz

=

(Z
b�2

+

Z
b�11

+

Z
b�12

+

Z
b�13

+

Z
b�14

)
1

f(z)
dz

= (�2)
Z 6

5

(
8

�
k=1;k 6=4;7

jri� kij�
1
2 )idr

+(�2)
Z 3

2

(
8

�
k=1;k 6=4;7

jri� kij�
1
2 )idr

= �1:40245 + 0:i

Example 69 Compute the integrals of 1=f(z) over every cycles in the Figure
below where

f(z) =
p
(z � z1)(z � z2)(z � z3)(z � z4)(z � z5)(z � z6)(z � z7)(z � z8)

for z1 = �2 � i; z2 = �2 + i; z3 = �1 � i; z4 = �1 + i; z5 = 0 + 0i; z6 =
0 + i; z7 = 1 + i; z8 = 1 + 2i.

Figure 46. cycles a1; a2; a3 and equivalent pathes a�1; a
�
2; a
�
3.
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Solution:

1. a1 cycle : Let a�1 = a
�
11 [ a�12 is the equivalent path for a1 where a�11 is

the path from Z1 = �2� i to Z3 = �1� i on (+)-edge of sheet-I , a�12
is the path from Z3 = �1� i to Z1 = �2� i on (�)-edge of sheet-I.

(a) a�11 = �2� i
+! �1� i.

Let z = �2� i+ r(1) = (r � 2)� i
where r : 0 +! 1 , and dz = dr.
We have

R
a�11

1
f(z)
dz =

R
�2�i+!�1�i

1
f(z)
dz

Math:
=

R
�2�i!�1�i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((r�2)�i)dr

(b) a�12 = �1� i
�! �2� i.

Let z = �2� i+ r(1) = (r � 2)� i
where r : 1 �! 0 , and dz = dr.
We have

R
a�12

1
f(z)
dz =

R
�1�i�!�2�i

1
f(z)
dz

Math:
=

R
�1�i!�2�i

1
f(z)
dz

=
R 0
1

1
f((r�2)�i)dr

By (a) , (b) , we have

R
a1

1
f(z)
dz =

R
a�1

1
f(z)
dz

=
R
a�11

1
f(z)
dz +

R
a�12

1
f(z)
dz

Math:
= (�2)

R 1
0

1
f((r�2)�i)dr

= 0:124401� 0:0468335i

2. a2 cycle : Let a�2 = a
�
21 [ a�22 is the equivalent path for a2 and where a�21

is the path from Z6 = 0 + i to Z5 = 0 + 0i on (+)-edge of sheet-I , a�22
is the path from Z5 = 0 + 0i to Z6 = 0 + i on (�)-edge of sheet-I.
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(a) a�21 = 0 + i
+! 0 + 0i

Let z = 0 + i+ r(�i) = 0 + (1� r)i
where r : 0 +! 1 , and dz = (�1)idr.
We have

R
a�21

1
f(z)
dz =

R
0+i

+!0+0i
1
f(z)
dz

Math:
=

R
0+i!0+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(0+(1�r)i)(�1)idr
= (i)

R 1
0

1
f(0+(1�r)i)dr

(b) a�22 = 0 + 0i
�! 0 + i

Let z = 0 + i+ r(�i) = 0 + (1� r)i
where r : 1 �! 0 , and dz = (�1)idr.
We have

R
a�22

1
f(z)
dz =

R
0+0i

�!0+i
1
f(z)
dz

Math:
=

R
0+0i!0+i

1
f(z)
dz

=
R 0
1

1
f(0+(1�r)i)(�1)idr

= (i)
R 1
0

1
f(0+(1�r)i)dr

By (a) , (b) , we have

R
a2

1
f(z)
dz =

R
a�2

1
f(z)
dz

=
R
a�21

1
f(z)
dz +

R
a�22

1
f(z)
dz

Math:
= (2i)

R 1
0

1
f(0+(1�r)i)dr

= 1:22423 + 0:508246i

3. a3 cycle : Let a�3 = a
�
31 [ a�32 is the equivalent path for a3 where a�31 is

the path from Z8 = 1 + 2i to Z7 = 1 + i on (+)-edge of sheet-I , a�32 is
the path from Z7 = 1 + i to Z8 = 1 + 2i on (�)-edge of sheet-I.

(a) a�31 = 1 + 2i
+! 1 + i

Let z = 1 + 2i+ r(�i) = 1 + (2� r)i
where r : 0 +! 1 , and dz = (�1)idr.
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We have

R
a�31

1
f(z)
dz =

R
1+2i

+!1+i
1
f(z)
dz

Math:
=

R
1+2i!1+i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1+(2�r)i)(�1)idr
= (i)

R 1
0

1
f(1+(2�r)i)dr

(b) a�32 = 1 + i
�! 1 + 2i

Let z = 1 + 2i+ r(�i) = 1 + (2� r)i
where r : 1 �! 0 , and dz = (�1)idr.
We have

R
a�32

1
f(z)
dz =

R
1+i

�!1+2i
1
f(z)
dz

Math:
=

R
1+i!1+2i

1
f(z)
dz

=
R 0
1

1
f(1+(2�r)i)(�1)idr

= (i)
R 1
0

1
f(1+(2�r)i)dr

By (a) , (b) , we have

R
a3

1
f(z)
dz =

R
a�3

1
f(z)
dz

=
R
a�31

1
f(z)
dz +

R
a�32

1
f(z)
dz

Math:
= (2i)

R 1
0

1
f(1+(2�r)i)dr

=

Example 70 Compute the integrals of 1=f(z) over b2 cycle in the Figure
below where

f(z) =
p
(z � z1)(z � z2)(z � z3)(z � z4)(z � z5)(z � z6)(z � z7)(z � z8)

for z1 = �2 � i; z2 = �2 + i; z3 = �1 � i; z4 = �1 + i; z5 = 0 + 0i; z6 =
0 + i; z7 = 1 + i; z8 = 1 + 2i.
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Figure 47. Cycle b2 and equivalent path b�2.

Solution:
Let b�2 = b

�
21 [ b�22 [ b�23 [ b�24 [ b�25 [ b�26 [ b�27 [ b�28 is the equivalent path for

b2 where b�21 is the path from Z2 = �2 + i to �2 + 0i on sheet-I , b�22 is the
path from �2+0i to Z1 = �2� i on sheet-I , b�23 is the path from Z1 = �2� i
to Z3 = �1 � i on (+)-edge of sheet-I , b�24 is the path from Z3 = �1 � i to
�1 + 0i on sheet-I , b�25 is the path from �1 + 0i to Z5 = 0 + 0i on sheet-I ,
b�26 is the path from Z5 = 0 + 0i to Z6 = 0 + i on (�)-edge of sheet-II , b�27
is the path from Z6 = 0 + i to Z4 = �1 + i on sheet-II , b�28 is the path from
Z4 = �1 + i to Z2 = �2 + i on (�)-edge of sheet-II.

1. b�21 = �2 + i! �2 + 0i
Let z = �2 + i+ r(�2i) = �2 + (1� 2r)i
where r : 0! 1

2
, and dz = (�2i)dr.

We have

R
b�21

1
f(z)
dz =

R
�2+i!�2+0i

1
f(z)
dz

Math:
=

R
�2+i!�2+0i(�1)

1
f(z)
dz

=
R 1

2

0
(�1) 1

f(�2+(1�2r)i)(�2i)dr
= (2i)

R 1
2

0
1

f(�2+(1�2r)i)dr

2. b�22 = �2 + 0i! �2� i
Let z = �2 + i+ r(�2i) = �2 + (1� 2r)i
where r : 1

2
! 1 , and dz = (�2i)dr.

We have
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R
b�22

1
f(z)
dz =

R
�2+0i!�2�i

1
f(z)
dz

Math:
=

R
�2+0i!�2�i

1
f(z)
dz

=
R 1
1
2

1
f(�2+(1�2r)i)(�2i)dr

= (�2i)
R 1
1
2

1
f(�2+(1�2r)i)dr

3. b�23 = �2� i
+! �1� i

Let z = �2� i+ r(1) = (r � 2)� i

where r : 0 +! 1 , and dz = dr.

We have

R
b�23

1
f(z)
dz =

R
�2�i+!�1�i

1
f(z)
dz

Math:
=

R
�2�i!�1�i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((r�2)�i)dr

= (�1)
R 1
0

1
f((r�2)�i)dr

4. b�24 = �1� i! �1 + 0i
Let z = �1� i+ r(i) = �1 + (r � 1)i
where r : 0! 1 , and dz = idr.

We have

R
b�24

1
f(z)
dz =

R
�1�i!�1+0i

1
f(z)
dz

Math:
=

R
�1�i!�1+0i

1
f(z)
dz

=
R 1
0

1
f(�1+(r�1)i) idr

= i
R 1
0

1
f(�1+(r�1)i)dr

5. b�25 = �1 + 0i! 0 + 0i

Let z = �1 + r(1) = r � 1
where r : 0! 1 , and dz = dr.

We have
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R
b�25

1
f(z)
dz =

R
�1+0i!0+0i

1
f(z)
dz

Math:
=

R
�1+0i!0+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(r�1)dr

= (�1)
R 1
0

1
f(r�1)dr

6. b�26 = 0 + 0i
�99K 0 + i

Let z = 0 + ri = ri

where r : 0
�99K 1 , and dz = idr.

We have

R
b�26

1
f(z)
dz =

R
0+0i

�99K0+i
1
f(z)
dz

=
R
0+0i

+!0+i
1
f(z)
dz

Math:
=

R
0+0i

+!0+i(�1)
1
f(z)
dz

=
R 1
0
(�1) 1

f(ri)
idr

= (�i)
R 1
0

1
f(ri)

dr

7. b�27 = 0 + i 99K �1 + i
Let z = i+ r(�1) = �r + i
where r : 0 99K 1 , and dz = (�1)dr.
We have

R
b�27

1
f(z)
dz =

R
0+i99K�1+i

1
f(z)
dz

=
R
0+i!�1+i(�1)

1
f(z)
dz

Math:
=

R
0+i!�1+i

1
f(z)
dz

=
R 1
0

1
f(�r+i)(�1)dr

= (�1)
R 1
0

1
f(�r+i)dr

8. b�28 = �1 + i
�99K �2 + i

Let z = �1 + i+ r(�1) = (�1� r) + i

where r : 0
�99K 1 , and dz = (�1)dr.
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We have

R
b�28

1
f(z)
dz =

R
�1+i �99K�2+i

1
f(z)
dz

=
R
�1+i+!�2+i

1
f(z)
dz

Math:
=

R
�1+i!�2+i

1
f(z)
dz

=
R 1
0

1
f((�1�r)+i)(�1)dr

= (�1)
R 1
0

1
f((�1�r)+i)dr

By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , we have

R
b2

1
f(z)
dz =

R
b�2

1
f(z)
dz

Math:
=

(2i)
R 1

2

0
1

f(�2+(1�2r)i)dr + (�2i)
R 1
1
2

1
f(�2+(1�2r)i)dr

+(�1)
R 1
0

1
f((r�2)�i)dr + i

R 1
0

1
f(�1+(r�1)i)dr

+(�1)
R 1
0

1
f(r�1)dr + (�i)

R 1
0

1
f(ri)

dr

+(�1)
R 1
0

1
f(�r+i)dr + (�1)

R 1
0

1
f((�1�r)+i)dr

= 0:869165� 0:577073i

Example 71 Compute the integrals of 1=f(z) over b3 cycle in the Figure
below where

f(z) =
p
(z � z1)(z � z2)(z � z3)(z � z4)(z � z5)(z � z6)(z � z7)(z � z8)

for z1 = �2 � i; z2 = �2 + i; z3 = �1 � i; z4 = �1 + i; z5 = 0 + 0i; z6 =
0 + i; z7 = 1 + i; z8 = 1 + 2i.

