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柯倫布猜想在多項式上的數值研究

學生：黃柏綸 指導教授：張書銘 博士

國立交通大學應用數學系（研究所）碩士班

摘 要

本論文介紹柯倫布猜想（Korenblum conjecture）在多項式上的數值結果。柯倫布常數

（Korenblum’s constant ）在多項式上可以更容易地利用不同的解根和數值積分方法找出。

最後，我們考慮柯倫布猜想在某些分式函數上，能找出目前最佳的柯倫布常數的上界。

關鍵詞：柯倫布猜想、柯倫布常數。
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Numerical study on Korenblum’s
conjecture for polynomials

Student: Bo-Lun Huang Advisors: Dr. Shu-Ming Chang

Department (Institute) of Applied Mathematics

National Chiao Tung University

Abstract

In this study we give a brief description of numerical results on Korenblum’s con-

jecture for polynomials. The Korenblum’s constant will be found out numerically by

using different numerical integration methods and some methods for solving roots. It

can be solved easily a little bit for Korenblum’s conjecture under polynomials. Finally,

we consider Korenblum’s conjecture for some kinds of fractional functions and obtain a

better upper bound of Korenblum’s constant.

Keywords: Korenblum’s conjecture, Korenblum’s constant.
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1 Introduction

Definition 1.1. Holomorphic [6]

Given a complex-valued function f of a single complex variable, the derivative of f at

point z0 in its domain is defined by the limit

f
′
(z0) = lim

z→z0

f(z)− f(z0)

z − z0
.

If f is complex differentiable at every point z0 in U , we say that f is holomorphic on U .

Let f(z) and g(z) be holomorphic in the open unit disk D and let Zf and Zg be their zero

sets. If for some c, 0 < c < 1,

|f(z)| ≤ |g(z)| (c < |z| < 1) (1)

and

Zf ⊇ Zg, (2)

then f/g is holomorphic, and the classical maximum principle implies that (1) holds in D and

∥f∥ ≤ ∥g∥, (3)

where ∥ · ∥ is the Bergman norm:

∥f(z)∥ = [

∫
D
|f(z)|2dA(z)]1/2 < ∞,

where

dA(z) =
1

π
dxdy =

1

π
rdrdθ and z = x+ iy = reiθ

are the normalized Lebesgue area measure on D.It is nature to ask whether (2) is necessarily

for the implication from (1) to (3). Therefore, Korenblum made the following conjecture in

1991.

Conjecture 1.2. (Korenblum) [9]

Let D be the open unit disk in the complex plane C. The Bergman space A2(D) consists

of holomorphic functions f and g in D. Korenblun conjectured that there exists a numerical

constant c, 0 < c < 1, such that whenever |f(z)|≤|g(z)| in the annulus c < |z| < 1, then
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∥f(z)∥≤∥g(z)∥. It would be interesting to know the sharp (i.e. the largest) value of c.

In 1999, Hayman [8] proved Korenblum’s conjecture, and Hinkkanen [2] proved that Ko-

renblum’s conjecture is true for the Bergman space Ap(D)(p ≥ 1). But the sharp value of c

even when p = 2(we call it Korenblum’s constant) is still unknown. However, Hayman [8] gave

a lower bound of c: c ≥ 0.04. Hinkkanen [2] improved Hayman’s result that c ≥ 0.15724 · · · .

Recently Schuster [7] has shown that c ≥ 0.21 in terms of Möbius pseudodistance for the

annulus. On the other hand, an upper bound on c can be found from Martin’s example [4]:

c < 0.70450 · · · . Wang [10] gave an upper bound on c: c < 0.69472.

Figure 1: The green area is an annulus which satisfying |f(z)| ≤ |g(z)| and the maximum

solution of |f(z)| = |g(z)| is c.

Example 1.3. [4]

Define

f(z) =
1√
2
+ ϵ, g(z) = z.

We have |f(z)| ≤ |g(z)| for (
1√
2
+ ϵ) < |z| < 1, and ∥f(z)∥ =

1

2
+ ϵ(

√
2 + ϵ), ∥g(z)∥ =

1

2
.

∥f(z)∥ ≥ ∥g(z)∥ and Korenblum’s conjecture fails, so c cannot larger than 1√
2

. Therefore,
1√
2

is an upper bound of Korenblum’s constant.
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Figure 2: The functions f(z) = 1√
2

and g(z) = z.

Theorem 1.4. [5]

Suppose n ≥ 0 is an integer and f is an analytic function in D. If |f(z)| ≤ |zn| for

1/
√
3 ≤ |z| ≤ 1. then

∫
D
|f(z)|2dA(z) ≤

∫
D
|zn|2dA(z).

Proof. It is easy to see that this is a direct consequence of the following result.

