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摘  要 

 

  眾所周知的，費馬曲線         是一個與特殊線性群   ( )的有限指數子群

  相關聯的模曲線，當n不等於1, 2, 4, 8時，   是一個非同餘子群。現在令費馬曲線的虧

格為g，scholl的定理告訴我們，  上權為2的尖點型式與由此曲線相關聯的Tate模所建構

出的2g維l進數伽羅瓦表現會滿足Atkin and Swinnerton-Dyer同餘。 

 

  在這篇論文中，我們將會分解伽羅瓦表現，然後給一個更加精確的 Atkin and 

Swinnerton-Dyer 同餘。我們將會解決   的情況。 
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Abstract 

 

  It is known that each Fermat curve         is the modular curve associated to some 

subgroup    of    ( )  of finite index. Moreover if           then    is a 

noncongruence subgroup. Let g be the genus of the Fermat curve, by Scholl’s theorem, 

cuspforms of weight 2 on   , together with the 2g-dimensional l-adic Galois representations 

coming from the Tate module associate this curve, satisfy the Atkin and Swinnerton-Dyer 

congruence.  

In this thesis, we decompose this Galois representation and give a more precise Atkin and 

Swinnerton-Dyer congruence. The case     will be completely worked out. 
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1. Introduction

The Fourier coefficients of a normalized newform f =
∑
n≥1 an(f)qn of

weight k, level N , and character χ on a congruence subgroup, where q = e2πiτ ,

satisfy the recursive relation

anp(f)− ap(f)an(f) + χ(p)pk−1an/p(f) = 0 (1.0.1)

for all prime p, p - N . For noncongruence subgroups, the recursive relation

in (1.0.1) no longer holds. Nevertheless, Atkin and Swinnerton-Dyer observed

other congruence relations which are introduced in Chapter 3.

Recall that the Fermat curve Fn = xn + yn = 1 is the modular curve with

genus g = (n−1)(n−2)
2 associated to the modular subgroup

Γn =

〈(
1 2

0 1

)n
,

(
1 0

2 1

)n
, Γ(2)

′

〉

where Γ(2)
′

denotes the commutator subgroup of Γ(2). When n 6= 1, 2, 4, 8, Γn

is noncongruence. Cusp forms of weight 2 can be obtained by differential forms

and the parametrization (x, y) = ( n
√

1− λ, n
√
λ), where λ = θ2(τ)4

θ3(τ)4 , described in

section 4.1. By Scholl’s theorem, they satisfy the Atkin and Swinnerton-Dyer

congruence with a characteristic polynomial of degree 2g. However, this means

that even in the case of the smallest odd prime 3, we are required to figure out

at least 32g terms in cusp forms. Therefore, this calculation is not a simple task.

In order to reduce difficulty, in Chapter 4, we decompose Scholl’s 2g-dimensional

Galois representations into pieces for the case n = 6, and give a more precise

Atkin and Swinnerton-Dyer congruence.
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2. Review of modular forms on congruence sub-

groups

§ 2.1 Modular forms and cusp forms

The modular group is the group of 2× 2 matrices with integer entries and

determinant 1,

SL2(Z) =

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
The modular group is generated by the two matrices(

1 1

0 1

)
and

(
0 −1

1 0

)
.

Each element of the modular group is also viewed as an automorphism (in-

vertible self-map) of the Riemann sphere Ĉ = C ∪ {∞}, the fractional linear

transformation (
a b

c d

)
(τ) =

aτ + b

cτ + d
, τ ∈ Ĉ.

This is understood to mean that if c 6= 0 then −d/c maps to ∞ and ∞ maps

to a/c, and if c = 0 then ∞ maps to ∞. The identity matrix I and its negative

−I both give the identity transformation, and more generally each pair ±γ of

matrices in SL2(Z) gives a single transformation. The group of transformations

defined by the modular group is generated by the maps described by the two

matrix generators,

τ 7→ τ + 1 and τ 7→ −1/τ

The upper half plane is

H = {τ ∈ C : Im(τ) > 0}.
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The formula

Im(γ(τ)) =
Im(τ)

|cτ + d|2
, γ =

(
a b

c d

)
∈ SL2(Z)

shows that if γ ∈ SL2(Z) and τ ∈ H then also γ(τ) ∈ H, i.e., the modular group

maps the upper half plane back to itself. In fact the modular group acts on

the upper half plane, meaning that I(τ) = τ where I is the identity matrix and

(γγ
′
)(τ) = γ(γ

′
(τ)) for all γ, γ

′ ∈ SL2(Z) and τ ∈ H.

Let N be a positive integer. The principal congruence subgroup of

level N is

Γ(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}
In particular Γ(1) = SL2(Z). Being the kernel of the natural homomorphism

SL2(Z) → SL2(Z/NZ), the subgroup Γ(N) is normal in SL2(Z). In fact the

map is a surjection, inducing an isomorphism

SL2(Z)/Γ(N) −̃→ SL2(Z/NZ).

