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Abstract

In this study we give a brief description of numerical results on Korenblum’s con-
jecture for polynomials:= The Korenblum’s constant will be found out numerically by
using different numerical integration methods and some methods for solving roots. It
can be solved easily a little bit for Korenblum’s conjecture under polynomials. Finally,
we consider Korenblum’s conjecture forseme-kinds of fractional functions and obtain a

better upper bound of Korenblum’s constant.

Keywords: Korenblum’s conjecture, Korenblum’s constant.
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1 Introduction

Definition 1.1. Holomorphic [6]

Given a complex-valued function f of a single complex variable, the derivative of f at

point zg in its domain is defined by the limit

o) — tim L) =G,

220 Z—2p

If f is complex differentiable at every point 2y in U, we say that f is holomorphic on U.

Let f(z) and g(z) be holomorphic in the open unit disk I and let Z; and Z, be their zero

sets. If for some ¢, 0 < ¢ < 1,
< l9(2)| _(c <|zh< ) (1)
and
2y 2 2y, (2)
then f/g is holomorphic, and the classical maxinmum principle implies that (1) holds in D and

IEIL< llglls (3)

where || - || is the Bergman norm:

=] / F()PAAR)] 2 < oo,

where

1 1 )
dA(z) = —dxdy = —rdrdd and z =z +iy=re?
T T

are the normalized Lebesgue area measure on D.It is nature to ask whether (2) is necessarily
for the implication from (1) to (3). Therefore, Korenblum made the following conjecture in

1991.
Conjecture 1.2. (Korenblum) [9]

Let D be the open unit disk in the complex plane C. The Bergman space A%(ID) consists
of holomorphic functions f and ¢ in . Korenblun conjectured that there exists a numerical

constant ¢, 0 < ¢ < 1, such that whenever |f(2)|<|g(z)| in the annulus ¢ < |z| < 1, then



IfI<|lg(2)]|- Tt would be interesting to know the sharp (i.e. the largest) value of c.

In 1999, Hayman [8] proved Korenblum’s conjecture, and Hinkkanen [2] proved that Ko-
renblum’s conjecture is true for the Bergman space AP(D)(p > 1). But the sharp value of ¢
even when p = 2(we call it Korenblum’s constant) is still unknown. However, Hayman [8] gave
a lower bound of ¢: ¢ > 0.04. Hinkkanen [2] improved Hayman’s result that ¢ > 0.15724 - - - .
Recently Schuster [7] has shown that ¢ > 0.21 in terms of Mdbius pseudodistance for the
annulus. On the other hand, an upper bound on ¢ can be found from Martin’s example [4]:

¢ < 0.70450 - - - . Wang [10] gave an upper bound on ¢: ¢ < 0.69472.

unit disk

If@ll=ljg

Figure 1: The green area is an annulus which satisfying |f(z)| < |g(z)| and the maximum

solution of |f(2)| = |g(2)] is c.

Example 1.3. [//

Define

&)= +e gz ==

V2

1 1 1

We have [f(2)| < [g(z)] for (E +e) <zl <1 and [[f(z)] = 5 +e(vV2+e), 9(2)ll = 3
1

|f(2)]| = |lg(2)]] and Korenblum’s conjecture fails, so ¢ cannot larger than Therefore,

1 E
—— is an upper bound of Korenblum’s constant.

V2



Figure:2; The functions f(z) = 12 and g(z) = z.

S

Theorem 1.4. [5]

Suppose n > 0 is an integer and f is an analytic function in D. If |f(z)] < |2"| for

1/v/3 < |z| < 1. then

[1r@Paac) < [ 1ePaae)
D D
Proof. 1t is easy to see that this is a direct consequence of the following result.

