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The maximal P i-packings of K,

Student: Ying-Yen Hsu Advisor: Hung-Lin Fu

Department of Applied Mathematics
National Chiao Tung University

June, 2010

Abstract

An H-packing P = {Hj, Ho, ..., Hs} of a graph G is a set of edge-disjoint
subgraphs of G in which each subgraph H; is isomorphic to H. The leave L
of P is the subgraph induced by _the set of edges of G that does not occur
in any H;. P is a maximal H-packing-if L contains no subgraph that is
isomorphic to H. Let S(G; H) denote the set of all possible cardinality of P
such that P is a maximal H-packing of G. In case that G is the complete
graph of order n, we use S(n; H) to denote S(K,; H) for convenience.

In this thesis, we focus on the study of S(n; Py+1) where Py, is a path
with k& + 1 vertices. Notice.that the leave of the packing which attends
min S(n; Pyy1) is the extremal graph which forbids Pyy; and the packing
which attends max S(n; Pyy1) is a maximum packing of K, with Pgq’s.
The main result obtained in this thesis is that we determine S(n; Py41) for

k=3,4,5,6.
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1 Introduction and Preliminary

1.1 Motivation

The notation of ”graph” was first mentioned by Euler at around 1736 in which
he solved the well-known Konigsberg seven bridges. But, it was until 50 years
ago, "graph theory” found its importance in computer sciences. Since then, graph
models were utilized in solving many discrete type problems, networking, schedul-
ing, designs, ..., etc. Especially, in recent decode, it was used in dealing several
problems in computational molecular biology including DNA sequencing. Without
a doubt, it is one of the most important branch of mathematics in 20" and 21
centuries.

Graph decomposition is one of the most popular topics studied in Graph Theory.
Among many reasons in its applications 7decomposing graphs into cliques” is most
remarkable one since it is equivalent to obtaining combinatorial designs. Therefore,
this topic attracts many .researchers from many aspects of combinatorial theory,

graph theorists, combinatorialists and also coding theorists.

1.2 Preliminaries

A graph G = (V, E) consists of a vertex set V(G), an edge set E(G) and a
relation that associates with each edge two vertices called its endpoints. If uv is a
edge, we say u and v adjacent, and u (or v) incident to the edge. If there are more
than one edge in the same pair of endpoints, these edges are called multiple edges.
A loop is an edge which has the same endpoints. If a graph contains no multiple
edges and loop, we call the graph a simple graph. All of the graphs considered in
this thesis are simple graphs. For graph terminologies, we refer to [4].

The order of G, denoted by |G|, is the number of vertices of G. The size of G,
denoted by ||G||, is the number of edges of G. Consider v € V(G). The degree of
v means the number of vertices adjacent to v. The complement of G is denoted
by G where V(G) = V(G) and E(G) = {uv | u,v € V(G) and uwv ¢ E(G)}. The
union of the graphs GG; and G is denoted by G U G5 where

V(G1UG2) =V(G1) UV (G) and E(G1 U Gz) = E(G1) U E(Ga),



if E(G1) N E(G2) = 0. The union of ¢ copies of the same graph G is denoted by
G".

A path P, is a simple graph where V(P,) = {vo,v1,...,v,-1} and E(P,) =
{vivig1 |1 =0,1,...,n—2}. If there exists a path from u to v for all u,v € V(G),
then G is connected. Let C be a connected subgraph of G. For all u € V(G)\V(C),
if we can’t find v € V(C) such that there exist a path from u to v, then C' is a
component of G. If for all u,v € V(G), uv € E(G), then we say G is a complete
graph. Let K, denoted the complete graph of order n. A complete multigraph
AK,, is a complete graph K, in which every edge is taken A times. The complete

m-partite graph Ky, n,.. ., 15 a simple graph has m partite sets V; with order

n;, 1 <1 < m, respectively and two vertices are adjacent if and only if they are
belonged to distinct partite sets. If ny = ny = ... = n, = n in K, ,,
than the graph is denoted simply by /Cym). Let X = {xo,21,..., 25,1} and
Y = {vo,y1,---,Ynp—1} be the partite sets of Ky, ,,, and X = {zg,z1,...,Tp, 1},
Y = {vo,¥1, -, Yno—1} and Z ={zp, 21, . ., Zns -1} be the partite sets of Ky, py.ns
in later sections unless we give the other definition. The index of x, y or z will
always be taken mod ny, ng or nz, respectively. The bipartite difference of an edge
x;y; in Ky, 5, as the value § =7 (mod ny)

If a graph H satisfies V(H) C V(G) and E(H) C E(G), then we say H is a
subgraph of GG, denoted by H C G. Consider E' C FE, an edge-induced subgraph H
of G is defined by H = (V', E') where V' = {v € V | v is a endpoint of some e €
E'}.

An H-packing of a graph G is a set P = {Hy, Hy,...,Hs} such that H; is
isomorphic to H of G for i = 1,2,...,s where H; and H; are edge-disjoint for all
t # j. The leave L of a packing P is the subgraph induced by the set of edges
of G that does not occur in any H;. If L contains no edges, then G is said to be
H-decomposable, denoted by H | G. A packing P is said to be mazimal if the
leave of P contains no subgraph that is isomorphic to H. The size of a packing
P, denoted by |P|, is the cardinality of P. P is a mazimum mazimal packing (or
simply mazimum packing) if |P| > |P’| for all other maximal packing P’. On the
other hand, P is a minimum mazimal packing (or simply minimum packing) if

|P| < |P'| for all other maximal packing P’. The spectrum S(G; H) denoted the



set of all sizes such that there exists a maximal packing with this size. Clearly,
max S(G; H) is the size of the maximum packing, and min S(G; H) is the size of
the minimum packing. In case that G is the complete graph of order n, we use

S(n; H) to denote S(K,; H) for convenience.