This shows that [SL2(Z) : Γ(N)] is finite for all N . Specifically, the index is

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
where the product is taken over all prime

divisors of N .

Definition 2.1. A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊂

Γ for someN ∈ N, in which case Γ is a congruence subgroup of levelN . If Γ does

not contain Γ(N) for any N , then we say Γ is a noncongruence subgroup.

Every congruence subgroup Γ has finite index in SL2(Z). Besides the prin-

cipal congruence subgroups, the most important congruence subgroups are

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}

3



(where “∗” means “unspecified”) and

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}

satisfying

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z)

Two pieces of notation are essential before we continue. For any matrix γ =(
a b

c d

)
∈ SL2(Z) define the factor of automorphy j(γ, τ) ∈ C for τ ∈ H

to be

j(γ, τ) = cτ + d

and for γ ∈ SL2(Z) and any integer k define the weight-k operator [γ]k on

functions f : H −→ C by

(f [γ]k)(τ) = j(γ, τ)−kf(γ(τ)), τ ∈ H

Since the factor of automorphy is never zero or infinity, if f is meromorphic

then f [γ]k is also meromorphic and has the same zeros and poles as f .

Definition 2.2. Let Γ be a congruence subgroup of SL2(Z) and let k be an

integer. A function f : H −→ C is a modular form of weight k with respect

to Γ if

(1) f is holomorphic,

(2) f is weight-k invariant under Γ,

(3) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

If in addition,

(4) a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL2(Z),

then f is a cusp form of weight k with respect to Γ. The modular forms

of weight k with respect to Γ are denoted Mk(Γ), the cusp forms Sk(Γ).
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§ 2.2 Hecke operators

Let Γ1 and Γ2 be congruence subgroups of SL2(Z). Then Γ1 and Γ2 are

subgroups of GL+
2 (Q), the group of 2 × 2 matrices with rational entries and

positive determinant. For each α ∈ GL+
2 (Q) the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}

is a double coset in GL+
2 (Q). Under a definition to be developed in this

section, such double cosets transform modular forms with respect to Γ1 into

modular forms with respect to Γ2.

The group Γ1 acts on the double coset Γ1αΓ2 by left multiplication, par-

titioning it into orbits. A typical orbit is Γ1β with representative β = γ1αγ2,

and the orbit space Γ1\Γ1αΓ2 is thus a disjoint union
⋃

Γ1βj for some choice

of representatives βj . The next two lemmas combine to show that this union is

finite.

Lemma 2.3 ([2] Lemma 5.1.1). Let Γ be a congruence subgroup of SL2(Z) and

let α be an element of GL+
2 (Q). Then α−1Γα ∩ SL2(Z) is again a congruence

subgroup of SL2(Z).

Lemma 2.4 ([2] Lemma 5.1.2). Let Γ1 and Γ2 be congruence subgroups of

SL2(Z), and let α be an element of GL+
2 (Q). Set Γ3 = α−1Γ1α∩Γ2, a subgroup

of Γ2. Then left multiplication by α,

Γ2 −→ Γ1αΓ2 given by γ2 7→ αγ2,

induces a natural bijection from the coset space Γ3\Γ2 to the orbit space Γ1\Γ1αΓ2.

In concrete terms, {γ2,j} is a set of coset representatives for Γ3\Γ2 if and only

if {βj} = {αγ2,j} is a set of orbit representatives for Γ1\Γ1αΓ2.
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We say that two subgroups H1 and H2 of a group G are commensurable,

if the indices [H1 : H1 ∩H2] and [H2 : H1 ∩H2] are finite.

Theorem 2.5. Any two congruence subgroups Γ1 and Γ2 of SL2(Z) are com-

mensurable.

Proof. First we know [SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
is finite. Consider

for any subgroups Γ1, Γ2 of SL2(Z), take N1, N2 ∈ N such that Γ(N1) ⊂ Γ1

and Γ(N2) ⊂ Γ2, and let N3 = lcm(N1, N2), then we have

Γ(N3) ⊂ Γ(N1) ∩ Γ(N2) ⊂ Γ1 ∩ Γ2

which implies [SL2(Z) : Γ(N3)] ≥ [Γ1 : Γ(N3)] ≥ [Γ1 : Γ(N1) ∩ Γ(N2)] ≥

[Γ1 : Γ1 ∩ Γ2]

Similarly, we can prove [Γ2 : Γ1 ∩ Γ2] is finite.

In particular, since α−1Γ1α ∩ SL2(Z) is a congruence subgroup of SL2(Z)

by Lemma 2.3, the coset space Γ3\Γ2 in Lemma 2.4 is finite and hence so is

the orbit space Γ1\Γ1αΓ2. With finiteness of the orbit space established, the

double coset Γ1αΓ2 can act on modular forms.

