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An efficient self-stabilizing algorithm for the minimal
dominating set problem under a distributed scheduler

Student: Shihyu Tsai Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Abstract

This thesis considers designing efficient self-stabilizing algorithms for solving the
minimal dominating set (MDS) problem. Let n.denote the number of nodes in a
distributed system. A self-stabilizing algorithm-is said to be a t-move algorithm
if when it is used, a given distributed system takes-at most ¢ moves to reach a
legitimate configuration. In 2007, Turau proposed a 9n-move algorithm for the MDS
problem under a distributed scheduler. Later,in 2008, Goddard et al. proposed a
5n-move algorithm for the MDS problem under a distributed scheduler. It is indeed
a challenge to develop an algorithm that takes less than 5bn moves under a distributed
scheduler. The purpose of this thesisis to propose such an algorithm. In particular,
we propose a 4n-move algorithm under a distributed scheduler; an example such
that our algorithm takes 4n — 1 moves to reach a legitimate configuration has also
been proposed.

Keywords: Self-stabilizing algorithms; Fault tolerance; Distributed computing; Graph

algorithms; Domination.
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1 Introduction

Self-stabilization is a fault-tolerance approach for distributed systems and was intro-
duced by Dijkstra in 1974 in [1]. Intuitively, a self-stabilizing system guarantees to reach
a correct configuration, in a finite time, regardless of its initial configuration. Here, the
configuration of a distributed system (also called the state) consists of the state of ev-
ery process. More precisely, a distributed system is self-stabilizing if it has the following
two properties: convergence property and closure property. The convergence property is:
starting from an illegitimate (incorrect) configuration, the distributed system must reach
a legitimate (correct) configuration in a finite time. The closure property is: after reaching
a legitimate configuration, the system must remain in the set of legitimate configurations.
Hence a self-stabilizing system can recover from any transient fault without any external
intervention.

In this thesis, we will consider a distributed system whose topology is represented by
an undirected graph G = (V, E)ywhere the nodes represent the processes and the edges
represent the interconnections between the-processes. Throughout this paper, we use n
to denote the number of nodes in the graph G. Let v be a node. A node u is a neighbor
of v if they are adjacent. We use N(v) to denote the set of neighbors of v. Note that we
use the terms node and process interchangeably.

There are two common models of interprocess communication in distributed systems:
the message-passing model and the shared-memory model. In the message-passing model,
the processes exchange messages with one another in order to transfer information. In
the shared-memory model, processes use the shared memory create and the shared memory
attach system calls to create and to gain access to regions of the memory owned by other
processes. Do notice that self-stabilizing algorithms usually use the shared-memory model,

where neighboring processes may communicate via common variables or registers. Since



the operating system normally tries to prevent one process from accessing the memory
of another process, the shared memory model requires that two or more processes agree
to remove this restriction so that they can exchange information by reading and writing
data in the shared areas. The processes are also responsible for ensuring that they will
not write to the same location simultaneously.

The self-stabilizing program of each node consists of a collection of rules of the form:
(precondition) — (statement).

The precondition of a rule is a Boolean expression formed by state of the node and the
states of its neighboring nodes. The statement of a rule will only update the state of
the node. The execution of a statement is called a move. A rule is called enabled if
its precondition evaluates to be true.~A node is-called enabled (also called privileged)
if at least one of its rules enabled. We assume that rules are atomically execute, in
other words, the evaluation of a precondition and the move are performed in one atomic
step. Self-stabilizing systems operate in rounds: In-every round, first, all nodes check the
preconditions of their rules. An enabled node makes‘its move means that it is brought into
a new state determined by its old state and the states of its neighboring nodes. Notice
that slightly different definitions for what is a round are given in the literature. In this
thesis, a round is defined to be the minimum time period in which every node has been
scheduled to execute a rule at least once.

In distributed systems, each node performs a sequence of atomic steps, where an
atomic step is the “largest” step guaranteed to be executed uninterruptedly; see [3]. An
algorithm of a distributed system is said to use composite atomicity if some atomic step
contains (at least) a read operation and a write operation and to use read/write atomicity
if each atomic step contains either a single read operation or a single write operation but
not both.

