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Abstract

The Sine-Gordon' equation Uy — tyy +sinw =0 is a well-known
Partial differential equation, and there are some special solutions satisfy

. . . . d? . .
the nonlinear second-order. differential equation d—t’2‘+ sinu = 0 which

Is the Pendulum®™ motion. “/As we solving the ‘differential equation

d?u

— T sinu = 0. We first replace_sinu_by-the Maclaurin Series of sinu

2
to get the differential equation of the form ZTZ+P(u) =0 , where

P(u) is a polynomial. Solutions of such equations reside in Riemann
Surfaces of genus N. We construct these Riemann Surfaces with the
correct algebraic structures. So we can perform path integrals on the
Riemann Surfaces to get the numerical solution of the equation. Next, we
investigate the classical Elliptic functions, and use the Jacobian Elliptic
function to analyze this nonlinear pendulum motion. Finally, we derive
the exact solutions and the periods of those solutions by the Jacobian
Elliptic functions.
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1 Introduction of the Riemann Surface.

When we want to solve the differential equation u” + sinu = 0.

u" +sinu =0

(1/2)(v)* — cosu =k
(1/2)(v')* = cosu + k
(u')* = 2cosu + 2k
du
dt

1
——du= | ldt =t
/\/QCosu—i-Zk /

where k is a constant.
There is difficult to integrate

vl

= +v2cosu + 2k

!/
u =

4

1
——du
/ V2 cosu+ 2k

into a normal function.
By the Maclaurin Series

u2n+1 ul u3 U5 U7 U9 ull

nu— D (—ppell U w w
LA e TR TR TR Pt T TR ST

When we replace sin u by

ul u3 U,5 U7 u9 UH

TR TRt

then the differential equation becomes



Ul U3 U5 U7 u9 Ull

" —
IO TR T R TR T
j L + ulul u/u3 + ulu5 u/u7 + u/ug ulull 0
u'u — — _ _
1! 3! 5! 7! 9! 11!
IRRETRVO U VO VN U VR
2 1! 3! 51 7! 9l 11!
2wt Wb u® AL w2
= N = 4 — — + 2k
(u) 1 + 12 360 + 20160 1814400 @ 239500800 +
du \/ w2 ut 10 u8 110 ul?
= =t = — ot - + + 2k
1 12 360 20160 1814400 239500800

20160 1814400 239500800

dt
1
w2 A ub = w10 wl2
\/_T 13360 + S + 2k

where £ is a constant.
We need to compute the integral

1

/ w2 wld ub u8 w10 wl2
\/ 1 + 12 360 + 20160 1814400 + 239500800 + 2k

du

Before we compute the integral , we need to investigate the space where
u reside.
Because

n

f(z) =

(z — z1)

k=1

is a two-valued function of z on complex plane C. We use algebra and
analysis to develop a new surface such that f becomes a single-valued function
on this surface , namely , a Riemann Surface.

1.1 The construction of the corresponding Riemann
Surface.

Suppose w, z € C and w* = z , we find the solution of w* = z in polar form

k

= wh=z= i(0+2n7)

2| e = |z|e

1 i(0+2nmw)
= w=|zlke &




where 6 € [—m,7) and n € Z.
We will take f(z) = /2 = (z)% for example first , where f(z) : C — C.
We will still use polar form , let

2= |z]e? = \z|ei(9+2m),n ¥/

then

04+2nm

f2) = Vz=l|z2e 55
{ ’z|%€i(g+nﬂ') _ |Z

) if n is even

¢i(3) yif n is odd

|

|2|3eiG+mm 2 (L)

This means that<f(2)is a two-valued function. <“We need to let f(z)

becomes a single valued function now , so we modify its domain C to develop

the corresponding Riemann-Surface such that f becomes a single-valued and
analytic function en this surface.

NS

”—lE[zE‘z

Figure 1. The idea of two sheets.

We start at some z = |z|¢? | and then we have f(2) = /z = /|z]¢'(2), |2| #
0. Fixing |z| and continuing along a closed path once around the origin so
that 6 increases by 27 , f(z) comes to the value

which is just the negative of its original value. When we continuing same
way above , we find that as @ increases by 27 again , then f(z) comes to
oringinal value.



First , we image two sheets lying over the complex plane and cut the plane
along negative real axis ( i.e. from 0 to —oo ) and restrict ourselves such that

never to continue f(z) over this cuts , we get single-valued branches of f(z).
Define that

I3

fz) = |4
f(z) = |4

N

,—r <0<
T <0 <3m

12
A

N= N
<

(&
(&

w|

called sheet-I and sheet-II , respectively. There are two edges for every
cut on each sheet , we label the starting edge with (+)-edge and the terminal
edge with (—)-edge. (Show in Figure 2)

sheat=] sheet1 1
4 &
pir 3
™7, A
+‘. '0 o= | +A“0
=™ 2
Sheet—1I sheg/8IN

| O

Figure 2. Complex plane and extended complex plane.

Moreover , when crossing the cut , we pass from one sheet to another.

Second , we extend the plane of complex numbers with one additional
point at infinity constitute a number system known as the extended complex
numbers. Use stereographic projection , we can consider the two sheets to

be a spheres. And we image that the spheres are made of rubber and stretch
each cut into circular holes.



sheet-I sheet-II

Figure 3. Place the cuts open.

We rotate the spheres to let the holes face each other , and paste two cuts
together where (+)-edge of sheet-I with (—)-edge of sheet-II and (—)-edge of
sheet-I with (+)-edge of sheet-II. So we can derive a‘new sphere now. We
called this sphere to be "Riemann surface of genus 0" and denoted this sphere
by Ry. Show in Figure 4.

.0 0.
co OO
$

edge of sheet-1

» edge of sheet-1I

sphere Ro

Figure 4. Construct Rj.

Notice that in Riemann Surface (+)-edge of sheet-I is equivalent to (—)-edge
of sheet-II and (—)-edge of sheet-I is equivalent to (+)-edge of sheet-II.



We could using similar way to develop the corresponding Riemann Surface
for

n

f(z) =

(z — z1)

k=1

We use two examples to show this , one have odd roots , and the other
have even roots.

Example 1 Suppose there are 7 roots where the function f(z) have. Con-

7 7
struct the Riemann Surface of f(z) = ”121(2 —zE) = 121 (z —2), 2z €R

where z7 < 25 < 25 < 24 < 23 < %' < 2{ and.we cut plane starts from z; to
-, k=1,2,3,4,5,6,7.

LYl a—ZsIE: \ /1

“ I SO TR JET JNrER SR Serm
1 1 1 1 1 1 1
—] ! ! ! ! ! !
. 1 1 1 1 1 1 1
_ ¥ 1 -+ 1 1 1 1 1 1
~ m e B IR S I KOS S
SRR = ) B
b R e [ A
= 1 1 1 1 1 1 1
R F \ ol ” o s 2 ' '
% + t 1 1 1
1 1 1 1 1 1 1 1 1 1
L v P YONNN. V! + A i
" EEE Y ) o ~——"1 \ YO I
PEEE SN S N N TNE SN N N
X 1 1 1 1
1 1 1 1
¥ 1 ¥ ¥ ¥

o ’ B 5 y 5 3 y 7 1
S R et VR R R P T
Figure 5. Cut plane start from zj to —oo.

When crossing one cut , we pass from one sheet to another. And at this
time the argument of z increases by 2w , so the argument of f(z) increases
by ™ which is just the negative of its original value. So when crossing one cut
we need to change the sign , using (—1) represent that. So when crossing odd
times we will change sign and when crossing even times we will not change
sign eventually.



~ ey SFg _ Bm W Te S o ok

-z + n ¥
Figure 6. The cut structure.
There are branch cuts in (—o0, z7] , |26, 25] , 24, 23] , [22,21] and then

using same idea to construct the corresponding Riemann Surface.

Figure™7. Placing the cuts open:

Finally , we pull the<cuts open-and. paste two sheet together with the rule
(4)-edge with (—)-edge so we obtain corresponding Riemann Surface of genus
3 eventually.



— Fr fe — Fs Fa — Fz f3 —

iiiii

fe fs O

Figure'8.. Geometric graph of Rs.

Example 2 Suppose there are 8 roots where the function f(z) have. Con-

8 8
struct the Riemann Surface of f(z) =/ Il (2 — 2) = kljl (z —2), 2k €R

where zg < 27 < 26 < 25 < 24 < 23 < 29 < 21 and we cut plane starts from z
to —o0 , k=1,2,3,4,5,6,7,8.
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Figure 9. Cut plane start from z;, to.—oa.
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When crossing one cut , we pass from-one sheect to another. And at this
time the argument-of z increases by 2w ;- so-the argument of f(z) increases
by ™ which is just the negative of its original value. So when crossing one cut
we need to change the sign ;using (—1) represent that. So when crossing odd
times we will change sign and.when-crossing even times we will not change
sign eventually.

Ly _ Ly Ls _ Ls L - Lz L _ L

+ + + +

Figure 10. The cut structure.

There are branch cuts in [zs, z7] , |26, 25| , [24, 23] , [22, 21] and then using
same idea to construct the corresponding Riemann Surface.
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Finally , we the cuts ope paste-two sheet together with the rule
(+)-edge with edge eSpo? iemanm Surface of genus
3 eventually.

10
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sheet-II

M
Riemann-Surface of genus, 3

Figure 12.° Geometric graph of Rs.

Although there are different algebraic structures between 7 roots and 8
roots that f(z) have. But they both have the same geometric graph with 3
holes. This means that no matter 7 or 8 roots , we can construct correspond-
ing Riemann Surface of genus 3.

1.2 The relationship of curve between algebraic struc-
ture and geometric structure.

We will use algebraic to compute the integrals and discuss the integrals later
for convenience. We already know the relation of algebraic and geometric

structure with f(z) = k1:[1(2 — 2;,) and how to create the Riemann Surface.

11



We give some examples to show that the curve in algebraic structure and its
corresponding in geometric structure.
We defined something as following:

1. The curve in sheet-I is solid line and the curve in sheet-II is dash line
in algebraic structure.

2. The curve in overhead Riemann Surface is solid line and the curve in
ventral Riemann Surface is dash line in geometric structure.

Example 3 r; is the curve from a point at (I,+) to (I,—) in sheet-I and ro
is the curve from a point at (I11,—) to (I1,+) in sheet-II.

algebraic structure geometric structure

e P e
\
\‘1
> - Pas

Figure 18. The figure for  Example 3.

Example 4 The curve r is start from point A in sheet-1 and cross the cut
to point B on sheet-11I.

12



algebraic structure geometric structure

-

4

\

e
\

Figure 14" The figure for Example /.

1.3 The a,b ¢ycles and its equivalent paths.

We know every closed curve on Riemann-Surface R, can be deformed into
an integral combination of the loop-cut a; and b;,7 = 1,2,.., k. So in this
paper , we williconsider the integrals of f(2) over a-cycles and b-cycles help
us to obtain the integrals easier.

Example 5 Suppose. f(z) = /(2 —0)(z—1)(z — 2)(z =3). Construct the
a-cycle , b-cycle and the corresponding geometric structure.

A
DreyvecdkeraNcycle
¢
—_ {
0l + 1
complex plane

Figure 15. a,b-cycles of f(z) = \/(z — 0)(z — 1)(z — 2)(z — 3) and the cut
plane.

Because f(z) has four roots , so we can construct two cuts and one a-
cycle and one b-cycle. Notice that in this example , the numbers of a-cycle

and the numbers of b-cycle are the same.

13



sheet-I sheet-II

Figure 16. Draw a,b-cycle in each sheet and then pull the cuts open.

sheet-]

sheet-II

Figure 17. Corresponding geometric structure and cycles.

Finally , we paste two sheets with open cuts and gained corresponding
geometric structure and cycles.

14



It is difficult to write out the parameters of curves sometimes. But the
straight lines are easy to write out their parameters for us. So using homo-
topic of curves to find the equivalent paths of curves could help us to obtain
the integrals over the curves easier and quicker.

Figure 18. Homotopic curves:

Because the curve C'is hometopic to the curve C; , we denotes C' = (.
We have fC ﬁdz = fC1 ﬁdz by Cauchy-Goursat theorem. In Figure 18 |
we see that C = 1 = Co = Cy3 =Ty UT,.

So we have

15



Lo = /c e

1
- / Gk

= 1 dz + !
B Iy f(2) I f(2)

We will use this method in the whole paper.

dz

1.4 Conclusion of Riemann Surface.

Although the result and statement we diseuss with above are all in horizontal
cut. But the method.which handleing other styles of cut is the same as in
horizontal cut.” We take w? = ¢(z — 2)(z = 23)(2 — z3) for an example ,
where 21, 29, 23 € € are distinet and ¢ is a constant. Because /¢ does not
influence the cutyy 80 we omit \/candlet f(2) = /(z — 21 )(z— 22)(z — 23) =
V(2 — 21)/ (2 = 22) /(2 = 23). Remembering when arg(z — z;) changes by
27, the factor /(2 = z;) will change the sign. In the figure 19 we label left
of cut with (+)-edge and.right of cut with (—)-edge.

sheet-l sheet-II
A

(ea)

-+ ~

. ' Y
T /'b

A _\H{‘; ,.:rf
— >

Figure 19. The cut-plane and a, b cycles in each sheets.

We construct the Riemann Surface in similar way before. Imageing both
two sheets are made of rubber , and pull cuts to be holes. We rotate the

16



sheets to let the holes face each other , and paste two cuts together where
(+)-edge of sheet-I with (—)-edge of sheet-II and (—)-edge of sheet-I with
(+)-edge of sheet-II. We will get the corresponding Riemann Surface Rj.
The a, b curves are corresponding to the meridian curve a and latitude curve
b on Rienann Surface R; , respectively.

sheet-I

sheet-II

Figure 20. Corresponding Riemann Surface.

2 The integrations of 1/f(z) over a,b cycles
for cuts on Riemann Surface.

When we known the geometric structure of Riemann Surface. It is usefull to
know the integration of a function on'Riemann Surface. Especially , the a,b
cycles for cuts on Riemann Surface.

2.1 The integrations of 1/f(z) over a,b cycles of the
Riemann Surface with horizontal cut-structure.

We will use Mathematica help us to obtain the values of integrations of
1/f(z) over a,b cycles. First, We discuss the values in sheet-I, sheet-II and
Mathematica for horizontal cuts.

In using polar form




Let 0, denotes € in sheet-I and 65 denotes 6 in sheet-II. Clearly that
0y = 01 + 27 , so we have

]_ 0o
(—)an = 17202
F(z)D

_ Z( 91-;2#)

where <ﬁ)|(1) denote the value of ﬁ withoz in sheet-I and (ﬁﬂ(ﬂ)

denote the value of ﬁ with 2'in sheet-11. Because the difference of argument
between z in sheet-I.and in sheet-1Iis 2mys0 the difference between (ﬁ)k I

and (ﬁ”(ll) is (—7)< Hence,

1 1
(m)’(n) = (—1)(m)|(1)

Now we discuss the difference over sheet-1 in theory and in Mathematica.

First , we consider v/—1. See Figure 21 , in theory we know that /—1 =
—1 by the definition of argument in sheet-I. But in Mathematica , when we
compute v/—1 , we will obtain /—1 Math 5 Actually., we found that re®
where € (—, 7] in Mathematica. This means for any other @ of e which
does not belong to (—m, 7], Mathematica will converse 7' into re®” where
0* € (—m, m] and re = rei?".
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Figure 21._ Domain and range of square function in Theory and in
Mathematica.

Compare the value of (1/f(z)) with zin Sheet-I and in Mathematica , we
discover that

Lemma 6 If (1/f(z)) = [kﬁl(z — 22 =(Fe9) " 2 in sheet-I for horizontal
cut , then

(fl )‘Mathematica ’ Zf@ S (—71',71')

()l =
f(Z) 0= (_ )(ﬁ”Mathematica 3 Zfe = —T

—~
I
~

Proof. Since (—m) does not in (—m, 7| , then Mathematica will converse
re’=™) into re'™ and re'™) = rei™. We compute (1/f(2)) in theory and in
Mathematica.

1
In theory : —r = pret=m v (reil w))fé _ b
1
In Mathematica : —r = rei—™ Mah i /5 (Te”)_% Mah. (—l)ir_%

Hence , (1/f(2)|n =" (=1)(1/f(2)) | Mathematica where § = —7. m
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In this whole paper , (1/f(2)) Math. (—=1)(1/f(2)) denotes the function

(1/f(2)) in front of M2t 55 the value of (1/f(2)) in theory and the function
Mat

(1/f(z)) behind the 4" i3 the value of (1/f(2)) in Mathematica. After we
known the state above, we must modify the computation when we want to
use Mathematica to calculate the value. Take examples to explain.

Example 7 Evaluate | ﬁdz where f(2) = /(2 —1)(z —2)(z—3),z €R
and v = r1 Uy where r1 is the path on a horizontal cut from 2 to 3 with
(4)-edge of sheet-I and ro is the path on a horizontal cut from 3 to 2 with
(—)-edge of sheet-1.

A

Figure 22. Cuts in complex plane of f(2) = \/(z = 1)(z—2)(z — 3) .

Solution 8 Since [(z) =\/(z =1)(z=2)(z=3)= vz - 13/ —2y/z—3
1. If z€ry :

(1) In theory :

1 1
=1 > 0= ——=z—1|:
= NZE [z =1
1 1
z2—2 > 0= = |z —2|72
2 0=k
. 1 1 1
z2—3 < 0=22z-3=2—-3le"" = —— = |2 — 3| 2e'2 =i|z — 3|72
we have
Lz [t o 3
——dz =1 z— z— z— z
rlf(z) 2

20



(2) In Mathematica :

1 1
z2—=1 > 0= ——==2z—-1]"2
— = l# 1
1
z—2 > 0= =]z —2|2

we have

1 2 1 1 1
—dz:—i/ |z —1|72|z — 2| 72|z — 3| 2dz
B R RIEE R

T2

(2) In Mathematica :

1 1
pe1 > 0= ——— = |2 — 1|2
— | |
1
z2—2 > 0= =|z—2|"2
z— 2

z2—3 < 0=2-3=|z-3" =

21

Vz—3

=|z— 3|_%e_

—1

jus
2

;T
L)

= —ilz — 3|_%

= —ilz — 3|_%



we have

1 2 1 1 1
dz:—i/ |z —1|72|z — 2| 2|z — 3| 2dz
T2 f(Z) 3

Compare (1) and (2) , the value is the same.

By 1,2 we have

1 g = 2if23|z—1|_% \2—2\_% |z—3|_% dz in sheet-I .
J T = . .
0 in Mathematica .
| 0.45.24412¢  in sheet-1..
10 in- Mathematica »

Clearly, there is a.mistake when § = —7. When we use Mathematica to
get the value of intégration we warit ; we need modify some range where the
value will wrong. Determine the difference of sign( f) (same or negative) and
then modify the.computation-of Mathematica to get right: value. Because
sometimes the form of integration. is complex , if we could simplify the way
about modify the difference of sign(f) ; it-will help us to get right value
easier.

Example 9 Same f(z) as the example before ;| using Lemma in this section
to modify.

Solution 10 .
1. Ifz€r;,z:2—3

1 a 1
z—1 > 0=arg(z—1)=0= Math.

z—1 z—1

1 a 1
z2—2 > 0=arg(z—2)=0= Math-

z—2 z—2

1 a 1
z2—=3 < 0= arg(z—3)=—-m= Math. _

z—=3 z—=3

we have

! dzMith'—/3 ! ! ! dz
n )T e Ve—TVe—2v2-3
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2. Ifz€ry,z:3—2

z—1 > 0= arg(z—1)=0=

1 1
vVz—1 vVz—1
1 wmath. 1
z—2 > 0= arg(z—2)=0= =
- g( ) Vz—2 Vz—2
1 1

z2—3 < 0=arg(z—3)=71= Math

we have

L Math./2 1 1 e
-z = Z
rgf(z) 3 \/z—l\/z—Z\/z—B

By 1,2 we have

/ L, Math 2/3 ! 1 L i 005244120
= — = U. . 1
- f(2) 9 Vz=1y/z—2\/2—3

Example 11 Evaluate | ﬁdz over a;-, G, and as cycles where f(z) =

ViE+4)(z+2)(z =2)(z— (2 — 5)(z — 7)(z — 8)4 Weanalysis the integral
in Mathematica and in theory to compare the result and using the result of

angle to modify the computation torgetwalue.-Let z1 =8 , 20 =T , 23 =5,
2'4:472’5:2726:—2727:—4.

ds
& . =0 oide
4 _9 + »
1]
£7 £ 3

Figure 23. a-cycles and their equivalent path a*.

Solution 12 The detail is in appendiz. And we just only give numerical
solution here.



1
2)

()
()

Example 13 FEuvaluate [ ﬁdz over by , by and bs cycles where f(z) =
VE+4)(z+2)(z—2)(z —4)(z —5)(z — 7)(z2 — 8). We analysis the inte-
gral in Mathematica and in theory to compare the result and using the result

of angle to modify the computation to get value. Let zy =8 , 20 =T , 23 =5
,2424,25:2,26:—2,217:—4.

dz M4 0. 4 0.0890282i

=

dz M4 0. 4 0.1832730i

‘ -

dz M40, 4 0.1115720i

S—
kHrﬂ

w
~

Figure 2/.by by andbs cycles.

Solution 14 The detail 1s in appendiz. And we gust only give numerical
solution here.

1
/—dz o '0.4132335
b1

f(2)
1 a
/ —dz Math- ) 2196815
b (Z
1 a
dz M4 0.0372385
b3 f(Z)

2.2 The integrations of 1/f(z) over a,b cycles of the
Riemann Surface with vertical cut-structure.

After knowing the integrations in horizontal cut , we will discuss the integra-
tions for vertical cuts. In this case , we define that
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re,0 € [—32, %) iff z in sheet-I
Z — Zp = i0 T T . .
re’,0 € [3,%) iff z in sheet-II

the cut in each sheet has two edges , label the starting edge with (+)-edge
and the terminal edge with (—)-edge and zj is the end point of the vertical
cut.

First , we will analysis the value of 1/f(z) on sheet-I and sheet-II in
theory.

Second , we will discuss the difference between the value of 1/f(z) in
theory and in Mathematica and find out how to modify the computation.

1. Analysis the value of .1/f(z) on sheet-I and. sheet-1I in theory :

For a simple case f(2) = /= , by the figure below , we know that

e) 7= |z| eswhere 0 € [— 32 ) viedz = 2] %€ sheet-]
= |z|.c® where -3, 2T) | ie. 2z =\|z| ¢ € sheet-1I

1 e
Z = |z|2e>
,then{ Ve JHEEs

— F

- y

z \se T

2 2

£ > 5 -
/
’

sheet-1II 4

Figure 25. Case of f(z) = /.

G
wa | 1VE= RS,
1/\/_ |Z| 26 i)a_
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1.
x| = B
_?,/' £
e < -
<
b
sheet—1I |
F 3
o i N
T ¥4 v 5,
E.-" . N
- - B
sheet=II

Figure 26. Case of f(2) =1/\/=.

For the general case , suppose f(z) = kll(z —2r)
n .
11 (z — z;) = re', 0, € [, ) in sheet-I
, then ¢ *.1 ‘
klill(z — z) = e, 05 € [Z,%F) in sheet-II

From the idea of definition , re"t = re™2 and 6, = 3+ 27 , we have

1 1 0o
( )an €=Ntee—2)
flz)10
= ot B
_ -1 1

. Discuss the difference between the value of 1/f(z) in theory and in
Mathematica and find out how to modify the computation :

In the Figure below , we see the value of f(z) = y/z in sheet-I and the

value of f(z) = /z in Mathematica. So we need to modify the compu-

tation in Mathematica such that the numerical result of Mathematica
3

is identical to the numerical result of theory when 6 € [—=F, —].
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‘ e
' \ y
,—"'_\> Math epatica

h J
ral=
;fir
I3
k

3n
4

theory

I8
2

sheet-I
Figure 27. The value of f(z) = /z in sheet-I and in Mathematica.

Lemma 15 When z in sheet-I for vertical cut-whose one of the end points
18 2 , we have

_ 1 ety (- BEESE Urae(E SEE [SET]
N ZI_Zk ifrarg(z — z.) £(—, %)

Proof. Let z in sheet-I and using polar formz—z, = re?’. When 0 € (—m, )
, the argumentan theory or Mathematica is the same. When 6 € [—37”, —]

, Mathematica will conversion 0-€ [<25 —x| into 0 + 27 €5, 7] and re =

7061’(9—‘,—27r) — T€i9+i(27r) ; but

1

In theory : (2 — 2,)"2 = (T6i6)~% LD i)
In Mathematica :/ (z— Zk)_% - (T6i6+i(27r))—% _ (—1)7“_%@“—3)

So if 0 € [—37”, —m] , we have

As same as horizontal cut , we first discuss the difference of values of
1/f(z) between sheet-I and sheet-IT in theory. And discuss the value of
1/f(z) in theory and in Mathematica , compare their sign(f) is different
or not? Using statement before and modify to get the value. The result is
similar to horizontal cut.
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Example 16 FEvaluate the integrals of 1/ f(z) over ay cycle for vertical cut

where f(z) = +/(z —1)(z — 2i)(z — 3i)(z — 5i)(z — 6i)(z — 8i).

Figure 28. path a_and.dts equivalent path a*.

Solution 17 In_the Figure 25: , we know that aj s an equivalent path for
a; and ai is the path along vertical cut from 2i to i‘on (+)-edge of sheet-I
(called a3y ) and then back.from i to 2i on (—)-edgesof sheet-I (called a3,). So
we compute faI %dz.

1. a3, : Let z=1m1 where 1 : 2 <51 and dz = idr

(1) Analysis in theory :

Since z — ki = |z — ki| e'28E=k) 50 we consider arg(z — ki).

. 3 1 3
arg(z=1) = —gr=enlZ=) =7
1 1
arg(z — ki) = —éﬂiarg(m):z,k—2,3,5,6,8

we have
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‘ -

= (T e — ki) (eE)

f(2) k=1,k#4,7
8 1
_ _ LT3 27
S R
Il ki 2
— — 2
(k=1,k7&4,7|2 i)
= R

(2) Analysis in Mathematica (no matter in which sheet) :

Since z — ki = |z — ki| e?*8=k) 50 we consider arg(z — ki).

Compare with (1) and (2) we find that when we want to obtain true
value, the value which we have from Mathematica should multiply (—1)

s t.e. sign(f(z)|n) = (—=1)sign(f(2)|mathematica)-

(8) Using the Lemma 15 to modify :

. 3 1 Math. 1
arg(z —i) = 5T = T (1) p—
1 1 ath. 1
arg(z — ki) = —gm= Z_Z_Mz”’ m,k:2,3,5,6,8

we have
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The same result as above difference between in theory and in Math-
ematica , the difference is a minus sign.

1 math. 1
T

2. aly : Let z=ri wherer:1— 2 and dz = idr

(1) Analysis in theory :
Since z — ki = |z — ki| ¢8| 50 we consider arg(z — ki).

(2) Analysis in Mathematica (no matter in which sheet) :
Since z — ki = |z — ki| /8= 50 we consider arg(z — ki).

1 1
arg(z —i) = §7r:>arg( z—i):_%
1 1
arg(z — ki) = —=m = arg( ')=E,k=2,3,5,6,8
2 Vz—Fki
we have
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‘ ~

= (L, Je— kil e )Ry

f(z) k=1k44,7
8 1
= (L ekl
il ki~
= J— 2 —_
(L, 1= kil 5)(-1)
= —R

Compare with (1) and (2) we find the value is same.