Now for β ∈ GL+
2 (Q) and k ∈ Z, and τ ∈ H, extend the formula j(β, τ) =

cτ + d to β ∈ GL+
2 (Q), and extend the weight-k operator to GL+

2 (Q) which

called the weight-k β operator by the rule

(f [β]k)(τ) = (detβ)k−1j(β, τ)−kf(β(τ)), for f : H→ C

Definition 2.6. For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈

GL+
2 (Q), the weight-k Γ1αΓ2 operator takes functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑
j

f [βj ]k

where {βj} are orbit representatives, i.e., Γ1αΓ2 =
⋃
j Γ1βj is a disjoint union.
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Now we introduces two operators on Mk(Γ1(N)). Consider the map

Γ0(N) −→ (Z/NZ)∗ taking

(
a b

c d

)
to d (mod N)

is a surjective homomorphism with kernel Γ1(N). This shows that Γ1(N) is

normal in Γ0(N) and induces an isomorphism

Γ0(N)/Γ1(N)−̃→(Z/NZ)∗ where

(
a b

c d

)
to d (mod N)

To define the first type of Hecke operator, take any α ∈ Γ0(N), set Γ1 =

Γ2 = Γ1(N), and consider the weight-k double coset operator [Γ1αΓ2]k. Since

Γ1(N) C Γ0(N) this operator translating each function f ∈Mk(Γ1(N)) to

f [Γ1αΓ2]k = f [α]k, α ∈ Γ0(N),

again inMk(Γ1(N)). Thus the group Γ0(N) acts onMk(Γ1(N)), and since its

subgroup Γ1(N) acts trivially, this is really an action of the quotient (Z/NZ)∗.

The action of α determined by d (mod N) and denoted 〈d〉, is

〈d〉 : Mk(Γ1(N)) −→Mk(Γ1(N))

given by

〈d〉f = f [α]k for any α =

(
a b

c δ

)
∈ Γ0(N) with δ ≡ d (modN)

This type of Hecke operator is also called a diamond operator. Now we are

going to define the second type of Hecke operator, again Γ1 = Γ2 = Γ1(N),

but now α =

(
1 0

0 p

)
, where p is a prime, we define a weight-k double coset

operator

Tp : Mk(Γ1(N)) −→Mk(Γ1(N)), p prime

7



is given by

Tpf = f [Γ1(N)

(
1 0

0 p

)
Γ1(N)]k.

The double coset here is

Γ1(N)

(
1 0

0 p

)
Γ1(N) =

{
γ ∈M2(Z) : γ ≡

(
1 ∗
0 p

)
(mod N), detγ = p

}
,

so in fact

(
1 0

0 p

)
can be replaced by any matrix in this double coset in the

definition of Tp.

Proposition 2.7 ([2] Proposition 5.2.4). Let d and e be elements of (Z/NZ)∗,

and let p and q be prime. Then

(1)〈d〉Tp = Tp〈d〉

(2)〈d〉〈e〉 = 〈e〉〈d〉 = 〈de〉

(3)TpTq = TqTp

Now we can extend the definitions of 〈d〉 and Tp to 〈n〉 and Tn for all n ∈ Z+.

For n ∈ Z+ with (n,N) = 1, 〈n〉 is determined by n (mod N). For n ∈ Z+

with (n,N) > 1, define 〈n〉 = 0, the zero operator onMk(Γ1(N)). The mapping

n 7→ 〈n〉 is totally multiplicative.

To define Tn, set T1 = 1 (the identity operator); Tp is already defined for

primes p. For prime powers, define inductively

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2,

and note that inductively on r and s starting from Proposition 2.7(c), TprTqs =

TqsTpr for distinct primes p and q. Extend the definition multiplicatively to Tn

for all n,

Tn =
∏

Tpeii
where n =

∏
peii

8



so that the Tn all commute by Proposition 2.7 and

Tnm = TnTm if (n,m) = 1.

Theorem 2.8 ([2] Proposition 5.3.1). Let f ∈Mk(Γ1(N)) have Fourier expan-

sion

f(τ) =
∞∑
m=0

am(f)qm where q = e2πiτ .

Then for all n ∈ Z+, Tnf has Fourier expansion

(Tnf)(τ) =
∞∑
m=0

am(Tnf)qm

where

am(Tnf) =
∑

d|(m,n)

dk−1amn/d2(〈d〉f). (2.8.1)

In particular, if f ∈Mk(N,χ) then

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn/d2(f). (2.8.2)

§ 2.3 Petersson inner product

In this section, we make the space of cusp forms Sk(Γ) into an inner product

space, the integral in the following definition is well defined and convergent.

Definition 2.9. Let Γ ⊂ SL2(Z) be a congruence subgroup. The Petersson

inner product,

〈, 〉Γ : Sk(Γ)× Sk(Γ) −→ C,

is given by

〈f, g〉Γ =
1

VΓ

∫
X(Γ)

f(τ)g(τ)(Im(τ))kdµ(τ).

where VΓ is the volume of X(Γ) and dµ(τ) = dxdy
y2 for τ = x+ iy.