There are various execution models for developing self-stabilizing algorithms and these



models are encapsulated within the notion of a scheduler (also called daemon). Common
schedulers are central schedulers, synchronous schedulers, and distributed schedulers. Un-
der a central scheduler, only one enabled node can execute an atomic step at one time.
Under a synchronous scheduler (also called fully distributed), all enabled nodes will ex-
ecute an atomic step at the same time. Under a distributed scheduler, a subset of the
enabled nodes execute an atomic step at the same time. The above schedulers are the
most popular schedulers; variants of them have also been proposed.

In a distributed system, an execution can be viewed as a sequence of moves (i.e.,
atomic steps) made by nodes. At any instance in time, a number of moves at nodes
are possible but usually only a subset of these are made due to lack of any synchrony.
An enabled node can be disabled either by a move or by moves made by the node itself
or the neighboring nodes. Notice that although it is'easier to prove stabilization for
algorithms working under central schedulers; synchronous and distributed schedulers are
more suitable for practical implementations.

The stabilization time is the-maximum amount of time it takes for the system to
reach a legitimate configuration. The stabilization time is often used to serve as the
time complexity of a self-stabilizing algorithm and is in terms of moves or rounds. For
a synchronous scheduler, all enabled nodes make their moves in one round; however, for
a distributed scheduler, only a selected subset of enabled nodes make their moves in one
round. Thus when stabilization time is considered, the number of moves is in general an
upper bound on the number of rounds; see Table 1.

Let G = (V, E) be a given graph (distributed system). An independent set S of G is a
subset of V' such that each pair of nodes in S are not adjacent. S is a maximal independent
set of G if for any v ¢ S, the set S U {v} is not an independent set of G. A dominating
set S of G is a subset of V such that each v € V'\ S has at least one neighbor in S. S

is a minimal dominating set of G if for any v € 5, the set S\ {v} is not a dominating



set of G. For convenience, we use MIS and MDS to denote maximal independent set and
minimal dominating set, respectively. The MDS (resp., MIS) problem is the problem of
finding an MDS (resp. MIS) for a given graph. Both problems have attracted a lot of
research interests. In a distributed system, an MDS is maintained to optimize the number
and the location of resource centers [7]. Notice that an MDS may not be an MIS, but
an MIS is an MDS. A self-stabilizing MDS algorithm based on an MIS algorithm is not
a suitable solution since it is desirable that a self-stabilizing MDS algorithm initialized
with an MDS does not make any move.

A good survey for the self-stabilizing algorithms is [6]. For convenience, if the stabi-
lization time of a self-stabilizing algorithm is at most ¢ moves (resp., rounds), then we
say it is a t-move (resp., t-round) algorithm. The followings are self-stabilizing algorithms
for the MDS problem. In 2003, Hedetniemi et-al: proposed a (2n + 1)n-move algorithm
under central scheduler [8]. In.2003, Xu et al. ~proposed a 4n-round algorithm under
synchronous scheduler [10]. In"2007, Turau proposed a 9n-move algorithm under a dis-
tributed scheduler [9]. Later, in 2008, Goddard et-al. proposed a (4n+1)-round algorithm
under synchronous scheduler; the same algorithm becomes a 5n-move algorithm if under
a distributed scheduler [5].

It is a challenge to develop an algorithm that takes less than 5n moves under a dis-
tributed scheduler. The purpose of this thesis is to propose such an algorithm. In par-
ticular, we propose a 4n-move algorithm under a distributed scheduler; an example such
that our algorithm takes 4n — 1 moves to reach a legitimate configuration has also been
proposed. Our algorithm uses composite atomicity and it requires the local distinct id
property, that is, two neighboring nodes must have distinct id’s. We now summarize
known results in Table 1 (in this table, “ano” means “the system is anonymous”, where
a system is anonymous if the nodes do not have any id).

This thesis is organized as follows. Section 2 gives the related works. Section 3 contains



Table 1: Self-stabilizing minimal dominating set algorithms.

reference year ano scheduler atomicity  stabilization time
Hedetniemi et al. [8] 2003 yes central composite < (2n + 1)n moves
Xu et al. [10] 2003 no  synchronous composite < 4n rounds
Turau [9] 2007 no  distributed  composite < 9n moves
Goddard et al. [5] 2008 no  synchronous composite < (4n + 1) rounds
Goddard et al. [5] 2008 no  distributed  composite < 5n moves

this thesis 2011 no  distributed composite < 4n moves

our main result. The concluding remarks are in the last section.

