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ABSTRACT

The essential purpose of this thesis is#0 study the boundary.integral method for two dimensional
incompressible Stokes flows. The method: is | inspired by the fundamental solution of Poisson
equation, and presents the interfacial velocity in integral formulae, as convolution form of a Green’s
function and a singular source term. Once the formulae are clear, we analyze the singularity in the
integral equations and split it into a smooth part and a singular part. The former can be treated by the
trapezoidal rule and the later is cured by quadrature form with specific weights. To simulate the
dynamics of an elastic interface, two numerical schemes are proposed, one is the explicit scheme
which a force in previous time step is equipped, the other is implicit so that a tension-like unknown
is solved together with interfacial velocity. In numerical experiments, we first apply the method to
an elliptic elastic material in a quiescent flow, and give a second-order convergence to the circular
steady state. The second application is a vesicle suspended in a simple shear flow. A series of
numerical studies about the tank-treading motion and the tumbling motion for a vesicle match
previous works well.
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1 Introduction

Stokes flow involving interfaces have been researched extensively in the past few years.
It has many important applications in science and engineering, such as in biomechanics,
geophysics, mechanical engineering, and chemical engineering. One example is the flow
of a suspension of bubbles, drops or biological cells, such as a red blood cell past through
a vessel. Numerical simulations can accurately approach the practical questions when an-
alytical solutions cannot be found and real experiments are hard to realize or expensive to
execute. While numerical simulations become a very important tool for investigating the
interfacial dynamics in low Reynolds number flow, studying surface tension on interface
is popular. Surface tension effects are modelled classically by positing a force jump at the
interface. There are many numerical methods that are suitable for computing interfacial
dynamics in Stokes flow, including boundary integral methods [8, 9, 10, 11, 13], level set
methods, immersed interface methods [6], immersed boundary methods [4], phase-field
and diffused interface methods. Each method has its merits and disadvantages. In this the-
sis, we focus on the boundary integral method t6:simulate the interfacial dynamics in two
dimensional incompressible Stokes flow. The three dimensional problem is more chal-
lenging to study especially forevolving interfaces with large deformations. In this thesis,
we study the boundary integral method for two dimensional incompressible Stokes flow.
The method is inspired by“the fundamental solution of PoiSson equation, and presents the
interfacial velocity in integral formulae, as-convolution form of a Green’s function and a
singular source term. Once the formulag are clear, we analyze the singularity in the inte-
gral equations and split it into a smooth part and a Singular-part. The former can be treated
by the trapezoidal rule and the later 1s cured by quadrature form with specific weights. To
simulate the dynamics of an elastic¢iinterface, two.numerical schemes are proposed, one is
the explicit scheme which a force 1n previous time step is equipped, the other is implicit
so that a tension-like unknown is solved together with interfacial velocity. In numerical
experiments, we first apply the method to an elliptic elastic material in a quiescent flow,
and give a second-order convergence to the circular steady state. The second application
is a vesicle suspended in a simple shear flow. A series of numerical studies about the
tank-treading motion and the tumbling motion for a vesicle match previous works well.

Organization of this thesis is as follows. In Section 2, we introduce the Green’s func-
tion for the two dimensional incompressible Stokes flow, and derive the boundary integral
equation for the two dimensional incompressible Stokes flow. The derivation is based on
Pozrikidis’ book [7]. In Section 3, we discuss the boundary integral equation for the in-
terfacial velocity in detail by decomposing the integrals into different terms, and present
the explicit and the implicit numerical integration schemes for different situations. This
introduction is based on Xu Sun and Xiaofan Li’s paper [11]. In Section 4, we present
some numerical experiments for simulating the interfacial dynamics in Stokes flow with
the elastic and the motion of a vesicle suspended in a simple shear flow. Moreover, we
present the convergence test for the velocity to verify the accuracy of the numerical inte-



gration schemes.

2 Derivation of boundary integral equation

First of all, let us consider the flow governed by the two dimensional Navier-Stokes
equation with the condition of incompressibility

P
p(a—l;+u-Vu): _VP + uAu, 2.1

V-u=0, (2.2)

where u = (u, v), p is the density of the fluid, and p is the viscosity of the fluid. In order to
nondimensionalize the Navier-Stokes equation, we introduce a characteristic length L, a
characteristic velocity U, and a chatacteristic time:7. Moreover, let X" = %, u = %, =
%, and P* = %. Then, the Navier-Stokes equation e¢an be rewritten in the dimensionless
form

*

0 .
'8(91;* + Reu" - V'u' = -V'P" + A"u’". (2.3)

There are two dimensionless numbers in (2.3): the frequency parameter 5 = % and the
Reynolds number Re = UTL wherely = ‘;’ 1s.the kinematic viscosity of fluid. The frequency
parameter [ represents the ratio between the inertial acceleration force and the viscous
force, and the Reynolds number ‘Re represents the ratio between the inertial force and the
viscous force. When 8 and Re are much'smaller than 1, all terms on the left hand side of
(2.3) are much smaller than the terms on the right hand side. Thus, all terms on the left
hand side of (2.3) can be ignored. Then reverting to dimensional variables, we can find
that the Navier-Stokes equation becomes the Stokes equation

-VP+puAu=V.0 =0, 2.4)

where o is the stress tensor defined as

g1 012
g = =
021 O

ou ou adv
-P+2u() n(F+3)
Ju v v
n(F+5) -Prau(f)
Taking the divergence of the Stokes equation and using the condition of incompressibility,
we find that the pressure is a harmonic function

(2.5)

AP = 0. (2.6)



2.1 Green’s function for two dimensional Stokes flow

The following description is based on Pozrikidis’ book [7]. Now consider the two
dimensional incompressible singular force Stokes equation

~VP + pAu + g6(X — Xo) = 0, 2.7)

V-u=0,

where g = (g1, g2) is an arbitrary constant, ¢ is the delta function, and Xy = (X, Yo) is an
arbitrary point. Introducing the Green’s function for the singular force Stokes equation

G(X.X,) = [ Giu(X,Xp) Gn(X, Xp) ]’

G (X, Xo) Gn(X, Xo)
such that the velocity u(X) can be expressed as

u(X) = [ u(X) ] "t [ (X Xp)g1 + Go(X, Xo)g2 ]
v(X) Gy (X, Xp)gir+ Gn(X, Xp)g2 |’

Ay

where X is called the soutce point, and X 'is called the" observation point. Physically,
(2.8) expresses the velocity:field-due to a point force of strength g located at the point X.
Since the pressure P(X) is'a harmonic function, then there exists a function p(X, X) =
(p1(X, Xo), p2(X, X)) such that P(X)= L (p1X, Xo)g1+ p2(X,Xo)g2). Once we get
the velocity u(X) and the pressure P(X), then We can obtain the stress tensor o(X) by
substituting the velocity and the pressure into (2.5).