Figure 48. Cycle b3 and equivalent path b�3.
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Solution:
Let b�3 = b

�
31 [ b�32 [ b�33 [ b�34 [ b�35 [ b�36 [ b�37 [ b�38 [ b�39 [ b�3a [ b�3b [ b�3c is

the equivalent path for b3 where b�31 is the path from Z2 = �2 + i to �2 + 0i
on sheet-I , b�32 is the path from �2 + 0i to Z1 = �2 � i on sheet-I , b�33 is
the path from Z1 = �2� i to Z3 = �1� i on (+)-edge of sheet-I , b�34 is the
path from Z3 = �1 � i to �1 + 0i on sheet-I , b�35 is the path from �1 + 0i
to Z5 = 0 + 0i on sheet-I , b�36 is the path from Z5 = 0 + 0i to Z6 = 0 + i on
(�)-edge of sheet-I , b�37 is the path from Z6 = 0 + i to Z7 = 1 + i on sheet-I
, b�38 is the path from Z7 = 1 + i to Z8 = 1 + 2i on (�)-edge of sheet-II ,
b�39 is the path from Z8 = 1 + 2i to Z7 = 1 + i on sheet-II , b�3a is the path
from Z7 = 1+ i to Z6 = 0+ i on sheet-II , b�3b is the path from Z6 = 0+ i to
Z4 = �1+ i on sheet-II , b�3c is the path from Z4 = �1+ i to Z2 = �2+ i on
(�)-edge of sheet-II.

1. b�31 = �2 + i! �2 + 0i
Let z = �2 + i+ r(�2i) = �2 + (1� 2r)i
where r : 0! 1

2
, and dz = (�2i)dr.

We have

R
b�31

1
f(z)
dz =

R
�2+i!�2+0i

1
f(z)
dz

Math:
=

R
�2+i!�2+0i(�1)

1
f(z)
dz

=
R 1

2

0
(�1) 1

f(�2+(1�2r)i)(�2i)dr
= (2i)

R 1
2

0
1

f(�2+(1�2r)i)dr

2. b�32 = �2 + 0i! �2� i
Let z = �2 + i+ r(�2i) = �2 + (1� 2r)i
where r : 1

2
! 1 , and dz = (�2i)dr.

We have

R
b�32

1
f(z)
dz =

R
�2+0i!�2�i

1
f(z)
dz

Math:
=

R
�2+0i!�2�i

1
f(z)
dz

=
R 1
1
2

1
f(�2+(1�2r)i)(�2i)dr

= (�2i)
R 1
1
2

1
f(�2+(1�2r)i)dr
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3. b�33 = �2� i
+! �1� i

Let z = �2� i+ r(1) = (r � 2)� i

where r : 0 +! 1 , and dz = dr.

We have

R
b�33

1
f(z)
dz =

R
�2�i+!�1�i

1
f(z)
dz

Math:
=

R
�2�i!�1�i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((r�2)�i)dr

= (�1)
R 1
0

1
f((r�2)�i)dr

4. b�34 = �1� i! �1 + 0i
Let z = �1� i+ r(i) = �1 + (r � 1)i
where r : 0! 1 , and dz = idr.

We have

R
b�34

1
f(z)
dz =

R
�1�i!�1+0i

1
f(z)
dz

Math:
=

R
�1�i!�1+0i

1
f(z)
dz

=
R 1
0

1
f(�1+(r�1)i) idr

= i
R 1
0

1
f(�1+(r�1)i)dr

5. b�35 = �1 + 0i! 0 + 0i

Let z = �1 + r(1) = r � 1
where r : 0! 1 , and dz = dr.

We have

R
b�35

1
f(z)
dz =

R
�1+0i!0+0i

1
f(z)
dz

Math:
=

R
�1+0i!0+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(r�1)dr

= (�1)
R 1
0

1
f(r�1)dr
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6. b�36 = 0 + 0i
�! 0 + i

Let z = 0 + r(i) = ri

where r : 0 �! 1 , and dz = idr.

We have

R
b�36

1
f(z)
dz =

R
0+0i

�!0+i
1
f(z)
dz

=
R
0+0i!0+i

1
f(z)
dz

Math:
=

R
0+0i!0+i

1
f(z)
dz

=
R 1
0

1
f(ri)

idr

= i
R 1
0

1
f(ri)

dr

7. b�37 = 0 + i! 1 + i

Let z = i+ r(1) = r + i

where r : 0! 1 , and dz = dr.

We have

R
b�37

1
f(z)
dz =

R
0+i!1+i

1
f(z)
dz

=
R
0+i!1+i

1
f(z)
dz

Math:
=

R
0+i!1+i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(r+i)
dr

= (�1)
R 1
0

1
f(r+i)

dr

8. b�38 = 1 + i
�99K 1 + 2i

Let z = 1 + i+ r(i) = 1 + (r + 1)i

where r : 0
�99K 1 , and dz = (i)dr.

We have

R
b�38

1
f(z)
dz =

R
1+i

�99K1+2i
1
f(z)
dz

=
R
1+i

+!1+2i
1
f(z)
dz

Math:
=

R
1+i!1+2i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1+(r+1)i)
(i)dr

= (�i)
R 1
0

1
f(1+(r+1)i)

dr
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9. b�39 = 1 + 2i
+99K 1 + i

Let z = 1 + i+ r(i) = 1 + (r + 1)i

where r : 1
+99K 0 , and dz = (i)dr.

We have

R
b�39

1
f(z)
dz =

R
1+2i

+99K1+i
1
f(z)
dz

=
R
1+2i

�!1+i
1
f(z)
dz

Math:
=

R
1+2i!1+i

1
f(z)
dz

=
R 0
1

1
f(1+(r+1)i)

(i)dr

= (�i)
R 1
0

1
f(1+(r+1)i)

dr

10. b�3a = 1 + i 99K 0 + i
Let z = 1 + i+ r(�1) = (1� r) + i
where r : 0 99K 1 , and dz = (�1)dr.
We have

R
b�3a

1
f(z)
dz =

R
1+i99K0+i

1
f(z)
dz

=
R
1+i!0+i(�1)

1
f(z)
dz

Math:
=

R
1+i!0+i

1
f(z)
dz

=
R 1
0

1
f((1�r)+i)(�1)dr

= (�1)
R 1
0

1
f((1�r)+i)dr

11. b�3b = 0 + i 99K �1 + i
Let z = 0 + i+ r(�1) = �r + i
where r : 0 99K 1 , and dz = (�1)dr.
We have

R
b�3b

1
f(z)
dz =

R
0+i99K�1+i

1
f(z)
dz

=
R
0+i!�1+i(�1)

1
f(z)
dz

Math:
=

R
0+i!�1+i

1
f(z)
dz

=
R 1
0

1
f(�r+i)(�1)dr

= (�1)
R 1
0

1
f(�r+i)dr
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12. b�3c = �1 + i
�99K �2 + i

Let z = �1 + i+ r(�1) = (�r � 1) + i

where r : 0
�99K 1 , and dz = (�1)dr.

We have

R
b�3c

1
f(z)
dz =

R
�1+i �99K�2+i

1
f(z)
dz

=
R
�1+i+!�2+i

1
f(z)
dz

Math:
=

R
�1+i!�2+i

1
f(z)
dz

=
R 1
0

1
f((�r�1)+i)(�1)dr

= (�1)
R 1
0

1
f((�r�1)+i)dr

By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: , 10: , 11: , 12: , we have

R
b3

1
f(z)
dz =

R
b�3

1
f(z)
dz

Math:
=

(2i)
R 1

2

0
1

f(�2+(1�2r)i)dr + (�2i)
R 1
1
2

1
f(�2+(1�2r)i)dr

+(�1)
R 1
0

1
f((r�2)�i)dr + i

R 1
0

1
f(�1+(r�1)i)dr

+(�1)
R 1
0

1
f(r�1)dr + i

R 1
0

1
f(ri)

dr + (�1)
R 1
0

1
f(r+i)

dr

+(�2i)
R 1
0

1
f(1+(r+1)i)

dr + (�1)
R 1
0

1
f((1�r)+i)dr

+(�1)
R 1
0

1
f(�r+i)dr + (�1)

R 1
0

1
f((�r�1)+i)dr

= �0:405194� 0:115625i

5.3 The details of the previous computation in section
2.3 .

First , we will compute the integral of 1=f(z) over a1; a2; a3; a4; a5 cycles in
the Figure 45 below where

f(z) =
12

�
k=1

p
(z � zk)

and Z1 = �6:58948 + 5:23118i , Z2 = �6:58948 � 5:23118i , Z3 =
�6:31381 + 1:46139i , Z4 = �6:31381 � 1:46139i , Z5 = �4:68652 + 0:0i
, Z6 = �1:57080 + 0:0i , Z7 = 1:57080 + 0:0i , Z8 = 4:68652 + 0:0i ,
Z9 = 6:31381+1:46139i , Z10 = 6:31381�1:46139i , Z11 = 6:58948+5:23118i
, Z12 = 6:58948� 5:23118i.
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Figure 49. a1; a2; a3; a4; a5 cycles and its equivalent path a�1; a
�
2; a
�
3; a
�
4; a
�
5.

Let a�1 = a
�
11[a�12 is the equivalent path for a1 where a�11 is the path from

Z3 = �6:31381+1:46139i to Z4 = �6:31381�1:46139i on (+)-edge of sheet-I
, a�12 is the path from Z4 = �6:31381�1:46139i to Z3 = �6:31381+1:46139i
on (�)-edge of sheet-I.

1. a�11 = �6:31381 + 1:46139i
+! �6:31381� 1:46139i

Let

z = �6:31381 + 1:46139i+ r(�2:92278i)
= �6:31381 + (1:46139� 2:92278r)i
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where r : 0 +! 1 , and dz = (�2:92278i)dr.
We have

R
a�11

1
f(z)
dz =

R
�6:31381+1:46139i+!�6:31381�1:46139i

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:31381�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�6:31381+(1:46139�2:92278r)i)(�2:92278i)dr
= (2:92278i)

R 1
0

1
f(�6:31381+(1:46139�2:92278r)i)dr

2. a�12 = �6:31381� 1:46139i
�! �6:31381 + 1:46139i

Let

z = �6:31381 + 1:46139i+ r(�2:92278i)
= �6:31381 + (1:46139� 2:92278r)i

where r : 1 �! 0 , and dz = (�2:92278i)dr.
We have

R
a�12

1
f(z)
dz =

R
�6:31381�1:46139i�!�6:31381+1:46139i

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:31381�1:46139i

1
f(z)
dz

=
R 0
1

1
f(�6:31381+(1:46139�2:92278r)i)(�2:92278i)dr

= (2:92278i)
R 1
0

1
f(�6:31381+(1:46139�2:92278r)i)dr

By 1: , 2: , we have

R
a1

1
f(z)
dz =

R
a�1

1
f(z)
dz

Math:
=

(2:92278i)
R 1
0

1
f(�6:31381+(1:46139�2:92278r)i)dr

+(2:92278i)
R 1
0

1
f(�6:31381+(1:46139�2:92278r)i)dr

= (5:84556i)
R 1
0

1
f(�6:31381+(1:46139�2:92278r)i)dr

= 9:52646� 10�18 + 0:000197837i

Let a�2 = a
�
21[a�22 is the equivalent path for a2 where a�21 is the path from

Z5 = �4:68652 + 0:0i to Z6 = �1:57080 + 0:0i on (+)-edge of sheet-I , a�22 is
the path from Z6 = �1:57080 + 0:0i to Z5 = �4:68652 + 0:0i on (�)-edge of
sheet-I.
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1. a�21 = �4:68652 + 0:0i
+! �1:57080 + 0:0i

Let

z = �4:68652 + r(3:11572)
= �4:68652 + (3:11572)r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
a�21

1
f(z)
dz =

R
�4:68652+0:0i+!�1:57080+0:0i

1
f(z)
dz

Math:
=

R
�4:68652+0:0i!�1:57080+0:0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+(3:11572)r)(3:11572)dr

= (�3:11572)
R 1
0

1
f(�4:68652+(3:11572)r)dr

2. a�22 = �1:57080 + 0:0i
�! �4:68652 + 0:0i

Let

z = �4:68652 + r(3:11572)
= �4:68652 + (3:11572)r

where r : 1 �! 0 , and dz = (3:11572)dr.