2 Related works

A good survey for self-stabilizing algorithms for-DS; MDS, and other related problems
can be found in [6]. In this section; we-will briefly review the algorithms in [9] and [5].

The algorithm proposed by-Turau in [9] in 2007 is the first self-stabilizing algorithm
for solving the MDS problem that stabilizesin-linear time under under a distributed
scheduler. Turau’s algorithm is a 9n-move algorithm and it makes the assumption that
every node has a globally unique id. In the algorithm, each node has a state variable with
three choices: OUT, WAIT, and IN. A node has the state OUT (resp., WAIT and resp.,
IN) if it has a small (resp., median and resp., high) possibility of being a member of the
MIS. Let OUT, WAIT, and IN also denote the set of nodes with state OUT, WAIT, and
IN, respectively.

Turau first proposed a self-stabilizing algorithm for solving the MIS problem and then,
extended the algorithm to solve the MDS problem. The algorithm for solving the MIS
problem operates according the the following rules: (r-1) a node in OUT will move to
WAIT if none of its neighbors is in IN; (r-2) a node in WAIT will move to OUT if it has
a neighbor in IN; (r-3) a node in WAIT will move to IN if none of its neighbors is in IN

and none of its neighbors is in WAIT and has a lower id; (r-4) a node in IN will move
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to OUT if it has at least one neighbor in IN. Turau extended the MIS algorithm to solve
the MDS problem as follows. Each node has an additional variable, called pointer, and
will adjust its pointer as follows: (1) a node that will move from WAIT to IN changes its
pointer to null; (2) a node in IN adjusts its pointer to null; (3) a node in OUT that has
a unique in-neighbor (say, w); (4) a node in OUT that has at least two neighbors in IN
adjusts its pointer to null. Besides, rule (r-4) is modified as: a node in IN will move to
OUT if it has at least one neighbor in IN and it has no neighbor pointing to it.

In [5], Goddard et al. proposed a 5n-move algorithm for the MDS problem. They
assume nodes having locally distinct id’s and assume a distributed scheduler. Each node
has a Boolean variable indicating whether it belongs to the set IN and an integer variable
indicating the number of neighbors that are in the set IN. A node is allowed to join the
set IN if it has no neighbors in IN. its integerwariable'is 0, and its id is the lowest one
among these neighbors with integer variable 0 and itself.- On the other hand, a node is
allowed to leave the set IN if it"has no neighbors in IN and every neighbor which is not

in IN has more than one neighbors in IN.

3 Owur main result

The purpose of this section is to propose our main result, a self-stabilizing 4n-move

algorithm for the MDS problem using a distributed scheduler.

3.1 Our algorithm

In our algorithm, each node has a local distinct (within its neighborhood) id, a variable
called state, and a variable called dependent. Let v be a node. The value of v.state is

either IN or OUT, where IN (resp., OUT) means that v is (resp., is not) in the MDS. We



will also use IN and OUT to denote the set of nodes with state IN and OUT, respectively.
The value of v.dependent is either 0 or the id of a neighbor of v or A. In particular, if
v has no neighbor in IN, then v.dependent is set to 0; if v has a unique neighbor in IN,
then v.dependent is set to the id of this neighbor; if v has more than one neighbor in IN,
then v.dependent is set to A.

Let v and w be two nodes. For convenience, we use v ~ w to denote “v is adjacent
to w”. If v ~ w and v.state = IN, then v is called an in-neighbor of w; on the other
hand, if v ~ w and v.state = OUT, then v is called a out-neighbor of w. For each node
v, we also define Boolean variables v.inNeighbor, v.independentNeighbor WithLowerID,
v.dependentOutNeighbors, and v.more ThanOnelnNeighbor as follows (note that = denotes

“is defined as” and A denotes “and”).
e v.inNeighbor = v has an in=neighbor;
e v.independentNeighbor WithLowerlD = dw ~ v such-that w.dependent =0 N\ w.id <
v.id,
e v.dependentOutNeighbors = 3 an-out-neighborw of v such that w.dependent = v;

e v.moreThanOnelnNeighbor = v has more than one in-neighbor.