(3) Using the Lemma 1

we na

1 1
= )i L ie™

1 8 L
_ _2/( M |ri— ki $)idr
2

k=1k£4,7
= 0.—0.531987¢

Example 18 Fuvaluate the integrals of 1/ f(z) over a,b cycles for vertical cut
where f(z) = +/(z —1)(z — 2i)(z — 3i) (2 — 57)(z — 6i)(z — 8i).

Solution 19 The detail is in appendiz.
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We can integrate 1/f(z) over a,b cycles of the Riemann Surface with
horizontal cut-structure and with vertical cut-structure. We give some more
examples here , and the solution could see in appendix.

Example 20 Compute the integrals of 1/ f(z) over every cycles in the Figure
below where

F(2) = V(2 = 2)(z — 2)(z — 23)(2 — 2a) (2 — 25) (2 — %) (2 — 21)(% — 2)

forzy = =2 —d,29=-2+4,23=—1—4,24=—1+1,25 =0+ 01,25 =
0+Z,Z7:1+Z,28:1+2Z

4 A
i " 73
b, b,
> AN _Za
i, : i N o i Pcfend _Eﬁ
f Za /1-_'_.-"" 7 8 77
Fi S !
i L

Figure 30. Cycle by and equivalent path b3.
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Z2 I_ fa |76
+
|-

Figure 31. Cycle by and equivalent path bj.

2.3 The integrations of the Sine-Gordon Equation over
a,b cycles.

Now we want to compute the-integral

1
/ du
w2 o4 ub o 410 wl2
\/(—1)T + 12~ 360t

20160 1814400 + 239500800 2k

over a, b cycles.
Let k =1, and-compute the roots of the equation
W2oout ub ud w10 w2
)= 4 = - L = 2k =0
(=1) 1 + 12 360 4 20160 ~1814400 ' 239500800 +

We have the roots of the equation

U2 u4 U6 u8 ulO U12
)=+ = - = _ 2=0
(DT + 175~ 360 * 20160 ~ 1814400 T 239500800
are similar to Z; = —6.58948 + 5.23118; , Zy = —6.58948 — 5.23118;
73 = —6.31381+ 1.46139i , Z, — —6.31381 — 1.46139i , Zs — —4.68652+0.0i
 Zs = —1.57080 + 0.0 , Zr = 1.57080 + 0.0i , Zs = 4.68652 + 0.0i , Zo =
6.31381 -+ 1.46139i , Zyo = 6.31381 — 146139 , Z1, — 6.58048 + 5.23118i ,
Z1y — 6.58048 — 5.23118;.

So we draw the roots and its cuts in the Firure 32 below
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73 2 73
| s Z6 Z?I Zs |
-Tl:' F -_‘: -4 -3 -2 1 1 ]I 3 4 5 5| 7
Za -1 i L]
gl
Zz Z12
Figure 32. Z; 12} and its cuts.
First , we will ‘e e t , a3, 4y, a; cycles
in the Figure 33 'm/r W W
f(z) = '
and Z1 = 0 ). Lo ) 5.23118i N Z3 =
—6.31381 + 1.46 ) —4.68652 + 0.0
, Zg = —1.57080 ' . : 4.68652 + 0.0¢
Zg = 6.31381+1.46139: : 711 = 6.58948+-5.23118¢
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Figure 33. a1, aq, as, a4, a5 cycles and its equivalent path aj, a3, a3, aj, a;.

We will just write solution here , and the calculation is putted in appendix.
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/ 1 dz = 9.52646 x 107 + 0.000197837i
o f(2)
1
/ dz = 2.31913 x 107" — 0.000472233;
a f(2)
1
/ ——dz = —2.23575 x 107 + 0.000472233:
as f(2)
1
/ —dz = 9.52151 x 107'® —0.000197837i
a f(2)
1
——dz = —1.54107 x 1077 + 0.000262034:
o f(2)

Second , we will compute the integral of 1/f(z) over by, b, bs, by, b5 cycles
in the Figure 34 below where

12
1) = TYAZ— )
and Z; = =6.58948 + 5.23118; , Zo= —6.58948 — 5.23118; , Z3 =
—6.31381 + 1.46139: , Z, = —6.31381 — 1.46139: , Z5 = —4.68652 + 0.0
, Zg = —1.57080 + 0.0 5 Zz = -1.57080 4+ 0.0z , Zg' =.4.68652 + 0.07 ,

Zg = 6.31381+1.46139: , Z19 = 6.31381 —1.461392 , Z14 = 6:58948+5.23118:
, Z12 = 6.58948 —5.231184.

il
44
________________________ D e ST L
-------------------- A mmmm el e ee g
':.':__::::::::: """""" -d-----------------------:
1 bz 1 1 2 b3+ 4 5 &
T b4
b1 *
I\ 1 b5
-
— 713

Figure 34. by, by, b3, bs, b5 cycles.
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Similarly , we will just write solution here , and the calculation is putted
in appendix.

/Ldz = —0.0000106043 — 0.00007647217
b1 f(2)

1
/—dz = 0.00025277 + 0.0000169501¢
bo f(2)
/Ldz = —0.000226449 +- 0.00001695017
bs f(2)

1
/—dz = 0.0000523241 + 0.000115868&:
ba f(2)

1

——dz =

bs f(2)

The integrations of the equation over a,b cycles above are all numerical
approximation. Can we get exact solution of the Sine-Gordon equation? We
need more tools‘in Mathematics.

3 The Elliptic functions ; the Theta functions
, and the Jacobian Elliptic functions.

When we handle the problem before. It is useful for'us to know about the
Elliptic functions , the Theta functions and the Jacobian Elliptic functions.

3.1 The Elliptic Functions.

Definition 21 A function f(z) is called a doubly-periodic function of z with
periods 2w , 2ws , if function f(z2) satisfies the equations below for all values
of z for which f(z) exists.

{ f(z+2wr) = f(2)
f(z+2wy) = f(2)

Where wy , we are any two numbers (complex or real) whose ratio is not
purely real.

Definition 22 A doubly-periodic function which is analytic (except at poles)
, and which has no singularities other than poles in the finite part of the plane
, 18 called an elliptic function.

37



In mathematics , a singularity is in general a point at which a given
mathematical object is not defined , or a point of an exceptional set where
it fails to be well-behaved in some particular way , such as differentiability.

Remark 23 Suppose f is a complex differentiable function defined on some
neighborhood N, around point p , excluding point p i.e. N, —{p} , where N,
is an open subset of the complex numbers C , and the point p is an element
of N,. There are four classes of singularities in complex analysis.

1. Isolated singularities : Suppose the function f is not defined at p ,
although it does have values defined on N, — {p}.

(1)

(2)

(3)

The point p is a remowable singularity of f if there exists a holo-
morphic function g defined on all of Ny such that f(z) = g(z) for
all z in N, < {p}. The function g is.a continuous replacement for
the function f:

The point p'is a pole-or non-essential singularity of f if there exists
a holomorphic function g-defined on N, and a natural number n

such'that f(z)= (Zg_(;)n for all z in' N, — {p}." The derivative at a

non-essential singularity may or may not exist. If g(p) is nonzero
, then-we say that p is a pole-of order n.

The point p is an essential singularity of f if is neither a removable
singularity nor a pole. The point p-is an essential singularity if and
only if the Laurent series has infinitely many powers of negative
degree.

2. Branch points are generally the result-of a multi-valued function, such

as

z or log(z) being defined within o certain limited domain so that

the function can be made single-valued within the domain. The cut

5 a

line or curve excluded from the domain to introduce a technical

separation between discontinuous values of the function. When the cut
s genuinely required , the function will have distinctly different values
on each side of the branch cut. The location and shape of most of the
branch cut is usually a matter of choice , with perhaps only one point
(like z = 0 forlog(z)) which is fixed in place.

Definition 24 A period-parallelogram is called a cell if there are none of the
poles of the integrands considered on the sides of the parallelogram.

Definition 25 A set is called an irreducible set if it is a set of poles ( or
zeros ) of an elliptic function in any given cell.
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Remember that all other poles ( or zeros ) of the elliptic function outside
the irreducible set are congruent to one or other of them.
There are some simple properties of elliptic functions.

1. The number of poles of an elliptic function in any cell is finite.

Proof. Suppose that the number of poles of an elliptic function f(z)
in some cell is not finite , then the poles must have a limit point p.
Clearly , this point p is a singularity but not a pole. So by definition of
elliptic function , the function f(z) is not an elliptic function. (—+«)
|

2. The number of zeros of an elliptic function in any cell is finite.

Proof. Suppose the number of zeros of an elliptic function f(z) in
some cell is not finite | then 1/f(z) issan elliptic function which have
infinite poles in‘this ¢ell. But this is a contradiction by elliptic function
simple property 1. m

3. The sum of the residues-of an elliptic function , f(z):, at its poles in
any cell is'zero.

Proof. Suppose the corners of thecellare ¢, t+2w, t+2w1+2w-, t+2ws.
Let C beithe contour formed by the edges of the cell."The sum of the
residues of f(2) at its poles inside C'is

1 1 t+2w1 t+2w1+2wa t+2wo t
— | f(2)dz = =— {/ +/ +/ +/ }f(z)dz
27T2 C 271—7’ t t+2wq t+2w1+2w2 t+2wo

Let x = z — 2w, , then dz = dx |, thus

1 t+2w1+2wa 1 t+2wo

— dz = — 2w1)d
i |, G = [ T2

1 t+2ws

= 2
2mi |, flz+2wq)dz

1 t+2wo

= — f(z)dz

2w J,

Let y = 2 — 2w, , then dz = dy , thus
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1 t+2wo 1 t

— f(2)dz = — J(y + 2ws)dy
2mi t4+2w1 +2wo () 2mi t+2w1 ( 2>
1 t
= 2ws)d
27 oo f(z 4 2wq)dz
1 t
= 5= f(z)dz
27TZ t+2w1
So we have
1 1 t+2w1 t+2wo t t
— | f(z)dz = —{/ +/ +/ +/ }f(z)dz
2mi /C 2mi | Jy ¢ 420, t+2ws
=0
]

4. (Liouville’s Theorem) An elliptic function , f(z) , with no poles in a
cell is merely a constant.

Proof. Suppose f(z) hasmno poles inside the cell. - f(z) is analytic
inside and on'the boundary of the cell.-.. f(z)/is bounded inside and
on the boundary of the cell. ."there exists a number K € R such that
|f(2)| < K when 'z is inside or on the boundary of the cell. - f(z) is
a doubly-periodic function and f(2) is-analytic and |f(z)| < K for all
values of z. .. f(z) is a constant. m

Let f(z) be an elliptic function and C' be any cell with corners ¢,t +
2wy, t + 2wy + 2ws,t + 2wy and a be any constant. Because the difference
between the number of zeros of f(z) — a and the number of poles of f(z) —a
which lie in the cell C' is

1 !
L,
210 Jo f(2) —a
When we try to compute its value. Since f(z) is an elliptic function ,

thus f'(z 4 2wy) = f'(z + 2wq) = f'(2).
Let x = 2z — 2w, , then dz = dx , so we have
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1 t4+2w1+2w2 f/(Z) 1 /t+2w2 f/($ + 20.)1)

— Sy = —

270 00, f(z) —a 2mi J f(z+2w) —a
1 1+2w2 f/(Z 4 Zwl)

2mi J, f(z+2wi) —a

1 t+2wo fI(Z)

= — ————dz
2mi J, f(z)—a
Let y = 2z — 2w, , then dz = dy , so we have
Lo ) 1 2)

dz =

2_71'i t2w1 f(y + 2(,(}2) —a
1 e+ 2w)
270 Sy 9y [ (2 F 2w2) — a

T A (3)
| =2 tr2wi (2) _adz

270 S 490, +2ws f(z) —a

Hence , we have

1 /
1 / 1)
21 Jo f(2)—=a
Therefore the number of zeros of f(2)= aisequal to the number of poles
of f(z) —a. Because any pole of f(z)—a is also a pole of f(z) and conversely.

Hence the number of zeres of f(z) — a is equalto the number of poles of f(z)
, which is independent of a. So we-have the following definition.

Definition 26 The order of an elliptic function f(z) is the number n of
roots of the equation

f(z)=a

which lie in any cell depends only on f(z) , but not on a. And this number
n is also equal to the number of poles of f(z) in the cell.

Remark 27 The order of an elliptic function is never less than 2.

Proof. Suppose an elliptic function f(z) of order 1 would have a single
irreducible pole ; and if this point actually were a pole ( and not an ordinary
point ) the residue there would not be zero , which is contrary to the simple
property 3 of elliptic functions. m
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Remark 28 The simplest elliptic functions are those of order 2. There are
two classes of such functions :

1. Function have a single irreducible double pole with residue is 0.

2. Function have two simple poles with the residues are numerically equal
but opposite in sign.

Lemma 29 The sum of the affixes of the zeros minus the sum of the affizes
of the poles is a period.

Proof. With the notation previously employed. Because the difference be-
tween the sums of the zeros and the sums of the poles is

1 z2f'(z) L ez (z) (2 H2w2) (2 + 2ws)
2w Jo 1 T I { /(2) 1@ 4 2w2) }dz
/48 2w (2 F(2) (2 H20f' (2 + 2w1) s
27t /t { f(2) et 2w1) } !

1 t42wq f’(z) t42w2 f’(z)
1wt e ol

i % [ 2uw, [log F(AFF21] + 21 [log £(2)|22]}
\ {—2w2 [log M] + 24 llog M] }

o 0 1
4 ZLm {_zwg {log %} 2w [log %] }

_ % {205 [log (L) 426, [log(1)]}

on making use of the substitutions used in simple property 3 of elliptic
functions and of the periodic properties of f(z) and f'(z).

e = cos(2km) + i sin(2kn)
=1

log(1) = log(e*™)

= 2kmi
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for allk € Z. Thus ,

zf'(2) 1
5 e dz = 2—7”_{—2@02 [log(1)] + 2w [log(1)]}

1
= 5 {—2wy(—2nmi) 4+ 2wy (2mmi)}

= 2mw;i + 2nwq

where m,n € Z. M

3.2 Weierstrass Elliptic function.

After knowing some basicproperties of elliptic function. We will introduce
the Weierstrass elliptic function.

Definition 30 The Weierstrass-elliptic function o(z) is defined by the equa-
tion

== ) DRy Pl
(z — 2mw1 <2nwy)? (2mwy + 2nws)?

The summation extends over all integer values ( positive , negative , and
zero ) of m and n. but simultaneous zero values of m and n excepted.

Throughout this paper we will use the notation » " to denote a summation
m,n

over all integer values of mn and n'; and tsing >’ when the term for which
m,n
m = n = 0 has to be omitted from the summation. Sometimes , for brevity

, we write (2,,, ,, in place of 2mw; + 2nw, , so that

1 1 1
p(2> - ; + Z { Z — 2mwy — 2”&)2)2 B (2mw1 + 2TLCU2)2}

= 72_'_2 { an}

Remark 31 When m,n such that |Q,,.,| is large , the general terms of the
series defining ©(z) is O(|Qmnl™2). Hence o(z) converges absolutely and
uniformly.
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Remark 32 p(z) is analytic except the poles , namely the points Q. and
the points €, are all double poles.

We now proceed to discuss properties of p(z) and properties of ¢'(z).

1. Periodicity and other properties of p(z).

Since p(z) is a uniformly convergent series of analytic functions , term-
by-term differentiation is legitimate , hence

J(2) = ol2)

Since the'set of points —(2,,, is the same as the set'(2,,, , and the
series for ©/(2) being absolutely convergent. The derangement of the
terms does not affect its sum , thus

o) D o

Hence the function ¢/(z) is an odd function of z.

In similar manner , the series for p(z) being absolutely convergent. The
derangement of the terms does not affect its sum , thus
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Hence the function p(z) i8 an even function of .

In similar manner", the series for ©'(%z). being.absolutely convergent.
The derangement. of the terms does not affect it sum , thus

1
! 2 = =2
@(Z-i— wl) ;(Z_Qm,n+2wl)3

1
= =2
; (2= 2mw; =~ 2nws + 2wy)?

1
1 _22 (z=2(m=1)w; # 2nw»)>

Hence the function '(z) has the period 2w; , in similar manner the
function @'(z) has the period 2ws.

Since g'(2) is analytic except at its poles , and ©'(z) is a doubly-periodic
function. Hence ¢'(z) is an elliptic function.

If we integrate the equation ¢'(z + 2w;) = ©'(z) , we get

o(z+2w) =pz)+ K
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where K is a constant. Putting z = —w; into the equation p(z+2w;) =
o(z) + K , we have

p(—w1 +2w1) = p(—w1) + K

Since p(z) is an even function , we have

plw)) = p(-w)+ K
= pw) + K

o K = 0, this'shows that p(z 4+ 2w;)"= @(z). In similar manner
o(z + 2wy) = 0(z). Since p(z) is-a _doubly-periodic function , and
©(z) has no‘singularities-but poles , it follows that ©(z) is an elliptic
function.

We give the following table as conclusion.

Function| Definition Periods | Parity | Poles

o(2) Z% + Z’{(Z_lem)2 ' (lem)z} 2wy, 2wy [ even | Q.

©'(2) R 21,205 | 0dd | QU
m,n p

. The differential‘equation satisfied by @(z).
Let f(z) = p(z) & 272 =3 {la="n) 2 — 0,2, } is analytic in

a region of which the origin ‘is an internal point , and it is an even
function of z. By Taylor’s theorem , we have
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> f(k)
f(Z) _ Zf (O)zk

!
—~ k!

2 ®3) (4)
= f(0)+f'(0)z+ f 2!(0)22+ fz!(o)z?’—l— f44!(0)z4+.“

= > 2 P et Z'—{G(_Q;”’”)_4}z2

B LT ) T P

24

When we compute f(z) + f(—z) , we have
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2f(z) = f(z)+ f(—2)
= > {2(-Qun) P2+ > {3(— Q) '} A

TR e ) PR S T e I
3 2= Q) P+ S {B(=Qu) 1) 2
+Z/ {+4(—Qp0) 7} 22 + Z/ {5(=Qumn) 02t + -

= 2 {Z’ {3(—Qm,n)—4} 22 4 Z' {5(—Qm,n)_6} A }

So we have p(2) — 272 =55092% + 55 g32* + O(2°) for sufficiently small

values of |z| where

/ /
92 =60 ()t gs =140 (R,,,) "

and

1 1
o(z) = 272 4 %9222 + %9324 + O(z6)

differentiating the equation , we have

1 1
©o(z) = —2,73 4 1—0922 + ?9323 + 0(25)

Cubing p(z) and squaring ¢’'(2) respectively , we have

3 3
(p(2))° = 2%+ =gz ? 4+ —g3+ O(z?)

20 28
_ 2 B 4
(9'(2))? = 427°— =927 2 - =95 + 0(2%)
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Hence

(¢'(2))* = 4(p(2))" = —g22~" — g3 + O(2")

and so

(¢/(2))* = 4(p(2))° + g2(2) + g5 = O(2?)

. the function (p'(2))? —4(p(2))*+ g29(2) + g3 is analytic at the origin.
Since the function (p'(2))*—4(p(2))*+g20(2)+gs is an elliptic function ,
so it is also analytic at all congruent points.about the origin point. Since
such points are theonly possible singularities 4 so the function (p'(z))%—
4(p(2))?+gop(2)+g3is an elliptic function with ne singularities. Hence
(0'(2))* — 4(9(2))* + g20(2) + g3 i8 @ constant by the simple property
4 of elliptic.functions.-And we can make z — 0 to gain the differential
equation

(¢’ (@) = 4p(2))* = g20(2) = g3

Hence thefunction p(2) satisfies the differential equation

(y')? = 49° = g2/ = g3

where

/ /
g2 = 602 (Qm,n)_4ag3 = 1402 (Qm,n)_ﬁ

Conversely , if numbers w;,ws can be determined such that

g2 = 603 (Uunn) ', 95 = 1403 (D)

then the general solution of the differential equation (;l_z)z = 41% — goy —
g3 18
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y = p(+z+ )

where « is the constant of integration. Since p(z) is an even function
of z , we can write y = p(z + «) without loss of generality.

. The integral formula for p(z).

When we consider the equation

z = / (4t° — got — gg)_%dt
¢
where the path of integration may be any curve which does not pass

through a zero ‘of 4t3 — got — gs.

By The Fundamental Theorem Of Calculus , when we differentiate the
equation

z = / (4% — got — gg)_%dt
¢

we get the equation

d
&y = 18 Pps
and so
(=pz+a)

where o is a constant. Since z = fcoo(4t3—92t—gg)_%dt — 0as ( — oo.
So « is a pole of the function p(z) i.e. « is of the form €2,,,, , thus

¢ = p(z+a)
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So the equation z = [ COO (443 — got — gg)_%dt is called the integral formula
for p(z) , and it is sometimes written as

z = / (4t* — got — gg)_%dt
o(2)

. The addition-theorem for the function p(z).

We want to express p(z + y) as an algrbraic function of p(z) and p(y)
for general values of z and y. Consider the equations

¢'(2) = Ap(z) + Bop/(y)=-Ap(y)+ B

which determine A'and B in terms of 2 and y unléss p(z) = p(y) , i.e.
unless z = £y(mod 2wy, 2ws ). Since

1 / 1 1 / 1 _
p(z) = §+; {(z O y (an)z} P (2) = —Zmzm (2 — Qo)?

, so the function

o' (z) — Aplz) = B

has a triple pole at = 0 and'it ‘has three , and only three , irreducible
zero.( the number of roots of f(z) is equal to the number of poles of

f(2)).
Since the sum of the zeros minus the sum of the poles is a period.

So if v = z,x = y are two zeros , the third irreducible zero must be
congruent to —z —y , i.e. —z —y is a zero of ¢'(z) — Ap(z) — B. Thus

O (—2z—y)=Ap(—2—y)+ B

Eliminating A and B from the equations
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we have
o(2) ¢'(2)
oY) o' (y)
p(z+y) —@(2+y

Remark 33 lowing eq ) 101 of the addition-

This equatio 2 4 g ) ms of functions of z

/ / 2
Taking the limiting form of the equation p(z + y) = {%} -

©(2) — p(y) when y approaches z , we have

— limp(y)

Yy—z

o' (2) — @’(y)} ~ ol2)

i 1 im
pmelz ) =4 { o)~ o)

Yy—z 4 Yy—=z

If 2z is not a period , we have
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o) = (SN -
- {Z5E) e
- {5y o

We want
unequal
equation

' (w1)

and so

9'(w1) =0

3) = eg are all
he roots of the
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Similarly ,

' (w2) = p'(w3) =0

This means that ¢'(z) has three zeros. Since ¢'(z) = —2) m

is an elliptic function whose only singularities are triple poles at
points congruent to the origin. Therefore that ¢'(z) has three
, and only three irreducible zeros which are points congruent to
W1, Wy, W3-

Since ¢'(z) has three irreducible zeros , thus p(z) has only two
irreducible poles. Clearly , o(w;)—.e; = e; —e; = 0. It follows
that the only zero of p(2z)=-eyis a double zero at point congruent
to wy. Similarly ;the only zeros of p(z) = ea, p(2) — e are double
zeros at points congruent to ws;ws respectively.

Suppose €1 = ey--then p(2) —.e; has zero at wy which is a point
not congruent to-wy.~ Thus , e; # ex Similarly , es # e3 and
es # e1. Hence ej # é; # es.

Clearly (p'(2))* = 49°(2) — go(2) — g3 , By (1)5we have

49%(w1) —~@p(@1) = g5 = (@)’ ~0
A6° (W), = gag(wa) = g5 "=/ (w2))*/= 0
49°(@s) —gop(ws) —gs = (9l@s))” =0

This is to say , by (2) , (3) ei,€s, €3 are the roots of the equation

4?J3—92y—93:0

Use the formula connecting roots of equations with their coeffi-
cients , we have

€1 +ey+e3 = 0

1

e9€3 + €3e1 +e1ea = —192
1

€1€2€63 = 193

o4



7. The addition of a half-period to the argument of p(z).

/ / 2
The form of the addition-theorem is p(z+y) = & {%} —p(z)—

o(y) , let y = w; , we have

BGOSR
ol +en) = T {ZETEEL o) — g

Since [p'(2)]* = 490°(2) — g20(2) — g3 = 4[p(2) — e1][p(2) — e2][(2) — €3]
and e; + ey +e3 =0 and p'(wy) = p’(wg) = ¢'(w3) =0, we have

p(z +wr) =

= —p(z)—e
p(2:) — e p( ) 1
e —(er+ eat e3)@(2) + esez + é1(—eq — e3) + €2
r p(z) — &1
\ &\ (61— ea) (1 €3)
p(z) — el

Using similar method , we have

(62 — €3 (62 - 61)

)
p(2) —
)
)

p(z4+ws) = e+

(63 — € (63 - 62)
p(z) —e3

p(z4+w3) = es+

We collect the addition of a half-period to the argument of p(z) as
following
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— e (e1 —e2)(e1 — e3)
K)(Z + w1) = e+ p(z) e

— . (e2 —e3)(e2 — 1)
et = et T e

— (e3 —e1)(es — ea)
p(z4+w3) = es+ o02) — 63

Afetr we introduce some properties about the Weierstrass elliptic func-
tion , we will introduce the Jacobian elliptic function. The Weierstrass
elliptic function p(z) is one of the simplest example for the elliptic
function with single double pole.

3.3 Jacobian/Elliptic Functions:

We will first discuss the Theta-functions before discussing the Jacobian el-
liptic functions.

Definition 34_The theta function is defined by the series

19(27 q) _ Z (_1)nqn2e2niz
= 1+ 22:(—1)%”2 cos(2nz)
n=1

where ¢ = €™ with |q| < 1, and T is a constant complex number whose
imaginary part is positive. It is customary to write 94(z,q) (Tannery’s and
Molk’s notation) in place of 9(z,q) (Jacobi’s notation).

Before we define the other three types of Theta-functions , we give some
properties of V4(z, q).

Remark 35 By simple computation for ¥,(z,q) = > (—1)”q”262”iz , we
have -

194(Z+7T>Q) = 194(Zaq)

Da(z +77.q) = (=g e *F)a(2,q)

56



By the Remark , we say that 94(z, q) is a quasi doubly-periodic function
of z. The numbers 1 and —¢~'e~?* are called the multipliers or periodicity

factors associated with the periods m and 77 respectively.

Definition 36 The other three types of Theta-functions are defined as fol-

lows :
V1(z,q) = —iei‘z*i””m(z—i—%ﬂﬂq)
Ya(z,q) = 191(z+%7r,q)
S
D) = SN

and in series form

Vi(z,q) = 22:(—1)"q(”+%)2 sin(2n+ 1)z
n=0

Ua(z,q) = QZq("+%)2 cos(2n + 1)z

n=0

I3(2,q) = 1% 22(]”2 cos2nz

n=1

Us(z,q) = 1+ 22(—1)%”2 cos(2nz)
n=1

Remark 37 .

1. By Definition above and the parity of trigonometric functions , we have

function | ¥1(z,q) | Y2(z,q) | 93(z,q) | Y4(z,q)

parity odd even even even

2. The parameter q will not usually be specified , so we will write 91(z) ,

Vo(2) , Us(2) , Vu(2) for V1(z,q) , Va(2,q) , VUs(2,q) , Va(z,q) respec-
tively.
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3. By Definition in series form above and simple computation , we have

4. By Definition in series form above and simple computation , we have
relations between four types of Theta-functions

D(2) = —a(z+ %w) —iMds(s + %w + %7?7’) — iMba(s + %m)
Ua(2) = Muis(z 4+ %7‘(7’) = MI4(z+ %7‘( & %WT) =01(z + %ﬂ')

v3(z) = du(z+ %7?) = Mvi(z+ %71’ < %777') = Mo (z + %71’7’)

U4(z) = =iM (2 + %7‘(’7’) =ubMs(z + %7‘( + %7‘(’7‘) =vJ3(z + %7‘[‘)

i .
where M = qie'*.