Theorem 1.5. /5]

Suppose n > 0 is an integer and F(z) = Y ;- axz” with nonnegative coefficients. If

F(z) <a™for 1/3 <x <1, then

1 1 1
/ F(z)dz < / zdr = :
0 0 n+1

Proof. The case n = 0 is trivial. We assume n > 1 in the rest of the proof. That F(z) < a2

for 1/3 < 2 < 1 implies that either F(z) < 2" for all # € [0,1] or there exists ¢ € (0,1/3]
such that F'(¢) = ¢". In the first case the conclusion is obvious. So we assume that there

exists ¢ € (0,1/3] such that F(z) = ¢" and F(x) < 2™ for ¢ <z < 1. Thus we have

Qo+ ay++ + an + Gy + - = F(1),

n+1+.”_ n

ag+ arc+ -+ apc” + apyic =c



with F'(1) < 1. We solve for a,, and a,4; in terms of the other terms. Multiplying the first

equation above by —c¢™ and then adding the result to the second, we get

anH(c"H - Cn) + Z ak(ck - Cn) - Cn(l - F<1))a

k#n,n+1
or
k n
" —c 1—-F(1)
an+1 = Z akc”—c”“ - 1—c
k#n,n+1
Similarly, we obtain
k n+1
" —c 1—cF(1)
Ay = — Z akcn—cn+1+ 1_¢ .
k#n,n+1

It follows that

1 [e%9)
Qg
F(x)dx =
[, P =355
k=0
ak Qp An41
- 3 S
kn,nt1 k+1 +1+ n+2
1 ch — bl cF ke
= 25 g~ (D@ — ) 0 r2)(c - c”“)]
k#n,n+1
1 1-—F(1), ¢ 1
+ ( - ).
n—+1 l=c_n+1 n+2
Since ¢ < 1/3 and n > 1, we clearly have
c 1

— < 0.
n+1, n+27

But 1 — F(1) > 0 and 1 — ¢ > 0, we obtain

1 Ck - Cn+1 Ck —c"

1
1

F(z)dx < — :

/0 () x_n—l—l +k¢nzr;+1ak[/€—|—1 (n+1)(c® — e tt) " (n+2)(cn_cn+1)]

Writing c® — ¢ = & — "1 — (¢" — ¢"*1) in the above series, we easily get

1 k n+1
1 1 1 ct—c
Fx) < + a — — .
/0 ( )_n+1 k;é;H k[k:—i—l n+ 2 (n+1)(n+2)(cn—cn+l)]

The desired result now follows from the following lemma.
Lemma 1.6. [5]

Let
1 1 Ck _ Cn-‘rl

Dk, n) = k+1 n+2 (n+1)(n+2)(c* — ct1)




Then D(k,n) <0 foralln>1, k>0, and c € (0,1/3].
Proof. First note that D(k,n) =0if k=norn+ 1. If k > n+ 2, we have

1 1 cHl
Dk, n) Sn+3 n+2 + (n+1)(n+2)(c" — )

c 1

T+ D)m+2)(1—c) (n+2)(n+3)

B 1 2C_n—|—1)

_(n+1)(n+2)(1—c)< n+2
1 2 n+1

S D 0-93 nt2

<0

It remains to prove the result for 0 < k < n—1. When k£ = 0 and n = 1, a little simplification

shows that

1 1

When k£ =0 and n > 2, we have
1 1+ e e

D(k,n) =1— —
i) n+2 (n+)(n+2)c

n+1 1

< ”

n+2 An+1)n+2)d
n—l—ln(n 1 )
N2 (n+1)2

<n—|—1n 1 1 )

2 (ﬁ_ (n+1)2

<0.

To prove the remaining case 1 < k < n — 1, we write

n—k+1 1 — ¢kl
D) = i e " mr Dm o = ger

Since n — k + 1 > 2, we have

=l >1-2>1-—c

It follows that

n—k+1 1
Dik,n) S(k—l— D(n+2) (n+1)(n+2)c*
n—k+1 (" — k+1 )

Tk (k+ )(n+2) (n+1)(n—Fk+1)
Let m =n — k, then m > 1 and

m—+1 " k+1
S e s ooy o s 04

btk < G D m k1 2)




It is clear that for k > 1

k41 2
> .
(m+1)(m+k+1) = (m+1)(m+2)
Thus
m+1
D(k,n) <
m+ 1
<0,
completing the proof of this lemma.
Lemma 1.7.
If f(2) = Y050 apz*€ A%(D), then
+o0
|akl® |1
I = Qa2
. k+ 1

Proof.
117 = /D F(2)PdA(2)