We have

R
a�22

1
f(z)
dz =

R
�1:57080+0:0i�!�4:68652+0:0i

1
f(z)
dz

Math:
=

R
�1:57080+0:0i!�4:68652+0:0i

1
f(z)
dz

=
R 0
1

1
f(�4:68652+(3:11572)r)(3:11572)dr

= (�3:11572)
R 1
0

1
f(�4:68652+(3:11572)r)dr

By 1: , 2: , we have

R
a2

1
f(z)
dz =

R
a�2

1
f(z)
dz

Math:
=

(�3:11572)
R 1
0

1
f(�4:68652+(3:11572)r)dr

+(�3:11572)
R 1
0

1
f(�4:68652+(3:11572)r)dr

= (�6:23144)
R 1
0

1
f(�4:68652+(3:11572)r)dr

= 2:31913� 10�14 � 0:000472233i
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Let a�3 = a
�
31[a�32 is the equivalent path for a3 where a�31 is the path from

Z7 = 1:57080+ 0:0i to Z8 = 4:68652+ 0:0i on (+)-edge of sheet-I , a�32 is the
path from Z8 = 4:68652+ 0:0i to Z7 = 1:57080+ 0:0i on (�)-edge of sheet-I.

1. a�31 = 1:57080 + 0:0i
+! 4:68652 + 0:0i

Let

z = 1:57080 + r(3:11572)

= 1:57080 + (3:11572)r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
a�31

1
f(z)
dz =

R
1:57080+0:0i

+!4:68652+0:0i
1
f(z)
dz

Math:
=

R
1:57080+0:0i!4:68652+0:0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+(3:11572)r)
(3:11572)dr

= (�3:11572)
R 1
0

1
f(1:57080+(3:11572)r)

dr

2. a�32 = 4:68652 + 0:0i
�! 1:57080 + 0:0i

Let

z = 1:57080 + r(3:11572)

= 1:57080 + (3:11572)r

where r : 1 �! 0 , and dz = (3:11572)dr.

We have

R
a�32

1
f(z)
dz =

R
4:68652+0:0i

�!1:57080+0:0i
1
f(z)
dz

Math:
=

R
4:68652+0:0i!1:57080+0:0i

1
f(z)
dz

=
R 0
1

1
f(1:57080+(3:11572)r)

(3:11572)dr

= (�3:11572)
R 1
0

1
f(1:57080+(3:11572)r)

dr
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By 1: , 2: , we have

R
a3

1
f(z)
dz =

R
a�3

1
f(z)
dz

Math:
=

(�3:11572)
R 1
0

1
f(1:57080+(3:11572)r)

dr

+(�3:11572)
R 1
0

1
f(1:57080+(3:11572)r)

dr

= (�6:23144)
R 1
0

1
f(1:57080+(3:11572)r)

dr

= �2:23575� 10�14 + 0:000472233i

Let a�4 = a
�
41[a�42 is the equivalent path for a4 where a�41 is the path from

Z9 = 6:31381 + 1:46139i to Z10 = 6:31381� 1:46139i on (+)-edge of sheet-I
, a�42 is the path from Z10 = 6:31381 � 1:46139i to Z9 = 6:31381 + 1:46139i
on (�)-edge of sheet-I.

1. a�41 = 6:31381 + 1:46139i
+! 6:31381� 1:46139i

Let

z = 6:31381 + 1:46139i+ r(�2:92278i)
= 6:31381 + (1:46139� 2:92278r)i

where r : 0 +! 1 , and dz = (�2:92278i)dr.
We have

R
a�41

1
f(z)
dz =

R
6:31381+1:46139i

+!6:31381�1:46139i
1
f(z)
dz

Math:
=

R
6:31381+1:46139i!6:31381�1:46139i

1
f(z)
dz

=
R 1
0

1
f(6:31381+(1:46139�2:92278r)i)(�2:92278i)dr

= (�2:92278i)
R 1
0

1
f(6:31381+(1:46139�2:92278r)i)dr

2. a�42 = 6:31381� 1:46139i
�! 6:31381 + 1:46139i

Let

z = 6:31381 + 1:46139i+ r(�2:92278i)
= 6:31381 + (1:46139� 2:92278r)i

where r : 1 �! 0 , and dz = (�2:92278i)dr.
We have
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R
a�42

1
f(z)
dz =

R
6:31381�1:46139i�!6:31381+1:46139i

1
f(z)
dz

Math:
=

R
6:31381�1:46139i!6:31381+1:46139i(�1)

1
f(z)
dz

=
R 0
1
(�1) 1

f(6:31381+(1:46139�2:92278r)i)(�2:92278i)dr
= (�2:92278i)

R 1
0

1
f(6:31381+(1:46139�2:92278r)i)dr

By 1: , 2: , we have

R
a4

1
f(z)
dz =

R
a�4

1
f(z)
dz

Math:
=

(�2:92278i)
R 1
0

1
f(6:31381+(1:46139�2:92278r)i)dr

+(�2:92278i)
R 1
0

1
f(6:31381+(1:46139�2:92278r)i)dr

= (�5:84556i)
R 1
0

1
f(6:31381+(1:46139�2:92278r)i)dr

= 9:52151� 10�18 � 0:000197837i

Let a�5 = a
�
51[a�52 is the equivalent path for a5 where a�51 is the path from

Z11 = 6:58948 + 5:23118i to Z12 = 6:58948� 5:23118i on (+)-edge of sheet-I
, a�52 is the path from Z12 = 6:58948� 5:23118i to Z11 = 6:58948 + 5:23118i
on (�)-edge of sheet-I.

1. a�51 = 6:58948 + 5:23118i
+! 6:58948� 5:23118i

Let

z = 6:58948 + 5:23118i+ r(�10:46236i)
= 6:58948 + (5:23118� 10:46236r)i

where r : 0 +! 1 , and dz = (�10:46236i)dr.
We have

R
a�51

1
f(z)
dz =

R
6:58948+5:23118i

+!6:58948�5:23118i
1
f(z)
dz

Math:
=

R
6:58948+5:23118i!6:58948�5:23118i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(6:58948+(5:23118�10:46236r)i)(�10:46236i)dr
= (10:46236i)

R 1
0

1
f(6:58948+(5:23118�10:46236r)i)dr
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2. a�52 = 6:58948� 5:23118i
�! 6:58948 + 5:23118i

Let

z = 6:58948 + 5:23118i+ r(�10:46236i)
= 6:58948 + (5:23118� 10:46236r)i

where r : 1 �! 0 , and dz = (�10:46236i)dr.
We have

R
a�52

1
f(z)
dz =

R
6:58948�5:23118i�!6:58948+5:23118i

1
f(z)
dz

Math:
=

R
6:58948�5:23118i!6:58948+5:23118i

1
f(z)
dz

=
R 0
1

1
f(6:58948+(5:23118�10:46236r)i)(�10:46236i)dr

= (10:46236i)
R 1
0

1
f(6:58948+(5:23118�10:46236r)i)dr

By 1: , 2: , we have

R
a5

1
f(z)
dz =

R
a�5

1
f(z)
dz

Math:
=

(10:46236i)
R 1
0

1
f(6:58948+(5:23118�10:46236r)i)dr

+(10:46236i)
R 1
0

1
f(6:58948+(5:23118�10:46236r)i)dr

= (20:92472i)
R 1
0

1
f(6:58948+(5:23118�10:46236r)i)dr

= �1:54107� 10�17 + 0:000262034i

Second , we will compute the integral of 1=f(z) over b1; b2; b3; b4; b5 cycles
in the Figure 46 below where

f(z) =
12

�
k=1

p
(z � zk)

and Z1 = �6:58948 + 5:23118i , Z2 = �6:58948 � 5:23118i , Z3 =
�6:31381 + 1:46139i , Z4 = �6:31381 � 1:46139i , Z5 = �4:68652 + 0:0i
, Z6 = �1:57080 + 0:0i , Z7 = 1:57080 + 0:0i , Z8 = 4:68652 + 0:0i ,
Z9 = 6:31381+1:46139i , Z10 = 6:31381�1:46139i , Z11 = 6:58948+5:23118i
, Z12 = 6:58948� 5:23118i.
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Figure 50. b1; b2; b3; b4; b5 cycles.

Let b�1 = b
�
11[b�12[b�13[b�14[b�15[b�16[b�17[b�18 is the equivalent path for b1

where b�11 is the path from Z1 = �6:58948+5:23118i to �6:58948+1:46139i
on (+)-edge of sheet-I , b�12 is the path from�6:58948+1:46139i to�6:58948�
1:46139i on (+)-edge of sheet-I , b�13 is the path from �6:58948 � 1:46139i
to Z2 = �6:58948 � 5:23118i on (+)-edge of sheet-I , b�14 is the path from
Z2 = �6:58948�5:23118i to �6:58948�1:46139i on (�)-edge of sheet-I , b�15
is the path from �6:58948�1:46139i to Z4 = �6:31381�1:46139i on sheet-I
, b�16 is the path from Z4 = �6:31381�1:46139i to Z3 = �6:31381+1:46139i
on (�)-edge of sheet-II , b�17 is the path from Z3 = �6:31381 + 1:46139i to
�6:58948 + 1:46139i on sheet-II , b�18 is the path from �6:58948 + 1:46139i
to Z1 = �6:58948 + 5:23118i on (�)-edge of sheet-II.
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Figure 51. b�1 path.

1. b�11 = �6:58948 + 5:23118i
+! �6:58948 + 1:46139i

Let

z = �6:58948 + 5:23118i+ r(�3:76979i)
= �6:58948 + (5:23118� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�11

1
f(z)
dz =

R
�6:58948+5:23118i+!�6:58948+1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+5:23118i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)dr

2. b�12 = �6:58948 + 1:46139i
+! �6:58948� 1:46139i

Let

z = �6:58948 + 1:46139i+ r(�2:92278i)
= �6:58948 + (1:46139� 2:92278r)i

where r : 0 +! 1 , and dz = (�2:92278i)dr.
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We have

R
b�12

1
f(z)
dz =

R
�6:58948+1:46139i+!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948�1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)(�2:92278i)dr

= (�2:92278i)
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)dr

3. b�13 = �6:58948� 1:46139i
+! �6:58948� 5:23118i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�13

1
f(z)
dz =

R
�6:58948�1:46139i+!�6:58948�5:23118i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:58948�5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

4. b�14 = �6:58948� 5:23118i
�! �6:58948� 1:46139i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 1 �! 0 , and dz = (�3:76979i)dr.
We have

R
b�14

1
f(z)
dz =

R
�6:58948�5:23118i�!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�5:23118i!�6:58948�1:46139i(�1)

1
f(z)
dz

=
R 0
1
(�1) 1

f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr
= (�3:76979i)

R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr
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5. b�15 = �6:58948� 1:46139i! �6:31381� 1:46139i
Let

z = �6:58948� 1:46139i+ r(0:27567)
= (�6:58948 + 0:27567r) + (�1:46139)i

where r : 0! 1 , and dz = (0:27567)dr.

We have

R
b�15

1
f(z)
dz =

R
�6:58948�1:46139i!�6:31381�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:31381�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((�6:58948+0:27567r)+(�1:46139)i)(0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:58948+0:27567r)+(�1:46139)i)dr

6. b�16 = �6:31381� 1:46139i
�99K �6:31381 + 1:46139i

Let

z = �6:31381� 1:46139i+ r(2:92278i)
= �6:31381 + (�1:46139 + 2:92278r)i

where r : 0
�99K 1 , and dz = (2:92278i)dr.