We compute the free spaceGreen’s function as following. First, we replace the delta
function in (2.7) with the fundamental solution of the Laplace equation

(2.8)

- 1
0(X) = —Alnr, (2.9)
2n
where X = (X, ¥) = X — Xy, and r = |[X]|. Substituting (2.9) into (2.7), we have
1
—VP + puAu + (—Aln r)g =0.
2n
Taking the divergence for above equation, we have

—-AP+V -

1 1
(—Alnr)g] :O:AP:A[(—VInr)-g]. (2.10)
2n 2n
Thus, we can obtain the pressure P by balancing the dimension of (2.10)

1
P= (—Vlnr)-g. (2.11)
2



Next, substituting (2.9) and (2.11) into (2.7), we have
1 1

V|| =—VInr| -g|+puAu+|{—Alnr|g=0
2 2m

i (llnr) & (1 In r) ] 2.12)

330y
ai; (217{1nr) _8_2(1 In )

= uAu =

Assume that the velocity u can be expressed as

1

2 2
Jii 6H_L

Oxdy Ox?

& i

where H is a scalar function. It is noted that the condition of incompressibility V- u = 0
is satisfied under this assumption. Substituting (2.13) into (2.12), we have

B A S,
it )| 5 () i ()

Since the constant vector g'is arbitrary, then

1
AH = Zlnr.

We can obtain the scalar function H by Solving above equation

1
H=—7r (Inz=1)"
8

Finally, we can obtain the velocity u by substituting H into (2.13)

u(X) = uX) | _ 1 | GuX.Xo) G2(X, Xo)
v(X) dru | G (X, Xo) Gn(X, Xo)
where G(X, Xj) is the free space Green’s function
—Inr+ & Xy
G(X, Xy = oo 17 o
( 0 [ % —Inr+ ’:—22

The associated pressure P and the stress tensor o can be computed as following

1 Xgl I782
PX)=— —+t—= |
x) 2( )

X3¢ +X2i’g2 X7g +X?2g2 ]

)
Lra | e 1a , Po
4 4 4 4

-1




2.2 Boundary integral equation

Once the free space Green’s function is obtained, we can derive the boundary integral
equation by the Lorentz reciprocal identity, which is for any two nonsingular flows u and
u’ with corresponding stress tensors o and o’

V~(0'u’—0"u):0:>V-([O-” ‘“ZH”,’]—[(’;I %HZDZO (2.14)

/ /
021 O 1% 0'21 0'22

Now let u’ be the solution of the two dimensional singular force Stokes equation and
o’ be the corresponding stress tensors. Substituting these expressions into the Lorentz
reciprocal identity, we have

V([ oI O H Gugi +Gng ]—4,11

Lo | Phyp 2

Yer . XV
R | B |
XYe1 | XYoo XY'g1 | Yo v

A Tz R

o2 02 || Gugi +Gng

Since the constant vector g = (g1, g€3) 1s arbitrary,"'we obtain

Xur X270y
V([ 0'11G11+0-12G21 :|+4,U[ [ ]):0, (215)

021611 + 0263 w
and
2 Y2
p= VeI N i X Yu+XY“v
V. 1612 i iy 'sz* 03 =0, (2.16)
031G ¥+ 026x» .

where G is the free space Green’s function.In order to derive the boundary integral
equation, we choose a area Q that is bounded by a closed curve I', and choose a point X
that is outside Q. Integrating (2.15) and (2.16) over €, and using the divergence theorem
to convert the area integral over € into a line integral over I', we obtain

f 011G + 012Gy
r\[ 021G11 + 022Gy

0-11G12 + 0'12G22 X2Pu+ X792y
+4u| gpigs, |]omds =0, 2.18
«fl:(|: 0-21G12 + 0-22G22 ] ﬂ[ XYZI:Z—Y v ( )

X PurX 9%

Bu+X*Py
+4,,¢[ . ])~nds:0, (2.17)
}"4

and

where n = (ny, n) is the unit outward normal vector of ) and s is the arclength parameter.
Next, we choose a point X that is inside €2. In addition, we define a small circular area
B.(X) that is centered at X, with the radius €. In this case, equations (2.15) and (2.16)



is regular in Q \ B.(Xp). Integrating (2.15) and (2.16) over Q \ B.(X,) and using the
divergence theorem again, we obtain

f 011G + 012Gy
r\[ 021G11 + 022Gy

LBE(XO) (

X2Pu+ X 12
011G12 + 012G SRy
Al g, || omds
r\[ 21G12 + 022G e
2§ {2
o G +0 G X Yu+ XYy
:_f ( 11012 12 22]+4,u[— - nds,
0B<(Xo)

"o
021Gz + 022G %
where 0B.(Xj) is the boundary of B.(Xj). Letting the radius € tend to zero, the right hand
side of the above two integral‘equations_tend to —4muu(X,) and —4ruv(Xy), respectively.
Thus, we can obtain

u(Xo) s f Giifi G fo
X)) = = Lt d
(o) [ v(Xo) ] bt Jo| GufitGnf |©
=1 [ b X3n1-i;§2?n2) 4 V()Ale?n1+f{f’2nz
r

T u(%) i v(mlmnz) ]ds, (2.19)

BurXPv
+4u rt ]) -nds

X2Vu+X 9%
I’4
BusX2¥v
4
A A r AN .
X2Pu+ X%y nds,

A

011G + 012Gy

+ 4u
021G 11 + 022Gy

and

,.4

where X = X,7) = (X - Xo,Y —Yy) andf=( fi,f>) = on is the surface force. Equation
(2.19) represents a flow in terms of two boundary integral involving the Green’s function
G and the stress tensor. The first integral on the right hand side of (2.19) is called single-
layer potential, and the second integral is called double-layer potential. Finally, if the
source point X is right on the boundary I', we can express the velocity u as