:/ lag + a1z + - - - + am 2" dA(2)
D

1 2m
:/ / lag + a1 (re®) + - - 4 ap(re@y™2rdrde
o Jo

2
[ ] Gl laalr) -+ e Tl T TG+ F T (e Pl
0 0

:/ / W[]a0| + |a1|(cosl + isind) + - - - + |am|(cos(mb) + isin(md))][|ao|+

lai|(cos — isind) + - - - + |a,|(cos(mb) — isin(m@))|rdrdd
/ / (laof? + laaf? + - + [am|? + 2r(|aol ar]cost + - + |am_1||am|cos((m
— 1)0)cos(m#)))rdrdd
=|ao|* + @ +- 4 5’1'21.
Hence, ||f|| = (|ao|* + @ +oe :Zili);.

Since this conjecture is too difficult to prove, we try to find some counter examples to decrease
the upper bound of ¢. To find the upper bound of ¢, we will find functions f and g which

satisfies the following two conditions:



1. There exist an absolute constant ¢, 0 < ¢ < 1, such that |f| < |g].

21711 > Tlgll-

Because the Bergman space is consist of all holomorphic functions and polynomial functions
in z with complex-valued coefficients is the simplest holomorphic function, we try it at the
beginning. From lemma 1.7, we can simplified the Bergman norm to be the sum of the
absolute value of coefficients. It’s interested that whenever we can find the example to prove

or disprove c is larger than 1/ V3 from theorem 1.4. We want to start from
f(z) = Zakzk and g(z) = 2".
k=0

But it’s too many coefficients, we decided from two terms of functions f(z) = ag + a;z™ and

g(z) = 2" for complex-valued coefficients ag,a,-and m,n.€ N.

2 Theorem of numerical methods

2.1 Solving root method

Fixed Point theorem

Theorem 2.1. Contraction Mapping Theorem [3]

Let C be a closed subset of the real line. If F'is a contractive mapping of C into C| then
F has a unique fixed point. Moreover, this fixed point is the limit of every sequence obtained

from the equation =, = F(z,),n > 0 with a starting point zy € C.

Theorem 2.2. /3]

Let f be a function from DC R"™ into R and xq € D and . If all the partial derivatives of
f exist and constants 6 > 0 and K > 0 exist so that whenever ||z — x¢|| < § and = € D , we

have \%f—f” < K,for each j =1,2,--- ,n,Then f is continuous at x.
J

Theorem 2.3. /3]



Let D = (x1, 29, -+ ,xn)a; <x; <b; for each i=1,2,--- n for some of constants
ai,Qs, -+ ,a, and by,by,--- b, Suppose G is a continuous function from D C R" into
R™ with the property that G(x) € D whenever x € D . Then G has a fixed point in D.
Suppose ,in addition, that all the component functions of G have continuous partial derivatives
and a constant K < 1 exists with |8g"—m(f)| < % whenever x € D, for each j =1,2,--- |n
and each component function g;. Then the sequence {:U(’“)}?:O defined by an arbitrarily
selected a (¥ in D and generated by z® = G(z*~V) | for each K < 1 converges to the

unique fixed point p € D and ||z — p||o > %Hx(l)*x(o)nm

Bisection (Interval Halving) Method [3]

If f is a continuous function on the interval [a,b] and if f(a)g(b) < 0 , then f must have
a zero in (a,b). Since f(a)g(b) < 04 the function f changes sign on the interval [ a,b] and,
therefore, it has at least one zero.in the interval. This is .a consequence of the Intermediate-

Value Theorem.

Theorem 2.4. Bisection Method [3]

If [ag, bol, [a1,b1]," -, [@m, bui), =+ ndenote the intervals inthe bisection method, then the
limits lim,, o a, and lim, . b, exists are equal; and represent a zero of f. If r = lim,, . ¢,
and ¢, = %(an +by) , then |r — ¢,| > 270D (by — ay).

