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Preface

In computer science, the so-called "Union-Find problem" is concerned with establish-
ing a data structure for maintaining a collection of disjoint sets such that the process of
merging sets can be carried out efficiently. Indeed, several data structures and corre-
sponding algorithms for merging sets have been proposed. For the purpose of compar-
ing the complexity of these algorithms, it is naturally to consider the total cost incurred
from merging n singleton sets into one set. In this thesis, we assume that the cost of
each merging step is the power of the sum of the sizes of the sets being merged and
then derive the expected value and the limiting distribution of the total cost under the

random spanning tree model.

The main tool used in this thesis-is-singularity analysis, which is a method connect-
ing the asymptotics of generating functions with the asymptotics of their coefficients.
We will use it to derive the moments of each order. Then, with the method of moments,

the limiting distribution of the total cost will follow.

In the first part of this thesis (Chapter 1), we introduce the problem of interest and
state the results of our work:" In Chapter-2;we give an introduction about our main
tool, singularity analysis. The central part of this thesis, namely Chapter 3, is devoted
to the derivation of the expected value and higher moments. These results will will
then be used in Chapter 4 for prove our main result. Finally, we end the thesis with a

conclusion in Chapter 5.
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Chapter 1
Introduction

In computer science, some ‘applications involve grouping n distinct elements into a
collection of disjoint sets:and then-performing two eperations union(z, y) and find(z)

on the disjoint sets, with

(1) union(x,y): unites the sets that contain  and y, say S, and S,, into a new set that

is the union of these two sets.
(2) find(z): returns the representative of the set containing x.

As an example where these operations are used consider the following algorithm for
the construction of the minimum spanning tree of an undirected graph: initially, we set
each vertex as a singleton set. Then, we find edges (m, n) by some strategy and check
whether m and n are in the same set or not, i.e. whether find(m) equals to find(n). If
they are not, we add (m, n) to the tree being constructed and merge the set containing
m and n, i.e. union(m,n). If m and n are already in the same set, just drop the edge
(m, n) and find a new one.

The central problem for the above example is to establish a data structure for maintain-

ing a collection of disjoint sets so that a sequence of union and find instructions can be



carried out efficiently. (this problem is called the "Union-Find problem" in [2, Cphater
4]). Indeed, several data structures and corresponding algorithms for union(z,y) and
find(x) have been proposed. Following Yao [12], the data structure used to represent
a set is a rooted tree and four algorithms for implementing union(x,y) and find(z)
are mentioned, namely Quick-Find Algorithm, Quick-Merge Algorithm, Quick-Find
with Weighting Rule, Quick-Merge with Weighting Rule. Moreover, the operations
union(z,y) and find(x) take different cost under each algorithm.

Let us now return to our original problem. Suppose that initially there is a collection of
n singleton sets, named S = {[1], [2],- - - , [n]}, and that the sets are merged in some se-
quence of n— 1 union(z, y)-instructions until all of the n elements are in one set. Here,
the main problem of interest is' the average-cost of this process. In general, a proba-
bilistic model I',, indexed by n is assumed to reflect the nature of input instructions.
Then, the cost function:becomes-a random variable X,, induced by [',,. Moreover, if
the time is reversed, the process can be thought as the splitting of a random tree. That
is, for a tree of n nodes that is chosen at random, we cut its edge also at random. This
separates the tree into two smaller trees and the cost of incurred by splitting the tree is
c,. Then, we continue this process with each resulting trees until the completely dis-
connected graph is obtained. Thus, a distributional recurrence that relates the random

variables X,, as follows
X, L Xg, + X! g ¢, forn>2 X, =0 (1.1)

arises naturally, where ¢, is a quantity, called toll function, that represents either the
cost incurred by splitting a random tree of size n, or alternatively merging two sets into
a set of size n; .9, is the (random) size of the first subtree and the second subtree has
size n — S,,. X is an independent copy of X,,.

