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摘  要 

本篇論文考慮的是設計解決極小控制集（MDS）問題的更具有效率的自我穩定

演算法（self-stabilizing algorithms）。設 n為分散式系統裡的節點數目。若一個自

我穩定演算法在給定的分散式系統執行至多 t 次動作後，即可到達合理狀態

（legitimate configuration），則稱此自我穩定演算法為 t -動作演算法（ t -move 
algorithm）。在 2007 年，Turau 提出了一個分散式排程下的解決 MDS 問題的 9n -
動作演算法。隨後，在 2008 年，Goddard 等人提出一個分散式排程下的解決 MDS
問題的 5n -動作演算法。設計一個執行動作少於 5n 次的分散式排程下的解決

MDS 問題的演算法，確實是一個挑戰。本篇論文的目的就在於設計出這樣的演

算法。具體來說，我們提出了一個分散式排程下的解決 MDS 問題的 4n -動作演

算法；此外，採用我們演算法，需要 4 1n − 個動作才可以到達合理狀態的例子也

被提出。 
 
關鍵詞：自我穩定演算法，容錯，分散式計算，圖形演算法，控制。 
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An efficient self-stabilizing algorithm for the minimal
dominating set problem under a distributed scheduler

Student: Shihyu Tsai Advisor: Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University

Abstract

This thesis considers designing efficient self-stabilizing algorithms for solving the
minimal dominating set (MDS) problem. Let n denote the number of nodes in a
distributed system. A self-stabilizing algorithm is said to be a t-move algorithm
if when it is used, a given distributed system takes at most t moves to reach a
legitimate configuration. In 2007, Turau proposed a 9n-move algorithm for the MDS
problem under a distributed scheduler. Later, in 2008, Goddard et al. proposed a
5n-move algorithm for the MDS problem under a distributed scheduler. It is indeed
a challenge to develop an algorithm that takes less than 5nmoves under a distributed
scheduler. The purpose of this thesis is to propose such an algorithm. In particular,
we propose a 4n-move algorithm under a distributed scheduler; an example such
that our algorithm takes 4n− 1 moves to reach a legitimate configuration has also
been proposed.

Keywords: Self-stabilizing algorithms; Fault tolerance; Distributed computing; Graph

algorithms; Domination.
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1 Introduction

Self-stabilization is a fault-tolerance approach for distributed systems and was intro-

duced by Dijkstra in 1974 in [1]. Intuitively, a self-stabilizing system guarantees to reach

a correct configuration, in a finite time, regardless of its initial configuration. Here, the

configuration of a distributed system (also called the state) consists of the state of ev-

ery process. More precisely, a distributed system is self-stabilizing if it has the following

two properties: convergence property and closure property. The convergence property is:

starting from an illegitimate (incorrect) configuration, the distributed system must reach

a legitimate (correct) configuration in a finite time. The closure property is: after reaching

a legitimate configuration, the system must remain in the set of legitimate configurations.

Hence a self-stabilizing system can recover from any transient fault without any external

intervention.

In this thesis, we will consider a distributed system whose topology is represented by

an undirected graph G = (V,E), where the nodes represent the processes and the edges

represent the interconnections between the processes. Throughout this paper, we use n

to denote the number of nodes in the graph G. Let v be a node. A node u is a neighbor

of v if they are adjacent. We use N(v) to denote the set of neighbors of v. Note that we

use the terms node and process interchangeably.

There are two common models of interprocess communication in distributed systems:

the message-passing model and the shared-memory model. In the message-passing model,

the processes exchange messages with one another in order to transfer information. In

the shared-memory model, processes use the shared memory create and the shared memory

attach system calls to create and to gain access to regions of the memory owned by other

processes. Do notice that self-stabilizing algorithms usually use the shared-memory model,

where neighboring processes may communicate via common variables or registers. Since
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the operating system normally tries to prevent one process from accessing the memory

of another process, the shared memory model requires that two or more processes agree

to remove this restriction so that they can exchange information by reading and writing

data in the shared areas. The processes are also responsible for ensuring that they will

not write to the same location simultaneously.

The self-stabilizing program of each node consists of a collection of rules of the form:

⟨precondition⟩ −→ ⟨statement⟩.

