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無線網路中單位圓盤圖的不完美比例 
 

研究生：何恭毅      指導老師：陳秋媛  教授 

 

國 立 交 通 大 學 

應 用 數 學 系 

 
 

摘  要 

無線網路上的干擾問題是重要且困難的，該問題對應到單位圓盤圖的著色問題。

在文獻[9]中，Mani和Petr對隨機網路的單位圓盤圖做了大量的模擬，並且觀察到

單位圓盤圖的完全子圖數 ( )G 和著色數 ( )G 是非常接近的。為了估計 ( )G 與

( )G 的接近程度，Mani和Petr採用了「不完美比例」
( ')( ) sup
( ')R

Gimp G
G




 。這裡

的 'G 是由G轉換過來的圖，而這個 sup是考慮所有權重向量R之後計算所得。已

有學者證明出 ( )imp G 的理論上界是 2.155， ( ) 1imp G  若且唯若G是完美圖。基

於模擬所得之結果，Mani和Petr認為，對單位圓盤圖而言，一個切合實際的上界

是 ( ) 1.2079imp G  ，這個上界值遠小於猜測中的上界值1.5，也遠小於理論上界

值 2.155。本論文之目的在於證明確實存在單位圓盤圖其 2079.1)( Gimp ，且猜

測中的上界值 ( ) 1.5imp G  是可達到的。特別地，我們證明了：若G是長度 5 的

奇圈或者是Harary圖 2 ,3 2m mH  （其中m是奇數），則 ( ) 1.5imp G  ；若G是輪圖 6W ，

則 ( ) 4 / 3imp G  。 
 
關鍵詞：無線干擾，完全子圖數，著色數，單位圓盤圖，不完美比例。 
 
 
 
 
 
 

中 華 民 國 一 百 年 六 月 



On the Imperfection Ratio of Unit Disc Graphs

Student: Kung-Yi Ho Advisor: Chiuyuan Chen

Department of Applied Mathematics

National Chiao Tung University

Abstract

The interference problem between nodes in a wireless network is important and
difficult and it corresponds to the coloring problem in Unit Disc Graphs (UDGs). In
[9], Mani and Petr performed extensive simulations with UDGs of random networks
and observed that in a UDG G, the clique number ω(G) and the chromatic number
χ(G) were typically very close to one another. To evaluate the closeness of χ(G) and

ω(G), Mani and Petr used the measure “imperfection ratio” imp(G) = supR
χ(G′)
ω(G′) .

Here G′ is a graph transformed from G and the supremum is computed over all
possible weight vectors R. It has been proven that the theoretical bound of imp(G)
is 2.155 and imp(G) = 1 if and only if G is perfect. Based on the simulation results,
Mani and Petr concluded that a practical bound for UDGs is imp(G) ≤ 1.2079,
which is far less than the conjectured upper bound of 1.5 or the theoretic upper
bound of 2.155. The purpose of this thesis is to show that there exist UDGs such
that imp(G) > 1.2079 and the conjectured upper bound imp(G) = 1.5 is achievable.
In particular, we show that: if G is an odd cycle of length ≥ 5 or is the Harary
graph H2m,3m+2 where m is odd, then imp(G) = 1.5, and if G is the wheel W6, then
imp(G) = 4/3.

Keywords: Wireless interference, clique number, chromatic number, unit disk graph,

imperfection ratio.
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1 Introduction

A wireless ad hoc network (or simply a wireless network) consists of a set of nodes that

communicate with each other without any physical infrastructure or centralized adminis-

tration. The interference problem between nodes in a wireless network is important and

difficult and it can be modeled using graph theoretic techniques, in particular, the theory

associated with Unit Disc Graphs (UDGs). As we will see below, the chromatic number

of a UDG model of a wireless network is directly related to the interference problem. The

chromatic number is a graph invariant. The clique number is another graph invariant and

is closely related to the chromatic number. In some special cases, the clique number is

equal to the chromatic number.

Before going further, we give some definitions. Our graph terminology and notation

are standard; see [2] and [11] except as indicated. All graphs in thesis are assumed simple.