Gufi + Gufa ] s

uXy) | -1 f
uXy) = = —
(Xo) [ W(Xp) ] 270 | Giafi + Gty
) [ M(Y3111-f2f’n2)+v()?2f’n|;)?f’2n2

T u(%% v(xyznl+ysn2) ]ds. (2.20)

I

In summary, equation (2.17), (2.18), (2.19) and (2.20) represent the boundary integral
equations that the point X is outside, inside, or right on the boundary of a selected area.
In order to accelerate the numerical computation, we want to simplify the boundary
integral equation by eliminating the double-layer potential. Assuming that the domain of
u is inside the closed curve I', there is a complementary flow u’ outside I'. The existence



of the complementary flow u’ can be proved as long as the flow u satisfies the following

constrain
f u-nds =0,
r

where n is the unit outward normal vector of the domain of u. Furthermore, let u’ vanish
at infinity and has the same boundary values as u on I". On the other hand, if the domain of
u is outside I', there is a complementary flow u’ inside I" so that u’ has the same boundary
values as u on I'. In either case, we choose a point X inside the domain of u, and use
(2.17), (2.18) to find

f O'IHGU +O"12G21
r OJZIGU +O"22G21

d / 2P + X172
01,G12 501,62 XT . ~
fr([ 05,G15+07,Gn +4u % nds = 0, (2.22)

B +X29v
+4u r ]) -nds = 0, (2.21)

X2V +X9%
!

and

where u = («/,v’) and O';j is the stress tensor corresponding to u’. Combining (2.21),
(2.22) with (2.19), we can obtain

u(Xp) —1 f Gqy +Gq2
- — ds. 223
u(Xo) [ v(Xa) } dng Jiof G12g1 + Gngo ’ (223)

where (q1,q,) = q = f—f'. So far, we can express'the flow only in terms of a single-layer
potential.

2.3 Interfacial flow

Flows involving interfaces between two different fluids occur in many applications. In
order to describe a interfacial flow, we consider the flow on each side of the interface. For
simplicity, we label the ambient fluid and the particle fluid with Q; and €, respectively.
In addition, let A = Z—f be the viscosity ratio between the internal and external fluid. Using
the standard boundary integral equation, which we get in the previous subsection, for a
point X, that is located outside €, i.e., X; € Q, we can obtain

(X ) -1 G fl +G fl
) = u'(Xp) | _ f 1/ 21y g4
u (Xo) vI(Xp) 4y Jr| Guof! + Guf, ’
= [ (o) |y (£ i,

u(xzmzmz) N v()?f/?n::fﬂnz) }ds, (2.24)

T




where f! =

(f{, f;) 1s the surface force over the external of I'. On the other hand, by using
equation (2.17) and (2.18) we can obtain

Giff +Gufy f
ds+4
fr[ G12f12 + G22f22 ’ He r

where 2 = ( fi>f3) is the surface force over the internal of I Combining (2.24) and
(2.25), we find

1 | W' Xo) | —_lf GuAfi + GauAf
v (Xo) = [ v (Xo) ]  dmu, [ GnAf + GrAf ]ds

_ 1 ) X n1+X Ynz + Xzf’n|+)2'f’2n2
. XQY () g, (2.26)
n1+XY nz) 4y (XY ni+Y nz)

]

(T o (i,
¥y 157y £92msion (A5 =0, (2.25)

where Af = (Afi,Af) = f' — £ is the discontinuity of the interfacial force. So far, we
obtain the boundary integral equation for the external flow of the interface. Next, for a
point X is located inside Q,, using equation (2.17) and (2.18), we can obtain

Gllfll + G21f21 f
ds + 4,
ﬂ Gufl +Gufl |E7 s
On the other hand, we use.(2.19) to obtain
2(Xo) K
u2 X,) = u ( 0 - _f
( 0) VZ(X()) 471_#2 .
_1 X n1+f( ?nz T X2Yn1+XY2n2
r4
+— AN LR corl o ds. 2.28
p r[ u(XzYnI':Xanz) +V(XY2n|r:—Y3n2) } ( )
Combining (2.27) and (2.28), we find
2
2 u”(Xo) -1 f GuAfi + GaAf
u (Xp) = = d
(o) [ v2(Xo) ] dny GuAfi +GuAf |

_ 1 _ /l X nl+X Y}’lz + v X2fn|+)2'f/2n2
( ) [ (s i

G+ XY X2¥n +X1?
i anJ;ZX ny +v( nl; ny

i (X’H?nﬁ)?f/znz) b (XyznlJrfzsnz) ] ds = 0. 2.27)

A ~

Gify + G fy d
Gi3f +Gnf;

X2Yn1+XY nz) . ()2)72”1:.)73”2) (2.29)
For a point X is located right on the interface I', we can obtain
M(XO) f GllAfl + GglAfz
u X = d
o) [ v(Xo) ] 27%(1 + ) GiuAfi + GuAp |
-2(1 =2 Xm+X7¥ny ) | X2Pn+X7%ny
(1 1 ! u<mfiwzn2 ' Xf’21:?+f’3n2 ds (2.30)
n(l+ ) Jr|u(Fee) v v (Fe)



It will be noted that when the viscosities of the two fluids are equal, the coeflicient of
the double-layer potential vanishes, and flow can be represented in terms of a single-layer
potential with Af.

Next, if there is an ambient flow with velocity u™ = (u™, v*) past the particle fluid.
The interfacial velocity u(Xy), Xy € I', can be expressed as

M(XO) _ 2 u® + -1 f GllAfl + G21Af2 ds

v(Xo) I+A]| V7 27T,Lll(1 +A) Jr G]zAfl + GzzAfz
a1y ([ () (S
al+2A) Jr M(XzYnlr-:Xanz)+V(XY2n;:—Y3n2) : :

So far, we obtain the boundary integral equation for interfacial velocities in two dimen-
sional Stokes flow.