The precondition of a rule is a Boolean expression formed by state of the node and the

states of its neighboring nodes. The statement of a rule will only update the state of

the node. The execution of a statement is called a move. A rule is called enabled if

its precondition evaluates to be true. A node is called enabled (also called privileged)

if at least one of its rules enabled. We assume that rules are atomically execute, in

other words, the evaluation of a precondition and the move are performed in one atomic

step. Self-stabilizing systems operate in rounds. In every round, first, all nodes check the

preconditions of their rules. An enabled node makes its move means that it is brought into

a new state determined by its old state and the states of its neighboring nodes. Notice

that slightly different definitions for what is a round are given in the literature. In this

thesis, a round is defined to be the minimum time period in which every node has been

scheduled to execute a rule at least once.

In distributed systems, each node performs a sequence of atomic steps, where an

atomic step is the “largest” step guaranteed to be executed uninterruptedly; see [3]. An

algorithm of a distributed system is said to use composite atomicity if some atomic step

contains (at least) a read operation and a write operation and to use read/write atomicity

if each atomic step contains either a single read operation or a single write operation but

not both.

There are various execution models for developing self-stabilizing algorithms and these
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models are encapsulated within the notion of a scheduler (also called daemon). Common

schedulers are central schedulers, synchronous schedulers, and distributed schedulers. Un-

der a central scheduler, only one enabled node can execute an atomic step at one time.

Under a synchronous scheduler (also called fully distributed), all enabled nodes will ex-

ecute an atomic step at the same time. Under a distributed scheduler, a subset of the

enabled nodes execute an atomic step at the same time. The above schedulers are the

most popular schedulers; variants of them have also been proposed.

In a distributed system, an execution can be viewed as a sequence of moves (i.e.,

atomic steps) made by nodes. At any instance in time, a number of moves at nodes

are possible but usually only a subset of these are made due to lack of any synchrony.

An enabled node can be disabled either by a move or by moves made by the node itself

or the neighboring nodes. Notice that although it is easier to prove stabilization for

algorithms working under central schedulers, synchronous and distributed schedulers are

more suitable for practical implementations.

The stabilization time is the maximum amount of time it takes for the system to

reach a legitimate configuration. The stabilization time is often used to serve as the

time complexity of a self-stabilizing algorithm and is in terms of moves or rounds. For

a synchronous scheduler, all enabled nodes make their moves in one round; however, for

a distributed scheduler, only a selected subset of enabled nodes make their moves in one

round. Thus when stabilization time is considered, the number of moves is in general an

upper bound on the number of rounds; see Table 1.

Let G = (V,E) be a given graph (distributed system). An independent set S of G is a

subset of V such that each pair of nodes in S are not adjacent. S is a maximal independent

set of G if for any v ̸∈ S, the set S ∪ {v} is not an independent set of G. A dominating

set S of G is a subset of V such that each v ∈ V \ S has at least one neighbor in S. S

is a minimal dominating set of G if for any v ∈ S, the set S \ {v} is not a dominating

3



set of G. For convenience, we use MIS and MDS to denote maximal independent set and

minimal dominating set, respectively. The MDS (resp., MIS) problem is the problem of

finding an MDS (resp. MIS) for a given graph. Both problems have attracted a lot of

research interests. In a distributed system, an MDS is maintained to optimize the number

and the location of resource centers [7]. Notice that an MDS may not be an MIS, but

an MIS is an MDS. A self-stabilizing MDS algorithm based on an MIS algorithm is not

a suitable solution since it is desirable that a self-stabilizing MDS algorithm initialized

with an MDS does not make any move.

A good survey for the self-stabilizing algorithms is [6]. For convenience, if the stabi-

lization time of a self-stabilizing algorithm is at most t moves (resp., rounds), then we

say it is a t-move (resp., t-round) algorithm. The followings are self-stabilizing algorithms

for the MDS problem. In 2003, Hedetniemi et al. proposed a (2n + 1)n-move algorithm

under central scheduler [8]. In 2003, Xu et al. proposed a 4n-round algorithm under

synchronous scheduler [10]. In 2007, Turau proposed a 9n-move algorithm under a dis-

tributed scheduler [9]. Later, in 2008, Goddard et al. proposed a (4n+1)-round algorithm

under synchronous scheduler; the same algorithm becomes a 5n-move algorithm if under

a distributed scheduler [5].

It is a challenge to develop an algorithm that takes less than 5n moves under a dis-

tributed scheduler. The purpose of this thesis is to propose such an algorithm. In par-

ticular, we propose a 4n-move algorithm under a distributed scheduler; an example such

that our algorithm takes 4n − 1 moves to reach a legitimate configuration has also been

proposed. Our algorithm uses composite atomicity and it requires the local distinct id

property, that is, two neighboring nodes must have distinct id’s. We now summarize

known results in Table 1 (in this table, “ano” means “the system is anonymous”, where

a system is anonymous if the nodes do not have any id).