1.3 Known results

The problem of path decompositions of complete graphs was first mentioned in
[7]. Earlier results on this topic are on the case when the paths have same size, and
such that each vertex belongs to exactly [ of these paths [9, 10, 11]. Tarsi proves

that if n be odd or A even, and M = mq, ma, ..., mg a sequence of natural numbers

with m; <n —3and ) m; = /\"("271), then there exists a Py-decomposition [15].
He also proves the necessary and sufficient condition for the existence of a P,,-
decomposition of a AK,, is An(n<"1) =0 (mod 2m) and n > m + 1 [15]. Recently,
Bryant [3] proves that Tarsi’s result is also'true for any positive integers n, A and
sequence my, Mo, . . ., My,

There are numerous papers written on packing problem. The maximum number
of Kj-packing of K, had solved only in these cases k = 3 [17] and k = 4 [1]. The
maximal Ci-packing of K, hadsolved only when k = 3, k = 4 [18] and k£ = 5 [14].
Roditty proved the conjecture saying that max S(n; T) = | (5)/h] (h is the number
of edges of T') for all trees on at most 7 vertices [12, 13]. And then Caro and Yuster
proved that conjecture for any trees if n > no(7) [5]. In 1990, Fu, Huang and Shiue
[8] find the spectrum S(n; S,) where S, means the star with ¢ edges. Chen, Fu and
Huang studied the (P; U P)-packing of G different from K5 3.41 with |G| > 5,
|G|l > 6 and 6(G) > 2 [6].

In this thesis, we study the problem of packing P, into K,,, n > k+ 1. In
Section 2, we present the maximum and minimum size of Py, -packing and then

in Section 3, we obtain our main result of the P, -packings of K.



2 Maximum and minimum P -packing of K,

Review that if P is a Pji-packing of K,,, P is said to be maximal if there is
no path Py; ¢ P such that {P,,,} UP is also a packing. In this section, we find
the maximum and minimum number of the element in S(n; Pyy1).

Bryant [3] showed the following theorem.

Theorem 2.1. Let n, A and s be positive integers and let my,ms,...,mg be a
sequence of positive integers. there exist s pairwise edge-disjoint paths of lengths
mi,Ma,...,mg in XK, if and only if m; <n—1 fori=1,2,...,s and mj; +ms+

coomg < )\@.
From theorem 1, we have the corollary.

Corollary 2.2. There exists a mazimum (maximal) Py 1-packing of K,. More-

over, the size of the packing is [(5)/k], i.e;;max S(n; Poyr) = [(5)/k].

Now, we consider the minimum packing.- Obviously, a minimum packing has
a maximum number of edges of leave. Note that, P is maximal if and only if L
contains no P, 1. Therefore, we consider-the maximum number of edges of leave
which contains no Py, for the minimum P, q-packing problem. For a given graph
F, ext(n; F) denote the maximum number of edges of a graph of order n not

containing F' as a subgraph.

Lemma 2.3. [2] If n = th+7, 0 < 7 < k, then ext(n; Pyy,) = 2EL 4 120
Moreover, a graph G of order n has the edge number ext(n; Pyy1) if and only if
G has t + 1 connected components where one is K, and the others are Ky, i.e.

G=K,UK,.
We have the corollary.

Corollary 2.4. Consider n =tk +r, 0 <r <k. If P is a minimum (mazimal)
Py 1-packing of K,,, then |P| > @ Tt

Proof. If L is the leave of P, then |[L| < tk(kz_l) + T(T;I) since P is maximal.

The number of edges of all P, of P is at least w + tkr, and then |P| >

D gy 0



Xo X1 X% X1 X

Yo Y1 Y2 Y1 Yka

Figure 1: Py -decomposition of Ky .

The following lemmas and Open problems are essential for finding the upper
bound of the size of minimum packing. Following the Lemma 2.3, we consider
whether exists a Pyiq-packing of K, such that L = K} U K,. Hence we need to

know whether K ,,r7 < k has Py4,-decomposition.

Lemma 2.5. There exists a Pyi1-decomposition of Ky .

Proof. For 0 <i<k—1, let

i — Yililhir1Ti- 131 - Yip (bl )@l @iy, if k is odd; and
YiTilir1 Tie 1 Yy gt )@ (ke o\Yih ez gy, if k is even.

(see Fig. 1). By the fact that.all edges of pj receive different bipartite labeling,

P1, D2, - - Dr—1 are edge-disjoint paths of length k. Let P = {p; |0 <i<k—1}, P

is a Pj1-decomposition of Ky . O

Lemma 2.6. There exists no Pyy1-decomposition of Ky, if 1 <r < [g} or both k

and r are odd.

