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On the Imperfection Ratio of Unit Disc Graphs
Student: Kung-Yi Ho Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Abstract

The interference problem between nodes in a wireless network is important and
difficult and it corresponds tothe coloring problem'in Unit Disc Graphs (UDGs). In
[9], Mani and Petr performed extensive simulations with UDGs of random networks
and observed that inna UDG Gy-the-clique number w(G) and the chromatic number
X(G) were typically very close to-one another.«To evaluate the eloseness of x(G) and

w(G), Mani and Petr used the measure “imperfection ratio” imp(G) = supp zggjg

Here G’ is a graph. transformed from G and the supremum is.computed over all
possible weight veetors R. It has been proven that the theoretical'bound of imp(G)
is 2.155 and imp(G) = 1 if and only if G is perfect. Based on the simulation results,
Mani and Petr concluded that ‘a practical bound for UDGs is imp(G) < 1.2079,
which is far less than the conjectured upper bound of 1.5/or the theoretic upper
bound of 2.155. Thepurpose of this thesis is to show that there exist UDGs such
that imp(G) > 1.2079'and the conjectured upper boundémp(G) = 1.5 is achievable.
In particular, we show that: if.G is an odd cycle of length > 5 or is the Harary
graph Hoy, 3m+2 where m is odd, thenimp(G) = 1.5, and if G is the wheel W, then
imp(G) = 4/3.

Keywords: Wireless interference, clique number, chromatic number, unit disk graph,

imperfection ratio.
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1 Introduction

A wireless ad hoc network (or simply a wireless network) consists of a set of nodes that
communicate with each other without any physical infrastructure or centralized adminis-
tration. The interference problem between nodes in a wireless network is important and
difficult and it can be modeled using graph theoretic techniques, in particular, the theory
associated with Unit Disc Graphs (UDGs). As we will see below, the chromatic number
of a UDG model of a wireless network is directly related to the interference problem. The
chromatic number is a graph invariant: The clique number is another graph invariant and
is closely related to the chromatic number. In some:special cases, the clique number is
equal to the chromatic number.

Before going further, we give some- definitions. Our graph terminology and notation
are standard; see [2] and [11] except as indicated. All graphs in thesis are assumed simple.
Let G = (V, E) be a graph. We say that G.is k-colorable if the vertices of G can be colored
by using at most k colers such that no two adjacent vertices receive the same color. The
chromatic number of G, denoted by (&), is'defined to be the smallest k£ such that G is
k-colorable. A clique of G is‘a complete subgraph in“G. A mazimum clique of G is a
clique of the largest possible size in G. The eligue number of G, denoted by w(G), is the
number of vertices in a maximum clique in G.

It is well known that the graph coloring problem is NP-complete and that even the
problem of approximating the chromatic number within any constant ratio is NP-hard [6].
In [3], Clark et al. proved that the coloring problem remains NP-complete for UDGs. In
fact, Clark et al. proved that the problem of determining, given a UDG G, whether G is
3-colorable is NP-complete. Notice that in [1], Breu and Kirkpatrick have proved that the
problem of determining, given a graph G, whether G is a UDG is NP-hard. In [5], Graf et

al. improved the result of Clark et al. by showing that the problem of determining, given



a UDG G and a fixed integer k, whether GG is k-colorable remains NP-complete for any
fixed k > 3; they also proposed a 3-approximation algorithm for the coloring problem.

It is clear that for any graph G, the chromatic number is always lower bounded by
the clique number, ie., x(G) > w(G). For the special case of “perfect graphs”, the
chromatic number and the clique number have equal values in every induced subgraph.
While computing x(G) is still NP-complete for UDGs, computing w(G) can be done in
polynomial time for UDGs [3].

We assume that the given wireless network has n nodes and their respective position
coordinates is in 2D. The transmission range (TR).of a given node is defined as the
maximum distance at which the nodes transmission ean be successfully received, and all
nodes that lie within the transmission range of a given node are called its communicating
neighbors. The interference range-(IR) is defined as the maximum distance at which a
given node’s transmission can interfere with or corrupt a simultaneous transmission or
reception attempt by another node, and all nodes that lie within-interference range of a
given node are called its interfering neighbors. Clearly, all communicating neighbors are
interfering neighbors and vise versa.