For each node v, we also an additional predicate
e v.uniquelnNeighbor(w) = v has a unique in-neighbor and it is w.

Our self-stabilizing algorithm uses the following rules. In these rules, — denotes “not”
and := denotes “is assigned the value”. The state diagram of our algorithm is shown in

Figure 1.

1. state = OUT A = inNeighbor A dependent = 0 A = independent N eighborWith Lowerld

— state := IN;



2. state = IN A wuniqueInNeighbor(w) A — dependentOutN eighbors
— state := OUT; dependent := w;

2'. state = IN A moreThanOneInNeighbor A — dependentOutN eighbors
— state := OUT; dependent := A;

3. state = IN A —inNeighbor N dependent # 0
— dependent := 0;

3. state = IN A uniqueInNeighbor(w) A dependent # w
— dependent := w;

4. state = OUT A — inNeighbor A dependent # 0
— dependent = 0;

4'. state = OUT A uniquelnNeighbor(w)../\ dependent # w A w.dependent # 0
— dependent := w;

4", state = OUT A moreThanOnelnNeighbor N dependent # A

— dependent := A,

RULE 4
(ensure dependent = 0) RULE 3
RULE 4°

. RULE 1 (ensure dependent = 0)
(ensure dependent = w

e

RUL
(ensure dependent = A)

RULE 2

ensure dependent = w)

RULE 3’

(ensure dependent = w)

(ensure dependent = A)

Figure 1: The state diagram of our algorithm.

The value of dependent will be set according to the rule executed. As an example, if

rule 2 is executed, then the value of dependent is set to w, which equals to the value of

8



the parameter w stored in uniquelnNeighbor.

3.2 Correction and convergence

To prove the correctness of our algorithm, we first prove that when each node has no

enabled rules, the set of nodes with state IN form a minimal dominating set.

Theorem 3.1. When each node has no enabled rules, the set
D = {v | v.state = IN}
1s a minimal dominating set of G.

Proof. Suppose to the contradiction that D is net. a minimal dominating set of G. Then
D is not a dominating set or D is.a dominating set but not a minimal one. First consider
the case that D is not a dominating set.- In this case, there must exist a node ¢ D that

has no in-neighbors. Thus
S ={v ¢& D|w.state £ IN Ywe N(v)} # 0.

Since rule 4 is not enabled, we have v.dependent = 0 for all v € S. Choose vy from S
such that vy is the node with the smallest id in S; since S # 0, vy exists. Then v satisfies
all the constraints of rule 1; rule 1 can be enabled. This contradicts with the assumption
that each node has no enabled rules.

Now consider the case that D is a dominating set but not a minimal one. Then there
exists a node v € D such that v has in-neighbors and every out-neighbor w of v has at least
two in-neighbors. For each such w, w.state is OUT and w.moreThanOnelnN eighbor is
true. Since Rule 4” is not enabled, we must have w.dependent = A. But, for node v,
either rule 2 or rule 2’ could be enabled; if v has a unique in-neighbor, then rule 2 could
be enabled and if v has more than one in-neighbor, then rule 2’ could be enabled. Again,

this contradicts with the assumption that every node has no enabled rules. [



We now use Lemmas 3.2, 3.3, 3.4, 3.5 and Theorem 3.6 to prove that our algorithm

stabilizes after at most 4n moves under a distributed scheduler.

Lemma 3.2. No two neighboring nodes will execute rule 1 at the same time.

Proof. This lemma follows from the locally distinct id property. ]

Lemma 3.3. After a node v executes rule 1, v will not execute any other rules.

Proof. Since v executes rule 1, v has no in-neighbors and v.dependent = 0 before it
executes rule 1. Since v has no in-neighbors, for all w € N(v), we have w.state is OUT
before v executes rule 1. By Lemma 3.2, for all w € N(v), w.state remains OUT after v
executes rule 1. Thus after v executes rule 1, v.state becomes IN and the only rules that
v can execute are: rules 2, 2/, 3, and 3".--We have tworclaims.

Claim 1: v cannot execute rules 2, 2.-and 3'.