Proof. 1t is clear for r < [4]. Each Py4; has one of its end vertices in X and the
other one in Y when £ is odd. Since all k vertices of X have odd degree r and

there are only r paths in decomposing K}, into Pjy1’s, we are done. O]
Lemma 2.7. There exists a Py1-decomposition of Ky, if 1 <r < [%1

Proof. The Pji;-decomposition of Ky, is obtained from the decomposition of
Ky ;. Take a subgraph Ky, of Ky, P={p; | 0 <i <k — 1} is a decomposition
of Ky where p; is defined in Lemma 2.5. For each p;, 0 < ¢ < k — 1, delete the



Xg X1 X3 X3 Xo X1 X3 X3

e e
—
®
Yo Y1 Y2 ¥3 Yo Y1 Y2 V¥3
Xg X; Xy X3 X, Xg X; X5 X3 X,
—
e o
Yo Y1 Y2 Y3 Y4 Yo Y1 Y2 Ys Vs

Figure 2: Ps-decomposition of Ky 41 and Fs-decomposition of K5 9.

last 2r edges and combine with the path having length 2r in K, as following if
k is odd :

Ti (Bl Zr 1Yy (kb (1) B2+ Y (1 o) AT (k1) 20Yis if r is odd,

2

or as following if k is even :

Yir (Ery1)Zr—105 (ko 920 Vi (Ef) 2T, (k1) 20Yi; if r is even,;
Ti(§=r) or=1Yis (5~ -2V
Yit (k—(r2))Zr—2Ti (5 _(p_2))Zr=38 - - Ypy (k1) 1T (& _1)%0Yis if r is odd.
(There are examples for k = 4,r =1 and k = 5,r = 2 in Fig. 2.) Let p, denote the
new paths obtain from p; for 0 < ¢ < k — 1. Clearly, the edges both in p. and p; be
used only once since p; is a decomposition. The edges adjacent to z;, 0 < 7 <r—1,
are all used and only once. Next we consider the edges deleted above the edge set

of those edges is

(@it Yir By Yir (- Tim iy | 0 S TSk =11 < g <}

2

if k is even or is
Witk Ti sy Timt—jpYirt—g-1 |0 ST k=11 <j<r}

it k£ is odd. Since Ti (ki (1)) = Tipr-(kp gy A0 Yok gy = Yk for

0 <@ <k —1, the edge set contains r edge-disjoint Hamilton cycles of K} j. For

6



Xo Xg X5 X3 Xg X3 X; X3 O 01X2X3012

VL= N

Yo Vi Vs Vs Yo Y1 Y2 ¥3 Yo Y1 Y2 ¥3

Figure 3: Ps-decomposition of K54 and Kg 4.

each Hamilton cycle, we can decomposition it into two path of length £, and so we
have 27’s Pyy1. Let P’ be the set of all these paths and p; for 0 <i < k — 1, then

P’ is a Pyy1-decomposition of Ky . O
Open problem 1. Is K}, j4, Pii1-decomposable if 1 <17 < f%T’

Open problem 2. Is Ky, Pyy1-decomposable if (%1 <r < k and both k£ and r

are odd?

Open problem 3. Is Ky Py i-decomposable if [g} < r < k and at least one of

k, r is even?

Remark. In Truszczynski’s paper [16]; he verified. that K, can decomposed into
Pyiy’sif r > [£] and r is even. ‘Hence the only unknown case in Open problem 3 is
that k is even and r is odd. Note that the case k, r odd is not possible (Lemma 2.6).

When r = k—1 or r = k—2, the Open problem 3 can construct direct from the
Py-decomposition of Ky 1. (The figure 3 give the example for the construction

of K54 and Kg4.) If r =k —1, let the vertex classes of Ky, (i.e. Ky;_1) as follow:

X ={xo,x1,...,2k-2,0}, Y ={v0,y1,. .., Yr_2} if kis odd.

X ={xo,z1,...,2k-2}, Y ={yo,y1,-..,Yyx—2,0} if k is even.

From Lemma 2.5, the Py-decomposition of Ky 151 is {p; | 0 < i < k — 2}
where p; defined as in Lemma 2.5. Let p, = p; U {yi+(%—1)0} when £ is odd
and p, = p; U {xi_(g_l)o} when k is even for 0 < i < k — 2. Then p} is a Pyy1-
decomposition of Ky ;.

If r = k—2, both k and r are even and let the vertex classes of Ky, (i.e. Ky o)

be
X = {$0,$1, . ,$k73,01,02}7 Y = {y07y17 e 7?/k73}-

7



The P;_;-decomposition of Ky _9j-2 is {p; | 0 < i < k — 3} where p; defined
as in Lemma 2.5, and then {{oy;} U p; U {yi+(§_1)02} |0 < i< k—3}isa

Py 1-decomposition of Ky, ;.
Now, we have a lemma about the size of minimum packing for some small n.

Corollary 2.8. If n =k+r, r <k, and either 1 <r < (%W or both k and r are

odd, there is no minimum (mazximal) packing of K,, which has size r.

Proof. From Lemma 2.6, we know that there is no Pji;-decomposition of Kj .

Therefore, we can’t have a packing with the leave K U K, and then there is no

k+7r)(k4+r—1 k(k—1 r(r—1
(Uetritr—)) _ K1) o)y gy, —~

packing with size



3 The Spectrum of the maximal P, i-packing of
Ky

In this section, we consider all the size of maximal Py ;-packings of K, where
k < 6. From Corollary 2.2, we have max S(n; Pyi1) = [(3)/k]. Now, we consider
the min S(n; Py11).

We give a direct construction to prove the Open problem 1, 2 and 3 are right

for £ < 6, and then have a minimum P i-packing of K,.
Lemma 3.1. The Open problem 1, 2 and 3 are true for k < 6. That is,
1. There is a Pyi1-decomposition of Ky pyr if 1 <1 < [g}

2. There is a Pyyqi-decomposition of Ky, if [g} <r <k and both k and r are

odd.

3. There is a Pyi1-decomposition of K, if [5]. < r < k and at least one of k,

T 1S even.