Let G = (V,E) be a graph. We say that G is k-colorable if the vertices of G can be colored

by using at most k colors such that no two adjacent vertices receive the same color. The

chromatic number of G, denoted by χ(G), is defined to be the smallest k such that G is

k-colorable. A clique of G is a complete subgraph in G. A maximum clique of G is a

clique of the largest possible size in G. The clique number of G, denoted by ω(G), is the

number of vertices in a maximum clique in G.

It is well known that the graph coloring problem is NP-complete and that even the

problem of approximating the chromatic number within any constant ratio is NP-hard [6].

In [3], Clark et al. proved that the coloring problem remains NP-complete for UDGs. In

fact, Clark et al. proved that the problem of determining, given a UDG G, whether G is

3-colorable is NP-complete. Notice that in [1], Breu and Kirkpatrick have proved that the

problem of determining, given a graph G, whether G is a UDG is NP-hard. In [5], Graf et

al. improved the result of Clark et al. by showing that the problem of determining, given

1



a UDG G and a fixed integer k, whether G is k-colorable remains NP-complete for any

fixed k ≥ 3; they also proposed a 3-approximation algorithm for the coloring problem.

It is clear that for any graph G, the chromatic number is always lower bounded by

the clique number, i.e., χ(G) ≥ ω(G). For the special case of “perfect graphs”, the

chromatic number and the clique number have equal values in every induced subgraph.

While computing χ(G) is still NP-complete for UDGs, computing ω(G) can be done in

polynomial time for UDGs [3].

We assume that the given wireless network has n nodes and their respective position

coordinates is in 2D. The transmission range (TR) of a given node is defined as the

maximum distance at which the nodes transmission can be successfully received, and all

nodes that lie within the transmission range of a given node are called its communicating

neighbors. The interference range (IR) is defined as the maximum distance at which a

given node’s transmission can interfere with or corrupt a simultaneous transmission or

reception attempt by another node, and all nodes that lie within interference range of a

given node are called its interfering neighbors. Clearly, all communicating neighbors are

interfering neighbors and vise versa.

Recently, in [9], Mani and Petr treated the case in which IR is the same for all nodes.

The graph model is a UDG and is called an interference graph. More precisely, a UDG

G is formed by taking the nodes in the wireless network as its vertices, and there is an

edge between vertices u and v if and only if the Euclidean distance between u and v,

denoted by d(u, v), is less than or equal to 1. Notice that we will use the terms node and

vertex interchangeably. If two nodes share an edge, then it means that they are mutually

interfering and hence cannot transmit simultaneously in the same timeslot. There are two

possible scenarios: balanced load scenario and unbalanced load scenario. In the former

case, each node require the identical number of transmission timeslots per second to suit

their traffic requirements; as a result, the chromatic number gives the minimum number
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of timeslots per second. See Figure 1. However, a balanced load scenario rarely occurs in

the real world.

Figure 1: This graph has chromatic number 3. If a balanced load scenario occurs, then
three timeslots are required.

In [9], Mani and Petr considered the unbalanced load scenario, wherein the traffic rates

of each node need not be identical. In particular, for each node vi, let ri be the number

of timeslots required per second by vi to satisfy its traffic needs. The UDG now becomes

a weighted UDG such that each vertex vi has a weight ri associated with it. To find out

the optimal (i.e., minimum) number of timeslots required per second for a weighted UDG

G = (V,E), Mani and Petr used weighted vertex coloring [4] algorithms, which is simply

normal (un-weighted) coloring done on a transformed graph G′. The graph G′ = (V ′, E ′)

is obtained from G by replacing each vertex vi in G by a clique of size ri and the edge set

E is augmented to obtain E ′ in such a way that if two vertices u, v are neighbors in G,

then in G′ every node in the clique corresponding to u is also a neighbor of every node in

the clique corresponding to v. (See Figure 2.)

As was mentioned above, the chromatic number χ(G) of a UDG model of a wireless

network is directly related to interference. Closely related to χ(G) is the clique number

ω(G). For most classes of graphs, computing χ(G) and ω(G) are both NP-complete.

