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Atkin and Swinnerton-Dyer Congruences

Associated to Fermat Curves

Student: Yi-Hsuan Lin Advisor: Yifan Yang

Department (Institute) of Applied Mathematics

National Chiao Tung University

Abstract

It is known that each Fermat curve x™ 4+ y™ =1 is the modular curve associated to some
subgroup I, of SL,(Z) of finite index. Moreover if n+1,2,4,8 then [, is a
noncongruence subgroup. Let g be the genus of the Fermat curve, by Scholl’s theorem,
cuspforms of weight 2 on T, together with the 2g-dimensional l-adic Galois representations
coming from the Tate module associate this curve, satisfy the Atkin and Swinnerton-Dyer
congruence.

In this thesis, we decompose this Galois representation and give a more precise Atkin and

Swinnerton-Dyer congruence. The case n = 6 will be completely worked out.
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1. Introduction

The Fourier coefficients of a normalized newform f = 7 -, an(f)g™ of
2miT

weight k, level N, and character y on a congruence subgroup, where ¢ = e ,

satisfy the recursive relation

anp(f) = ap(f)an(f) + X (@)D" an/p(f) =0 (1.0.1)

for all prime p, p ¥ N. For noncongruence subgroups, the recursive relation
in (1.0.1) no longer holds. Nevertheless, Atkin and Swinnerton-Dyer observed
other congruence relations which are introduced in Chapter 3.

Recall that the Fermat curve F, =a™ 44" = 1 is the modular curve with

genus g = % associated to the modular subgroup

12\ (1 o0\ ,
nS((CEAE ) Ee)

where I'(2)" denotes the'commutator subgroup of I'(2). When n # 1,2,4,8, I',,
is noncongruence. Cusp forms of weight 2 -can be obtained by differential forms
and the parametrization (z,y) = (V1 — X, ¥/)), where A = %, described in
section 4.1. By Scholl’s theorem, they satisfy the Atkin and Swinnerton-Dyer
congruence with a characteristic polynomial of degree 2g. However, this means
that even in the case of the smallest odd prime 3, we are required to figure out
at least 329 terms in cusp forms. Therefore, this calculation is not a simple task.
In order to reduce difficulty, in Chapter 4, we decompose Scholl’s 2g-dimensional

Galois representations into pieces for the case n = 6, and give a more precise

Atkin and Swinnerton-Dyer congruence.



2. Review of modular forms on congruence sub-

groups
§ 2.1 Modular forms and cusp forms

The modular group is the group of 2 x 2 matrices with integer entries and

determinant 1,

SLy(Z) = {( ¢ 2 ) :a,b,c,deZ,ad—bc:l}
C

The modular group is generated by the two matrices
1 1 0 -1

( 0 1 ) and ( ) 0 ) .
Each element of the modular group is also-viewed as an automorphism (in-
vertible self-map) of tlhe Riemann sphere € = CU{oo}, the fractional linear
transformation

b b -

(‘Z d)(f)z%,fec
This is understood to mean that_if ¢ # 0_then —=d/c maps to co and oo maps
to a/c, and if ¢ = 0 then oo maps to co. The identity matrix I and its negative
—1I both give the identity transformation, and more generally each pair +v of
matrices in SLo(Z) gives a single transformation. The group of transformations
defined by the modular group is generated by the maps described by the two

matrix generators,

71+ 1land 7— —1/7

The upper half plane is

H= {r € C:Im(r) > 0}.



The formula

Im(y(r)) = 20 (‘C‘ 2) € ST(Z)

et +4dJ?’
shows that if v € SLy(Z) and 7 € H then also v(7) € H, i.e., the modular group
maps the upper half plane back to itself. In fact the modular group acts on
the upper half plane, meaning that I(7) = 7 where I is the identity matrix and
() (1) =~y (7)) for all 4,7 € SLy(Z) and 7 € H.

Let N be a positive integer. The principal congruence subgroup of
level N is

F(N){(Z db>€SL2(Z) : <Z ;’) (é (1)>(modN)}

In particular I'(1) = SLy(Z). Being the kernelrof the natural homomorphism

SLy(Z) — SLy(Z/NZ), the subgroup I'(N)'is normal in SLy(Z). In fact the

map is a surjection, inducing an isomorphism
SLo(Z)[T(N) —=-SLs(Z/NZ).

This shows that [SL(Z) : T ()] is-finite for all N. Specifically, the index is

1
[SLy(Z) : T(N)] = N3 H (1 — 2) where the product is taken over all prime
pIN P
divisors of V.

