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ABSTRACT

Median graphs have been studied for decades. Many important theorems
and properties of median graphs have been found out and almost all
of those theorems are relative to convex. \WWe try to study median graphs
in a different way. We consider median graphs with radius at most 3
and try to find out their necessary and sufficient conditions without using
Convex property.
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Abstract

Median graphs have-been studied for decades.. Many important theo-
rems and properties of median graphs have beenfound out and almost all
of those theorems are-relative to convex. We try to study median graphs
in a different way. We consider median graphs with radius.at most 3
and try to find out their necessary and sufficient conditions without using
convex. property.

1 Introduction

A median of vertices u, v, and w is a vertex lies on the shortest paths between
any two of them. A graph is called median graph if'any triple of vertices has a
unique median. Trees and n-cubes Q,, are well-known median graphs.

There are many important theorems and properties of median graphs today.
Those theorems have been found'out by some great mathematicians. In [1],
Nebesky has proved a lot of basic properties and theorems of median graphs
which let us have a basic understanding of median graphs. Mulder found out
the structure of median graphs, which is median graphs could be obtained from a
one-vertex graph by a so-called convex expansion procedure in [2]. Also, Mulder
discovered the relations between n-cubes @,, and median graphs in [3].

There are still many important theorems of median graphs. However, almost
all of those theorems are relative to convex property. In order to avoid the
complicated condition as convex, we try to study median graphs in a different
way. We consider median graphs with radius 1, 2, and 3 and try to find out
their necessary and sufficient conditions without using convex property.



In section 2, we introduce some definitions and notations as preliminary
knowledge. They are needed in the rest of this paper. In section 3, the definition
and some basic properties of median graphs are introduced. Also, we prove some
properties which will help us to prove the necessary and sufficient conditions of
median graphs with radius 2.

We start to prove those necessary and sufficient conditions of median graphs
with radius 1 and 2 in section 4. In order to prove the part of median graphs with
radius 2, we have used the method which mentioned by W.Imrich, S. Klavzar,
H.M.Mulder in [5]. In section 5, we give two conditions and prove that they are
sufficient conditions of median graphs with radius 3. We only prove a part of
the necessary part but we believe that they are also the necessary conditions of
median graphs with radius 3.

2 Preliminaries

At the beginning, we recall some definitions and notations needed in the rest
of this paper. Given G asimple connected graph, V(G) and FE(G) are vertex
set and edge set.of G, respectively.

Let u,v € V(G). If uwv-€-E(G), we say u is incident to v, denoted by u ~ v.
By a path from u to v of length ¢, we mean a sequence of vertices ug = u, u1,
..., up = v such that u; are distinet-with-possible uy = u; and u;u;+1 € E(G)
for 0 < i <t —1, where u and v are called the start vertex and the end vertex
of the path respectively. The distance function d(u,v) means the length of a
shortest length among paths from u to.©. A cycle with length n, denoted by
Ch, is a path-with same start vertex and end vertex and has length n, n > 3.
We call a C-0dd cycle'if n.=2k"+ 1, and even cycle if n' = 2k + 2 for k € N.
The interval between v and v'is the set

I(u»v) — {w eV | d(ua w) + d(wav) > d(ua ’U)},

i.e. those vertices on the shortest paths from to v.. The set of neighbors of
u is denoted as N(u) and defined as N(u)= {& € V(G) | d(u,z) = 1}. The
number d(u) = |N(u)]| is called the degree of w and we call those vertices with
degree 1 in G the leaves.

Give two graphs G and H. We say H is a subgraph of G if V(H) C V(G)
and E(H) C E(G). Given X C V(G), we call < X > an induced subgraph of G
if u,v € X and wv € E(< X >) if and only if uwv € E(G). A subgraph H is an
isometric subgraph if dg(u,v) = dg(u,v), for all u,v € V(H), where dg(u,v) is
the distance if v and v in G and dg(u,v) is the distance of w and v in H. A
subgraph H is convez if for all u,v € V(H), I(u,v) C V(H).