Two probabilistic models have been introduced in [12]: the random graph model and

the random spanning tree model. In this thesis, we only focus on the random spanning



tree model. In this model, a spanning tree of a complete graph with n vertices is chosen
randomly and then the edges of this spanning tree are randomly ordered. This leads to
a sequence of n — 1 edges, named ey, es,. .., e,_1. This sequence also gives us a se-
quence of union(zx, y)-instructions if we take each edge e; = (z, y) as an union(z, y)-
instruction. By a famous result due to Cayley, there are n" 2 such labeled unrooted
trees on n nodes. Hence n"~?(n — 1)! possible sequences of union(z, y)-instructions
are equally likely. Thus, S, is distributed as follows:

B B n kk—l(n_k)n—k—l
P(S, = k) = (k) PN (1.2)

Indeed, the distributional recurrence (1:1) has been already analyzed fully for the toll
functions induced from Quick-Find Algorithm, Quick-Merge Algorithm, Quick-Find
with Weighting Rule and Quick-Merge with-Weighting Rule. But in [10], Knuth and
Pittel considered the case when the toll function ¢, equals n“, i.e. the distributional
recurrence

X, L Xg, + X5 g+ 0, forn>2 (1.3)

and gave the order-of-growth of the excepted value of X, by the approach of repertoire.

Their result is the following theorem.

Theorem 1.1. (Knuth and Pittel [10]). Under: the random spanning tree model, the
expected value of X,, which satisfies the distributional recurrence (1.3) with the initial

condition X1 = 0 is

r ;(f(%—(%)jn?% ; Ol(na), l:f(l/ i 1,
EX, = F@?)na: s lf? .
"=y Ve 2 +0(n), if;<a<l
\/%nlnn%—O(n), if a=1;
[ O(n), if0<a<s.




Recently, Fill, Flajolet and Kapur used a new method, called singularity analysis which
was developed by Flajolet and Odlyzkoto in [7] to give a more precise estimate of the
excepted value of X, (with the initial condition X; = 1). Their result is described in

the following theorem.

Theorem 1.2. (Fill, Flajolet and Kapur [4]) Under the random spanning tree model,
the expected value of X,, which satisfies the distributional recurrence (1.3) with the

initial condition X1 = 1 is

(Tt £ 0 ), ifa > &
\[rl( ey n?+ O(nlogn),  ifa=3;

EX, = fﬁr()) n®*tz + O(n), ifi<a<i,
\/—Q—WnlnnjLO(n), ifra=3;

(1 + 1K )n+ O(n*F3), if0<a< i,

Although the analysis'of the excepted value of X, is complete, higher moments and the
limit distribution are still missing. The aim of this thesis is (1) to correct some mistakes
of the excepted value of X, in [4],i.e. Theorem 1.2, and (2) to extend their result by
characterizing the higherimoments and the limiting distribution of X,.

We present our result by the following two theorems.

Theorem 1.3. Under the random spanning tree model, the expected value of X,, which

satisfies the distributional recurrence (1.3) with the initial condition X, = 0 is

( 3§é§a+«+0( °), ifa>;
EX, — f/(fyr( )) n®*tz + 0(n), ifi<a<l;
#nlnn—kO(n), if o= 3;
\ %Kan—l—O(n‘”%), if0<a<s.

Moreover, the error terms are optimal.



Comparing our result with Knuth and Pittel's result, we discover that Knuth and Pittel's

result is almost optimal except for the case of @ = 1l and 0 < a < % Moreover,
there are indeed some mistakes in the error terms in Fill, Flajolet and Kapur's result as
o> % Finally, our main result about the limiting distribution of X, is described in the

following theorem.

Theorem 1.4. Let Y,, ba a random variable defined as follows:

Xn—21Kan .
Y — TLQ+7 2
n X, . 1
naJr%? lfa > 29
Then, we have
Y, %Y,
n — )

where Y is a random variable whose distribution is unique and characterized by its

moments:

ko Ap/m
= Th@r D) - D)

k—1 k

k 2 Plka+ 3 —1
z : ( >A]Ak—] + £’lg"4kr—1 ( v 2 k ) )
=\ 2 P((k—1)a+35—1)

with

A =

N

fork >2 A = \/%F(a - 1.

Remark 1.1. The K, in the previous two theorems is a constant and it can be explicitly

computed; for details see Chapter 3.



Chapter 2

Tools

2.1 Singularity. Analysis

2.1.1 Introduction

Generating functionsare a useful tool for counting in combinatorics. In a number of
situations, the generating function is explicit and can be expanded such that an explicit
formula results for the coefficients. For example, consider the enumeration of binary
trees: let C,, denote the number of binary trees with n internal nodes and C'(z) be the

ordinary generation of C,,. Then, by the recurrence
C, = C,Chi_p, forn>1, Cy=1,

we can derive that C'(z) satisfies the following equation
C(2) =1+ 20(2)%

Solving with the quadratic formula, we get

114
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Then, expanding by Newton's binomial theorem yields

comtmer=4(, oot (2).