We have

R
b�16

1
f(z)
dz =

R
�6:31381�1:46139i �99K�6:31381+1:46139i

1
f(z)
dz

=
R
�6:31381�1:46139i+!�6:31381+1:46139i

1
f(z)
dz

Math:
=

R
�6:31381�1:46139i!�6:31381+1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�6:31381+(�1:46139+2:92278r)i)(2:92278i)dr

= (�2:92278i)
R 1
0

1
f(�6:31381+(�1:46139+2:92278r)i)dr

7. b�17 = �6:31381 + 1:46139i 99K �6:58948 + 1:46139i
Let

z = �6:31381 + 1:46139i+ r(�0:27567i)
= �6:31381 + (1:46139� 0:27567r)i
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where r : 0 99K 1 , and dz = (�0:27567i)dr.
We have

R
b�17

1
f(z)
dz =

R
�6:31381+1:46139i99K�6:58948+1:46139i

1
f(z)
dz

=
R
�6:31381+1:46139i!�6:58948+1:46139i(�1)

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+(1:46139�0:27567r)i)(�0:27567i)dr

= (�0:27567i)
R 1
0

1
f(�6:31381+(1:46139�0:27567r)i)dr

8. b�18 = �6:58948 + 1:46139i
�99K �6:58948 + 5:23118i

Let

z = �6:58948 + 1:46139i+ r(3:76979i)
= �6:58948 + (1:46139 + 3:76979r)i

where r : 0
�99K 1 , and dz = (3:76979i)dr.

We have

R
b�18

1
f(z)
dz =

R
�6:58948+1:46139i �99K�6:58948+5:23118i

1
f(z)
dz

=
R
�6:58948+1:46139i+!�6:58948+5:23118i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948+5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)(3:76979i)dr

= (3:76979i)
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)dr

By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , we have

Z
b1

1

f(z)
dz =

Z
b�1

1

f(z)
dz

=

Z
b�11

1

f(z)
dz +

Z
b�12

1

f(z)
dz +

Z
b�13

1

f(z)
dz

+

Z
b�14

1

f(z)
dz +

Z
b�15

1

f(z)
dz +

Z
b�16

1

f(z)
dz

+

Z
b�17

1

f(z)
dz +

Z
b�18

1

f(z)
dz

= (�0:0000106043� 0:0000764721i)
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Let b�2 = b
�
21 [ b�22 [ b�23 [ b�24 [ b�25 [ b�26 [ b�27 [ b�28 [ b�29 [ b�2a [ b�2b [ b�2c [ b�2d

is the equivalent path for b2 where b�21 is the path from Z1 = �6:58948 +
5:23118i to �6:58948+ 1:46139i on (+)-edge of sheet-I , b�22 is the path from
�6:58948+1:46139i to �6:58948�1:46139i on (+)-edge of sheet-I , b�23 is the
path from �6:58948� 1:46139i to Z2 = �6:58948� 5:23118i on (+)-edge of
sheet-I , b�24 is the path from Z2 = �6:58948�5:23118i to�6:58948�1:46139i
on (�)-edge of sheet-I , b�25 is the path from �6:58948 � 1:46139i to Z4 =
�6:31381�1:46139i on sheet-I , b�26 is the path from Z4 = �6:31381�1:46139i
to �6:31381 + 0i on (�)-edge of sheet-I , b�27 is the path from �6:31381 + 0i
to Z5 = �4:68652 + 0i on sheet-I , b�28 is the path from Z5 = �4:68652 + 0i
to Z6 = �1:57080 + 0i on (+)-edge of sheet-I , b�29 is the path from Z6 =
�1:57080+0i to Z5 = �4:68652+0i on (�)-edge of sheet-II , b�2a is the path
from Z5 = �4:68652 + 0i to �6:31381 + 0i on sheet-I , b�2b is the path from
�6:31381 + 0i to Z3 = �6:31381 + 1:46139i on (�)-edge of sheet-II , b�2c is
the path from Z3 = �6:31381 + 1:46139i to �6:58948 + 1:46139i on sheet-II
, b�2d is the path from �6:58948 + 1:46139i to Z1 = �6:58948 + 5:23118i on
(�)-edge of sheet-II.

Figure 52. b�2 path.

1. b�21 = �6:58948 + 5:23118i
+! �6:58948 + 1:46139i

Let

z = �6:58948 + 5:23118i+ r(�3:76979i)
= �6:58948 + (5:23118� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
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We have

R
b�21

1
f(z)
dz =

R
�6:58948+5:23118i+!�6:58948+1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+5:23118i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)dr

2. b�22 = �6:58948 + 1:46139i
+! �6:58948� 1:46139i

Let

z = �6:58948 + 1:46139i+ r(�2:92278i)
= �6:58948 + (1:46139� 2:92278r)i

where r : 0 +! 1 , and dz = (�2:92278i)dr.
We have

R
b�22

1
f(z)
dz =

R
�6:58948+1:46139i+!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948�1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)(�2:92278i)dr

= (�2:92278i)
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)dr

3. b�23 = �6:58948� 1:46139i
+! �6:58948� 5:23118i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�23

1
f(z)
dz =

R
�6:58948�1:46139i+!�6:58948�5:23118i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:58948�5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr
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4. b�24 = �6:58948� 5:23118i
�! �6:58948� 1:46139i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 1 �! 0 , and dz = (�3:76979i)dr.
We have

R
b�24

1
f(z)
dz =

R
�6:58948�5:23118i�!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�5:23118i!�6:58948�1:46139i(�1)

1
f(z)
dz

=
R 0
1
(�1) 1

f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr
= (�3:76979i)

R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

5. b�25 = �6:58948� 1:46139i! �6:31381� 1:46139i
Let

z = �6:58948� 1:46139i+ r(0:27567)
= (�6:58948 + 0:27567r) + (�1:46139)i

where r : 0! 1 , and dz = (0:27567)dr.

We have

R
b�25

1
f(z)
dz =

R
�6:58948�1:46139i!�6:31381�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:31381�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((�6:58948+0:27567r)+(�1:46139)i)(0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:58948+0:27567r)+(�1:46139)i)dr

6. b�26 = �6:31381� 1:46139i
�! �6:31381 + 0i

Let

z = �6:31381� 1:46139i+ r(1:46139i)
= �6:31381 + (�1:46139 + 1:46139r)i
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where r : 0 �! 1 , and dz = (1:46139i)dr.

We have

R
b�26

1
f(z)
dz =

R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

=
R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

Math:
=

R
�6:31381�1:46139i!�6:31381+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)(1:46139i)dr

= (1:46139i)
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)dr

7. b�27 = �6:31381 + 0i! �4:68652 + 0i
Let

z = �6:31381 + 0i+ r(1:62729)
= �6:31381 + 1:62729r

where r : 0! 1 , and dz = (1:62729)dr.

We have

R
b�27

1
f(z)
dz =

R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+1:62729r)(1:62729)dr

= (1:62729)
R 1
0

1
f(�6:31381+1:62729r)dr

8. b�28 = �4:68652 + 0i
+! �1:57080 + 0i

Let

z = �4:68652 + 0i+ r(3:11572)
= �4:68652 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have
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R
b�28

1
f(z)
dz =

R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

=
R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

Math:
=

R
�4:68652+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+3:11572r)(3:11572)dr

= (�3:11572)
R 1
0

1
f(�4:68652+3:11572r)dr

9. b�29 = �1:57080 + 0i
�99K �4:68652 + 0i

Let

z = �1:57080 + 0i+ r(�3:11572)
= �1:57080 + (�3:11572r)

where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have

R
b�29

1
f(z)
dz =

R
�1:57080+0i �99K�4:68652+0i

1
f(z)
dz

=
R
�1:57080+0i+!�4:68652+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!�4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�1:57080+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(�1:57080+(�3:11572r))dr

10. b�2a = �4:68652 + 0i 99K �6:31381 + 0i
Let

z = �4:68652 + 0i+ r(�1:62729)
= �4:68652 + (�1:62729r)

where r : 0 99K 1 , and dz = (�1:62729)dr.
We have

R
b�2a

1
f(z)
dz =

R
�4:68652+0i99K�6:31381+0i

1
f(z)
dz

=
R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

Math:
=

R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+(�1:62729r))(�1:62729)dr
= (1:62729)

R 1
0

1
f(�4:68652+(�1:62729r))dr
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11. b�2b = �6:31381 + 0i
�99K �6:31381 + 1:46139i

Let

z = �6:31381 + 0i+ r(1:46139i)
= �6:31381 + (1:46139r)i

where r : 0
�99K 1 , and dz = (1:46139i)dr.

We have

R
b�2b

1
f(z)
dz =

R
�6:31381+0i �99K�6:31381+1:46139i

1
f(z)
dz

=
R
�6:31381+0i+!�6:31381+1:46139i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�6:31381+1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�6:31381+(1:46139r)i)(1:46139i)dr

= (�1:46139i)
R 1
0

1
f(�6:31381+(1:46139r)i)dr

12. b�2c = �6:31381 + 1:46139i 99K �6:58948 + 1:46139i
Let

z = �6:31381 + 1:46139i+ r(�0:27567)
= (�6:31381� 0:27567r) + 1:46139i

where r : 0 99K 1 , and dz = (�0:27567)dr.
We have

R
b�2c

1
f(z)
dz =

R
�6:31381+1:46139i99K�6:58948+1:46139i

1
f(z)
dz

=
R
�6:31381+1:46139i!�6:58948+1:46139i(�1)

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)(�0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)dr

13. b�2d = �6:58948 + 1:46139i
�99K �6:58948 + 5:23118i

Let

z = �6:58948 + 1:46139i+ r(3:76979i)
= �6:58948 + (1:46139 + 3:76979r)i
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where r : 0
�99K 1 , and dz = (3:76979i)dr.

We have

R
b�2d

1
f(z)
dz =

R
�6:58948+1:46139i �99K�6:58948+5:23118i

1
f(z)
dz

=
R
�6:58948+1:46139i+!�6:58948+5:23118i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948+5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)(3:76979i)dr

= (3:76979i)
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)dr

By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: , 10: , 11: , 12: , 13: , we have

Z
b2

1

f(z)
dz =

Z
b�2

1

f(z)
dz

=

Z
b�21

1

f(z)
dz +

Z
b�22

1

f(z)
dz +

Z
b�23

1

f(z)
dz

+

Z
b�24

1

f(z)
dz +

Z
b�25

1

f(z)
dz +

Z
b�26

1

f(z)
dz

+

Z
b�27

1

f(z)
dz +

Z
b�28

1

f(z)
dz +

Z
b�29

1

f(z)
dz

+

Z
b�2a

1

f(z)
dz +

Z
b�2b

1

f(z)
dz +

Z
b�2c

1

f(z)
dz

+

Z
b�2d

1

f(z)
dz

= (0:00025277 + 0:0000169501i)

Let b�3 = b
�
31[ b�32[ b�33[ b�34[ b�35[ b�36[ b�37[ b�38[ b�39[ b�3a[ b�3b[ b�3c[ b�3d[

b�3e [ b�3f [ b�3g [ b�3h is the equivalent path for b3 where b�31 is the path from
Z1 = �6:58948+5:23118i to �6:58948+1:46139i on (+)-edge of sheet-I , b�32
is the path from �6:58948+ 1:46139i to �6:58948� 1:46139i on (+)-edge of
sheet-I , b�33 is the path from�6:58948�1:46139i to Z2 = �6:58948�5:23118i
on (+)-edge of sheet-I , b�34 is the path from Z2 = �6:58948 � 5:23118i to
�6:58948�1:46139i on (�)-edge of sheet-I , b�35 is the path from �6:58948�
1:46139i to Z4 = �6:31381 � 1:46139i on sheet-I , b�36 is the path from
Z4 = �6:31381�1:46139i to �6:31381+0i on (�)-edge of sheet-I , b�37 is the
path from �6:31381 + 0i to Z5 = �4:68652 + 0i on sheet-I , b�38 is the path
from Z5 = �4:68652 + 0i to Z6 = �1:57080 + 0i on (+)-edge of sheet-I , b�39
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is the path from Z6 = �1:57080 + 0i to Z7 = 1:57080 + 0i on sheet-I , b�3a is
the path from Z7 = 1:57080 + 0i to Z8 = 4:68652 + 0i on (+)-edge of sheet-I
, b�3b is the path from Z8 = 4:68652 + 0i to Z7 = 1:57080 + 0i on (�)-edge of
sheet-II , b�3c is the path from Z7 = 1:57080 + 0i to Z6 = �1:57080 + 0i on
sheet-II , b�3d is the path from Z6 = �1:57080 + 0i to Z5 = �4:68652 + 0i on
(�)-edge of sheet-II , b�3e is the path from Z5 = �4:68652+0i to �6:31381+0i
on sheet-II , b�3f is the path from �6:31381+0i to Z3 = �6:31381+1:46139i
on (�)-edge of sheet-II , b�3g is the path from Z3 = �6:31381 + 1:46139i to
�6:58948 + 1:46139i on sheet-II , b�3h is the path from �6:58948 + 1:46139i
to Z1 = �6:58948 + 5:23118i on (�)-edge of sheet-II.