This product is linear in f , conjugate linear in g, Hermitiansymmetric, and

positive definite. The normalizing factor 1/VΓ ensures that if Γ
′ ⊂ Γ then

〈, 〉′Γ = 〈, 〉Γ on Sk(Γ).

9



§ 2.4 Oldforms and Newforms

So far the theory has all taken place at one generic level N . This section

begins results that move between levels, taking forms from lower levels M |N up

to level N , mostly with M = Np−1 where p is some prime factor of N .

Lemma 2.10. If M |N then Sk(Γ1(M)) ⊂ Sk(Γ1(N))

Proof. If M |N , we have Γ1(N) ⊂ Γ1(M) since for any γ ∈ Γ1(N), write γ = k1N + 1 ∗

k2N k3N + 1

, and write N = lM for some integer l, then γ =

 k1lM + 1 ∗

k2lM k3lM + 1

, hence r ∈ Γ1(M).

Now if f is a modular form with respect to Γ1(M), it is also a modular form

with respect to Γ1(N) since Γ1(N) ⊂ Γ1(M).

Lemma 2.11. For any h factor of N/M , let αh =

 h 0

0 1

, so that (f [αh]k)(τ) =

hk−1f(hτ) for f : H −→ C. The linear map [αh]k takes Sk(Γ1(M)) to Sk(Γ1(N)),

lifting the level from M to N .

Proof. Let γ =

 aN + 1 b

cN dN + 1

 ∈ Γ1(N). We have

hγτ =
(aN + 1)(hτ) + hb

(cN/h)(hτ) + dN + 1
=

 aN + 1 hb

cN/h dN + 1

 (hτ)

By h is a factor of N/M , we have γ
′

=

 aN + 1 hb

cN/h dN + 1

 is in Γ1(M).

Therefore

f(hγτ) = f(γ
′
(hτ)) = (cNτ + dN + 1)kf(hτ).

This shows g(τ) = f(hτ) is a cusp form on Γ1(N).

10



Combining preceding two lemmas, it is natural to distinguish the part of

Sk(Γ1(N)) coming from lower levels.

Definition 2.12. For each divisor d of N , let id be the map

id : (Sk(Γ1(Nd−1)))2 −→ Sk(Γ1(N))

given by

(f, g) 7→ f + g[αd]k.

The subspace of oldforms at level N is

Sk(Γ1(N))old =
∑
p|N

prime

ip((Sk(Γ1(Nd−1)))2)

and the subspace of newforms at level N is the orthogonal complement with

respect to the Petersson inner product,

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥.

§ 2.5 Hecke eigenforms

In this section, we will show if f ∈M(N,χ) is a normalized eigenform, then

its Fourier coefficients will satisfy the recursive relation apr (f) = ap(f)apr−1(f)−

χ(p)pk−1apr−2(f) for all p prime and r ≥ 2.

Definition 2.13. Let f be a non-vanishing modular form. If f is a simutaneous

eigenfunction for all Hecke operator Tn, then we say f is a Hecke eigenform.

If the Fourier expansion of f has leading coefficient 1, then f is normalized.

Definition 2.14. Let χ be a Dirichlet character modulo N , we define the χ-

eigenspace of Mk(Γ1(N)) by

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f [γ]k = χ(dγ)f for all γ ∈ Γ0(N)} ,

where dγ is the lower right entry of γ.

11



Theorem 2.15. Let f ∈ Mk(N,χ). Then f is a normalized eigenform if and

only if its Fourier coefficients satisfy the conditions

(1) a1(f) = 1,

(2) apr (f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f) for all p prime and r ≥ 2,

(3) amn(f) = am(f)an(f) when (m,n) = 1.

Proof. The only if part is follows from the definition of Tn. Now we prove the

other way. Suppose f satisfies the three conditions. Then f is normalized, and

to be an eigenform for all the Hecke operators it need only satisfy am(Tpf) =

ap(f)am(f) for all p prime and m ∈ Z+. If p - m then formula (2.8.2) gives

am(Tpf) = apm(f) and by the third condition this is ap(f)am(f) as desired.

On the other hand, if p|m write m = prm
′

with r ≥ 1 and p - m′ . This time

am(Tpf) = apr+1m′ (f) + χ(p)pk−1apr−1m′ (f) by formula (2.8.2)

= (apr+1(f) + χ(p)pk−1apr−1(f))am′ (f) by the third condition

= ap(f)apr (f)am′ (f) by the second condition

= ap(f)am(f) by the third condition.

3. Atkin and Swinnerton-Dyer congruences for

noncongruence subgroups

Last section we have develop some properties of the modular forms for con-

gruence subgroups. Given a cuspidal normalized newform g =
∑
n≥1 an(g)qn,

where q = e2πiτ , of weight k ≥ 2 level N and character χ, the Fourier coefficients

of g satisfy the recursive relation

anp(g)− ap(g)an(g) + χ(p)pk−1an/p(g) = 0 (3.0.1)

for all primes p not dividing N and for all n ≥ 1.
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The following sections will introduce the substitution of the recursive relation

for noncongruence subgroups.