5. The periodicity factors of the four types of Theta-funetions associated
with the periods 7, Tt are-made by the table below

191(Z> 192(2) 193(2’) 194(2)
m | -1 -1 1 y/
T | -N N N -N

_
|

where N = ¢ te 2%,

6. The Theta-function ¥(z) satisfy the following equations

V+m) V()

(z +7)  9(z)
V(+nmr) . V' (2)
(z + 77) = it ¥(z)

where ¥(2) is any one of the four Theta-functions and ¥’ (z) its derivate
with respect to z.

o8



In this paper we will interpret to mean e*™" for the many-valued function
A
q.
Suppose ¥(zp) = 0 where ¥(z) is any one of the four types of Theta-

functions. Then

Hzo +mm+nrr) =0
from the quasi-periodic properties of the Theta-functions for all m,n € Z.

Theorem 38 If C' be a cell with corners t,t + w,t +m + nr,t + 7 , then
Y(z) has one and only one zero inside C', where 9(z) is any one of the four
Theta-functions.

Proof. Since V(z) is analytic throughout the finite part of the z-plane , thus
the number of its zerosinside C' is

L 19,<Z)dzzi{/t /t+7r+7r7' /tJrﬂ'T +/t }ﬁl(Z)dz
2mi C (z) 2mi t t+m+mT t+mT 19(’2)

1. Letx =z — 1 , then dx = dz

and since

t+m+7mT g/ t+nT g/
L. v (Z)dz = L / Iz + dx
270 Jypn ¥(2) 2mi Wz +
B 1 /t+7‘(’7’ ﬁl( )
2w Iz
1 t+mT g/
= / Iz dz
2mi 19(2)

2. Lety=z—mnT1 , then dy = dz

and since
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V' (z+7T) 0 V' (2)
Wz + 77) ¥(z)

we have

2mi t+m+mT 19(Z> % +m ﬁ(y + WT)

t+mT / t /
L/ ﬁ(z)dz _ 1 / 19(y—|—7r7')dy
¢

1 Yy + )
2wy, Wy +7T)

dy

dz

—~ _L t+m 0 N 19/(3/)
2mi Jy I(y)
| _L t+m \ \ 19’(2)
27 J, V(2)
1 1_ L t+m 19/(2)dz
27 Jy© W(2)

By 1., 2., we have

1 79/ (Z) 1 t+m tt+-m+7wT t+mT
= PN { |7
2m1 C 19(Z> 21 t t+m ttmtmT
1

Hence 9(z) has one and only one zero inside C. ®

Remark 39 (The zeros of the Theta-functions.) The zeros of ¥1(z) ,
, %W + %WT )

U2(2) , 95(2) , Ya(z) are the points congruent to 0 , 3
respectively.

Proof. Clearly , z =0 is a zero of ¥1(z,q) = 25 (=1)"¢("*2)" sin(2n + 1)z
n=0

by definition. Hence z = 0 + mm + nw7 is also a zero of ¥1(z,q) for all
m,n € Z. This means the zeros of ¥1(z) are the points congruent to 0. By

the relations between four types of Theta-functions

1 1 1 1
V1(z) = —0s(2 + §7T) = —iM0O3(z + =+ =77) = —iMU4(z + §7TT)

2 2
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where M = qie*. We find that

1 1 1 1
V1(0) = =Uy(=zm) = —iMIs(zm + —77) = —iMVYy(z77) =0
2 2 2 2
where M = qie® | thus

191(0):192(%) J3( w+;m) 194(%7r7'):0

S0 z = 3w, i 4 7T, 37T are zeros of ¥a(z),V3(2), Va(2) respectively.
Hence , the zeros of ¥1(2),02(2),93(2),94(2) are the points congruent to

0, %7?, %7? + %7?7‘, %7‘(7’ respectively.

We summarized the result as the following table:

’ ‘ Zeros i Relations

Y(z,q) | z = 0mod(mw,@7) ‘ 22 (“1)2qn2) sin(2n + 1)z

| 92(2,q) | 2 = gmmod(m, 77) 04(2,q) = —V2(% + 3m5q)

‘ V3(z, q) ‘ z = st s ndod(d, 77) ! 01(z,q) = —iqicds(z + T+ 2T, q)
‘ Y4(2,q) ‘ z = trzmod(my ) | V1(2,q) —zq4e’z194(z+ ST, q)

Theorem 40 It is possible to_express any Theta-function in terms of any
other pair of Theta-functions by-the following equations.

93(0)0

(0)95(2) = 95(0)95(2) — 5(0)5(2)
Ui(0)03(z) = 95(0)03(2) — 95(0)0i()
Ui (0)05(2) = 95(0)05(2) — ¥5(0)0i()
Ui (0)05(2) = 95(0)05(2) — ¥5(0)05(2)

Proof. Since each of the four functions ¥3(z),03(2),V3(2),03(2) is analytic
and has periodicity factors 1,q %e~** associated with the periods 7, 77. Thus
each of the functions

adi(z) + b03(2) a'93(z) + b'05(2)
03(2) ’ 03(2)
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is a doubly-periodic function ( with periods 7, nT ) where the constants
a,b,a’, b are suitably chosen.

Since each of the four functions 93(z),95(2),V3(2),93(2) has a double zero
( and no other zeros ) in any cell. Thus each of the functions

adi(z) + b3 (z) a’ﬁ%(z) + b’ﬁi(z)

95(2)

’ Us(2)

have at most only a simple pole in each cell where the constants a,b,a’, V'
are suitably chosen. But the order of an elliptic function is never less than 2
otherwise such a function is merely a constant.

So we assume that there exist a,b,a’, b’ such that

cm?%(z) + bﬁi(z) N a’t‘}f(z) + b’ﬁi(z)

=

95(2)

1.e.

’ U3(2)

93(2) = ali() FBUL(2)105(2) = ai(#) +bVi(z)

Using the relations between four types of Theta-functions

Vi(2) =
192(2) =
U3(2) =

794(2) =

1 1 1 1
=Us(z + §7r) = —iM3(z + St 5#7’) =—iM4(z + 5%7’)

1 1 1 1
M193(Z+ 571'7') = M194(Z+ 57‘['—1- 57‘(’7’) — 191(2—1- 57‘(’)

1 1 1 1

V4(z + =) = Moh(z+ = =a7) = Ms(z + =77)
2 2 2 2

1

1 1 1
—’lM??1<Z + 571'7') = ZM192(Z -+ 571' -+ 57’('7') = 193(2 + 571')

1 .
where M = q1e'*.

We have
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To determine a,b,a’, V' , let z = %777' and z = 0 into the equations V3(z) =
avi(z) + b03(2) , 95(2) = 97 (2) + b'93(2) respectively. Then we have

P = a2, 02 = b2 () (=) = —alR, 0 = 2

So we obtained the relations

03(0)03(z) = 95(0)03(2) — 95(0)0i()
Ui (0)05(2) = 95(0)05(2) — ¥5(0)0i()

Replace z by z + %7? , we have

03(0)01(2) = W5(0)05(2) — 95(0)95(2)
03(0)05(2) &= 5(0)5() = 95(0)05(%)
|

Corollary 41 .In the last relation , we write z =0 to get the equation

95(0) + 93(0) = 03(0)

Remark 42 The addition-formula for the Theta-functions is in the following
equation.

O3(z + y)0s(z — y)3 = I3(y)05(2) + 03 (y)91(2)

Proof. Clearly the function V3(z + y)V3(z — y) of z has periodicity factors
associated with the periods m and 77 are 1 and g te 2(+v) . g~le=2(zy) =
g 2e™* | and the function a¥3(z) + b¥3(2) has the same periodicity factors
where a,b € C are constants. So we can choose the ratio a : b such that the
doubly-periodic function

av3(z) + b (2)
Us(z +y)s(2 — y)

has no poles at the zeros of U3(z —vy) , then it at most has a single simple
pole in any cell. And this simple is the zero of ¥3(z + y) in that cell. Since
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the order of an elliptic function is never less than 2 otherwise such a function
is merely a constant. So we may choose suitable a,b for the ratio a : b such
that

aﬂ%(z) + 619%(2)
U3(2 +y)U3(z — y)

=1

1.e.

ati(z) + b03(2) = V3(z + y)Us(z — y)

To determine a and b , we put 2 =0 and z = %W + %m’ into the equation
ad3(z) + b3 (z) = Vs3(z & y)Wsle="y) respectivelys> Since V3(z) is an even
function , so we get

1 T 1 1 1 1
2 92 = IFISA S S
aty = 193(y),b191(27r + 27?7') 193(27T+ 57T+ y)193(27r + 57T )

Using the relations between Theta-functions

1 1 1 : 1 1
V3(2) = que" V(2 + s+ sar)sdi(z) = —iqie”ﬁg(z + -1+ —77)

2 2 2 9
we have
Qﬁ(iﬂ'—i- 577'7') = q_%ﬁg,ﬁg(éﬂ—l— 57T7’—|—y)193(§ﬂ-_|_ 571—7— _ y) — q—%ﬁf(y)
So we get

LU, _ i)

05 03

Hence

D3(z + y)0s(z — y)d3 = I3 (y)05(2) + U3 (y)91(2)
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Remark 43 (Jacobi’s fundamental formula.) Suppose

!/

2w —w+z+y+z

2t = w—x+y+z
/

2y = wH+r—y+=z
22 = wHzr+y—-=z

and let

where we will consider [r], [r)~qua funetions.of 2. Then we have

2B = [ =031 M)
2[4 = (W2 + Bl
2221 = [ RIS B[
20 = [+ 2 =B+ @S

Proof. By the sumple computation”, the effect of increasing z by m or w7 is
to transform the functions in the first row of-the following table into those in
the second row respectively.

B] | [Nz | B | 4
m | (3] | RS 4] | (3]
71 | N[3] | =N[M4] | N[3]' "NV} f—=V[1]

—2iz

where N = q_%e
In the table , we know that both —[1]" + [2]" + [3] + [4] and [3] have
periodicity factors 1 and N. Thus the quotient

—[0+ 21" + 3] + [4)
3]

is a doubly-periodic function. And in any cell this function have at most
a single simple pole namely the zero of 93(z) in that cell. Since the order of
an elliptic function is never less than 2 otherwise such a function is merely a
constant. So this quotient is merely a constant ; i.e. independent of z. And by
considerations of symmetry , we know that this quotient is also independent
of w,xz,y. So we let
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ARl = —[1] + [2]' + [3]' + [4]'

where A is independent of w,x,y,z. Let w =x =y =2z =0, then we
get

A3 = 95 + U3 + U

By the corollary before , because 95 + 195 = V3 ,we get A =2. Therefore

Increasing w, x,vy,z by %7‘(’ and therefore w', x'sy', 2" will also increase by
1
5T, then we get

2[4] = (1) =2/ Bl 14T

Increasing wya, y,2 by %71'7' in

23] = =[]+ [2]' + B + 4]
2[4] = [Ls= (2] H8lF 4]
we will get

2(2] = [+ [2]'4 Bl =4
201 = [+ [2 - 3] + [

Remark 44 We can express Theta-functions as infinite products in the fol-
lowing

t(z) = 2Gq* sin 2 1:[1(1 — 2¢°" cos 2z + ¢*")
Pa(z) = 2Gqicosz 1}1(1 +2¢*" cos 2z + ¢*")
v3(2) = G l:[l(l +2¢°" cos 22 4 ¢*"?)

Uy(2) = Gnl;[1(1 —2¢*" " cos 2z + ¢*"?)
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where G is independent of z.
Proof. Let

(1 _ q2n7162iz) 11 (1 o q2n71672iz)

n=1

(1 —2¢*"'cos2z + ¢*" %)

f(z) =

0o
II
n=1
[e's)
II
n=1

Since > q*"! is convergent absolutely , thus each of the two products
n=1

converges absolutely and uniformly in any bounded domain of values of z.
Hence f(z) is analytic throughout the finite part of the z-plane , and so it is
an integral function.

The zeros of f(z) are simple zeros at the points where
€2iz _ e(?n—&-l)ﬂ'ir’ (TL e Z)

i.e. where

2iz = (204 1)miT + 2mmi

, thus f(z) and ¥4(z) have the same zeros. Hence the quotient 94(z)/ f(z)
has neither zeros mor poles.in-the finite part of the plane.
Clearly , f(z+7)= f(2) and

00 . ® .
f(Z + 7.‘_7_) - 11 (1 _ q2n+le2zz) 11 (1 A _ q2n736721z)
n=1 n=1
1— q71€72iz

- f(Z) 1 — q€2iz

= —q e f(2)
, thus f(2) and ¥4(2) have the same periodicity factors. Therefore ¥4(z)/f(2)

15 a doubly-periodic function with no zeros or poles , so it is a constant G.
Hence

Uy(z) = Gf

—
I\
~—

—2¢*" 1t cos 22 + ¢*"7?)

I
Q
I=8
N

67



Write z + %7? for z , we get

U3(z) = Gnl;ll(l +2¢*" cos 2z + ¢*"?)

And
L1y 1
Vi(z) = —igie*da(z + §7TT>
= —iq%eizG 1:[1(1 _ q2n€2iz) 1:[1(1 _ q2n72€72iz)
= 2qu sin z 1:[1(1 — ¢"e*?) 1:[1(1 — ez
= 2Gq sifig 1:11(1 207" cos 2z g )
S0
1
Ua(z) = mhi(z 57?)

=9G4 cos 2 1:[1(1 +2¢*" o822 + ¢*")
m

Remark 45 We may regard any one of four type of Theta-functions as a
function ¥(z|T) of two independent variables z and .. By compute directly
we have

9?9(z|7) _ 4 99(z|7)

022 T 0T

Therefore the Theta-functions 9(z|T) satisfies the partial differential equa-
tion

Remark 46 (A relation between Theta-functions of zero argument)
For Theta-functions , we have the following relation

91(0) = 92(0) - 93(0) - 94 (0)
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Remark 47 (The value of the constant G.) The constant G in the fol-
lowing equations

9i(2) = 2Gqisin znﬁl(l — 2¢% cos 2z + ¢*")

Ua(z) = Qqu cos Zni.i(l +2¢%" cos 22 + ¢*")

Us(z) = Gnﬁl(l +2¢*" 1t cos 2z + ¢*"?)

Va(2) = Gnﬁl(l —2¢*" L cos 22 4 ¢*"2)

have the value

G = ﬁl(l —q*")

Remark 48 The quotient of -Theta-funetions ¥1(z)/P4(2) is a solution of
the following equation

d
(5) = 0B 92 &) (B 03 E)

Proof. By the table below

191(2) 192(2) Q93<Z) Q94<Z)
T | -1 -1 1 1
T | -N N N ram

we know that the function ¥1(z)/V4(2) has periodicity factors (—1), (+1)
associated with the periods (), (7wT) respectively. So its derivative

i(ﬁl(z‘)) _ 1(2)0a(2) = ¥4(2)01(2)
dz 94(2) 93 (2)

also has periodicity factors (—1), (+1) associated with the periods (m), (7T)
respectively.
By the same table we verify that

192(2) . 193(2)
Ji()
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has periodicity factors (—1),(4+1) associated with the periods (), (7T)
respectively. So the function

9 ()0a() — D)
o) = T G) a(2)

is doubly-periodic with periods m and w1 ; and the only possible poles of
&(z) are simple poles at points congruent to (1/2)w and (1/2)m + (1/2)77.
By the relations between four types of Theta-functions

V1(z + %WT) = iq_%e_izm(z)
Ua(z + %71'7’) = iq’%e’izﬁl(z)
oz + %7?7') v q_%e_izﬁg(z)
3(z + %71'7’) S gae ()

we can see that

Lo ) e
oz + 577) 92(2) - 0a(2)

=0(2)

Hence ¢(z) is doubly-periodic with periods w.and (1/2)7T , and the only
possible poles of ¢(z) are simple-poles at_points-congruent to (1/2)w relative
to these periods. Because the order of an elliptic function is never less than
2, otherwise a constant. So ¢(z) = A is a constant , and making z — 0 ,
we get that

R
Wy V3

o) = A =9

by the relation ¥ = V5 - 93 - ¥4. So we have

91 (2)a(2) — 94(2)0h ()

Da(2) - U3(2) =

1.€.
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91(2)0a(2) = V3(2)01(2) = 930a(2)5(2)

thus we get
4 (), HEIE) —HENE) i) ()
dz 04(2) 92(2) 104(2)  Va(2)

Let £ = 91(2)/Y4(2) , and by the relation ¥ = V5 - V3 - V4 again , we
eventually get the differential equation

dg

() = (05 - 03 (IRt

Now , we could introduce-the Jacobian elliptic functioms.

Remark 49 (The genesis of the Jacobian Elliptic function.) Lety =
(V93/92)€ , u =032, k= (92/0s)% , then theéquation

d§
(7

would be written-as

) = (= 0 - €)W =050 6)

(W= (1 - )1 4P

It is customary to regard the solution y as a function of u and k , so we
denote y = sn(u, k) or simply y = sn(u). FEvidently , sn(u, k) is an elliptic
function and sn(u, k) — sinu as k — 0. The constant k = (V3/93)? is called
the modulus , and the constant k' = (94/93)* is called the complementary
modulus. Because V93 + 15 = 03 ,we get (k)? + (k') = 1.

The function

193 . ’193 191 (19;211,)

V0,5 T 000405 %)

has periodicity factors (—1), (+1) associated with the periods (793), (17193)
, therefore it is a doubly-periodic function with periods (2r93), (w793). It has
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two simple poles at the points congruent to (3n793) and (w03 + in703) in
any cell. The zeros of the function are the points congruent to 0 and m?% ,
and on account of the nature of the quasi-periodicity of y , the residues at

these points are equal and opposite in sign. The quasi-periods (793), (7703
are usually written (2K), (2iK") , so that sn(u, k) has periods (4K), (2iK").
On the other version , the equation

(W) = (1 - )1 - w2?)

can be written as the integral form
Y 2\—1 2,2\ —2
u:/ (1— )4 @ L2t
0

where y = sn(u, k) Satisfies-it.

Definition 50 ‘The Jacobian—elliptic: functions sn(u),ecn(w), dn(u) are de-
fined as following

B 193191(19§QU)
snlw) =35, (93 20)
B 194192(19§2U)

nlw) = 5 9al0s2)
194193(’193_2’&)

d — a7\ 2
() = 3, 9a(9320)

where u = V32 , k = (Uo/03)>.

Remark 51 (Relations between the Jacobian elliptic functions.) We
have some relations between the Jacobian elliptic functions as following

d

en(u) - dn(u) = %sn(u)
sn?(u) +cen?(u) = 1
kisn?(u) +dn*(u) = 1
en(0) = 1
dn(0) 1
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Proof. By

d 791(2)) _ 2 02(2) Us(2)

5(194(2) Y04(z) Va(2)
we have
d
%sn(u) = cn(u) - dn(u)
By

03(0)03(z) = 95(0)05()=V5(0)01(=)
03(0)05(2) = Ws(0)05(2) — ¥32(0)01()

we have
sn?(u) Fen*(u) = 1
k2sn?(u) #=dn’®(u) = 1

By compute directly and definition , en(0) = dn(0) =1 is obvious. m

Remark 52 (Simple properties of sn(u),cn(u),dn(n).) We summarize

simple properties of sn(u)., en(u) , dn(u) by the following table.
sn(w) en(1) dn(u)
Periods 4K, 21 K" 4K, LK 2K, 4i K’
Poles | iK' .2K + iK' | iK'.2K + iK' | iK', K +iK’
mod(4K,2iK") | mod(4K,4iK") | mod(2K,4iK")
Zeros 0 K K+ iK'
mod(2K,2iK") | mod(2K,2iK") | mod(2K,2iK")
Parity odd even even
Derivative | cn(u) - dn(u) | —sn(u) - dn(u) | —k?sn(u) - cn(u)

4 The Exact Theory of the Sine-Gordon Equa-

tion.

When we discussed with the simple properties of the Jacobian elliptic func-
tions. We will discuss the exact theory of the Sine-Gordon equation.
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4.1 The Exact Theory.

The form of partial differential equation

Ugg — Uyy +sinu =0

is called Sine-Gordon equation. We want to find the traveling wave solu-
tion of uy, — uy, +sinu = 0. Let t = ma — ny , then we have

B du dt_du
Yo = T dr  ar "
B du dtidu (_)
YT wdy T an

Using the same method again , we have

2
Uge = UM

2
Uyy = U= N

So the equation u,, — u,, + sin u'= 0 becomes

(m® — n?) Ay +sinu =0

2

Assume m? — n? = 1 ;ithen we get

U + sinu = 0

Multiplying Z—? to uy +sinu = 0 , then we get

du du
— Uy + ——-sinu =10

dt dt

Integrating it with respect to ¢ , the equation will become

L du
2°dt

where F is a constant. The square roots of ‘fi—? are £/2(E + cosu). We
will focus on the equation of positive sign

)2 —cosu=FE
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2—1; = v/2(E + cosu)

Using the relation of trigonometric function that cosu = 1 — 2sin*(u/2).
We get the equation

du .o, U
i \/2(E+1—2sm (5))

Since the equation is a separable equation , we could get

/
0

Our goal is to find -........ e representation of
U(t) in terms of £ N ::iu;g S three d ses according to

t
U(t)
2 z 1 U
- E+1 2 2(u d(i)
0 \/1 ~ B+l S1n (5)
Let s = ELH sin(3) , then
1
d(2) = ds
2 2
Bl
Thus ,
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Remark 53 Since E € (—1,1) , thus /2 € (0,1) ie. 0 <k < 1.
Furthermore , k o E.

Case 2. E=1
Suppose £ =1, then
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U(t 1
t = / du
2(FE + 1) — 4sin*(%)

(/4 — 4sm g

l/(t)

Letmz,/%zl,then

sin(Z1) 1 1
t = / . ds
0 \/1—82 \/1—52
~Lsin( %) 1 1
= ds
/0 V1—s2V1—kr2- 2

By Jacobian elliptic function sn(u, k) , the equation implies that
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sn(t, 1) = sin(%)

So we have

U(t) = 2sin ! (sn(t, 1))
where k = 1.

olliptic function , we also can
d-the solution would be

Remark 54 If we do n

Case 3.

E+1

el . 1 2 sm?(%)d(g)

where 1 = /725 Let 5 = sin(}) , then
u 1
d(=) = ——=ds
)= ——
Thus
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@ 1 U
t = d(—=
. 5)

0 1 — K2?sin®(%)

u(t)

sin(=5~) 1
= K ds
/0 V1 — s2y/1 — K252

1.e.

¢ /sin(Q) 1
- = ds
K Jo V1 =52\/1 — K252

By Jacobian.elliptic function sn(u, &) , the equation implies that

So we have

U(t) = Tsit Nen(~, )

K
where kK = /=2~
E+1

Remark 55 Since E € (1,00) , thus /555 € (0,1) de. 0 <k <1,

Furthermore , ks o .

4.2 The Periods.

We had found the solutions for the ordinary differential equation in the form
of Jacobian elliptic function with different constant £. In this section , we
want to find the period of solution. The idea is to find the rest position
Ul(ty) and the period is the four times time of the particle moves from U(0)
to U(tg)
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Casel. 1< FE<1

In this case , the solution is

U(t) = 2sin™ (k- sn(t, k)

where k = /2t

The velocity of the particle is

The period for this case is

T = 4t

n_lsin(w) 1 1

= 4/ ’ ds
0 V1—52y1— kK252
kL sin(sin™1(x)) 1 1

= 4/ ds
0 V1—52y1—kK2-52
1

1 1

= 4/ ds
0 V1—2521—k2.s2

= 4K
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Remark 56 The constant K here is defined as K = [ (1 —52)73(1 —
Kk2s%)"2ds , where k = ((E 4+ 1)/2)2 is the modulus.

Remark 57 The constant K o k implies that the period T o k. It is
not difficult to calculate that if Kk =0 , then T = 2n. This means that
the period T > 27 , Vk € (0,1).

Remark 58 U(t) = +2sin (k) < 2sin" *(1) =7 , V& € (0,1).

Case 2. E=1
In this case , the solution is
U(t) = 2sin !(sn(t, 1))

where k = 1.

The velocity of the particle is

| S

U = \/2(E+1—23in2( )

| S

= \/2(1—1—1 — 2sin?(=))

U
= 4 £ 4gin?(=
sm(2)
Let U; = 0 , we have

Ut)=+£m

Hence , by the equation

U(t
=

1 1

sin(
t = . ds
/0 V1—s2 J1—¢52

The period for this case is
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4/sin( ) 1 1 p
0 V1—s2 J1—¢52
sin( ) 1 1
= 4/ . ds
0 \/1—82 \/1—82

1
1
= 4/ st
o 1—s

= o0

Although it is not_aperiodic solution , the period of this case could
be regarded as co. This means that if we release the particle at the
position —7 4t needs infinity time to approach the position 7.

Case 3. E>1
The velocity of the particle is

U
U, = \/Q(E +1- 251112(5))
U
> dq/4=4 sinz(E)
> 0
This means that each position U(t) , the pendulum always has velocity ,

so the pendulum will never stop. This implies that it has no periodicity.

We construct a table to collect the results we had gotten in the end of
this section.

E>1

£ 1)) | 2Zsin (snl(t/), 7))
(2/(E+1))2

No periodicity

= -

Energy (F) -1<E<1 E
Solution U(t) | 2sin~*(ksn(t,x)) | 2sin ' (sn
Modulus (k) (E+1)/2)2

Period (T) 1K

B~
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4.3 The Phase Portraits.

The oridinary differential equation we had discussed is the mathematical
model of ideal pendulum. Now we try to plot the relation between U and U,
and the graph is called phase portrait. Before drawing the phase portrait ,
we see back to the equation

1 du. 4
_2(_25) —cosu=FE

where F is a constant first. It shows that

1 du. 4
5t

— COS U

is a constant. It can be regarded as a conservation law in the view point
of mathematics sinee. — cos(u) is not always larger than 0. (But this case can
be transferred to the conservation law in the view point of physics by plus a
constant @ > 1 for equation 2(94)? — cosu = E:).This means that its total

2.\.dt
du

energy is a constant and the former part %(ﬁ)Q can be regarded as kinetic

energy and the latter part — cos(u) can be regarded as potential energy. The
following we discuss the potential energy and phase portrait with different
cases.

Casel. — 1< E<1
We set ¥ = 0'to analyze the case. By the equation

1 du. 4
_2(_t) —cosu=FE

we have the equation

d
d_? = +vV2cosu

The following graphs are potential energy and phase portrait , respec-
tively. This means that they are the relation between v and cosu and
the relation between u and %.
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Case 2.

fa) Fotential Energyfunder the brown line) rd 1 A
- 17 - N,
\ / 057
_‘"trn.':rl.-_.' 0.5- / ..
E=0 / s -1 -08 @ s 1 14
1'. T i T ¥ y u .':
-3 -2 '-\-1 q 1 / 'Y -0.5]
] %, r
-n5/ / ™,
/ ™\ -1 ,f’f

The potential energy and phase portrait for £ = 0

Figure 35. The potential energy and phase portrait for £ = 0.