Figure 53. b�3 path.

1. b�31 = �6:58948 + 5:23118i
+! �6:58948 + 1:46139i

Let

z = �6:58948 + 5:23118i+ r(�3:76979i)
= �6:58948 + (5:23118� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�31

1
f(z)
dz =

R
�6:58948+5:23118i+!�6:58948+1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+5:23118i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)dr
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2. b�32 = �6:58948 + 1:46139i
+! �6:58948� 1:46139i

Let

z = �6:58948 + 1:46139i+ r(�2:92278i)
= �6:58948 + (1:46139� 2:92278r)i

where r : 0 +! 1 , and dz = (�2:92278i)dr.
We have

R
b�32

1
f(z)
dz =

R
�6:58948+1:46139i+!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948�1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)(�2:92278i)dr

= (�2:92278i)
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)dr

3. b�33 = �6:58948� 1:46139i
+! �6:58948� 5:23118i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�33

1
f(z)
dz =

R
�6:58948�1:46139i+!�6:58948�5:23118i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:58948�5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

4. b�34 = �6:58948� 5:23118i
�! �6:58948� 1:46139i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i
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where r : 1 �! 0 , and dz = (�3:76979i)dr.
We have

R
b�34

1
f(z)
dz =

R
�6:58948�5:23118i�!�6:58948�1:46139i

1
f(z)
dz

Math:
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R
�6:58948�5:23118i!�6:58948�1:46139i(�1)

1
f(z)
dz

=
R 0
1
(�1) 1

f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr
= (�3:76979i)

R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

5. b�35 = �6:58948� 1:46139i! �6:31381� 1:46139i
Let

z = �6:58948� 1:46139i+ r(0:27567)
= (�6:58948 + 0:27567r) + (�1:46139)i

where r : 0! 1 , and dz = (0:27567)dr.

We have

R
b�35

1
f(z)
dz =

R
�6:58948�1:46139i!�6:31381�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:31381�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((�6:58948+0:27567r)+(�1:46139)i)(0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:58948+0:27567r)+(�1:46139)i)dr

6. b�36 = �6:31381� 1:46139i
�! �6:31381 + 0i

Let

z = �6:31381� 1:46139i+ r(1:46139i)
= �6:31381 + (�1:46139 + 1:46139r)i

where r : 0 �! 1 , and dz = (1:46139i)dr.

We have
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b�36

1
f(z)
dz =

R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

=
R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

Math:
=

R
�6:31381�1:46139i!�6:31381+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)(1:46139i)dr

= (1:46139i)
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)dr
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7. b�37 = �6:31381 + 0i! �4:68652 + 0i
Let

z = �6:31381 + 0i+ r(1:62729)
= �6:31381 + 1:62729r

where r : 0! 1 , and dz = (1:62729)dr.

We have

R
b�37

1
f(z)
dz =

R
�6:31381+0i!�4:68652+0i

1
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dz

=
R
�6:31381+0i!�4:68652+0i

1
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dz

Math:
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R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+1:62729r)(1:62729)dr

= (1:62729)
R 1
0

1
f(�6:31381+1:62729r)dr

8. b�38 = �4:68652 + 0i
+! �1:57080 + 0i

Let

z = �4:68652 + 0i+ r(3:11572)
= �4:68652 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
b�38

1
f(z)
dz =

R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

=
R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

Math:
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R
�4:68652+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+3:11572r)(3:11572)dr

= (�3:11572)
R 1
0

1
f(�4:68652+3:11572r)dr

9. b�39 = �1:57080 + 0i! 1:57080 + 0i

Let

z = �1:57080 + 0i+ r(3:1416)
= �1:57080 + 3:1416r
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where r : 0! 1 , and dz = (3:1416)dr.

We have

R
b�39

1
f(z)
dz =

R
�1:57080+0i!1:57080+0i

1
f(z)
dz

=
R
�1:57080+0i!1:57080+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!1:57080+0i

1
f(z)
dz

=
R 1
0

1
f(�1:57080+3:1416r)(3:1416)dr

= (3:1416)
R 1
0

1
f(�1:57080+3:1416r)dr

10. b�3a = 1:57080 + 0i
+! 4:68652 + 0i

Let

z = 1:57080 + 0i+ r(3:11572)

= 1:57080 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
b�3a

1
f(z)
dz =

R
1:57080+0i

+!4:68652+0i
1
f(z)
dz

=
R
1:57080+0i

+!4:68652+0i
1
f(z)
dz

Math:
=

R
1:57080+0i!4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+3:11572r)
(3:11572)dr

= (�3:11572)
R 1
0

1
f(1:57080+3:11572r)

dr

11. b�3b = 4:68652 + 0i
�99K 1:57080 + 0i

Let

z = 4:68652 + 0i+ r(�3:11572)
= 4:68652 + (�3:11572r)

where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have
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R
b�3b

1
f(z)
dz =

R
4:68652+0i

�99K1:57080+0i
1
f(z)
dz

=
R
4:68652+0i

+!1:57080+0i
1
f(z)
dz

Math:
=

R
4:68652+0i!1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(4:68652+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(4:68652+(�3:11572r))dr

12. b�3c = 1:57080 + 0i 99K �1:57080 + 0i
Let

z = 1:57080 + 0i+ r(�3:1416)
= 1:57080 + (�3:1416r)

where r : 0 99K 1 , and dz = (�3:1416)dr.
We have

R
b�3c

1
f(z)
dz =

R
1:57080+0i99K�1:57080+0i

1
f(z)
dz

=
R
1:57080+0i!�1:57080+0i(�1)

1
f(z)
dz

Math:
=

R
1:57080+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+(�3:1416r))(�3:1416)dr
= (3:1416)

R 1
0

1
f(1:57080+(�3:1416r))dr

13. b�3d = �1:57080 + 0i
�99K �4:68652 + 0i

Let

z = �1:57080 + 0i+ r(�3:11572)
= �1:57080 + (�3:11572r)

where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have

R
b�3d

1
f(z)
dz =

R
�1:57080+0i �99K�4:68652+0i

1
f(z)
dz

=
R
�1:57080+0i+!�4:68652+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!�4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�1:57080+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(�1:57080+(�3:11572r))dr
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14. b�3e = �4:68652 + 0i 99K �6:31381 + 0i
Let

z = �4:68652 + 0i+ r(�1:62729)
= �4:68652 + (�1:62729r)

where r : 0 99K 1 , and dz = (�1:62729)dr.
We have

R
b�3e

1
f(z)
dz =

R
�4:68652+0i99K�6:31381+0i

1
f(z)
dz

=
R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

Math:
=

R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+(�1:62729r))(�1:62729)dr
= (1:62729)

R 1
0

1
f(�4:68652+(�1:62729r))dr

15. b�3f = �6:31381 + 0i
�99K �6:31381 + 1:46139i

Let

z = �6:31381 + 0i+ r(1:46139i)
= �6:31381 + (1:46139r)i

where r : 0
�99K 1 , and dz = (1:46139i)dr.

We have

R
b�3f

1
f(z)
dz =

R
�6:31381+0i �99K�6:31381+1:46139i

1
f(z)
dz

=
R
�6:31381+0i+!�6:31381+1:46139i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�6:31381+1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�6:31381+(1:46139r)i)(1:46139i)dr

= (�1:46139i)
R 1
0

1
f(�6:31381+(1:46139r)i)dr

16. b�3g = �6:31381 + 1:46139i 99K �6:58948 + 1:46139i
Let

z = �6:31381 + 1:46139i+ r(�0:27567)
= (�6:31381� 0:27567r) + 1:46139i
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where r : 0 99K 1 , and dz = (�0:27567)dr.
We have

R
b�3g

1
f(z)
dz =

R
�6:31381+1:46139i99K�6:58948+1:46139i

1
f(z)
dz

=
R
�6:31381+1:46139i!�6:58948+1:46139i(�1)

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)(�0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)dr

17. b�3h = �6:58948 + 1:46139i
�99K �6:58948 + 5:23118i

Let

z = �6:58948 + 1:46139i+ r(3:76979i)
= �6:58948 + (1:46139 + 3:76979r)i

where r : 0
�99K 1 , and dz = (3:76979i)dr.

We have

R
b�3h

1
f(z)
dz =

R
�6:58948+1:46139i �99K�6:58948+5:23118i

1
f(z)
dz

=
R
�6:58948+1:46139i+!�6:58948+5:23118i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948+5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)(3:76979i)dr

= (3:76979i)
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)dr

By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: , 10: , 11: , 12: , 13: , 14: , 15: , 16:
, 17: , we have
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Z
b3

1

f(z)
dz =

Z
b�3

1

f(z)
dz

=

Z
b�31

1

f(z)
dz +

Z
b�32

1

f(z)
dz +

Z
b�33

1

f(z)
dz

+

Z
b�34

1

f(z)
dz +

Z
b�35

1

f(z)
dz +

Z
b�36

1

f(z)
dz

+

Z
b�37

1

f(z)
dz +

Z
b�38

1

f(z)
dz +

Z
b�39

1

f(z)
dz

+

Z
b�3a

1

f(z)
dz +

Z
b�3b

1

f(z)
dz +

Z
b�3c

1

f(z)
dz

+

Z
b�3d

1

f(z)
dz +

Z
b�3e

1

f(z)
dz +

Z
b�3f

1

f(z)
dz

+

Z
b�3g

1

f(z)
dz +

Z
b�3h

1

f(z)
dz

= (�0:000226449 + 0:0000169501i)

Let b�4 = b
�
41[b�42[b�43[b�44[b�45[b�46[b�47[b�48[b�49[b�4a[b�4b[b�4c[b�4d[b�4e[

b�4f [b�4g[b�4h[b�4i[b�4j[b�4k[b�4l[b�4m is the equivalent path for b4 where b�41 is
the path from Z1 = �6:58948+5:23118i to �6:58948+1:46139i on (+)-edge
of sheet-I , b�42 is the path from �6:58948 + 1:46139i to �6:58948� 1:46139i
on (+)-edge of sheet-I , b�43 is the path from �6:58948 � 1:46139i to Z2 =
�6:58948 � 5:23118i on (+)-edge of sheet-I , b�44 is the path from Z2 =
�6:58948�5:23118i to �6:58948�1:46139i on (�)-edge of sheet-I , b�45 is the
path from �6:58948�1:46139i to Z4 = �6:31381�1:46139i on sheet-I , b�46 is
the path fromZ4 = �6:31381�1:46139i to�6:31381+0i on (�)-edge of sheet-
I , b�47 is the path from �6:31381+0i to Z5 = �4:68652+0i on sheet-I , b�48 is
the path from Z5 = �4:68652+0i to Z6 = �1:57080+0i on (+)-edge of sheet-
I , b�49 is the path from Z6 = �1:57080+0i to Z7 = 1:57080+0i on sheet-I , b�4a
is the path from Z7 = 1:57080+0i to Z8 = 4:68652+0i on (+)-edge of sheet-I
, b�4b is the path from Z8 = 4:68652+ 0i to 6:31381+ 0i on sheet-I , b

�
4c is the

path from 6:31381+0i to Z10 = 6:31381�1:46139i on (+)-edge of sheet-I , b�4d
is the path from Z10 = 6:31381�1:46139i to Z9 = 6:31381+1:46139i on (�)-
edge of sheet-II , b�4e is the path from Z9 = 6:31381+1:46139i to 6:31381+0i
on (+)-edge of sheet-II , b�4f is the path from 6:31381+0i to Z8 = 4:68652+0i
on sheet-II , b�4g is the path from Z8 = 4:68652+0i to Z7 = 1:57080+0i on (�)-
edge of sheet-II , b�4h is the path from Z7 = 1:57080+0i to Z6 = �1:57080+0i
on sheet-II , b�4i is the path from Z6 = �1:57080+0i to Z5 = �4:68652+0i on
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(�)-edge of sheet-II , b�4j is the path from Z5 = �4:68652+0i to �6:31381+0i
on sheet-II , b�4k is the path from �6:31381+ 0i to Z3 = �6:31381+ 1:46139i
on (�)-edge of sheet-II , b�4l is the path from Z3 = �6:31381 + 1:46139i to
�6:58948 + 1:46139i on sheet-II , b�4m is the path from �6:58948 + 1:46139i
to Z1 = �6:58948 + 5:23118i on (�)-edge of sheet-II.