Recently, in [9], Mani and Petrtreated the case in.which IR is the same for all nodes.
The graph model is a UDG and is'called an interference graph. More precisely, a UDG
G is formed by taking the nodes in the wireless network as its vertices, and there is an
edge between vertices v and v if and only if the Euclidean distance between u and wv,
denoted by d(u,v), is less than or equal to 1. Notice that we will use the terms node and
vertex interchangeably. If two nodes share an edge, then it means that they are mutually
interfering and hence cannot transmit simultaneously in the same timeslot. There are two
possible scenarios: balanced load scenario and unbalanced load scenario. In the former
case, each node require the identical number of transmission timeslots per second to suit

their traffic requirements; as a result, the chromatic number gives the minimum number



of timeslots per second. See Figure 1. However, a balanced load scenario rarely occurs in

the real world.

Figure 1: This graph has chromatic number 3. If a balanced load scenario occurs, then
three timeslots are required.

In [9], Mani and Petr considered the unbalanced load scenario, wherein the traffic rates
of each node need not be identical.-In-particular, for each node v;, let r; be the number
of timeslots required per.second by v; to satisfy'its traffic needs. The UDG now becomes
a weighted UDG suchithat each vertex v; has a weight r; associated with it. To find out
the optimal (i.e., minimum) number of timeslots required per second for a weighted UDG
G = (V, E), Mani and Petr used weighted vertex coloring [4] algorithms, which is simply
normal (un-weighted) coloring . doneon a transformed graph G’. The graph G' = (V' E’)
is obtained from G by replacing each.vertex v; in G by a‘clique of size r; and the edge set
E is augmented to obtain E’ in such a way that if two vertices u, v are neighbors in G,
then in G’ every node in the clique corresponding to u is also a neighbor of every node in
the clique corresponding to v. (See Figure 2.)

As was mentioned above, the chromatic number x(G) of a UDG model of a wireless
network is directly related to interference. Closely related to x(G) is the clique number
w(G). For most classes of graphs, computing x(G) and w(G) are both NP-complete.
But for UDGs, while computing x(G) is still NP-complete, computing w(G) can be done

in polynomial time. This raises the question: How close is w(G) to x(G)? For general



Figure 2: Transforming a weighted graph G into an un-weighted graph G’; the weights
on vertices a, b, c in G are 3, 1, 2, respectively.

graphs, x(G)/w(G) can be very large.. In [10], Peeters has observed that
x(G) <3w(G) —2if G is aUDG:

See also [7]. In [9], Manirand Petr performed extensive simulations with UDGs of random
networks and observed:that.in.a UDG &, the cligue number w(G) and the chromatic
number y(G) were typically very elose to one another. To evaluate the closeness of x(G)

and w(G), Mani and Petr used the measure “imperfection ratio”

. oy X&)
imp(G) = preD)

of a transformed weighted graphy defined-as-the supremum of the ratio of its chromatic
number to its clique number. Here the supremum is computed over all possible weight
vectors RR.

It has been proven that the theoretical bound of imp(G) is 2.155 and imp(G) = 1 if
and only if G is perfect [4]. Based on the simulation results, Mani and Petr concluded that
a practical bound for UDGs is imp(G) < 1.2079, which is far less than the conjectured
upper bound of 1.5 or the theoretic upper bound of 2.155. The following is Mani and
Petr’s simulation scenario: they assume the simulation area is a disk of radius 1 and place
n nodes in randomly chosen locations within the disc. Node v; is assigned an integer

weight r; that corresponds to its traffic requirements. The weights are chosen randomly
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in 1,2,..., K, where K corresponds to the maximum weight. They varied n as 10, 25,
50, 75 and 100 and independently varied K as 1, 5 10, 20, 30, 40, and 50. The smallest
mean size of the UDG (in terms of number of vertices) is 10 and the largest is 2550.
They observed that in a UDG G, w(G) and x(G) were typically very close to one another.
Based on the simulation results, Mani and Petr concluded that a practical bound for
UDGs is imp(G) < 1.2079 and w(G) can be used as a very good approximation to x(G);
in particular, they said that a practical bound of x(G) < 1.21w(G) could be used if G is
a UDG.