Newton’s Method

Theorem 2.5. Newton’s Method [3]

Let f™ be continuous and let r be a simple zero of f. Then there is a neighborhood of r
and a constant ¢ such that if Newton’s method is started in a neighborhood, the successive

points become steadily closer to r and satisfy
|Tns1 — 7] < ez, — 1) (r>0).
Theorem 2.6. Newton’s Method for a Conver Function [3]

If f belongs to C*(R) , is increasing, is convex, and has a zero, then the zero is unique, and

the Newton iteration will converge to it from any starting point.



Secant method

Theorem 2.7. Secant method [3]

The Newton iteration is defined by the equation

— f(zn)
Tn1 = Tp f/(xn) (4)

One of the drawbacks of Newton’s method is that it involves the derivative of the function
whose zero is sought. To overcome this disadvantage, a number of methods have been pro-

posed. For example, Steffensen’s iteration

P
m " f(@n + f(zn)) — f(2n)

gives one approach to this problem. Another isto replace f'(z) in equation (1) by a difference

quotient, such as

f(xn) » f('rn—l).

L= Tp—1

JRUSES

(5)

The approximation given in equation (2) comes directly from the definition of f’ as a limit;

namely,

O i)t

U—xT r—Uu

When this replacement is made, the resulting algorithm is called the secant method. Its

formula is
Lp — Lp—1

f(xn) = fzn-1)

] (n=>1).

Tny1 = Tn — f(20)]

2.2 Integration method

Trapezoid Rule [3]
If the interval [a, b] is uniformly partitioned like this

a=xg<r1<--<x,=0b

a=xg<x9t+h<zg+2h<---<zg+(n—1h=0bh=

then

n

b n T;
/ f(x)dx = Z / f(33)d3j R %Z(%’z - wi—l)[f($i) + f(%’ﬂ)]

i=1

~
~



and the error term is
b h n—1
e= [ fa)de - Sift@) + 23 fat in) + F0)
@ i=1

= @) — )+ FO)b — )~ S17(@) + 23 fla i) + 18]

h2 I !
SO
h2 "

where & € (a,b).

Composite Simpson’s rule [3]
Let the interval [a, b] divide into ail even number ofsubintervals. Set ; = a +ih,h = =2

(0 <i<mn). Then

/ab fx)dz =/$:2f(x)dx+ / flz)di 4 - +/: F()de

n/2 g

= Z f(z)dz
i=1 Y T2i-2
n/2

o~ Z %[f(xgi_z) + 4f(1'2i—1) 7, f(th)L

and the error term is
1

_ (4)
IOl

where & € (a,b).

Romberg Algorithm [3]

Letting R(n,0) denote the trapezoid estimate with 2" subintervals, we have

R(0,0) = 56— a)[f(a) + SO,

2n—1

R(n,0) = %R(n S L0) 4k Y flat (20— 1)hy).

i=1
The estimate R(0,0), R(1,0), R(2,0),---, R(M,0) are computed for a modest value of M,
and there are no duplicate function evaluations. In the remainder of the Romberg algorithm,
additional quantities R(n, m) are to be computed. All of these can be interpreted as estimates

of the integral I. Further evaluations of the integrand f are not necessary after the element

10



R(M,0) has been computed. The subsequent columns of the R — array for n > 1 and m > 1

are constructed from the formula

R(n,m) = R(n,m —1) + [R(n,m —1)— R(n—1,m —1)].

4m — 1

This calculation is very simple. It is used to provide a final array of the form

R(M,0) R(M,1)- RAM2) 4. R(M,M)

3 Some numerical method and algorithms

3.1 Algorithm for solving polynomial equations

Direct Force Method

1. Start from radius r=1 and t is decreasing define h(z) = |f(2)| — |g(2)]|.
2. If h(z) < 0 ,then repeat stepl. until A(z,)h(z,-1) > 0

3. Then z,_; is the ¢ which we want.

S
S

Figure 3: Using Direct Force method to find each radius of circles and the radius is decreasing

until we find the first solution and this solution is c.

11



Neighborhood Searching Method(We call it NS method here.)
1. Given a initial point zy and computing h(zo) = f(x¢) — g(xo).

2. Search the neighborhood of xy and given perturbs for several directions and the only

one point such that h is the smallest, and this is our new point ;.