Figure 54. b�4 path.

1. b�41 = �6:58948 + 5:23118i
+! �6:58948 + 1:46139i

Let

z = �6:58948 + 5:23118i+ r(�3:76979i)
= �6:58948 + (5:23118� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�41

1
f(z)
dz =

R
�6:58948+5:23118i+!�6:58948+1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+5:23118i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)dr

2. b�42 = �6:58948 + 1:46139i
+! �6:58948� 1:46139i
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Let

z = �6:58948 + 1:46139i+ r(�2:92278i)
= �6:58948 + (1:46139� 2:92278r)i

where r : 0 +! 1 , and dz = (�2:92278i)dr.
We have

R
b�42

1
f(z)
dz =

R
�6:58948+1:46139i+!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948�1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)(�2:92278i)dr

= (�2:92278i)
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)dr

3. b�43 = �6:58948� 1:46139i
+! �6:58948� 5:23118i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�43

1
f(z)
dz =

R
�6:58948�1:46139i+!�6:58948�5:23118i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:58948�5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

4. b�44 = �6:58948� 5:23118i
�! �6:58948� 1:46139i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i
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where r : 1 �! 0 , and dz = (�3:76979i)dr.
We have

R
b�44

1
f(z)
dz =

R
�6:58948�5:23118i�!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�5:23118i!�6:58948�1:46139i(�1)

1
f(z)
dz

=
R 0
1
(�1) 1

f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr
= (�3:76979i)

R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

5. b�45 = �6:58948� 1:46139i! �6:31381� 1:46139i
Let

z = �6:58948� 1:46139i+ r(0:27567)
= (�6:58948 + 0:27567r) + (�1:46139)i

where r : 0! 1 , and dz = (0:27567)dr.

We have

R
b�45

1
f(z)
dz =

R
�6:58948�1:46139i!�6:31381�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:31381�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((�6:58948+0:27567r)+(�1:46139)i)(0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:58948+0:27567r)+(�1:46139)i)dr

6. b�46 = �6:31381� 1:46139i
�! �6:31381 + 0i

Let

z = �6:31381� 1:46139i+ r(1:46139i)
= �6:31381 + (�1:46139 + 1:46139r)i

where r : 0 �! 1 , and dz = (1:46139i)dr.

We have

R
b�46

1
f(z)
dz =

R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

=
R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

Math:
=

R
�6:31381�1:46139i!�6:31381+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)(1:46139i)dr

= (1:46139i)
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)dr
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7. b�47 = �6:31381 + 0i! �4:68652 + 0i
Let

z = �6:31381 + 0i+ r(1:62729)
= �6:31381 + 1:62729r

where r : 0! 1 , and dz = (1:62729)dr.

We have

R
b�47

1
f(z)
dz =

R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+1:62729r)(1:62729)dr

= (1:62729)
R 1
0

1
f(�6:31381+1:62729r)dr

8. b�48 = �4:68652 + 0i
+! �1:57080 + 0i

Let

z = �4:68652 + 0i+ r(3:11572)
= �4:68652 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
b�48

1
f(z)
dz =

R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

=
R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

Math:
=

R
�4:68652+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+3:11572r)(3:11572)dr

= (�3:11572)
R 1
0

1
f(�4:68652+3:11572r)dr

9. b�49 = �1:57080 + 0i! 1:57080 + 0i

Let

z = �1:57080 + 0i+ r(3:1416)
= �1:57080 + 3:1416r
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where r : 0! 1 , and dz = (3:1416)dr.

We have

R
b�49

1
f(z)
dz =

R
�1:57080+0i!1:57080+0i

1
f(z)
dz

=
R
�1:57080+0i!1:57080+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!1:57080+0i

1
f(z)
dz

=
R 1
0

1
f(�1:57080+3:1416r)(3:1416)dr

= (3:1416)
R 1
0

1
f(�1:57080+3:1416r)dr

10. b�4a = 1:57080 + 0i
+! 4:68652 + 0i

Let

z = 1:57080 + 0i+ r(3:11572)

= 1:57080 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
b�4a

1
f(z)
dz =

R
1:57080+0i

+!4:68652+0i
1
f(z)
dz

=
R
1:57080+0i

+!4:68652+0i
1
f(z)
dz

Math:
=

R
1:57080+0i!4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+3:11572r)
(3:11572)dr

= (�3:11572)
R 1
0

1
f(1:57080+3:11572r)

dr

11. b�4b = 4:68652 + 0i! 6:31381 + 0i

Let

z = 4:68652 + 0i+ r(1:62729)

= 4:68652 + 1:62729r

where r : 0! 1 , and dz = (1:62729)dr.

We have
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R
b�4b

1
f(z)
dz =

R
4:68652+0i!6:31381+0i

1
f(z)
dz

=
R
4:68652+0i!6:31381+0i

1
f(z)
dz

Math:
=

R
4:68652+0i!6:31381+0i

1
f(z)
dz

=
R 1
0

1
f(4:68652+1:62729r)

(1:62729)dr

= (1:62729)
R 1
0

1
f(4:68652+1:62729r)

dr

12. b�4c = 6:31381 + 0i
+! 6:31381� 1:46139i

Let

z = 6:31381 + 0i+ r(�1:46139i)
= 6:31381 + (�1:46139r)i

where r : 0 +! 1 , and dz = (�1:46139i)dr.
We have

R
b�4c

1
f(z)
dz =

R
6:31381+0i

+!6:31381�1:46139i
1
f(z)
dz

=
R
6:31381+0i

+!6:31381�1:46139i
1
f(z)
dz

Math:
=

R
6:31381+0i!6:31381�1:46139i

1
f(z)
dz

=
R 1
0

1
f(6:31381+(�1:46139r)i)(�1:46139i)dr

= (�1:46139i)
R 1
0

1
f(6:31381+(�1:46139r)i)dr

13. b�4d = 6:31381� 1:46139i
�99K 6:31381 + 1:46139i

Let

z = 6:31381� 1:46139i+ r(2:92278i)
= 6:31381 + (�1:46139 + 2:92278r)i

where r : 0
�99K 1 , and dz = (2:92278i)dr.

We have
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R
b�4d

1
f(z)
dz =

R
6:31381�1:46139i �99K6:31381+1:46139i

1
f(z)
dz

=
R
6:31381�1:46139i+!6:31381+1:46139i

1
f(z)
dz

Math:
=

R
6:31381�1:46139i!6:31381+1:46139i

1
f(z)
dz

=
R 1
0

1
f(6:31381+(�1:46139+2:92278r)i)(2:92278i)dr

= (2:92278i)
R 1
0

1
f(6:31381+(�1:46139+2:92278r)i)dr

14. b�4e = 6:31381 + 1:46139i
+99K 6:31381 + 0i

Let

z = 6:31381 + 1:46139i+ r(�1:46139i)
= 6:31381 + (1:46139� 1:46139r)i

where r : 0
+99K 1 , and dz = (�1:46139i)dr.

We have

R
b�4e

1
f(z)
dz =

R
6:31381+1:46139i

+99K6:31381+0i
1
f(z)
dz

=
R
6:31381+1:46139i

�!6:31381+0i
1
f(z)
dz

Math:
=

R
6:31381+1:46139i!6:31381+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(6:31381+(1:46139�1:46139r)i)(�1:46139i)dr
= (1:46139i)

R 1
0

1
f(6:31381+(1:46139�1:46139r)i)dr

15. b�4f = 6:31381 + 0i 99K 4:68652 + 0i
Let

z = 6:31381 + 0i+ r(�1:62729)
= 6:31381� 1:62729r

where r : 0 99K 1 , and dz = (�1:62729)dr.
We have

R
b�4f

1
f(z)
dz =

R
6:31381+0i99K4:68652+0i

1
f(z)
dz

=
R
6:31381+0i!4:68652+0i(�1)

1
f(z)
dz

Math:
=

R
6:31381+0i!4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(6:31381�1:62729r)(�1:62729)dr
= (1:62729)

R 1
0

1
f(6:31381�1:62729r)dr
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16. b�4g = 4:68652 + 0i
�99K 1:57080 + 0i

Let

z = 4:68652 + 0i+ r(�3:11572)
= 4:68652 + (�3:11572r)

where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have

R
b�4g

1
f(z)
dz =

R
4:68652+0i

�99K1:57080+0i
1
f(z)
dz

=
R
4:68652+0i

+!1:57080+0i
1
f(z)
dz

Math:
=

R
4:68652+0i!1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(4:68652+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(4:68652+(�3:11572r))dr

17. b�4h = 1:57080 + 0i 99K �1:57080 + 0i
Let

z = 1:57080 + 0i+ r(�3:1416)
= 1:57080 + (�3:1416r)

where r : 0 99K 1 , and dz = (�3:1416)dr.
We have

R
b�4h

1
f(z)
dz =

R
1:57080+0i99K�1:57080+0i

1
f(z)
dz

=
R
1:57080+0i!�1:57080+0i(�1)

1
f(z)
dz

Math:
=

R
1:57080+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+(�3:1416r))(�3:1416)dr
= (3:1416)

R 1
0

1
f(1:57080+(�3:1416r))dr

18. b�4i = �1:57080 + 0i
�99K �4:68652 + 0i

Let

z = �1:57080 + 0i+ r(�3:11572)
= �1:57080 + (�3:11572r)
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where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have

R
b�4i

1
f(z)
dz =

R
�1:57080+0i �99K�4:68652+0i

1
f(z)
dz

=
R
�1:57080+0i+!�4:68652+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!�4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�1:57080+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(�1:57080+(�3:11572r))dr

19. b�4j = �4:68652 + 0i 99K �6:31381 + 0i
Let

z = �4:68652 + 0i+ r(�1:62729)
= �4:68652 + (�1:62729r)

where r : 0 99K 1 , and dz = (�1:62729)dr.
We have

R
b�4j

1
f(z)
dz =

R
�4:68652+0i99K�6:31381+0i

1
f(z)
dz

=
R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

Math:
=

R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+(�1:62729r))(�1:62729)dr
= (1:62729)

R 1
0

1
f(�4:68652+(�1:62729r))dr

20. b�4k = �6:31381 + 0i
�99K �6:31381 + 1:46139i

Let

z = �6:31381 + 0i+ r(1:46139i)
= �6:31381 + (1:46139r)i

where r : 0
�99K 1 , and dz = (1:46139i)dr.