Remark 59 From the graph of the phase portrait , the red curve means
that the velocity at those position are positive.and the blue curve means
that the veloeity at those-position are negative. The positive velocity is
defined by rotating counterclockwise and the mnegative velocity is defined
by rotating clockwise.

Remark 60 By the graph of potential enerqgy , we can find out that the
mazimum_of amplitude , u(t) , for the pendulum is 5 _and it oscillates

forth and back.

E=1

Now we focus on'the case with £ = 1. By the equation

1 du

2
—(— )% — =k
2( t) CcosUu

we have the equation

du_

== ++/2(1 4 cosu)

We see the potential energy and phase portrait as following.
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Case 3.

fa} Potential Energwiunder the green line)

b FPhase Portrais

= T : e 2-" ———
™ =i
..".__..-:'rr_'-'fs.'; 0.5 // d 11 ™, i
)
-3 -2 % -1 0 1 2 3 -3 -2 -1 O 1 2 /5
u \ #
-0,54 “ ~1- ) //
LY e \H'\-\. ""H
r "\-\.___\_ " -
-t =2

The potential energy and phase portrait for E =1

Figure 36. The potential energy and phase portrait for £ = 1.
Notation 61 By the graph of potential energy , we can find out that
the maximum of amplitude , u(t) , for the pendulum is 7. If we release
the pendulum at position m , the particle will approach to the position
—7 after infinite time.
E>1
Last , we see the case £ > 1 with £ = % By the equation

1 du
2 an
we have the equation

du 3
&[22
o (2+cosu)

We see the potential energy and phase portrait as following.

—cosu=F

fa} Fateniial Energy it Fhase Portrait
| E=t
I 21
1
| ]
Cosu) ﬂ.s-
| -3 -1 =1 1 1 2 3
3 -2 1 1 2 3 1] "
: [}
-5
_2..

4
The potential energy and phase portrait for E = 3/2

Figure 37. The potential energy and phase portrait for £ = %
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Remark 62 From the graph of the phase portrait , we know that the
pendulum of this case will never stop since the phase portrait has no
intersection with the u-axis.

Remark 63 By the graph of potential energy , we observe that the
kinetic energy is never equal 0. This implies that the case has no pe-
riodic solution and the result is corresponded to the property which we
had discussed.

By our discussion , there are three kinds of the phase portraits. Before
fnishing the section , we combine the three phase portraits and the vector
field together.

Figure 38. Global phase portrait.

We can make some conclusions from the Figure 38. :

1.

There are three different kinds of phaseportraits with different energy
E. The outer curve corresponds tolarger energy F. They are separated
by the phase portrait with &' = 1 and the phase curve is called the
separatrix with periods oo. The phase curves outer the separatrix are
called the wave train and they has no period. The phase curves inside
the separatrix are periodic and their period T satisfies 27 < T < oo.

. The direction of the phase curves which are upper the u-axis toward the

right on the phase plane and it means the pendulum rotates counter-
clockwise. Similarly, the direction of the phase curves which are below
the u-axis toward the left and it means the pendulum rotates clockwise.

. The points (nm,0) are also the solutions for all n € Z. They are

classified into two classes. The first is the points with n is even. These
points are stable and with energy ¥ = —1. The other is the points
with n is odd and these points are unstable and with energy E = 1.
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5 Appendix

We placed here the details of the previous examples , and placed here for
more examples.

5.1 The details of the previous examples in section 2.1

Example 64 FEvaluate the integrals of 1/f(z) over a; , as and az cycles
where f(z) = /(z +4)(z +2)(z — 2)(z — 4)(z — 5)(z — 7)(z — 8). We analy-
sis the integral in Mathematica and in theory to compare the result and using
the result of angle to modify the computation to get value. Let z1 =8 , 2o =T

,23=0,24=4,25 =2, ze= -2, 2y = A4
ds
& p —1
-4 7y —1a B :
E? Zs 7s Ls I by ¥kl

Figure 39. a-cycles and their equivalent path a*.

Solution 65 :
ay : Let ay is a cycle center at % with radius 1 and enclosed the cut [7,8].
So let z = % + e | wehave

dz =

[ - [ S

= 0.+ 0.08902822

By Cauchy Theorem. Since ay, cycle is simple connected , we can use
some equivalent paths , say aj, , to easily compute the integrals for ay cycle.

1. If z € a} on sheet-I in theory where a] =7 L8uUT<8
(a) 75 8 : the path along x-azis from 7 to 8 on sheet-I with (+)-edge.

z—8=—|2—8] = [z =8| then = = |z—8|_% e'3) =
1
i|lz—8|2
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z— zp = |z — zi| then :|z—zk]_%,k:2,3,4,5,6,7

1
VzZ—2z)

1 8 7 _1
dz:/il_[|z—zk|2dz
; k=1

7%s f(2)

(b) 7« 8 : the path along x-axis from 8 to 7 on sheet-1 with (— )-edge.
z—8 = —[z—8| = |z —8]&™ then -~= = |z — 8|_% el=3) =
(=) |z 8|2
2z — zr = |z — zi| then ¢zl—7k = |z—zk|_% , k=2,3,4,5,6,7

1
r=snf (2)

By (a).and (b) we obtain the value

7 7 .
dzz/(—z’)H el
8 k=1

N 1
[} e = gl
="0.4 0.0890282¢

2. Analysis the integration over ai in Mathematica

(a) 7 5 8 : the path.along x-azis from 7 to'8 -on sheet-I with (+)-edge.
z—8 = — [/ 8="lz=8le™then = = |z —8|”
(=i) ]2 - 872

2z — zr = |z — 21| then

1 .
3T

=le— 22, k=2,3,4567

1
VE—2zg

1
748 [(2)

A difference of a minus sign with in sheet-1.

8 7 1
dz:/ (=) 1T |z — 2| 2 dz
. k=1

(b) 7« 8 : the path along x-axis from 8 to 7 on sheet-1 with (—)-edge.

. 1 a
z2—8 = —|z2—8| = |z—8|e"™ then ;_8 = |z —8|72¢("2) =
(—i)]z =82

z—zr = |z — 2] then\/zl_izlﬂ:|z—zk|_%,k:2,3,4,5,6,7
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! /q<')ﬂ| 3
z = —1 Z—ZE| 2az
=5 f(2) 8 k=1
as same as in sheet-1.
But in Mathematica

/—dz—()

3. Using Lemma 6 to modify

(a) 7 % 8 : the path along z-awis-from 7 t6 8-on sheet-I with (+)-edge.
arg(z — z1) = —7 then \/z — z1 Mz =z =2
arg(z —zy) = Octhen—/2 — zp Mgth. Vz— 2 k=2,345067
So f@lE" )

(b) 7« 8 : the path along x-azis from 8to 7 onsheet-1 with (—)-edge.
arg(2'=z,) = 7 then \/z — 21 Math. VZ— 4
arg(z= 2,) = 0 then «/z = 2 P vz — 2z kb =2,3,4,5,6,7

So f(z) <" f(2)
We have

Ju 700 el
M 2f7 f(l dz
0. + 0.0890282:

ay : Let as 1s a cycle center at % with radius 1 and enclosed the cut [4,5].
So let z = % + € | we have

1

N WT

= 0.+ 0.18327301

Same as a; , by Cauchy Theorem to compute equivalent path aj where
a;=455U45
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1. Analysis the integration over aj on sheet-1

(a) 4 55 : the path along x-azis from 4 to 5 on sheet-I with (+)-edge.

z— 2= — |z — 2| = |z — 2| €
then\/zlfizlc:k—zk\_%ei%:@'|z—zk|_%,k:1,2,3
1
z— 2z = |z — 2 then\/zl_—%:b—zk] >, k=4,56,7
1 b 1
dz:/ P 11 |z — 2 3 dz
a5 f(2) 4 k=l
(b) 4 — 5 : the path along x-axis from 5to. 4 on sheet-1 with (—)-edge.
z— 2= — g2 =" — 2| ™
then ——== = |2 — 2o 2 eilGE) = (<) |25k =1,2,3
~, /4 1L s e
z — zpi=2 — zgl then| == =2 zi|02 ,k=4,5,6,7

| s ol b
——az = —1 Z— zE| taz

1z5 f(2) 5 k=1 :

By (a) and (b) ‘we obtain the value

N 1
Js Haleane (~2i) [ LAZAa e

)
Maths 00118327304

2. Analysis the integration over a’ in Mathematica

(a) 455 : the path along x-azis from 4 to 5 on sheet-I with (+)-edge.

z—zp=—|z— 2| = |z — 2| €™
1 , 1
then\/zl_—Zk:|z—zk| 26102 = (=) |z — 2| 2,k =1,2,3
1
z— 2k = |2 — 2] then\/zl_izk:|z—zk]_§,k‘:2,3,4,5,6,7

[ stz = [P —ai
——az = —1 Z— 2z %taz
1t f(2) 4 k=1 g
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(b) 4 — 5 : the path along x-axis from 5 to 4 on sheet-1 with (—)-edge.
z—zp=—|z— 2| = |z — 2| €™

then \/zl—izk = |z — zk|_% e'=2) = (—i) |z — zk|_% k=1,2,3

z— 2z = |z — 2z then\/zl_—%:|z—zk]7% ,k=4,56,7

1
45 f(Z

By (a) and (b) we obtain different value in Mathematica

/@ f(lz)d

3. Using Lemma_6 to modify

4 -3IZ[ B
)dz /5(—2) k:1|z—zk| dz

(a) 4 = 5usthé path-along w-agis from 4 to's onsheet-I with (+)-edge.
arg(z—12p) = —i-then oz 25w N/E —amk=1,2,3
arg(Z'= z;) =0 then \/z — z; Ly VZ— 2z, k=4,56,7
So fil) <" ~1(3)

(b) 4 — 5. the path along z-azis from 5 to 4 on sheet-I with (-) edge.
arg(z —2p) = m.then /2 — 2 24 VZ— 2z, k=1,2,3
arg(z — z.) = 0.then /2 — 2 Math. Vz2 = 2k =4,5,6,7

So f(z) =" f(2)
We have

1 _ 1
fa2 7z) dZ M_h fag mdz
ath. 5
=" =2 f4 ﬁdz
0.+ 0.1832730:

as : Let ag is a cycle center at 0 with radius g and enclosed the cut [—2,2].
So let z = geia , we have

1

= 0.+ 0.11157202
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Same as a; , by Cauchy Theorem to compute equivalent path aj where
aj=-2520-22

1. Analysis the integration over aj on sheet-1

(a) =2 5 2 : the path along x-axis from -2 to 2 on sheet-I with (+)-

edge.
z—zn=—|z— 2z =]z — zle ™
then \/zl—izk =z — Zk‘_% €2 =ilz — zk|_% Jk=1,2,3,4,5

z— 2k = |z — 2] then\/iTk:|z—zk]_% , k=67

1 2 7 A
/ —dz:/i5H|z—zk|2dz
_o4 f(2) —2 k=1

(b) —2 —2.: the path-along x-azis from 2 to -2 on sheet-1 with (—)-

edge.
z— =2 — 2| = |2 — 2|

S : )
then\/zlﬁizle:|z—zk| 265 = (1) |2 — |72,k =1,2,3,4,5

z— 2k =\ — 2 then\/zl_—Zk:|z—zk]7% , ki=6,7

/ ~ /_2( ) I |2 A%
——dy = —1 2.2 z
_oolf(2) 2 k=1 \

By (a) and (b) we obtain the value

N2 7 1
fogtyds = @)% M|~z Fa
=" 0.4+ 0.1115720¢

2. Analysis the integration over a} in Mathematica

(a) =252 : the path along x-azis from -2 to 2 on sheet-I with (+)-

edge.
z—zp=—|z— 2| = |z — 2| €™

1 a , 1
then\/zl_—Zk:|z—zk\ 26102) = (=) |z — 2| 2,k =1,2,3,4,5
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(b)

1
z— 2k = |z — 2] then\/;ﬁ:|z—zk] 2, k=6,7

Iy & AR
——az = —1 Z— 2z %az
oty f(2) -2 k=1 ’

—2 « 2 : the path along x-axis from 2 to -2 on sheet-1 with (—)-
edge.
2=z =—|z— | = |z — 2| €™

then e = |z — 272 €5 = (=i) |2 — %/ 2,k = 1,2,3,4,5

z— 2k = |z — 2] then\/;ﬁ:p—zk]_% , k=67

[ = ey
o Sl —1 v " 2az
oz f(2) 2 k=1 k

By (a) 4.(b) wepobtain.different value in Mathematica

/@ﬁdz:o

3. Using Lemma 6 to modify

(a)

(b)

—2 52 the path along x-axis from.-2 to 2 on sheet-I with (+)-
edge.

arg(z — zg) = —@ then \/z — z Math- 773 2k =1,2,3,4,5
arg(z — zx) =0 then \/z—z i Nz — 2z, k=06,7

Math.
So f(z) " 1 (2)

—2 « 2 : the path along x-azis from 2 to -2 on sheet-I with (—)-
edge.

arg(z — z) = m then \/z — z Math.yo— 2k =1,2,3,4,5
arg(z — z) = 0 then \/z — z Math- 2,k =16,7

So f(z) =" f(2)
We have

1 . 1
S [OkG o fa; _fg;) dz
atn. 1
= —2 f72 ﬁdz
0.+ 0.1115720i
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Example 66 FEvaluate the integrals of 1/ f(z) over by , by and bz cycles where
f(z)=+/(z+4)(z+2)(z—2)(2 —4)(z — 5)(z — 7)(z — 8). We analysis the
integral in Mathematica and in theory to compare the result and using the
result of angle to modify the computation to get value. Let zy =8 |, 20 =7,
23=050,z24=4,25=2, 26 =—2, 27 = —4.

Figure 40. by , by and bz cycles.

Solution 67 :
bs : Let bs 15 a cyclewhich center at =3 with radius-2. So we could write
down the parameter, let 2 = —3 + 2e¥. 0 € {—=,0) U [27,37) . Notice that

f(z) |(H)= —f(2) |(1),SO we have

1 0 2iet? m 2
—dy = / db — / db
/b3 f (2) N 0 i

7
'y kl:I1\/—3 + 26t — 2, 121\/_3 + 2% — 2,
0.0372385

Since by, cycle is simple connected , we can use some equivalent paths ,
say by, such that by =~ b; to easily compute the integrals for b, cycle. Here
b3 ~ b;

b3
- e = - -
e EEEEEEENE S————————————— 1 | B 1 __h-
L " ;. 4T 5 TR

Figure 41. The equivalent path bj.

1. Analysis the integration over by on sheet-1 in theory
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(a) —4 — —2 : the path along x-azis from —4 to —2 on sheet-I.

e =zl then Ao = |z -zl k=17

2=z, = — |2 — 2| = |2 — 2z e'=m) then \/Zl_—Zk =z — zk|_% (%) =

ilz— 277 k=1,2,3,4,5,6

/ L, /_2 ST | "3 d
—az = 1 Z—ZLl %2az
4o f(2) —q k=1 g

(b)

By (a) and (b) , we obtain

/b3 %dz = , %dz
_ /_ 4_}_2%dz+ /_ 46_2ﬁdz

= —2/ II |z — 2| 2dz
= 0.0372385
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2. Analysis the integration over b3 in Mathematica

(a) —4 — —2 : the path along x-azis from —4 to —2 on sheet-I.

Z—zk:|2—2k’ then\/zi—Zk:|Z—Zk’_%ak:7

2=z ==z —nl = |z - al ™ then == =z~ 2|72 e =

(—i) |z — 2|72,k =1,2,3,4,5,6

/ L /2< I |2 — 2] H d
z = —1 z— Z 2dz
4o f(2) 4 k=1 g

-2 - B
g —/ I |z — zx| " 2dz

(b) —4 «-- —2.: the path along x-axis from =2to —4 on sheet-11.

Z—zk:|z—2k| then\/zi—Zk:|Z—Zk‘_%ak:7

z— 2= |2 —al =z e then o & - 2|72 =

(=i le= 2, k=1,2,3,4,5.6

1 Math. 1
f—4+--—2 mdz — f—4<——2 Tz;d'z
> TN ([ _1
= Gt e ds
_9 7 _ 1
= [, Olzg=%|"2dz
k=1

. in Mathematica fbg ﬁdz =0

3. Using Lemma 6 to modify

(a) —4 — —2 : the path along x-axis from —4 to —2 on sheet-1.
arg(z — z) = —7 then /2 — 2 Math- —VzZ— 21, k=1,2,3,4,5,6
arg(z — z;) =0 then /2 — 2 Math. Vi—z2, k=T
1) 1)

(b) —4 «-- —2 : the path along x-azxis from —2 to —4 on sheet-11.

We known in theory that f(2) |un= —f(2) i) , so we consider
—4 — =2

arg(z — z) = —m then \/z — z Math-_ o= 2k =1,2,3,4,5,6
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arg(z — z) = 0 then \/z — z Math- 2 k=17
L (2) e f(2)

1 1
hosg® = iz 1
= f—4—>—2 mdz + f—4(————2 mdz
h. -2 7 _1 4 7 _1
= f74 k131|z—z1g| 2dz—f72 klgl|z—zk| 2 dz
2 7 1
= 24 k1;11|z—zk| 2 dz
= 00372385

So we could
) . Notice that

by : Let by is a cycle which center-at 0 with. radius
write down the pdrameéter;letz= e* 0 € [—m,0) U [27,3
[(2) lan= —f(2) |y, s0 we-have

N N [©

L 0 9cit r Zietd
fbg mdz 1 f—” I 2gew,zkd0 < fo T .j%eie_zk i
k=1 k=1
= 0.2196815

Using the same way before. ~Consider equivalent path by = b5 U —2 5
2U—2+¢--2U2— 4U2 ;-4

e - :
— ol e e e .
e B B 1 3 | e o
P 9 n 2 4ty T8

Figure 42. The equivalent path b;.

1. Analysis the integration over by on sheet-1 in theory

(a) —2 5 2 : the path along z-azis from —2 to 2 on sheet-I.

z— 2k = |2 — 2] then\/zl_izk:p—zk]_%,k;:(;j
Z—Z2r = — ’Z — Zk:‘ = ’Z — Zk‘ ei(_ﬂ') then \/217716 — ‘Z — Zk’_% el(%) —

ilz— 277k =1,2,3,4,5,
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2 - )
dz—/i5H z— 2zl 2dz
/2_>2 f(z) 2 k=1| g

(b)) —2«-2= -2 &£ 2 j.e. the path on horizontal cut from 2 to —2
on (—)-edge in sheet-1I equals the path on horizontal cut from 2 to

—2 on (+)-edge in sheet-1. So we consider z € —2 s

1
Z_Zk:|2—2k| then\/zl—izkzk_'zk’ 2 k=67

Z—Zk:—|Z—Zk|:|Z—Zk|ei(_ﬂ’) then\/li |Z—Zk| 26(§):

ilz— 2] 7 k=1,2,3,4,5

/2@2 ﬁdz - /zeg f(lz)d

-z / z5H|z—zk| 2>
| =

(c) 2 —4°: the path along x-axisfrom 2 to 4 on sheet-1.

z— B= |z — z] then\/zl_izk:|z—zk|_%,k:5,6,7

z— 22 o 2 — BN |azihel S E then \/21_7 =z — zk|_% e(3) =

ilz— 2 20k =1,2,3,4,

S
s |
/ —dz—/z4H|z—zk| 2dz
o f 5 | k=1

(d) 2 «-- 4 : the path along x-azis from 4 to 2 on sheet-II. We known
in theory that f(2) |(n= —f(2) |1y , so we consider 2 «— 4

z— 2k = |2 — 2] then\/;j:|z—zk]_%,k:567

Z—Z = — ’Z — Zk| = ’Z — Zk| ei(—ﬂ) then \/zlfizk |,Z — Zk:| 2 e (%) —
1
ilz—zk]72,k=1,2,3,4,

[ - L

47 -3
= —/ i1 |z — 2| 2 dz
4 k=l
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By (a) , (b) , (¢), (d) , we have

/ L, / 1d+2/4'4ﬁ| "2 d
——dz = —dz i z— 2 z
v f(2) v f(2) 2 k=l

= 0.2196815

2. Analysis the integration over by in Mathematica

(a) =252 :
-z, = |z — 2z then\/zl_—zk:|z—zk|_%,k:6,7

(b) ~2

(c)2—4:
2z — 2k = |z — 2| then \/zl_—Zk: |z—zk|_%,k:5,6,7

z—z2p=— |2z — 21| = |2 — 2| € then ﬁ =|z— zk|_% ei=3) =

(_Z) |Z - Zk|_% 7k = 17273547

/ =k /2( )L |z~ Hd
——dz = —1 z—z z
9c 4 f(2) 4 k=1 g
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But in Mathematica we obtain different value

dz =10

wﬂ)

3. Using Lemma 6 to modify

(a)

(b)

(¢)

(d)

Byl.,

252

arg(z — z) = —7 then /z — 2z Math. —VzZ =z, k=1,2,3,4,5
arg(z — z) =0 then /2 — 2z Math. Vz—z2,k=6,7

@) M —f ()

—2¢--2=24 2. the path om._horizontal cut from 2 to —2
on (—)-edgein sheet-11 equals the path on horizontal cut from 2 to

—2 on (4)-edgéin-sheet-I. So we considerz €2 < 2
arg(zi=z) = —m-then /z— i 2N —/2 — ik =1,2,3,4,5
arg(z.— 2,) = 0 then \/z — 2 py 2 — 21, k=647

L FETE TG

2 — o

arg(z =z,).= — thén m G —/2z = 2k =1,2,3,4
arg(z—zk)—Othenm m,k—567

@) ")

2 «-- 4 : We known that-f(2)|(rn= —f(2) |1y , so we consider
24

arg(z — z) = —7 then /2 — 2 Math. —Vz =21, k=1,2,34
arg(z — 21,) = 0 then /2 — 2 Math. VZ— 2, k=5,6,7

S @) led ™ f(2)

2 P @) faea= —f(2) s £ (2)

2., 3. and Cauchy Integral Theorem

sz ﬁdz = fb* 1 HOLG

ath.
Mat fb* o dz—|—2f2 1;[ |z — zi|” 3 dz

= 0. 2196815
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by : Let by is a cycle which center at % with radius 6. So we could write
down the parameter, let = = 3 + 6¢",0 € [—m,0) U [2m,37) . Notice that
[(2) lan= —f(2) |(1),s0 we have

0 - 10 ™ - 10
/ 1dz :/ 6ie d@—/ . 6ie 40
b f(2) - 0 H\/(§
=1V ‘2

T ’ 3 i0 .0
121\/(5—{—661)_2’“ +661)—2k
= 0.4132335

Using the same way before. Consider equivalent path by = b3 U b; U4 =5
5U4¢--5U5—>TUB«--7

_* ...........................................................................
[ LA 1 —N ] 1 __..
i — oy 7 Tok &\ AE

Figure-43.-—~The equivalent path 07 .

1. Analysis the integration over by on sheet-I in theory

(a) 4 55+ the path along x azis from 4'to 5 onl sheet-1.

z — 2= 2 then\/zl_—%:|z—zk]7%,k:4,5,6,7

Z—2Z = — ‘Z N Zk| = |Z — Zk| ei(_ﬂ) then, \/zl—izk — |Z — Zk|_% el(g) —

iz — 27 K =1,208,

L R i
1ty f(2) Z—/42k=1|2_2k| :

(b) 4 «== 5 =4 & 5 i.e. the path on horizontal cut from 5 to 4 on
(—)-edge in sheet-1I equals the path on horizontal cut from 5 to 4

on (+)-edge in sheet-1. So we consider z € 4 & 5

z— 2z = |z — 2 then\/;ﬁ:|z—zk]_%,k:4,5,6,7

z—zp = — |z — 2| = |2 — 2| € then — =7 2] 2 ei3) =

ilz— 277 k=1,2,3,
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1
——dz = / ——dz
/46__5 f(z) sks f(2)
7 1
= /E; Z3k1;Il|Z—Zk|_§ dz

(¢) 5 — T : the path along x-axis from 5 to 7 on sheet-1.

z— zp = |z — zi| then \/Zl_—2k= |z—zk|_%,k=3,4,5,6,7

Z2—Zp = — |Z — Zkl = |Z — Zklei(—ﬂ) then \/zl—_zk = IZ — Zlc|_% 61(%) —
1
ilz— 2|72, k=1,2,

() 5

5 B
= —/iH|z—zk| 2dz

7 7 1
—dz = —dz+2/ P2 T1 |2 — 2| 2 dz
b* b* k=1
= 0.4132335

2. Analysis the integration over by in Mathematica
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(a) 455
z— 2, = |z — 2| then \/zl—_zk: |z—2k|_%,k=4;57677

Z— 2 = _|Z_Zk:| — |Z_Zk;|€i7r then \/zl—_zk o |Z_Zk:|_% ei(—%) —

(—i) |z — 272, k= 1,2,3,

[, gt = [P —aia
750z = —1 z— 2z ?az
ats f(2) 4 k=1 :

(b) 4«5 :
z— 2 = |z — x| then == | ;,k:4,5,6,7
2=z =— |z — 2|72 €i02) =

1 7 1
——dz = )21 |2 — 24| 2dz
| te= [ =l

(d) 5«--T7:
t— 2=z -zl then A= = |z — [ 7* k=3,4,5.6,7
z—z2p=— |2z — 21| = |2 — 2| € then \/zl_—zk = |z—zk|_% el=%) =

(=) |2 — 2|72 k= 1,2,

/ Bl /5( VL |z — ol d
—az = —1 Zz—Z Z
5e--T7 f(Z) 7 k=1 b

103



But in Mathematica we obtain different value

1
T dy =
TR

3. Using Lemma 6 to modify

(a) 455 :
arg(z — z;) = —7 then /z — 2z "2 —/Z = 25,k =1,2,3,
arg(z — z;) = 0 then /2 — 2 Math. Vz— 21,k =4,56,7
I —f ()

(b) 4 «== 5 = 4 & 57j.e the path on-horizontal cut from 5 to 4 on
(- )edge in“sheet-11 equals the path_on horizontal cut from 5 to 4

on (+)edge in sheet-I.-S0 we consider.z €4 5
arg(z=2x) = —w-then /2= 2z ' 2= ek =1,2,3,
arg(£"= 2,)=10 thenn/z — zp 2 /z —zpk = 4,5.6,7
L IEE 1)

(c) b— Tu:
arg(z'—zp) = —m then /2 — 2 Math. 7z = 2k = 1,2,
arg(z = zp) = 0 then /2 — 2 Mgth. VZ— 2k =3,4,5,6,7
1) 4@

(d) 5 «-- 7 : We knownthat f(2) |any= —=f(2) 1) , so we consider
DT

arg(z — z,) = —7 then /z — 2z 2" —/z = 25,k = 1,2,

arg(z — z;) = 0 then /2 — 2z Math. Vz— 2,k =3,4,56,7
f(2) lsr" =" f(2)
[(2) lse-r==f(2) s =" = f(2)

By 1., 2., 3. and Cauchy Integral Theorem

1 _ 1
bt = by e ]
Math. 7 1
= fb; ﬁdz—i—?ff) klel|z—zk| 2dz

= 0.4132335
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5.2 The detalils of the previous examples in section 2.2

Example 68 FEuvaluate the integrals of 1/ f(z) over a,b cycles for vertical cut
where f(z) = +/(z —1)(z — 2i)(z — 3i) (2 — 5i)(z — 6i)(z — 8i).

Figure 4 4. path a and.its equivalent path a*.