Give z € V(G). The eccentricity of x is denoted by e(x) and defined as
e(z) = max{d(z,v) | v € V(G)}. The radius of G is denoted by r(G) and
defined as 7(G) = min{e(z) | x € V(G)}. A vertex c € V(G) is a central vertex



of G if e(c) = r(G). By periphery of G, is a set consists of all vertices in G
which has distance r(G) from some central vertex ¢ € V(G).

Given two graphs G and H. The Cartesian product of G and H, denoted by
GUOH, is the graph with vertex set V(G) x V(H) and (a,z)(b,y) € E(GOH)
whenever ab € E(G) and x =y, or a = b and xy € E(H).

A tree is a simple connected graph which has no cycle. A star is a graph
with a unique center ¢, and E(G) = {vc | v € V(G) \ {c¢}}. Obviously, a
star is also a tree. A cube of size n, denoted by @, is defined inductively as
Qn = Q,_10Q,_1, n > 2, where Qg is a vertex, Q1 is an edge.

For an edge e = uv in a graph G, the subdivision of e is obtained by replacing
the edge e by a new vertex adjacent to both v and v. For convenience, we denote
the new vertex by e and the new edges by ue and ev.

A graph G is a bipartite graph if there are two set A and B such that A # (),
B#0, V(G) = AU B and AN B = (. Alsoy uv is not an edge if u,v € A or
u,v € B. It is well-known that G .is-a-bipartite graph if and only if G contains
no odd-cycle.

3 Median graphs

Let G be a simple connected graph, and V (G), E(G) are vertex set and edge
set of G, respectively. For w, v, w € V(G) we use the abbreviation

Iu,v,w) = I(u,v) Nd(u,w) N I(vw),

and for m € V(@), we call m-a median of w,v and w if m &€ I(u,v,w), i.e. m
lies on the paths between each-two-of these three vertices. /A connected graph
G is a median _graph if there is exactly a median for all'u,v,w € V(G), ie.
|[I(u,v,w)| = 1. Trees and n-cubes @,, are well-known anedian graphs.

Lemma 3.1. Supposew,v,w € V(G). Thenv € L(u,w) if and only if I (u,v,w) =
{v}.
Proof. (=) If a € I(u,v,w) then
(d(u,a) + d(a,v)) + (d(v,a) + d(a,w)) = d(u,v) + d(v,w) = d(u,w),
so 2d(a,v) = 0. This implies a = v to have the lemma.
(<) Clearly {v} = I(u,v,w) C I(u,w). O
The following lemma is also proved in paper [1].

Lemma 3.2. Give a simple connected graph G, u,v,w € V(G) and vw € E(G).
If {u,v,w} has a median m then either m = v or m = w, not both.

Proof. Since I(u,v,w) C I(v,w) = {v,w}, the lemma follows from Lemma 3.1.
]



Proposition 3.3. A median graph is bipartite.

Proof. We suppose that G is a median graph but not bipartite, i.e. G contains an
odd cycle, Cyi41 for some k € N. If it is not isometric, it must contain a smaller
isometric odd cycle Copy1 for £ € N with [ < k. Hence we just suppose it is
isometric. Then we pick vertices v, w € V(Cay1) where vw is an edge. Because
Cor11 is an odd cycle, there is a vertex u € V(Caxy1) such that d(u,v) =
d(u,w) = k. By Lemma 3.2, the median of {u, v, w} must be v or w, without loss
of generality, say v. By definition of median, we have d(w, v) 4+ d(v,u) = d(w,u)
which is a contradiction to d(w,u) = d(v,u). Therefore, we proved that if G is
a median graph then G is also a bipartite graph. O

From Proposition 3.3, if a median graph contains a cycle C4 or a complete
multiple graph K5 3, then these two subgraphs are indeed the induced sub-
graphs.

Lemma 3.4. A median graph does notrcontain K 3.