3. Repeat Step 2. until h is small enough.

A7=12~ __

h(z17) is the 716
smallest of these
ten points

Figure 4: Neighborhood Searching method is searching the neighborhood of previous point

and the minimum of the solution is the next point.

Bisection (Interval Halving) Method

1. Define the upper number "up” and lower number "down” and the middle point "mid =

up+down »
5 -

2. Compute hy, = f(up) — g(up) and hgown = f(down) — g(down) and hyq = f(mid) —
g(mid).
3. (a) If huyphmia < 0, implies the solution exists between up and mid by intermediate
value theorem.

(b) If hgownhmia < 0, implies the solution exists between down and mid.

12



(¢) If haownhup > 0, implies there is no solution between up and

down.

4. choose new up down and mid to repeat Step 2. until h is small enough.

Secant Method

1. Choose a initial point zy, d=0.1 and max times k.

2. Calculate x,, 11 = x, — f(ifn)[m]'

3. Repeat step 2 until k times.

Continuation method

1. Choose a first angle §, = 0.and use bisection method to compute the solution zj such

that || f(2)[| = llg(=)I]
2. Fori=1,2,--- ,n dostep3-4.

3. Choose #; = 6 be a initial point' and compute (dy,dx) be the direct vector to find the

next point z; on angle ;.

4. Let z; be center point and choose a neighborhood with radius r and use bisection method

to find the solution z7.

direction vector:
f {00

new point x1

initial point
x0

direction vectior
f'(x1)

Figure 5: Continuation method is using the derivative of previous two points as the direction

for searching solution.

13



3.2 Algorithms for integration
Trapezoid rule
1. uniformly partitioned the interval [a,b] into n subintervals.

2. calculate

b—a

2

L1F(@) + 23 flaih) + f(8), where h =

Composite Simpson’s rule

1. uniformly partitioned the interval [a,b] into n subintervals and n is even number.

2. calculate

)2

> D Gd o) -+ Af (@2i) + f(a20)]

i=1

/
3

Romberg Algorithm
1. Let hg = b— a and R(0,0).= Sh[f(a)+ (D).
2. hy = hy_1/2 and R(n,0) =AR(n.— 1,0) + h, 332 fla+ (2i — 1)h).
3. R(n,m) = R(n,m — 1) + [R(n,m — 1) = R(n — 1,m — 1)] /(4™ — 1),

4. repeat step2. and step3. and the R(n,m) is our answer.

4 Numerical results

Table 1: Compared the running time with different solving root methods.

running step | bisection | Direct force NS continuation
1073 0.080619 | 0.007448 | 0.081113 | 0.006089
1074 0.084511 | 0.014932 X 0.009197
107° 0.095309 | 0.066767 X 0.004317
10°°¢ 0.100648 | 1.302836 X 0.007237
1077 0.106015 | 13.000338 X 0.008396

14



From table 1, continuation cost less time when the error is 1077 and it’s a better choice
for solving roots. The Neighborhood Searching method only can find the root with error 1073
and cost too many time, so this method is not our decision. The Direct Force method might
be more precise but cost most time of those four methods. Because the Newton’s method
and secant method may be some error at the numerical differentiable, we give up using these

methods.

Table 2: Compared with different integration methods.

number of partition | Simpson method | Trapezoid method Romberg
4 3.7013 x 107° 6.8851 x 1071 5.7932 x 1074
8 2.3262 x 1076 3.4202 x 1071 8.5947 x 1077
16 1.4559.x:1077 1.7045 x 107* 3.3548 x 10710
32 9:1027 x 107° 8.5086 % 1072 3.2862 x 10714
64 5.6896-x-101° 4.2508 % 102 4.4408 x 1071°

This table shows that the Romberg integration has minimum error with the same partition,
so the better choice are composite Simpson rule and Romberg integration. If the integration

are costing too much time, we will abandon some accuracy and use composite Simpson rule.