Theorem 1.5. [5]

Suppose n ≥ 0 is an integer and F (x) =
∑∞

k=0 akx
k with nonnegative coefficients. If

F (x) ≤ xn for 1/3 ≤ x ≤ 1, then∫ 1

0

F (x)dx ≤
∫ 1

0

xndx =
1

n+ 1
.

Proof. The case n = 0 is trivial. We assume n ≥ 1 in the rest of the proof. That F (x) ≤ xn

for 1/3 ≤ x ≤ 1 implies that either F (x) ≤ xn for all x ∈ [0, 1] or there exists c ∈ (0, 1/3]

such that F (c) = cn. In the first case the conclusion is obvious. So we assume that there

exists c ∈ (0, 1/3] such that F (x) = cn and F (x) ≤ xn for c ≤ x ≤ 1. Thus we have

a0 + a1 + · · ·+ an + an+1 + · · · = F (1),

a0 + a1c+ · · ·+ anc
n + an+1c

n+1 + · · · = cn

3



with F (1) ≤ 1. We solve for an and an+1 in terms of the other terms. Multiplying the first

equation above by −cn and then adding the result to the second, we get

an+1(c
n+1 − cn) +

∑
k ̸=n,n+1

ak(c
k − cn) = cn(1− F (1)),

or

an+1 =
∑

k ̸=n,n+1

ak
ck − cn

cn − cn+1
− 1− F (1)

1− c
.

Similarly, we obtain

an = −
∑

k ̸=n,n+1

ak
ck − cn+1

cn − cn+1
+

1− cF (1)

1− c
.

It follows that∫ 1

0

F (x)dx =
∞∑
k=0

ak
k + 1

=
∑

k ̸=n,n+1

ak
k + 1

+
an

+1+
+

an+1

n+ 2

=
∑

k ̸=n,n+1

ak[
1

k + 1
− ck − cn+1

(n+ 1)(cn − cn+1)
+

ck ∗ cn

(n+ 2)(cn − cn+1)
]

+
1

n+ 1
+

1− F (1)

1− c
(

c

n+ 1
− 1

n+ 2
).

Since c ≤ 1/3 and n ≥ 1, we clearly have

c

n+ 1
− 1

n+ 2
≤ 0.

But 1− F (1) ≥ 0 and 1− c > 0, we obtain∫ 1

0

F (x)dx ≤ 1

n+ 1
+

∑
k ̸=n,n+1

ak[
1

k + 1
− ck − cn+1

(n+ 1)(cn − cn+1)
+

ck − cn

(n+ 2)(cn − cn+1)
].

Writing ck − cn = ck − cn+1 − (cn − cn+1) in the above series, we easily get∫ 1

0

F (x) ≤ 1

n+ 1
+

∑
k ̸=n,n+1

ak[
1

k + 1
− 1

n+ 2
− ck − cn+1

(n+ 1)(n+ 2)(cn − cn+1)
].

The desired result now follows from the following lemma.

Lemma 1.6. [5]

Let

D(k, n) =
1

k + 1
− 1

n+ 2
− ck − cn+1

(n+ 1)(n+ 2)(cn − cn+1)
.
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Then D(k, n) ≤ 0 for all n ≥ 1, k ≥ 0, and c ∈ (0, 1/3].

Proof. First note that D(k, n) = 0 if k = n or n+ 1. If k ≥ n+ 2, we have

D(k, n) ≤ 1

n+ 3
− 1

n+ 2
+

cn+1

(n+ 1)(n+ 2)(cn − cn+1)

=
c

(n+ 1)(n+ 2)(1− c)
− 1

(n+ 2)(n+ 3)

=
1

(n+ 1)(n+ 2)(1− c)
(2c− n+ 1

n+ 2
)

≤ 1

(n+ 1)(n+ 2)(1− c)
(
2

3
− n+ 1

n+ 2
)

≤0

It remains to prove the result for 0 ≤ k ≤ n−1. When k = 0 and n = 1, a little simplification

shows that

D(0, 1) =
1

2c
(c− 1

3
) ≤ 0.

When k = 0 and n ≥ 2, we have

D(k, n) =1− 1

n+ 2
− 1 + c+ · · ·+ cn

(n+ 1)(n+ 2)cn

≤n+ 1

n+ 2
− 1

(n+ 1)(n+ 2)cn

=
n+ 1

n+ 2
cn(cn − 1

(n+ 1)2
)

≤n+ 1

n+ 2
cn(

1

3n
− 1

(n+ 1)2
)

≤0.

To prove the remaining case 1 ≤ k ≤ n− 1, we write

D(k, n) =
n− k + 1

(k + 1)(n+ 2)
− 1− cn−k+1

(n+ 1)(n+ 2)(1− c)cn−k
.