Definition 2.1. A subgroup I' of SLy(Z) is a congruence subgroup if I'(N) C
I' for some N € N, in which case I is a congruence subgroup of level N. If I" does

not contain I'(NV) for any N, then we say I' is a noncongruence subgroup.

Every congruence subgroup I' has finite index in SL2(Z). Besides the prin-

cipal congruence subgroups, the most important congruence subgroups are

FO(N)_{<Z 2)&9@(2) : (‘(’; 2>_<; :) (modN)}



Wy ”

(where “+” means “unspecified”) and

mm:{(i Z)eSLg(Z) : (i 2)

satisfying

1 =*
<O 1) (modN)}

Two pieces of notation are essential before we continue. For any matrix v =

c d
to be

( a b ) € SLy(Z) define the factor of automorphy j(v,7) € C for 7 € H

Jjv.7) = et +d

and for v € SLy(Z) and any integer k define the weight-k operator [y]; on

functions f : H — C by:

Fh@) =) 0@), e H

Since the factor of automorphy is never zero or infinity, if f is meromorphic

then f[v]g is also meromorphicrand has the‘same zeros and poles as f.

Definition 2.2. Let I' be a congruence subgroup of SLy(Z) and let k& be an
integer. A function f : H — C is a modular form of weight k with respect
to I if

(1) f is holomorphic,

(2) f is weight-k invariant under T,

(3) fla]x is holomorphic at oo for all « € SLy(Z).

If in addition,

(4) ap = 0 in the Fourier expansion of f[a]y for all o € SLy(Z),

then f is a cusp form of weight k with respect to I'. The modular forms

of weight k with respect to I' are denoted My(T"), the cusp forms Sy (T).



§ 2.2 Hecke operators

Let Ty and T'y be congruence subgroups of SLs(Z). Then T'; and T’y are
subgroups of GLj (Q), the group of 2 x 2 matrices with rational entries and

positive determinant. For each a € GL3 (Q) the set

Fal'y = {may : 1 el ely}

is a double coset in GLJ (Q). Under a definition to be developed in this
section, such double cosets transform modular forms with respect to I'y into
modular forms with respect to I's.

The group I'; acts on the double coset.I';al's by left multiplication, par-
titioning it into orbits. A typical orbit.is I'; 3 with representative 8 = ~yiays,
and the orbit space I'1\I'; ol's-is-thus a-disjoint union | JI'y3; for some choice
of representatives 3;.The next two lemmas combine-to show that this union is

finite.

Lemma 2.3 ([2] Lemma 5.1.1). Let-I"-be-a-congruence subgroup of SLa(Z) and
let a be an element of GLT (Q). Then a 'Tan SLy(Z) is again a congruence
subgroup of SLy(Z).

Lemma 2.4 ([2] Lemma 5.1.2). Let I'y and 'y be congruence subgroups of
SLy(Z), and let a be an element of GLF (Q). Set T3 = a~'T1aNTy, a subgroup

of 'y. Then left multiplication by «,
'y — T'al'ys given by ~s — avys,

induces a natural bijection from the coset space I's\I's to the orbit space I'1\I'1al's.
In concrete terms, {72} is a set of coset representatives for I's\I's if and only

if {B;} = {ave,;} is a set of orbit representatives for I'1\I'1al's.



We say that two subgroups H; and Hs of a group G are commensurable,
if the indices [Hy : Hy N Hy| and [Hs : Hy N Ho| are finite.

Theorem 2.5. Any two congruence subgroups I'y and Ty of SLs(Z) are com-

mensurable.

1
Proof. First we know [SLy(Z) : T(N)] = N* ]| <1 - p2> is finite. Consider
p|N
for any subgroups I'y, I's of SL2(Z), take Ny, Ny € N such that T'(N;) € Ty

and T'(N2) C I', and let N3 = lem(Ny, Na), then we have
F(Ng) C F(Nl) n F(Ng) cI'inly

which implies [SLy(Z) : I'(N3)] > [I'1 : ['(N3)] > [I'1 2 D(N1) N T(Na)] >
[y : Ty Ny
Similarly, we can prove [I's : T\ I'9) is finite. O
In particular, since & T 1ar1SL2(%) is a congruence subgroup of SLy(Z)
by Lemma 2.3, the coset space I's\I's in Lemma 2.4 is finite and hence so is
the orbit space I'1\I'{al's. With finiteness of the orbit space established, the
double coset I'yal's can act on modular forms.
Now for 8 € GL} (Q) and k € %, and 7 € H, extend the formula j(3,7) =
et +d to B € GLF(Q), and extend the weight-k operator to GLJ (Q) which