§ 3.1 Noncongruence subgroups

Let f =
∑
n≥n0

anw
n be the modular form with coefficients an in a fixed

number field. According to Hecke operators, a basis consisting of forms with

integral coefficients exists in each space of holomorphic congruence modular

forms. Consequently, for every congruence holomorphic modular form with

algebraic coefficients, the sequence {an} has bounded denominators in the sense

that there exists an algebraic number M such that Man is algebraic integral

for all n. Therefore, the sequence {bn} having unbounded denominators implies

g =
∑
n≥n0

bnw
n is noncongruence.

Some other distinctions between congruence and noncongruence subgroups

are demonstrated in [5].

§ 3.2 Atkin and Swinnerton-Dyer congruence

Before we state the Atkin and Swinnerton-Dyer congruences conjecture, let

us introduce a model of a modular curve over Q.

Let H be the upper half plane {τ ∈ C : Im(τ) > 0}, and H∗ denotes the

compactified half plane H ∪P1(Q).

Definition 3.1. Let Γ be a subgroup of SL2(Z) of finite index. Consider the

compactified quotient space Γ\H∗, and the canonical map

Γ\H∗ → Γ(1)\H∗.

We will say Γ is defined over Q if there exist
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(1)a nonsingular projective curve V/Q;

(2)a finite morphism π : V → P1
Q;

(3)a point e ∈ V (Q); and

(4)an isomorphism φ : Γ\H∗−̃→V (C) such that φ(i∞) = e and the diagram

Γ\H∗

' φ

��

// Γ(1)\H∗

' j

��
V (C)

πC // P1(C)

commutes (where here j is the usual modular invariant of level 1).

As explained in [1][6][7], there exists a subfield L of K, an element κ ∈ K

with κµ ∈ L, where µ is the width of the cusp∞, and a positive integer M such

that κµ is integral outside M and Sk(Γ) has a basis consisting of M -integral

forms. Here a form f of Γ is called M-integral if in its Fourier expansion at

the cusp ∞

f(τ) =
∑
n≥1

an(f)qn/mu,

the Fourier coefficients an(f) can be written as κncn(f) with cn(f) lying in the

ring OL[1/M ], where OL denotes the ring of integers of L.

Conjecture 3.2. (Atkin and Swinnerton-Dyer congruences). Suppose that the

modular curve XΓ has a model over Q in the sense of Definition 3.1. There

exist a positive integer M and a basis of Sk(Γ) consisting of M -integral forms

fj, 1 ≤ j ≤ d, such that for each prime p not dividing M , there exists a nonsin-

gular d× d matrix (λi,j) whose entries are in a finite extension of Qp, algebraic

integers Ap(j), 1 ≤ j ≤ d, with |σ(Ap(j))| ≤ 2p(k−1)/2 for all embeddings σ ,and

characters χj unramified outside M so that for each j the Fourier coefficients

of hj :=
∑
i λi,jfi satisfy the congruence relation

ordp(anp(hj)−Ap(j)an(hj) + χj(p)p
k−1an/p(hj)) ≥ (k − 1)(1 + ordpn)

(3.2.1)

14



for all n ≥ 1; or equivalently, for all n ≥ 1,

(anp(hj)−Ap(j)an(hj) + χj(p)p
k−1an/p(hj))/(np)

k−1

is integral at all places dividing p.

In other words, the recursive relation (3.0.1) on Fourier coefficients of modu-

lar forms for congruence subgroups is replaced by the congruence relation (3.2.1)

for forms of noncongruence subgroups.

Theorem 3.3 (Scholl). Suppose that XΓ has a model over Q as before. Attached

to Sk(Γ) is a compatible family of 2d-dimensional l-adic representations ρl of the

Galois group Gal(Q̄/Q) unramified outside lM such that for primes p > k + 1

not dividing Ml, the following hold.

(1) The characteristic polynomial

Hp(T ) =
∑

0≤r≤2d

Br(p)T
2d−r

of ρl(Frobp) lies in Z[T ] and is independent of l, and its roots are algebraic

integers with absolute value p(k−1)/2;

(2) For any M -integral form f in Sk(Γ), its Fourier coefficients an(f), n ≥ 1,

satisfy the congruence relation

ordp(anpd(f) +B1(p)anpd−1(f) + ...+B2d−1(p)an/pd−1(f) +B2d(p)an/pd(f))

≥ (k − 1)(1 + ordpn)

for n ≥ 1.

Remark 3.4. When k = 2, the 2d-dimensional representation of Gal(Q̄/Q)

can be presented explicitly by considering the Tate module of the Jacobian of

XΓ (See [9] for the definition of Tate module).

Definition 3.5. The two forms f and g above are said to satisfy the Atkin

and Swinnerton-Dyer congruence relations if, for all primes p not dividing

MN and for all n ≥ 1,

(anp(f)− bp(g)an(f) + χ(p)pk−1an/p(f))/(np)k−1
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is integral at all places dividing p.