This thesis is organized as follows. Section 2 gives the related works. Section 3 contains
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Table 1: Self-stabilizing minimal dominating set algorithms.

reference year ano scheduler atomicity stabilization time

Hedetniemi et al. [8] 2003 yes central composite ≤ (2n+ 1)n moves

Xu et al. [10] 2003 no synchronous composite ≤ 4n rounds

Turau [9] 2007 no distributed composite ≤ 9n moves
Goddard et al. [5] 2008 no synchronous composite ≤ (4n+ 1) rounds

Goddard et al. [5] 2008 no distributed composite ≤ 5n moves

this thesis 2011 no distributed composite ≤ 4n moves

our main result. The concluding remarks are in the last section.

2 Related works

A good survey for self-stabilizing algorithms for DS, MDS, and other related problems

can be found in [6]. In this section, we will briefly review the algorithms in [9] and [5].

The algorithm proposed by Turau in [9] in 2007 is the first self-stabilizing algorithm

for solving the MDS problem that stabilizes in linear time under under a distributed

scheduler. Turau’s algorithm is a 9n-move algorithm and it makes the assumption that

every node has a globally unique id. In the algorithm, each node has a state variable with

three choices: OUT, WAIT, and IN. A node has the state OUT (resp., WAIT and resp.,

IN) if it has a small (resp., median and resp., high) possibility of being a member of the

MIS. Let OUT, WAIT, and IN also denote the set of nodes with state OUT, WAIT, and

IN, respectively.

Turau first proposed a self-stabilizing algorithm for solving the MIS problem and then,

extended the algorithm to solve the MDS problem. The algorithm for solving the MIS

problem operates according the the following rules: (r-1) a node in OUT will move to

WAIT if none of its neighbors is in IN; (r-2) a node in WAIT will move to OUT if it has

a neighbor in IN; (r-3) a node in WAIT will move to IN if none of its neighbors is in IN

and none of its neighbors is in WAIT and has a lower id; (r-4) a node in IN will move
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to OUT if it has at least one neighbor in IN. Turau extended the MIS algorithm to solve

the MDS problem as follows. Each node has an additional variable, called pointer, and

will adjust its pointer as follows: (1) a node that will move from WAIT to IN changes its

pointer to null; (2) a node in IN adjusts its pointer to null; (3) a node in OUT that has

a unique in-neighbor (say, w); (4) a node in OUT that has at least two neighbors in IN

adjusts its pointer to null. Besides, rule (r-4) is modified as: a node in IN will move to

OUT if it has at least one neighbor in IN and it has no neighbor pointing to it.

In [5], Goddard et al. proposed a 5n-move algorithm for the MDS problem. They

assume nodes having locally distinct id’s and assume a distributed scheduler. Each node

has a Boolean variable indicating whether it belongs to the set IN and an integer variable

indicating the number of neighbors that are in the set IN. A node is allowed to join the

set IN if it has no neighbors in IN, its integer variable is 0, and its id is the lowest one

among these neighbors with integer variable 0 and itself. On the other hand, a node is

allowed to leave the set IN if it has no neighbors in IN and every neighbor which is not

in IN has more than one neighbors in IN.

3 Our main result

The purpose of this section is to propose our main result, a self-stabilizing 4n-move

algorithm for the MDS problem using a distributed scheduler.

3.1 Our algorithm

In our algorithm, each node has a local distinct (within its neighborhood) id, a variable

called state, and a variable called dependent. Let v be a node. The value of v.state is

either IN or OUT, where IN (resp., OUT) means that v is (resp., is not) in the MDS. We
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will also use IN and OUT to denote the set of nodes with state IN and OUT, respectively.

The value of v.dependent is either 0 or the id of a neighbor of v or Λ. In particular, if

v has no neighbor in IN, then v.dependent is set to 0; if v has a unique neighbor in IN,

then v.dependent is set to the id of this neighbor; if v has more than one neighbor in IN,

then v.dependent is set to Λ.

Let v and w be two nodes. For convenience, we use v ∼ w to denote “v is adjacent

to w”. If v ∼ w and v.state = IN, then v is called an in-neighbor of w; on the other

hand, if v ∼ w and v.state = OUT, then v is called a out-neighbor of w. For each node

v, we also define Boolean variables v.inNeighbor, v.independentNeighborWithLowerID,

v.dependentOutNeighbors, and v.moreThanOneInNeighbor as follows (note that ≡ denotes

“is defined as” and ∧ denotes “and”).