But in a number of cases, either the generating function can not be obtained in an
explicit way, or if an explicit formula of the generating function is available, we still
can not find a closed form for its coefficients. For example, consider the enumeration

of alternating permutations.

Definition 2.1. 4 permutation 0,04 - - - 0,, is an alternating permutation if 0, > 09 <

O3> 04 < -,

Let 7,, denote the number of alternating/permutations of odd size n and 7'(z) be the
ordinary generating function of 7;,. To each alternating permutation we can associate
bijectively a binary tree.of special type called increasing binary tree. The correspon-
dence is as follows: given an alternating permutation, ¢ = 0,05 - - - 0,,, factor it into
the form o = o min/(a)-0 r, with min (o) the smallest label value in the permutation,
and o, op the factors left and right of min (¢). Then, a labelled binary tree 5(o) can
be defined recursively in the format (left, root, right) by

B(o) = (6(ow), min (0),8(cr)).

This labelled binary tree is called increasing binary tree since every sequence of labels
from the root to any leave is increasing. Conversely, reading recursively the labels of an
increasing binary tree (in the same way as above) gives back the original permutation.

From this correspondence, we get the recurrence for 7,

n—1

n—1

Tn = z: ( k )Tan—l—ka for n 2 17 TO = 07 Tl = 1.
k=1

Thus, we derive that 7'(z) satisfies the integral equation

T(z) — 2 = /0 " P(w)2dw.



Solving this integral equation, we get

T(z) = tanz.
In this case, since
sin z .
T(z) =tanz = == T(z)cosz =sinz,
oS 2

we get the following relation

n n
T, — T, Ty y— - = (=112

for n odd. Thus, we can now compute an arbitrary number of terms of the counting
sequence {7} by a simple algorithm based on the above relation, but an explicit for-
mula for them is still not.available:

In this chapter, we introduce an-approach, called singularity analysis, to the analysis
of coefficients of generating functions. With this method, it is possible to estimate
asymptotically the coefficients of virtually any generating function, even if they are
complicated. Thus, we can easily interpret-and compare the counting sequences ac-

cording to their asymptotic formulas of coefficients.

2.1.2 Fundamentals of singularity analysis

From now on, we treat generating functions as analytic objects. We assign values to
variables that appear in generating functions, in particular complex values. This will
bring us more benefit than only assigning real values. Thus, a generating function
becomes a complex-valued function. The theory of singularity analysis illustrates a
correspondence between the asymptotic expansion of a function near its dominant sin-

gularity (the singularity closest to 0) and the asymptotic expansion of the function's



coefficients. The development of this theory is based on Cauchy's coefficient formula,

a technique of complex analysis for obtaining coefficients of a function:

20w

fu= (1) = 5 [ H0) 2

and using a special contour known as Hankel contour. We only state results and refer

the reader for proofs to Flajolet and Sedgewick [8].
Theorem 2.1. Let o be an arbitrary complex number in C\Z<,.

(1) Consider the function
[@= (-2

Then,

a, = [2"]f(z) ~ ?(a) (1 -1-2 6/;5}?)) ’

where ey () is a polynomial in a of degree 2k.

(2) Consider the function

iy ()

where [ is a complex number. Then,

a—1

o) (logn)? <1+Zlog n)’

’s:oa-

an = [2"]f(2) ~

where Ci(a) = (i)F(a)js—’;F(s

Remark 2.1. We use the following notations

L(z) = log T

throughout this thesis.



Remark2.2. When a€Z<, the coefficient of f(z) = (1 — 2)~* will eventually vanish,
so that the asymptotic expansion becomes trivial. Note that the formula in Theorem
2.1, part (1) actually remains valid with the convention ﬁ = ﬁ =...=0. As for
part (2), the formula also remains valid for a€Z< (again with the same convention as

before).
Definition 2.2. Given two numbers R and ¢, with R > 1 and 0 < ¢ < 3. Then,
A= AR, 6) = {l|2] < R,z # 1, |arg(z — 1)| > 6}

is called a A-domain. Moreover, a function is called A-analytic if it is analytic in some

A-domain.