But for UDGs, while computing χ(G) is still NP-complete, computing ω(G) can be done

in polynomial time. This raises the question: How close is ω(G) to χ(G)? For general
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a

b

c

G G’

Figure 2: Transforming a weighted graph G into an un-weighted graph G′; the weights
on vertices a, b, c in G are 3, 1, 2, respectively.

graphs, χ(G)/ω(G) can be very large. In [10], Peeters has observed that

χ(G) ≤ 3ω(G)− 2 if G is a UDG.

See also [7]. In [9], Mani and Petr performed extensive simulations with UDGs of random

networks and observed that in a UDG G, the clique number ω(G) and the chromatic

number χ(G) were typically very close to one another. To evaluate the closeness of χ(G)

and ω(G), Mani and Petr used the measure “imperfection ratio”

imp(G) = sup
R

χ(G′)

ω(G′)

of a transformed weighted graph, defined as the supremum of the ratio of its chromatic

number to its clique number. Here the supremum is computed over all possible weight

vectors R.

It has been proven that the theoretical bound of imp(G) is 2.155 and imp(G) = 1 if

and only if G is perfect [4]. Based on the simulation results, Mani and Petr concluded that

a practical bound for UDGs is imp(G) ≤ 1.2079, which is far less than the conjectured

upper bound of 1.5 or the theoretic upper bound of 2.155. The following is Mani and

Petr’s simulation scenario: they assume the simulation area is a disk of radius 1 and place

n nodes in randomly chosen locations within the disc. Node vi is assigned an integer

weight ri that corresponds to its traffic requirements. The weights are chosen randomly
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in 1, 2, . . . , K, where K corresponds to the maximum weight. They varied n as 10, 25,

50, 75 and 100 and independently varied K as 1, 5 10, 20, 30, 40, and 50. The smallest

mean size of the UDG (in terms of number of vertices) is 10 and the largest is 2550.

They observed that in a UDG G, ω(G) and χ(G) were typically very close to one another.

Based on the simulation results, Mani and Petr concluded that a practical bound for

UDGs is imp(G) ≤ 1.2079 and ω(G) can be used as a very good approximation to χ(G);

in particular, they said that a practical bound of χ(G) ≤ 1.21ω(G) could be used if G is

a UDG.

The purpose of this thesis is to show that there exist UDGs such that imp(G) > 1.2079,

and moreover, the conjectured upper bound imp(G) = 1.5 is achievable. In particular, we

show that: if G is an odd cycle of length ≥ 5 or is the Harary graph H2m,3m+2 where m

is odd, then imp(G) = 1.5, and if G is the wheel W6 (see Figure 3), then imp(G) = 4/3.

We also propose an algorithm to color the nodes of a UDG and perform simulations

to compare the number of colors used by our algorithm and that used by the First-Fit

coloring algorithm.

Figure 3: W6, the wheel graph with 6 vertices.

This thesis is organized as follows. In Section 2, we gives UDGs with imp(G) > 1.2079.

In Section 3, we propose a coloring algorithm and compare the results of our algorithm

with the classical First-Fit coloring algorithm. Concluding remarks are given in the final

section.
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2 UDGs with imp(G) > 1.2079

The fact that imp(G) ≥ χ(G)/ω(G) will be used throughout this section.

Lemma 2.1. There exists a general graph G such that imp(G)→∞.

Proof. This lemma follows from the fact that we can use Mycielski construction [11]

to obtain a new triangle-free graph G∗ from a given triangle-free graph G such that

χ(G∗) = χ(G) + 1 and ω(G∗) = ω(G) = 2.

Before going further, we introduce some notations. Let G be a weighted graph. We

use wG(v) to denote the weight of a vertex v in G and use G′ to denote the un-weighted

transformed graph of G; see Section 1 and Figure 2 for an illustration of G′. For conve-

nience, we use Sv to denote the set of vertices in G′ that correspond to a vertex v in G.

Let Cn denote a cycle of length n. It is not difficult to verify that Cn is a UDG. Cn is

called an odd cycle if it is of odd length. We have the following theorem.

Theorem 2.2. If G is an odd cycle of length ≥ 5, then imp(G) = 1.5.