Since n− k + 1 ≥ 2, we have

1− cn−k+1 ≥ 1− c2 > 1− c.

It follows that

D(k, n) ≤ n− k + 1

(k + 1)(n+ 2)
− 1

(n+ 1)(n+ 2)cn−k

=
n− k + 1

cn−k(k + 1)(n+ 2)
(cn−k − k + 1

(n+ 1)(n− k + 1)
)

Let m = n− k, then m ≥ 1 and

D(k, n) ≤ m+ 1

cm(k + 1)(m+ k + 2)
(cm − k + 1

(m+ 1)(m+ k + 1)
).
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It is clear that for k ≥ 1

k + 1

(m+ 1)(m+ k + 1)
≥ 2

(m+ 1)(m+ 2)
.

Thus

D(k, n) ≤ m+ 1

cm(k + 1)(m+ k + 2)(cm − 2
(m+1)(m+2)

)

≤ m+ 1

cm(k + 1)(m+ k + 2)( 1
3m

− 2
(m+1)(m+2)

)

≤0,

completing the proof of this lemma.

Lemma 1.7.

If f(z) =
∑+∞

k=0 akz
k∈A2(D), then

∥f(z)∥ = (
+∞∑
k=0

|ak|2

k + 1
)
1
2 .

Proof.

||f ||2 =
∫
D

|f(z)|2dA(z)

=

∫
D

|a0 + a1z + · · ·+ amz
m|2dA(z)

=

∫ 1

0

∫ 2π

0

|a0 + a1(re
iθ) + · · ·+ am(re

iθ)m|2rdrdθ

=

∫ 1

0

∫ 2π

0

(|a0|+ |a1|(reiθ) + · · ·+ |am|(reiθ)m)(|a0|+ |a1|(reiθ) + · · ·+ |am|(reiθ)m)rdrdθ

=

∫ 1

0

∫ 2π

0

[|a0|+ |a1|(cosθ + isinθ) + · · ·+ |am|(cos(mθ) + isin(mθ))][|a0|+

|a1|(cosθ − isinθ) + · · ·+ |am|(cos(mθ)− isin(mθ))]rdrdθ

=

∫ 1

0

∫ 2π

0

(|a0|2 + |a1|2 + · · ·+ |am|2 + 2r(|a0||a1|cosθ + · · ·+ |am−1||am|cos((m

− 1)θ)cos(mθ)))rdrdθ

=|a0|2 +
|a1|2

2
+ · · ·+ |am|2

m+ 1
.

Hence, ||f || = (|a0|2 +
|a1|2

2
+ · · ·+ |am|2

m+ 1
)
1
2 .

Since this conjecture is too difficult to prove, we try to find some counter examples to decrease

the upper bound of c. To find the upper bound of c, we will find functions f and g which

satisfies the following two conditions:

6



1. There exist an absolute constant c, 0 < c < 1, such that |f | ≤ |g|.

2. ||f || > ||g||.

Because the Bergman space is consist of all holomorphic functions and polynomial functions

in z with complex-valued coefficients is the simplest holomorphic function, we try it at the

beginning. From lemma 1.7, we can simplified the Bergman norm to be the sum of the

absolute value of coefficients. It’s interested that whenever we can find the example to prove

or disprove c is larger than 1/
√
3 from theorem 1.4. We want to start from

f(z) =
∞∑
k=0

akz
k and g(z) = zn.

But it’s too many coefficients, we decided from two terms of functions f(z) = a0 + a1z
m and

g(z) = zn for complex-valued coefficients a0, a1 and m,n ∈ N.

2 Theorem of numerical methods

2.1 Solving root method

Fixed Point theorem

Theorem 2.1. Contraction Mapping Theorem [3]

Let C be a closed subset of the real line. If F is a contractive mapping of C into C, then

F has a unique fixed point. Moreover, this fixed point is the limit of every sequence obtained

from the equation xn+1 = F (xn), n ≥ 0 with a starting point x0 ∈C.

Theorem 2.2. [3]

Let f be a function from D⊂ Rn into R and x0 ∈ D and . If all the partial derivatives of

f exist and constants δ > 0 and K > 0 exist so that whenever ||x− x0|| < δ and x ∈ D , we

have |∂f(x)
∂xj

| ≤ K,for each j = 1, 2, · · · , n,Then f is continuous at x0.

Theorem 2.3. [3]

7



Let D = (x1, x2, · · · , xn)
t|ai ≤ xi ≤ bi for each i = 1, 2, · · · , n for some of constants

a1, a2, · · · , an and b1, b2, · · · , bn. Suppose G is a continuous function from D ⊂ Rn into

Rn with the property that G(x) ∈ D whenever x ∈ D . Then G has a fixed point in D.