Theorem 2.2. Let o, B be two arbitrary real numbers and f(z) be a A-analytic func-

tion.
(1) Assume that
Fz) = Ol = 2)-*(L(z)P), asz= 1,z€A.
Then, [2"]f(z) = O@m%=(logn)?).
(2) Assume that

f(2) =o((1 = 2)"(L(2))"), asz—1,2EA.
Then, [2"]f(z) = o(n®~*(logn)®).
Theorem 2.1 and Theorem 2.2 establish a correspondence between properties of a func-
tion f(z) singular at an isolated point (z = 1) and the asymptotic behavior of its coef-
ficients f,, = [2"]f(z). At this stage, we thus have enough tools to derive the term-by-

term transfers from the expansion of a function at its singularity, also called singular

expansion, to the asymptotic estimate of its coefficients. The process can be stated as

10



follows:
Suppose that f(z) is a function with the dominant singularity at z = ( and that it is
analytic in some domain of the form (A. Analyze f(z) as z—( in the domain (A and

determine an expansion of the form

f(z) = g(2) + O(h(2)) with h(z) = o(g(2)), 2.1

where g(z/() and h(z/() should belong to a standard scale of functions of the form
(1—2)"“A(2)” with A(z) := 2 'log (1 — z)~L. Then, by taking Taylor coefficients in
(2.1) and with Theorem 2.2, we have

fn = [2"1(2) Sle"g(Z) + "0 (h(2))
=("[2"g(2/C)+ O [2"h(2/C))
=C"gn + O(C o).

We give a simple example. In Section 2.1.1, we have already derived that the number

of binary tree with n internal nodes is

Gy 2 [210(2) == (2:)

n—+1

Applying Stirling's formula to C';, we obtain the asymptotic expansion of C,,,

1 (2n)!  1(2n)Pe*W4Amn A"
" n+1(n)?2  n n¥e 22 /a3

But now, with the method of singularity analysis, we can obtain the the asymptotic

behavior of C,, directly from its generating function C'(z) which is given by

1—+v1—4z

Clz) = 2z

Note that C'(z) has the dominant singularity at z = }1 and by rescaling we can obtain

11



—4"[2"|[2— (1 —2) + O(]1 — 2|)]  (expanded at z = 1)

4TL
= + O(n*2) ~—.
mn3 m™n3

2.1.3 Differentiation and integration

Singularity analysis is robust because it is not only closed under several simple
operations such as &, x, = but also closed under differentiation and integration. Here,
"closed" means that functions amenable to singularity analysis are still amenable to
singularity analysis after applying operations. We describe this property through the
following two theorems. In this subsection, we focus on the functions that are A-
analytic and admit singular expansions of the form:
=D al =% 0142, (2.2)
=0

7
for a sequence of complex numbers {¢; } o<i<mand an increasing sequence of real num-

bers {a; fo<i<m satisfying a; < A.

Theorem 2.3. Let f(z) be a A-analytic function having its singular expansion of the

Sform (2.2). Then, the derivative of f(z) is also A-analytic. Moreover,

d k
0 == ealt =2 0L -2

Remark 2.3. Theorem 2.3 can be extended to include logarithmic terms. For instance,
if f(z) satisfies
f(2) =0(1 = 2|2 L(2)*), fork € Z>,,

12



then one has

£ 1) = 01— L))

Theorem 2.4. Let f(z) be a A-analytic function having its singular expansion of the
Sform (2.2). Then, the integral of f(z) is also A-analytic. Moreover,

(1) If A < —1, then

z k ¢ .
/0 fw)dw = — ZO P 1(1 — )T L O(|1 — 2[A).

=

(2) If A > —1, then

. i
4 Ci o1 A+1
/0 f(w)dw——Zoai+1(1—z) + Lo+ O(|1 — 2|*),

1=
where Lq is a constant with-the value

L= Y S 0 - X et -

a;<—1 a; <=1

Remark 2.4. The case that either some «; or A equals to —1 is treated by the following

rules:
/0 (1—w)~'dw = T2, /0 O((1 = w) V)dw = O(L(2)).

Moreover, the integration with powers of logarithms is done with the following rules
(for a# — 1)

[ =t = o2 o vy,

da*

for k a positive integer.