Proof. Since χ(G) = 3 and ω(G) = 2, we have imp(G) ≥ 1.5. On the other hand, let

V (G) = {v1, v2, . . . , vn}, wG(vi) = ri for each i, and E(G) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

Without loss of generality, we may assume that r1 + r2 = ω(G′). Clearly,{
r2 + r3 ≤ r1 + r2

rn + r1 ≤ r1 + r2.

Thus r3 + rn ≤ r1 + r2 = ω(G′). By the pigeonhole principle, r3 ≤ 0.5ω(G′) or rn ≤

0.5ω(G′) must occur. Suppose rn ≤ 0.5ω(G′) occurs; the case that r3 ≤ 0.5ω(G′) occurs

can be proven in a similar way and we omit its proof. To prove this theorem, it suffices

to prove that G′ is 1.5ω(G′)-colorable.

Since |Sv1 ∪Sv2 ∪Svn| ≤ 1.5ω(G′), the subgraph induced by Sv1 ∪Sv2 ∪Svn is 1.5ω(G′)-

colorable. Denote the set of colors on Sv1 ∪Sv2 by C1,2 and denote the set of colors on Svn
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by Cn. Notice that C1,2∩Cn = ∅. Then, color the vertices in Svi according to the ordering

i = 3, 4, . . . , n− 1. For each i, before Svi is to be colored, the vertices in Svi−2
∪Svi−1

have

already been colored; denote the set of colors on Svi−1
by Ci−1. Since G is an odd cycle of

length ≥ 5, in G′ there is no edge joining a vertex in Svi and a vertex in Svi−2
. Hence it is

possible to colors the vertices in Svi by using the colors in C1,2 \ Ci−1. The above process

proves that G′ is 1.5ω(G′)-colorable.

A wheel graph with n vertices, denoted by Wn, is the graph obtained by adding a new

vertex to the cycle Cn−1 and making this new vertex joining each vertex of Cn−1. It is

not difficult to see that W6 is a UDG. We have the following theorem for W6.

Theorem 2.3. If G = W6, then imp(G) = 4/3.

Proof. Clearly, imp(G) ≥ χ(G)
ω(G)

= 4/3. Suppose V (G) = {v1, v2, . . . , v6}, wG(vi) = ri for

each i, and E(G) = {v1v2, v2v3, . . . , v4v5, v5v1}∪{viv6|1 ≤ i ≤ 5}. Let H be the subgraph

of G induced by {v1, v2, . . . , v5}. Then χ(G′)
ω(G′)

= χ(H′)+wG(v6)
ω(H′)+wG(v6)

and if we want to make χ(G′)
ω(G′)

as large as possible, then we must have wG(v6) = 1. Without loss of generality, we may

assume that r1 + r2 + 1 = ω(G′). Set ω = r1 + r2 + 1 for easy writing. There are two

cases.

Case 1: r3 ≤ ω/3 or r5 ≤ ω/3. Suppose r5 ≤ ω/3 occurs; the case that r3 ≤ ω/3 occurs

can be proven in a similar way and we omit its proof. To prove this theorem, it suffices

to prove that G′ is 4
3
ω-colorable. Since |Sv1 ∪ Sv2 ∪ Sv5| ≤ 4

3
ω − 1, the subgraph induced

by Sv1 ∪ Sv2 ∪ Sv5 is (4
3
ω − 1)-colorable. Denote the set of colors on Sv1 ∪ Sv2 by C1,2 and

denote the set of colors on Sv5 by C5. Notice that C1,2∩C5 = ∅. Then, color the vertices in

Svi according to the ordering i = 3, 4. For each i, before Svi is to be colored, the vertices

in Svi−2
∪Svi−1

have already been colored; denote the set of colors on Svi−1
by Ci−1. Since

H is an odd cycle of length 5, in G′ there is no edge joining a vertex in Svi and a vertex

in Svi−2
. Hence it is possible to colors the vertices in Svi by using the colors in C1,2 \ Ci−1.
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Assign v6 any color that is not used on Sv1 ∪ Sv2 ∪ Sv3 ∪ Sv4 ∪ Sv5 . The above process

proves that G′ is 4
3
ω-colorable.