called the weight-k § operator by the rule

(fIBk)(r) = (detB)*~1j(B,7) " f(B(r)), for f:H—C

Definition 2.6. For congruence subgroups I'y and Ty of SLs(Z) and « €
GL3(Q), the weight-k I';al'; operator takes functions f € My(T';) to

flT1als], = Zf[ﬁj]k

where {3;} are orbit representatives, i.e., I'al'y = Uj I'15; is a disjoint union.



Now we introduces two operators on My (I';(N)). Consider the map
b
To(N) — (Z/NZ)* taking ( “ ; ) to d (mod N)
c

is a surjective homomorphism with kernel I';(N). This shows that I'y(N) is

normal in T'g(N) and induces an isomorphism

b

To(N)/T1(N)—>(Z/NZ)* where (“ ;

) to d (mod N)

To define the first type of Hecke operator, take any « € T'o(IV), set Ty =
I'y = I't(N), and consider the weight-%k double coset operator [I';al's],. Since

' (V) <To(N) this operator translating each function f € My (T'1(NV)) to
f[FlaF2]k = f[a]ka e FO(N)a

again in My (T'1(N)). Thus the group Fo(NV) acts onMy(T'1(N)), and since its
subgroup I'y (V) acts trivially, this is really an action“of the quotient (Z/NZ)*.

The action of « determined by d(mod N) and denoted (d), is
(d) + MpTiN)) =+ Mi(T1(N))

given by

(d)f = fla]y for any a = ( “
c 0

) € I'y(N) with § = d (modN)

This type of Hecke operator is also called a diamond operator. Now we are

going to define the second type of Hecke operator, again I'y = 'y = T'1(IV),
1

but now a =
0 p

), where p is a prime, we define a weight-k double coset
operator

Tp : Mk(FI(N)) — Mk(FI(N))a p prime



is given by

T,f = JI2(V) ( .

)Fl(N)]k.
p

The double coset here is

I'y(N) ( (1) 2 )Fl(N): {’YEMQ(Z) Dy = ( (1) ; > (mod N), det’yzp},

1 0
so in fact ( 0 > can be replaced by any matrix in this double coset in the
p

definition of T},.

Proposition 2.7 ([2] Proposition 5.2.4). Let d and e be elements of (Z/NZ)*,
and let p and g be prime. Then

()T, = T,(d)

(2)(d)(e) = {e)(d) = (de)

31,1, =T1,T,

Now we can extend.the definitions of (d) and T, to(n) and T, for alln € Z*.

For n € Z* with (n, N) =1, (n)"is determined by n (mod N). For n € Z*
with (n, N) > 1, define (m) = 0,"the zero operator'on M(T';(N)). The mapping
n — (n) is totally multiplicative.

To define T,,, set T1 = 1 (the identity operator); T}, is already defined for

primes p. For prime powers, define inductively
Tpr = TpTpr—1 — pk_1<p>Tpr72, for r > 2,

and note that inductively on r and s starting from Proposition 2.7(c), TyrTys =
T4+ T for distinct primes p and g. Extend the definition multiplicatively to T},

for all n,

T, = HTP?: where n = pr



so that the T}, all commute by Proposition 2.7 and

Tom =Tp Ty if (n,m) = 1.

Theorem 2.8 ([2] Proposition 5.3.1). Let f € My (I'1(N)) have Fourier expan-
sion

flr) = Z am(f)g™ where q = ™7,

m=0

Then for alln € Zt, T, f has Fourier expansion

D) = Y an(Tuf)e”
where "
W (Tof) = > d* gy ((d) ). (2.8.1)
In particular, if f € My(N, ) ﬂizw
am(Tnf) = d'(z )X(d)dk‘lamn 142 (f)- (2.8.2)

§ 2.3 Petersson inner product

In this section, we make the space of cusp forms & (I") into an inner product
space, the integral in the following definition is well defined and convergent.

Definition 2.9. Let I' C SLy(Z) be a congruence subgroup. The Petersson
inner product,

<,>1’* : Sk(F) X Sk(F) — (C,

is given by X
(fig)r = o F(r)g(r)(Im(7))* dpu(7).