• v.inNeighbor ≡ v has an in-neighbor;

• v.independentNeighborWithLowerID≡ ∃ w ∼ v such that w.dependent= 0 ∧ w.id <

v.id;

• v.dependentOutNeighbors ≡ ∃ an out-neighbor w of v such that w.dependent = v;

• v.moreThanOneInNeighbor ≡ v has more than one in-neighbor.

For each node v, we also an additional predicate

• v.uniqueInNeighbor(w) ≡ v has a unique in-neighbor and it is w.

Our self-stabilizing algorithm uses the following rules. In these rules, ¬ denotes “not”

and := denotes “is assigned the value”. The state diagram of our algorithm is shown in

Figure 1.

1. state = OUT ∧ ¬ inNeighbor ∧ dependent = 0 ∧ ¬ independentNeighborWithLowerId

−→ state := IN;
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2. state = IN ∧ uniqueInNeighbor(w) ∧ ¬ dependentOutNeighbors

−→ state := OUT; dependent := w;

2′. state = IN ∧ moreThanOneInNeighbor ∧ ¬ dependentOutNeighbors

−→ state := OUT; dependent := Λ;

3. state = IN ∧ ¬ inNeighbor ∧ dependent ̸= 0

−→ dependent := 0;

3′. state = IN ∧ uniqueInNeighbor(w) ∧ dependent ̸= w

−→ dependent := w;

4. state = OUT ∧ ¬ inNeighbor ∧ dependent ̸= 0

−→ dependent := 0;

4′. state = OUT ∧ uniqueInNeighbor(w) ∧ dependent ̸= w ∧ w.dependent ̸= 0

−→ dependent := w;

4′′. state = OUT ∧ moreThanOneInNeighbor ∧ dependent ̸= Λ

−→ dependent := Λ;

OUT IN

RULE 1

RULE 2

RULE 2’

RULE 3

RULE 3’

RULE 4

RULE 4’’

RULE 4’

(ensure dependent = 0)
(ensure dependent = 0)

(ensure )dependent  !

(ensure )dependent  !

(ensure )dependent w 

(ensure )dependent w 

(ensure )dependent w 

Figure 1: The state diagram of our algorithm.

The value of dependent will be set according to the rule executed. As an example, if

rule 2 is executed, then the value of dependent is set to w, which equals to the value of
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the parameter w stored in uniqueInNeighbor.

3.2 Correction and convergence

To prove the correctness of our algorithm, we first prove that when each node has no

enabled rules, the set of nodes with state IN form a minimal dominating set.

Theorem 3.1. When each node has no enabled rules, the set

D = {v | v.state = IN}

is a minimal dominating set of G.

Proof. Suppose to the contradiction that D is not a minimal dominating set of G. Then

D is not a dominating set or D is a dominating set but not a minimal one. First consider

the case that D is not a dominating set. In this case, there must exist a node /∈ D that

has no in-neighbors. Thus

S = {v ̸∈ D | w.state ̸= IN ∀w ∈ N(v)} ̸= ∅.

Since rule 4 is not enabled, we have v.dependent = 0 for all v ∈ S. Choose v0 from S

such that v0 is the node with the smallest id in S; since S ̸= ∅, v0 exists. Then v0 satisfies

all the constraints of rule 1; rule 1 can be enabled. This contradicts with the assumption

that each node has no enabled rules.

Now consider the case that D is a dominating set but not a minimal one. Then there

exists a node v ∈ D such that v has in-neighbors and every out-neighbor w of v has at least

two in-neighbors. For each such w, w.state is OUT and w.moreThanOneInNeighbor is

true. Since Rule 4′′ is not enabled, we must have w.dependent = ∧. But, for node v,

either rule 2 or rule 2′ could be enabled; if v has a unique in-neighbor, then rule 2 could

be enabled and if v has more than one in-neighbor, then rule 2′ could be enabled. Again,

this contradicts with the assumption that every node has no enabled rules.
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We now use Lemmas 3.2, 3.3, 3.4, 3.5 and Theorem 3.6 to prove that our algorithm

stabilizes after at most 4n moves under a distributed scheduler.

Lemma 3.2. No two neighboring nodes will execute rule 1 at the same time.