The purpose of this thesis is to show that there exist UDGs such that imp(G) > 1.2079,
and moreover, the conjectured upperbound imp(G) = 1.5 is-achievable. In particular, we
show that: if G is an odd eycle of length > 5 or is the Harary graph Hy,, 3,42 where m
is odd, then imp(G) =.1.5, and if - G-is-the wheel W (see Figure 3), then imp(G) = 4/3.
We also propose an algorithm to color the nodes of a UDG and. perform simulations
to compare the number of colors used by our-algorithm and that-used by the First-Fit

coloring algorithm.

Figure 3: Wg, the wheel graph with 6 vertices.

This thesis is organized as follows. In Section 2, we gives UDGs with imp(G) > 1.2079.
In Section 3, we propose a coloring algorithm and compare the results of our algorithm
with the classical First-Fit coloring algorithm. Concluding remarks are given in the final

section.



2 UDGs with imp(G) > 1.2079

The fact that imp(G) > x(G)/w(G) will be used throughout this section.
Lemma 2.1. There exists a general graph G such that imp(G) — oo.

Proof. This lemma follows from the fact that we can use Mycielski construction [11]

to obtain a new triangle-free graph G* from a given triangle-free graph G such that

X(G*) = x(G) + 1 and w(G*) = w(G) = 2. ]

Before going further, we introduce some notations. Let G be a weighted graph. We
use wg(v) to denote the weight of avertex v in G and use G’ to denote the un-weighted
transformed graph of G; see Section 1 and Figure 2 for an illustration of G’. For conve-
nience, we use S, to denote the set of vertices in G’ that correspond to a vertex v in G.
Let C), denote a cycle of length n. It is not difficult to verify that C, is a UDG. C, is

called an odd cycle if it-is of odd length. We have the following theorem.

Theorem 2.2. If G is an odd cycle of length >5, then imp(G) = 1.5.

Proof. Since x(G) = 3 and w(G) = 2, we have imp(G)+>"1.5. On the other hand, let
V(G) = {v1,v9,...,0,}, wa(v;) = rifor eachayand B(G) = {v1v9, vovs, . . ., Up—1Up, UyU1 }.

Without loss of generality, we may assume that r; + ro = w(G’). Clearly,

ro+1r3 <11+
{ Tn+11 <11+ T
Thus r3 + 7, < r1 + 1y = w(G’). By the pigeonhole principle, r3 < 0.5w(G’) or r, <
0.5w(G") must occur. Suppose 7, < 0.5w(G’) occurs; the case that r3 < 0.5w(G’) occurs
can be proven in a similar way and we omit its proof. To prove this theorem, it suffices
to prove that G’ is 1.5w(G’)-colorable.
Since [S,, US,, US,, | < 1.5w(G"), the subgraph induced by S,, US,,US,, is 1.5w(G’)-

colorable. Denote the set of colors on S,, US,, by C1? and denote the set of colors on S,
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by C™. Notice that C1*NC™ = (). Then, color the vertices in S,, according to the ordering

v =3,4,...,n—1. For each ¢, before S,, is to be colored, the vertices in S,, ,US,,_, have

i—2
already been colored; denote the set of colors on S,, , by C*~'. Since G is an odd cycle of
length > 5, in G’ there is no edge joining a vertex in S,, and a vertex in S,, ,. Hence it is

possible to colors the vertices in S,, by using the colors in C'? \ C*~!. The above process

proves that G’ is 1.5w(G")-colorable. ]

A wheel graph with n vertices, denoted by W,,, is the graph obtained by adding a new
vertex to the cycle C,_; and making this new vertex joining each vertex of C,_;. It is

not difficult to see that Wy is a UDG. We have the following theorem for Wj.

Theorem 2.3. If G = W, thenimp(G) = 4/3.