Vo Jx

where Vr is the volume of Xy and du(r) = dzgly for 7 = x + iy.

This product is linear in f, conjugate linear in g, Hermitiansymmetric, and

positive definite. The normalizing factor 1/Vp ensures that if I' T then

’

{)r = () on Si().



§ 2.4 Oldforms and Newforms

So far the theory has all taken place at one generic level N. This section
begins results that move between levels, taking forms from lower levels M|N up
to level N, mostly with M = Np~! where p is some prime factor of N.
Lemma 2.10. If M|N then S,(T'1(M)) C Sk(T'1(N))

Proof. It M|N, we have I'y(N) C T';(M) since for any v € T'1(N), write v =

klN +1 *
, and write N = [M for some integer [, then v =

ko N ksN +1

kM +1 *
, hence r € Ty (M).

kol M kalM +1

Now if f is a modular form with-respect to 1'; (M), it is also a modular form

with respect to I'y (V) since T (N) '€ Tq(M). O

h 0
Lemma 2.11. For anyh factor of N/M, let oo, = , so that (flan]k)(T) =
0 1

hE=Lf(hT) for f : H —= C. The linear map [ap)r takes S, (T'1(M)) to Sp(T1(N)),
lifting the level from M to N

alN +1 b
Proof. Let v = € I'1(N). We have
cN dN +1
aN +1 hb
(eN/h)(hT) + dN + eN/h AN +1
, aN+1  hb
By h is a factor of N/M, we have v = is in 'y (M).
¢N/h  dN +1
Therefore
F(hyr) = f( (h7)) = (cNT + dN + 1) f(hr).
This shows g(7) = f(h7) is a cusp form on 'y (V). O

10



Combining preceding two lemmas, it is natural to distinguish the part of

Si(T'1(N)) coming from lower levels.

Definition 2.12. For each divisor d of N, let iy be the map
iq: (Sp(T1(Nd™1)))? — SL(T1(N))

given by
(f,9) = [ + gloak-

The subspace of oldforms at level N is

SpTi(N)M =D ip((Su(TL(Vd™)))?)

p|N
prime

and the subspace of newforms at level NV is the orthogonal complement with

respect to the Petersson inner product;,

SpI L (AP = (SkTa( N

§ 2.5 Hecke eigenforms

In this section, we will show-if f € M(N;7%) is'a normalized eigenform, then
its Fourier coefficients will satisfy the recursive relation a,r (f) = ap(f)apr—1(f)—
X(p)pk’lapr_2(f) for all p prime and r > 2.

Definition 2.13. Let f be a non-vanishing modular form. If f is a simutaneous
eigenfunction for all Hecke operator T;,, then we say f is a Hecke eigenform.

If the Fourier expansion of f has leading coefficient 1, then f is normalized.

Definition 2.14. Let x be a Dirichlet character modulo N, we define the x-
eigenspace of M (I'1(N)) by

Mi(N,x) ={f € Mp(T1(N)) : fl7]r = x(d,) f for all v € To(N)},

where d is the lower right entry of ~.

11



Theorem 2.15. Let f € My(N,x). Then f is a normalized eigenform if and
only if its Fourier coefficients satisfy the conditions

(1) ai(f) =1,

(2) ap- () = ap(Paye1 () = X(P)P*ape—s(f) for all p prime and 7 > 2,

() amn(f) = am(flan(f) when (m,n) =1.

Proof. The only if part is follows from the definition of T,,. Now we prove the
other way. Suppose f satisfies the three conditions. Then f is normalized, and
to be an eigenform for all the Hecke operators it need only satisfy a,,(T,f) =
ap(f)am(f) for all p prime and m € Z*. If p { m then formula (2.8.2) gives
am(Tpf) = apm/(f) and by the third condition this is a,(f)am(f) as desired.
On the other hand, if p|m write m = p"m’ with » > 1 and p { m'. This time

am(Tpf) = aprsryy (f) + X(p)pk_lapr-lm/ (f) by formula (2.8.2)
= (apr+1(f) #X0)P" Lay—1(f))a,«(f) by the third condition
= ap(f)ap(f)a, ) by the second condition
= ap(f)am(f) by the third condition.

O

3. Atkin and Swinnerton-Dyer congruences for

noncongruernce SUng‘OUpS

Last section we have develop some properties of the modular forms for con-
gruence subgroups. Given a cuspidal normalized newform g = 3~ an(9)q",
where ¢ = e2™7, of weight k > 2 level N and character y, the Fourier coefficients

of g satisfy the recursive relation

tnp(9) = ap(g)an(g) + x(@)P* ansp(g) =0 (3.0.1)
for all primes p not dividing N and for all n > 1.