Suppose ,in addition, that all the component functions of G have continuous partial derivatives

and a constant K < 1 exists with |∂gi(x)
∂xj

| ≤ K
n

whenever x ∈ D, for each j = 1, 2, · · · , n

and each component function gi. Then the sequence {x(k)}∞k=0 defined by an arbitrarily

selected a x(0) in D and generated by x(k) = G(x(k−1)) , for each K ≤ 1 converges to the

unique fixed point p ∈ D and ∥x(k) − p∥∞ ≥ Kk

1−K∥x
(1)−x(0)∥∞

Bisection (Interval Halving) Method [3]

If f is a continuous function on the interval [a,b] and if f(a)g(b) < 0 , then f must have

a zero in (a,b). Since f(a)g(b) < 0 , the function f changes sign on the interval [ a,b] and,

therefore, it has at least one zero in the interval. This is a consequence of the Intermediate-

Value Theorem.

Theorem 2.4. Bisection Method [3]

If [a0, b0], [a1, b1], · · · , [am, bm], · · · denote the intervals in the bisection method, then the

limits limn→∞ an and limn→∞ bn exists are equal, and represent a zero of f. If r = limn→∞ cn

and cn = 1
2
(an + bn) , then |r − cn| ≥ 2−(n+1)(b0 − a0).

Newton’s Method

Theorem 2.5. Newton’s Method [3]

Let fn be continuous and let r be a simple zero of f . Then there is a neighborhood of r

and a constant c such that if Newton’s method is started in a neighborhood, the successive

points become steadily closer to r and satisfy

|xn+1 − r| ≤ c(xn − r)2, (r ≥ 0).

Theorem 2.6. Newton’s Method for a Convex Function [3]

If f belongs to C2(R) , is increasing, is convex, and has a zero, then the zero is unique, and

the Newton iteration will converge to it from any starting point.

8



Secant method

Theorem 2.7. Secant method [3]

The Newton iteration is defined by the equation

xn+1 = xn −
f(xn)

f ′(xn)
. (4)

One of the drawbacks of Newton’s method is that it involves the derivative of the function

whose zero is sought. To overcome this disadvantage, a number of methods have been pro-

posed. For example, Steffensen’s iteration

xn+1 = xn −
[f(xn)]

2

f(xn + f(xn))− f(xn)
,

gives one approach to this problem. Another is to replace f ′(x) in equation (1) by a difference

quotient, such as

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1

. (5)

The approximation given in equation (2) comes directly from the definition of f ′ as a limit;

namely,

f ′(x) = lim
u→x

f(x)− f(u)

x− u
.

When this replacement is made, the resulting algorithm is called the secant method. Its

formula is

xn+1 = xn − f(xn)[
xn − xn−1

f(xn)− f(xn−1)
] (n ≥ 1).

2.2 Integration method

Trapezoid Rule [3]

If the interval [a, b] is uniformly partitioned like this

a = x0 < x1 < · · · < xn = b

a = x0 < x0 + h < x0 + 2h < · · · < x0 + (n− 1)h = b, h =
b− a

n
.

then ∫ b

a

f(x)dx =
n∑

i=1

∫ xi

xi−1

f(x)dx ≈ 1

2

n∑
i=1

(xi − xi−1)[f(xi) + f(xi+1)]

≈ h

2
[f(a) + 2

n−1∑
i=1

f(a+ ih) + f(b)],

9



and the error term is

ϵ =

∫ b

a

f(x)dx− h

2
[f(a) + 2

n−1∑
i=1

f(a+ ih) + f(b)]

=f(a)(x− a) + f(b)(b− x)− h

2
[f(a) + 2

n−1∑
i=1

f(a+ ih) + f(b)]

=− h2

12
[f

′
(b)− f

′
(a)]

=− h2

12
(b− a)f

′′
(ξ),

where ξ ∈ (a, b).

Composite Simpson’s rule [3]

Let the interval [a, b] divide into an even number of subintervals. Set xi = a+ ih, h = b−a
n

(0 ≤ i ≤ n). Then∫ b

a

f(x)dx =

∫ x2

x0

f(x)dx+

∫ x4

x2

f(x)dx+ · · ·+
∫ n

xn−2

f(x)dx

=

n/2∑
i=1

∫ x2i

x2i−2

f(x)dx

≈
n/2∑
i=1

h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)],

and the error term is

− 1

180
(b− a)h4f (4)(ξ),

where ξ ∈ (a, b).

Romberg Algorithm [3]

Letting R(n, 0) denote the trapezoid estimate with 2n subintervals, we have

R(0, 0) =
1

2
(b− a)[f(a) + f(b)],

R(n, 0) =
1

2
R(n− 1, 0) + hn

2n−1∑
i=1

f(a+ (2i− 1)hn).