Proof. Clearly, imp(G) > % =4/3.-Suppose V (G) ={v1,v9;. .., 06}, wg(v;) = r; for

cach i, and E(G) = {0102, 0203, . . ., 0405, 501 } U{wjvgld < i <5}. Let H be the subgraph

of G induced by {v1,va,. .., vs}. Then LXuEg:; e i%g:gigggzz; and if we want to make Zggg
as large as possible, then we must have wq(vs) = 1. Without loss. of generality, we may
assume that r + 5 + 1= w(G"). Set w = r; +rg+ 1 foreasy, writing. There are two
cases.

Case 1: 13 < w/3 or r; < w/3. Suppose rs-<w/3 occurs; the case that r3 < w/3 occurs
can be proven in a similar way and we omit its proof. To prove this theorem, it suffices
to prove that G’ is gw-colorable. Since |S,, U Sy, U Sy, | < 3w — 1, the subgraph induced
by Sy, U Sy, U Sy, is (5w — 1)-colorable. Denote the set of colors on S, U S,, by C? and
denote the set of colors on S,, by C*. Notice that C**NC® = ). Then, color the vertices in
Sy, according to the ordering ¢ = 3,4. For each ¢, before S, is to be colored, the vertices
in S, ,US, , have already been colored; denote the set of colors on S,, , by C*~!. Since

H is an odd cycle of length 5, in G’ there is no edge joining a vertex in S,, and a vertex

in S,,_,. Hence it is possible to colors the vertices in S,, by using the colors in C1?\ C*~1.



Assign v any color that is not used on S,, U S,, U S,, US,, US,,. The above process

proves that G’ is %w—colorable.

Case 2: r3 > w/3 and r5 > w/3. It suffices to prove that G’ is jw-colorable. Since
| Sy, U Sy,| = w — 1, the subgraph induced by S,, U S, is (w — 1)-colorable. Denote the
set of colors on S,, and S,, by C! and C?, respectively. Let C° be a set of w/3 colors such
that C° N (C' UC?) = 0. Then, color the vertices in S,, by using the colors in C° as their
first choice and the colors in C! as their secondary choice. Since |S,,| = r3, the number
of colors used on S, in the set C! equals 73 — w/3. Let C3 denote the set of colors on S,,,.
Then, color the vertices in S,, by using the colors in'C° as their first choice and the colors
in C? as their secondary choice. Sinee |S,.| = 75, themumber of colors used on S, in the
set C? equals r5 —w/3. Let €5 denote the set of colors on S, .« Then, color the vertices in

S,, by using the colors.in C' U C?.=Since 11> 73 > w/3 and r; +15 < w together imply

that r5 < 2w/3, we have
1 FTe >3 dry > 13+ 1y + 15 —2w/3 = (r3— w/3) + et (15 — w/3)

and therefore it is possible to.color the vertices in S, by using the colors in (C' UC?) \
(C3 U CP). Assign vg any color thatuis not used on S, AJ.S,, U S,, US,, US,.. The above

process proves that G’ is %w—colorable. [

Let H be an induced subgraph of G. We now show that it is possible that neither

imp(G) > imp(H) nor imp(G) < imp(H) holds.

Observation 2.4. There exists a UDG G such that imp(G) > imp(H;) and imp(G) <

imp(Hy) for some induced subgraph Hy and Hy of G.

Proof. Let G = Wg, Hy = Cs, and Hy = C5. Clearly, imp(C3) = 1. By Theorems 2.3
and 2.2, imp(Ws) = 4/3 and imp(Cs) = 1.5. Thus we have imp(Ws) > imp(C3) and

imp(Wg) < imp(Cs). ]



We now define the Harary graph Hy ,; see also [11]. Given k < n, place n vertices
around a circle, equally spaces. Let the vertices be 0,1,...,n — 1; the edges are added in
the following ways.

Case 1: k =2m. Add an edge between i and j whenever i —m < j <i+m (mod n).
Case 2: k = 2m+1 and n is even. Construct Hy,,, from Hj_, , by adding an edge between
i and i +n/2 for each 1 <i < n/2.