3 Numerical method

Our problem is an ambient flow with veloeity. u™ past a deformable particle, where
Q, and Q, represent the ambient fluid and the particle fluid, as illustrated in Fig. 3.1 The

Figure 3.1: Sketch of an ambient flow past a deformable particle.

governing equations are the two dimensional steady Stokes equation with the condition
of incompressibility, as following

— VP + uAu' =0, (3.1)
V-u =0, (3.2)



where i = 1,2. p; and u, are the viscosity coefficients for the ambient fluid and the
particle fluid, respectively. The boundary conditions on the interface I" between two fluids
are given as following

u'(X) = u*(X), (3.3)
[o - n](X) = £(X), (3.4)

where X € I'. o, n and f are the stress tensor, the unit outward normal vector and the
surface force, respectively. [-] denotes the discontinuity across the interface I'. The surface
force f can be chosen as

£ %«m (3.5)

where s is the arclength parameter, 7 is the unit tangent vector, and o is the surface
tension. Let us recall that the velocity u at a point X, on the interface I can be written as

u(Xo) 2 f G fi + Gafa ds
v(Xo) 1 + 27r,ul(1 + 1) Gifi +Gnfr

+_2(1 o /1) (X nl-:j(ZYnz) V(Xif;nl;)?%'znz) ds

a(l + A) (XzYnl:;Xanz) i V(XY2n|+Y3n2> ’

A

(3.6)

where A = ’f is the viscosity ratio.between the particle=fluid and the ambient fluid, G

is the two dimensional free’space: Green’s funetion, and X = X, V) = X-X,. Itis
obvious to see that the integraliequations occur singularities when X and X, coincide. The
numerical integration schemes for:the integrals involving singularities will be discussed in
the following subsection. Once the velocity u on the interface I is obtained, the interfacial
dynamics can be determined by

0X

Fri u, (3.7
where the interface position X can be expressed as a periodic vector function of the pa-
rameter . In summary, there are two steps for solving this interfacial dynamics problem.
The first step is computing the interfacial velocity at each marker points on the inter-
face. Then we can advance the interface by using the evolution equation (3.7) to track the
positions of these marker points.

3.1 Explicit numerical integration schemes

In this subsection, we analyze the integral equation (3.6) in detail by decomposing the
integrals into different terms. It is based on Xu Sun and Xiaofan Li’s paper [11]. First, let

10



the interface I" be parameterized by X(«, 7), where 0 < o < 2x. In addition, we suppress
the time dependency by writing, for example, X(a, #) as X(«@), and denote

u(@) = u(X(@)), wao) = uX(a)),
G(a, a9) = G(X(a), X(ao)).

Then equation (3.6) can be rewritten as

[ u(ao) ] _ 2 | u®(aop) ]+ -1 f[ Gi(a@, @) fi(@) + G (@, @) fo(@) ]da
v(ap) v (o) 2 (1 + A) Jr| Ga(a, ap) fi(@) + Gula, ap) f(a@)

1+
_2(1 _ /l) M(CY) (f(3n1(0)4;{(2f/n2(a)) + V(a’) (Xz?nl(a);ffznz(a))
al+A) Jr l u(@) (w) +v(a) (’??znl(@):?3nz(a))

7

] se(@)da,

(3.8)

where fi(a) = %(O‘T,-), i =1,2,and s,(@).= /X2 + Y2 is the stretch vector. Substituting
the expression of the free space Green’s function into (3.8), and rewriting

I _
Inr= ln[;] = (4 sin’ @ 2a0|), (3.9

ZSin@ 2

equation (3.8) becomes

2 g 1
u(a) :mum(ao) = m ; [=fi(@)D(a, ap) — Efl ()E(a, ap)
+ fila)Fii(a, ap)+ fala) F (e, ap)]da
210-A) (™
- [u(@)H 1 (a, ap) + v(a)Hx(a, ap)]da (3.10)

and

2 1 2 1
v(ap) =——v(ap) — e+ ) j(: [-f2(a)D(a, ap) — Efz(af)E(a, o)

1+4

+ (@) Fula, @) + fila)Fa (@, @p)]da

_x=a Zﬂ[u(a/)H ( H d 3.11
A+, 21(@, ap) + v(a)Hayp(a, ap)]da (3.1D

11



where

.

D(CY, alo) =In [m) (312)

E(a, ap) = In (4 sin’ '“2—0‘0') (3.13)

[Fff<“aao>]=[ b op ] (3.14)
el

[Hij(a,a())]:[ 2 (@0) + @3 (@) L (@3a(0) + @5l

LY 11 (@)52(@) + 2 m(@)se(@) B ni(@)50() + Lna(@)sa(@)
(3.15)

in which X = X(a) - X(ap), ¥ = Y(a) - Y(p) and r = VX2 + 2.
Assuming that the interface curve, I istof (C=°[0, 2], we can find the limits of (3.12),
(3.14) and (3.15) when the source-point X, and:the observation point X coincide, i.e.,

a — ag. By using the Taylor.éxpansion of X(a).— X(a) and sin 2"“' we have

D) 2
i": M (agNazag) | 5 ¥ (ap)(@—ap)"
! !
n=1 - n=1 "

S L (o—ag\2
2,,2;‘1 @u=D! ( 2 )

3 2
o X (o) (@—ag)=] 00 30 (o) (@—ap)"~!
\/L; %] + Lg] %]

1+ io: (= 1)”*1. (|a_a0|)2n—2

D(ay, ap) =1n

=In

(3.16)

2

It will be noted that the denominator of (3.16) does not vanish when @ = «@,. Discarding
the high order term, we can obtain

D(ay, ap) = Iim D(a, ag) = In(s,(ap)). (3.17)
a—a
Similarly,
) 71()? 71 (o))

[Fij(a'O,a'O)] = lim [Fij(a'a ao)] = [ 5 | (3.18)

a0 T1(ap)T2(a0) T2 (o)

K(@0)X2(ao) K(00)Xo (@0) Ya(2o)

. 25(, @ 25(1 (]

|Hiita0,a0)| = am [0 = [ cototato oo ] (3.19)
2sq(0) 2sq (o)
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where T = (71, 7,) is the unit tangent vector along the interface I and « is the curvature
of the interface I'. Let us divide the interval [0, 27] evenly by 2N segments and denote
a;j = jn/N, where j = 0,1,...,2N — 1, and choose M = 2N. As a consequence, the
integrals concerning (3.12), (3.14) and (3.15) can be computed by using the trapezoidal
rule. Next, let us consider the integral