12



The following sections will introduce the substitution of the recursive relation

for noncongruence subgroups.

§ 3.1 Noncongruence subgroups

Let f =3_,5,, anw™ be the modular form with coefficients a, in a fixed
number field. According to Hecke operators, a basis consisting of forms with
integral coefficients exists in each space of holomorphic congruence modular
forms. Consequently, for every congruence holomorphic modular form with
algebraic coeflicients, the sequence {a,, } has bounded denominators in the sense
that there exists an algebraic number M such that Ma,, is algebraic integral
for all n. Therefore, the sequence {b,, } having unbounded denominators implies
g= ZTLZTLU b,w™ is noncongruence.

Some other distinetions between congruence and-noncongruence subgroups

are demonstrated in [5].

§ 3.2 Atkin and Swinnerton-Dyer congruence

Before we state the Atkin and Swinnerton-Dyer congruences conjecture, let
us introduce a model of a modular curve over Q.

Let H be the upper half plane {7 € C : Im(7) > 0}, and H* denotes the
compactified half plane H U P1(Q).

Definition 3.1. Let I' be a subgroup of SLy(Z) of finite index. Consider the

compactified quotient space I'\H*, and the canonical map
M\H* — I'(1)\H*.
We will say I' is defined over Q if there exist

13



(1)a nonsingular projective curve V/Q;

(2)a finite morphism 7: V — Pb;

(3)a point e € V(Q); and

(4)an isomorphism ¢ : T\H*—=V(C) such that ¢(ico) = e and the diagram
M\H* —— T(1)\H*

e =)

V(C) <= PHC)

commutes (where here j is the usual modular invariant of level 1).

As explained in [1][6][7], there exists a subfield L of K, an element x € K
with k* € L, where p is the width of the cusp co, and a positive integer M such
that * is integral outside M and Sg(I') has a basis consisting of M-integral
forms. Here a form f of I is-called M-integral if in its Fourier expansion at

the cusp oo
1) = aafamn,
n>1

the Fourier coefficients‘a,(/f) can be written-as k"¢, (f) with ¢, (f) lying in the
ring O [1/M], where O, denotes.the ring-of integers of L.

Conjecture 3.2. (Atkin and Swinnerton-Dyer congruences). Suppose that the
modular curve Xt has a model over Q in the sense of Definition 3.1. There
exist a positive integer M and a basis of Sg(T') consisting of M -integral forms
fi, 1 <5 <d, such that for each prime p not dividing M, there exists a nonsin-
gular d x d matriz (X\; ;) whose entries are in o finite extension of Q,, algebraic
integers Ap(j), 1 < j <d, with |o(Ap(4))| < 2p =112 for all embeddings o ,and
characters x; unramified outside M so that for each j the Fourier coefficients

of hj = >, Nijfi satisfy the congruence relation

ordp(anp(hy) = Ap(d)an(hs) + x; ()" ansp(hy)) = (k= 1)(1 + ord,n)
(3.2.1)

14



for allm > 1; or equivalently, for allm > 1,

(anp(hj) = Ap(§)an(hy) + x5 )P ansp(hy)) / (np)*

1s integral at all places dividing p.

In other words, the recursive relation (3.0.1) on Fourier coefficients of modu-
lar forms for congruence subgroups is replaced by the congruence relation (3.2.1)

for forms of noncongruence subgroups.

Theorem 3.3 (Scholl). Suppose that Xt has a model over Q as before. Attached
to Si(T") is a compatible family of 2d-dimensional l-adic representations p; of the
Galois group Gal(Q/Q) unramified outside IM such that for primes p > k + 1
not dividing M1, the following hold.
(1) The characteristic polynomial

Hy(T) = > B (p)T*"

0<r<2d

of pi(Froby,) lies in Z[T] .and is independent of I, -and its roots are algebraic
integers with absolute value p*=1/2;
(2) For any M-integral form! fin Sg(L);-its-Fourier coefficients an(f), n > 1,

satisfy the congruence relation
Ordz)(a’npd' (f) + Bl (p)anpd_l (f) A BQd—l(p)an/pd_l (f) + BQd(p)a‘n/pd (f))
> (k—1)(1+ ordyn)
formn > 1.