Table 3: Compared with difterent degrees of f(z) = ag + a12™ and g(z) = 2".

m n 1 2 3 4 5 6
1 10.710865 | 0.843565 | 0.892874 | 0.918579 | 0.934325 | 0.944985
2 1 0.710378 | 0.843656 | 0.893056 | 0.918792 | 0.934538 | 0.945168
3 1 0.709799 | 0.843565 | 0.893148 | 0.918884 | 0.934660 | 0.945289
4 10.709221 | 0.843412 | 0.893148 | 0.918944 | 0.934721 | 0.945350
5 | 0.708733 | 0.843230 | 0.893087 | 0.918944 | 0.934751 | 0.945411
10 | 0.707485 | 0.842224 | 0.892569 | 0.918731 | 0.934691 | 0.945442
15 | 0.707180 | 0.841554 | 0.892021 | 0.918366 | 0.934447 | 0.945320
20 | 0.707119 | 0.841219 | 0.891625 | 0.918000 | 0.934203 | 0.945107
25 1 0.707089 | 0.841037 | 0.891351 | 0.917726 | 0.933960 | 0.944893
30 | 0.707089 | 0.840945 | 0.891168 | 0.917513 | 0.933746 | 0.944711

From table 3, the degree of f is large and the degree of g is 1 will has the better c.
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Figure 6: The change of ¢ with different m and n.

5 Some results

5.1 Maximum modulus principle

Theorem 5.1. Mazimum modulus principle [6]

Let U C C be a domain, and let f be an analytic function on U. Then if there is a point
zp € U at which |f| has a local maximum, then f is constant. Furthermore, let U C C be a
bounded domain, and let f be a continuous function on the closed set U that is analytic on
U. Then the maximum value of |f| on U (which always exists) occurs on the boundary dU.
In other words,

maz|f| = maz|f]
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Figure 7: The left figure shows that when |ag| is closed to \%, we will have the annulus which
are we wanted; the right figure shows that when |ag| is not large enough, we cannot obtain

the annulus.

Considering the real-valued goefficients of polynomial function and applying the maximum
modulus principle, the problem can be-éasier to solve. Define anew function v(z) = f(z)/g(2)
which satisfies | f(1)| = |g(1)] and | f(e)l = |g(c)| for-e € (0,1) and h(z) is analytic in (c,1).
Applying maximum modulus principle, it’s easily seen that |h(2)< 1 (i.e. |f(2)| < |g(z)]) for
¢ < |z| < 1. Adding the condition ||f(2){| =1lg(2)||, we can find the coefficients of functions

to have a better value of c.
Example 5.2. [9]
Let
f(z) =a+2" g(z) =2(1+az"),

where a = 3v/6/11, n = 10. Then ||f|| = ||g|| and |f|<|g| in ¢ < |z| < 1, where ¢ = 0.679501...

is the real root in (0, 1) of the equation

36 3V6 1y
—_—Z .

10 _
R ¥

The upper bound of ¢ is 0.679501 - - - .

Solving the equation [|f(z)|| = |lg(2)||, then we have [a> + & = 5 + % the solution of

a is 3v/6/11. Define v(z) = max% which satisfy v(c¢) = (1) for 0 < ¢ < 1, and the

|z|=r

maximum modulus principle implies |f(z)| < |g(2)| for ¢ < |z| < 1. The following equations

is using the same method to find its a and corresponding to c.

Example 5.3. /9]
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Let
_a+2" B :z(l—i—az”)
f(Z) - g( ) (1_azn)b7

(1 —azn)?
where 0 < a < 1, b>0, n € N. Then |f(2)<|g(2)| in ¢ < |z| < 1,where ¢ is the real root in
(0,1) of the equation

a+z2"=z(1+az").

Moreover,when a = 0.666707, b = 0.4768 and n = 10. we have ¢ = 0.67794---. and
£l > llgll- The upper bound of ¢ is 0.67794 - - - ..

Example 5.4. [1]

Let

£(z) q Sl ) o)

2 —azn’

2~ az"

where a = 0.6666714 and n'= 10. Then-||f(2)[ > ||g(z) and |f(2)] < |g(z)] in ¢ < |z] < 1,
where ¢ = 0.6779049274 - - - _is the real root of the equation f(z) = g(z). The upper bound of
¢ is 0.6779049274 - - - .