The following are two examples satisfy the Atkin and Swinnerton-Dyer con-

gruence relations.

Example 3.6. For the noncongruence subgroup Γ711 studied in [1], the space

S4(Γ711) is 1-dimensional. Let f be a nonzero 14-integral form in S4(Γ711).

Scholl proved in [8] that there is a normalized newform g of weight 4 level 14

and trivial character such that f and g satisfy the Atkin and Swinnerton-Dyer

congruence relations.

Example 3.7. An another example is demonstrated in [4]. Let Γ be the index

3 noncongruence subgroup of Γ1(5) such that the widths at two cusps ∞ and

−2 are 15.

(1) Then XΓ has a model over Q, κ = 1, and the space S3(Γ) is 2-dimensional

with a basis consisting of 3-integral forms

f+(τ) = q1/15 + iq2/15 − 11

3
q4/15 − i16

3
q5/15 − 4

9
q7/15 + i

71

9
q8/15

+
932

81
q10/15 +O(q11/15),

f−(τ) = q1/15 − iq2/15 − 11

3
q4/15 + i

16

3
q5/15 − 4

9
q7/15 − i71

9
q8/15

+
932

81
q10/15 +O(q11/15),

(2) The 4-dimensional l-adic representation ρl of Gal(Q̄/Q) associated to

S3(Γ) constructed by Scholl is modular. More precisely, there are two

cuspidal newforms of weight 3 level 27 and character χ−3 given by

g+(τ) = q − 3iq2 − 5q4 + 3iq5 + 5q7 + 3iq8 + 9q10 + 15iq11 − 10q13 − 15iq14

− 11q16 − 18iq17 − 16q19 − 15iq20 + 45q22 + 12iq23 +O(q24),

g−(τ) = q + 3iq2 − 5q4 − 3iq5 + 5q7 − 3iq8 + 9q10 − 15iq11 − 10q13 + 15iq14

− 11q16 + 18iq17 − 16q19 + 15iq20 + 45q22 − 12iq23 +O(q24),
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such that over the extension by joining
√
−1, ρl decomposes into the direct

sum of the two λ-adic representations attached to g+ and g−, where λ is

a place of Q(i) dividing l.

(3) f+ and g+ (resp. f− and g−) satisfy the Atkin and Swinnerton-Dyer

congruence relations.

4. Atkin and Swinnerton-Dyer congruences as-

sociated to Fermat curves

§ 4.1 Fermat curve

For a positive integer n, let Fn denote the Fermat curve xn + yn = 1 of

degree n. There are some properties of Fermat curves.

Lemma 4.1. For n ≥ 1, the genus of Fn is (n− 1)(n− 2)/2, and for n ≥ 3, a

basis for the space of holomorphic 1-form is

ωi,j =
xidx

yj+2
, 0 ≤ i ≤ j ≤ n− 3.

As shown in [10], we have following two lammas.

Lemma 4.2. The Fermat curve Fn is the modular curve associated to the group

Γn generated by  1 2

0 1


n

,

 1 0

2 1


n

, Γ(2)
′
,

where Γ(2)
′

denotes the commutator subgroup of Γ(2).

Moreover, let

θ2(τ) =
∑
n∈Z

q(2n+1)2/8, θ3(τ) =
∑
n∈Z

qn
2/2, θ4(τ) =

∑
n∈Z

(−1)nqn
2/2,

and λ = θ4
2/θ

4
3. Then the Fermat curve xn+yn = 1 is parameterized by (x, y) =

( n
√

1− λ, n
√
λ).
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Lemma 4.3. If n 6= 1, 2, 4, 8, then Γn is a noncongruence subgroup.

Let ζ = e2πi/n and µn be the group of nth root of unity. The group G =

µn × µn acts on Fn by (ζi, ζj) : (x, y) 7→ (ζix, ζjy). Let

σ : (x, y) 7→ (ζx, y), τ : (x, y) 7→ (x, ζy).

Assume that H is a subgroup of G. We consider the quotient curve Fn/H. The

pullbacks of holomorphic 1-forms on Fn/H will be holomorphic 1-forms on Fn

that are invariant under the action of H. Say, ωi,j = xidx/yj+2 is invariant

under the action of H. Using the parameterization given in Lemma 4.2, we get

a cusp form

fi,j =
xiqdx/dq

yj+2
=

∞∑
k=1

akq
k/2n

on Γn. On the other hand, we may consider the L-function L(s, Fn/H), i.e.,

the L-function of the Galois representation ρFn/H of Gal(Q̄/Q) attached to the

algebraic curve Fn/H. (We assume for the moment that Fn/H is always defined

over Q for all H and n).