Proof. Consider the cases k = 3,4,5 and 6, respectively.
Case 1. k=3

The Open problem 2 can’t occur in these case. When k£ = 3, there are only
K35 and K34 be considered in Open problem 3 and Open problem 1, respectively.
From the Remark of Open problem 3, we can construct a Pj-decomposition of K3
direct. Decompose K34 by two K33’s, then we are done by the P;-decomposition
of K35.
Case 2. k=14

The Open problem 2 can’t occur in the case. In Open problem 3, we only con-
sider the graphs K4 o and K4 3. We have a direct construction of Ps-decomposition
of K45 and K43 from the Remark of Open problem 3. K,5 is the only case in
Open problem 1. Since K5 can decomposed to two graphs K, 3 and Ky o, we are

done.

Case 3. k=5



When k = 5, the graph in Open problem 2 is only K5 53. Let

P = {j020j122j221>j2Zoj321j4Z2 | Jj==x, y}
U {y121212022%3, T1Y2T0Y3T420 }
Uy iYir1Tic1Yipati—o | © = 0,2, 3}

U {z2y121Y022Y3, 20Y4T4YoT3Y1 },

then P is a Fs-decomposition of K553. Consider Kj4, the only graph in Open
problem 3, has the Ps-decomposition by the Remark of the Open problem 3. There
are two kind of graphs, K5¢ and K57, in Open problem 1 when k& = 5. Let
P1 = T1YoT3Y1LoY2, P2 = T1Y3L3Y4XL2Ys5, P3 = L3Y2L1Y1X4Y0, P4 = L3Y501Y4L4Y3, P5 =
T4YoTaYoToys and pg = T4YsToysTayi, then {p; | 1 <i < 6} is a Pg-decomposition of
Ks6. Let pi = yixiyi1®ic1Yivoxa, 1 <4 < 3, P = Z3YaT1Ys522Ys, Dy = T1Y6T3Y5L0Y4,
Pg = ToY1T3YaTays and pi = weyilaYeZoyo. Then {p; | 1 < i < 7} is a Fs-
decomposition of K 7.
Case 4. k=6

There is no graph in Open problem 2 and, we have three graphs Kg 3, K4 and
K5 in Open problem 3 when k= 6. Clearly,

{ffoyoiﬂlyzfsylf?n T1Y1L2YoT3YaT 4, $2y2$0y1x4y0$5}

is a Pr-decomposition of Kg3. Kg4 and Kg 5 have the Pr-decomposition from the
Remark of Open problem 3. Final, the graphs in Open problem 1 are K¢ 7 and K g.
Similar to case 2, K¢ 7 and K¢ g have the Pr-decomposition by use Pr-decomposition

of K673 and K6’4. ]
Accordingly we have the theorem.

Theorem 3.2. Consider k < 6, n=tk+r >k+1, 0 <r < k. There exist a

minimum (mazimal) Py, 1-packing P of K,, which with size

r+1, ift =1 and either 1 <r < [£] or k and r are odd;

Pl = th(t—1) :
—5— +tr, otherwise.

Proof. Let L denote the leave of P. Note that, if we can find a minimum packing

th(k=1) | 7»(r2_1)7 then [P| = ((tk—i-r)(tk-i-r—l) th(k—1)

2 2 2

such that the leave with size

r(r;l))/k _ tk(thl) + tr.

10



First, consider ¢ = 1 (i.e. n =k + r) and either 1 < r < [£] or both k and
r are odd. @ +tr = r when t = 1. We have |P| # r from Corollary 2.8, and
then |P| > r by Corollary 2.4. Consider n = 4 when k = 3, n = 5 when k = 4,
n==6,7,8 when k =5 and n = 7,8 when k = 6.

If we take one P, in Ky (i.e. 7 = 1), the other edges is also form a Pj clearly.
So K4 has a minimum Pj-packing of size 2 (i.e. r 4+ 1). We know that the size of
the maximal Ps-packing of K5 more than r = 1, and let {a; | 0 < i < 4} be the
vertex set of Kj. Since {apaiasazas, agasasaraz} is a minimum Ps-packing of Kj
with leave P3, we have a packing with size r + 1 = 2.

When k = 5, denote the vertex sets of Kg (i.e. 7 = 1), K; (ie. 7 =2)
and Kg (i.e. 7 =3) by {a;, | 0 <i <5} {b|0<i<6}and {¢; |0 <
i < T}, respectively. {asapaiazagas, asaiasasapas} is a minimum Pg-packing of
Kg, {b1bsbebibobs, b3bsbabobiby, bgbirbabsbabs} is a minimum Pg-packing of K7, and
{c1eacac503¢6, Cac1C3C7C4C0, C3CHCHC1 CoCr, CaCeCoCaCrCs } 1S a minimum FPg-packing of
K. The size of these packing isr=+ 1.

Consider K7 and Kgwith the vertexsets {a, | 0°< i <6} and {b; | 0 <i < T},
respectively. Since {asaiaszagaqapas;azapasagasayay} is a minimum Pr-packing of
K7 and {b1bgbabrb3bsbs, b1bgbsbrbibobs, b3babibrbgbobs } are a minimum Pr-packing of
Ky, we have packing with size r+ 1. From above, we have |P| = r + 1 when
n =k +r and either 1 <r < [%] or both k and r are odd.