Case 2: r3 > ω/3 and r5 > ω/3. It suffices to prove that G′ is 4
3
ω-colorable. Since

|Sv1 ∪ Sv2| = ω − 1, the subgraph induced by Sv1 ∪ Sv2 is (ω − 1)-colorable. Denote the

set of colors on Sv1 and Sv2 by C1 and C2, respectively. Let C0 be a set of ω/3 colors such

that C0 ∩ (C1 ∪ C2) = ∅. Then, color the vertices in Sv3 by using the colors in C0 as their

first choice and the colors in C1 as their secondary choice. Since |Sv3 | = r3, the number

of colors used on Sv3 in the set C1 equals r3−ω/3. Let C3 denote the set of colors on Sv3 .

Then, color the vertices in Sv5 by using the colors in C0 as their first choice and the colors

in C2 as their secondary choice. Since |Sv5 | = r5, the number of colors used on Sv5 in the

set C2 equals r5 − ω/3. Let C5 denote the set of colors on Sv5 . Then, color the vertices in

Sv4 by using the colors in C1 ∪ C2. Since r1 ≥ r3 > ω/3 and r1 + r5 < ω together imply

that r5 < 2ω/3, we have

r1 + r2 ≥ r3 + r4 > r3 + r4 + r5 − 2ω/3 = (r3 − ω/3) + r4 + (r5 − ω/3)

and therefore it is possible to color the vertices in Sv4 by using the colors in (C1 ∪ C2) \

(C3 ∪ C5). Assign v6 any color that is not used on Sv1 ∪ Sv2 ∪ Sv3 ∪ Sv4 ∪ Sv5 . The above

process proves that G′ is 4
3
ω-colorable.

Let H be an induced subgraph of G. We now show that it is possible that neither

imp(G) > imp(H) nor imp(G) < imp(H) holds.

Observation 2.4. There exists a UDG G such that imp(G) > imp(H1) and imp(G) <

imp(H2) for some induced subgraph H1 and H2 of G.

Proof. Let G = W6, H1 = C3, and H2 = C5. Clearly, imp(C3) = 1. By Theorems 2.3

and 2.2, imp(W6) = 4/3 and imp(C5) = 1.5. Thus we have imp(W6) > imp(C3) and

imp(W6) < imp(C5).
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We now define the Harary graph Hk,n; see also [11]. Given k < n, place n vertices

around a circle, equally spaces. Let the vertices be 0, 1, . . . , n− 1; the edges are added in

the following ways.

Case 1: k = 2m. Add an edge between i and j whenever i−m ≤ j ≤ i+m (mod n).

Case 2: k = 2m+1 and n is even. Construct Hk,n from Hk−1,n by adding an edge between

i and i+ n/2 for each 1 ≤ i ≤ n/2.

Case 3: k = 2m+1 and n is odd. Construct Hk,n from Hk−1,n by adding an edge between

0 and (n− 1)/2, 0 and (n+ 1)/2, i and i+ (n+ 1)/2 for each 1 ≤ i ≤ (n− 1)/2.

Theorem 2.5. Consider the Harary graph G of the form H2m,3m+2. Then imp(G) = 1.5

if m is odd, 3m+2
2m+2

≤ imp(G) ≤ 1.5 if m is even.

Proof. Let V (G) = {v1, v2, ..., v3m+2}. This theorem holds if we can prove that imp(G) =

d 3m+2
2 e

m+1
. We first prove that imp(G) ≥ d

3m+2
2 e

m+1
. An independent set of a graph is a subset

of its vertex set such that each pair of vertices in this subset are not adjacent. Since an

independent set of a Harary graph is of size at most 2, each color can be used at most

twice. Consequently, χ(G) ≥
⌈
|V (G)|

2

⌉
=
⌈
3m+2

2

⌉
. Define a coloring

f : V (G)→ {1, 2, . . . ,
⌈
3m+2

2

⌉
}

as follows:

(i) If m is odd, let f(vi) = f(vi+ 3m+1
2

) = i for each 1 ≤ i ≤ 3m+1
2

and let f(v3m+2) =⌈
3m+2

2

⌉
.