Proof. Suppose the graph does contain Ko 3 which has bipartition {u,v,w} U
{s,t}. Then I(u,v,w) =4{s,t}, a contradiction.to the median graph definition.
O

Since a median graph-is-well-known a bipartite graph, the graphs mentioned
in this paper‘are supposed to-be connected bipartite graphs:

Definition 3.5. G7,G5 are two graphs, z € V(G1), y € V(G2), we defined the
operation coalescence + as +(G1, Ga, r.49) which is a function combine G; and
G to a new graph G4 +,, G5 by deleting ¢ and adds edges between 2 and N (y).

From thesabove definition V(G +ayGao).=V(G1) U V(Ga)\ {y}. Another
way to view the new edges set'of Gy +,., G5 is as E(G1 +,,G2) = E(G1)UE(G2),
where we replace those edges «z by yz when'z € N(y):

Lemma 3.6. G4,y Gy is a median graph if G1, G5 are median graphs.
Proof. To complete this lemmay; we need to show that every three vertices u, v, w
in V(G 44, G2) has a unique median. Obviously, it holds when u, v, w € V(Gy)
or u,v,w € (V(G2) \ {y}) U{z}since <V(G1) >, < (V(G2) \ {y}) U {z} > are

convex subgraphs in Gy 44y Ga.

Therefore, we may assume, without loss of generality, u,v € V(G;), w €
(V(G2) \ {y}) U {z}. Since < V(G1) >,< (V(G2) \ {y}) U {z} > are convex,
any path from w to w or v must pass x. By this fact, we get I(w,u) = I(w,z)U
I(z,u) and I(w,v) = I(w,z) U I(z,v). Since < V(G1) > is convex, we have
I(u,v) N I(z,w) = {x} or ). Therefore,

I(u,v,w) = I(u,v)NI(w,w)NI(v,w)
= I(u,v) N I(u,z) UI(z,w))N{I(v,z)UI(x,w))
= ([(u,v)NI(u,z)NI(v,2))U I (u,v)NI(z,w))

I(u7 /U7 x)?



where the last equality is by Lemma 3.1. Since u, v,z € V(G;) and < V(G;) >
is a median graph, we have

[I(u,v,w)| = |I(u,v,z)| = 1.
O

Corollary 3.7. G+ T is a median graph, where G is a median graph and T is
a tree.

Proof. Since tree is also a median graph, it is immediately proved by Lemma 3.6.
O

Lemma 3.8. Give two graphs G, H and two vertices x € V(G) and y € V(H).
If H is not a median graph, then G 4., H is not a median graph.

Proof. Suppose H is not a median graph because |I(u, v, w)| # 1, where u, v, w €
V(H). Since < (V(H) \ {y}) U {z} > is'a couvex subgraph in G 4, H, i.e.
I(a,b) C (V(H)\ {y§) U{z}, for-all'a;boc (V(H)\ {y}) U {z}. The convex
property keeps the result {I(u, v, w)| # 1 in graph.G 4, H. Therefore, we have
proved that G 4, H i$ not a median graph. O

Corollary 3.9. G 4., G2 is a median_graph if and only if both G1,Gs are
median graphs.

Proof. By Lemma 3.6 and Lemma 3.8. O

Lemma 3.10. Let G be a median graph. Let G' = G \{v € V(G) | d(v) = 1},
i.e. G' is the graph obtained from G by deleting all the leaves in'G. Then G’ is
also a median graph.

Proof. We can see that G is(the result of repeating the operation + between
G’ and those edges incident to leaves in G. Therefore, by the fact of edges are
median graphs, this lemma are proved by Corollary 3.9: O

4 Median graphs with radius 2

Throughout the remaining of the thesis fix a simple connected graph G =
(V(G), E(G)) with at least three vertices and a center ¢ € V(G). Note that the
degree d(c) of ¢ is at least 2. We shall define some notions needed for the rest
of this paper. Let

Li={z |z € V(G),d(z,c) =i}

and ¢(p) =i if p € L;. For p € L; set

pt = {ulpel(uc)}
p = {u|u€I(p,c)}.



Proposition 4.1. If G is a bipartite graph with radius 1. Then G is a median
graph.