We have
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R
b�4k

1
f(z)
dz =

R
�6:31381+0i �99K�6:31381+1:46139i

1
f(z)
dz

=
R
�6:31381+0i+!�6:31381+1:46139i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�6:31381+1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�6:31381+(1:46139r)i)(1:46139i)dr

= (�1:46139i)
R 1
0

1
f(�6:31381+(1:46139r)i)dr

21. b�4l = �6:31381 + 1:46139i 99K �6:58948 + 1:46139i
Let

z = �6:31381 + 1:46139i+ r(�0:27567)
= (�6:31381� 0:27567r) + 1:46139i

where r : 0 99K 1 , and dz = (�0:27567)dr.
We have

R
b�4l

1
f(z)
dz =

R
�6:31381+1:46139i99K�6:58948+1:46139i

1
f(z)
dz

=
R
�6:31381+1:46139i!�6:58948+1:46139i(�1)

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)(�0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)dr

22. b�4m = �6:58948 + 1:46139i
�99K �6:58948 + 5:23118i

Let

z = �6:58948 + 1:46139i+ r(3:76979i)
= �6:58948 + (1:46139 + 3:76979r)i

where r : 0
�99K 1 , and dz = (3:76979i)dr.

We have

R
b�4m

1
f(z)
dz =

R
�6:58948+1:46139i �99K�6:58948+5:23118i

1
f(z)
dz

=
R
�6:58948+1:46139i+!�6:58948+5:23118i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948+5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)(3:76979i)dr

= (3:76979i)
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)dr
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By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: , 10: , 11: , 12: , 13: , 14: , 15: , 16:
, 17: , 18: , 19: , 20: , 21: , 22: , we have

Z
b4

1

f(z)
dz =

Z
b�4

1

f(z)
dz

=

Z
b�41

1

f(z)
dz +

Z
b�42

1

f(z)
dz +

Z
b�43

1

f(z)
dz

+

Z
b�44

1

f(z)
dz +

Z
b�45

1

f(z)
dz +

Z
b�46

1

f(z)
dz

+

Z
b�47

1

f(z)
dz +

Z
b�48

1

f(z)
dz +

Z
b�49

1

f(z)
dz

+

Z
b�4a

1

f(z)
dz +

Z
b�4b

1

f(z)
dz +

Z
b�4c

1

f(z)
dz

+

Z
b�4d

1

f(z)
dz +

Z
b�4e

1

f(z)
dz +

Z
b�4f

1

f(z)
dz

+

Z
b�4g

1

f(z)
dz +

Z
b�4h

1

f(z)
dz +

Z
b�4i

1

f(z)
dz

+

Z
b�4j

1

f(z)
dz +

Z
b�4k

1

f(z)
dz +

Z
b�4l

1

f(z)
dz

+

Z
b�4m

1

f(z)
dz

= (0:0000523241 + 0:000115868i)

Let b�5 = b
�
51[b�52[b�53[b�54[b�55[b�56[b�57[b�58[b�59[b�5a[b�5b[b�5c[b�5d[b�5e[

b�5f[b�5g[b�5h[b�5i[b�5j[b�5k[b�5l[b�5m[b�5n[b�5o[b�5p[b�5q is the equivalent path for
b5 where b�51 is the path from Z1 = �6:58948+5:23118i to�6:58948+1:46139i
on (+)-edge of sheet-I , b�52 is the path from�6:58948+1:46139i to�6:58948�
1:46139i on (+)-edge of sheet-I , b�53 is the path from �6:58948 � 1:46139i
to Z2 = �6:58948 � 5:23118i on (+)-edge of sheet-I , b�54 is the path from
Z2 = �6:58948�5:23118i to �6:58948�1:46139i on (�)-edge of sheet-I , b�55
is the path from�6:58948�1:46139i to Z4 = �6:31381�1:46139i on sheet-I ,
b�56 is the path from Z4 = �6:31381�1:46139i to�6:31381+0i on (�)-edge of
sheet-I , b�57 is the path from �6:31381+0i to Z5 = �4:68652+0i on sheet-I ,
b�58 is the path from Z5 = �4:68652+0i to Z6 = �1:57080+0i on (+)-edge of
sheet-I , b�59 is the path from Z6 = �1:57080+0i to Z7 = 1:57080+0i on sheet-
I , b�5a is the path from Z7 = 1:57080 + 0i to Z8 = 4:68652 + 0i on (+)-edge
of sheet-I , b�5b is the path from Z8 = 4:68652+0i to 6:31381+0i on sheet-I ,
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b�5c is the path from 6:31381 + 0i to Z10 = 6:31381� 1:46139i on (+)-edge of
sheet-I , b�5d is the path from Z10 = 6:31381�1:46139i to 6:58948�1:46139i on
sheet-I , b�5e is the path from 6:58948� 1:46139i to Z12 = 6:58948� 5:23118i
on (+)-edge of sheet-I , b�5f is the path from Z12 = 6:58948 � 5:23118i to
Z11 = 6:58948 + 5:23118i on (�)-edge of sheet-II , b�5g is the path from
Z11 = 6:58948 + 5:23118i to 6:58948 + 1:46139i on (+)-edge of sheet-II , b�5h
is the path from 6:58948 + 1:46139i to Z9 = 6:31381 + 1:46139i on sheet-II ,
b�5i is the path from Z9 = 6:31381 + 1:46139i to 6:31381 + 0i on (+)-edge of
sheet-II , b�5j is the path from 6:31381 + 0i to Z8 = 4:68652 + 0i on sheet-II ,
b�5k is the path from Z8 = 4:68652 + 0i to Z7 = 1:57080 + 0i on (�)-edge of
sheet-II , b�5l is the path from Z7 = 1:57080 + 0i to Z6 = �1:57080 + 0i on
sheet-II , b�5m is the path from Z6 = �1:57080+ 0i to Z5 = �4:68652+ 0i on
(�)-edge of sheet-II , b�5n is the path from Z5 = �4:68652+0i to�6:31381+0i
on sheet-II , b�5o is the path from �6:31381+ 0i to Z3 = �6:31381+ 1:46139i
on (�)-edge of sheet-II , b�5p is the path from Z3 = �6:31381 + 1:46139i to
�6:58948 + 1:46139i on sheet-II , b�5q is the path from �6:58948 + 1:46139i
to Z1 = �6:58948 + 5:23118i on (�)-edge of sheet-II.

Figure 55. b�5 path.

1. b�51 = �6:58948 + 5:23118i
+! �6:58948 + 1:46139i

Let

z = �6:58948 + 5:23118i+ r(�3:76979i)
= �6:58948 + (5:23118� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
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We have

R
b�51

1
f(z)
dz =

R
�6:58948+5:23118i+!�6:58948+1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+5:23118i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(5:23118�3:76979r)i)dr

2. b�52 = �6:58948 + 1:46139i
+! �6:58948� 1:46139i

Let

z = �6:58948 + 1:46139i+ r(�2:92278i)
= �6:58948 + (1:46139� 2:92278r)i

where r : 0 +! 1 , and dz = (�2:92278i)dr.
We have

R
b�52

1
f(z)
dz =

R
�6:58948+1:46139i+!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948�1:46139i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)(�2:92278i)dr

= (�2:92278i)
R 1
0

1
f(�6:58948+(1:46139�2:92278r)i)dr

3. b�53 = �6:58948� 1:46139i
+! �6:58948� 5:23118i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�53

1
f(z)
dz =

R
�6:58948�1:46139i+!�6:58948�5:23118i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:58948�5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr
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4. b�54 = �6:58948� 5:23118i
�! �6:58948� 1:46139i

Let

z = �6:58948� 1:46139i+ r(�3:76979i)
= �6:58948 + (�1:46139� 3:76979r)i

where r : 1 �! 0 , and dz = (�3:76979i)dr.
We have

R
b�54

1
f(z)
dz =

R
�6:58948�5:23118i�!�6:58948�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�5:23118i!�6:58948�1:46139i(�1)

1
f(z)
dz

=
R 0
1
(�1) 1

f(�6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr
= (�3:76979i)

R 1
0

1
f(�6:58948+(�1:46139�3:76979r)i)dr

5. b�55 = �6:58948� 1:46139i! �6:31381� 1:46139i
Let

z = �6:58948� 1:46139i+ r(0:27567)
= (�6:58948 + 0:27567r) + (�1:46139)i

where r : 0! 1 , and dz = (0:27567)dr.

We have

R
b�55

1
f(z)
dz =

R
�6:58948�1:46139i!�6:31381�1:46139i

1
f(z)
dz

Math:
=

R
�6:58948�1:46139i!�6:31381�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((�6:58948+0:27567r)+(�1:46139)i)(0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:58948+0:27567r)+(�1:46139)i)dr

6. b�56 = �6:31381� 1:46139i
�! �6:31381 + 0i

Let

z = �6:31381� 1:46139i+ r(1:46139i)
= �6:31381 + (�1:46139 + 1:46139r)i
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where r : 0 �! 1 , and dz = (1:46139i)dr.

We have

R
b�56

1
f(z)
dz =

R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

=
R
�6:31381�1:46139i�!�6:31381+0i

1
f(z)
dz

Math:
=

R
�6:31381�1:46139i!�6:31381+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)(1:46139i)dr

= (1:46139i)
R 1
0

1
f(�6:31381+(�1:46139+1:46139r)i)dr

7. b�57 = �6:31381 + 0i! �4:68652 + 0i
Let

z = �6:31381 + 0i+ r(1:62729)
= �6:31381 + 1:62729r

where r : 0! 1 , and dz = (1:62729)dr.

We have

R
b�57

1
f(z)
dz =

R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�4:68652+0i

1
f(z)
dz

=
R 1
0

1
f(�6:31381+1:62729r)(1:62729)dr

= (1:62729)
R 1
0

1
f(�6:31381+1:62729r)dr

8. b�58 = �4:68652 + 0i
+! �1:57080 + 0i

Let

z = �4:68652 + 0i+ r(3:11572)
= �4:68652 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have
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R
b�58

1
f(z)
dz =

R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

=
R
�4:68652+0i+!�1:57080+0i

1
f(z)
dz

Math:
=

R
�4:68652+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+3:11572r)(3:11572)dr

= (�3:11572)
R 1
0

1
f(�4:68652+3:11572r)dr

9. b�59 = �1:57080 + 0i! 1:57080 + 0i

Let

z = �1:57080 + 0i+ r(3:1416)
= �1:57080 + 3:1416r

where r : 0! 1 , and dz = (3:1416)dr.

We have

R
b�59

1
f(z)
dz =

R
�1:57080+0i!1:57080+0i

1
f(z)
dz

=
R
�1:57080+0i!1:57080+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!1:57080+0i

1
f(z)
dz

=
R 1
0

1
f(�1:57080+3:1416r)(3:1416)dr

= (3:1416)
R 1
0

1
f(�1:57080+3:1416r)dr

10. b�5a = 1:57080 + 0i
+! 4:68652 + 0i

Let

z = 1:57080 + 0i+ r(3:11572)

= 1:57080 + 3:11572r

where r : 0 +! 1 , and dz = (3:11572)dr.

We have

R
b�5a

1
f(z)
dz =

R
1:57080+0i

+!4:68652+0i
1
f(z)
dz

=
R
1:57080+0i

+!4:68652+0i
1
f(z)
dz

Math:
=

R
1:57080+0i!4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+3:11572r)
(3:11572)dr

= (�3:11572)
R 1
0

1
f(1:57080+3:11572r)

dr
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11. b�5b = 4:68652 + 0i! 6:31381 + 0i

Let

z = 4:68652 + 0i+ r(1:62729)

= 4:68652 + 1:62729r

where r : 0! 1 , and dz = (1:62729)dr.

We have

R
b�5b

1
f(z)
dz =

R
4:68652+0i!6:31381+0i

1
f(z)
dz

=
R
4:68652+0i!6:31381+0i

1
f(z)
dz

Math:
=

R
4:68652+0i!6:31381+0i

1
f(z)
dz

=
R 1
0

1
f(4:68652+1:62729r)

(1:62729)dr

= (1:62729)
R 1
0

1
f(4:68652+1:62729r)

dr

12. b�5c = 6:31381 + 0i
+! 6:31381� 1:46139i

Let

z = 6:31381 + 0i+ r(�1:46139i)
= 6:31381 + (�1:46139r)i

where r : 0 +! 1 , and dz = (�1:46139i)dr.
We have

R
b�5c

1
f(z)
dz =

R
6:31381+0i

+!6:31381�1:46139i
1
f(z)
dz

=
R
6:31381+0i

+!6:31381�1:46139i
1
f(z)
dz

Math:
=

R
6:31381+0i!6:31381�1:46139i

1
f(z)
dz

=
R 1
0

1
f(6:31381+(�1:46139r)i)(�1:46139i)dr

= (�1:46139i)
R 1
0

1
f(6:31381+(�1:46139r)i)dr

13. b�5d = 6:31381� 1:46139i! 6:58948� 1:46139i
Let

z = 6:31381� 1:46139i+ r(0:27567)
= (6:31381 + 0:27567r)� 1:46139i
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where r : 0! 1 , and dz = (0:27567)dr.