Final, consider the other n. We have the proof by induction on n. If n =
k +r where &k > r > [%W and at least one of k, r is even, then there is a Pyi1-
decomposition of Kj, from Lemma 3.1. In other words, we have a packing P
with leave L = K U Ky U K, and |P| = M—I—% If n = 2k, we have a
packing P with leave L = K U K}, from Lemma 2.5 and then |[P| = 221 1f
n=2k+r 1<r< [ﬂ, we have a Py i-decomposition of Ky, from Lemma 2.7.
That is, there is a minimum packing P with leave L = K, U K; U K, and then
P| = 2k(2 Y 4 9. If n = 2k + r where k > r > [£] and both k and r are odd,

2

we have a Pyii-decomposition of Ky, from Lemma 3.1. Accordingly, there is

minimum packing P with leave L = K U K; U K,.. In this case, |P| = 2h( 2 k@1

+2r.
Suppose there exist a minimum packing of the complete graph with order

smaller than n and the leave of the packing is Ky U ... U K, U K,.. Let G be
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the complete graph with order n, there are four cases to be considered.
Casel. n=tk+r wheret >3 and 1 <r < [g}

Let G' = G\ {v1,v9,...,u;}, then G is a complete graph with order (¢t —1)k+7r.
Since (t — 1)k + r < n, by induction hypothesis, there exists a packing P’ of G’
with leave L' where L' = K; ' UK, and |P'| = % + (t — 1)r. Obviously P’
is also a packing of G. The leave of P’ in G has edges E(L") U {uv;jlu € V(G'),i =
L2,... k}U{vw;|l <i<j <k} Consider Ky—1ypirk = K};fUKkJmk, Ko 1)ksrk
can decomposed to (t — 1)k + r’s edge-disjoint paths of length & by Lemma 2.5
and Lemma 3.1. Let P” be the set of these paths and P = P'UP”, then P is a
Py 11-packing of G with leave L = L' U K. Clearly, P is a minimal Py ;-packing
of K,. Note that, |P| = A2 1)p 4 (¢ — Dk 47 = B gy,

Case 2. n = tk where t > 3.

The proof of this case is similar.to-case 1 (let 7 = 0) by use Lemma 2.5.
Case 3. n =tk +r where t >3,k >r > f%] and both £ and r are odd.

The case can be show-as case 1. Note that, we consider K_1)irp = K,if U
Ky 1, U K,11 in this case. Since k and r are odd, r < k — 2, there exist Pj1-
decompositions of Kj_;j and #0414 by Lemma 3:1. The graph Ky has Ppyi-
decomposition from Lemma 2.5.

Case 4. n =tk +r where ¢ > 2, k> 7> [£] 'and at least one of k, r is even.

The idea of case 4 is also like case 1. But in this case, we replaced K(;—1)rqrk

by K,i’_kl U K, and to complete it by Lemma 2.5 and Lemma 3.1.

Therefore, the proof concludes by mathematical induction. O

In our study of the spectrum S(n; Py), there are some special technique. The
main technique used in the section need switching some edges of the paths in a
given maximal Py, q-packing of K, with size s and the edges in the leave of the
packing to produce a new P, q-packing. The goal is causing the new leave contains
one only path of length k& and add the path to the new Py-packing, then we have
a new maximal P i-packing of K,, with size s + 1.

Let A = {n =tk+r | either r > [£]and one of k,r is even or t > 1}. If n € A,
then there exist a minimum Py, -packing P of K, with the construction as in
Theorem 3.2. Note that the leave is L = K} U K, that is, the graph induce by the

packing from K, is Ky),. The way of the edge switching as the following step:

12



Step 1. Consider a subgraph H as Ky, or Ky ,, 0 <r <k, of Kj__j, at a time.

Step 2. Take one or two paths from P which is also contain in H. Let P; denote
the set of these paths.

Step 3. Choose k edges from L, and rearranging the k£ edges and the paths took

in step 2 to produce a new Py, i-packing Ps.

Step 4. Let P’ = P \ P; UP,. Since L contains no Py, the leave of P’ is also

contains no Py, ;. Hence P’ is a maximal Py ;-packing of K,, with size |P|+1.

Step 5. Repeat step 1 to 4, then we can have a maximal Py, -packing of K, with
desired size s until s = [ (})/k].

Afterward we study the spectrum S(n; Py), n =tk +r >k+1,0 <r < k for
E < 6. In our way, the subgraph Ky, or /& ., be considered only in first took
and only took K} later in step 1. Note that, all subgraphs considered are edge
disjoint. We only need verify the step 3 can always operate, then the following

Lemmas are done.

Lemma 3.3. Consider n=3t+1r >4,0<r <3.
1. S(nyPy) ={s|r+1<s<|()/3]F=1{2} ifn=4.
2. Sy Py) = {s| 2 1 tr <5 < [(2)/3]} ifn > 5.

Proof. First, consider n = 4. Since r = 1 and [(})/3] =2 = r + 1 is the size of
minimum Pj-packing of K, we are done.

Second, consider n > 5. We have a minimum P;-packing P of K,, with leave L
as defined in the Theorem 3.2. Study the three cases.

Case 1. n =0 (mod 3).

Clearly, K33 is a subgraph of K,,. Recall that, yozoy172 and yox2yox; are paths
of P. Let P' = P\ {yoxoy1x2} U {x120Y122, YoToxax1 }, then P’ is a maximal Py-
packing of K, with leave L’. Note that ysxoyox; is still in P’ and there are three
edges Yoy1, Y12 and yayo which in (K3 3) not be used. Let P” = P\ {y2x2y071 } U
{z2y2y0x1, T2Yov1 Y2}, then P” is a maximal Py-packing of K, with leave L”. If
n = 6, there is no edge in L” and then [P"| = [P/|+ 1= [P|+2 =5 = |(})/3].

13



Reuse the subgraph K35 as well as the way of the edge switching when n > 9, then
we have the maximal P,-packing with desired size until the size of leave less than
k.

Case 2. n =2 (mod 3).

Consider K35 C K, with vertex classes X = {zg, 21,0} and Y = {yo, 1}
Clerly, yoxoyi0 is a path of P. Let P’ = P\ {yoxoy10} U {x120Y10, Yox0021 }, then
P’ is a maximal Py-packing of K, with leave L’. If n = 5, the leave L’ only contain
edge {yoy1} and then |P'| = [P|+1 =3 = [(})/3]. If n > 8, we can use the
subgraph K35 and K33 (see case 1) to produce a maximal P;-packing with desired
size until the size of leave less than k.