(ii) If m is even, let f(vi) = f(vi+ 3m+2
2

) = i for each 1 ≤ i ≤ 3m+2
2

.

Hence χ(G) ≤
⌈
3m+2

2

⌉
. Therefore χ(G) =

⌈
3m+2

2

⌉
. Notice that ω(G) = m + 1. Thus we

have imp(G) ≥ d
3m+2

2 e
m+1

.

We now prove that imp(G) ≤ 1.5. For each i, suppose wG(vi) has weight ri. Without

loss of generality, we may assume that r1 + r2 + · · · + rm+1 = ω(G′). Set ω = ω(G′) for
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easy writing. To prove this theorem, it suffices to prove that G′ is 1.5ω-colorable. Let

k = min{0 ≤ k ≤ m|
∑k+1

i=1 ri > 0.5ω}. Then{
rm+2 + rm+3 + · · ·+ rm+k+1 ≤ r1 + r2 + · · ·+ rk ≤ 0.5ω

r2m+k+3 + r2m+k+4 + · · ·+ r3m+2 ≤ rk+2 + rk+3 + · · ·+ rm+1 < 0.5ω.

Since there is no edge joining a vertex in Svi and a vertex in Svj for all m+2 ≤ i ≤ m+k+1

and 2m + k + 3 ≤ j ≤ 3m + 2, {∪m+k+1
i=1 Svi} ∪ {∪3m+2

i=2m+k+3Svi} is 1.5ω-colorable. Denote

the set of colors on Svi by Ci for 1 ≤ i ≤ m + 1. Then,
∑i

j=1 |Cj| >
∑m+i+1

j=m+k+2 |Svj |

for i = k + 1, k + 2, . . . ,m,
∑m+1

j=i |Cj| >
∑2m+k+2

j=2m+i+1 |Svj | for i = k + 1, k, . . . , 1 and∑m+1
j=1 |Cj| ≥

∑2m+k+2
j=m+k+2 |Svj |. This implies that we can color the vertices in Svi according

to the ordering i = m+ k + 2,m+ k + 3, . . . , 2m+ 1, 2m+ k + 2, 2m+ k + 1, . . . , 2m+ 2

by using the colors in ∪m+1
i=1 Ci. Thus G′ is 1.5ω-colorable.

We now list some imperfection ratios of Harary graphs H2m,3m+2. It is not difficult to

see that imp(H2m,3m+2)→ 1.5 when m is even.

m 3m+ 2 χ(G) ω(G) lower bound of imp(G) upper bound of imp(G)

1 5 3 2 1.5 1.5

2 8 4 3 1.333 1.5

3 11 6 4 1.5 1.5

4 14 7 5 1.4 1.5

5 17 9 6 1.5 1.5

6 20 10 7 1.429 1.5

7 23 12 8 1.5 1.5

Table 1: The imperfection ratios of Harary graphs H2m,3m+2.
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3 Our coloring algorithm and simulation results

For convenience, let c(G) by the number of colors used by a given algorithm. The

performance of an algorithm is defined by PR(G) = c(G)/ω(G). Let First-Fit (also called

a greedy coloring algorithm) denote the coloring algorithm that examines the vertices

of a graph in an arbitrary order and assigns each vertex the smallest-indexed color not

already used on its examined neighbors. To improve First-Fit, we examines the vertices of

a graph in the order obtained by breadth-first search (BFS) form any node and we call our

algorithm BFS-First-Fit. Since Mani and Petr [9] mentioned that χ(G)/ω(G) is at most

1.2079 in their simulation results, if BFS-First-Fit obtains PR(G) > 1.2, then we will run

BFS-First-Fit again by choosing another vertex as the root of the BFS until PR(G) ≤ 1.2

or the above process has been repeated too many times (in this thesis, the threshold value

of 10 is chosen). Notice that we can adjust the value 1.2 in PR(G) > 1.2 and the number

of times that the root of BFS-First-Fit is changed to get a better performance.

This section is divided into four subsections. In Subsection 3.1, we consider randomly

generated UDGs. In Subsection 3.2, we consider randomly generated weighted UDGs.