Proof of Claim 1. Recall that v has no in-neighbors before it executes rule 1. Thus for all
w € N(v), we have w.state is OUT before v-executes rule 1. After the execution of rule
1, if v executes rule 2 or 2’ or 3, then.v must have aneighbor (say, w) such that w.state
is changed from OUT to IN. Notice that rules 4, 4’, and 4” will not change the state of
a node. Thus w.state can be changed from OUT to IN only by the execution of rule 1.
This is impossible; since if w can execute rule 1, then w.inNeitghbor has to be false but
w already has a neighbor v such that v.state is IN. Therefore w cannot execute rule 1.

Consequently, v cannot execute rules 2, 2', and 3'. [

Claim 2: v cannot execute rule 3.
Proof of Claim 2. Since v executes rule 1, v.dependent is 0. After the execution of rule
1, v.state becomes IN. For v to execute rule 3, v.dependent cannot be 0. Consequently, v

cannot execute rule 3. []

By Claims 1 and 2, we complete this proof. [

10



Lemma 3.4. After a node v executes rule 3, v will not execute any other rules.

Proof. Since v executes rule 3, v has no in-neighbors before it executes rule 3. Since v
has no in-neighbors, for all w € N(v), we have w.state is OUT before v executes rule 3.
Since v is a neighbor of w and v.state is IN, w.inNeighbor is true and consequently w
cannot execute rules 1. Thus for all w € N(v), w.state remains OUT after v executes rule
3. Thus after v executes rule 3, v.state remains IN and the only rules that v can execute
are: rules 2, 2', 3, and 3. We have two claims.

Claim 1: v cannot execute rules 2, 2', and 3'.

Proof of Claim 1. Recall that v has no in-neighbors before it executes rule 3. Thus for all
w € N(v), we have w.state is OUT before v executes rule 3. After the execution of rule
3, if v executes rule 2 or 2 or 3', then v must have @ neighbor (say, w) such that w.state
is changed from OUT to IN. Notice thatirules 4, 4/, and. 4” will not change the state of
a node. Thus w.state can be changed from OUT to IN only by the execution of rule 1.
This is impossible; since if w can exegute rule 1, then w.inNeighbor has to be false but
w already has a neighbor v suchthat v.state is IN./Therefore w cannot execute rule 1.

Consequently, v cannot execute rules 2, 2, and 3'. ]

Claim 2: v cannot execute rule 3.
Proof of Claim 2. After v executes rule 3, v.dependent is 0. For v to execute rule 3 next,

v.dependent cannot be 0. Consequently, v cannot execute rule 3. [
By Claims 1 and 2, we complete this proof. ]
Lemma 3.5. Suppose v.state is OUT and a neighbor w of v executes rule 1. Then the

only rule that v can execute is rule 4" and after v executes rule 4", v will not execute any

other rules.

Proof. Since w executes rule 1, w.inNeighbor is false, w.dependent is 0. By Lemma 3.3,

after w executes rule 1, w will not execute any other rules. Thus after w executes rule 1,

11



w.state remains to be IN. Since w is a neighbor of v and w.state is IN, v.inNeighbor is
true and consequently v cannot execute rules 1 and 4. If w is the unique in-neighbor of
v, then by the fact that w.dependent is 0, v cannot execute rule 4. Hence the only rule
that v can execute is rule 4”. Suppose that v executes rule 4”. Then v.dependent is set

to A; as a result, v will not execute any other rules. [

Theorem 3.6. Our algorithm is a self-stabilizing algorithm for the minimal dominating
set problem under a distributed scheduler. Furthermore, it stabilizes after at most 4n

moves.

Proof. By Theorem 3.1, our algorithm is a self-stabilizing algorithm for the minimal
dominating set problem. It remains to.prove that our algorithm stabilizes after at most
4n moves under a distributed scheduler. We will prove this by showing that each node v
takes at most 4 moves under a distributed scheduler.