Remark 3.4. When k = 2, the 2d-dimensional representation of Gal(Q/Q)
can be presented explicitly by considering the Tate module of the Jacobian of

Xr (See [9] for the definition of Tate module).

Definition 3.5. The two forms f and g above are said to satisfy the Atkin
and Swinnerton-Dyer congruence relations if, for all primes p not dividing

MN and for all n > 1,
(@np(f) = bp(9)an(f) + x )P anp(f))/ (np)*
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is integral at all places dividing p.

The following are two examples satisfy the Atkin and Swinnerton-Dyer con-
gruence relations.

Example 3.6. For the noncongruence subgroup I'71; studied in [1], the space
S4(T711) is 1-dimensional. Let f be a nonzero 14-integral form in Sy(T'711).
Scholl proved in [8] that there is a normalized newform g of weight 4 level 14
and trivial character such that f and g satisfy the Atkin and Swinnerton-Dyer

congruence relations.

Example 3.7. An another example is demonstrated in [4]. Let T" be the index
3 noncongruence subgroup of I''(5) such that the widths at two cusps oo and

—2 are 15.

(1) Then Xt has a modelover Q, x = 1, and the space S3(I") is 2-dimensional

with a basis consisting of 3-integral forms

; 11 16 4 71
Fi(r) = q1/15 L zq2/15 _ _q4/15 ’ z—q5/15 _ 7q7/15 + Z7(]8/15
3 3 9 9
932

+ ﬁq10/15 + O(q11/15))

; 11 16 4 5 .71
fo(r) = g1 P AR 20 515 2 1/15 L2 8/15

3 3 9 9
932 1015

11/15
+ 574 +O0(qg/77),

(2) The 4-dimensional [-adic representation p; of Gal(Q/Q) associated to
S3(T") constructed by Scholl is modular. More precisely, there are two

cuspidal newforms of weight 3 level 27 and character y_s given by

g4 (1) = q — 3ig® — 5¢* + 3iq° + 54" + 3ig® + 9¢*° + 15ig"! — 10¢*® — 15ig™

— 11¢* — 18ig'" — 164" — 15i¢*° + 45¢* + 12i¢*® + O(¢**),

g (1) = q+ 3ig® — 5¢* — 3iq® + 5¢" — 3i¢® + 9¢*° — 15i¢'t — 10¢'3 + 15i¢**

— 11¢"% + 18i¢™ — 16¢"° + 15i¢*° + 45¢* — 12i¢* + O(¢**),
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such that over the extension by joining v/—1, p; decomposes into the direct
sum of the two A-adic representations attached to g4 and g_, where A is

a place of Q(¢) dividing .

(3) fr and g4 (resp. f_ and g_) satisfy the Atkin and Swinnerton-Dyer

congruence relations.

4. Atkin and Swinnerton-Dyer congruences as-

sociated to Fermat curves

§ 4.1 Fermat curve

For a positive integer n, let F;, denote the Fermat curve z" + y™ = 1 of
degree n. There are some properties of Fermat curves.

Lemma 4.1. Forn >, the genus of Fy, is (n —1)(n — 2)/2, and forn >3, a

basis for the space of holomorphic 1-form is

xidx B .
wz’,j:’yjjy 0<:<j<mn=3.

As shown in [10], we have following two-lammas.

Lemma 4.2. The Fermat curve F, is the modular curve associated to the group
I',, generated by

n n

1 2 1 0 ,
) ) F(2) )
0 1 2 1

where T'(2)" denotes the commutator subgroup of T'(2).

Moreover, let

Oo() =3 g8 g(r) =3¢, 0u(r) = D (-1)"g" 2,

nez nez neZ

and \ = 05/0%. Then the Fermat curve x™ +y" = 1 is parameterized by (x,y) =

(VIT=2X, V).

17



Lemma 4.3. Ifn#1,2,4,8, then T',, is a noncongruence subgroup.

Let ¢ = e*™/™ and p, be the group of nth root of unity. The group G =

n X fin acts on Fy, by (¢4, ¢7) @ (z,y) — (¢, (y). Let
o (z,y) = Cx,y), 7 (x,y) = (2,¢Yy).