27
f —%fk(a)E(a/, ap)da, k=1,2. (3.20)
0

Choosing « to be one of a;’s, @y = a;, we can approximate the weakly singular integral
(3.20) with the following quadrature [5]

7 l — gl < -1

. — - 5
‘fo _Efk(a) In (4 sin’ T) da ~ Aa Z; Tle_ilfk(aj), (3.21)

]:
where the quadrature weights are given, by.
Sl par (-1

RN = 2 — COS —=p+ ,oq=0,1,...,2N - 1. 3.22
: (; 5008 S ] 4 (3.22)

Thus, the explicit numerical integration schemes are

2 Aa =
Ul = - — —D(a;;a; "
oL+ AR 2mn(l + ) JZ(;[ (@Gre) ()]

-1
+ —R(jz_i)l(fl)n- + Fii(a, a)(fi); + Fra(e;, @)(f2)]]

2
_20(1-2)
R H , IU"+1+H , V’“r1 3.23
AT ,Z; n(aj, a) e, ;) (3.23)
and
n+l _ 2 o)

A A N Cw ;[—ij,ai)(ﬁ);

-1
+ —RU l|(f2)n + Fzz(%,%)(fz) + Fy (e, ; )(fl) ]

2
2Aa(1 - A) ) )
“ T Z Ha(@;, a)U! + Hop(aj, )V, (3.24)

where U ;’“ and Vl.’“rl denote the numerical approximation to u(a) and v(a,) at next time
step. Recalling that when the viscosities of the two fluids are equal, i.e., 4 = 1, the co-
efficient of the double-layer potential vanishes, the numerical integration scheme can be
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represented only in terms of the single-layer potential. On the other hand, if the viscosi-
ties of the two fluids are different, we obtain a dense linear system for the velocity U’
and V!, and the size of this linear system is twice of the number of the marker points on
the interface. Consequently, the subroutine in the IMSL math library for fortran 95 is em-
ployed to solve the linear system. If the velocity U"*!' and V"*! is obtained, the interface
dynamics can be determined by using the following equation to track the positions of the
marker points on the interface,

n+1 n
Xi - Xi -
At !

3.2 Implicit numerical integration schemes

There are many literatures studying to remove the stiffness [1, 2, 3]. In order to remove
the stiffness in our problem, we derive implicit schemes based on the boundary integral
equation case by case. In the first case, which is Stokes flow with the elastic force, the
surface force f is expressed as

0
f=r—
aS(O'T),

where s is the arclength parameter, T is the unit tangent vector, and the surface tension o
is computed by Hook’s law

o= 8p(Se = 10),

in which, s, is the elastic coefficient of the boundary and 7 is the rest length. Then we can
discretize the surface tension'term by 0';?“ = s;,((sa)?r1 — rp). Using the center difference
to discretize the elastic force terms (fi(@), f2(@)) and substituting those expressions into
(3.23) and (3.24), we obtain

M-1

n 2 o -1 € n n n n
Ui+1 :mUi +Cy Z[_D(a’j’ @;) + 7R|j2_i| + Fu(@j,ai)][(fjill(ﬁ)jﬂ - O_]‘+1(T1)j]
j=0
M-1
+ Fio(ag, a)loil (@), = o @)1+ Co )" Hin(ay, U + Hioler, a) Vi,
=0
(3.25)
and
2 M-1 ~1 (M)
vt Zmeo + Cy Z[—D(&j, a;) + 7R|j2_,-‘ + Fy(aj, CYi)][U';%ﬂ(Tz)?H - O'TI(Tz);f]
Jj=0
M-1
+ Faag, a)loiil (o), = o @il + Co ). Hoi(ay, Ut + Hop(erj, a) Vi,
j=0
(3.26)
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and C, = =20 Using the summation by part, equations (3.25)

where C, = 2711 (1+2) (1+/1) 7(1+1)

and (3.26) become

2 o0 A n n n n
U ZmUi +C Z(Ai,j—l _Ai,j)(Tl)j(Sa)j+l +(Bij-1 - Bi,j)(TZ)j(Sa)j+]

M-1
+Cy Z Hyy(aj, a)UT + Hyp(aj, a) Vi
=0
M-1
-G Z(Ai,j—l — A )(T1) + (Bij-1 — Bi j)(12)], (3.27)
i=0
and
vitl = =1 +a§]aﬂ Cigh()i(sa);" + (Bijo1 — B )(11)}(50)}!
M-1
+ G Z Hyy(agie) Us + Hy(aj, a) Vi
=0
= C1 ) (Ci — Crp)@a) + By — B (T’ (3.28)

where C; = Cys, Cy = Cysprp, Ay = —D(aj,@i)“' IR 2)"‘Fll(a/j, @), B;; = Fpla;,a) =

=l
Fy(aj,a;),and C;; = —D(a;, ;) + ‘IR +F25(vj, ;). In addition, we use the identity

= tl

6 X Xt + Yo Y, Xa o+ YoV, ou
! d - -2 .. (3.29)
Ht Sy Sy ~ da

Equation (3.29) can be discretized as following

(Sa)"ﬁ—l - (sa)"l ul'Hl - ur'l_+11
’ L= 3.30
At Aa ' ( )

Coupling the boundary equation (3.27) and (3.28) with (3.30), there is a linear system for
the velocity U*!, V*! and the stretch vector (s,)/*', as following

[:\111+IM I:Iu D Ut rhs1
H,,  Hpn+1y D, vl = | rhs, |, (3.31)
L, L, I || (so)™! rhs;
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where

(H,)ij = CH\\(aj, @), (H)ij = CoHn(a;, @),
(Hy)i; = CaHa(aj, @;), (Hy)ij = CoHn(aj, @),
(D1);j = Ci(Ayjo1 — A )T} + Ci(Bijo1 — By (T,
(Dz)ij = CAl(Ci,j—l - Ci,j)(72)7 + él(Bi,j—l - Bi,j)(Tz)';,