The estimate R(0, 0), R(1, 0), R(2, 0),· · · , R(M, 0) are computed for a modest value of M ,

and there are no duplicate function evaluations. In the remainder of the Romberg algorithm,

additional quantities R(n,m) are to be computed. All of these can be interpreted as estimates

of the integral I. Further evaluations of the integrand f are not necessary after the element
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R(M, 0) has been computed. The subsequent columns of the R− array for n ≥ 1 and m ≥ 1

are constructed from the formula

R(n,m) = R(n,m− 1) +
1

4m − 1
[R(n,m− 1)−R(n− 1,m− 1)].

This calculation is very simple. It is used to provide a final array of the form

R(0, 0)

R(1, 0) R(1, 1)

R(2, 0) R(2, 1) R(2, 2)

R(3, 0) R(3, 1) R(3, 2) R(3, 3)

... ... ... ... . . .

R(M, 0) R(M, 1) R(M, 2) · · · R(M,M)

3 Some numerical method and algorithms

3.1 Algorithm for solving polynomial equations

Direct Force Method

1. Start from radius r=1 and r is decreasing define h(z) = |f(z)| − |g(z)|.

2. If h(z) < 0 ,then repeat step1. until h(zn)h(zn−1) > 0

3. Then zn−1 is the c which we want.

Figure 3: Using Direct Force method to find each radius of circles and the radius is decreasing

until we find the first solution and this solution is c.
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Neighborhood Searching Method(We call it NS method here.)

1. Given a initial point x0 and computing h(x0) = f(x0)− g(x0).

2. Search the neighborhood of x0 and given perturbs for several directions and the only

one point such that h is the smallest, and this is our new point x1.

3. Repeat Step 2. until h is small enough.

Figure 4: Neighborhood Searching method is searching the neighborhood of previous point

and the minimum of the solution is the next point.

Bisection (Interval Halving) Method

1. Define the upper number ”up” and lower number ”down” and the middle point ”mid =

up+down
2

”.

2. Compute hup = f(up) − g(up) and hdown = f(down) − g(down) and hmid = f(mid) −

g(mid).

3. (a) If huphmid < 0, implies the solution exists between up and mid by intermediate

value theorem.

(b) If hdownhmid < 0, implies the solution exists between down and mid.

12



(c) If hdownhup > 0, implies there is no solution between up and

down.

4. choose new up down and mid to repeat Step 2. until h is small enough.

Secant Method

1. Choose a initial point x0, d=0.1 and max times k.

2. Calculate xn+1 = xn − f(xn)[
d

f(xn)−f(xn−d)
].

3. Repeat step 2 until k times.

Continuation method

1. Choose a first angle θ0 = 0 and use bisection method to compute the solution z∗0 such

that ||f(z)|| = ||g(z)||.

2. For i = 1, 2, · · · , n do step3-4.

3. Choose θ1 = θ be a initial point and compute (dy,dx) be the direct vector to find the

next point z1 on angle θ1.

4. Let z1 be center point and choose a neighborhood with radius r and use bisection method

to find the solution z∗1 .

Figure 5: Continuation method is using the derivative of previous two points as the direction

for searching solution.
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3.2 Algorithms for integration

Trapezoid rule

1. uniformly partitioned the interval [a,b] into n subintervals.

2. calculate

h

2
[f(a) + 2

n−1∑
i=1

f(a+ ih) + f(b)], where h =
b− a

2

Composite Simpson’s rule

1. uniformly partitioned the interval [a,b] into n subintervals and n is even number.

2. calculate

h

3

n/2∑
i=1

[f(x2i−2) + 4f(x2i−1) + f(x2i)]

Romberg Algorithm

1. Let h0 = b− a and R(0, 0) = 1
2
h[f(a) + f(b)].

2. hn = hn−1/2 and R(n, 0) = 1
2
R(n− 1, 0) + hn

∑2n−1

i=1 f(a+ (2i− 1)h).

3. R(n,m) = R(n,m− 1) + [R(n,m− 1)−R(n− 1,m− 1)]/(4m − 1).

4. repeat step2. and step3. and the R(n,m) is our answer.

4 Numerical results

Table 1: Compared the running time with different solving root methods.

running step bisection Direct force NS continuation

10−3 0.080619 0.007448 0.081113 0.006089

10−4 0.084511 0.014932 x 0.009197

10−5 0.095309 0.066767 x 0.004317

10−6 0.100648 1.302836 x 0.007237

10−7 0.106015 13.000338 x 0.008396
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From table 1, continuation cost less time when the error is 10−7 and it’s a better choice

for solving roots. The Neighborhood Searching method only can find the root with error 10−3

and cost too many time, so this method is not our decision. The Direct Force method might

be more precise but cost most time of those four methods. Because the Newton’s method

and secant method may be some error at the numerical differentiable, we give up using these

methods.