Let Z ={1,2,2/,3,3,4,4',4"}, i.e., T is the Set containing all the indices of the rules of

our algorithm. Let k be a positive integer and let ry, ro4 /.., 7 € Z (note that ri,79,. .., 7%
are not necessarily distinct). The séquenee < 1179, ., 1, > is called a move sequence of
v if v can execute rule r{, then execute rule ry, ..., and then rule r,. The number k is

called the length of the move sequence. A move sequence of v is a longest move sequence

if its length is the largest among all the move sequences of v. Let [* denote the length of

a longest move sequence of v for convenience. Initially, v.state is either IN or OUT.
Suppose initially v.state is OUT. Then the only rules that v can execute are 1, 4, 4/

and 4”. According the rule that v executes, there are four cases.
(i) v executes rule 1. Then by Lemma 3.3, [* = 1.

(ii) v executes rule 4. After the execution, v.state remains OUT. Thus the next rules

that v can execute are 1, 4, 4 and 4”. We have four sub-cases.

12



(ii-1) If the next rule executed by v is rule 1, then by Lemma 3.3, [* = 2.
(ii-2) Tt is impossible that the next rule executed by v is still rule 4.

(ii-3) We claim that it is also impossible that the next rule executed by v is rule
4. The reason is as follows. Before v executes rule 4 for the first time,
vinNeighbor is false; therefore, w.state is OUT for all w € N(v). For v
to execute rule 4'; one of the neighbors of v (say, w) has to change its state
from OUT to IN. But w can change its state from OUT to IN only by executing

rule 1. By Lemma 3.5, the only rule that v can execute is rule 4”.

(ii-4) Before v executes rule 4, v.inNeighbor is false and therefore w.state is OUT
for all w € N(v). Suppose that the next rule executed by v is rule 4”. For v to
execute rule 47, at least ¢two of the neighbors of v have to change their state
from OUT to IN. Letra be one of such neighbors. Note that w can change its
state from OUT to IN only by executing rule 1. By Lemma 3.5, we know that
the only rule that v can execute is rule 4” and after v executes rule 4”, v will

not execute any other rules. Thus [* = 2:

(iii) v executes rule 4’. After the execution, v.state remains OUT. Thus the next rules

that v can execute are 1, 4, 4 and 4”. We have four sub-cases.

(iii-1) If the next rule executed by v is rule 1, then by Lemma 3.3, [* = 2.

(iii-2) If the next rule executed by v is rule 4, then by (ii), we know that the longest

move sequence is < 4',4,1 > or < 4',4,4” >; thus [* = 3.

(iii-3) We claim that it is impossible that the next rule executed by v is still rule
4'. The reason is as follows. Before v executes rule 4’ for the first time, v
has a unique in-neighbor w and v.dependent is set to w after the execution
of rule 4'. If the next rule executed by v is still rule 4’, then we must have

v.dependent not equal to the unique in-neighbor of v. Thus w has to change
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its state from IN to OUT and another neighbor (say, z) of v has to change its
state from OUT to IN. Moreover, x must become the unique in-neighbor of v
and x.dependent # 0 must occur so that the next rule executed by v can be
rule 4. Note that x can change its state from OUT to IN only by executing
rule 1. However, for x to execute rule 1, z.dependent = 0 must occur; this
contradicts with the assumption that x.dependent # 0 must occur. Thus it is

impossible that the next rule executed by v is still rule 4'.

(iii-4) Before v executes rule 4”7, v has a unique in-neighbor. Suppose that the
next rule executed by v is rule 4”. For v to execute rule 4”, at least one of
the neighbors of v has to change its state from OUT to IN. Let w be such a
neighbor. Note that w can change-its state from OUT to IN only by executing
rule 1. By Lemma 3.55we know that the only rule that v can execute is rule 4”

and after v executes ruled”; v will not execute any other rules. Thus [* = 2.

(iv) v executes rule 4”. After the execution; vistate remains OUT. Thus the next rules
that v can execute are 1, 4, 4 and 4”. Againy we have four sub-cases.
(iv-1) If the next rule executed by v is rule 1, then by Lemma 3.3, I* = 2.

(iv-2) If the next rule executed by v is rule 4, then by (ii), we know that the longest

move sequence is < 4”7, 4,1 > or < 4”,4,4" >; thus [* = 3.

(iv-3) If the next rule executed by v is rule 4’, then by (iii), we know that the

longest move sequence is < 4”7, 4. 4,1 > or < 4”,4’,4,4” >; thus [* = 4.