. M1
(rhsy); = mUi -Cy Z(Ai,j—l — Ai )T} + (Bij-1 — B j)(12)],
=0

5 R
(rhsy); = mvlm - C Z(Ci,j—l = Ci)(T2)} + (Bij-1 — Bi p)(T1)],
=0

(rhs3)i = (507,

)y 0...0 &1y
SEOr G040
L= b ’
| 0...0 %(TI)M—I _A—Ast(Tl)M—l |
[ X(ro)ge 0.0 (T
() 2r); 040
L, = : ’
| 0...0 %(Tz)M_l ?A_Ast(TZ)M—l ]

and Iy, is the M X M identity’ matrix. In addition; Hy\, H», Hy, Hy, Dy, and D, are
M x M dense matrices, and the sizecof this linear system is triple of the number of the
marker points on the interface. The linear system (3.31) can be solve by the method that
is provided from the IMSL math library for fortran 95. It will be noted that when the
viscosity ratio A is equal to 1, the numerical integration scheme can be represented only
in terms of the single-layer potential. Thus, the linear system (3.31) reduce to

IM 0 D1 UrH—1 I’]’lS]
0 Iy D, yrl =| rhs, |. (3.32)
Ly L, Iy (Sa)n+1 rhs;

In this case, the Gauss elimination method is be chosen to solve the linear system (3.32).
Step 1. observing the linear system (3.32), we can obtain

U™+ D(s,)"" = rhs,
vl Dz(Sa)"Jr1 = rhs,

L U™ + L™ 4 (s,)"! = rhs;.
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Step 2. solving the following linear system to obtain the stretch vector (s, )"*!,
(IM — L]D] - LzDz)(Sa)’Hl = I"hS3 - L] I"hS] — Lzl’hSz.
Step 3. substituting (s,)"*! into Step 1 to obtain the velocity U"*! and V"*!,

U™ = rhsy = Di(s)™",

V' = phsy — Do(s,)"

In the second case, which is an inextensible vesicle suspended in Stokes flow, we also
can derive implicit numerical integration schemes. By real experiments and observations,
scientists discover that the surface area of a blood cell is conserved during the process
of the deformation. In two dimensional case, there is one more constrain that is the
condition of inextensibility V; - u = 0. This constrain comes from the real observation
and experiment. In order to let the flow satisfy the condition of inextensibility, we use
the function o to be a Lagrange multiplier, for this constrain. The surface force terms
(f1, f2) can be discretized as (a(‘fm(”)n), a(”mggmn)). Substituting these expressions into the
boundary integral equation (3. 23) and (3.24).and.using the summation by part, we find

M-1

n 2 (o) n n n n
Ut == U £ Z](Ai,j_l Ai)@)ias F(B, -1 — B (1)l
M-1
N+l n+1
+Cy Y Hule,, U FHis(@gon Vi, (3.33)
=0
and
Vit =—— V +C Z(C‘J 1 = G + (B jo1 — Bij)(T)jo}!
M-1
+Cy Y Hulaj,a)US™ + Hy(a;, a)ViH. (3.34)
=0

Furthermore, the condition of inextensibility V; - u = 0 can be discretized as

ur}+1 _ u1_1+1

i i—1 no_
Tl =0, (3.35)

Combining (3.33) and (3.34) with (3.35), we find the linear system for the vesicle flow

FI]]'FIM ﬂ]z D, Ul rhAsl
Hy  Hy+1Iy D, || V' | =] rhs, |, (3.36)
L L, 0 ot 0
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where

~ 2 ~ 2

rhsli = mUlOO, I"hSQi = mvioo’
[ (71)0 0...0  —(11) |

i - —(Ti (?1)1 0...0 ,
| 0...0 =(tD)u-1 (T)M=-1 ]
[ (12)0 0...0 —(12)0 ]

i, = —(T2)1 (7.'2)1 0...0
| 0...0 —(m)m-1 (T2)m-1 |

The size of (3.36) is equal to the size of (3.31). The subroutine in the IMSL math library
for fortran 95 is employed to solve the linear system (3.36). When the viscosity ratio A is
equal to 1, the coefficient of the double-layer potential vanishes. The linear system (3.36)

reduce to
IM 0 D1 U’H—1 i"]’;S]
0 Iy—Do | Vb= | rhs, |. (3.37)
i] zz 0 0.n+1 0

The linear system (3.37) can be solved by. the Gauss elimination method as the following
steps:
Step 1. observing the linear system (3.37), we can obtain

Ul + D, o= rhs,,
VD™ = s,
Liu™ + Ly =o0.
Step 2. solving the following linear system to obtain the surface tension o™**!,
(LD, + L,Dy)o™" = Lirhsy + Lorhs,.
Step 3. substituting o"*! into Step 1 to obtain the velocity U"*! and V"*!,
U™ = rhs, — Do,
Vvl = rhs, — Doo™t,

Once the velocity U"! and V"*! is obtained by solving one of the above linear sys-
tems, the interface dynamics can be determined by using the following equation to track
the positions of the marker points on the interface,

+1
X:l B X:l — l.lr-l+1

At !
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4 Numerical result

We will perform a number of numerical experiments to simulate the interfacial dynam-
ics and to test the convergence of our explicit and implicit numerical integration schemes
for Stokes flow. Moveover, an example of simulating the motion of an inextensible vesicle
in Stokes flow is presented in this section.

4.1 Stokes flow with elastic force

The test problem we use is one typically seen in the literature, in which the boundary
is a closed curve initially in the sharp of an ellipse. We choose an ellipse initially aligned
in the coordinate directions with horizonal semi-axis a and vertical semi-axis b. The
boundary can be parameterized as

X(a,0) = acos(a),
Y(@,0) ='bsin(a).