Proof. This lemma follows from the locally distinct id property.

Lemma 3.3. After a node v executes rule 1, v will not execute any other rules.

Proof. Since v executes rule 1, v has no in-neighbors and v.dependent = 0 before it

executes rule 1. Since v has no in-neighbors, for all w ∈ N(v), we have w.state is OUT

before v executes rule 1. By Lemma 3.2, for all w ∈ N(v), w.state remains OUT after v

executes rule 1. Thus after v executes rule 1, v.state becomes IN and the only rules that

v can execute are: rules 2, 2′, 3, and 3′. We have two claims.

Claim 1: v cannot execute rules 2, 2′, and 3′.

Proof of Claim 1. Recall that v has no in-neighbors before it executes rule 1. Thus for all

w ∈ N(v), we have w.state is OUT before v executes rule 1. After the execution of rule

1, if v executes rule 2 or 2′ or 3′, then v must have a neighbor (say, w) such that w.state

is changed from OUT to IN. Notice that rules 4, 4′, and 4′′ will not change the state of

a node. Thus w.state can be changed from OUT to IN only by the execution of rule 1.

This is impossible; since if w can execute rule 1, then w.inNeighbor has to be false but

w already has a neighbor v such that v.state is IN. Therefore w cannot execute rule 1.

Consequently, v cannot execute rules 2, 2′, and 3′.

Claim 2: v cannot execute rule 3.

Proof of Claim 2. Since v executes rule 1, v.dependent is 0. After the execution of rule

1, v.state becomes IN. For v to execute rule 3, v.dependent cannot be 0. Consequently, v

cannot execute rule 3.

By Claims 1 and 2, we complete this proof.
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Lemma 3.4. After a node v executes rule 3, v will not execute any other rules.

Proof. Since v executes rule 3, v has no in-neighbors before it executes rule 3. Since v

has no in-neighbors, for all w ∈ N(v), we have w.state is OUT before v executes rule 3.

Since v is a neighbor of w and v.state is IN, w.inNeighbor is true and consequently w

cannot execute rules 1. Thus for all w ∈ N(v), w.state remains OUT after v executes rule

3.Thus after v executes rule 3, v.state remains IN and the only rules that v can execute

are: rules 2, 2′, 3, and 3′. We have two claims.

Claim 1: v cannot execute rules 2, 2′, and 3′.

Proof of Claim 1. Recall that v has no in-neighbors before it executes rule 3. Thus for all

w ∈ N(v), we have w.state is OUT before v executes rule 3. After the execution of rule

3, if v executes rule 2 or 2′ or 3′, then v must have a neighbor (say, w) such that w.state

is changed from OUT to IN. Notice that rules 4, 4′, and 4′′ will not change the state of

a node. Thus w.state can be changed from OUT to IN only by the execution of rule 1.

This is impossible; since if w can execute rule 1, then w.inNeighbor has to be false but

w already has a neighbor v such that v.state is IN. Therefore w cannot execute rule 1.

Consequently, v cannot execute rules 2, 2′, and 3′.

Claim 2: v cannot execute rule 3.

Proof of Claim 2. After v executes rule 3, v.dependent is 0. For v to execute rule 3 next,

v.dependent cannot be 0. Consequently, v cannot execute rule 3.

By Claims 1 and 2, we complete this proof.

Lemma 3.5. Suppose v.state is OUT and a neighbor w of v executes rule 1. Then the

only rule that v can execute is rule 4′′ and after v executes rule 4′′, v will not execute any

other rules.

Proof. Since w executes rule 1, w.inNeighbor is false, w.dependent is 0. By Lemma 3.3,

after w executes rule 1, w will not execute any other rules. Thus after w executes rule 1,

11



w.state remains to be IN. Since w is a neighbor of v and w.state is IN, v.inNeighbor is

true and consequently v cannot execute rules 1 and 4. If w is the unique in-neighbor of

v, then by the fact that w.dependent is 0, v cannot execute rule 4′. Hence the only rule

that v can execute is rule 4′′. Suppose that v executes rule 4′′. Then v.dependent is set

to Λ; as a result, v will not execute any other rules.

Theorem 3.6. Our algorithm is a self-stabilizing algorithm for the minimal dominating

set problem under a distributed scheduler. Furthermore, it stabilizes after at most 4n

moves.

Proof. By Theorem 3.1, our algorithm is a self-stabilizing algorithm for the minimal

dominating set problem. It remains to prove that our algorithm stabilizes after at most

4n moves under a distributed scheduler. We will prove this by showing that each node v

takes at most 4 moves under a distributed scheduler.