We have

R
b�5d

1
f(z)
dz =

R
6:31381�1:46139i!6:58948�1:46139i

1
f(z)
dz

=
R
6:31381�1:46139i!6:58948�1:46139i

1
f(z)
dz

Math:
=

R
6:31381�1:46139i!6:58948�1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f((6:31381+0:27567r)�1:46139i)(0:27567)dr

= (0:27567)
R 1
0

1
f((6:31381+0:27567r)�1:46139i)dr

14. b�5e = 6:58948� 1:46139i
+! 6:58948� 5:23118i

Let

z = 6:58948� 1:46139i+ r(�3:76979i)
= 6:58948 + (�1:46139� 3:76979r)i

where r : 0 +! 1 , and dz = (�3:76979i)dr.
We have

R
b�5e

1
f(z)
dz =

R
6:58948�1:46139i+!6:58948�5:23118i

1
f(z)
dz

=
R
6:58948�1:46139i+!6:58948�5:23118i

1
f(z)
dz

Math:
=

R
6:58948�1:46139i!6:58948�5:23118i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(6:58948+(�1:46139�3:76979r)i)(�3:76979i)dr
= (3:76979i)

R 1
0

1
f(6:58948+(�1:46139�3:76979r)i)dr

15. b�5f = 6:58948� 5:23118i
�99K 6:58948 + 5:23118i

Let

z = 6:58948� 5:23118i+ r(10:46236i)
= 6:58948 + (�5:23118 + 10:46236r)i

where r : 0
�99K 1 , and dz = (10:46236i)dr.

We have
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R
b�5f

1
f(z)
dz =

R
6:58948�5:23118i �99K6:58948+5:23118i

1
f(z)
dz

=
R
6:58948�5:23118i+!6:58948+5:23118i

1
f(z)
dz

Math:
=

R
6:58948�5:23118i!6:58948+5:23118i(�1)f(z)dz

=
R 1
0
(�1) 1

f(6:58948+(�5:23118+10:46236r)i)(10:46236i)dr

= (�10:46236i)
R 1
0

1
f(6:58948+(�5:23118+10:46236r)i)dr

16. b�5g = 6:58948 + 5:23118i
+99K 6:58948 + 1:46139i

Let

z = 6:58948 + 5:23118i+ r(�3:76979i)
= 6:58948 + (5:23118� 3:76979r)i

where r : 0
+99K 1 , and dz = (�3:76979i)dr.

We have

R
b�5g

1
f(z)
dz =

R
6:58948+5:23118i

+99K6:58948+1:46139i
1
f(z)
dz

=
R
6:58948+5:23118i

�!6:58948+1:46139i
1
f(z)
dz

Math:
=

R
6:58948+5:23118i!6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f(6:58948+(5:23118�3:76979r)i)(�3:76979i)dr

= (�3:76979i)
R 1
0

1
f(6:58948+(5:23118�3:76979r)i)dr

17. b�5h = 6:58948 + 1:46139i 99K 6:31381 + 1:46139i
Let

z = 6:58948 + 1:46139i+ r(�0:27567)
= (6:58948� 0:27567r) + 1:46139i

where r : 0 99K 1 , and dz = (�0:27567)dr.
We have

R
b�5h

1
f(z)
dz =

R
6:58948+1:46139i99K6:31381+1:46139i

1
f(z)
dz

=
R
6:58948+1:46139i!6:31381+1:46139i(�1)

1
f(z)
dz

Math:
=

R
6:58948+1:46139i!6:31381+1:46139i

1
f(z)
dz

=
R 1
0

1
f((6:58948�0:27567r)+1:46139i)(�0:27567)dr

= (�0:27567)
R 1
0

1
f((6:58948�0:27567r)+1:46139i)dr
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18. b�5i = 6:31381 + 1:46139i
+99K 6:31381 + 0i

Let

z = 6:31381 + 1:46139i+ r(�1:46139i)
= 6:31381 + (1:46139� 1:46139r)i

where r : 0
+99K 1 , and dz = (�1:46139i)dr.

We have

R
b�5i

1
f(z)
dz =

R
6:31381+1:46139i

+99K6:31381+0i
1
f(z)
dz

=
R
6:31381+1:46139i

�!6:31381+0i
1
f(z)
dz

Math:
=

R
6:31381+1:46139i!6:31381+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(6:31381+(1:46139�1:46139r)i)(�1:46139i)dr
= (1:46139i)

R 1
0

1
f(6:31381+(1:46139�1:46139r)i)dr

19. b�5j = 6:31381 + 0i 99K 4:68652 + 0i
Let

z = 6:31381 + 0i+ r(�1:62729)
= 6:31381� 1:62729r

where r : 0 99K 1 , and dz = (�1:62729)dr.
We have

R
b�5j

1
f(z)
dz =

R
6:31381+0i99K4:68652+0i

1
f(z)
dz

=
R
6:31381+0i!4:68652+0i(�1)

1
f(z)
dz

Math:
=

R
6:31381+0i!4:68652+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(6:31381�1:62729r)(�1:62729)dr
= (1:62729)

R 1
0

1
f(6:31381�1:62729r)dr

20. b�5k = 4:68652 + 0i
�99K 1:57080 + 0i

Let

z = 4:68652 + 0i+ r(�3:11572)
= 4:68652 + (�3:11572r)
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where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have

R
b�5k

1
f(z)
dz =

R
4:68652+0i

�99K1:57080+0i
1
f(z)
dz

=
R
4:68652+0i

+!1:57080+0i
1
f(z)
dz

Math:
=

R
4:68652+0i!1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(4:68652+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(4:68652+(�3:11572r))dr

21. b�5l = 1:57080 + 0i 99K �1:57080 + 0i
Let

z = 1:57080 + 0i+ r(�3:1416)
= 1:57080 + (�3:1416r)

where r : 0 99K 1 , and dz = (�3:1416)dr.
We have

R
b�5l

1
f(z)
dz =

R
1:57080+0i99K�1:57080+0i

1
f(z)
dz

=
R
1:57080+0i!�1:57080+0i(�1)

1
f(z)
dz

Math:
=

R
1:57080+0i!�1:57080+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(1:57080+(�3:1416r))(�3:1416)dr
= (3:1416)

R 1
0

1
f(1:57080+(�3:1416r))dr

22. b�5m = �1:57080 + 0i
�99K �4:68652 + 0i

Let

z = �1:57080 + 0i+ r(�3:11572)
= �1:57080 + (�3:11572r)

where r : 0
�99K 1 , and dz = (�3:11572)dr.

We have
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R
b�5m

1
f(z)
dz =

R
�1:57080+0i �99K�4:68652+0i

1
f(z)
dz

=
R
�1:57080+0i+!�4:68652+0i

1
f(z)
dz

Math:
=

R
�1:57080+0i!�4:68652+0i(�1)

1
f(z)
f(z)dz

=
R 1
0
(�1) 1

f(�1:57080+(�3:11572r))(�3:11572)dr
= (3:11572)

R 1
0

1
f(�1:57080+(�3:11572r))dr

23. b�5n = �4:68652 + 0i 99K �6:31381 + 0i
Let

z = �4:68652 + 0i+ r(�1:62729)
= �4:68652 + (�1:62729r)

where r : 0 99K 1 , and dz = (�1:62729)dr.
We have

R
b�5n

1
f(z)
dz =

R
�4:68652+0i99K�6:31381+0i

1
f(z)
dz

=
R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

Math:
=

R
�4:68652+0i!�6:31381+0i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�4:68652+(�1:62729r))(�1:62729)dr
= (1:62729)

R 1
0

1
f(�4:68652+(�1:62729r))dr

24. b�5o = �6:31381 + 0i
�99K �6:31381 + 1:46139i

Let

z = �6:31381 + 0i+ r(1:46139i)
= �6:31381 + (1:46139r)i

where r : 0
�99K 1 , and dz = (1:46139i)dr.

We have

R
b�5o

1
f(z)
dz =

R
�6:31381+0i �99K�6:31381+1:46139i

1
f(z)
dz

=
R
�6:31381+0i+!�6:31381+1:46139i

1
f(z)
dz

Math:
=

R
�6:31381+0i!�6:31381+1:46139i(�1)

1
f(z)
dz

=
R 1
0
(�1) 1

f(�6:31381+(1:46139r)i)(1:46139i)dr

= (�1:46139i)
R 1
0

1
f(�6:31381+(1:46139r)i)dr
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25. b�5p = �6:31381 + 1:46139i 99K �6:58948 + 1:46139i
Let

z = �6:31381 + 1:46139i+ r(�0:27567)
= (�6:31381� 0:27567r) + 1:46139i

where r : 0 99K 1 , and dz = (�0:27567)dr.
We have

R
b�5p

1
f(z)
dz =

R
�6:31381+1:46139i99K�6:58948+1:46139i

1
f(z)
dz

=
R
�6:31381+1:46139i!�6:58948+1:46139i(�1)

1
f(z)
dz

Math:
=

R
�6:31381+1:46139i!�6:58948+1:46139i

1
f(z)
dz

=
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)(�0:27567)dr

= (�0:27567)
R 1
0

1
f((�6:31381�0:27567r)+1:46139i)dr

26. b�5q = �6:58948 + 1:46139i
�99K �6:58948 + 5:23118i

Let

z = �6:58948 + 1:46139i+ r(3:76979i)
= �6:58948 + (1:46139 + 3:76979r)i

where r : 0
�99K 1 , and dz = (3:76979i)dr.

We have

R
b�5q

1
f(z)
dz =

R
�6:58948+1:46139i �99K�6:58948+5:23118i

1
f(z)
dz

=
R
�6:58948+1:46139i+!�6:58948+5:23118i

1
f(z)
dz

Math:
=

R
�6:58948+1:46139i!�6:58948+5:23118i

1
f(z)
dz

=
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)(3:76979i)dr

= (3:76979i)
R 1
0

1
f(�6:58948+(1:46139+3:76979r)i)dr

By 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: , 10: , 11: , 12: , 13: , 14: , 15: , 16:
, 17: , 18: , 19: , 20: , 21: , 22: , 23: , 24: , 25: , 26: , we have
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Z
b5

1

f(z)
dz =

Z
b�5

1

f(z)
dz

=

Z
b�51

1

f(z)
dz +

Z
b�52

1

f(z)
dz +

Z
b�53

1

f(z)
dz

+

Z
b�54

1

f(z)
dz +

Z
b�55

1

f(z)
dz +

Z
b�56

1

f(z)
dz

+

Z
b�57

1

f(z)
dz +

Z
b�58

1

f(z)
dz +

Z
b�59

1

f(z)
dz

+

Z
b�5a

1

f(z)
dz +

Z
b�5b

1

f(z)
dz +

Z
b�5c

1

f(z)
dz

+

Z
b�5d

1

f(z)
dz +

Z
b�5e

1

f(z)
dz +

Z
b�5f

1

f(z)
dz

+

Z
b�5g

1

f(z)
dz +

Z
b�5h

1

f(z)
dz +

Z
b�5i

1

f(z)
dz

+

Z
b�5j

1

f(z)
dz +

Z
b�5k

1

f(z)
dz +

Z
b�5l

1

f(z)
dz

+

Z
b�5m

1

f(z)
dz +

Z
b�5n

1

f(z)
dz +

Z
b�5o

1

f(z)
dz

+

Z
b�5p

1

f(z)
dz +

Z
b�5q

1

f(z)
dz

= (0:0000523241 + 0:000115868i)
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