Case 3: k =2m+1 and n is odd. Construct Hy,,, from Hj_; , by adding an edge between
0and (n—1)/2,0and (n+1)/2,iand i+ (n+1)/2 for each 1 < i < (n —1)/2.

Theorem 2.5. Consider the Harary graph G of the form. Hay, 3m+2. Then imp(G) = 1.5

if m is odd, 3mE2 < imp(GY< 15 if m is even.
2m+4-2

Proof. Let V(G) = {v1, 03, ., V32t This theorem holds if we ¢an prove that imp(G) =

3m+2 3m+2
[mil . We first prove that imp(G) > |—mi-1-| . Anvindependent set of a graph is a subset

of its vertex set such that each pair of vertices.in this subset are not adjacent. Since an

independent set of a Harary graph is of size at most 2, each color can be used at most

twice. Consequently, x(G) > Pv(f)'-‘ = [222]° Defirte a coloring
Fav(@— {1,2,.. |22}
as follows:
(i) If m is odd, let f(v;) = f(vHsL;rl) = i for each 1 < i < ¥ and let f(vsp) =

o],

(i) If m is even, let f(v;) = f(v;ysms2) =i for each 1 <i < dms2

Hence (G Smi2] - Therefore x(G) = [222]. Notice that w(G) = m + 1. Thus we
2

2 .
3m+2-|

2

<
Z m+1

— 1

have imp(G)
We now prove that imp(G) < 1.5. For each i, suppose wg(v;) has weight ;. Without

loss of generality, we may assume that r1 + 75+ -+ - 4+ 11 = W(G'). Set w = w(G") for

9



easy writing. To prove this theorem, it suffices to prove that G’ is 1.5w-colorable. Let

k =min{0 < k < m| Zkill r; > 0.5w}. Then

)

{ Ptz & Tmgs 4+ 4 Pmgkar <71+ 72+ + 75 < 0.5w

Tom4k+3 T Tomakta T+ T3myo < Tpgo + Tpyg + oo+ 1 < 0.5w.

Since there is no edge joining a vertex in S,, and a vertex in S,, for all m+2 <4 < m+k+1

and 2m + k + 3 < j < 3m+ 2, {UFS, b u{uin? 1S, } is 1.5w-colorable. Denote

the set of colors on S,, by C* for 1 < ¢ < m + 1. Then, 22:1 ICI| > Z;:;:;EH Sy, |

for i = k+ 1,k+2,...,m, ZT:T ICT| > Zj:;nfifﬂ |Sy,| for i = k4 1,k,...,1 and
Z;n:ll IC7| > Z?ngﬂ% Sy, |- This imiplies that we can color the vertices in S, according
to the orderingt =m+k+2m+k+3,....2m+1.2m+k+2,2m+k+1,...,2m+2

by using the colors in UZ:'€% Thus-G”.is 1.5w-colorable. ]

We now list some imperfection ratios of Harary graphs Ho,, 3m,42. It is not difficult to

see that imp(Ham 3mi2) — 1.5 when m is even.

m | 3m+2 | X(G) | w(G) | lower bound of imp(G) | upper bound of imp(G)
1 5 3 2 1.5 1.5
2 8 4 3 1.333 1.5
3 11 6 4 1.5 1.5
4 14 7 5 1.4 1.5
5 17 9 6 1.5 1.5
6 20 10 7 1.429 1.5
7 23 12 8 1.5 1.5

Table 1: The imperfection ratios of Harary graphs Hop, 3m4-2-

10



3 Our coloring algorithm and simulation results

For convenience, let ¢(G) by the number of colors used by a given algorithm. The
performance of an algorithm is defined by PR(G) = ¢(G)/w(G). Let First-Fit (also called
a greedy coloring algorithm) denote the coloring algorithm that examines the vertices
of a graph in an arbitrary order and assigns each vertex the smallest-indexed color not
already used on its examined neighbors. To improve First-Fit, we examines the vertices of
a graph in the order obtained by breadth-first search (BFS) form any node and we call our
algorithm BFES-First-Fit. Since Manivand Petr [9] mentioned that x(G)/w(G) is at most
1.2079 in their simulation results;if BFS-First-Fit obtains PR(G) > 1.2, then we will run
BFS-First-Fit again by choosing another vertex as the root of the BFS until PR(G) < 1.2
or the above process has been repeated-too many times (in this thesis, the threshold value
of 10 is chosen). Notice that we can adjust the value 1.2 in PR(G).> 1.2 and the number
of times that the root.of BFS-First-Fit is changed to get a better-performance.