§ 4.2 Case x6 + y6 = 1

Noticing that λ = 16q1/2 + · · · , we slightly modify the Fermat curve and

consider the curve

xn + 16yn = 1

instead(so that the cusp form fi,j = xiqdx/yj+2dq has rational Fourier coeffi-

cient). We shall still let Fn denote this curve. Also we let

σ : (x, y) 7→ (ζx, y), τ : (x, y) 7→ (x, ζy),

18



where ζ = e2πi/n. Note that a differential form xidx/yj+2 is fixed by σaτ b if

and only if

(i+ 1)a− (j + 2)b ≡ 0 mod 6.

The following table lists the subgroup Hi,j of G = µ6 × µ6 that fixes ωi,j .

ω0,0 ω0,1 ω1,1 ω0,2 ω1,2 ω2,2 ω0,3 ω1,3 ω2,3 ω3,3

〈σ2τ〉 〈σ3τ〉 〈σ3τ2〉 〈σ4τ〉 〈σ2τ, σ3〉 〈σ2τ3〉 〈σ5τ〉 〈σ5τ2〉 〈στ3〉 〈στ2〉
We now work out the equations for the curves F6/Hi,j .

Lemma 4.4. We have

group differential forms equation

〈σ2τ〉 ω0,0, ω1,2 v2 = u6 + 1

〈σ3τ〉 ω0,1 v2 = u3 − 1

〈σ4τ〉 ω0,2 v2 = u3 + 4

〈σ5τ〉 ω0,3, ω1,2 v2 = u6 − 1

〈στ2〉 ω1,2, ω3,3 v2 = u6 + 1

〈σ3τ2〉 ω1,1 v2 = u3 + 1

〈σ5τ2〉 ω1,3 v2 = u3 + 16

〈σ2τ3〉 ω2,2 v2 = u3 + 4

〈στ3〉 ω2,3 v2 = u3 − 16

〈σ2τ, σ3〉 ω1,2 v2 = u3 + 1

Proof. Here we prove the case 〈σ2τ〉. Consider both of xy4 and y6 are fixed by

〈σ2τ〉, and the mapping (x, y) 7→ (xy4, y6) is 6-to-1. Thus, xy4 and y6 generate

the subfield of the function field of F6 that is fixed by 〈σ2τ〉 and an equation

for F6/〈σ2τ〉 is given by the relation

U6 = V 4 − 16V 5
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between U = xy4 and V = y6. Now the curve U6 = V 4 − 16V 5 is birationally

equivalent to v2 = u6 + 1 with the birational maps

u =
2V

U
, v =

V 2(8V − 1)

U3
, U =

u2

4(u3 − v)
, V =

u3

8(u3 − v)

This proves the case 〈σ2τ〉.

Remark 4.5. We can compute the genus of F6/H using the Riemann-Hurwitz

formula. Taking H = 〈σ2τ〉 for example. For the affine part of F6, the covering

F6 → F6/H is unramified at those points of F6 where Pj(ζ
2jx, ζjy), j = 0, . . . , 5

are 6 distinct points. If y 6= 0, then the six points are distinct. At those points,

the covering is unramified. On the other hand, if y = 0, then P0 = P3, P1 = P4,

P2 = P5. The covering is ramified at those points with ramification index 2.

There are totally 6 such points (ζk, 0), k = 0, . . . , 5. Thus, the contribution

from the affine part to the total branch number is 6. The infinity part of F6

consist of 6 points Qj = (ζj+1/2 : 1 : 0) We have

σ2τ(Qj) = (ζj+5/2 : ζ : 0) ∼ (ζj+3/2 : 1 : 0) = Qj+1

Therefore, the covering is unramified at the 6 infinity points, and the total branch

number is 6. By the Riemann-Hurwitz formula, if g is the genus of F6/〈σ2τ〉,

then

10− 1 = 6(g − 1) +
6

2
.

Hence, we conclude that the genus of F6/〈σ2τ〉 is 2 and the subspace of dif-

ferential 1-forms on F6 that are invariant under 〈σ2τ〉 should have dimension

2.

Theorem 4.6. The genus of Fn/H for a cyclic subgroup H = 〈σaτ b〉 of µn×µn
with a, b are relative primes is

g =
n− da − db − d(a−b)

2
+ 1

where dx is the greatest common divisor of x and n.
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Proof. By the Riemann-Hurwitz formula, we only need to verify the total branch

number B is n(da + db + d(a−b) − 3).

For the affine part of Fn, the covering Fn → Fn/H is unramified at those

point of Fn where Pj = (ζajx, ζbjy), j = 0, . . . , n − 1 are n distinct points. If

x 6= 0 and y 6= 0, since a, b are relative primes, we know the n points are distinct.

At those points, the covering is unramified. On the other hand, if x = 0, then

P0 = Pn/db = . . . = P(db−1)n/db , P1 = Pn/db+1 = . . . = P(db−1)n/db+1, . . .,

Pn/db−1 = Pn/db+n/db−1 = . . . = P(db−1)n/db+n/db−1. The covering is ramified

at those points with ramification index db. There are totally n such points.