Case 3. n =1 (mod 3).

Since n > 5 (i.e. n > 7 in these case), we have K33, is a subgraph of K,.
We have zoz0yoro and x1zysxs are paths of P. Let P’ = P\ {x220y0z0} U
{z20y020, ToT12220 }, then P’ is‘a maximal Pgpacking of K, with leave L. Note
that x1zgyoxo is still in P’ ‘and there are three edges yoy1, y1y2 and ysyo which
in E(K33,) not be used: We will let the three edges be used. Consider P” =
P\ {z120222} U {x12002¥0, Yoy1y22s }, then P’ is a maximal Pj-packing of K,
with leave L”. If n = 7, we are done. If n.>.10, we can produce a maximal
Py-packing with desired size by the subgraph K3, and K33 (see case 1) until the

size of leave less than k. ]
Lemma 3.4. Considern=4t+r >5, 0 <r < 4.

1. S B)={s|r+1<s<|(5)/4]}={2} if n=5.

2. S(n; Py) = {s | M0 1t < s < |(2)/4]} if n > 6.

Proof. When n = 5, we have a minimum Ps-packing of K5 with size r + 1 =
[ (5)/4]} = {2} from Theorem 3.2.

If n > 5, there is a minimum Ps-packing P of K, with leave L as defined in
the Theorem 3.2. Consider the four cases.
Case 1. n =0 (mod 4).

Take the subgraph K44 of K,,. Clearly, {y;z;yis1%i—1yiv2 | 0 < i <3} CPis
a packing of K 4. Let P = P\ {yozotrzsye} U {x120y123Y2, YoroTsraxs}, P" =
Pl\{yﬂlyﬂoy& yzw2y3x1yo}u{x3:r1y2moy3, T2Y2YoT1Y3, wox2y3y1x1} and P = 77"\
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{ysrsyorays } U {23y3y0Tay1, T3yoyryays}, then P, P” and P" are maximal Ps-
packing of K,,. If n = 8, there is no edge in L” and then we have the packings with
4t(t—1)

size from =5~ +tr =4 to |(5)/4] = 7. If n > 12, we can use the subgraph Ky 4

to produce a maximal Ps-packing with desired size until the size of leave less than
k.
Case 2. n =3 (mod 4).

Consider the subgraph K, 3 of K, with the vertex classes X = {zg, 21,22}
and Y = {vo,y1,Y2,0}. YoToy1220, Y1T1Y2x00 are paths of Ky3. Let P/ = P\
{yozoy1220} U{0yoToy1 2, Yoy1Y2022}, then P’ is a maximal Ps-packing of K. Let
P’ = P'\{y121y2100} U{x00y171Y2, YoYaToT1T2 }, then P” is a maximal Ps-packing
of K, with leave L”. Note that there are only one edge which in E(K,3) not be
used. If n = 7, we are done. If n > 11, we can produce a maximal Ps-packing with
desired size by the subgraph K, 3 and K44 (see case 1) until the size of leave less
than k.

Case 3. n =2 (mod 4).

K45 is the subgraphof K, with vertex classes' X = {zo,21,01,02} and Y =
{90, y1}. Recall that P c¢ontains a path o1yproy102. Let P = P\ {o1yoxoy102} U
{0201Y0T0Yy1, Yy102x0101 }, then P is a maximal FPs-packing of K, with leave L'. If
n = 6, we are done since FE(L') = {zgo1, 102,501} Reuse the edge switching
of subgraph K, and Ky (see case 1) when n > 10, then we have the maximal
Ps-packing with desired size until the size of leave less than k.

Case 4. n =1 (mod 4).

In the case, Ky 41 is a subgraph of K,. Recall that {x;_iz0y;x;9i41 | 0 < i <

3} CP.Let

P =P\ A{zszoyomoys } U {xsz0y07021, T1227320Y1 },
P" = P'\ {z220y37390 } U {T220Y3Y073, Yoy1Y2y373} and,
P =P"\ {zoz0y121Y2, T120¥2T2y3 } U { 200121920, 20Y2T2Y3Y1, T2aToZ0T123
then P’P"” and P" all are the maximal Ps-packing of K,,. Clearly, there is no edge
in the leave of P"”. If n = 9, we are done. If n > 13, we can produce a maximal

Ps-packing with desired size by the subgraph K441 and K44 (see case 1) until the

size of leave less than k. O]
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Lemma 3.5. Considern =5t+r>6,0<r <?5.
1. S Pg) ={s|r+1<s<|(5)/5]} ifn=6,7 or8.
2. S(n; Ps) = {s | M0 1 4r <5 < [(2)/5]} if n>09.

Proof. First, consider n = 6,7 or 8. In fact

{2,3}, ifn=6
{r+1§s§L(Z>/5J}= {3,4}, ifn="7
{4,5}, ifn=38.