Assume that H is a subgroup of G. We consider the quotient curve F,,/H. The
pullbacks of holomorphic 1-forms on F,,/H will be holomorphic 1-forms on F,
that are invariant under the action of H. Say, w;; = xidx/y’ T2 is invariant
under the action of H. Using the parameterization given in Lemma 4.2, we get

a cusp form

NS qu/dq k/2n
fi,j /4 y]+2 ZCL q

on I',. On the other hand, we-may consider the L-function L(s, F,,/H), i.e
the L-function of the Galois representation pr, /g of Gal(Q/Q) attached to the
algebraic curve F,/H. (We assume for themoment that F,, /H is always defined

over Q for all H and n).

§42 Casea+4+ 10 =1

Noticing that A = 16¢'/2 + -- -, we slightly modify the Fermat curve and
consider the curve

™+ 16y" =

instead(so that the cusp form f; ; = xiqdr/y’T2dgq has rational Fourier coeffi-

cient). We shall still let F}, denote this curve. Also we let

o:(z,y) — (Cz,y), 7:(z,y) — (z,Cy),

18



where ¢ = €>™/". Note that a differential form z’dx/y’*? is fixed by o%r° if
and only if

(t+1)a—(j+2b=0 mod 6.

The following table lists the subgroup H;; of G = ug x pe that fixes w; ;.

wo,0 wo,1 wi1,1 wo,2 w1,2 w22 wo,3 w1,3 w23

(o?7) (o37) (o372) (o'7) (o?7,03) (o%73) (o°7) (o°7%) (o73)

We now work out the equations for the curves Fg/ H; ;.

Lemma 4.4. We have

group differential forms  equation
<U2T> Wo,0, W12 v=ul+1
(o37) Jwon v =ud—1
(o'm) /| woz vi=ud 44
(0°7) | wo3,wi2 vi=ub -1
(072) | wigslss vii=ul +1
(372) Lt =ud+1
(o°7%) [ wig v?=u?+16
(027°) | wa v =ud +4
(07%) | wa3 vi=ud—16
(027,0%) | wip vP=ud+1

Proof. Here we prove the case {(o27). Consider both of zy* and y° are fixed by
(0?7), and the mapping (z,y) — (xy?,y°) is 6-to-1. Thus, xy* and y° generate
the subfield of the function field of Fy that is fixed by (o?7) and an equation

for Fy/{0?7) is given by the relation

US =v*—16Vv>
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between U = zy* and V = y5. Now the curve U% = V* — 16V® is birationally

equivalent to v? = u® + 1 with the birational maps

2 2 — 2 3
w2V VeV v
U U3 4(u? —v) 8(u? —v)
This proves the case (o7). O

Remark 4.5. We can compute the genus of Fs/H wusing the Riemann-Hurwitz
formula. Taking H = (0°7) for example. For the affine part of Fg, the covering
Fs — Fg/H is unramified at those points of Fg where P;((¥z,(’y), j =0,...,5
are 6 distinct points. If y # 0, then the six points are distinct. At those points,
the covering is unramified. On the other hand, if y = 0, then Py = P3, P, = Py,
P, = Ps. The covering is ramified at those points with ramification index 2.
There are totally 6 such points (¢¥,0), k = 0,...,5. Thus, the contribution
from the affine part to the total branch number is 6. The infinity part of Fg
consist of 6 points Q; = (¢J¥1? :1:0) We. have

o2 T(Q; )= (TP e l) (T2 10 0) = Q41

Therefore, the covering-is unramified_at the 6. infinity points, and the total branch
number is 6. By the Riemann-Hurwitz formula, if g is the genus of Fg/{o*7),
then
6
10—1:6(g—1)+§.

Hence, we conclude that the genus of Fs/(0?T) is 2 and the subspace of dif-
ferential 1-forms on Fg that are invariant under {(o%7) should have dimension

2.

Theorem 4.6. The genus of F,,/H for a cyclic subgroup H = (0°1°) of piy, X fin
with a,b are relative primes is

n—do —dy — dga_y)

1
5 +

g:

where d,, is the greatest common divisor of x and n.
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Proof. By the Riemann-Hurwitz formula, we only need to verify the total branch
number B is n(dq + dp + d(g—p) — 3).