Proof. Since G is bipartite. Bipartite graph with radius 1 is a star which is a
median graph. O

Before mentioning median graphs with radius 2, we have to see some concepts
from [5]. Let G = (V, E) be a graph with |V| = n, |E| = m. The graph G is
obtained from G by subdividing all edges of G and adding a new vertex c joined
to all the original vertices of G. So we have V =V U E U {¢} and

E={cv|veV}U{ue|ee E,uec Vand u is incident with e in G}.
Furthermore, the paper proves the following result:

Lemma 4.2. A graph G is triangle-free if and only if its associated graph G is
a median graph. O

Theorem 4.3. Let G be a bipartite graph-with radius 2. Then G is a median
graph if and only if the following (i)-(ii) hold.

(i) G does not contain the induced subgraph K 5.
(i) G does mot contain-the-induced subgraph Cs C L1 U Lyt

Proof. Thernecessity (i) follows from Lemma 3.4 For (ii), if G does contain
induced subgraph Cg € Ly U Ly then the three vertices in Cg Nils has a median
m in L1, and then m together with any two of the three vertices'in Cs N L1 has
c as a median and another medianiin Ls, a contradiction.

To prove sufficiency, first- notethat the no Ky 5 assumption and radius 2 of
G assumption-imply that each vertex in. Lo has degree/at most 2, and there
is no induced subgraph Cy in Ly U Ly. We delete those leaves in G which are
{v|v € V(G)d(v) = 1} and this will not impact the median property by
Lemma 3.10. Thus, we can assume d(y) > 2 for all v € V(G). Now we try to
make G to a new graph G’ by.doing below steps.«We delete the vertex ¢ which
is the center of G. Wedet' V(G')»={u|w € L1} and u,v are incident if they
have a common neighbor in ‘Ly. Since there is no Cy in Ly U Lo, there are no
multiple edges in G’. Also, since there is no Cg in L1 U Lo, there is no triangle
in G’. Thus, by Lemma 4.2, G = G’ is a median graph. Now we have proved
this whole theorem. O

5 Median graph with radius 3

To study those median graphs of higher radius, we need to introduce some
more definitions and notations. In [4], it mentioned the following definitions. For
w € E(G), we call uv an up-edge of u if d(u,c) < d(v,c), that is, £(u) < £(v).
Otherwise, we call uv a down-edge of u. Notice that G is a bipartite graph
so that there is no edge uv such that d(u,c) = d(v,c). Therefore, each edge



uv is either a up-edge or a down-edge to u. Let down-degree d(u) (resp. up-
degree d(u)) denote the number of down-edges (resp. up-edges) of u, that is,
the number of those neighbors of u in L;(,)—1. By [4], we have the proposition
below

Proposition 5.1. Let G be a median graph and let v € L; with d(v) = k. Then
1 > k and v and its down-edges are contained in a cube of dimension k which
meets the levels L;, L;_1,...,L; . O

This proposition give us some clues to develop median graphs with radius 3.

Lemma 5.2. Let G be a bipartite graph of radius 3. Suppose the following (a),
(b) hold.

(a) (forbidden condition) G does-not contain the induced subgraph Kz o.

(b) (enforcing condition) Every induced subgraph' Cg. is contained in an induced
cube of dimension 3.

Then the following (i)-(v) hold.

(i) If x €Lg, then d(z)=-d(z) = k < 3. Also, x andits down-edges are
contained in o cube-of dimension k which contains an element in L3_y,.

(”) |pJr rjq+mLi+1| S 17 b, q S Li; 1= 1727
(i) |p~ NgT AL <2, p€ Lig1, g€ Li—y, i =1,2;

(iv) If there is a induced subgraph'Cg in Ly U Ly, then there is a vertex a such
that {a} U{c} U Cq is a_cube, where a € Lz and there is no Cs in Ly U L
and

(v) If there is a_induced subgraph Cs w—2x —v — ¢~ =z — u, where u € Lg,
r,z € Lo, wyv € Ly. Then there are two wertices a and b such that
{a} U{b} U Cs 4s a cube, where.a-&Ly, b€ L.