This section is divided into four subsections. In Subsection 3.1, we consider randomly
generated UDGs. In Subsection 3.2, we consider randomly generated weighted UDGs.
In Subsection 3.3, we consider randomly generated UDGs in which the nodes are not
evenly distributed. And in Subsection 3.4,"we consider randomly generated UDGs that
allow the addition of new nodes. For each subsection, simulations results for First-Fit

and BFS-First-Fit are obtained.

3.1 Randomly generated unit disk graphs

To perform the simulations, we randomly construct 500 connected UDGs with n nodes
in a 100m x 100m area, where n is ranged from 100 to 500, with an increment of 50. The

interference range of each node is assumed to be 25m.

11



Figure 4 shows the average PR(G) obtained by First-Fit and BFS-First-Fit. Both
of them increase as the number of nodes increases. The performance of BFS-First-Fit is

better than that of First-Fit in all cases and the difference between them increases as the

number of nodes increases.

| & BFS-First-Fit - First-Fit|

14 1 .
s 1|
B 038
o
2 06
[
& 04

02

0

1000 150 200 250 300 <350 . 400 . 450 500
number of nodes

Figure 4: The average PR(G).

Figure 5 shows the'maximum PR(G) obtained by First-Fit and BFS-First-Fit. We
observe that maximum PR(G) is about 1.2 if BFS-First<Fit is used and about 1.5 if
First-Fit is used.

Among our 4500 simulations, PR(G) < 1.2 occurs for almost all cases, and there are
only 7 simulations with PR(G) > 1.2. Among the 7 simulations with PR(G) > 1.2, the
maximum PR(G) of them is 1.2381, which is larger than 1.2079. There is an example
of PR(G) = 1.211 in Figure 6; this UDG has 200 nodes and we color the edges of its
maximum clique in color red. Based on our simulation results, we conclude that BFS-

First-Fit has PR(G) < 1.2 for most of the cases.

12



| & BFS-First-Fit ® First-Fit|

i

e
n

maximum PR(G)

o

100 150 200 250 300 350 400 450 500

number of nodes

Figure 5: The maximum PR(G).

Figure 6: An example of PR(G) = 1.211.
3.2 Randomly generated weighted unit disk graph

In this subsection, we consider weighted UDGs and we use the same parameters as in
[9] to compare the PR(G) obtained by BFS-First-Fit with the simulation results in [9].
More precisely, we assume that n nodes are chosen randomly from a disk of radius 1

and each node has interference range 1. Node ¢ has weight r;. The weights are chosen

13



randomly from 1,2,..., K, where K corresponds to the maximum weight. We vary the
number of nodes n as 10, 25, 50, 75 and 100. For each n, we also vary the maximum weight
K as 1,5,10,20, 30,40 and 50. For each (n, K) pair, we perform 500 simulations. Table 2
shows the average value of PR(G), and Table 3 shows the maximum value of PR(G).
From Table 2, we observe that PR(G) increases as the number of nodes increases, but
there are no obvious relation between PR(G) and the maximum weight K. In Table 3,

the maximum value of PR(G) is 1.222.

n | K=1K=5|K=10 K=20| K=30| K =40 | K =50
10 1.007 | 1.007 1.005 1.005 1.005 1.006 1.005
25 1.039 | 1.033 1.033 1:034 1.032 1.032 1.034
20 1.063 | 1.060 1.055 1.059 1.056 1.056 1.056
5 1.075 | 1.072 1.074 1.070 1.071 1.068 1.070
100 | 1.086 |, 1.082 1.081 1.079 1.079 1.080 1.081

Table 2: The-average valueof PR(G).

n | K= K=5|K=10Kk=20| K=30| K =40 | K =50
10 1.167 |-1.111 1138 1.145 1.135 1.213 1.153
25 1.222 |©'1.1%5 1.138 1.146 1.149 1.126 1.166
20 1.176 | 1169 1.181 1.136 1.172 1.153 1.158
75 1.160 | 1.167 1.188 1.195 14159 1.185 1.187
100 | 1.182 | 1.208 1.186 1.179 1.186 1.166 1.182

Table 3: The maximum value of PR(G).