Let I = {1, 2, 2′, 3, 3′, 4, 4′, 4′′}, i.e., I is the set containing all the indices of the rules of

our algorithm. Let k be a positive integer and let r1, r2, . . . , rk ∈ I (note that r1, r2, . . . , rk

are not necessarily distinct). The sequence < r1, r2, . . . , rk > is called a move sequence of

v if v can execute rule r1, then execute rule r2, . . ., and then rule rk. The number k is

called the length of the move sequence. A move sequence of v is a longest move sequence

if its length is the largest among all the move sequences of v. Let l∗ denote the length of

a longest move sequence of v for convenience. Initially, v.state is either IN or OUT.

Suppose initially v.state is OUT. Then the only rules that v can execute are 1, 4, 4′

and 4′′. According the rule that v executes, there are four cases.

(i) v executes rule 1. Then by Lemma 3.3, l∗ = 1.

(ii) v executes rule 4. After the execution, v.state remains OUT. Thus the next rules

that v can execute are 1, 4, 4′ and 4′′. We have four sub-cases.

12



(ii-1) If the next rule executed by v is rule 1, then by Lemma 3.3, l∗ = 2.

(ii-2) It is impossible that the next rule executed by v is still rule 4.

(ii-3) We claim that it is also impossible that the next rule executed by v is rule

4′. The reason is as follows. Before v executes rule 4 for the first time,

v.inNeighbor is false; therefore, w.state is OUT for all w ∈ N(v). For v

to execute rule 4′, one of the neighbors of v (say, w) has to change its state

from OUT to IN. But w can change its state from OUT to IN only by executing

rule 1. By Lemma 3.5, the only rule that v can execute is rule 4′′.

(ii-4) Before v executes rule 4, v.inNeighbor is false and therefore w.state is OUT

for all w ∈ N(v). Suppose that the next rule executed by v is rule 4′′. For v to

execute rule 4′′, at least two of the neighbors of v have to change their state

from OUT to IN. Let w be one of such neighbors. Note that w can change its

state from OUT to IN only by executing rule 1. By Lemma 3.5, we know that

the only rule that v can execute is rule 4′′ and after v executes rule 4′′, v will

not execute any other rules. Thus l∗ = 2.

(iii) v executes rule 4′. After the execution, v.state remains OUT. Thus the next rules

that v can execute are 1, 4, 4′ and 4′′. We have four sub-cases.

(iii-1) If the next rule executed by v is rule 1, then by Lemma 3.3, l∗ = 2.

(iii-2) If the next rule executed by v is rule 4, then by (ii), we know that the longest

move sequence is < 4′, 4, 1 > or < 4′, 4, 4′′ >; thus l∗ = 3.

(iii-3) We claim that it is impossible that the next rule executed by v is still rule

4′. The reason is as follows. Before v executes rule 4′ for the first time, v

has a unique in-neighbor w and v.dependent is set to w after the execution

of rule 4′. If the next rule executed by v is still rule 4′, then we must have

v.dependent not equal to the unique in-neighbor of v. Thus w has to change
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its state from IN to OUT and another neighbor (say, x) of v has to change its

state from OUT to IN. Moreover, x must become the unique in-neighbor of v

and x.dependent ̸= 0 must occur so that the next rule executed by v can be

rule 4′. Note that x can change its state from OUT to IN only by executing

rule 1. However, for x to execute rule 1, x.dependent = 0 must occur; this

contradicts with the assumption that x.dependent ̸= 0 must occur. Thus it is

impossible that the next rule executed by v is still rule 4′.

(iii-4) Before v executes rule 4′′, v has a unique in-neighbor. Suppose that the

next rule executed by v is rule 4′′. For v to execute rule 4′′, at least one of

the neighbors of v has to change its state from OUT to IN. Let w be such a

neighbor. Note that w can change its state from OUT to IN only by executing

rule 1. By Lemma 3.5, we know that the only rule that v can execute is rule 4′′

and after v executes rule 4′′, v will not execute any other rules. Thus l∗ = 2.

(iv) v executes rule 4′′. After the execution, v.state remains OUT. Thus the next rules

that v can execute are 1, 4, 4′ and 4′′. Again, we have four sub-cases.

(iv-1) If the next rule executed by v is rule 1, then by Lemma 3.3, l∗ = 2.