There are a minimum Fs-packing of Ky with size 2, a minimum PFg-packing of
K7 with size 3 and a minimum PFgs-packing of Kg with size 4 from Theorem 3.2.
Besides, we have a maximum Fs-packing of Ky with size 3, a maximum Fgs-packing
of K; with size 4 and a maximum Fys-packing of Ky with size 5 from Corollary 2.2.
Final, consider n > 9. We have a minimum Fs-packing P of K,, with leave L
as defined in Theorem 3.2. There are five cases of n.
Case 1. n =0 (mod 5).
Consider the subgraph K 5. 'We have {y;z;yit1@;—1Yitori—2 | 0 < i <4} C P

from Lemma 2.5 and Theorem'3.1. Switch the edges as following:

Replace {yOwoylfmnyE?)} by {$1$0y1$4y2$3,?/0900$49€3$2901}-

Replace {y1x1y2x0y3x4} by {1'33513/2950%9547y1$1$41‘2$05€3}'

Replace {ysz3yarayor1} by {ysw3ysayoys, Yoyay1ysyoT1}-

Replace {y4x4y0:p3y1x2} by {$4y4y()$33/1$27$490?/1?J2?/3?J4}-

We can produce some FPg-packings of K,, and the new packings are all maximal. If
n > 10, the step 3 can operate until the leave contains no edge by use subgraph
Ks5.
Case 2. n =4 (mod 5).

Take the subgraph Kj4 of K, and then {y;z;yi12i-1yit00 | 0 < i < 3} C
P from the remark of Open problem 3 and Theorem 3.1. Switch the edges as

following;:

e Replace {yo$0y1$31/20} by {x1m0y1x3y20, y0x00x3m2x1}.
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e Replace {y1$1y2£€0y30} by {1’333313/25C0y307 y191710x23301'3}-

e Replace {y2$2y3$1y00; 931‘390962%0} by {y1x2y3x1yoo7 Y2Y1Y3X3YoT2, 0Y1YoY3y2

ZL‘Q}.

We produce some Ps-packings of K,, and the new packings are all maximal. If
n =9, it’s finished. If n > 14, the step 3 can operate until the leave contains only
one edge by use subgraph K54 and K55 (see case 1).
Case 3. n =3 (mod 5).

K553 is a subgraph of K, in the case. We have yzoy124Y223, T1Y2T0Y3T420,

Y3x3YsToloxr and zoysTayoxsy; are the paths in P. Switch the edges as following:
e Replace {yozoy174y223} by {120y174Y273, YoToTaT3T221 }.
e Replace {z1y220y32420} by {2123T0Y3T422, T2ToyaT124%0}-
e Replace {ys23ya22y0xi} by {y32ayarayolas Yoyay1ysyor1}-

o Replace {z0yazayor3yn Fby {ysya®ayo Zsyas 20Yalol1Y2ys }-

We produce some Ps-packings of K, and the new packings are all maximal. Hence,
it’s trivial for n = 13. Consider the subgraph #7553 and K55 (see case 1) in step 1
if n > 18, then the step 3 can operate until the leave contains only three edges.
Case 4. n =2 (mod 5).

If n = 12, we only consider the subgraph K555 in step 1. We have a packing
{Yir1z1zi2z0yiri | 0 < i < 4} of Kj59 from Lemma 2.7. Switch the edges as

following;:
e Replace {y1212320y070} by {2122732090%0, Y1217324T071 }-
e Replace {y22124204121} by {212224204121, Y22174212370 }-
e Replace {ys212120y323} by {yaz12120Y321, Y1yay290yszs}-

e Replace {y021x220y4x4} by {y021x220y4y3,x4y4yoy1y2y3}.

We produce some FPs-packings of K, and the new packings are all maximal. Since
the edge number of the leave of the last new packing is one, we are done. If

n > 17, consider the subgraph K52 and K55 (see case 1). Switch the edges in the
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subgraph by the same way, then we have packing with desired size.
Case 5. n =1 (mod 5).

Similarly to the other cases, K55, is a subgraph of K. From Lemma 2.7 and
Theorem 3.1, {z;_2z0y;xiyit1zi—1 | 0 < i <4]0<i <3} CP. Switch the edges

as following:
e Replace {z320y070y124} by {20Y0T0y12423, TaToT12022320 }-
e Replace {z420y121y220} by {y121Y2T0T224, ToT3T1T420Y1 }-
e Replace {z120ysz3ysz2} by {Z120Y323Y4Y1, Y1Y3YoYayaZa }-

e Replace {$2ZO?J4$4?J0$3} by {xzzoy4x4yoy1,y1y2y3y4yox3}-

We produce some Ps-packings of K,, and the new packings are all maximal. If
n = 11, we are done since the deave of the last new packing contains no edge.
Consider the subgraph Kj 5 and Ky (seecase’l) if n > 16, then we have packing
with desired size by edgesswitching. O

Lemma 3.6. Consider n.=6t +r>7,0<r < 6.

1. S Pr)={s|r+1<s<|(5)/6]} ifn=17,8.

2. S(n; Pr) = {s| @—l—tr <s<[(})/6]} ifn>0.
Proof. First, consider n = 7,8. Note that,

{2,3}, ifn="7

{r+1§8§L(Z>/6J}: (3,4}, ifn=28.

Since the minimum number of the set is the size of minimum Pr-packing of K,
and the maximum number of the set is the size of maximum P;-packing of K,,, we
are done from Theorem 3.2 and Corollary 2.2.

We have a minimum Pr-packing P of K,, with leave L as defined in Theorem 3.2
if n > 9. Consider the edge switching of K, by the following six cases of n.
Case 1. n =0 (mod 6).

Consider K¢ C K, {Vi%i¥ir1Ti1Yirv2Ti—2yivs | 0 < ¢ < 4} C P from
Lemma 2.5 and Theorem 3.1. Switch the edges as following:
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Replace {yoxoy1x5y2:v4y3} by {$1x0y1x5y2x4y3,yox0$5x4x3x2x1}.

Replace {y1x1y2x0y3x5y4} by {$4x1y2x0y3:v5y4,y1x1x3x0$4x2x5}.