Proof. (i) This is clear if d(x) = 1. Suppose d(z) > 2. Pick distinct a1,as €
N(z). If there exists e € a] Nag NLy, then the subgraph induced on {z, a1, e, as}
is Cy. This finishes the proof when d(x) = 2. Suppose a] Nay N Ly = (). Then
we find by, by € Ly such that the subgraph induced on {z,a1,b1, ¢, ba,as} is Cg.
By the enforcing condition we find b3 € L; and a3 € Ls such that the subgraph
induced on {x, a1, b1, ¢, b, as, s, a3, b3} is a cube of dimension 3. This finishes the
proof when d(z) = 3. Suppose that there is a vertex in a4 € N(z) — {a1, az, as}.
Note that a4 is not adjacent to b; for 1 < i < 3, otherwise there is a K3 .
Choose by € P; such that the subgraph induced on {z, as, bs, ¢, by, a4} is Cg. Use
enforcing condition again we find b5 € L; and a5 € Lo such that the subgraph
induced on {z, as, b3, ¢, by, a4, bs, a5} is a cube of dimension 3. Note that as # a;
for 1 <i <4 and x ~ a5 and asbs € E(G). Then the induced subgraph on



{z,bs,a1,a2,a5} is a K32, a contradiction to the forbidden condition. Hence
d(x) < 3.

(ii) Assume that there exist two distinct s,t € p* N g™ N Pypqy for i =1
or 2. In the case i = 1 we find K33 on the set {c,p,q,s,t}. For the case i = 2
if there exists a vertex u € P.; adjacent to p and ¢, we still find Ks 3 on the
set {u,p,q,s,t}. Suppose that there exists no vertex in P.; adjacent to p and
g. Then we find d,e € L; such that the subgraph induced on {s,p,d,c,e,q,s}
is Cg. By the enforcing condition we find b € Ly and a € Lo such that the
subgraph induced on {s,p,d,c,e,q,s,a,b} is a cube of dimension 3. Then the
subgraph induced on {s,t,b,p, q} is Ks 3, a contradiction.

(iii) This is clear from the forbidden condition assumption.

(iv)-(v) It is clear from the enforcing condition.

b5.

Figure 1. A diagram to illustrate the above proof.

The following is our/conjecture.

Conjecture 5.3. Let G be a bipartite graph with radius 3. Then G is a median
graph if and only if the following conditions (a), (b) hold.

(a) (forbidden condition) G does not contain the induced subgraph Kj .

(b) (enforcing condition) Every induced subgraph Cg is contained in an in-
duced cube of dimension 3.

In fact the necessary condition of the above Conjecture holds for any median
graphs.

Theorem 5.4. Let G be a median graph. Then the forbidden condition and the
enforcing condition hold in G.



Proof. We have proved in Lemma 3.4 for the forbidden of K53 in a median graph.
a1, a2, a3, a4, a5, ag, a1 be an induced Cg in G. Let my € I(ay,as,as5) and ma €
I(ag,a4,a¢). Clearly my & {ai1,as,as} by Lemma 3.1, and m; & {az2,a4,a6}
since the the subgraph Cp is induced. Similarly, mo & {a1,as2,as,a4,as,as}.
Then the subgraph induced on {a1, as, as, as, as, ag, mi, ms} is an induced cube

Qs. O
To prove the sufficient condition of our Conjecture holds, we need more tools.

Definition 5.5. A path v = wg,u1,...,u; = v is called a down-path from u
to v if there exist an integer 0 < k <t — 1 such that £(ug) > l(u1) > - >
l(ug) and l(ug) < l(ugs1) < -+ < £€(uy), and it is denoted by P, ,.

Lemma 5.6. Let G be a bipartite graph such that for any two vertices u,v of
length two there exists a down-path for u to v. Then for any vertices u,v € V(G)
there exists a down-path Py .

Proof. We prove by induction on-d(u,v). The case d(u,v) < 1 is clear since a
path of length at most 1 s a~down-path. “The case d(u,v) = 2 follows from
our assumption. Suppose d(u,v) =t > 2. Pick a vertexu;_; € I(u,v) N N(v).