13



2.2 Polylogarithms and Hadamard Products

2.2.1 Polylogarithms

Definition 2.3. The generalized polylogarithm, commonly denoted by Li,, ., is defined
by a Taylor series as

: 2"
Lig(2) := Z(logn)vﬁ, 2€C, |z] <1, aeR, v€Zs.

n>1

Moreover, we make use of the abbreviation Li, o = Li,(2).

A good property, namely that polylogarithms are continuable to the whole of the com-
plex plane slit along the ray R, was established by Ford [9]. Thus, polylogarithms
are amenable to singularity analysis and their singular expansions are described in the

following theorem.

Theorem 2.5. The function Lig~(2) is A-analytic and for a&¢{0, 1,2, - - - } it satisfies

the expansion

. a— (_1)j
Liao(z) ~ T(1 — aJu®TL ¥ Y i
5>0

Cla—Nw’y ~w = (2.3)

—~ (1—2)F
]{/' 7
k=

1

where ((z) denotes the Riemann's zeta function. For vy > 0, the singular expansion of
Liy () is obtained by
o7
Ling(2) = (1) 5—Liao(2)

For latter purpose, the following special case is required.

Corollary 2.1. Fore > 0 and a < 1, we have the following singular expansion

Liay(2) =3 M1 = 2)2 1075 (2) + O(11 = 21°7) + (=1)7¢(a)[a > 0],

14



where )\,(ﬁa’y)E(Z) I'®)(1 — «) and [ > 0] has the value 1 if and only if o > 0.

Moreover, for o < 0, we have

Lino() = T(1 — a)(1 — 2)™! = T(1 — )= (1 = 2% + O(|1 — 2[*1)
+((a)[a > —1].

The following lemma is the inverse of Corollary 2.1.

Lemma 2.1. For any real number o < 1 and yEZ>, there exist a A-domain such that

(1-2)"7'L7(= ZM“”LZM (2) + O(1 = 21°7) + ¢y () o > 0]

holds uniformly in the A-domain, where ,u,(f’w ¢ (@) are.constants with ,u(()a’o) = F(llfa)
and cy(a)) = — F(C(a) and € > 0 is arbitrarily small.

Moreover, a special case which will-be used extensively used below is

(1—2)"t = ﬁLimo(z) PO z|°(F ) %[a > 0].

2.2.2 Hadamard product

Definition 2.4. Let f(2) and g() betwo functions analytic at Owith f(2) = 3, oo fu2"
and g(z) = 3, 5o gnz". Then, the Hadamard product of f(z) and g(z) is defined as

= Z fn.gnzn

n>0
Theorem 2.6. Let a and b be two arbitrary complex numbers with neither a,b and a+b
is an integer. Then (1 — 2)* ® (1 — 2)° is also analytic in a A-domain, and admits an
infinite expansion

Ty - - /\( 1_Z>a+b+1+k
(1-2)00-2"~> +ZM ,

k>0 k>0

15



where the coefficients )x,(:’b) and ,u,(:’b) are given by

@b _ Fa+b+1) (—a)k(—b)* LoD _ I(=a—b—-1)(a+ 1)*(b+ 1)
k D(a+1I(b+1) (—a— bk’ ¢ D(—=a)l(=b)  (a+b+2)F

Here, 2% is defined as ¥ = x(x + 1) - (x + k — 1) for k € Zs,.
Remark 2.5. The case that either a or b is a integer is simple; we have
1. (1 —2)°G®g(z) is a polynomial if a€Z>;

2. (1—2)"*®g(z) can be reduced to a derivative of g(z) if a€Z-; more precisely,

one has

(1 - Asdata—rtgar ("o )

The case that a + b is asinteger is-more complicated and it can be found in books by
Abramowitz and Stegun [1, pp.559-560] and by Whittaker and Waston [11, Section
14.53].

Theorem 2.7. Let f(z) and g(z) be two functions that are analytic in a A-domain
A(R, ¢). Then, f(z) ©®g(z).is also analytic in some A-domain. Moreover, if f(z) =
O((1 — 2)%) and g(2) = O((1 =.2)°) for = € MR, ®), then f(z) ® g(z) admits an

expansion in some A-domain as follows:

(I)Ifa+b+1 <0, then
f(2) ©g(2) = O((1 — 2)****1).
Q) Ifk<a+b+1<k+1, forsomek € Z>_,, then

D)1 = 2) +O((1 = )™+,

Mw

J=0 ]!

16



3)Iffa+b+1 GZZO, then

@g:

P11 =2+ O((1 = )" L(2)).