Let the ambient flow u® =,0. For the initial.condition defined as above, the steady
state of the boundary is a dircle withiradius » = Vab'and the rest length r, is chosen
as min(a,b). The area is conserved during the time evolution since the flow is incom-
pressible. We present two'test cases in this subsection. In“the first test case, we consider
the interfacial dynamics when the fluidsviscosity ratio 4is equal to 1 (u; = wp, = 1).
Fig. 4.1 shows the boundary configurations.obtained by the explicit scheme and implicit
scheme at different time steps. The equilibrium'configliration is a circle and the results of
two schemes are the same. The convergence tests €orresponding to the explicit scheme
and the implicit scheme are shown in Table 4.1 and Table 4.2, respectively. Here we
take the maximum norm for the error of the velocity (U, V},), and define the convergence
order(M) by order(M) = log, (%) Shown from the data, as the resolution increases,
the magnitude of the error decreases. For the second test case, we simulate the interfacial
dynamics when y; = 1 and p, = 10, i.e., the fluid viscosity ratio A = 10. In Fig. 4.2, we
plot the boundary configurations obtained by the explicit scheme and implicit scheme at
different time steps. In our numerical results, the larger the viscosity ratio A is, the slower
the interface configuration goes to equilibrium, because the coefficients of the boundary
integral equations are some types of ﬁ The convergence tests corresponding to the ex-
plicit scheme and the implicit scheme are shown in Table 4.3 and Table 4.4, respectively.
In the above two cases, we take At = (min(s,)Aa)* for the explicit schemes and take
At = min(s,)Aa for the implicit schemes. However, when the implicit schemes are used,
the magnitude of the error decreases only first order. In Table 4.5, we present a stability
test for our explicit scheme and our implicit scheme when s, is equal to 10°, 10*, 10° and
M1 = up = 1. In this case, the computational cost of our implicit scheme is large, i.e., At
is small.
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Figure 4.1:

time = 0.5 time=1 time =2 time =4
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-1 -1 -1t -1
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] I -3t . . ] -3t ] -3b. . 1
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 05 -0.5 0 05
X axis X axis X axis X axis

The interfacial"dynamies of the time evolution for a = 0.5,b = 0.7,s, =

10,7 = pup, = 1, and M = 1287 Dotted line: the explicit scheme; Dashed line: the implicit

scheme.

Table 4.1: The mesh refinement results for the velocity (U,, V}) and the relative error of
the enclosed area A, for the explicit scheme at 7 = 0.1.

M

IUsi2 — Uplle order ||Vsi, — Ville order |Ag— Apl/Ag order

64
128
256

5.77e-4 - 6.66e-4 - 1.61e-3 -
1.38¢e-4 2.06 1.61e-4 2.05 4.04e-4 2.00
2.77e-5 2.32 3.23e-5 2.31 1.0le-4 2.00
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Table 4.2: The mesh refinement results for the velocity (U,, V;) and the relative error of
the enclosed area A, for the implicit scheme at 7 = 0.1.

M ||U512 - Uh”oo order ||V512 - Vh”oo order |A0 - Ah|/A0 order

64 3.00e-3 - 5.15e-3 - 1.69¢-3 -

128 1.41e-3 1.09 2.32e-3 1.15 4.42e-4 1.93

256 4.90e-4 1.53 7.89e-4 1.55 1.19¢-4 1.89

time=1 time=4 time =8 time = 10
37 7T 3 ' 3 37 7T
2 2 2 2
1 1 1 1
P P —. —
» [N e A ) PR ;7N
X of i | £& o} i | eS| 1% of )
> \ /o> \ 7> N /o> N /
-1 -1 -1 -1
-2 =2 -2 -2
-3b. . 1 ] S -3k, . .1 ] A
-0.5 0 05 -0.5 0 05 -0.5 0 05 -0.5 0 0.5
X axis X axis X axis X axis

Figure 4.2: The interfacial dynamics of the time evolution for a = 0.5,6 = 0.7,s, =
10,1 = 1,4, = 10, and M = 128. Dotted line: the explicit scheme; Dashed line: the
implicit scheme.
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Table 4.3: The mesh refinement results for the velocity (U,, V}) and the relative error of
the enclosed area A, for the explicit scheme at 7 = 0.1.

M ||U512 - Uh”oo order ||V512 - Vh”oo order |A0 - Ah|/A0 order

64 4.58e-5 - 7.57e-5 - 1.62e-3 -

128 1.06e-5 2.11 1.80e-5 2.07 4.04e-4 2.00

256 2.10e-6 2.34 3.61e-6 2.32 1.01e-4 2.00

Table 4.4: The mesh refinement results for the velocity (U,, V}) and the relative error of
the enclosed area A, for the implicit scheme at 7 = 0.1.

M ||U512 - U;,H00 order ||V512 - Vh”oo order |A() - Ahl/AO order

64 1.11e-4 - 1.85¢-4 - 1.61e-3 -

128 4.92¢-5 1.17 7.79¢-5 1.25 4.03e-4 2.00

256 1.66e-5 1.56 2.57e-5 1.60 1.01e-4 1.99

Table 4.5: The stability test.for our explicit-scheme and-our implicit scheme when s, is
equal to 10°, 10%, 10° and yy = up = 1 for M = 128.
Sp 10° 10* 10°
Aty 6.02e6 2.41e-7 6.02e-8
Aty 3.93e-3-491e-4 49le-6

4.2 Vesicle in Shear flow

In this subsection, the initial shape in the subsection 4.1 is used to simulate the motion
of a vesicle and we also presented two test cases. In the first case, we consider that
a vesicle suspended in a simple shear flow with the shear rate y is equal to 1. If the
interior and the exterior of the vesicle are filled with the same fluid, the vesicle undergoes
a tank-treading motion at its equilibrium configuration. Here we choose the viscosity
u1 = pp = 1 and take Ar = min(s,)Aa. In Fig. 4.3, we simulate a tank-treading motion
of a vesicle in a simple shear flow. The convergence test for the velocity (U,, V}) and the
surface tension o, is shown in Table 4.6. The reduced area V is defined as %, where
Ay is the initial enclosed area and L is the initial arclength. The inclination angle 6/n
and the tank-treading frequency F = T x - versus the reduced area V' with different shear
rate y are shown in Fig. 4.4. As we can see, the inclination angle is independent of the
shear rate, but the tank-treading frequency is dependent. In Fig. 4.5, we plot the relative
error of the enclosed area A, and the arclength L, for time evolution. For the second
test case, we also consider an inextensible vesicle suspended in a simple shear flow, but
the viscosity of the interior fluid is different with the viscosity of the exterior fluid. The
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initial shape of the interface is an ellipse with horizontal semi-axis a = 0.5 and vertical
semi-axis b = 0.7. We choose the shear rate y is equal to 1 and the viscosity 4 is equal
to 3 (u; = 1,4 = 3), and take At = min(s,)Aa. In Fig. 4.6, we simulate a tank-treading
motion of a vesicle, and the convergence for the velocity (U, V},) and the surface tension
o, is shown in Table 4.7. In Fig. 4.7, we plot the relative error of the enclosed area
Ay, and the arclength L, for time evolution. Next, we replace the viscosity ratio 4 = 3
(uy = 1,up = 3) with 4 = 10 (u; = 1,up = 10), then the vesicle undergoes a tumbling
motion at its equilibrium configuration. In Fig. 4.8, we simulate a tumbling motion of a
vesicle in a simple shear flow with the shear rate vy is equal to 1. The convergence test
for the velocity (Uy, V},) and the surface tension o7, is shown in Table 4.8. In Fig. 4.9, we
plot the relative error of the enclosed area A, and the arclength L, for time evolution. The
boundary of the numerical results between the tank-treading motion (lower part) and the
tumbling motion (upper part) is shown in Fig. 4.10.