(iv-2) If the next rule executed by v is rule 4, then by (ii), we know that the longest

move sequence is < 4′′, 4, 1 > or < 4′′, 4, 4′′ >; thus l∗ = 3.

(iv-3) If the next rule executed by v is rule 4′, then by (iii), we know that the

longest move sequence is < 4′′, 4′, 4, 1 > or < 4′′, 4′, 4, 4′′ >; thus l∗ = 4.

(iv-4) It is impossible that the next rule executed by v is still rule 4′′.

Now, suppose initially v.state is IN. Then the only rules that v can execute are 2, 2′,

3 and 3′. According the rule that v executes, there are four cases.

(a) v executes rule 2. After the execution, v.state becomes OUT. Thus the next rules
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that v can execute are 1, 4, 4′ and 4′′. We have four sub-cases.

(a-1) If the next rule executed by v is rule 1, then by Lemma 3.3, l∗ = 2.

(a-2) If the next rule executed by v is rule 4, then by the above (ii), the longest

move sequence is < 2, 4, 1 > or < 2, 4, 4′′ >; thus l∗ = 3.

(a-3) We claim that it is impossible that the next rule executed by v is rule 4′.

The reason is as follows. Before v executes rule 2, v has a unique in-neighbor

w and v.dependent is set to w after the execution of rule 2. If the next rule

executed by v is rule 4′, then we must have v.dependent not equal to the unique

in-neighbor of v. Thus w has to change its state from IN to OUT and another

neighbor (say, x) of v has to change its state from OUT to IN. Moreover, x

must become the unique in-neighbor of v and x.dependent ̸= 0 must occur so

that the next rule executed by v can be rule 4′. Note that x can change its

state from OUT to IN only by executing rule 1. However, for x to execute

rule 1, x.dependent = 0 must occur; this contradicts with the assumption that

x.dependent ̸= 0 must occur. Thus it is impossible that the next rule executed

by v is rule 4′.

(a-4) Before v executes rule 4′′, v has a unique in-neighbor. Suppose that the

next rule executed by v is rule 4′′. For v to execute rule 4′′, at least one of

the neighbors of v has to change its state from OUT to IN. Let w be such a

neighbor. Note that w can change its state from OUT to IN only by executing

rule 1. By Lemma 3.5, we know that the only rule that v can execute is rule 4′′

and after v executes rule 4′′, v will not execute any other rules. Thus l∗ = 2.

(b) v executes rule 2′. After the execution, v.state becomes OUT. Thus the next rules

that v can execute are 1, 4, 4′ and 4′′. We have four sub-cases.

(b-1) If the next rule executed by v is rule 1, then by Lemma 3.3, l∗ = 2.
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(b-2) If the next rule executed by v is rule 4, then by (ii), we know that the longest

move sequence is < 2′, 4, 1 > or < 2′, 4, 4′′ >; thus l∗ = 3.

(b-3) If the next rule executed by v is rule 4′, then by (iii), we know that the

longest move sequence is < 2′, 4′, 4, 1 > or < 2′, 4′, 4, 4′′ >; thus l∗ = 4.

(b-4) It is impossible that the next rule executed by v is rule 4′′.

(c) v executes rule 3. By Lemma 3.4, l∗ = 1.

(d) v executes rule 3′. After the execution, v.state remains IN. Thus the next rules that

v can execute are rules 2, 2′, 3 and 3′. We have four sub-cases.

(d-1) If the next rule executed by v is rule 2, then by (a), the longest move sequence

is < 3′, 2, 4, 1 > or < 3′, 2, 4, 4′′ >; thus l∗ = 4.

(d-2) We claim that it is impossible that the next rule executed by v is still rule

2′. The reason is as follows. After the execution of rule 3′, if v executes rule

2′, then v must have a neighbor (say, w) such that w.state is changed from

OUT to IN. Notice that rules 4, 4′, and 4′′ will not change the state of a node.

Thus w.state can be changed from OUT to IN only by the execution of rule 1.

This is impossible; since if w can execute rule 1, then w.inNeighbor has to be

false; however, w already has a neighbor v such that v.state is IN. Therefore

w cannot execute rule 1. Consequently, v cannot execute rules 2′.

(d-3) If the next rule executed by v is rule 3, then by (c), we know, l∗ = 2.

(d-4) We claim that it is impossible that the next rule executed by v is still rule

3′. The reason is as follows. Before v executes rule 3′ for the first time, v has a

unique in-neighbor w and v.dependent is set to w after the execution of rule 3′.