Table 2: Compared with different integration methods.

number of partition Simpson method Trapezoid method Romberg

4 3.7013× 10−5 6.8851× 10−1 5.7932× 10−4

8 2.3262× 10−6 3.4202× 10−1 8.5947× 10−7

16 1.4559× 10−7 1.7045× 10−1 3.3548× 10−10

32 9.1027× 10−9 8.5086× 10−2 3.2862× 10−14

64 5.6896× 10−10 4.2508× 10−2 4.4408× 10−15

This table shows that the Romberg integration has minimum error with the same partition,

so the better choice are composite Simpson rule and Romberg integration. If the integration

are costing too much time, we will abandon some accuracy and use composite Simpson rule.

Table 3: Compared with different degrees of f(z) = a0 + a1z
m and g(z) = zn.

m n 1 2 3 4 5 6

1 0.710865 0.843565 0.892874 0.918579 0.934325 0.944985

2 0.710378 0.843656 0.893056 0.918792 0.934538 0.945168

3 0.709799 0.843565 0.893148 0.918884 0.934660 0.945289

4 0.709221 0.843412 0.893148 0.918944 0.934721 0.945350

5 0.708733 0.843230 0.893087 0.918944 0.934751 0.945411

10 0.707485 0.842224 0.892569 0.918731 0.934691 0.945442

15 0.707180 0.841554 0.892021 0.918366 0.934447 0.945320

20 0.707119 0.841219 0.891625 0.918000 0.934203 0.945107

25 0.707089 0.841037 0.891351 0.917726 0.933960 0.944893

30 0.707089 0.840945 0.891168 0.917513 0.933746 0.944711

From table 3, the degree of f is large and the degree of g is 1 will has the better c.
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Figure 6: The change of c with different m and n.

5 Some results

5.1 Maximum modulus principle

Theorem 5.1. Maximum modulus principle [6]

Let U ⊆ C be a domain, and let f be an analytic function on U . Then if there is a point

z0 ∈ U at which |f | has a local maximum, then f is constant. Furthermore, let U ⊆ C be a

bounded domain, and let f be a continuous function on the closed set U that is analytic on

U . Then the maximum value of |f | on U (which always exists) occurs on the boundary ∂U .

In other words,

max
U

|f | = max
∂U

|f |.

16



Figure 7: The left figure shows that when |a0| is closed to 1√
2
, we will have the annulus which

are we wanted; the right figure shows that when |a0| is not large enough, we cannot obtain

the annulus.

Considering the real-valued coefficients of polynomial function and applying the maximum

modulus principle, the problem can be easier to solve. Define a new function γ(z) = f(z)/g(z)

which satisfies |f(1)| = |g(1)| and |f(c)| = |g(c)| for c ∈ (0, 1) and h(z) is analytic in (c, 1).

Applying maximum modulus principle, it’s easily seen that |h(z)| ≤ 1 (i.e. |f(z)| ≤ |g(z)|) for

c < |z| < 1. Adding the condition ∥f(z)∥ = ∥g(z)∥, we can find the coefficients of functions

to have a better value of c.

Example 5.2. [9]

Let

f(z) = a+ zn g(z) = z(1 + azn),

where a = 3
√
6/11, n = 10. Then ∥f∥ = ∥g∥ and |f |≤|g| in c < |z| < 1, where c = 0.679501...

is the real root in (0, 1) of the equation

3
√
6

11
+ z10 = z +

3
√
6

11
z11.

The upper bound of c is 0.679501 · · · .

Solving the equation ∥f(z)∥ = ∥g(z)∥, then we have |a|2 + 1
11

= 1
2
+ |a|2

12
. the solution of

a is 3
√
6/11. Define γ(z) = max

|z|=r

|f(z)|
|g(z)| which satisfy γ(c) = γ(1) for 0 < c < 1, and the

maximum modulus principle implies |f(z)| ≤ |g(z)| for c < |z| < 1. The following equations

is using the same method to find its a and corresponding to c.

Example 5.3. [9]
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Let

f(z) =
a+ zn

(1− azn)b
g(z) =

z(1 + azn)

(1− azn)b
,

where 0 < a < 1, b≥0, n ∈ N. Then |f(z)≤|g(z)| in c < |z| < 1,where c is the real root in

(0, 1) of the equation

a+ zn = z(1 + azn).

Moreover,when a = 0.666707, b = 0.4768 and n = 10. we have c = 0.67794 · · · . and

∥f∥ > ∥g∥. The upper bound of c is 0.67794 · · · ..