For the affine part of Fj,, the covering F,, — F,,/H is unramified at those
point of F}, where P; = ((¥z,(%y),  =0,...,n — 1 are n distinct points. If
x # 0 and y # 0, since a, b are relative primes, we know the n points are distinct.
At those points, the covering is unramified. On the other hand, if x = 0, then
Po = Pyja, = -« = Pay—vnjdys P1 = Pujay1 = -+ = Play—1m/dy+15 -+
Pna,—1 = Ppjdy+njdy—1 = -+ = Play—1)n/dy+n/dy—1- The covering is ramified
at those points with ramification index d,. There are totally n such points.
Similarly, we can determine the case y = 0. Thus, the contribution from the
affine part to the total branch number is n(d, — 1) +n(d, —1). The infinity part
of F}, consist of n points @; = (¢/+1/2: 1: 0) We have

a_aTb(Qj> _ (<j+a+1/2 . Cb . 0) E | (Cj+(a_b)+1/2 .1 0) _ QjJr(a—b)

Replaces a — b by a — b .mod n if necessary. Therefore, the ramification index
of the covering is d(,_py, and the total branch number of the infinity part is
n(de—p — 1). Sum up the total branch numbers of the affine part and the
infinity part, we have B = n(dq +dp + da—p) — 3). O

Lemma 4.7. The L-functions for the curves in Lemma 4.4 are

equation L-function

vi=ud+16 L(s, faor)
v?=ud+1 L

2 =ud+4 L

v?=u? =16 L(s, for @ x—4)

(
(
(
v2=ud—1  L(s, fa6 ® X_4)
(
v=uS+1 I
(

vi=ub—1  L(s, f36)L(s, f36 @ X_4)

Here
for (1) = n(37)*n(97)?, fae(7) = n(67)*
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Remark 4.8. The modular forms faor, fss, fios have the following description
in terms of Hecke characters.

Let K = Q(v/=3) and { = €2™/S. The ring of integers O is Z + Z(. Let
m = 3 and define x as follows. If a + b( € O is not relatively prime to 3, we
let x(a 4+ b¢) = 0. For each a + b in Ok relatively prime to m, there exists
a unique integer j with 0 < j < 6 such that a +b{ = ¢/ mod m. We set
x(a+b¢) = ¢ (a+bC). That is,

(a,b) mod3 | (0,1) (0,2) (1,0) (1,2) (2,0) (2,1)

x(a+b0)/(a+b) | ¢° ¢ 1 ¢ -1 ¢

Then
1
f27(7) _ p Z X(a + bg)qa2+ab+b2.

a+b(€O0K
For fs6, we let m = 2v/=3.and define x.‘as follows. If a +b( € Ok is not
relatively prime to m, we set x(a ¥ b¢) = 0. For each a + b{ in Ok that is
relatively prime to 2v/=3, there exists a unique integer j with 0 < j < 6 such
that a + b = ¢ mod'm. We set x(a+b¢) =77 (a+ b¢) Then

Fodlr)\= B DT RO

a+bCe0K

Proof. The only parts that Tequires-a-proof are v2> = v + 1 and v = uf — 1.

2

Here we consider the case v = u% — 1. Let £ = u? and y = v. Then we have

v? = u® — 1. In other words, we have a two-fold cover from v2 = u% — 1 to
y? = 23 — 1. Likewise, let z = —1/u? and y = v/u®. We have y? = 22 + 1. Then

L(s,v* —u® + 1) = L(s, f36)L(8, f36 @ x—4)- =

Theorem 4.9. The cusp forms f; ; = x'y~3~2qdx/dq satisfy the ASD congru-

ences with the following L-function.
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Fis | L-function
foo | L(s, f36)
foa | L(s, fs6 ® x—1)
Jia | L(s, fs6)
fo2 | L(s, fios)
Ji2 | L(s, f36)
fa2 | L(s, fios)
foz | L(s, f36 @ X-1)
frs | L(s, f7)
fa3 | L(s, far @ X-4)
faa 0| L(s. f56)

In fact, we find
foolm) =s6(27/3), fra(m)= fis(7/3),

f3.3(7) = f36(1/6); fo.3(7) = f36 @ x—4(7/6).

Also,
4, C10 A0 553 o 3740
97) — % 3 50 % 9 _ gy
JoaPm) =at 3@ =g G0~ 550 et T
4, 10 5 40 ; 553 4 3740
2 — g 3 _ 5 T _ 9 11 e
fa@r)=q =30 =g+ g0 ~ 557 T gt T

gq7_%qlo_%q13_%ql6+.”,
%q7+%q10—%q13+%q16+...7
f1,3(67)=q+§q7_4%6q13_48?q19 %q% % 31
f2,3(67):(J*§q7*% 13+48L12 19+%q25—% 31 ...,

8
fo2(37) =q+ §q4 -

8
f2,2(37) =4q— §q4 -

_A'_...7
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