Similarly, we can determine the case y = 0. Thus, the contribution from the

affine part to the total branch number is n(da−1)+n(db−1). The infinity part

of Fn consist of n points Qj = (ζj+1/2 : 1 : 0) We have

σaτ b(Qj) = (ζj+a+1/2 : ζb : 0) ∼ (ζj+(a−b)+1/2 : 1 : 0) = Qj+(a−b)

Replaces a − b by a − b mod n if necessary. Therefore, the ramification index

of the covering is d(a−b), and the total branch number of the infinity part is

n(da−b − 1). Sum up the total branch numbers of the affine part and the

infinity part, we have B = n(da + db + d(a−b) − 3).

Lemma 4.7. The L-functions for the curves in Lemma 4.4 are

equation L-function

v2 = u3 + 16 L(s, f27)

v2 = u3 + 1 L(s, f36)

v2 = u3 + 4 L(s, f108)

v2 = u3 − 1 L(s, f36 ⊗ χ−4)

v2 = u3 − 16 L(s, f27 ⊗ χ−4)

v2 = u6 + 1 L(s, f36)2

v2 = u6 − 1 L(s, f36)L(s, f36 ⊗ χ−4)

Here

f27(τ) = η(3τ)2η(9τ)2, f36(τ) = η(6τ)4
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Remark 4.8. The modular forms f27, f36, f108 have the following description

in terms of Hecke characters.

Let K = Q(
√
−3) and ζ = e2πi/6. The ring of integers OK is Z + Zζ. Let

m = 3 and define χ as follows. If a+ bζ ∈ OK is not relatively prime to 3, we

let χ(a + bζ) = 0. For each a + bζ in OK relatively prime to m, there exists

a unique integer j with 0 ≤ j < 6 such that a + bζ ≡ ζj mod m. We set

χ(a+ bζ) = ζ−j(a+ bζ). That is,

(a, b) mod 3 (0, 1) (0, 2) (1, 0) (1, 2) (2, 0) (2, 1)

χ(a+ bζ)/(a+ bζ) ζ5 ζ2 1 ζ −1 ζ4

Then

f27(τ) =
1

6

∑
a+bζ∈OK

χ(a+ bζ)qa
2+ab+b2 .

For f36, we let m = 2
√
−3 and define χ as follows. If a + bζ ∈ OK is not

relatively prime to m, we set χ(a + bζ) = 0. For each a + bζ in OK that is

relatively prime to 2
√
−3, there exists a unique integer j with 0 ≤ j < 6 such

that a+ bζ ≡ ζj mod m. We set χ(a+ bζ) = ζ−j(a+ bζ) Then

f36(τ) =
1

6

∑
a+bζ∈OK

χ(a+ bζ)qa
2+ab+b2 .

Proof. The only parts that requires a proof are v2 = u6 + 1 and v2 = u6 − 1.

Here we consider the case v2 = u6 − 1. Let x = u2 and y = v. Then we have

v2 = u3 − 1. In other words, we have a two-fold cover from v2 = u6 − 1 to

y2 = x3−1. Likewise, let x = −1/u2 and y = v/u3. We have y2 = x3 +1. Then

L(s, v2 − u6 + 1) = L(s, f36)L(s, f36 ⊗ χ−4).

Theorem 4.9. The cusp forms fi,j = xiy−j−2qdx/dq satisfy the ASD congru-

ences with the following L-function.
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fi,j L-function

f0,0 L(s, f36)

f0,1 L(s, f36 ⊗ χ−4)

f1,1 L(s, f36)

f0,2 L(s, f108)

f1,2 L(s, f36)

f2,2 L(s, f108)

f0,3 L(s, f36 ⊗ χ−4)

f1,3 L(s, f27)

f2,3 L(s, f27 ⊗ χ−4)

f3,3 L(s, f36)

In fact, we find

f0,0(τ) = f36(2τ/3), f1,2(τ) = f36(τ/3),

f3,3(τ) = f36(τ/6), f0,3(τ) = f36 ⊗ χ−4(τ/6).

Also,

f0,1(2τ) = q +
4

3
q3 − 10

9
q5 − 40

81
q7 − 553

243
q9 − 3740

729
q11 + · · · ,

f1,1(2τ) = q − 4

3
q3 − 10

9
q5 +

40

81
q7 − 553

243
q9 +

3740

729
q11 + · · · ,

f0,2(3τ) = q +
8

3
q4 − 4

9
q7 − 320

81
q10 − 154

243
q13 − 3328

729
q16 + · · · ,

f2,2(3τ) = q − 8

3
q4 − 4

9
q7 +

320

81
q10 − 154

243
q13 +

3328

729
q16 + · · · ,

f1,3(6τ) = q +
4

3
q7 − 46

9
q13 − 472

81
q19 +

1985

243
q25 +

3532

729
q31 + · · · ,

f2,3(6τ) = q − 4

3
q7 − 46

9
q13 +

472

81
q19 +

1985

243
q25 − 3532

729
q31 + · · · .
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