Example 5.4. [1]

Let

f(z) =
a+ zn

2− azn
, g(z) =

z(1 + azn)

2− azn

where a = 0.6666714 and n = 10. Then ∥f(z)∥ > ∥g(z)∥ and |f(z)| ≤ |g(z)| in c < |z| < 1,

where c = 0.6779049274 · · · is the real root of the equation f(z) = g(z). The upper bound of

c is 0.6779049274 · · · .

From above examples, we may consider that whether the Korenblum’s constant c will de-

crease by dividing the same analytic function for f(z) = a + zn and g(z) = z(1 + azn).

Because c is decreasing when the coefficient a is decreasing , we use some kinds of theorems

and methods to find out the minimum of a and corresponding b.

5.2 Some methods for evaluating the minimum of a

Divide (b− az10)

Starting from dividing b− az10 at the same time, and we have following two functions

f(z) =
a+ z10

b− az10
and g(z) =

z + az11

b− az10
.

Since the fractional functions are hard to evaluate its L2 norm and the polynomials can be

calculated by hand by lemma 1.7, Taylor’s expansion will be a good choice for us.

Define h(z) =
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30 + · · · be the infinitely terms Taylor’s expansion for
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1

b− az10
, and we have the new functions f(z) and g(z) by multiplying h(z) at the same time.

f(z) =(a+ z10)h(z)

=(a+ z10)(
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30 + · · · )

=
a

b
+ (

a2

b2
+

1

b
)z10 + (

a3

b3
+

a

b2
)z20 + (

a4

b4
+

a2

b3
)z30 + (

a3

b4
)z40 + · · · ,

g(z) =(z + az11)h(z)

=(z + az11)(
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30 + · · · )

=(
1

b
)z + (

a

b2
+

a

b
)z11 + (

a2

b3
+

a2

b2
)z21 + (

a3

b4
+

a3

b3
)z31 + (

a4

b4
)z41 + · · · .

Therefore, we have

∥f(z)∥ =(
a

b
)2 +

(a
2

b2
+ 1

b
)2

11
+

(a
3

b3
+ a

b2
)2

21
+

(a
4

b4
+ a2

b3
)2

31
+ · · · ,

∥g(z)∥ =
(1
b
)2

2
+

( a
b2
+ a

b
)2

12
+

(a
2

b3
+ a2

b2
)2

22
+

(a
3

b4
+ a3

b3
)2

32
+ · · · .

Next, define F (a, b) = a and G(a, b) = ∥f(z)∥ − ∥g(z)∥ and Lagrange’s function L(a, b, λ) =

F (a, b) + G(a, b). Our destination is finding the minimum value of a on the condition

G(a, b) = 0. Applying Lagrange multiplier and we the following three equations.

∂L(a, b, λ)

∂a
= 1 + λ

∂G(a, b)

∂a
= 0,

∂L(a, b, λ)

∂b
= λ

∂G(a, b)

∂b
= 0,

G(a, b) = 0.

Solving above three equations and we will obtain b such that a is minimum.

Finally, Let γ(r) = max|z|=r|
f(z)

g(z)
| = a+ r10

r(1 + ar10)
. Then,γ(c) = γ(1) = 1. Since f(z)/g(z) is

analytic in c≤|z|≤1, the maximum modulus principle implies that γ(z)≤1 and then |f(z)|≤|g(z)|

in c < |z| < 1. We obtain that c is the real root of the equation a+ z10 = z + az11.
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Compared with different expansion order

There are some results for different order of Taylor’s expansion.

1. Choose h =
1

b
+

a

b2
z10

When a = 0.6666984038 and b = 2.047, the Korenblum’s constant c

is 0.67793633153· · · .

2. Choose h =
1

b
+

a

b2
z10 +

a2

b3
z20

When a = 0.6666714726 and b = 2.028, the Korenblum’s constant c

is 0.67790501184· · · .

3. Choose h =
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30

When a = 0.6666704664 and b = 2.027, the Korenblum’s constant c

is 0.67790384171· · · .

4. Choose h =
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30 +

a4

b5
z40

When a = 0.6666704169 and b = 2.027, the Korenblum’s constant c

is 0.67790378415· · · .

5. Choose h =
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30 +

a4

b5
z40 +

a5

b6
z50

When a = 0.6666704141 and b = 2.027, the Korenblum’s constant c

is 0.67790378089· · · .

6. Choose h =
1

b
+

a

b2
z10 +

a2

b3
z20 +

a3

b4
z30 +

a4

b5
z40 +

a5

b6
z50 +

a6

b7
z60

When a = 0.6666704139 and b = 2.027, the Korenblum’s constant c

is 0.67790378066· · · .