Solution:

1. Compute fa{ ﬁdz where aj s an equivalent path for a; and aj is the

path along vertical cut from 2i to i on (+)-edge of sheet-I (called af,)
and then back from i to 2i on (—)-edge of sheet-I (called ai,).

(a) aiy : Let z =ri where r : 2 5 1 and dz = idr

i. Analysis in theory :
Since z — ki = |z — ki| €8k 50 we consider arg(z — ki).

. 3 1 3
arg(e —1) = —gr=an(m=)=7
1 1
arg(z — ki) = —=m = arg( ‘):z,k:2,3,5,6,8
2 Vz—ki 4

we have
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S = (I | k()R
flz) k::l,k;é4,7z ! ete
3 1
— LT3 2w
= (ki)

8 1
= (L, e —Hkil2)
= R
Analysis in Mathematica (no matter in which sheet) :
Since z — ki = |z — ki| e'8=k) 50 we consider arg(z — ki).

. 1 1 T
arg(z — i) = §7r:>arg( z—z‘)__z
. 1 1 T
arg(z = ki) = —-m = arg( ) =—,k=2,3,5,6,8
2 S 4
we' have
1 8 sp=d _z T\5
f(Z) — (k:15€1¢4’7‘z > k"&| 2)(6 4)(64)
R 4
S it
8
"\ 18S8)ly/
= —R

Compare with.(i.) and (ii.) we” find that when we want to
obtain true/value, the value which we have from Mathematica
should multiply (=1) , i.e.

sign(f(Z)l(f)) = (=1)sign(f(2)|mathematica)

Using the Lemma 15 to modify :

3 1 a 1
arg(z —i) = —§7T=> .M:th' (-1)
2 —1 z2—1
1 1 a 1
arg(z — ki) = —=m= Math k=2.3,568
2 z—1 z— ki
we have




The same result as above difference between in theory and in
Mathematica , the difference is a minus sign.

(b) aiy : Let z =ri wherer : 1 — 2 and dz = idr

i. Analysis in theory :
Since z — ki = |z — ki| e'*8=k) 50 we consider arg(z — ki).

(2—i) = m=> ag(—m—) =2
argl\z — 1 = —TT ar [
& 5 8 = 1
(2 — ki) L arg(———) = T £ —2,3,5.6,8
arg(z — ki) = —=m = ar =—,k=23,5,6,
& 2 & Vz—ki
we have
1 8 . _ 5
i3 (o IL, 12— R ) (e)
8 A \\
=—CIIL, 12 =kilT2) ()
il S 1
= — 2 —
(I, 12 =Rl 72) (=)
- _R

ii. Analysis in Mathematica (no matter in which sheet) :
Sinee z — i = |z — kil 2 28C"k) 5o we consider arg(z — ki).

arg(z =1) 1:>ar( : ) T
§ - Mo Y
5 2 8 % 1
1 1 T
£ ) S —e — T k=92356.8
arg(z — ki) 57 arg(m)
we have
L (T |- ki (e T (el
flz) k:l,k;é4,7z ! € €
8 L1 x
= (L e Bl
8 1
= (L, o=l
= —R

Compare with (i.) and (ii.) we find the value is same.

113. Using the Lemma 15 to modify :
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arg(z —i) = —m= - ="

arg(z — ki) = —5T = - =" = ,k=2,3,5,6,8

we have

1 Math. 1
f(z) f(2)
The same result as above.

By (a) and (b) above , we have

/—dz = /—dz

1
= S L
ajy f( ) ¥ ajy f(Z) €

y 8

— —2/( |ri — ki]_%)idr
o k=1k=£4,7

= 0.—-0.531987¢

2. Compute fa; ﬁdz where as s an-equivalent path for as and aj is the

path along vertical eut from 5i to 3i on (+)-edge of sheet-1 (called a%;)
and then back from 3i te.5i on (—)-edge-of sheet-1 (called a3.,)

(a) a}y : Let z =ri wherer:5 >3 and dz = idr

i. Analysis in theory :
Since z — ki = |z — ki| e'*8=k) 50 we consider arg(z — ki).

3 1 3
arg(z — ki) = —§7r:>arg(m):£,k 1,2,3
1 1
arg(z — ki) = —§7r:>arg(m):%,k 5,6,8

we have
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1 8 J S 3m\3, T\3
S= (I | k(e eR)

f(2) k=1k£4,7
3 1
_ L—E\/ .37
SR ER [ Cy
8 1
— _ 2)(—
(L, 12 = ki H(-1)
= —R

it. Analysis in Mathematica (no matter in which sheet) :
Since z — ki = |z — ki| €8k 50 we consider arg(z — ki).

1 T

1
arg(z — ki) "= 5 = arg(m) = —Z,k =1,2,3
1 1
arg(z = ki) = —oT = arg(m) = %, k=25,6,8
we have
1 ™

1
_3 i3 (19
— (U K
il T2
— k2
(kzl,k7é4,7‘z 5
= R

Compare with.(i.) and (ii.) we” find that when we want to
obtain true/value, the value which we have from Mathematica
should multiply (=1) , i.e.

sign(f(Z)l(f)) = (=1)sign(f(2)|mathematica)

1. Using the Lemma 15 to modify :

. 3 1 Math. 1

arg(z — ki) = T = Ny o (—1)m,k:1,2,3
‘ 1 1 Math. 1

arg(z — ki) = —§7r:> Nepyr o m,kzzS,G,S

we have




The same result as above difference between in theory and in
Mathematica , the difference is a minus sign.

(b) ab, : Let z =ri wherer : 3 — 5 and dz = idr

i. Analysis in theory :
Since z — ki = |z — ki| e'*8=k) 50 we consider arg(z — ki).

arg(z — ki) = —m = ar =—k=1,2,3
(e = ki) = 57— arg(o——) = ]
1 1 T
arg(z — ki) = —=m = ar =—k=5,6,8
(e = ki) = —5m = arg( =) = |
we have
1 = 8 gL _T™\3, T\3
f(Z) " 4 (k:1712¢477|2_k2| 2)(6 4) (6 )
8 1
— =3\ /.0r
= T, 2= i) (%)
iy o
— _ 2
(kzl,k7é4,7 Z
= R

ii. Analysis in Mathematica (no matter in which sheet) :
Sinee z — i = |z — kil e2?8C"k) 5o we consider arg(z — ki).

1 1 T
arg(z — k1) = —m=ar =—k=1,2,3
1 1 T
arg(zi— kiyw=_——n = ar =—,k=25,6,8
we have
L (T |- ki (e TRy
f(z)  Ck=lhat oM € €
8 1
— _ LilT32 (0
= (L, 12— i)
3 1
- (k:1,lg¢477|z_k2| ’)
= R

Compare with (i.) and (ii.) we find the value is same.

113. Using the Lemma 15 to modify :
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) 1

arg(z — ki) = oT = — —
. 1 .

arg(z — ki) = —57 = — = )

we have

1 Math. 1

) 1)

The same result as above.
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Figure 2.5. b and equivalent path b*.

(a) b, :wdet z =ri where r : 6 = 5and dz = idr

i. Analysis in theory:
Sinee 2 — ki = |z — kil '8k 50 we consider arg(z — ki).

1 3

3
k) = o> =—,k=1,2,3,5
arg(z = ki) 57 arg(m) 1
1 1 s
a —kr) =, — -7 —ar =—,k=6,8
el S0 ey =) - |
we have
1 . 8 g—1 3T\4, T\9
R R EONE)
— (T ki]2)(ea"
= (L, e )
8 a1,
= (L, e )
= (—i)R

it. Analysis in Mathematica (no matter in which sheet) :
Since z — ki = |z — ki| e'*8=k) 50 we consider arg(z — ki).
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1 1 T
— ki) = = =——k=1,2,3,5
arg(z — ki) 57 arg(m) 1
1 1 T
a —ki) = ——m=a =—k=06,8
el — ki) = 57 > (o) = |
we have
1 . 8 g1 _T\4, T\9
5 L o EThE D)
l 57
= (L, o= )
8
= (k:17k¢4,7|2_k2| 2)(—1)
=" (—i)R

Compare with (i.) and (ii:) we find the value is same.

1. Using the Lemma 15 to modify :

3 1 A 1
arg(z_ki) — _§7T:>mM:th'_ Z—k‘i’k:1,2,3’5
1 1 " 1
arg(z — ki) = 5= — Math _Z_M,k:6,8
we-have

T wian. 1

) Pyatfia

The same result as above.

(b) by, : We known that f(z) |in= —f(2) |1y , so we can consider
bss is the path along vertical line from 5i to 61 on sheet-I .

Let z = ri wherer : 5 — 6 and dz = idr

i. Analysis in theory :
Since z — ki = |z — ki| e'8=k) 50 we consider arg(z — ki).

3 1 3

arg(z — ki) = —§7T:>arg(m):£,k:1,2,3,5
1 1

arg(z — ki) = —iﬂﬁarg(m):%,k:fiﬁ

we have
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‘ '_l

f(2) k=1,k44,7
A
= (L, |2 = ki)
8 _1
= (L, e k()
= (—i)R
Hence

k=1k#4,7

8 1 .
= (I, ek
= ()R
Compare with (i.) and (ii.) we find that when we want to
obtain true value, the value which we have from Mathematica
should multiply (—1) , i.e.

sign(f(2)|(n)) = (—=1)sign(f(2)|mathematica)

1i. Using the Lemma 15 to modify :
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3 Math
— ki) = -2 £ k=1,2,3,
arg(z — ki) 27T:> 2z — ki 2 — ki /28,5
_ 1 1 Math 1 _
arg(z — ki) = —57 N m,k—6,8
we have
1 | Math. 1
b** p—
f(z) 7% f(z)
and
1 | 1 = 1
vl N | S A
f@) =7 f(z) 7% f(2)
Hence
1
—dz = ——dz
by S b3 f(2)
1 1
> —dz—l—/ —dz
b3, f(2) b3, f(2)
> g sy /
= ~dr+ ———dr
6 fri) 5~ of(rd)
6 8 g1,
= —2/ (k 1k#47|m ki|~2)idr
5

—0.645057 0.2

4. Compute |, b 7

dz where b} is an equivalent path for by and bj = b5 U

bi, Ubj, U b"{3 U b>{4 where by, 1s the path along vertical cut from 5i to 3i
on (+)-edge of sheet-1, bi, is the path along vertical cut from 3i to 5i
on (—)-edge of sheet-11 , by, is the path along vertical line from 3i to 2i
on sheet-1, bi, is the path along vertical line from 2i to 3i on sheet-1I .

(a) b3, = a%, : Done .

(b) b1y, = the path along vertical cut from 3i to 5i on (+)-edge of

sheet-1 .
Let z = ri wherer : 3 — 5 and dz = idr

i. Analysis in theory :
Since z — ki = |z — ki ol arg(z—ki)
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3 1 3T

arg(z — ki) = ——-m = ar =—,k=1,2,3
Ble—ki) = —gm= el Z=5) =7
1 1 T
arg(z — ki) = ——m = ar =—k=25,6,8
Ble—ki) = —gm=an( =)=
we have
L (T e ki R (e )iy
flz) k::l,k;é4,72 ! € ¢
3 1
_ BRI AYx L
S R

8 L1
= GO IR -

= (=R
it. Analysis in Mathematica (no-matter.inwhich sheet) :
Sinee #— ki=|z= ki| e’ ®8Ek) 50 we consider arg(z — ki).

1 1 T

arg(z — ki) = —m=-ar =——k=1,2,3
1 1 T
a —ki) = ——m=a =—k=5,6,8
we_have
1 B 3 g1 7 3, T\3
Fons (L, 1= - kAR )
3 1
vy _ LilT3 om
SR he

3 1
= — kil 2
<k:1,ll_cI;£4,7|Z kil %)
= R
Compare with (i.) and (ii.) we find that when we want to
obtain true value, the value which we have from Mathematica
should multiply (—1) , i.e.

Sign(f<2)’(1)) = (=1)sign(f(2)|mathematica)

1i. Using the Lemma 15 to modify :
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arg(z — ki) = ——m= =" (-1)
1

arg(z — ki) = —=m

we have

L math 1
e Ve

The same result as above difference between in theory and in
Mathematica , the difference is a minus sign.

(c) bis : Let z = ri'where r+3=>2 and dz = idr
i. Analysis in theory :

Since # < ki = |z — ki| e’ @Gk 50 we consider arg(z — ki).

1 3T

3
~ ki) = =tms = k=12
arg(z — k) 5T arg(m) 1
1 1 T
a — ki) = ——n1=a = — k=3,5,6,8
we_have
1 » 8 =24 BT\o, T4
T e e TS
SS—. kil ) (e
etz ) (o)

ii. Analysis in Mathematica (no matter in which sheet) :
Since z — ki = |z — ki| e'*8=k) 50 we consider arg(z — ki).

1 1
arg(z — ki) = Eﬂéarg(m):—g,k—lﬂ
1 1
arg(z — ki) = —yr:arg(m) %,k:3,5,6,8

we have
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= (I k(e e

f(2) k=1,k£4,7
= (L, =kl 3t
8 Sl
= (L, == kil 50
= ()R

Compare with (i.) and (ii.) we find the value is same.
1. Using the Lemma 15 to modify :

3
arg(s — ki) = ¢ LRE ath (g k=12
rg(z = k) T, Vo
) 1 1 Math. 1

arg(z= ki) = ——-m = ES ,k=3,5,6,8
8 ) 27T ez —ki 2 — ki
welhave

1 Matt: 1

f(z) f(2)

The same result as above:
(d) by, " We known that f(2) |an= =F(2) |1y ; 50 we can consider
bis is the path alongwertical line from 20 to/3i on sheet-1 .
Let z =ri where 72 — 3 anddz="7dr

i. Analysis intheory :
Since 2 —~ki'= |z ki| '8k S50 e consider arg(z — ki).

1 1 T
a — ki) = —m=a =——k=1,2
1 1 T
arg(z — ki) = ——m = ar =—k=3,5,6,8
sz~ ki) = —gm = ar( =)= ]
we have
1 . 8 g=1 _T\9, T4
5 = Lol ke
= (L, |2 ki)
8 S
— _ 2
(L, 12 = ki)
= ()R



Hence

7o e = U7

Analysis in Mathematica (no matter in which sheet) :
Since z — ki = |z — ki| €8k 50 we consider arg(z — ki).

1 1 T
a — ki) = —m=a =——k=1,2
1 1 s
arg(z— ki) ="=—m= ar =—,k=3,5,6,8
s ===~ 1
we have
1 - 8 gl _T\2, T\4
7 =L gy 1 R e )
I kil =) (ea™
— y 2
(I AT

Compare with (i.) and (ii.) we find that when we want to
obtain truewalue, the value which we have from Mathematica
should multiply (=1), i.e.

sign(f(2)|ny) = (=1)sign(f(2)|mathematica)

Using the Lemma 15 to modify :

. 1 1 Math. 1
arg(z — ki) = §7r:>m = \/m’k:1’2
1 1 ” 1
we have
1 Math. 1



and

1 L 1
) oz, = (—1)m o= ( Df(z)

Hence , by (a) , (b) , (¢) , (d) and Cauchy Integral Theorem
, we have

SEL ST
AL L L L

2)/ (k 1k¢47|m ki|~ 2)zdr

3 1
B N
+( 2)/2 (k 1]#47]7‘2 ki|"2)idr
= —1.40245 + 0.

Example 69 Compute the integrals of 1/ f(z) over every cycles in the Figure
below where

f(z) = \/(Z =21) (2 — @)@ — 2)(z — 2 )(z — 25)(2 #/26) (2 — 27)(2 — 2)

for z1 = =2 — 4,28 = —2F 0,23 = =1 —dy2p = —V+iyzs = 0+ 00,25 =
0+Z,Z7:1+Z,28:1+2Z

Figure 46. cycles ay, as, a3 and equivalent pathes a3, a, aj.
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Solution:

1. ay cycle : Let a7 = aj; U aj,y is the equivalent path for a; where a3, is
the path from Zy = —2 — i to Z3 = —1 — i on (+)-edge of sheet-1 , al,
is the path from Zs = —1 —1i to Zy = —2 — i on (—)-edge of sheet-1.

(a) al; = —2—i =5 —1—i.
Let z=—-2—i+r(l)=(r—2)—

wherer:Oil,anddz:dr.

We have
1 Y sl
faﬁ mdz M—h f_g_ii—l—z‘ f(2) dz
ath.
- f 2—4——1— 7,( 1)ﬁdz
= fo Wdr

(b) afy = =1/—i — =2=4.
Let = F2= i+ (1) = (r —2)¢%
wherer : 1 — 0, and dz = dr-
We have

1 P 1
Jag f(z)dz = L a#
f 1— z~> 2= zfl dz

fl fl(r— 2) 1)dr

1 _ 1
fal mdz - ai f( z) T dz
= f f(z dz+ f12 o] dz

=2 f((rf2)fi)d
- 0.124401 — 0.0468335i

2. ay cycle : Let ay = a3, Ual, is the equivalent path for ay and where a3,

is the path from Zg = 0+ to Zs = 0+ 0i on (+)-edge of sheet-I , a,
is the path from Zs =0+ 0i to Zg = 0+1i on (—)-edge of sheet-I.
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(a) a5, =0+4i—0+40i
Let z=04+i+7r(—i) =0+ (1 —1)i
where - 051, and dz = (—1)idr.

We have
1 _ 1
fa§1 mdz M_th fo+iio+0i f(2) dz
ath. 1
f0+z—>0+0z( 1)mdz '
= f() F(0+( 1 —7)%) (—1)Zd7"

(i) Jy md

(b) a3, =0+ 0i — 0+
Let z=04+%+71(~1) =0+ (1 —r)i
where r * 10 , and dz = (=1)idr.
We have

Jus, 7592 M:th Josoimor: T
- f0+0H0+z f1 dz
fl f0+—17")z)( 1)idr
1229 T

1 . 1
Jo 5% = JuT ok 1
= Juy, 7%+ g, 7

= 22 ) Jo Fora o
1.22423 + 0.5082461

3. ag cycle : Let a3 = a3 U as, is the equivalent path for as where a3, is
the path from Zg =1+ 2i to Zy = 1 +1i on (+)-edge of sheet-1 , a3, is
the path from Z7 =1+ to Zs = 1+ 21 on (—)-edge of sheet-1.

(a) afy =142 51+
Let z=14+2i+7r(—i)=1+(2—1)i
where - 051, and dz = (—1)idr.
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We have

fa;’sl ﬁdz MZh f1+2ii'>1+i ﬁdz
i,
= Jo e
= ) Jo saremdr
(b) a3 =1+i—1+2i
Let z=14+2i+r(—i)=1+(2—1)i
wherer :1 — 0, and d )
We have

Example 70 Compute the integrals of 1/f(z) over by cycle in the Figure
below where

F(2) = V(2 = 21)(z = 2)(z = 23)(2 = 2a) (2 — 25) (2 — %) (2 — 21)(2 — 2)

forz1 = =2 —i,20 = =2+ 14,23 = =1 —i,2g = =1 +14,25 = 0+ 00,25 =
0+’L,Z7:1+’L,28:1+22

123



Pk # 73
b, b,
> PO _Ia
22 : zﬁ A 22 e Ep— .zﬁ
TZ4 ;/ -A 77 . 23
= »R —t »R
1 - 73 I
1 =+=23

Figure 47. Cycle by and equivalent path b3.

Solution:

Let b5 = b3, U b3y Ubsa Ubs, U bss U by U bs, Ubsg 45 the equivalent path for
by where by, is the path from Zy = —2 +i.to~2 +0i on sheet-1, bs, is the
path from —24-0i to.Zy = =2—=1i on sheet-1 , bi, is the path from Z; = —2—1i
to Z3s = —1 — i on (+)-edge-of sheet-I , b, is the path from Zs = —1 — i to
—1+ 07 on sheet-I | by is the-path from =1 +0ito Z5 = 0+ 0i on sheet-I,
by is the path from Zs = 0+ 0i to Zg =0 +i on (—)-edgeof sheet-1I , b,
is the path from Zg = 0+ 1 to Zy = —1+4 on sheet-1I , bis s the path from
Zy=—1+1itoZy = —2+1i on (=)-edge of sheet-1I.

1bY) = —2 i 2 + 0i
Let z = =2 +d+r(—2i)= -2+ (1 —2r)
where r: 0 — £ {and dz.= (—2i)dr.
We have

fb;l f(lz) dz MZh Joovin—2os ﬁdz
= f—12+i—>—2+0i(_1)ﬁdz
= fog(—})m(—%)dr
= (22) foE mdr
2 by = —240i > —2—1i
Let z= =2+ i+7r(—-2i) = -2+ (1 —2r)i
where r: 3+ — 1, and dz = (—2i)dr.
We have
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fb* f(lz)dz = L 240i——2—i f(z)dz

Math.
- f 2+Oz—> 2 —1 f(z)d

- f f( 2+(1 21")1)( 2)dr

fmd

3. by =—2—i5 —1—i
Let z=—-2—i+r(l)=(r—2)—i
wherer:0i>1, and dz = dr.
We have

b

Let z = —1
where r : 0
We have

Ldz

fb;4 ﬁdz S 140i ()

Math.

f 1—i——1+40¢ f(z)d

= fo _f_( 1+(r_1)z)2d7"

i Jy s dr

5. by =—1+4+0i— 0+ 0¢
Let z=—-14r(l)=r—1
wherer : 0 — 1, and dz = dr.
We have

125



1 _ 1
fb* iz = f_1+0i—>0+0imd

Math. 1
f—11+Oz—>O+OZ( 1) Tz

= fo For— 1)dr

= fo f(r ) e dr

6. bys=0+0i--+0+i
Let z=0+7ri=r1ri
where r : 0 --+ 1, and dz = idr.
We have

7. 05 =0+1
Let z =i+ (=1
where r : 0 --»
We have

1 _ 1
fb* @ T2 o fO—i—z——-) 1+i f(2) df
= fO—i—z—» 1—|—z( ) f(z) T de

f0—|—z—> 147 f(z)d

fo f( r+z)( 1)dr
————=dr

Math.

fO F(=r+i) r—i—z)

8 byg=—1+i--»—-2+i
Let z=—14i+r(—-1)=(-1—7r)+1
where 7 : 0 --» 1, and dz = (—1)dr.
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We have

1 _
szg =

1
f—1+z‘-?+—2+i @d'z

71+2H 2+i f(2) dZ
Math.

f 1+i——2+1 f(z)dz
fo 7 —}—T)—i—i( L)dr
1
1) fo f((—l—r)+i)dr

Byl ,2 ,3. ,4.,5 ,6.,7.,8., we have

fb2 ﬁdz = fb* f(lz dz
fo md” 200 [s iz dr
Math fo = = z)drﬂfo et 0"
fo o 1)d7"+ fo f1 dr:
fo 7( w+z)dr+
0869165 0.5770734

fO Fl(=1— r)+z)d

Example 71 Compute the integrals of 1/f(2) over bz cyele in the Figure
below where

f(2)

forz1 = =2 — 0,20 = 2 4 diag = —1 —ayz = =1 +4,25 = 0+ 00,25 =
0+i,27:1+i,28:1+2i.

\/(Z —a)(@s ) Z = 2)(z — 20)(z — 2)(2 5, %6) (2 — 27) (2 — 2)

s

Figure 48. Cycle by and equivalent path bj.
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Solution:

Let b5 = b}, U biy U big U by, U D55 U b3g U b3, U blg U bk U b5, U bS, U bs, is
the equivalent path for by where by, is the path from Zy = =2 +1 to —2 + 07
on sheet-1 , bs, s the path from —2 4+ 0i to Zy = —2 — i on sheet-1 , bi; s
the path from Zy = —2 —i to Z3 = —1 — i on (+)-edge of sheet-I, b, is the
path from Zs = —1 —i to —1 4 0t on sheet-1, bi; is the path from —1 + 0i
to Zs = 04 0i on sheet-1, by is the path from Z5 =04 0i to Zg =0+ on
(—)-edge of sheet-I, by, is the path from Zg =0+1i to Zz =1+ i on sheet-1
, big is the path from Z; = 141 to Zs = 1+ 2i on (—)-edge of sheet-1I ,
by is the path from Zs = 1+ 2i to Z; = 1+ i on sheet-1I , b, is the path
from Z7 =141 to Zg = 0+ 1 on sheet-1I , b}, is the path from Zg = 0+ to
Zy = —1+1i on sheet-1I , b, is the path from Zy = —1+1 to Zy = =241 on
(—)-edge of sheet-I1.

1B = —2+i —. 22400
Let z = =2+ 014 7(=2i) = -2+ (1 —2r)
and-dz= (=2i)d"

where r : 0= L

2 )
We have

1 _ 1
Itz = Uldlidls i

Math. _
= f_2+1-+2+0i(—1)md2

S I | — (2i)dr

1—2r)7)
dr

1
=20 )y’ 7=

—~
— o~

2. by =—240i > —2—1i
Let z = =2+ i+r(=2i) = -2+ (1 —2r)i
wherer: 3 — 1, and dz = (—2i)dr.
We have

1 _ 1

by 759 = Jaroia 7902
Mith. 1

= f712+0H727i %
1 .

Jy sy (—20dr

. 9 1 1
= (=29 fé Feari=z
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3 by =—-2—i5 —1—i
Let z=—-2—i+r(l)=(r—2)—1

wherer:Oil,anddz=dr.

We have
1 _ 1
fb* f(z)dz M_h f2 z—> 1— zf(Z)dZ
ath.
= f 2—4——1— z( ) l)dz
= fo 7= 2) dr

~dr

5. b =—1+0i =0
Let z=—-14r(1)=r—

wherer : 0 — 1, and dz = dr.

We have
1 _ 1
fb* o = f—1+0i_>0+0imdz
Math. 1
= f—11+0z—>0+02( 1) f(z)dz
= fO f(r— 1)d7"
= fo f(r i) o dr
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6. by =0+0i > 0+i
Let 2z =0+r(i) =11

wherer : 0 — 1, and dz = idr.

We have
1 _ 1
fb* f(Z)dZ - f0+01—>0+z f()
M=h 04+0i—0+7 f(z )d
ath. 1
- f0+01—>0+z f(z )d

big=1+4i--»1+2i
Let z=1+i+r(i)=1+(r+1)i

where r: 0 --» 1, and dz = (i)dr.
We have

1 _
fb* 7@ Tl = f1+z---)1+21 f(Z) o

Math 1+ib142i f( Z)

ath. 1

- f1+z—>1+21( )f(z) dz
fO 1-|—(r-|—1)z ( )d?"