3.3 Randomly generated unit disk graphs with different density of nodes

In this subsection, we consider UDGs with different density of nodes. We randomly
construct 500 connected UDGs with n nodes in a 100m x 100m area (for convenience,
denote this area by A), where n is ranged from 100 to 500, with an increment of 50.
The interference range of each node is assumed to be 25m. We consider four scenarios as

follows.
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(a) One of the four corner areas of A has more nodes. (See Figure 7(a).)
(b) The center area of A has more nodes. (See Figure 7(b).)
(c) The area near one side of A has more nodes. (See Figure 7(c).)

(d) The area near the middle line of A has more nodes. (See Figure 7(d).)

Figure 7: An example of different density of nodes.

From our simulations, we observe that the selection of the root of the BFS will effect
the performance of BFS-First-Fit. Choosing the root in the area with high density of
nodes will make BFS-First-Fit have a better performance but the difference is not big;
thus we omit the details of these simulation results.

Figure 8 shows the average PR(G) obtained by First-Fit and BFS-First-Fit. We can
observe that the average PR(G) obtained by First-Fit and BFS-First-Fit are very close

in (a) and (b). The difference between them decreases as the number of nodes increases
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and this is because the chromatic number is very close to the clique number; so there is

no big improvement. In (c¢) and (d), the improvement is larger.

—&— BFS-First-Fit % First-Fit

1.025

102 T orm——u—8 g um o g
1.015 1.05
1.01 1.04
1.005 103
1t 102
0.995 1.01
& 0w 1
= 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
o~ (2)
% L2 r 1,25 1
5 115 | ././I/./.—H_H 12 ./H/./I—I———I——H
> L 115
1.05 “M@; 1.1 M_‘__‘_kﬁ
1F 1.05
0.95 1
100 150 200 250(380 350400450 500 100 150 1200 250300 350 400 450 500
¢

number of nodes

Figure 8: The average PR(G) in UDGs with different density of nodes.

3.4 Randomly generated unit disk graphs that allow the addition of
nodes

In real world, many networks have some nodes that do not exist initially but are added
later. In this case, BFS-First-Fit can only be applied on initial nodes and when there are
addition nodes, BFS-First-Fit must be restart for all nodes if we want to use it.

In this section, we simulate the UDGs which allows nodes to be added. We randomly
construct 500 connected UDGs with initial n nodes in a 100m x 100m area, where n is
100 or 200. And each time we add n/4 nodes and totally we add the nodes for five times.

The interference range of each node is assumed to be 25m. We use BFS-First-Fit to color
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the initial n nodes and use First-Fit to color the added. We compare results of such a
BFS-First-Fit plus First-Fit manner with results that only use First-Fit.

Figure 9 shows the average PR(G) of BFS-First-Fit and First-Fit. We observe that
when the number of added nodes is more than 3n/4, the PR(G) of BFS-First-Fit and
First-Fit become very close. Thus we suggest that when the wireless network allows the

addition of nodes, BFS-First-Fit must be restarted if the number of added nodes is more

than 3n/4.
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Figure 9: The average PR(G) in UDGs that allow the addition of nodes.

4 Concluding remarks

In this thesis, we propose UDGs with imp(G) > 1.2079 and we propose simulations
to compare the difference between the clique number and the chromatic number obtained
by our algorithm and by First-Fit; some different types of random UDGs have been
considered. We find that in almost all cases, our algorithm can color the graph G with
X(G) < 1.2w(G) colors. In the future, the theoretical bound of our algorithm will be

considered.
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