Since the results of expansion order of h(z) larger than 50 is small enough, we have the follow-

ing conclusion. Let f(z) =
a+ z10

b− az10
and g(z) =

z + az11

b− az10
. where a = 0.6666704139 and b =

2.027. Then ||f(z)|| > ||g(z)|| and |f(z)|≤|g(z)| in c < |z| < 1,where c = 0.67790378066 · · · .

Divide (b− az10)n

Dividing (b− az10) can decrease the value of Korenblum’s constant c, so we consider the

case that dividing (b − az10)n. Applying Taylor’s expansion and Lagrange multiplier with

previous methods, we can have

20



n a b korenblum’s constant

1 0.6666704139 2.027 0.67790378066· · ·

2 0.6666666892 4 0.67789944915· · ·

3 0.6666670927 5.987 0.67789991839· · ·

4 0.6666676043 7.978 0.67790051333· · ·

Table 4: Compared with different coefficients a, b and n, and the corresponding of c.

Theorem 5.5. [11]

Suppose that m ≥ 4 is an integer, a ≥ 0 and b =
√

2
(m−1)(m−2)

. Let

f(z) =
a+ zm

(1− bzm)2
, g(z) =

z(1 + azm)

(1− bzm)2
.

Then ∥f∥ > ∥g∥ if and only if a >
√

m−2
2m−2

.

Proof. Note that

1

(1− z)2
=

∞∑
k=0

(k + 1)zk, z ∈ D. (6)

We have

f(z) =a+
∞∑
k=1

(kbk−1 + a(k + 1)bk)zmk,

g(z) =z +
∞∑
k=1

((k + 1)bk + akbk−1)zmk+1.

It follows from Lemma 1.7 and equation (6) that, when b =
√

2
(m−1)(m−2)

and a =
√

m−2
2m−2

,

∥f∥2 − ∥g∥2

= a2 − 1

2
+

∞∑
k=1

[
(kbk−1 + a(k + 1)bk)2

mk + 1
− ((k + 1)bk + akbk−1)2

mk + 2
]

= a2 − 1

2
+

∞∑
k=1

b2k−2[
mk + 1

(m− 1)2
− mk + 2

2(m− 1)(m− 2)
]

= a2 − 1

2
+

1

2(m− 1)2(m− 2)
[m(m− 3)

∞∑
k=1

kb2k−2 − 2
∞∑
k=1

b2k−2]

= a2 − 1

2
+

1

2(m− 1)2(m− 2)
[
m(m− 3)

(1− b2)2
]− 2

1− b2
]

= 0

Since ∥f∥2 − ∥g∥2 is an increasing function of a on [0,∞). Hence when a >
√

m−2
2m−2

we have

∥f∥ > ∥g∥, and when 0 ≤ a <
√

m−2
2m−2

we have ∥f∥ < ∥g∥.
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Theorem 5.6. [11]

Suppose that m ≥ 4 is an integer. Let

f(z) =
a+ zm

(1− bzm)2
, g(z) =

z(1 + azm)

(1− bzm)2

where a =
√

m−2
2m−2

and b =
√

2
(m−1)(m−2)

. Then ∥f∥ = ∥g∥ and |f(z)| ≤ |g(z)| in c < |z| < 1,

where c is the real root in (0,1) of the equation

a+ zm = z(1 + azm).

In particular, when m=10 we have c = 0.67789942295 · · · .

This c is very close to the results of table 4. Wang is using analysis method to analyze

when does the L2 norm will be equal, and giving an explicit relation between a, b and m.

Our method is using Taylor series to expand the function, and the more terms we expand

the more precise c we get. The value of a is tends to 2/3 and the result will be match with

Wang’s example.

Figure 8: The left figure is f(z) and the right is g(z) in Theorem 5.6

6 Conclusion and future work

At first, we just try all the possible coefficients ak of the type of functions we choose

which satisfies |f(z)| ≤ |g(z)| and ∥f(z)∥ > ∥g(z)∥. Defining z = reiθ, and c is the maximum
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solutions of |f(z)| = |g(z)| for every angle θ. Suppose f(z) and g(z) are analytic functions on

(0,1) and satisfying following three conditions.

1. f(1) = g(1).

2. f(c) = g(c) for c ∈ (0, 1).

3. f(z)/g(z) is analytic in (c, 1).

Applying maximum modulus principle, and functions which satisfying previous two conditions

can be easily proved that |f(z)| ≤ |g(z)| on c ≤ |z| ≤ 1, and Taylor’s expansion and Lagrange

multiplier may be useful for the fractional functions to find the minimum of the coefficients.

We still want to known whether there exists functions f(z) =
∑∞

k=0 akz
k and g(z) = zn such

that|f(z)| ≤ |g(z)| for 1/
√
3 < |z| < 1, then ∥f(z)∥ ≤ ∥g(z)∥. We are considering that the

coefficients of polynomial function f may has some rules. The geometric series or some series

can be easily calculate its sum is our ideal for the sum of coefficients.
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