Replace {y2I2y3fE1?J4$oy5, y3$3y4x2y5931yo} by {$3y3$1y4$0y5$2, YsT1T5X3Y4T2X0,

9€1y0y23723/3?/53€1}-

Replace {y4x4y5x3yow2y1} by {y1y4$4y5I33/0$27$zyl?/syo?/4y2?/5}-

o Replace {ysz5y0ray123y2} by {25y5Y0Tay173Y2, T5YoY1Y2Y3Yays }-

All the new packings created after the edge switching are maximal since L contains
no P; and then we have the packing with the desired size when n > 12.
Case 2. n =5 (mod 6).

We have a subgraph K5 with vertex classes X = {xg, 21,22, 23,24} and Y =
{Y0, Y1, Y2, Y3, Ys, 0} in the case. {Ywi¥isiTiz1Yirozi 20 | 0 < i < 4} C P. Switch

the edges as following;:
e Replace {yozoy1z4yaus0} by {oyomoyizayens, L30y1ysyay1yo}-
e Replace {y1219220y5210} bY {yath@rye®oystia; ¥40Y2YaYoysyi }-
e Replace {y373ya72y0210} by {a10Ys83Y42Y0, YoYoT124T223T0 }-
e Replace {yuzsyorsyrz20} by {Zozayorsyrawy, yawawsr1zor20}.

If n = 11, we can have the maximal P;-packing with the desired size. Consider the
subgraph K5 and Kgg (see case 1) if n > 17, then we are done.
Case 3. n =4 (mod 6).

K4 is a subgraph of K,. Recall that the vertex classes of Kg4 are X =

{Z0, 1, T2, 3,01,00} and Y = {yo, y1, y2,¥3}, and {0192:¥it12Ti—1Yip202 | 0 < i <

3} C P. Switch the edges as following:
e Replace {01y0$0y1$33/202} by {0201y0$091$3y2>y2025130$196’2$301}-
e Replace {01y19€1y2$0y302} by {$201y1$1y2$0y3, 015U1$355093202?/3}-

e Replace {0192902%9519002} by {$001yzx2y3yoyl, yly2y3$1y002x3}~
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If n = 10, we are done. If n > 16, we can produce a maximal P;-packing with
desired size by consider the subgraph K44 and Kg¢ (see case 1).
Case 4. n =3 (mod 6).

Consider the subgraph Kg3 if n = 9. According the construction of P, we
have a subset {zoYor1Y2T5y123, T1Y1T2YoT3Y2Ts, ToYoTol1T4Yoxs} of P and it is is a

packing of Kg 3. Switch the edges as following:
e Replace {150909019296591963} by {xoﬁyﬂsylxsl’%$3$4l‘5$0y0$1$2}‘
e Replace {1313/11323/05633/2564} by {350%41313/15623/0%7y0$3y2$4332$5561}-

e Replace {3729295091904%955} by {y21’0y1$4y0$59€37$1x3$0$2y291y0}-

After the edge switching, we have the maximal Pr-packing with the desired size.
If n > 15, the step 3 can operate by use the edge switching of subgraph Kg 3 and
Kg (see case 1).
Case 5. n =2 (mod 6).

In step 1, we take the subgraph Kggs and Kgg (see case 1) if n > 14. We
have {yiro212—220¥iT¥iga | 0 < & < BFU {yorayssyatoys, YaloysTsyoTaya} C P is
a packing of K¢ from Lemma 2.7 and Theorem-3.1. In step 3, switch the edges

as following:

e Replace {yzzlx420yoxoy1} by {y2Z1$42’0y0$0$1, $1$2$3$45E5I03/1}-

Replace {ysz12520112192} by {zox32520y121Y2, Y321052L22421 23}

Replace {y2x4y3x5y4:z:oy5, y4xzy5x3yox4y1} by {x2y4xox4y3x5x1, ToZ2Y5T3YoY2x4,

xoy5y1x4yoy4x5}-

Replace {y0z1x2z0y4x4y5} by {21x220y4x4y5y3,y5y2y4y1y3y021}.

Replace {9121133201/5%%} by {y0y121I3Zoy5$5,3353/03/53/42/33/23/1}-

The P;-packings still maximal after the edge switching, we can produce the packing
with the desired size.
Case 6. n =1 (mod 6).

We will consider Kgg,; in the last case. Recall that, K¢ has a packing

{Z;220yixi¥i1i1Yiv2 | 0 < i < 5} C P. Switch the edges as following;:
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Replace {x42000T0y175Y2} by {T3T420Y0T0T5Y2, T3T2T1T0Y 17574}

Replace {33520y1$1y2$oy3} by {$3$520y1931y2930,y3$0333$1934$2935}-

Replace {moZoy2$2y3$1y4, x1z0y3x3y4x2y5} by {$0$2ysfly4y0y2, T5T120Y323Y4T2,

yly5$2y220$01’4}-

Replace {Izzoy4$4y5$syo} by {$2z0y4x3y5y3yo, y3yly4y2y5$3yo}-
e Replace {z320y575Y0T4y1} by {T320Y505%0Y1Y2, Y2Y3YaysYoTal1 }-

We have some maximal P;-packings of K, with different size. It is take only one
subgraph Kgg 1 if n = 13, and take subgraph K1 and Kgg (see case 1) both in
step 1. We are done. O

From Lemma 3.3 to Lemma 3.6, we have the theorem.
Theorem 3.7. Supposen =tk+r > k+1,0<r <k. If k <6, then

1. S(n; Pegr) = {s | rt L< s < |(5) /K], if t =1 and either 1 < r < [£] or
both k and r are odd.

2. S(n; Pey1) =A{s| w +tr < s < [(5)/Kk]}, otherwise.
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