By induction there exists a dowm path w =uf, u}, s . up ; from u to uj_;.
Note that u] €wu” and d(u},v) =t — 1. By induction thereexists a down-path
uy = uy,ug, yug = v from-uh to v Now the path u = up,uy, us, ..., up = v is
a down-path from u to w: O

Lemma 5:7: Let G be a bipartite graph with radius 3 satisfying the forbidden
condition and the enforcing condition. Then for any two vertices u,v of length
two there éwists a down-path P, .

Proof. This_ is clear from Lemma 5.2(i). O

H.M. Mulder proved thefollowing result in [6]:

Lemma 5.8. Let G bewa connected triangle free graph. If |I(u,v,w)| = 1 for
any three vertices u,viw such.that d(u,v) = 2«then G is a median graph. O

In fact, we only proved a/part of the sufficient condition of the above Con-
jecture as following theorem.

Theorem 5.9. Let G be a bipartite graph with radius 3 satisfying the forbidden
condition and the enforcing condition. Then |I(u,v,w)| < 1 for all u,v,w €
V(G) with d(v,w) = 2.

Proof. To the contrary suppose |I(u,v,w)| > 1 for some u,v,w € V(G) with
d(v,w) = 2. Thus, there are two vertices a,a’ € I(u,v,w). Note that d(u,v) €
{d(u,w), d(u,w) + 2,d(u,w) — 2}. By Lemma 3.1, we have a,a’ # u,v,w and
d(u,v) = d(u,w) = d(u,a) + 1 = d(u,a’) + 1. If d(u,a) = 1 then the subgraph
induced on {u,v,w,a,a'} is Ks 3, a contradiction to the forbidden condition.
Suppose 2 < d(u,a) = d(u,v) —1 < 5 as G has diameter at most 6. Since
d(v,w) = 2, we prove it in two situations.



Case (1) £(v) = £(w) = i: By condition Lemma 5.2(ii), £(a) # ¢(a’). Without
loss of generality, suppose £(a) =i — 1 and £(a’) = ¢ + 1 as shown in Figure 2.
Note that i =1, 2.

Figure 2. A diagram to Case (1).

Since ¢(a) = 1, we have d(z,a) < 4 for all x € V(G). Therefore, we only
have to consider that d(u, a) from 2 to 4.

e d(u,a) =d(u,a") = 2: It'will cause £(u)y=14i+1 ori— 1.

1. Suppese (w) = i + 1. Pick y € P40 N(a)and ¢’ € P, . N N(a).
Asfda’ 0" d'pmAlyle< 2, y # y' and by Lemma 5.7 there exists
x @y~ Ny~ NLi=ias shown in Figure 3-1. Sinced(a’) > 3, there is
a‘cube Q3 contains-a’,y’' v, w by Lemma 5.2(i). Note that the cube
also contains @, otherwise |¢™ A ¢’ ~ A L] > 3.7 Thus, v ~ z or
w~ xz. W.L.O.G., we suppose v ~., which make a contradiction to
Lemma 5.2(if) by |at Nz N Ly| > 2.

Figure 3-1. The case d(u,a) = d(u,a’) =2 and £(z) =i — 1.

2. If f(u) = i — 1, then i = 2., pick ¢ € P,o N N(d') as shown in
Figure 3-2. Since d(a’) > 3, there is a cube Q3 contains o', y’, v, w by
Lemma 5.2(i). Also, this cube contains u, otherwise |[c™Ny’ ~NL;| >
3. W.L.O.G., let u ~ v, which is a contradiction.
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e d(u,a) = d(u,a’) = 3: If £(u) < 1 then d(u,a) < 2. Thus, we have

1. If £(u) = 3, pick z € P, o N N(a') as shown in Figure 4-1. Note that
v, w are not in P, g . 1se ao=cand [at N o’ ~NL| >3

. Since d(a’) >
5.2(1). Also, Qs
, then d(u,v) = 2

Figure 4-2. The case d(u,a) = d(u,a’) = 3 and £(z) =i — 1.
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o d(u,a) = d(u,a’) = 4 If £(u) < 2, then d(u,a) < 3. Thus, £(u) = 3.
Consider Pu,a/ as shown in Figure 5. Since d(a’) > 3, there is a cube Q3
contains a’,v,w by Lemma 5.2(1). Also, Q3 contains z as above proof.
W.L.O.G., let v ~ z, then d(u,v) = 3 which is a contradiction.