From above examples, we may.-consider that whether the Korenblum’s constant ¢ will de-
crease by dividing the same analytic function for: f(2) = a + 2™ and g(z2) = z(1 + az").
Because c is decreasing when the coefficient a is decreasing , we use some kinds of theorems

and methods to find out the minimum of a and corresponding b.

5.2 Some methods for evaluating the minimum of «
Divide (b — az'?)

Starting from dividing b — az'° at the same time, and we have following two functions

a+ 210 2+ az!!

f(R)= 1= and ¢(2)=

b —azl0’
Since the fractional functions are hard to evaluate its L? norm and the polynomials can be
calculated by hand by lemma 1.7, Taylor’s expansion will be a good choice for us.

1 a4

Define h(z) = 5 + ok + 2—3220 + Z—4z30 + - -+ be the infinitely terms Taylor’s expansion for

18



1

PRpsTE and we have the new functions f(z) and g(z) by multiplying h(z) at the same time.
—az

f(z) =(a+ 2")h(z)

1 a a? a’
=(a + 210)(5 + b—2210 + ﬁzm + ﬁz?’o )
a> 1 a o« a*  a? a’
=+t E)zlo G+ 6_2)220 +(p+ ﬁ)z30 + (ﬁ)z‘m +
9(2) =(z + az'")h(z)
_ 11 a 10, @ 9 30
1 a a? 2 a®  a? at

_(E>Z + (b—2 + 3)211 + (b_3 + )22t + (b—4 + ﬁ)z31 + (b—4)z41 +

Therefore, we have

a? 1\2 a® a \2 a? a?\2
(ol ty) et Gat )

a a a? a? al a3
loo) — 2 BEREAS A (e )
2 12 22 32

Next, define F'(a,b) = a and G(a,b).= || f(2)| — |lg(2)]/and Lagrange’s function L(a,b, \) =
F(a,b) + G(a,b). Our destination is finding the minimum value of a on the condition

G(a,b) = 0. Applying Lagrange multiplier and we the following three equations.

OL(a,b,\) 0G(a,b)
— 5 - 14+ A P 0,
OL(a,b,\) )\@G(a,b) _0

ob ob
G(a,b) = 0.

Solving above three equations and we will obtain b such that a is minimum.

ﬁi‘ Ty Thena(d) =2(1) = 1. Since £2)/g(2) i

analytic in ¢<|z|<1, the maximum modulus principle implies that v(z)<1 and then | f(2)|<|g(2)]

Finally, Let v(r) = maz). |

in ¢ < |z| < 1. We obtain that c is the real root of the equation a + 21 = z + az'l.
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Compared with different expansion order

There are some results for different order of Taylor’s expansion.

1 a 1
1. Choose h = 5 + b—22

When a = 0.6666984038 and b = 2.047, the Korenblum’s constant ¢
is 0.67793633153- - -

2

1
2. Choose h = 7 + %210 + 2—3220

When a = 0.6666714726 and b = 2.028, the Korenblum’s constant ¢
is 0.67790501184- - - .

a3

3. Ch h_1+glo+a_22o+_3o
. 00se =3 bQZ b3Z b4z

When a = 0.6666704664 and b =.2:027, the Korenblum’s constant ¢
is 0.67790384171- - -.

3 CL4

1 a a? a
4. Choose h = o+ b_2Z10 + 5220 i FZ?’O + 5240

When a = 0.6666704169 and b = 2.027, the Korenblum’s constant ¢
is 0.67790378415- - -.

3 a4 a5

5. Ch h_1+gm+a_220+a_30+_4o+_50
- Choose h = - + 352 - i - T

When a = 0.6666704141 and b.= 2.027, the Korenblum’s constant ¢
is 0.67790378089- - - .

1 a 10 a’ 20 a’ 30 a* 40 a’ 50 a’ 60
6. Chooseh:6+b—2,z +ﬁz +ﬁz +ﬁz +ﬁz +ﬁz

When a = 0.6666704139 and b = 2.027, the Korenblum’s constant ¢
is 0.67790378066- - - .