1
fo FO+(r+D)0) dr
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9. by =1+2i -2 1+
Let z=1+4i+r(i) =14+ (r+1)i
where 7+ 1 -2 0 , and dz = (i)dr.
We have

1 _
fb* f(z)dz - f1+21-—-)1+1 f(z) dz

1+2i—1+41 f(z) dZ
Math

1
f10+21—>1+z f(z) 747

10. b3, =1+1i --+01 /-

11, b5 =0+i--»—1+i
Let z=0+i+r(—1)=—-r+i
where r : 0 --» 1, and dz = (—1)dr.
We have

fb* (z) - f0+z’——+—1+i f(lz)d
1
= fO—i—z—) 1+z(_1) (z)dz

f0+z—> 144 f(z)d

- fo f( 7‘—|—z)( L)dr
————dr

Math.

fO f( 1"+z)
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12 b5, = —1+i--> 2+
Let z=—-1+i+r(—-1)=(—r—1)+1
where r: 0 --» 1, and dz = (—1)dr.
We have

1 _ 1
b 7% = L 7@ a
- f—1+7,—> 241 f dZ
Math. d
f 1+i—— 2+2 f(z) <
= fO f (— r 1)—H)< 1)dT’

— 1
X fO T 1)+'L)d

Byl ,2 ,3. ,4 ,56.,6.,7 ,8.,9.,10., 11., 12. , we have

fb3 ﬁdz f fb* f(lz dz
fo f( 2+(1 2r)z)dr+ —2i) f f 1 2r))dT
fo f(r 2 1)d7“+zf01 T 1+7" 1))d
( fo T 1)d7’+2f0 o) d"’+ 0 f7“+7, dr
(=24 fo f(1—|—(r+1 z)dr+ fo e 7“)+7, dr

( 1f0f 7‘+sz+ fOf(Tl)-Hdr
=< =0:405194 — 0.115625:

I
_l’_

++

5.3 The details of the previous computation in section
2.3 .

First , we will compute the integral of 1/f(z) over ay, as, as, a4, as cycles in
the Figure 45 below where

f(z) = I V(2 = 2)

and Z; = —6.58948 + 5.23118; , Zy = —6.58948 — 5.23118¢ , Z3 =
—6.31381 + 1.46139: , Z, = —6.31381 — 1.46139: , Z; = —4.68652 + 0.0¢
, Zg = —1.57080 + 0.0¢ , Z7 = 1.57080 + 0.0¢ , Zg = 4.68652 + 0.07 ,

Zy = 6.31381+1.46139: , Z19 = 6.31381 —1.461397 , Z1; = 6.58948+-5.23118:
, Z12 = 6.58948 — 5.23118s.
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Figure 49. a1, aq, as, aq, a5 cycles and its equivalent path aj, a3, a3, aj, a;.

Let a} = aj, Uaj, is the equivalent path for a; where aj; is the path from
Z3 = —6.31381+1.46139i to Z4 = —6.31381—1.46139i on (+)-edge of sheet-I
, @34 is the path from Z; = —6.31381 —1.46139: to Zs = —6.31381 + 1.46139:
on (—)-edge of sheet-I.

1. a¥, = —6.31381 4 1.46139; — —6.31381 — 1.46139i

Let

—6.31381 + 1.46139i + r(—2.92278i)
= —6.31381 + (1.46139 — 2.92278r)i
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where r: 05 1, and dz = (—2.92278i)dr-.
We have

1 o 1
fail f(Z)dZ - f76.31381+1.461391'i76‘3138171,46139i (Z)d'z

Math. 1
f—6.31381+1.46139i—>—6.31381—1.461391‘(_ 1) f(z) dz

1 1 )
- fo (_1)f(—6.31381+(1.46139—2.92278r)i) (—2.92278i)dr

. 1 1
= (2.92278) [, 7(—6.31381+(1.46139—2.922781)7) dr

2. aj, = —6.31381 — 1.46139: — —6.31381 + 1.46139¢
Let

z = —6.31381+ 1.46139i + r(—2.922787)
—6:31381 + (1.46139 — 2.92278r)i

where 7 : 1L.—/0_, and-dz= (—2:92278i)dr.
We have

1 y 1
fafg f(2) dz \ f—6.31381—1.46139i:>~6.31381+1.461391’ f(z) dz
Math. 1
E —dz

f—6.31381+1.46139i—>—6.31381—1.46139i f(z)

- 0 1 .
= 7(—6.31381 (1.46139—2.92278r)7) (—2.922781)dr
—(2.92278 dr

1 1
)fo F(—6.31381+(1.46139—2.92278r)1)

By 1., 2., we have

1 — _1
Judz = gz X )
Math. (2.922781) fo 7(=6.313811 (1.46139_2.922781)7) dr
+(2.92278i) [} . dr
1

Nl
(5.845561) fo f(76.31381+(1.4613972.92278@1’)dr
9.52646 x 10718 4 0.00019783 74

F(—6.31381+(1.46139—2.922787)i)

Let a} = a3, Uaj, is the equivalent path for a; where a3, is the path from
Zs5 = —4.68652 + 0.0i to Zg = —1.57080 4 0.0¢ on (+)-edge of sheet-I, al, is
the path from Zg = —1.57080 + 0.0i to Z5 = —4.68652 4 0.0i on (—)-edge of
sheet-1.
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1. a5 = —4.68652 + 0.0¢ X _1.57080 + 0.0i
Let

z = —4.68652 4 r(3.11572)
—4.68652 + (3.11572)r

where 7: 0 5 1, and dz = (3.11572)dr.

‘We have
1 _ _1
fa§1 mdz = J —4.68652+0.0i5—1.57080+0.0i f() dz
Math. —1)-d
= f—14.68652+0.0i—>—1.57080+0.0i( 7 %%
1
= (_1)f(—4.68652+(3.11572)r) (3.11572)dr

= (311572 dr

1 1
)fo F(—4.68652+(3.11572)r)

2. a}, = —1.57080 + 0.0 = =4.68652 + 0.07
Let

z =7 468652+ r(3.11572)
— 0 -4.68652 4 (3:11572)r

where 7 : 1 =0, and dz.= (3.11572)dr-

‘We have
1 _ 1
fa32 f(z) dz = ffl.57O8O+0.0i374.68652+0.0i f(2) dz
Mith‘ Ld
= f61.57080+0.Oi—>—4.68652+0.0i =) 4%
_ 1
I F(—4.68652+(3.11572)r) (3.11572)dr

= (=3.11572) [y L dr

—4.68652+(3.11572)r)

By 1., 2., we have

faz f(lz)dz - fa; f(lz)dz
1
Math,  (—3.11572) fo f(74.6865241r(3‘11572)7°)dr
+(—3.11572) [ L dr

1
= (—6.23144) fo f(—4.68652-1-(3.11572)7"
2.31913 x 10~ — 0.000472233:

F(—4.68652+(3.11572)7)
)dr
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Let a} = a3, Uaj, is the equivalent path for ag where a3, is the path from
Z7 = 1.57080 + 0.07 to Zg = 4.68652 + 0.0¢ on (+)-edge of sheet-I , a3, is the
path from Zg = 4.68652 4 0.0i to Z; = 1.57080 + 0.07 on (—)-edge of sheet-I.

1. a3; = 1.57080 + 0.0¢ * 4.68652 + 0.0
Let

z = 1.57080 +r(3.11572)
— 1.57080 + (3.11572)r

where 7: 0 5 1, and dz = (3.11572)dr.
We have

1 d . 1
. =dz — —dZ
fa;ﬂ 1) f 1.57080--0.0i-54.68652--0.0i f(2)
Math.

1
- I EELD TS IZWIG ) OLE
311572)dr

dr

1 1
fO (_1) f(1.57080+(3.11572)7‘)(
= (-3.11572 :

)fo f(1.57080+(3.11572)r)

2. a}y = 4.68652 + 0.0i(—1.57080 + 0.0z
Let

z = 1.570804n(3.11572)
= 1.570804 (3.11572)r

where 7 : 1 — 0, and dz = (3.11572)dr.
We have

1 d _ 1

R Sy P _ ——dz
fa32 f(z) f4.68652+0.0i—>1.57080+0.0i f(z)
Math. 1

= ——dz

f4.68652+0.0i%1.57080+0.0i f(z)
! (3.11572)dr
1

0
f1 F(1.57080+(3.11572)r)

= (=3.11572) [ ¢ dr

1.57080+(3.11572)r)
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By 1., 2., we have

1 _ 1
fag mdz = o f(z)dz 1 1
Math.  (—3.11572) Jo J(L5T080+ B.11572)7) dr
= 1
+(—3.11572) fo f(1.57080+(3.11572)r)dr

1
= (—6.23144) fo f(1,57080+1(3.11572)r)dr
—2.23575 x 1071 + 0.000472233:

Let a; = aj; Uaj, is the equivalent path for a, where aj; is the path from
Zg = 6.31381 + 1.46139: to Z19 = 6.31381 — 1.46139i on (+)-edge of sheet-I
, @45 is the path from Z;9 = 6.31381 — 1.46139¢ to Zy = 6.31381 + 1.46139:
on (—)-edge of sheet-I.

1. a}; = 6.31381 +.1.46139: X 6.31381 — 1.46139i
Let

z = 6.31381 +:1.46139+ r(~2.92278i)
= 6.31381 4 (1.46139 — 2.92278r)i

where 7 : 095 1 , and dz =(—2.92278i)dr.
We have

1 N, 1
fazl f(Z)dZ o f6.31381+1.46139ii>6,31381—1.46139i f(Z)dz

Math,: 1
o f6.31381+1.461397,'—)6.3138171.461397,' (2) dz

—2.922784)dr

1 1
fo f(6.31381+(1.46139—2.92278r)i)(

. 1 1
= (_ 2 922782) fO £(6.31381+(1.46139—2.92278r)1) dr

2. aj, =6.31381 — 1.46139; — 6.31381 + 1.46139
Let

Z = 6.31381 + 146139 + r(—2.92278i)
= 6.31381 + (1.46139 — 2.92278r)i

where 7 : 1 — 0, and dz = (—2.92278i)dr.
We have
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1 d _ 1
——dz = _ —dz
fazg f(z) f6.31381—1.46139i—>6.31381+1.46139i f(z)

: 1
f6.3138171.461392’%6.31381+1.46139i( 1) f(z) dz

0 .
= Ji(=1) f(6.31381+(1.461139—2.92278r)i) (—2.922781)dr
—  (-2.92278

) J: ! L dr
0 F(6.313811(1.46139—2.922781)1)

By 1., 2., we have

1 _ 1
Jo 7l = o T 4% X )
Math. (—2.92278i) fo 1f(6.31381+(1.46139—2.92278r)i) dr
- 1
R(52:92278¢) fo 7(6.31381+(1.46139—2.922787)i) dr

Nl
= (=5:845561) [, f(6.31381+(1.461139—2.92278r)i) dr
= 19.52151 x 10~'® — 0:000197837i

Let af = af, Uaz, is the-equivalent path for as where az;-is the path from
Zy1 = 6.58948 +425.23118i.t0-Z15 = 6.58948 — 5.23118i on (4)-edge of sheet-I
, @ty is the pathfrom Zj5 = 6.58948 — 5.23118: to Z1; = 6.58948 + 5.23118:
on (—)-edge of sheet-I.

1. af, = 6.58948 + 5.23118i X 6:58948 —5:23118i
Let

z = 6.58048+ 5.23118i + r(—10.46236/)
= 6.58948% (523118 —10:462361)i

where r: 05 1, and dz = (—10.46236i)dr.
We have

1 d _ 1
——dz = ——dz

fagl f(z) f6.58948+5.23118ii6.5894875.23118@' f(2)
Math.

1
f6.58948+5.23118i—>6.58948—5.23118i( 1) f(z) dz

1 1 .
Jo (=1) 7(6.58948 1 (5.23118—10.462361)7) (—10.46236¢)dr

. 1 1
= (10.462367) [ f(6.58948+(5‘23118—10.462367“)1‘)dr
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2. af, = 6.58948 — 5.23118i — 6.58948 + 5.23118i
Let

z = 6.58948 4 5.23118i + r(—10.462361)
= 6.58948 4 (5.23118 — 10.462367)i

where r: 1 — 0, and dz = (—10.46236¢)dr.

We have
1 _ _1
fa52 f(z) i = fa 58948 —5.2311876.58948+-5.23118i f( )dz
Mith. d
¥ fe 58948—5.23118i—6!58048+-5.23118; f(z) <
P 1 ;
f1 7(6.58948+(5. 23118 10.462367)4) ( 10.462361)dr
_ 1
= (10.462361) fo 7(6.53948 1-(5.23118—10.462367)7) dr
By 1., 2., we have
1 1l 1
fas f(z) Ok ¥ f f2) dZ
1
Math. (10 4623GZ fo f(6 58948+ (5. 23118 10:462367)3) dr
+(10.462361) fo 7(6: 58948+(5 23118 10.462367)3) dr
= 1(20.92472:) fo F(6.58948+(5. 23118 10.462367)i )d

~1:54107 x 10717 + 0.000262034

Second , we will compute the integral of 1/f(z) over by, b, bs, by, b5 cycles
in the Figure 46 below where

f(2) = V(= =)

and Z; = —6.58048 + 5.23118i , Z, = —6.58948 — 5.23118i , Z; =
—6.31381 + 1.46139i , Z, = —6.31381 — 1.46139i , Z5 = —4.68652 + 0.0
, Zs = —1.57080 + 0.0i , Zy = 1.57080 + 0.0i , Zs = 4.68652 + 0.0 ,
Zy = 6.31381+1.46139i , Z10 = 6.31381 —1.46139i , Z1, = 6.58948+5.23118i
. Z1a = 6.58948 — 5.231184.
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Figure 50. by, by, b3, bs, b5 cycles:

Let b7 = b}, Ubj,UbTs UbirUbi: Ubjs Uby, Ubig 18 the equivalent path for by
where b3, is the path from Z;=—6.58948 + 5.23118i to —6.58948 + 1.46139:
on (+)-edge of sheet-I%, b}, is the path from —6.5894841:46139: to —6.58948—
1.46139i on (+)-edge of sheet-I , b7, is the path from —6.58948 — 1.46139i
to Zy = —6.58948 — 5.23118i on (+)-edge of sheet-1-, b7, is the path from
Zy = —6.58948 =5.23118i to —6:58948 — 1.46139: on (—)-edge of sheet-I , b,
is the path from —6.58948 — 1.46139i to 7; = —6.31381— 1.461397 on sheet-I
, bjg is the path from Z, = —6.31381 —1.46139: t0 Z3 = —6.31381 4+ 1.46139:
on (—)-edge of sheet-II , b7, is the path from Z3 = <6.31381 + 1.46139i to
—6.58948 + 1.46139: on sheet-11 , b}, is the path from —6.58948 + 1.46139:
to Z; = —6.58948 + 5.23118: on(—)-edge of sheet-11.
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‘igure 51. b} path.

where 7 : 0
We have

L_g
—dz
1815 —6.58948+1.46139; [f(2)

1
f—6.58948+5.23118i—>—6.58948+1.46139i ) dz

1 .
o f(—6,58948+(5.2%118—3.76979@;’) (—=3.76979i)dr

_ ool 1
- (_3-769792) fo F(—6.58948+(5.23118—3.76979r)i) dr

1
Joy, T -~

. bjy = —6.58948 + 1.46139¢ . 6.58948 — 1.46139i
Let

z = —6.58948 4 1.46139i + r(—2.92278i)
= —6.58948 + (1.46139 — 2.92278r)i

where 7: 0 5 1, and dz = (—2.92278i)dr.
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We have

1 o 1
fb’{z f(z) dz B f76.58948+1.461391‘376.5894871.46139i f(z) dz
Math | —dz
- —6.58948+1.46139i——6.58948—1.46139i f(z)
(—2.92278i)dr

1 1
fo f(—6.58948+(1.46139—2.92278r)1)

. 1 1
= (—2.92278i) fo f(76.58948+(1.4613972.92278r)i)dr

3. bj3 = —6.58948 — 1.46139: X 6.58948 — 5.23118i
Let

z = —6.58948 — 1.46139i F #(=3.76979)
—6.58948 + (—1:46139=3.76979r )i

where 7 : 0 = 1, and dz = (—3.769794)dr:
We have

1 . 1
fb’{g f(2) dz - f—6.58948—1.46139ii>76.58948¥5.231181‘ f(z) dz
Math. 1
= f—6.58948—1.46139i—>—6.58948—5.23118z‘ (z)dz

—3.76979¢)dr
dr

1 ‘h
fo f(—6.58948+(—1.4613973A76979r)i)(

AN ol 1
= (+3.769791) fo J(=6.58948 4 (—1.46139—3.76979r)i)

4. b, = —6.58948 < 5.23118; — —6.58948 —1.46139:
Let

2 = —6.58048 — 1.46139 + r(—3.76979)
—6.58948 + (—1.46139 — 3.76979r)i

where 7 : 1 — 0, and dz = (—3.76979)dr.
We have

1 o 1
fbh f(2) dz B f76.5894875.23118i376,5894871.46139i f(z) dz
Math.

1
f—ﬁ.58948—5.23118z‘—>—6.58948—1.46139z’(_1) f(z) dz
—3.76979%)dr

0 1
f1 (_1) f(f6.58948+(71.4613973.769791')1')(

_ o ol 1
- (_3’76979Z) fo J(—6.58948+(—1.46139—3.76979r)7) dr
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5. bj; = —6.58948 — 1.46139: — —6.31381 — 1.46139:
Let

2 = —6.58048 — 1.46139 + r(0.27567)
= (—6.58948 + 0.27567r) + (—1.46139)i

where r : 0 — 1, and dz = (0.27567)dr.
We have

——dz

1
f 658948 146139i—>—6.31381—1.46139i(_ ) dZ

= 1
% fo F((=6.55948+0 23677+ 1.46139)7 (0 27567)dr
dr

1 —
fb’l‘s f(z)dz M_th f 6.58948—1.46139:——6.31381—1.46139: f(z
ath.

v 1
T (- 0-27567 fo F((—6.589484-0.27567r)+ (— 1.46139)4)

6. bjg = —6.31381 — 1.46139: -5 26.31381 + 1:46139;
Let

z =7 26.31381 - 1.46139;+F r(2.92278i)
—6.31381 +(—1.46139 + 2.92278r)i

where r: 0 - 1, and dz = (2.92278i)dr.
We have

fb* = f - Ldz
f(z —6.31381—1.46139--»—6.31381+1.46139i Ji(Z)
dz

76.3138171.46139ii>76.31381+1.461391’ f(z)

1
f—6.31381—1.46139i—>—6.31381+1.46139i( 1) f(z) dz

_ 1 1 .
= (=D F(—6.31381+(—1.46139+2.922787)1) (2.92278i)dr

Math.

. 1 1
(—2.922784) fo 7(—6.313811 (—1.4613912.922781)7) dr

7. b}, = —6.31381 + 1.461397 --» —6.58948 + 1.46139:
Let

z = —6.31381 4 1.46139i + r(—0.275671)
= —6.31381 + (1.46139 — 0.275677)i
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where 7: 0 --» 1, and dz = (—0.27567:)dr.
We have

1 _ 1
fb’{? f(z)dz = | 6.3138141.46130i- -»—6.58948+1.46139 () dz

f—6.31381+1.461391—>—6.58948+1.461391( 1)f(z)
L dz

f 6.31381+41.46139¢— —6.58948+1.46139: f(z

1 .
fo F(-63I3BTH(TLA6T39~ 0275677")1)( 0.275674)dr

_ 1
= (=0.275674) ], FC6 3381 (1A6139-0 275677 O

Math.

8. bjg = —6.58948 + 1.46139: -—» —6.58948 + 5.23118i
Let

z = —6158948 + 1.46139i + r(3.769794)
— —6158948 +(1.46139 + 3.76979r )i

where 7 : 0.--4 1 , and-dz= (3:76979i)dr.

We have
1 d A 1
o Ldy £ - —=dz
fbls f(z) f—6.58948+1.46139i——+—6.58948+5.23118i J;(Z)
S —dz
~6.58048 1 1.46139i 5~ 6.58048 15.23118i [ (Z)
~§ —6.58948+1. 461391—> 6:58948+5.23118i f(z <

(3.769797)dr

fO f(—6. 58948+(1 46139+3 76979r)1)

1
= [ (3176979 fo 7( 6.58948+(1.46139+3.76979r)i)dr

By1l.,2.,3.,4.,5.,6.,7.,8., we have

i %dz - /. %dz
- /b e . e . e
. f(lz)dz+ 5 f(lz)dz+ 5 ﬁdz
i f(l)dz+ 5 ﬁdz

= (—0.0000106043 — 0.00007647217)
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Let b5 = b3, Ubs, U bl U bs, Ubss Ubsg U b5, U bsg U by Ubs, Ubs, Ubs. UDS,
is the equivalent path for by where b}, is the path from Z; = —6.58948 +
5.23118:¢ to —6.58948 + 1.46139i on (+)-edge of sheet-I , b3, is the path from
—6.58948 +1.46139i to —6.58948 —1.46139i on (+)-edge of sheet-1 , b3, is the
path from —6.58948 — 1.46139i to Zy = —6.58948 — 5.23118i on (+)-edge of
sheet-I, b3, is the path from Zy = —6.58948 —5.23118¢ to —6.58948 —1.46139:
on (—)-edge of sheet-I , b}, is the path from —6.58948 — 1.46139i to Z, =
—6.31381—1.46139¢ on sheet-I , b3 is the path from Z, = —6.31381—-1.46139:
to —6.31381 4 0i on (—)-edge of sheet-1, b3, is the path from —6.31381 + 0:
to Zs = —4.68652 + 0i on sheet-1 , bsg is the path from Z; = —4.68652 + 07
to Zg = —1.57080 + 0i on (+)-edge of sheet-I , b}y is the path from Zg =
—1.57080 4 07 to Zs = —4.68652 + 0i on (—)-edge of sheet-II , b3, is the path
from Zs = —4.68652 + 0t to—6.31381 + 0¢ on:sheet-I , b3, is the path from
—6.31381 + 07 to Z3 = <6.31381 4 146139 on/(—=)-edge of sheet-II , b3, is
the path from Z5 = =6.31381 4 1.461397 to —6.58948 4 1.46139: on sheet-II
, b3, is the path from —6.58948 + 1.46139i to Z; = —6:58948 + 5.23118¢ on
(—)-edge of sheet-IT.

il

= Z11
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Figure 52. b} path.

1. b5 = —6.58948 + 5.23118: X 6.58948 + 1.46139i
Let

z = —6.58948 4 5.23118i + r(—3.769791)
= —6.58948 + (5.23118 — 3.76979r)i

where 7: 0 5 1, and dz = (—3.76979: )dr.
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We have

1 o 1
fb§1 f(2) dz B f 6.58948+5.23118i-5—6.58948+1.46139i f(Z) dz
f 6 58948+-5. 23118z—> 6.58948+1.46139; f(z OLA

Math.
(—3.76979¢)dr

f 0 F( 76.58948+(5.2311873.769797")7;)

_ ool 1
= (=3.76979) |, f(76.58948+(5.2311873.769797")1‘)dr

2. b3y = —6.58948 4 1.46139:  6.58948 — 1.46139i
Let

z = —6.58948 4+ 1.46139i + r(—=2.92278i)
—6.58948 + (1.46139=2.92278r)i

where 7 : 0 5 1, and dz = (—2.92278i)dr:
We have

1 . 1
fbsz f(2) dz = f 6.5894841.46139i 5 —6.58948—1.46139i f(2) dz
Math. 1 d
= f 6.58948+1. 461397,—> 6.58048—1.46139i f(2) *%
2. 92278@)dr

fo F(=6. 58948+(1 46139 2. 92278r)z)(

N\ 1
= (+2.922787) fo F(=6.58948 4 (1.26139— 292278r)z)dr

3. b33 = —6.58948 < 1.46139: X 6.58948 —5.23118;
Let

z = —6.58048 — 1.46139 + r(—3.76979)
—6.58948 + (—1.46139 — 3.76979r)i

where r: 0 5 1, and dz = (—3.76979i)dr-.
We have

1 o 1
szg f(z)dz B f 6.58948—1.46139i 5 —6.58948—5.23118i f(Z)dz

Math. 1
o f 6.58948—1.46139i——6.58948—5.23118i f(2) dZ

1 )
fo F(—6.580481 (—1.46139— 376979r)z ( 3'769792)657’
dr

= (—3.76979i) fo 7 6.58948+(71.4613973.769791")1')
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4. by, = —6.58948 — 5.231187 — —6.58948 — 1.46139:
Let

z = —6.58948 — 1.46139i + r(—3.76979:)
= —6.58948 + (—1.46139 — 3.769797)i

where 7 : 1 — 0, and dz = (—3.769794)dr.
We have

1 d 1
—_— Z = o —dZ
fb& f(2) f—6.58948—5.23118i—>—6.58948—1.46139i f(z)
Math.

f—6.58948—5.23118i—>—6.58948—1.46139i<_1) ﬁdz
(—3.76979:)dr

0 1 1
f1 (_ )f(76.58948+(71.4613973.769791”)1')

Nl
= (=3.76979) [ f(—6.58948+(—1.31613973.76979r)i) dr
5. b3y = —6.58948 — 1.46139i-— =6.31381 = 1.46139;
Let
2 =+ -6.58048 = 146139 + r(0.27567)
(658048 4 0:275677) =+ (=1:46139)i
where r: 0 — 1, and dz = (0.27567)dr.
We have
fb;5 ﬁdz = J_6.58948-1.461391——6.31381-1.46139i ﬁdz
Math.
= f716.5894871.46139iH76.3138171.461SQi(_1)ﬁdz
_ 1
= Jo=D) (6580t T0.3m567) T 1as1oyy (0-27567)dr

1 1
(—0.27567) fo £((—6.589484-0.27567r)+(—1.46139)7) dr

6. by = —6.31381 — 1.46139i — —6.31381 + 0i
Let

z = —6.31381 — 1.46139; + r(1.46139i)
— —6.31381 + (—1.46139 + 1.46139r)i
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where r : 0 — 1, and dz = (1.46139i)dr.
We have

1 d _ 1
L Ldy = _ ——dz
ﬁ?% f(z) f—6.31381—1.46139i—>—6.31381+0i f(12)

dz

f 6.31381—-1.46139¢——6.31381+01 f(z Tz

1 .
fo 7(—6.31381+(—1.46139+1.461397)7) (1.461391)dr
dr

= (1.46139)

—6.31381-1.46139i——6.31381+0i f(Z)
Math.

1
fo F(—6.31381+(—1.46139+1.461397)i)

7. by, = —6.31381 4 0t — —4.68652 + 04
Let

z = -“6.31381 + 0i +#(1:62729)
= 45— 6:31381-+-1.62729r

where 7 : 0.— 1 and dz = (1.62729)dr.

We have
1 N
fb’2‘7 7@ dz, = f_ 6.31381 40— —4.686524-0i f(z yiOLa
- 1
J- 6.313810i— —4.68652440i f(z)dz
Math. 1
="l 631381+Oz—> 4168652100, f(2) dz

fO ( 631381+1 62729r) (1-62729)0[7”
1

8. by = —4.68652 + 0i — —1.57080 + 0
Let

Z = —4.68652 4 0i +r(3.11572)
—  —4.68652 + 3.11572r

where 7: 0 5 1, and dz = (3.11572)dr.
We have
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1 _ _1
fbég mdz = J —4.68652+-0i5>—1.57080+0i f(1Z) dz
dz

—4.6865240i1—1.57080+0i f(z)
Math.

1
f—4.68652+0i—>—1.57080+0i(_ 1) mdz

1
fO (1) f(—446816521+3.11572r) (3.11572)dr
= (—3.11572) fo 7 L dr

—4.68652+-3.11572r)

9. by = —1.57080 + 0i --» —4.68652 + 0i
Let

z = —1.57080 + 0i + 1(—3.11572)
—1.57080 4+ (~3.11572r)

where r : 0 --»1; and dz = (=3.11572)dr.
We have

iy | — _1_
fb%g £(2) dz f —1.57080+0¢-—»—4.68652+0i J;(Z) dz
dz

1
f % 7o00i 466520 — 1) mdz

1
= =D f(—1.157080+1(—3.11572r)) (=3.11572)dr
= (311572) fi dr

—1.570804-0i25—4.68652--0i f(2)
Math.

1
—1.57080+(-8.11572r))

10. b3, = —4.68652 40z ~=» —6.31381 + Oz
Let

z = —4.68652 + 0i + r(—1.62729)
—4.68652 + (—1.62729r)

where 7: 0 --» 1, and dz = (—1.62729)dr.