Figure 5. The case d(u,a) = d(u,a’) = 4 and P, 4.

Case (2) £(v) =i+ L, l(w)=1—1: Inthis case; £(a) = £(a’) = i as shown
in Figure 6. Note that@ = 1,2. Since ¢(w) < 1, we have d(u,w) < 4 and
d(u,a) = d(u, a’)»< 3. Then we only haye to con51der thatd(u,a) from 2 to 3.

v

Figure 6. A diagram to Case (2).

o d(u,a) =d(u,a") = 2: If £(u) <1, then d(u, w) < 2. Thus, ¢(u) =2,3.

1. If (u) = 3, picky E Py N(a)and y' € P, . N N(a'). Note that
y # oy and y & a’ andy * a, otherwise |[a™ N o T NL;| > 2.
Now the subgraph induced on {u,y’,a’,w,a,y} is a Cs as shown in
Figure 7-1. Thus, there is a vertex x € Ly and 2’ € Ly such that
{z,2',u,y',a’,w,a,y} is a Q3 by Lemma 5.2(v). Observe that v = z,
otherwise |[a™ N o T N L;| > 2. Thus, we have u ~ v which is a
contradiction.
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Figure 7-1. The case d(u,a) = d(u,a’) = 2 and Cs.

2. If £(u) = 2, then i = 2. Pick y € P, o N N(a) and y € P, o N N(a').
Note that y # 3’ and y < @’ and y = a, otherwise [w™ N 3y TN
Ly| > 2. Now the subgraph induced on {u,y’,d’,w,a,y} is a Cg
as shown in Figure 7-2. Thus, there is a vertex x € L3 such that
{z,c,u,y',a',w,a,y}isa Q3. Observe that v = x, otherwise it violate
Lemma 5.2(ii) by |a™ N @’ T N L3| > 2. Thus, we have u ~ v which
is a contradiction to d(u,v) = 3.

Figure 7-2. The diagram to'illustrate above proof.

o d(u,a) = d(u,a’) =3 If ¥(u) < 2, then d(u,w) < 3. Thus, £(u) = 3. Pick
z € Pyo M N(a) and-z"-€ P, ,»N N(a’). Note that 2 # 2" and z ~ o’ and
2w gy otherwise it-will-violate Lemma 52(ii) |w* Nz' t.A Ly| > 2.

Suppose there exists y € Iau,a/ N ]5“7,1 such that y ~ z'and y ~ 2/, as
Figure 8-1. Now the subgraph induced on {u, 2, z,w, a,a’} is a Cs. Thus,
there'is a vertex z € Lg such that {z,c, 2,2/ y,d ;a,w} is a Q3. As
laT N7a’ * N L] < 2, we have & = v. Therefore, d(u,v) = 2 which is a
contradiction to d(u,v) =4«

Figure 8-1. The case d(u,a) = d(u,a’) = 3 and £(y) = 2.

If there does not exist y € Pu,a/ N Pu,a such that y ~ z and y ~ 2/,
then there exists y,y’ € ]SWZ, N [:)u,a such that y ~ z and v ~ z’. Now
the subgraph induced on {u, 2’, z,¢,y,4'} is a Cg as shown in Figure 8-2.
Thus, there is a cube contains {u, 2/, z, ¢, y,y'} by the enforcing condition.
Therefore, there exists a x € Lo such that x € pu’a/ N ]5“’,1 and x ~ z and
x ~ 2z'. Now the situation is similar to above proof.
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Figure 8-2. The case d(u,a) = d(u,a’) = 3 and Cs.

Now we have proved this theorem. O
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