time =0 times=/1 time =2 time =4
time =6 time =8 time = 10 time =12

OO0 O

Figure 4.3: A tank-treading motion of an inextensible vesicle under a simple shear flow
with the shear rate y = 1 for M = 128.
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Table 4.6: The mesh refinement results for the velocity (U,, V}) and the surface tension
oy, at T =0.1.

M ||Usip — Uplle order [[Vsio — Villw order [losio — oylle  order

64 1.60e-2 - 1.80e-2 - 2.52e-1 -

128 6.74e-3 1.24 7.45e-3 1.28 1.07e-1 1.24

256 2.23e-3 1.60 2.43e-3 1.62 3.54e-2 1.59

4.5
——y=1
4t | V=S
—S—y=10
351
3l
>
3
g 25
El
=3
L
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i R
1%
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. . . . . . . " | S — . . .
05 055 06 065 07 07508 085 ~0.9 0.95 05, 055 06 065 07 075 08 08 09 09
reduced areaV. reduced area V

Figure 4.4: The inclination angle 6/x and the tank-treading frequency F = ﬁ Versus

the reduced area V with different shéary for M '=128; Left: the x-axis is the reduced area

V and the y-axis is the inclination angle 6/7; Right: the:x-axis is the reduced area V and
the y-axis is the tank-treading frequency F = j}z—”

g6
Geds
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Figure 4.5: The relative error of the enclosed area A, and the arclength L, for M = 128;
Left: the x-axis is the time step and the y-axis is the the relative error of enclosed area
|Ag — Apnl/Ap; Right: the x-axis is the time step and the y-axis is the relative error of
arclength Ly — Ly|/Ly.

time =0 time=1 time =2 time =4
time =6 time =8 time = 10 time =12

R ONON®,

Figure 4.6: A tank-treading motion of an inextensible vesicle under a simple shear flow
with the shear rate y = 1 for M = 128.
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Table 4.7: The mesh refinement results for the velocity (U,, V}) and the surface tension
gy at T =0.1.

M ||Usip — Uplle order ||Vsi; — Villw order |[losi2 — oplle  order

64 4.76e-3 - 9.71e-3 - 1.94e-1 -

128 2.22e-3 1.10 4.03e-3 1.27 8.22e-2 1.23

256 7.72e-4 1.53 1.32e-3 1.61 2.73e-2 1.59

0.02 -
0.035-

0.018
003y 0.016
0.025}F 4 0.014

0.012 -
0.02-
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relative error
relative error

0.015 M 0.008 -
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0.005
0.002F
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time step time step

Figure 4.7: The relative error of the enclosed area Aj, and-the arclength L, for M = 128;
Left: the x-axis is the time step and.the y-axis 1s the the-relative error of enclosed area
|Ag — Apl/Ap; Right: the X-axis is the time. step and:the y-axis is the relative error of
arclength |Ly — L;|/ L.
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time =0 time=1 time =2 time =4

QO

time =6 time =8 time = 10 time =12

OO O 0

Figure 4.8: A tumbling métion of an inextensible vesicle under a simple shear flow with
the shear rate y = 1 for Me= 128.

Table 4.8: The mesh refinement results for the velocity. (U, V;,) and the surface tension
o, at T =0.1.

M ||Us;o — Upllo order ! IVsig=V;lls™ order |los12 — 0ll,  order

64 2.72e-4 - 3.95¢-4 - 7.86e-2 -

128 1.07e-4 1.38 1.63e-4 1.28 3.32e-2 1.24

256 3.42e-5 1.65 5.33e-5 1.61 1.10e-2 1.59
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Figure 4.9: The relative error of the enclosed area A, and the arclength L, for M = 128;
Left: the x-axis is the time step and the y-axis is the the relative error of enclosed area
|Ag — Apnl/Ap; Right: the x-axis is the time step and the y-axis is the relative error of
arclength Ly — Ly|/Ly.
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Figure 4.10: The boundary between the tank-treading motion (lower part) and the tum-
bling motion (upper part); Solid line: the tumbling motion; Dotted line: the tank-treading
motion; The x-axis is the reduced area V; The y-axis is the viscosity ratio A.

5 Conclusion and future work

In this thesis, we study the boundary integral method for two dimensional incompress-
ible Stokes flows, and analyze the singularity in the integral equations and split it into a
smooth part and a singular part. The former can be treated by the trapezoidal rule and
the later is cured by quadrature form with specific weights. To simulate the dynamics
of an elastic interface, two numerical schemes are proposed, one is the explicit scheme
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which a force in previous time step is equipped, the other is implicit so that a tension-like
unknown is solved together with interfacial velocity. n numerical experiments, we first
apply the method to an elliptic elastic material in a quiescent flow, and give a second-order
convergence to the circular steady state. The second application is a vesicle suspended in
a simple shear flow. A series of numerical studies about the tank-treading motion and the
tumbling motion for a vesicle match previous works well.

Our long-term goal is to simulate the motion of multiple vesicles [13] and the dy-
namics of a compound vesicle [12]. In integral equation based methods, computing the
interaction forces between the vesicles tends to be the dominant part of the computational
cost at every time step. Simulating the dynamics of large number of interacting vesicles
will be challenging. On the other hand, the transition from tank-treading to tumbling can
occur in the absence of any viscosity mismatch for a compound vesicle. Moveover, a
vesicle can swing if the enclosed particle is nonspherical. Accurate tracking the moving
interface will require additional work.
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