We have
1 o 1
fb;a ol = ff4.68652+0i77976.31381+0i BLE
_ T
_4.68652.+0i—6.3138110i— 1) 74z
Math. 1
f—4.68652+0i—>—6.31381+0i(_1) 7 dz

1

fo (_1)f(f4.l68652+1(71.62729r)) (—1.62729)dr
— 1

= (1.62729) fo i dr

—4.68652-+(—1.62729r))
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11. b3, = —6.31381 + 0i --» —6.31381 + 1.46139i
Let

z = —6.31381 + 0i + r(1.461391)
—6.31381 + (1.46139r)i

where r: 0 --» 1, and dz = (1.46139)dr.
We have

1 d . 1
. Faaz = - ——dz
szb f(2) f—6.31381+0i--»—6.31381+1.46139i J;(Z)
& L6.3138140i<5—6.31381-+1.46139; mdz
Math.

1
f—6.31381+0i—>—6.31381+1.46139i(_ 1) mdz
1.46139:)dr

1
- fo (_1) f(—6,31381+(1.46139r)i)(

. 1
(=1.46139%) [ sgsmssin @ agzoryy O

12. b5, = —6.31381 + 1.46139i —-» —6.58948 4+ 1.4613%
Let

z = —6.31381 + 1.46139i + r(—0:27567)
= (—6.31381 — 0.27567r) + 1.46139:

where 7 : 0 -=» 1y and dz = (—0.27567)dr.
We have

1 _
fb* 7 iz = f 6.3138141.46139i-->—6.58948+1. 461391f

f 6.31381+1.46139¢——6.58948+1. 461391( )

f 6.31381+41.46139i——6.58948+1.46139¢ f(z) dZ

1
fo F((—6.31381—0.27567r)+ 1.46139) ( 0.27567)dr
dr

Math.

1 1
(—0.27567) fo F((—6.31381—0.27567r)+1.461391)

13. b5, = —6.58948 + 1.46139: --» —6.58948 + 5.23118;
Let

z = —6.58948 4 1.46139i + r(3.76979:)
= —6.58948 4 (1.46139 + 3.769797)i
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where 7 : 0 --» 1 , and dz = (3.769794)dr.
We have

L_q = 1
. z = _ dz
szd f(z) f—6.58948+1.46139i——->—6.58948+5.23118i J;(Z)

~6.589481+1.46139i 5 —6.5804815.23118i f(2) dz
1
f—6.58948+1.46139i—>—6.58948+5.23118i (2) dz

3.769797)dr
dr

Math.

1 1
fo f(-&589484€(1.46139+3.76979r)z’)(
= (3.76979) fo 70

1
—6.58948+(1.46139+-3.76979r)1)

Byl.,2 ,3.,4.,5. ,6., 748 190,10, 11., 12., 13. , we have

= (0.00025277 + 0.00001695011%)

Let b3 = bl, Ub%, Ubks Ubl, Ubks UbleUbk, Ul Ubl UbL, Ub%, UbL, UbS, U

b, U b3, U b3, U by, is the equivalent path for b3 where 03, is the path from
Zy = —6.589484-5.23118i to —6.58948 +1.46139: on (+)-edge of sheet-1 , b3,
is the path from —6.58948 + 1.46139i to —6.58948 — 1.46139i on (+)-edge of
sheet-1, b3, is the path from —6.58948 —1.46139: to Zy = —6.58948 —5.23118:
on (+)-edge of sheet-I , b}, is the path from Z, = —6.58948 — 5.23118i to
—6.58948 — 1.46139¢ on (—)-edge of sheet-I , b} is the path from —6.58948 —
1.46139 to Zy = —6.31381 — 1.46139: on sheet-1 , b3; is the path from
Zy = —6.31381 — 1.46139i to —6.31381 + 07 on (—)-edge of sheet-I , b}, is the
path from —6.31381 + 07 to Zs = —4.68652 + 0¢ on sheet-I , b3s is the path
from Z5 = —4.68652 + 0i to Zg = —1.57080 + 0i on (+)-edge of sheet-I , b,
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is the path from Zg = —1.57080 4 0z to Z7 = 1.57080 + 0: on sheet-I , b3, is
the path from Z7; = 1.57080 + 0i to Zg = 4.68652 + 0i on (+)-edge of sheet-I
, b3, is the path from Zg = 4.68652 + 0i to Z; = 1.57080 4 0i on (—)-edge of
sheet-1I , 05, is the path from Z; = 1.57080 + 07 to Zg = —1.57080 + 07 on
sheet-1I , b3, is the path from Zg = —1.57080 + 0i to Z5 = —4.68652 + 07 on
(—)-edge of sheet-1I , b3, is the path from Z5 = —4.68652+0i to —6.31381+0¢
on sheet-II , 03, is the path from —6.31381 +0i to Z3 = —6.31381 + 1.46139i
on (—)-edge of sheet-II , b3, is the path from Z3 = —6.31381 + 1.46139i to
—6.58948 + 1.46139¢ on sheet-1I , b3, is the path from —6.58948 + 1.46139¢
to Z; = —6.58948 + 5.23118i on (—)-edge of sheet-I1.

Z_:,l 11
w i e
%ZE 1 79
(el 'S __\¥Y |
—2d le:
—ags
71z
Figure 53. b3 path.
1. b3, = —6.58048 + 5.231187"5—6.58948 +1.46139i
Let
z = —6.58948 + 5.23118:; + 7“(—3.7697%)
—6.58948 + (5.23118 — 3.769797")2'
where 7: 0 5 1, and dz = (—3.76979: )dr.
We have
1 _ 1
fbél mdz - f76.58948+5.23118i376.58948+1.46139i mdz

Math.
=" [ . Lz
—6.58948+5.23118i——6.58948+1.46139i J(2)

1 1 .
fo f(76.58948+(51.2311873.76979r)i)(_3‘769791)dr
_ ~ 1
= (=3.76979i) [, f(f6.58948+(5.2311873.769797")1‘)dr
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2. b3, = —6.58948 + 1.46139: X 6.58948 — 1.46139;
Let

z = —6.58048 + 1.46139i + r(—2.922781)
— —6.58048 + (1.46139 — 2.92278r)i

where 7: 0 5 1, and dz = (—2.92278i)dr.
We have

1 d _ 1
. z = ——dz
fng f(2) f 6.58948 +1.46139i " —6.58948—1.46139; [f(2)

Maith. 1
f 6.58948+1.46139:—=6.58948—1.461391 f dZ

1
fo 7(6.58948+ (146130 292278r)z)( 292278@)‘“

1
=..(5292278i) fo F(—6.58948+(1.46139— 292278r))dr

3. by, = —6.58048 — 1.46139%; — =6.58948 < 5.23118i
Let

z =" -6.58048 = 1.46139i + r(—3.76979)
= —6:58948 F (146139 = 3769797 )i

where r: 0 5 1, andudz = (—3.76979i)dr.

‘We have
1 _ 1
fbgg f(2) dz = f 6.58948—1.46139i 5 —6.58048—5.23118¢ f(2) 7o d®
Mith. 1 d
= f 6.58048—1.46139i——6.58948—5.23118i J(z) %
_ 1 .
fo f(—6.58948+(—1.46139—3.76979r)i)( 3. 769792)(”

_ . 1
= (=3.76979:) fo F(—6.58948+(—1.46139—3.76979r)1) dr

4. b3, = —6.58948 — 5.23118i — —6.58948 — 1.46139:
Let

2 = —6.58048 — 1.46139i + r(—3.76979%)
—  —6.58948 + (—1.46139 — 3.76979r)i
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where r : 1 — 0, and dz = (—3.76979:)dr.
We have

1 d _ 1
Lt dy = _ +——dz
fb34 f(z) f—ﬁ.58948—5.23118i—>—6.58948—1.46139i f(z)

Math. 1
1) e dz
—3.76979%)dr

f76,5894875.23118i—>76.5894871.461392' (_

— 1
- fl (_1) f(—6.58948+(—1.46139—3.769797")i)(

_ - 1
= (=3.76979) fo f(—6.58948+(—1.46139—3.769797)i) dr

. by = —6.58948 — 1.46139: — —6.31381 — 1.4613%
Let

z = —6.58048 = 146139+ 1-(0:27567)
= (—6.58048 F0.27567r) + (=1:46139)i

where r : 0 — 1 and dz = (0.27567)dr.

We have
1 _ 1
fb§5 fadr = U5 580uen Y i, Bo sinet 1808 TekE
Math. 1
I 658948 161391 —6.31381- La3gi = 1 ) OkE
= fo T((—G.58948+0. 27567r)+( Taemay (0-27567)dr

1
(— 027567 fo = 6,58948+0.27567r)+(—1.46139)i)dT

. by = —6.313817— 1.461397 — —6.31381 + 0
Let

z = —6.31381 — 1.461397 + r(1.46139:)
= —6.31381 + (—1.46139 + 1.46139r)i

where 7 : 0 — 1, and dz = (1.46139:)dr.
We have

1 d o 1
L Ldy = _ ——dz
fbga f(2) f—6.31381—1.46139i—>—6.31381+0i f(lz)

_ —dz
—6.31381—1.46139i = —6.31381+0i f(2)

1dz

Math.
f 6.31381—1.46139i——6.31381+0¢ f(z

1 .
fo 7(—6.31381+(—1.46139+1.46139)7) <1'461392>d7"

= (1.46139) [ L _dr

0 F(—6.31381+(—1.46139+1.46139r)7)
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7. b3, = —6.31381 4 0t — —4.68652 + 01
Let

z = —6.31381 + 0i + r(1.62729)
= —6.31381 + 1.62729r

where r : 0 — 1, and dz = (1.62729)dr.

We have
1 _ 1
fb;7 f(z)dz = | 6.31381+0i——4.68652+0i F(2) dz
_ )
'\ 6.313814-0i4.68652+0i T(2) dz
Math. 1
g 63188140/~ 416865240; o) dz

/ L (1.62729)dr

0 T(=63138L11.627207)
— 1
=(1:62729) fo f(76.31381+1.62729r)d71

8. by = —4.68652 + 0i — —1.57080 + 0
Let

z =7 4.68652 + 0i 7(3.11572)
= —4,68652 % 3115727

where 7 : 0 5 1, and dz = (3.11572)dr.
We have

1 o 1
fbgg f(z) dz = f —4.68652+0i > —1.57080+0i f(lz) dz
= z

—4.68652+0i1—1.57080+0i f(2) d
1
J 468652+0H71.57080+0i<_1)mdz
= (= : (3.11572)dr

468652 +3.115721)
B 1
= (=3 11572 fo F(—4.68652+3.11572r) dr

9. b39 = —1.57080 + 07 — 1.57080 + 0z
Let

Math.

z = —1.57080 + 0i + r(3.1416)
—  —1.57080 + 3.1416r
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where 7 : 0 — 1, and dz = (3.1416)dr.
We have

— 1
fb* f(z) - f—1.57080+0i—>1.57080+0z f(z)d

1
I 57080+0i—1.57080-+0i (2) 4%

1
I 5T080+0i—~1.57080-0i 1o} ok

3.1416)dr

Math.

fO f(—1. 57080+3 1416r)(

= (3.1416) fo T 1.57osé+3.14167“)dr

10. b3, = 1.57080 4 0i - 4.68652
Let

where 7 : (
We have

fb;a

11. b3, = 4.68652 + 0i --» 1.57080 + 0i
Let

Z = 4.68652+ 0i + r(—3.11572)
— 4.68652 + (—3.11572r)

where r: 0 --» 1, and dz = (—3.11572)dr.
We have
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1
ﬁ’éb f(2) o f 4.686524-0i--+1.57080+0i Ji (2)
= dz

1
f4.68652+0m1.57080+0i(_ )f(z) dz

1
- fo <_1)f(4.68652+(1—3.11572r)) (—3.11572)dr

1
= (3.11572) fo f(4.68652+(1—3.11572r)) dr

4.68652+0i1.57080+0i f(2)
Math.

—_

12. b5, = 1.57080 + 07 --» —1.57080 + 01
Let

z = 1.57080 + 0i + r(—3.1416)
— 157080 + (-<3.14167)

where r : 0 --» 1", and'dz = (—3.1416)dr.
We have

1 ] 1
J;;;c mdz = f1.57080+()if—+—1.57080+0’i mdz

1

mdz
1

J; e . () mdz

1
7 4 =D f(1.57080+1(—3.1416r)) (3.1416)dr
—  (3.1416 dr

f 1.57080+Oi—>-1.57080+0i(_ 1)
Math.

1 1
)fo F(1:57080+(—3.14161))

13. b3, = —1.57080+ 0¢ ~—» —4.68652 + 0i
Let

z = —1.57080 4 0i + r(=3.11572)
— —1.57080 + (—3.11572r)

where 7 : 0 --» 1, and dz = (—3.11572)dr.

We have
fb;,d ﬁdz - f —1.57080+05--+—4.686524-0i ﬁdz
M;h. —1.57080+0i-5—4.68652+0 mdzl
- f—11457080+0i—>—4.68652+0z'(_1)md'z
= o (_1>f(71.57080+1(73.11572r)) (=3.11572)dr
= (3.11572) fol f(71‘57080+1(73.11572r))dr
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14. b3, = —4.68652 + 07 --» —6.31381 + 01
Let

2 = —4.68652 + 0i + r(—1.62729)
—4.68652 + (—1.62729r)

where 7: 0 --» 1, and dz = (—1.62729)dr.

We have
1 _
fb;e mdz = | 4.68652-+0i-->—6.31381-+0i f( )dz
= f—4.68652+01—>—6.31381+0z( )
Math. 1
> f~4.68652+0H 631381+0z( ) dz
= (=1 - 468652+( 1627207 ))( 1 62729)dr

1
(1.62729) fo F(—4.68652+(— 162729r))d

15. bgf = —6.31381 +.0i -=3=6.31381 + 1.46139i
Let

2 = 6.31381 4+ 004 1-(1.461394)
" 26.31381 4 (1:461397)i

where r : 0 --»4 ;and dz = (1.46139)dr.
We have

1 d _ 1
. z = _ —dz
fb o) f76.31381+0i——976.31381+1.46139i f(2)
_ f N 1 dZ
—6.31381+0i—5—6.31381+1.46139; f(2)
1
—Lidz

1.461394)dr

Math.
- f—6.31381+0i—>—6.31381+1.46139i(

= fo (_1)f(76.31381+1(1.46139r)i)(
= (—1.46139) L dr

fo f(—6.31381+(1.46139r)1)

16. b}t;g = —6.31381 + 1.461397 --+ —6.58948 + 1.461397
Let

z = —6.31381 4+ 1.46139i 4 r(—0.27567)
= (—6.31381 — 0.27567r) + 1.46139¢
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where 7: 0 --» 1, and dz = (—0.27567)dr.
We have

1dz
)1dz

f 6.31381+1.46139:— —6.58948+1.461397 f(z T dz
: (—0.27567)dr

fO f((—6.31381— 0 27567r)+1.46139¢)

1 —
fbgq f(z) dz o f 6.31381+41.46139i--»—6.58948+1.46139: f(z

s 3138141461301 ——6.58045+1.46130i (
Math.

= (=0.27567) fo 7= 6.3138170.2%7567r)+1.46139i) dr
17. 0%, = —6.58948 + 1.461390 =5 ~6.58048 4 5.23118;
Let
z = ,—6.58948 4-1.46139i + r(3.76979:)
— e 6/58048 - (1.46139 +3.76979r)
where r : 0.-—» 1, and dz = (3.76979:)dr.
We have
1 N\ _1
fbéh mdz - f—6.58948+l.46139i:->—6.58948+5.23118i J;(z) dz
N\ _6.589484+1.46130i O X, 23118; 7(5) 4%
Math. 1 d
= s 658048 11461301+ 6.55045+5.231181 O
1
= fo T(6.559451 (1.46139-3.760797): )(3.769797,)dr
1
= (3.769797) J, 7(=6.58948 1 (1.46139-13.769791)7) dr

Byl ,2.,3 ,4.,5.,6.,7.,8,9.,10.,11.,12. 13.,14. , 15.,
, 17. , we have
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/bgf(lz)dz B b%

= Lclz + / —dz + —dz
b3, (Z b3, b3
1 1 1
—l—/ —dz+/ —dz—l—/ ——dz
bt f(2) b f(2) b3 f(2)
+ ——dz + ——dz + ——dz

1 1 1
+ dz + FAlS dz
bt f(z) b f(z) b3, f(z)
1 1
+ ——dZ

-——dz
f(2) bt f(2)
= (—0.000226449 + 0.00001695011)

Let b = b}, Ubj,Ubj5 Uby, Ubs UbsgUbi Ubys Ubs, Uby, Uby, Ub; Ub;,Ub;, U
by Uy, UG, Vb b; ;U by, Uby, Uy, S the equivalent path for b, where b}, is
the path from Zj'= —6.58948+ 5.23118i to —6:58948 +1.46139: on (+)-edge
of sheet-I , b}, is the path from —6.5894841.46139¢ t0.—6.58948 — 1.46139:
on (+)- edge of sheet-I ,.0}; is the path from —6.58948 = 1.46139 to Z, =
—6.58948 — 5.23118¢ on (+)-edge of sheet-I , bj,is the path from Z, =
—6.58948 — 5.23118: to <6.68948 =1.46139¢ on (—)—edge of sheet-I , b} is the
path from —6.58948 —1.46139:/to Z;, = —6.31381 —1.46139: on sheet-I , bj4 is
the path from Z, = —6.31381—1.46139: to —6.31381+4-0i on (—)-edge of sheet-
I, b}, is the path from —6.31381 4 0¢ to Z5 = —4.68652 + 07 on sheet-I , bjg is
the path from Z5 = —4.68652+0i to Zg = —1.57080+0i on (+)-edge of sheet-
I, b}y is the path from Zg = —1.57080+0: to Z7 = 1.57080+-07 on sheet-I , b},
is the path from Z7; = 1.57080+0i to Zg = 4.68652+-0i on (+)-edge of sheet-I
, b, is the path from Zg = 4.68652 4 0z to 6.31381 + 0: on sheet-I , b}, is the
path from 6.31381+0i to Z;o = 6.31381 —1.46139i on (+)-edge of sheet-1 , b},
is the path from Z;o = 6.31381 —1.46139i to Zy = 6.31381+1.46139i on (—)-
edge of sheet-11 , b}, is the path from Zg = 6.31381 4 1.46139: to 6.31381 + 0:
on (+)-edge of sheet-IT , by is the path from 6.31381+0i to Zg = 4.68652+ 03
on sheet-1I , b}, is the path from Zg = 4.68652+0i to Z7 = 1.57080+0i on (—)-
edge of sheet-1I , by, is the path from Z; = 1.57080+0: to Zg = —1.57080+-0:
on sheet-11, b}, is the path from Zs = —1.570804-0:7 to Z5 = —4.68652+ 07 on
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(—)-edge of sheet-11, b is the path from Z5 = —4.68652+0i to —6.31381+0i
on sheet-II, b}, is the path from —6.31381 + 0i to Z3 = —6.31381 + 1.46139:
on (—)-edge of sheet-II | b}, is the path from Z3 = —6.31381 + 1.46139: to
—6.58948 + 1.461397 on sheet-1I , b}, is the path from —6.58948 + 1.46139:
to Z; = —6.58948 + 5.23118i on (—)-edge of sheet-I1.

1
o ri b
'
;
:
L : -
+|]i- F
)
)
'
'?'Za 14 Z3
[ Ir
1 H 1
B, +0
+ = = o
- JEE TP TP P ity oo - < d
oy 3 - S
7 Zs * 7= e, * Zz 4|7
= :
i == Z10
+ -
= 00
w
T2 F1z

Figure 54. b} path.

1. b}, = —6.58948 + 5.23118; X 6.58948 + 1.46139i
Let

z = —6.58948 4.5.23118i + r(—=3:769797)
= —6.58948 4 (5.23118=3.76979r)i

where r: 05 1, and dz = (—3.769793)dr-.
We have

1 o 1

szl f(z) dz = ffﬁ.58948+5.23118i376.58948+1.46139i f(z) dz
Math. 1

= f—6.58948+5.23118i—>—6.58948+1.46139i (z) dz

1 1 .
o f(—6.58948+(51.23118—3.76979r)i)(_3‘769792)dr
_ ~ 1
= (=3.76979) [, F(—6550mT (B asiis 3760707 4"

2. by = —6.58948 4 1.46139: & —6.58948 — 1.46139i
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Let

z = —6.58948 + 1.46139i + r(—2.92278i)
—6.58948 + (1.46139 — 2.92278r)i

where 7: 0 5 1, and dz = (—2.92278i)dr.
We have

1 d _ 1
. ez = dz
fbu f(2) f 6.589481.46139i5 —6.58948—1.46139: f(Z)

Math. 1y
| ss08. 2 481397 2--6.55948—1.46139; f(z z
(—2.92278:)dr

fO F(—6. 58948+(1 46139 2:92278r)1)

1
=7 (=2.922781) |, ;e sssamracm—saman "

3. b3 = —6.58948 — 1.46139: 1, 26.58948 — 5.23118i
Let

» £ 16.58948 — 1.46139i +#(—3.76979%)
= -6.58948 - (—1.46139 — 3.76979r)i

where 7 : 0 5 1, 'and dg'= (—3.76979%)dr"

We have

1 d _ 1

. Tadz = —dz
fb43 f(z) f 6.58948—1.46139i 55— 6.58948—5.23118i f(z

Math. 1y

= f 6.58948—1.46139i——6.58948—5.23118i f(z <

_ 1 .
fo 7(—6.58948+ (—1.46139— 3769797‘)1)( 3.76979:)dr

_ 1
= (=3.76979) fo T 6.58948+(—1.46139—3.76979r)i)dr

4. by, = —6.58948 — 5.23118; — —6.58948 — 1.46139:
Let

z = —6.58948 — 1.46139i + r(—3.76979%)
—6.58948 + (—1.46139 — 3.76979r)i
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where r : 1 — 0, and dz = (—3.76979:)dr.
We have

1 d _ 1
Lt dy = _ +——dz
fb44 f(z) f—ﬁ.58948—5.23118i—>—6.58948—1.46139i f(z)

Math. 1
1) e dz
—3.76979%)dr

f76,5894875.23118i—>76.5894871.461392' (_

— 1
- fl (_1) f(—6.58948+(—1.46139—3.769797")i)(

_ - 1
= (=3.76979) fo f(—6.58948+(—1.46139—3.769797)i) dr

. by = —6.58948 — 1.46139: — —6.31381 — 1.4613%
Let

z = —6.58048 = 146139+ 1-(0:27567)
= (—6.58048 F0.27567r) + (=1:46139)i

where r : 0 — 1 and dz = (0.27567)dr.

‘We have
1 _ 1
fb15 o = . o 0. 1 8 7%
Math. 1
I 658948 161391 —6.31381- L as130 =1 ) OLE
= fo T((—G.58948+0. 27567r)+( 1146139)7) (0.27567)dr

1
(— 027567 fo = 6,58948+0.27567r)+(—1.46139)i)dT

. by = —6.313817— 1.461397 — —6.31381 + 0
Let

z = —6.31381 — 1.461397 + r(1.46139:)
= —6.31381 + (—1.46139 + 1.46139r)i

where 7 : 0 — 1, and dz = (1.46139:)dr.
We have

1 d o 1
L Ldy = _ ——dz
fb46 f(2) f—6.31381—1.46139i—>—6.31381+0i f(lz)

_ —dz
—6.31381—1.46139i = —6.31381+0i f(2)

1dz

Math.
f 6.31381—1.46139i——6.31381+0¢ f(z

1 .
fo 7(—6.31381+(—1.46139+1.46139)7) <1'461392>d7"

= (1.46139) [ L _dr

0 F(—6.31381+(—1.46139+1.46139r)7)
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7. by = —6.31381 4 0t — —4.68652 + 01
Let

z = —6.31381 + 0i + r(1.62729)
= —6.31381 + 1.62729r

where r : 0 — 1, and dz = (1.62729)dr.

We have
1 _ 1
fb;;7 f(z)dz = | 6.31381+0i——4.68652+0i F(2) dz
_ )
'\ 6.313814-0i4.68652+0i T(2) dz
Math. 1
g 63188140/~ 416865240; o) dz

/ L (1.62729)dr

0 T(=63138L11.627207)
— 1
=(1:62729) fo f(76.31381+1.62729r)d71

8. by = —4.68652 + 0i — —1.57080 + 0
Let

z =7 4.68652 + 0i 7(3.11572)
= —4,68652 % 3115727

where 7 : 0 5 1, and dz = (3.11572)dr.
We have

1 o 1
szg f(z) dz = f —4.68652+0i > —1.57080+0i f(lz) dz
= z

—4.68652+0i1—1.57080+0i f(2) d
1
J 468652+0H71.57080+0i<_1)mdz
= (= : (3.11572)dr

468652 +3.115721)
B 1
= (=3 11572 fo F(—4.68652+3.11572r) dr

9. bjg = —1.57080 + 07 — 1.57080 + 0z
Let

Math.

z = —1.57080 + 0i + r(3.1416)
—  —1.57080 + 3.1416r
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where 7 : 0 — 1, and dz = (3.1416)dr.
We have

— 1
fb* f(z) - f—1.57080+0i—>1.57080+0z f(z)d

1
I 57080+0i—1.57080-+0i (2) 4%

1
I 5T080+0i—~1.57080-0i 1o} ok

3.1416)dr

Math.

fO f(—1. 57080+3 1416r)(

= (3.1416) fo T 1.57osé+3.14167“)dr

10. b3, = 1.57080 4 0i - 4.68652
Let

where 7 : (
We have

sza

11. by, = 4.68652 4 0 — 6.31381 + 07
Let

z = 4.68652+ 0i + r(1.62729)
= 4.68652 + 1.62729r

where r : 0 — 1, and dz = (1.62729)dr.
We have

165



1 _ 1
szb iz = f4.68652+0i—>6.31381+0imdz

f L s
4.68652+0i—6.31381+0i f(z)

1
f4.68652+0i—>6,31381+0i [e) dz

1.62729)dr

Math.

1 1
fo f(4.68652+1.62729r)(
(1 62729

dr

1 1
)fO f(4.68652+1.62729r)

12. b, = 6.31381 + 01 . 6.31381 — 1.46139i
Let

z

We have

Jus,

13. b3, = 6.31381 — 1.46139: --» 6.31381 + 1.46139:
Let

z = 6.31381 — 1.46139i + r(2.92278i)
6.31381 + (—1.46139 + 2.92278r):

where r: 0 --» 1, and dz = (2.92278i)dr.
We have
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1
f6.31381—1.46139i-?+6.31381+1.46139i f1(Z)
dz

L. =

J;’Zd f(z) dZ

6.31381—1.46139i 56.31381+1.46139i f(2)

1
f()’ 31381—1. 461391—>6 31381+1.46139: f dZ

fo 7 6.31381+(—1.46139+2.92278r)z’) (2.92278i)dr
dr

= (2.92278i)

Math.

1
fo £(6.31381+(—1.46139+2.92278r)1)

14. b}, = 6.31381 + 1.46139i - 2> 6.31381 + 0
Let

z = 6.31381 + 1.46139i + r-(—1.46139)
= 6.31381 + (146139 —1.46139r)i

where r: 0 -2>0, and dz = (—1.461394)dr.