M»

J=0 ‘7'

The following corollary is a consequence of Theorem 2.6 and Theorem 2.7.

Corollary 2.2. Let f(z) and g(z) be two functions that are analytic in a A-domain
A(R, ¢) with singular expansions of type (2.2):

n

:ZCZ —2)% 4+ O(|]1 — 2| )andg(z):Zdj(l—z)ﬂj+0(|1—z|3).

i=0 7=0

Then, the Hadamard product (f©g)(z) is also. A-analytic and admits the singular ex-

pansion of the form:

(Jog)(z Zcm (I=a*0(l= HAPPAE2) + 0(1 - 2|°),

where C' := 1+ min(ag + B, fo + A)¢Zs and P is a polynomial of degree less than
C.

The reason for the polynomial P.is that the integral powers of (1 — z) do not leave a
trace in the asymptotics of coefficients, since their contribution is zero.

In practice, this corollary allows us to establish the following algorithm, called Zigzag
Algorithm, which is helpful in the computation of the singular expansions when com-

posing function under Hadamard products.

Zigzag-algorithm (Fill, Flajolet and Kapur [4])

Input: two functions f(z) and g(z) that are A-analytic and have singular expansions
of the form (2.2).

Output: the singular expansion of h(2) := (f®g)(z)
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Stepl. Use singularity analysis to determine the asymptotic expansions of f, =
[2"]f(2) and g, = [z"]g(2).

Step2. Compute the asymptotic expansion of h,, = [z"|h(z) by multiplying the

asymptotic expansions of f,, and g,,.

Step3. Construct a function H (z) by using singularity analysis in the reverse direc-
tion such that the asymptotic expansion of its coefficients is compatible with the
asymptotic expansion of h,,. By the construction, H (z) is a sum of functions of

the form (1 — 2)*L(z)”, which are all singular at 1.
Step4. Output the singular expansion of (f®g) as
(fO9)2) = h(z) =d(z) P (L= 2)+ O(|1 — 2|9,

where C' can be determined by the previous Corollary and P is a polynomial
of degree 0, which is the largest integer less than C'.. Moreover, P(z) can be

determined as follows:

18



Chapter 3

Moments by Singularity Analysis

So far, we have presented the tools which will be used in this thesis. From now on, we

return to the analysis of the distributional recurrence:
X, L Xgi 4 X g +0°, < forn>2 X, = 0. 3.1

In this chapter, we will first give the generating functions-of the moments and then

compute all moments of the random variable X,,.

3.1 Expected Value -~ Proof of Theorem 1.3

It is crucial for us to have an asymptotic expansion of the expectation a,, = E(X,,), be-
cause it is the initial case of mathematical induction to get all higher moments of X,,. As
discussed in Chapter 1, such asymptotic expansions were derived by Fill, Flajolet and
Kapur. However, there seems to be some imprecisions in their result. Consequently,

we will re-derive their result (we closely follow the method in [4].) Now, starting from
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the distributional recurrence (3.1), conditioning on the size S,, yields,

= an,j(aj +ap_j)+n
Here, p,, ; = P(S,, = j) is given by
B n k,kfl(n _ kj)nfkfl
Py =\ e 2(n — 1)nn—2

as mentioned in (1.2) and we rewrite it into the form:

n CrCn—L

Prnj =

2m=1) ¢,
where
k—1
Cp = TaP fork>1.
Thus, we have
S n cion
n— o
A :; 2= D) ]Cn L(a; + a,—j) +n

S ee

:Z sy L e
‘— (n'—1) ¢,
g

or
n—1
n—1 o
Cply, = g CjaiCn_j + cpn”. 3.2)
n
7=1

n—1

n

Multiplying the equation by % and summing over n > 1, we get

_1 o n=j n 17Lozn
DL R S I R : G3)

n>1 n>1 j=1 n>1

Let A(z) and C(z) be the ordinary generating functions of the sequences a,, and ¢,,

that is

Az) = Z a,z", C(z)= chz".

n>1 n>1

20



Then the relation (3.3) can be reduced to

A(2)0C(2e)— /0 ) A(w)@C(w/e)d—w (3.4)

lcn ey

= (A(2)0C(z/e))

n>1

Moreover, C(z) which is known as Cayley function.satisfies the functional equation
C(z) = 2@, (3.5)

and it admits the singular expansion at the dominant singularity z = e~! (see [6, Propo-

sition 1])
Clz) = 1— V3L~ ez)V/? — %(1 S 4 O([1 — e22). (3.6)
By differentiating equation (3.5) on z, we get
C'(z) = YDA 2eCC)C7 (7). (3.7)