In Subsection 3.3, we consider randomly generated UDGs in which the nodes are not

evenly distributed. And in Subsection 3.4, we consider randomly generated UDGs that

allow the addition of new nodes. For each subsection, simulations results for First-Fit

and BFS-First-Fit are obtained.

3.1 Randomly generated unit disk graphs

To perform the simulations, we randomly construct 500 connected UDGs with n nodes

in a 100m× 100m area, where n is ranged from 100 to 500, with an increment of 50. The

interference range of each node is assumed to be 25m.
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Figure 4 shows the average PR(G) obtained by First-Fit and BFS-First-Fit. Both

of them increase as the number of nodes increases. The performance of BFS-First-Fit is

better than that of First-Fit in all cases and the difference between them increases as the

number of nodes increases.
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Figure 4: The average PR(G).

Figure 5 shows the maximum PR(G) obtained by First-Fit and BFS-First-Fit. We

observe that maximum PR(G) is about 1.2 if BFS-First-Fit is used and about 1.5 if

First-Fit is used.

Among our 4500 simulations, PR(G) ≤ 1.2 occurs for almost all cases, and there are

only 7 simulations with PR(G) > 1.2. Among the 7 simulations with PR(G) > 1.2, the

maximum PR(G) of them is 1.2381, which is larger than 1.2079. There is an example

of PR(G) = 1.211 in Figure 6; this UDG has 200 nodes and we color the edges of its

maximum clique in color red. Based on our simulation results, we conclude that BFS-

First-Fit has PR(G) ≤ 1.2 for most of the cases.
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Figure 5: The maximum PR(G).

Figure 6: An example of PR(G) = 1.211.

3.2 Randomly generated weighted unit disk graph

In this subsection, we consider weighted UDGs and we use the same parameters as in

[9] to compare the PR(G) obtained by BFS-First-Fit with the simulation results in [9].

More precisely, we assume that n nodes are chosen randomly from a disk of radius 1

and each node has interference range 1. Node i has weight ri. The weights are chosen
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randomly from 1, 2, . . . , K, where K corresponds to the maximum weight. We vary the

number of nodes n as 10, 25, 50, 75 and 100. For each n, we also vary the maximum weight

K as 1, 5, 10, 20, 30, 40 and 50. For each (n,K) pair, we perform 500 simulations. Table 2

shows the average value of PR(G), and Table 3 shows the maximum value of PR(G).

From Table 2, we observe that PR(G) increases as the number of nodes increases, but

there are no obvious relation between PR(G) and the maximum weight K. In Table 3,

the maximum value of PR(G) is 1.222.

n K = 1 K = 5 K = 10 K = 20 K = 30 K = 40 K = 50
10 1.007 1.007 1.005 1.005 1.005 1.006 1.005
25 1.039 1.033 1.033 1.034 1.032 1.032 1.034
50 1.063 1.060 1.055 1.059 1.056 1.056 1.056
75 1.075 1.072 1.074 1.070 1.071 1.068 1.070
100 1.086 1.082 1.081 1.079 1.079 1.080 1.081

Table 2: The average value of PR(G).

n K = 1 K = 5 K = 10 K = 20 K = 30 K = 40 K = 50
10 1.167 1.111 1.138 1.145 1.135 1.213 1.153
25 1.222 1.175 1.138 1.146 1.149 1.126 1.166
50 1.176 1.169 1.181 1.136 1.172 1.153 1.158
75 1.160 1.167 1.188 1.195 1.159 1.185 1.187
100 1.182 1.208 1.186 1.179 1.186 1.166 1.182

Table 3: The maximum value of PR(G).

3.3 Randomly generated unit disk graphs with different density of nodes

In this subsection, we consider UDGs with different density of nodes. We randomly

construct 500 connected UDGs with n nodes in a 100m × 100m area (for convenience,

denote this area by A), where n is ranged from 100 to 500, with an increment of 50.

The interference range of each node is assumed to be 25m. We consider four scenarios as

follows.
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(a) One of the four corner areas of A has more nodes. (See Figure 7(a).)

(b) The center area of A has more nodes. (See Figure 7(b).)

(c) The area near one side of A has more nodes. (See Figure 7(c).)