If the next rule executed by v is still rule 3′, then we must have v.dependent

not equal to the unique in-neighbor of v. Thus w has to change its state from
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IN to OUT and another neighbor (say, x) of v has to change its state from

OUT to IN. Notice that rules 4, 4′, and 4′′ will not change the state of x. Thus

x.state can be changed from OUT to IN only by the execution of rule 1. This

is impossible; since if x can execute rule 1, then x.inNeighbor has to be false

but x already has a neighbor v such that v.state is IN. Therefore x cannot

execute rule 1. Thus it is impossible that the next rule executed by v is still

rule 3′.

From the above, each node v takes at most 4 moves under a distributed scheduler and

we have this theorem.

We now give an example of our algorithm; see Figure 2 for an illustration.

In Figure 2, a node colored blue means that this node has state = IN. Also, each

node has two tags associated with it: r-k and dep = i, where r-k denotes the rule that is

executed by this node and dep = i means that the value of dependent is i. See Figure 2(a).

Initially nodes 1, 2, and 4 have state = IN. However, {1, 2, 4} does not form a minimal

dominating set. Moreover, the value of dependent of nodes 2, 4, 5 and 6 are incorrect. In

Figure 2(b), we see that node 1 executes rule 2, node 2 executes rule 2′, node 5 executes

rule 4′, and node 6 executes rule 4. In Figure 2(c), we see that nodes 1, 2, 3, 4, and 6

execute rules 4, 4′, 4′, 3, and 1, respectively. In Figure 2(d), we see that nodes 1 and 5

execute rules 1 and 4′′, respectively. In Figure 2(e), we see that after node 2 executes rule

4′′, no node will be enabled. Finally nodes 1, 4 and 6 have state = IN and in total 12

moves are executed. It is clear that {1, 4, 6} is a minimal dominating set.
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Figure 2: An example of our algorithm.
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4 Concluding remarks

In this thesis, we propose an efficient self-stabilizing algorithm for solving the minimal

dominating set (MDS) problem. This algorithm is a 4n-move algorithm and it outperforms

the best known algorithm, which is a 5n-move algorithm. We are curious about whether

there is still a better algorithm than the proposed one.

Before ending this thesis, we propose an example such that our algorithm takes 4n−1

moves to reach a legitimate configuration. Consider a distributed system with 3 nodes in

which node 1 and node 2 are adjacent to node 3; see Figure 3. Note that in this figure, dep

is the abbreviation of dependent. Note that a node colored blue means that its state =

IN, and a node colored white means that its state = OUT.

Assume that the id’s of these three nodes are 1, 2, and 3. The executed rules of each

node for every round are shown in Table. 2. Initially all nodes have state = IN and have

dependent being null. The scheduler selects nodes 1 and 2 to execute rule 3′ in the first

round, then the value of each of their dependent becomes 3. In the second round, the

scheduler selects nodes 1 and 2 to execute rule 2 and it selects node 3 to execute rule 2′

(their state become OUT). In the third round, the scheduler selects all of the nodes to

execute rule 4; therefore the value of dependent is 0. Finally, the scheduler selects nodes 1

and 2 for executing rule 1 in the fourth round (their states become IN), and selects node

3 executing rule 4′′. The above progress is depicted in Figure 3.

In fact, we can generalize this case. Consider a distributed system with n nodes in

which node 1, node 2,..., and node n− 1 are adjacent to node n; the initial state variable,

initial dependent variable, and the action of nodes n is the same as these of node 3 in the

case of 3 nodes. The initial state variable, initial dependent variable, and the action of

the other nodes is the same as these of node 1 in the case of 3 nodes.
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Table 2: The executed rules in every rounds.

round 1 round 2 round 3 round 4 round 5

node 1 3′ 2 4 1

node 2 3′ 2 4 1

node 3 2′ 4 4′′

1

3

2

dep  !

dep  !dep  !

(a) the initial situation.

1

3

2

dep  !

3dep  3dep  

(b) the situation after the 1st round.

1

3

2

dep  !

3dep  3dep  

(c) the situation after the 2nd round.

1

3

2

0dep  

0dep  0dep  

(d) the situation after the 3rd round.

1

3

2

0dep  

0dep  0dep  

(e) the situation after the 4th round.

1

3

2

dep  !

0dep  0dep  

(f) the situation after the 5th round.

Figure 3: An example such that our algorithm takes 4n − 1 moves to reach a legitimate
configuration.
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