(iv-4) It is impossible that the next rule executed by v is still rule 4”.

Now, suppose initially v.state is IN. Then the only rules that v can execute are 2, 2/,

3 and 3'. According the rule that v executes, there are four cases.

(a) v executes rule 2. After the execution, v.state becomes OUT. Thus the next rules
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that v can execute are 1, 4, 4’ and 4”. We have four sub-cases.

(a-1) If the next rule executed by v is rule 1, then by Lemma 3.3, [* = 2.

(a-2) If the next rule executed by v is rule 4, then by the above (ii), the longest

move sequence is < 2,4,1 > or < 2,4,4” >; thus [* = 3.

(a-3) We claim that it is impossible that the next rule executed by v is rule 4’.
The reason is as follows. Before v executes rule 2, v has a unique in-neighbor
w and v.dependent is set to w after the execution of rule 2. If the next rule
executed by v is rule 4, then we must have v.dependent not equal to the unique
in-neighbor of v. Thus w has to change its state from IN to OUT and another
neighbor (say, x) of v has to_change its state from OUT to IN. Moreover, x
must become the unique in-neighbor of w and x.dependent # 0 must occur so
that the next rule executed by v can be rule 4’. Note that x can change its
state from OUT to“IN only by executing rule'1. However, for x to execute
rule 1, x.dependent =0 must occur; this contradicts with the assumption that
x.dependent # 0 must oceur.. Thus it isd4mpossible that the next rule executed
by v is rule 4'.

(a-4) Before v executes rule 4”, v has a unique in-neighbor. Suppose that the
next rule executed by v is rule 4”. For v to execute rule 4”, at least one of
the neighbors of v has to change its state from OUT to IN. Let w be such a
neighbor. Note that w can change its state from OUT to IN only by executing
rule 1. By Lemma 3.5, we know that the only rule that v can execute is rule 4”

and after v executes rule 4”, v will not execute any other rules. Thus [* = 2.

(b) v executes rule 2'. After the execution, v.state becomes OUT. Thus the next rules

that v can execute are 1, 4, 4 and 4”. We have four sub-cases.

(b-1) If the next rule executed by v is rule 1, then by Lemma 3.3, [* = 2.
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(b-2) If the next rule executed by v is rule 4, then by (ii), we know that the longest

move sequence is < 2',4,1 > or < 2/, 4,4” >; thus [* = 3.

(b-3) If the next rule executed by v is rule 4’, then by (iii), we know that the

longest move sequence is < 2/,4’.4,1 > or < 2/,4',4,4"” >; thus [* = 4.

(b-4) It is impossible that the next rule executed by v is rule 4”.
(c) v executes rule 3. By Lemma 3.4, [* = 1.

(d) v executes rule 3'. After the execution, v.state remains IN. Thus the next rules that

v can execute are rules 2, 2’, 3 and 3’. We have four sub-cases.

(d-1) If the next rule executed by v is rule 2, then by (a), the longest move sequence

is <3,2,4,1 > or < 3.2,4,4" >; thus I* =4.

(d-2) We claim that it igimpossible that the next rule executed by v is still rule
2'. The reason is as-follows. After the execution of rule 3, if v executes rule
2’ then v must have a neighbor (say, w) such that w.state is changed from
OUT to IN. Notice that rules4, 4’, and 4" will not change the state of a node.
Thus w.state can be changed from OUT to IN only by the execution of rule 1.
This is impossible; since if w can execute rule 1, then w.inNeighbor has to be
false; however, w already has a neighbor v such that v.state is IN. Therefore

w cannot execute rule 1. Consequently, v cannot execute rules 2’.
(d-3) If the next rule executed by v is rule 3, then by (c), we know, I* = 2.

(d-4) We claim that it is impossible that the next rule executed by v is still rule
3'. The reason is as follows. Before v executes rule 3’ for the first time, v has a
unique in-neighbor w and v.dependent is set to w after the execution of rule 3'.
If the next rule executed by v is still rule 3/, then we must have v.dependent

not equal to the unique in-neighbor of v. Thus w has to change its state from
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IN to OUT and another neighbor (say, ) of v has to change its state from
OUT to IN. Notice that rules 4, 4’, and 4” will not change the state of x. Thus
x.state can be changed from OUT to IN only by the execution of rule 1. This
is impossible; since if x can execute rule 1, then x.inNeighbor has to be false
but z already has a neighbor v such that v.state is IN. Therefore x cannot
execute rule 1. Thus it is impossible that the next rule executed by v is still

rule 3.