This yields
20°(2) — C(z) = 2C"(2)C(2)-

Finally, by taking the coefficients on both size of the equation, we have
ne, — ¢, = chjcn_j (co:=0)
5=0

and consequently

Thus, we have
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Substituting this into (3.4) leads to

A(z)0C(z/e)— /OZ Alw) ® C’(w/e)%ﬂ

= (A(z) ®C(z/e))C(z/e) + Z Z %Cjcn_j

n>1 j=0

a,n
on n-z.

Next, let B(z) = ), ., n*z" be the ordinary generating function of the sequence n®.

Then we arrive at

A(z) ® C(z/e)— / A(w) @ Olw/e) ™

= (A()@ € (2/e) + 5 B(2) © Clz/e)”

For convenience, putting f(z) = A(z) © C(z/e) andt(z) := 1 B(z) ® C(z/e)?, we

have
£&) <ol Fa) S S ACCL) o) 6.8
Then by differentiating; we transfer the above integral equation into a linear differential
TR N 1O o) | di)
df (z f(2) L df(z dC(z/e dt(z
dz z . dz Clefey+1(2) dz + dz
or
d 1 dC d
(1—C(z/e)) J;(ZZ) L <;+ f;/e)) f(2) + ’;(? (3.9)
Moreover, from (3.7) and (3.5), we have
dC(z/e) %C(z/e)
dz  1-C(z/e)
Substituting this into (3.9) yields
df(z) 1 1 dt(z)
R we pyss TG wrer Py R (3-10)
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Now, we solve this differential equation by the method of variation-of-constants. First,
we consider the homogenous part, that is

df (z) _ 1
dz 2(1—=C(z/e))?

f(2).

Then, we have

N dw
1 = K=—In(1- 1 K
0 /() = | G K =~ = O(e/e) + InCe/e) +
where K is a constant. Thus, the solution of the homogenous part is
(z/ €) K
f(z) =
1-C(z/e)°

Letting f(z) = I_Céz(/z e/)e) eX(2) and substituting it into(3.10), we obtain that

eK(z):/ Dut(w )d +D;
0

Cw/e)
where D is a constant. Consequently, this gives the solution of equation (3.8), that is
(Z/ ¢) z/ € /
= D Owt(w
IO =i cemr1-cep Sy
Finally, with the initial condition a; = 0, we obtain

17 C(27e)

A(x) 0 C(z/e) = 5776 (Z/e)/Zaw[B(w)@C(w/e)Q]%. (3.11)

Theorem 3.1. The generating function A(z) © C(z/e) is analytic in some A-domain.

Moreover, it admits the following singular expansions at z = 1.

1. Fora > %

Az) © C(z/e) = FF( A=z + \/%711 (a—13) (Z:% - %) (1-—
)7+ O(|1 = 27,

2. Foroa = %

A(z) 0 C(sfe) = (1= 2)F + 5\ /21— 2) 7 + O(1 - 2 FL(2)?).
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1 3.
3. For; <a<3:

A(z) ® C(efe) = 5T (a= 1) (1= 2)* + AT (a—3) (S - 1) (1 -
2)70F 4 Y2L0(1— 2)75 — DLy + O(|1 — 2|+

4. Fora = %
A(2) © C(z/e) = 72=(1 = 2)72L(2) + g15(1 — )72 + O(L(2)).
5. For0 < a<i:
A(2) 0 C(z/e) = ERa(1—2) T2 + 52T (0 = §) (1 - 2) ™ = Ko+ O(]1 -
z|ote),
Proof.

First, we compute the singular expansion of B(z) @ C(z/e)? for each case by the
Zigzag-algorithm. Since

C(z/e) =1 — o= )2 < %(1 %) $O(/1 — 2*2),

we obtain
O(afe) SA\- QAL L0 — o) K1 - =7
Moreover,
= n =Tl EeI =2 + 0|1 — 2| ™),
n>2

Then, by the method of singularity analysis, we have

10 fe)? = =2V

5"
and this implies that

["B(2)0C (2/e)* = \/z “T2 4073,

Thus, converting back this information to the function by Zigzag-algorithm, we find

24+ 0(n"%) and [2"|B(z) =n®

the singular expansion of B(z)®C(z/e).
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1. Fora> E

B(z)0C( z/e = 2T (0= 1) (1= 275 + O(1 - 2 +3),

3. Fori <a<3:

B(2)oC(2/e)? = /2T (a = §) (1= 2)7%3 + K + O(|1 — 2[*+3).
4. Fora = %:

B(2)0C(2/e)? = \[2L(z) + K + O(|1 = 2|L(2)).