(d) The area near the middle line of A has more nodes. (See Figure 7(d).)

Figure 7: An example of different density of nodes.

From our simulations, we observe that the selection of the root of the BFS will effect

the performance of BFS-First-Fit. Choosing the root in the area with high density of

nodes will make BFS-First-Fit have a better performance but the difference is not big;

thus we omit the details of these simulation results.

Figure 8 shows the average PR(G) obtained by First-Fit and BFS-First-Fit. We can

observe that the average PR(G) obtained by First-Fit and BFS-First-Fit are very close

in (a) and (b). The difference between them decreases as the number of nodes increases
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and this is because the chromatic number is very close to the clique number; so there is

no big improvement. In (c) and (d), the improvement is larger.

點數 100 150 200 250 300 350 400 450 500

BFS-First-Fit1.00348 1.00448 1.0059 1.00806 1.00765 1.00658 1.00811 1.00578 1.00926

First-Fit 1.02221 1.01955 1.01636 1.01575 1.01341 1.01299 1.01369 1.01341 1.01149

點數 100 150 200 250 300 350 400 450 500

BFS-First-Fit1.02582 1.03034 1.03371 1.03558 1.03485 1.03858 1.03624 1.03573 1.03933

First-Fit 1.05676 1.05755 1.0567 1.05717 1.05428 1.05465 1.05569 1.05162 1.0529

點數 100 150 200 250 300 350 400 450 500

BFS-First-Fit1.04803 1.0639 1.06278 1.05541 1.06069 1.06125 1.06509 1.06256 1.06225

First-Fit 1.11726 1.13568 1.14825 1.15668 1.16768 1.16578 1.17231 1.1726 1.16571

點數 100 150 200 250 300 350 400 450 500

BFS-First-Fit1.07514 1.08232 1.07438 1.08505 1.09266 1.0907 1.08988 1.09582 1.09176

First-Fit 1.13881 1.16245 1.16739 1.18117 1.19182 1.1896 1.19282 1.19547 1.193870
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Figure 8: The average PR(G) in UDGs with different density of nodes.

3.4 Randomly generated unit disk graphs that allow the addition of
nodes

In real world, many networks have some nodes that do not exist initially but are added

later. In this case, BFS-First-Fit can only be applied on initial nodes and when there are

addition nodes, BFS-First-Fit must be restart for all nodes if we want to use it.

In this section, we simulate the UDGs which allows nodes to be added. We randomly

construct 500 connected UDGs with initial n nodes in a 100m × 100m area, where n is

100 or 200. And each time we add n/4 nodes and totally we add the nodes for five times.

The interference range of each node is assumed to be 25m. We use BFS-First-Fit to color
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the initial n nodes and use First-Fit to color the added. We compare results of such a

BFS-First-Fit plus First-Fit manner with results that only use First-Fit.

Figure 9 shows the average PR(G) of BFS-First-Fit and First-Fit. We observe that

when the number of added nodes is more than 3n/4, the PR(G) of BFS-First-Fit and

First-Fit become very close. Thus we suggest that when the wireless network allows the

addition of nodes, BFS-First-Fit must be restarted if the number of added nodes is more

than 3n/4.

點數 100 125 150 175 200 225

BFS-First-Fit 1.0806 1.13392 1.159 1.1672 1.1811 1.19357

First-Fit 1.16196 1.17217 1.1863 1.19048 1.20413 1.21309

點數 200 250 300 350 400 450

BFS-First-Fit1.11539 1.16879 1.18957 1.20362 1.21935 1.22946

First-Fit 1.22144 1.22943 1.23936 1.24641 1.25596 1.26421
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Figure 9: The average PR(G) in UDGs that allow the addition of nodes.

4 Concluding remarks

In this thesis, we propose UDGs with imp(G) > 1.2079 and we propose simulations

to compare the difference between the clique number and the chromatic number obtained

by our algorithm and by First-Fit; some different types of random UDGs have been

considered. We find that in almost all cases, our algorithm can color the graph G with

χ(G) < 1.2ω(G) colors. In the future, the theoretical bound of our algorithm will be

considered.
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