From the above, each node v takes at most 4 moves under a distributed scheduler and

we have this theorem. (]

We now give an example of our algorithm; see Figure 2 for an illustration.

In Figure 2, a node colored blue means that this node has state = IN. Also, each
node has two tags associated with it: r-k and dep = ¢;-where -k denotes the rule that is
executed by this node and dep =4 means that the value of dependent is i. See Figure 2(a).
Initially nodes 1, 2, and 4 have state = IN. However, {1,2,4} does not form a minimal
dominating set. Moreover, the value of dependent of nodes 2, 4, 5 and 6 are incorrect. In
Figure 2(b), we see that node 1 executes rule 2, node 2 executes rule 2/, node 5 executes
rule 4, and node 6 executes rule 4. In Figure 2(c), we see that nodes 1, 2, 3, 4, and 6
execute rules 4, 4, 4, 3, and 1, respectively. In Figure 2(d), we see that nodes 1 and 5
execute rules 1 and 4", respectively. In Figure 2(e), we see that after node 2 executes rule
4" no node will be enabled. Finally nodes 1, 4 and 6 have state = IN and in total 12

moves are executed. It is clear that {1,4,6} is a minimal dominating set.
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dep =2
dep =7

dep =3

(a) the initial situation

dep=0

r-2,dep = e
’ dep =17
r-2',dep = A
(b) the situation after the 1st round
dep=0

(e) the situation after the 4th round

Figure 2: An example of our algorithm.

18



4 Concluding remarks

In this thesis, we propose an efficient self-stabilizing algorithm for solving the minimal
dominating set (MDS) problem. This algorithm is a 4n-move algorithm and it outperforms
the best known algorithm, which is a 5n-move algorithm. We are curious about whether
there is still a better algorithm than the proposed one.

Before ending this thesis, we propose an example such that our algorithm takes 4n —1
moves to reach a legitimate configuration. Consider a distributed system with 3 nodes in
which node 1 and node 2 are adjacent to node 3; see Figure 3. Note that in this figure, dep
is the abbreviation of dependent. Note that a node colored blue means that its state =
IN, and a node colored white means that its state = OUT.

Assume that the id’s of these three nodesare 1, 2, and 3. The executed rules of each
node for every round are shown.in Table. 2. Initially all nodes have state = IN and have
dependent being null. The scheduler selects nodes 1 and 2 to execute rule 3’ in the first
round, then the value of each of their dependent becomes 3. In the second round, the
scheduler selects nodes 1 and 2 to execute-rule-2-and it selects node 3 to execute rule 2/
(their state become OUT). In the third round, the scheduler selects all of the nodes to
execute rule 4; therefore the value of dependent is 0. Finally, the scheduler selects nodes 1
and 2 for executing rule 1 in the fourth round (their states become IN), and selects node
3 executing rule 4”. The above progress is depicted in Figure 3.

In fact, we can generalize this case. Consider a distributed system with n nodes in
which node 1, node 2,..., and node n — 1 are adjacent to node n; the initial state variable,
initial dependent variable, and the action of nodes n is the same as these of node 3 in the
case of 3 nodes. The initial state variable, initial dependent variable, and the action of

the other nodes is the same as these of node 1 in the case of 3 nodes.
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Table 2: The executed rules in every rounds.

round 1 round 2 round 3 round 4 round 5

node 1 3 2 4 1
node 2 3 2 4 1
node 3 2/ 4 4"
dep = dep=A dep=3 dep=3
dep=A dep=A
) the initial situation. ) the situation after the 1st round.
dep = dep=3 dep=0 dep=0
dep=A\ dep =0
) the situation after;the 2nd round: (d) the situation after the 3rd round.

dep =0

dep =0 dep =0 dep =0
dep

) the situation after the 4th round. (f) the situation after the 5th round.

@é?

Figure 3: An example such that our algorithm takes 4n — 1 moves to reach a legitimate
configuration.
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