Since the results of expansion order of h(z) larger than 50 is small enough, we have the follow-

a+ 210 2+ az't

7~ and g(2) = 3— 5. where a = 0.6666704139 and b =

2.027. Then [|f(2)|| > |lg(#)|| and |f(2)|<|g(2)] in ¢ < |2| < 1,where ¢ = 0.67790378066 - - - .

ing conclusion. Let f(z) =

Divide (b — az')"

Dividing (b — az'?) can decrease the value of Korenblum’s constant ¢, so we consider the
case that dividing (b — az'®)". Applying Taylor’s expansion and Lagrange multiplier with

previous methods, we can have
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n a b korenblum’s constant
1] 0.6666704139 | 2.027 | 0.67790378066- - -
0.6666666892 | 4 0.67789944915- - -
0.6666670927 | 5.987 | 0.67789991839- - -
0.6666676043 | 7.978 | 0.67790051333- - -

= W N

Table 4: Compared with different coefficients a, b and n, and the corresponding of c.

Theorem 5.5. [11]

Suppose that m > 4 is an integer, a > 0 and b = m Let
_a+z2™ ~ zZ(14az™)
f(Z)— (1—b2m>2’ g(Z)— (1—b2m)2
Then || f]| > |lg]| if and only if a.>
Proof. Note that
=> (k+1)z*,z€D. (6)
k=0
We have
f(2) =a 4= (kb 4 alk 41)bF) "
k=1
9(z) =2 +°Y (k=105 akb )2+
k=1
It follows from Lemma 1.7 and equation (6) that, when b = m and a = /222,
1£1% = llgll®
s 1 o= (kP alk + 1052 ((k+ 1)bF 4 akbF1)?
— -+ - |
2 mk + 1 mk + 2
1 mk —l— 1 mk + 2
— = b2k 2
=a 2+Z T 5 m—Dm=2)
1 1 oo o0
_ 2 1 _ 2%-2 _ o 2k—2
a 2+2<m_1)2<m_2)[m(m B)Zkb Zb ]
:a2—l—|— 1 [m(m—?)) 2

2 2(m—1)2(m—2)" (1 —b2)? ==

Since [|f[|* — [|g]|? is an increasing function of a on [0,00). Hence when a > /7% we have

1£1l > llgll, and when 0 < a < /32=% we have || f]| < |lg]-
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Theorem 5.6. [11]

Suppose that m > 4 is an integer. Let

_oa+z2" ~ zZ(14az™)
f(z) = 1= b’ g(2) = T =)y

where a = /222 and b = ,/m. Then || f]| = |lg]| and |f(2)| < |g(2)] in ¢ < |z| < 1,

where c¢ is the real root in (0,1) of the equation

a+ 2" =z(1+az™).

In particular, when m=10 we have ¢ = 0.67789942295 - - - .

This ¢ is very close to the results of table 4. Wang isusing analysis method to analyze
when does the L? norm will-be equal,-and giving an explicit-relation between a, b and m.
Our method is using Taylor series to expand the function;-and the more terms we expand
the more precise ¢ we get. The value of a is tends to 2/3'and the result will be match with

Wang’s example.

Figure 8: The left figure is f(z) and the right is ¢g(z) in Theorem 5.6

6 Conclusion and future work

At first, we just try all the possible coefficients a; of the type of functions we choose

which satisfies |f(2)] < |g(2)| and || f(2)|| > |lg(2)]]. Defining 2z = re?; and ¢ is the maximum
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solutions of | f(z)| = |g(z)| for every angle 6. Suppose f(z) and g(z) are analytic functions on

(0,1) and satisfying following three conditions.

2. f(c) = g(c) for c € (0,1).
3. f(2)/g(2) is analytic in (c,1).

Applying maximum modulus principle, and functions which satisfying previous two conditions
can be easily proved that |f(z)| < |g(2)| on ¢ < |z| < 1, and Taylor’s expansion and Lagrange
multiplier may be useful for the fractional functions to find the minimum of the coefficients.
We still want to known whether there exists functions f(z) = >, axz" and g(z) = 2™ such
that|f(2)| < |g(2)| for 1//3 < |z| < Lthen || f(2)l} < [l9(2)||. We are considering that the
coefficients of polynomial function f may has some rules. The geometric series or some series

can be easily calculate its sum is our-ideal-for the sum of coefficients.
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