We have
1 d - 1
A = dz
f% £(z) f6.31381+1.461397:-16.31381+0i ];(Z)
6.31381+1:46139i—6.31381+0i f(2) dz
Math. 1
- f6.31381+1 46139i—6. 31381+01(_ ) dz

( 1.461391)dr
dr

i
= Ji(-Vs FIRIE( BT B
=" (1.46139:)

fo F(6.31381+ (1. 46139 1.461397)7)

15. bzf =6.31381 0z ~—».4.68652 + 01
Let

z = 6.31381 + 0i + r(—1.62729)
= 6.31381 — 1.62729r

where 7: 0 --» 1, and dz = (—1.62729)dr.
We have

f f(lz) dz = L~

6.31381-+0i--+4.68652+0i f(2)

1
f6.31381+0i~>4.68652+01( 1)f z)
1)

f6.31381+0i—>4.68652+01( () dZ
= [i(-1 L 7(—1.62729)dr

)7 313811627207
1
= (1.62729) fo F(e313sT-Tezr20r) I

Math.
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16. b}, = 4.68652 + 0i --» 1.57080 + 01
Let

z = 4.68652+ 0i + r(—3.11572)
—  4.68652 4 (—3.11572r)

where r: 0 --» 1, and dz = (—3.11572)dr.
We have

1

1 d _
* L7\ z — _ z
j;’4g f(z) f4.68652+0i——+1.57080+0i fI(Z)

—dz
4:6865210i—51.57080--0i f (2)

Math. 1
Y, f4.68652+0i—>1.57080+0i(—1) f(z) dz

! 1
fo (3H) f 468652+ (—3.11572r)) (—3.11572)dr
1

1
= (3.11572) fo f(4.68652+(—3.11572r))dr

17. b}, = 1.57080 +.0i.--+—=1.57080 + 07
Let

2 =01.57080 + 0i +7(—=3.1416)
=" 1.57080 4+ (—3:14167)

where r : 0 --» 1, and dz = (—3.1416)dr.

We have
1 _ 1
fb;h % = Jistosororos—vsmososor T4
_ 1
f1.57080+0iﬂfl.57080+0i(_ 1) 7 dz
Math. 1
/; 11.57080+Oz‘—>—1.57080+0i(_ 1) 7o %
_ 1
= (=1 7(1.570801 (—3.14167)) (—3.1416)dr

1 1
= (3.1416) fo f(1,57080+(—3.1416r))d,r

18. b}, = —1.57080 + 07 --» —4.68652 + 0i
Let

z = —1.57080 + 0i + r(—3.11572)
= —1.57080 + (—3.11572r)
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where 7 : 0 --» 1, and dz = (—3.11572)dr.
We have

1 d 1
—_— Z = — —dZ
fbii f(z) f71‘57080+0i——+74.68652+0i J;(Z)
= ——dz
—1.57080+0i1>—4.68652+-0i [(2)
Math.

1
J _1.57080+0i>—4.68652-0i— 1) Tz

1
- fO <_1)f(—1.57080+1(—3.11572r)) (—3.11572)dr

_ 1 1
= (3.11572) fo f(—1.57080+(—3.11572r))dr

19. bj;j = —4.68652 + 07 --+ —6:31381/'4-107
Let

2 = 468652 + 0i + (= 1:62729)
— 0468652 +(—1.627297)

where 7 : 0:=-> 1, and dz = (—1.62729)dr.
We have

1 A 1
fb;;j @d, = NS IAD M rodz
L_dz

N f—4.68652+0iﬂf6.31381+0i(_1) ()

1
f—4.68652+0i—>—6.31381+0i(_1) 7 dz

=0 hiFos . (—1.62729)dr

468652+ (—1.62729r))

1 1
= (1.62729) fo f(f4.68652+(71.62729r))dr

Math:

20. by, = —6.31381 4+ Oz --» —6.31381 + 1.46139;
Let

z = —6.31381 4 0i + r(1.46139)
— —6.31381 + (1.46139r)i

where 7 : 0 --» 1 , and dz = (1.46139)dr.
We have
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1 d 1
Z = — —dZ

fb* fz) f76.31381+0i——+76‘31381+1.46139i 11(2)
= dz

~6.313814-0i5—6.31381+1.46139i f(2)

1
f76.31381+0iH76.31381+1.461391’( 1) f(z) dz

o 1 1 .
= (=1 F(—6.31381+(1.461397)7) (1.46139:)dr

B ) 1
= (— 1-46139@) fo F£(—6.31381+(1.46139r)i) dr

Math.

21. b}, = —6.31381 + 1.46139: --» —6.58948 + 1.46139:
Let

z = —6.31381 4 1.46139i + r(—0.27567)
= (—6.31381L.—0.275671) + 1:46139:

where r : 0 --» 1", and 'dz = (—0.27567)dr.

We have
1 B 1

ﬁa* 7@ dz = [ 6.31381+1.46130i% > <6.5894811.46139; 7 (=) dZ

= L (— ) HOLE
6.31381+ 14461391 —6.58948+ 1 46139;
Mgh, f d

= 6.3138141. 461391—> 6.58048 +1,46130i f(z z
3 fo F((—6.31381— 0275677“)+1 161397) (=0.27567)dr

dr

(=0.27567) fo (= 6.31381—0.217567r)+1.46139i)
22. by, = —6.58948 + 1.46139: ——» —6.58948 +5.23118;
Let
z = —6.58948 4 1.46139: + r(3.76979:)
—6.58948 + (1.46139 + 3.76979r)i

where r: 0 --» 1, and dz = (3.76979i)dr.
We have

1 d _ 1
* Z - —_ d
fb4m f(2) f 6.58948-+1.46139¢--»—6.58948+5.23118i (Z)

—6.58048+1.46139i 1 —6.58048+5.231184 f(z
Math.

1
J-6 58918 1.46139i——6.5894545.231151 Ok
3.769792)(17’

fo ( 76.58948+(1.46139+3.76979r)i)(
= (3.769791) L dr

fo f(—6.58948+(1.46139+3.76979r)7)
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Byl.,2.,3 4.,
19. , 20. , 21. ,

17,18, ,

1
ba mdz

5.,6.,7.,8.,9.,10.,
22. , we have

1
—d
b% f(2) :
1
bis f(2)

dz + dz +

1 1
bl f(2) by f(2)

e

dz +

“,

+/b7fz /z
e d”/bz roedd, 7

12

/Z

(2)
(1 dz +
1

+/ba
1
f(z) proof (2)

*
4

*

4

*

4
/ ;
b4d

*

4

*

4

), 7@

bg
+/
b]

1

f(z) )
4m
(00000523241 + 0.0001158684)

d
f(z) o b

11.,12.,13., 14.

, 16.

Let b = b%; UbZ,UbE, UbE UbE . UbksUbE, Ubz Ub:, UbE, UbE, U UDE ,UbE U
bs fUbs Ub*hUbEZUbgjub*kUb* Ubz,,,Ubs,, Lb5,Ub5 ,Ub;,, is the equivalent path for

bs Where b:, is the path from 7Z; =
on (+)-edge of sheet-1, bz,

—6.58948+-5.23118i to —6.58948+1.46139¢
is the path from —6.58948+1.46139¢ to —6.58948 —

1.461397 on (+)-edge of sheet-1 , bf, is the path from —6.58948 — 1.46139:
to Zy = —6.58948 — 5.23118i on (+)-edge of sheet-1 , b}, is the path from
Zy = —6.58948 — 5.23118i to —6.58948 — 1.46139i on (—)-edge of sheet-I , b,
is the path from —6.58948 —1.46139: to Z, = —6.31381 —1.46139: on sheet-I ,

bt is the path from Z, =
sheet-1 , b}, is the path from —6.31381+0¢ to Z5 =
bt is the path from Z5 =
sheet-I, bq is the path from Zg =

—4.68652+01 to Zs =

—6.31381—1.46139: to —6.313814-07 on (—)-edge of
—4.68652+ 07 on sheet-I ,
—1.57080+ 07 on (+)-edge of
—1.570804-0¢ to Z7 = 1.57080+4-07 on sheet-

I, b%, is the path from Z; = 1.57080 + 0i to Zg = 4.68652 + 0i on (+)-edge
of sheet-1, bf, is the path from Zg = 4.68652 + 07 to 6.31381 + 07 on sheet-I ,
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b, is the path from 6.31381 + 0i to Z;p = 6.31381 — 1.46139i on (+)-edge of
sheet-I , b%, is the path from 73y = 6.31381—1.46139: to 6.58948 —1.461397 on
sheet-1 , b%, is the path from 6.58948 — 1.46139: to Z12 = 6.58948 — 5.23118:
on (+)-edge of sheet-1 , b5, is the path from Z;; = 6.58948 — 5.23118i to
Zy = 6.58948 + 5.23118i on (—)-edge of sheet-II , b5, is the path from
Zy1 = 6.58948 + 5.23118i to 6.58948 4 1.46139i on (+)-edge of sheet-II , 0%,
is the path from 6.58948 4+ 1.46139i to Zy = 6.31381 + 1.46139: on sheet-II ,
bt, is the path from Zg = 6.31381 + 1.46139: to 6.31381 + 07 on (+)-edge of
sheet-II , b3, is the path from 6.31381 + 0i to Zg = 4.68652 + 0i on sheet-1T ,
b, is the path from Zg = 4.68652 4 0i to Z; = 1.57080 4 0i on (—)-edge of
sheet-1I , 0%, is the path from Z7 = 1.57080 + 0 to Zg = —1.57080 + 07 on
sheet-1I , b%,, is the path from Zg = —1.57080 + 07 to Z5 = —4.68652 4 07 on
(—)-edge of sheet-11 , b is the path from Z5 = ~4.68652+0i to —6.31381+0¢
on sheet-II , b7, is the path from =6.31381+ 0¢ to Zs = —6.31381 4 1.46139:
on (—)-edge of sheet=I ;b5 "is the path from Z3 = —6.31381 + 1.46139i to
—6.58948 + 1.46139%i on sheet-1I , b5 “is the path from—6.58948 + 1.46139i
to Z; = —6.58948 + 5:231187 on (—)-edge of sheet-11.

Z1 1
o
H HH
: 1k
: H K
1 .:
'H': 4 'l:l':
+|0- +1 -
1 1L
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1 :.1"
73 7 73 il
R ] |
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5 J |
bttt i 2R - _F T ——— BT i - A - -
3 Zs N\ 6 Z7 t i
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Figure 55. b} path.

1. b, = —6.58948 4 5.23118: X 6.58948 + 1.46139i
Let

z = —6.58948 4 5.23118i + r(—3.769791)
= —6.58948 + (5.23118 — 3.76979r)i

where 7: 0 5 1, and dz = (—3.76979: )dr.
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We have

1 o 1
fb;1 f(2) dz B f 6.58948+5.23118i-5—6.58948+1.46139i f(Z) dz
f 6 58948+-5. 23118z—> 6.58948+1.46139; f(z OLA

Math.
(—3.76979¢)dr

f 0 F( 76.58948+(5.2311873.769797")7;)

_ ool 1
= (=3.76979) |, f(76.58948+(5.2311873.769797")1‘)dr

2. bty = —6.58948 + 1.46139:  6.58948 — 1.46139i
Let

z = —6.58948 4+ 1.46139i + r(—=2.92278i)
—6.58948 + (1.46139=2.92278r)i

where 7 : 0 5 1, and dz = (—2.92278i)dr:
We have

1 . 1
fbgz f(2) dz = f 6.5894841.46139i 5 —6.58948—1.46139i f(2) dz
Math. 1 d
= f 6.58948+1. 461397,—> 6.58048—1.46139i f(2) *%
2. 92278@)dr

fo F(=6. 58948+(1 46139 2. 92278r)z)(

N\ 1
= (+2.922787) fo F(=6.58948 4 (1.26139— 292278r)z)dr

3. b5 = —6.58948 < 1.46139: X 6.58948 —5.23118;
Let

z = —6.58048 — 1.46139 + r(—3.76979)
—6.58948 + (—1.46139 — 3.76979r)i

where r: 0 5 1, and dz = (—3.76979i)dr-.
We have

1 o 1
fbég f(z)dz B f 6.58948—1.46139i 5 —6.58948—5.23118i f(Z)dz

Math. 1
o f 6.58948—1.46139i——6.58948—5.23118i f(2) dZ

1 )
fo F(—6.580481 (—1.46139— 376979r)z ( 3'769792)657’
dr

= (—3.76979i) fo 7 6.58948+(71.4613973.769791")1')
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4. b, = —6.58948 — 5.23118; — —6.58948 — 1.46139:
Let

z = —6.58948 — 1.46139i + r(—3.76979:)
= —6.58948 + (—1.46139 — 3.769797)i

where 7 : 1 — 0, and dz = (—3.769794)dr.
We have

1 d 1
—_— Z = o —dZ
fb§4 f(2) f—6.58948—5.23118i—>—6.58948—1.46139i f(z)
Math.

f—6.58948—5.23118i—>—6.58948—1.46139i<_1) ﬁdz
(—3.76979:)dr

0 1 1
f1 (_ )f(76.58948+(71.4613973.769791”)1')

Nl
= (=3.76979) [ f(—6.58948+(—1.31613973.76979r)i) dr
5. by = —6.58948 — 1.46139i-— =6.31381 = 1.46139;
Let
2 =+ -6.58048 = 146139 + r(0.27567)
(658048 4 0:275677) =+ (=1:46139)i
where r: 0 — 1, and dz = (0.27567)dr.
We have
fbg5 ﬁdz = J_6.58948-1.461391——6.31381-1.46139i ﬁdz
Math.
= f716.5894871.46139iH76.3138171.461SQi(_1)ﬁdz
_ 1
= Jo=D) (6580t T0.3m567) T 1as1oyy (0-27567)dr

1 1
(—0.27567) fo £((—6.589484-0.27567r)+(—1.46139)7) dr

6. big = —6.31381 — 1.46139 — —6.31381 + 0i
Let

z = —6.31381 — 1.46139; + r(1.46139i)
— —6.31381 + (—1.46139 + 1.46139r)i

174



where r : 0 — 1, and dz = (1.46139i)dr.
We have

1 d _ 1
L Ldy = _ ——dz
ﬁss f(z) f—6.31381—1.46139i—>—6.31381+0i f(12)

dz

f 6.31381—-1.46139¢——6.31381+01 f(z Tz

1 .
fo 7(—6.31381+(—1.46139+1.461397)7) (1.461391)dr
dr

= (1.46139)

—6.31381-1.46139i——6.31381+0i f(Z)
Math.

1
fo F(—6.31381+(—1.46139+1.461397)i)

7. b;, = —6.31381 + 07 — —4.68652 + 01
Let

z = -“6.31381 + 0i +#(1:62729)
= 45— 6:31381-+-1.62729r

where 7 : 0.— 1 and dz = (1.62729)dr.

We have
1 N
fb’5‘7 7@ dz, = f_ 6.31381 40— —4.686524-0i f(z yiOLa
- 1
J- 6.313810i— —4.68652440i f(z)dz
Math. 1
="l 631381+Oz—> 4168652100, f(2) dz

fO ( 631381+1 62729r) (1-62729)0[7”
1

8. bty = —4.68652 + 0i > —1.57080 + 0
Let

Z = —4.68652 4 0i +r(3.11572)
—  —4.68652 + 3.11572r

where 7: 0 5 1, and dz = (3.11572)dr.
We have
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1 o 1
fbgg f(2) dz = ff4.68652+0i371.57080+0i f(1Z) dz

dz

—4.686524-0i5—1.57080+-0i J(2)
= f—4.68652+0i—>—1.57080+0i( )f(z) o

_ 1

= Jo(=1) 7(—4.68652+3.11572r) (3.11572)dr

1 1
= (=3.11572) [, F(—4.63652+3.11572r) dr

9. by = —1.57080 + 07 — 1.57080 + 0z
Let

2 = —1.57080 + 0i + r(3.1416)
= —1.57080 + 3.1416

where r : 0 — L, anddz = (3.1416)dr.

We have
1 ] . 1
fbgg o) V™ | 1.57080+-0i—1.57080+0i f(lz) Tz
= L 1.57080+0i—1.57080+0i f(2) dz
Math. 1
= [ 57080+07,—>1 57080+0i f(z) dz
[ fo 7= 157080+3 14167) (3‘1416)d7"

= (3.1416) fg Tt 1,5708%)+3.1416T)dr

10. bE, = 1.57080 407 —»4.68652 + 0
Let

z = 1.57080 + 07 + r(3.11572)
1.57080 + 3.11572r

where 7: 0 5 1, and dz = (3.11572)dr.
We have

1 _ _1
fb* fz) iz = fl.57080+0ii>4.68652+0i f(1Z)dz

—dz
1.57080+-0i54.68652+0i f(2)

—l)ﬁdz

= (=1 J 57080+3 11572r) (3.11572)dr
1

= (F311572) fO oS0 311572 47

Math.
f1.57080+(]z—>4 68652+Oz (
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11. b%, = 4.68652 + 07 — 6.31381 + 07
Let

z = 4.68652 + 0i + r(1.62729)
= 4.68652 + 1.62729r

where 7 : 0 — 1, and dz = (1.62729)dr.
We have

L dz
f4 686521-0i—6.31381=-0i f(z) d

1
f4 68652+0H6 31381+0i f(2) dZ
fO fi4 68652+1 62729r) (1 62729)d7“

(1:62729) fo 7@ 68652+1 627297) dr

1 _
fb;b f(z) dz = f4 68652+0i—6.31381+0i f

Mdih.

12. b:, = 6.31381 +0i— 6.31381 — 1.46139i
Let

2 =76.31381 + 0i +7(=1.46139i)
— 6.31381 + (—1.46139r)i

where 7 : 0 5 1, and dz = (—1.46139:)dr.
We have

1 d 1
z = —dz
fb* ) f6.3138l+0ii>6.31381—1.46139i f(IZ)

—dz
6.31381+0i56.31381-1.46139; f(2)

1
fﬁ 3138140i—6.31381—1.46139i F(2) dz

1 .
0 F(6.31381+(—1. 461397“)1)( L. 46139@)557"

B 1
= (—1.4613%) fo 7(6.31381+(— 146139r)l)dr

Math.

13. bf, = 6.31381 — 1.46139¢ — 6.58948 — 1.46139¢
Let

z = 6.31381 — 1.46139i + r(0.27567)
= (6.31381 4 0.27567r) — 1.46139i
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where r : 0 — 1, and dz = (0.27567)dr.
We have

1 —
fbgd f(z) dz o f6 31381—1.46139:—6.58948—1.46139: f(z OLE

ldz

f6 31381—1.46139i—6.58948—1.46139: f(z
Math. 1
fG 31381 1.46139i—6. 58948 1. 46139'i( ) f(2) Tl

- fo 7((6. 3138L40. 27567r) 1.46139) (0.27567)dr

1
= (0.27567 fo 70 6,31381+0,27567r)—1.461392‘)dr

14. b, = 6.58948 — 1.46139; 2658948 = 5.23118i
Let

z = 6.58948 — 1.46139i + r(—3.769791)
= 06:58948 +(=1.46189 —3.76979r)i

where r: 0% 1, and dz = (—3.76979)dr.

We have
1 - 1
fbge f(2) Az 3 f6.5894871.461391'36.5894875.231181‘ f(12) dz
:h f6.5894871.46139i36.58948-5.23118i (2 dz
Math. 1
f6.58948—1.46139i—>6,58948—5.23118i(_1) 7(2) dz
_ a 1 -~ ,
= %l 1)f(6.58948+(—1.46139—3.76979r)i)( 3.76979i)dr

1 dr

= (3.76979i) fo 7(6.58948+(—1.46139—3.76979r)7)

15. bgf = 6.58948 — 5.23118i --» 6.58948 + 5.23118i
Let

z = 6.58948 — 5.23118i + r(10.462367)
= 6.58948 + (—5.23118 + 10.462367°)i

where r: 0 --» 1, and dz = (10.46236i)dr.
We have

178



1 d _ 1
. o=dz = - dz
fb5f f(z) f6.58948—5.23118i——+6.58948+5.23118i f(2)
— 1 g
= —=dz
6.58948—5.23118i56.58948+5.23118i /(=)
Math.

f6.5894875.23118ia6.5894§+5.23118i(_ 1) f(2)dz

= (=D 76 559as (5 a0 d6z3ery (10-462360 ) dr
= (—10.46236i) [ 1 dr

0 f(6.58948+(—5.23118+10.462367)i)

16. bgg = 6.58948 + 5.231183 5 6.58948 + 1.46139:
Let

z = 6.58048 + 5.23118i + 1-(—3.76979)
= 6.58948 + (523118 —3.76979r )i

where r: 0 -»>1, and dz = (=3.76979i)dr.

‘We have
1 d i s 1
. by = —dz
fb it (2) f6.58948+5.23118i-f+6.58948+1.46139i fl(z)
= _ =—dz
6.589484-5.23118i—6.58948+1.46139i | (Z)
Math. d
- fs 58948+5.23118i—6:58948+1.46139i f(z z
- i
fo 76589451 (5 231158769797 z)( 3.76979i)dr
= (—3.76979) fo 7(6.58948+(5. 23118 3.76979r)i )d

17. b%, = 6.58948 + 1:46139: --» 6.31381 + 1.46139
Let

2 = 6.58948 + 1.46139i + r(—0.27567)
= (6.58948 — 0.27567r) + 1.46139

where r : 0 --» 1, and dz = (—0.27567)dr.

‘We have
1 _
fbgh 7@ dz = f6 58948-+1.46139i--+6.31381+1.46139i f(z) iz
_ 1
I 580484 1.461305+6.31381+1.46130iL — ) dz
Mgth. I 1 dz
658945-+1.46139i—6.31381-+1.461391 )
= fo 7((6.58948 0. 27567r)+1 161397) (— 0.27567)dr

B 1
= (=0.27567) fo 7((6. 5894870.27567r)+1.46139i)dr
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18. bt = 6.31381 + 1.46139; --» 6.31381 + 0
Let

z = 6.31381 4 1.461397 + r(—1.46139:)
= 6.31381 + (1.46139 — 1.46139r)i

where r: 0 -2» 1 , and dz = (—1.46139:)dr.

We have
1 d _ 1
z = ——dz
fb* ) f6,31381+1.461391’—:6.31381+Oi J;(Z)
= y dz
6.31381-1.46139i56.31381-+0i f(2)
Math 1
fe 31381+1 46139i—6. 31381-1—01( ) ) dZ
V4 1 :
" 4 fo (6 FIB8L (1461391 461397):) (—1.46139:)dr

S dr

= —(1:461390) fo £(6.31381+(1.46139—1.461397)7)

19. bgj = 6.31381 +.0z -~ 4.68652 + 0z
Let

2 =26.31381 + 0 +4(—1.62729)
—76.31381'—1.627297

where 7 : 0 -5 1, and dz = (—1.62729)dr.

We have
1 _ 1
fb;j ol = Jo.s1981 106 4.08653+04 o

= f6.31381+0i—>4.68652+0i< 1)f( )d

Math. 1 d

f6 31381—',—01—»4.68652—1—01'( )f(z <

_ 1
= fo 7631381~ 1.62729r)( 1.62729)dr

1
= (L 62729 fo 7(6.31381—1.62729r) dr

20. b, = 4.68652 + 07 --» 1.57080 + 0i
Let

z = 4.68652+ 0i + r(—3.11572)
— 468652 + (—3.11572r)
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where 7 : 0 --» 1, and dz = (—3.11572)dr.
We have

1

J. bE, f (z) J 4.68652+0i-—+1.57080+0i @ dz

—dz
4.68652+0i51.57080+-0i f(z)

Math 1
f4 68652+Oz—>1 57080+Oz( D5 7o) o dz
1
- fO (4 68652+( 3.11572r)) (—3.11572)dr

1
(3.11572) fg f468652+(—3.115727’))dr

21. b, = 1.57080 + 0z --» —
Let

where 7 :
‘We have

22. b, = —1.57080 + 07 --» —4.68652 + 0i
Let

2 = —1.57080 4 0i + r(—3.11572)
— —1.57080 + (—3.11572r)

where 7 : 0 --» 1, and dz = (—3.11572)dr.
We have

181



L d = A
. z = 7 dz
ﬁ’sm f(z) f71.57080+0i——+74.68652+0i fl(Z)

=dz
—1.57080+0i5—4.68652+0i /(=)

Math.
- f31.57080+omf4.68652+0i(_1) ﬁf(z)dz
= (=D L (—3.11572)dr

—1.57080+(—3.11572r))

1
= (3.11572) [ f(—1.57080+1(—3.11572r))dr

23. b, = —4.68652 + 07 --» —6.31381 + 012
Let

Z = —4.68652 + 0i + r(—1.62729)
—4.68652 + (~1.62729r)

where r : 0 --» 1", and 'dz = (—1.62729)dr.

We have
1 | 1
fbgn mdz f—4.68652+0i——+-6.31381+0i () dz
_ 1
S 468652101 _6.3138100i— 1) ) dz
Mith. 1
f—4.68652+0i—>—6.31381+0i(—1)md'z

1 1
y fo (=1) F(—4.68652+(—1.627297)) (—1.62729)dr
1

1
= (1.62729) fo f(~4.68652+(-1.62729r))dr
24. b, = —6.3138L+ 00 ~—» —6.31381 + 1.46139¢
Let
» = —6.31381 + 0i'+ r(1.46139:)
—  —6.31381 + (1.461397)i
where r: 0 --» 1, and dz = (1.46139)dr.
We have
1 _ 1
fbéo = f—6.31381+0i—:>—6.31381+1.46139i 16 dz
M_th ~6.31381+-0i5—6.31381+1.46139i mdz
ath. 1
= f_6.31381+0i—>—6.31381+1.46139z‘(_1)Wdz

1 .
Jo(=1) f(76.313181i(1.46139r)i) (1.46139i)dr
= (—1.46139%) [, + ! dr

—6.31381+(1.461397)3)
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25. bgp = —6.31381 4+ 1.46139¢ --» —6.58948 + 1.46139:
Let

z = —6.31381 + 1.46139i + r(—0.27567)
= (—6.31381 — 0.27567r) + 1.46139i

where 7 : 0 --» 1 , and dz = (—0.27567)dr.
We have

1 dz
1)ﬁdz
J- 63138141 461391—» 6:58948%1.46139; f(z dz
0.27567)dr
dr

1 _
fbgp f(z)dz - f 6.31381-+1:46139i--»—6.58948+1.46139 f(z)

I 6.3138 141461301 46/58948 + 146139 (—
Math.

fo F((—6.31381— 0. 27567r)+1 461391)(

1
= (=0.27567) fo F((~6-31381-0.27567r)+1.46139)

26. b;q — —6.580948 + 1.46139i --» —6.58948 + 5.23118i
Let

z =_—6.58948 + 1:461397 + .r(3.76979:)
—6.58948 + (1.46139 + 3.76979r )i

where 7 : 0 --» 1 ,"and dz = (3:76979%)dr.
We have

1 d _ 1
——dz = - —d
ﬁ’éq f(2) f76 58948+1.46139i--»—6.58948+5.23118i (z)
= —~dz

—6.589481.46139i 5 —6.58948+5.23118i f(z
Mith. f 1 d
z
6.58948-+1. 461392—> 6.58048+5.23118 f(2)
f 0 F(-6589484 (1 46139+3 769797)4) (3'769791)6”
= (3.769791) L —dr

0 F(—6.58948+(1.46139+3.769797)i)

Byl.,2,3. ,4.,5 ,6.,7.,8.,9.,10.,11.,12.,13., 14., 15.,
,17.,18.,19.,20.,21.,22.,23.,24., 25., 26. , we have
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