5. For0 < « < 5
B(2)o0( z/e \fr (L—2) 3 3K K (1—2) +O(|1— 2| +3).

Here, K and K are some constants. Then applying differential and integral rules for
singularity analysis according to Theorem 2.3 and Theorem 2.4, we obtain the follow-
ing.

1. Fora > 3

| aulBw) © Clujer Tz

IAZVF G-)( )1— r%%+mu—Mﬂ%J

X [1 +V2(1 —w)V? 4 g(l —w) +O(|]1 — w|3/2)] dw

- [ (a-3) (o 5)umme

(a—=)a—=)1—w) ™+ O0(|l —w|~*"2)dw
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2 1\ a— 5 1 3
_ = a+1 _ —Oé+§
(a 2) - 1(1 2)7 T 4+ O(]1 — 2| ).

/ Ou[B(w) ® C(w/e)?] dw

C(w/e)
/O \/ga—w) O(I1 — w| ™ L(w >>]
/[1 w) +—1 w) "2 + O[T —w| ' L(w))dw

{1+\/_(1 w)'/? +?7)(1 w) + O(|1 — w*?)| dw
4
\ﬂl ) +ﬁ<1—> 1O,

3. For <a<

/a w) ® C(w/e) ]%
= [Vir(emg) (R pmued

Where Ly is the integration constant which can be computed by Theorem (2.4).
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4. Fora—

/0 w) ® Cw/e)?] /)
(w

- [ 2a-wou >>]

{1—1-\/_(1 w)'/? —I—;(l w) 4+ O(|1 — w|*?)| dw

/\[1 w) 1+%+0( (w))dw

4 V2
:\EL(ZH\/_( St fz+o<|1 2|L(2)

:\/;L() 2 1P - 22 (i) + O(1 - 212(0)

5. For0<a<

/a w) © Glafe)’)5
[\f (a—-)(a ) _Kﬁom_ww)l

[l-l—\/_(l w) m—l—;(l —w)+O(|1 —w|3/2)] dw

X

+Lo— K+ Ki(1—2) +O(|1 = 2|7*2).

Where, L is the integration constant which can be computed by Theorem 2.4.
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Moreover, setting

! dw
Ly-K =K, = (B 2
o~ I | auBoectret o,
we obtain
# dw
Op[B(w) ® C(z/e)*
| oulBw) o cerat
2 1 .
= /ZD(a— 2)(1 — 2)~F2
—Tla-5)1~2)
2 r o BI04 K1 o) 1 Ol —
N 2 a—1 “ ! '
. . C(z/e . .
Finally, we multiply by % - é(/z /)e) which is

1 Clzfe) 11— V(1= 2)12 — L(1 =2y £0(1 — 2*?)
21-C(z/e) 2 o/2(1 =)+ L1 = 2)+ O(|L= z[3/2)
Loy 11 [ 1V2( = M2 51 2) + O(|1 — 2

24/3(1 = 2)% L4 2(1 = 2)124 O(]1 — 2|)
= g(l — z)_%(l —V2(1 - 2)% = %(1 — 2) + O(|]1 — z>?))
A= L20y  o(1 - 1))
V2 2P e 1
= T(l—z) —E+O((1—z)2)
The end result is then as follows.
1. Fora > 3
A(z)eC(z/e)
= g(l — z)_% - % +O0((1 - z)%)] X [ %F (a — %) (1-— z)_‘”%

2 1 QG — 35 —adtl —a+3
+ﬁF<a—§> _1(1—2') 101 -2 +2)]
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+ T (a - 1) (O‘ i Z) (1—2)7F2 + O(|1 — 2[7°*Y).

Vor 2 a—1 6
2. Fora =3
A(z)0C(z/e)
= [\/75(1 — )7 - % +O((1- z>%)]

2 4, 4 -1 )2
X I:\/;(l—z) +ﬁ(1_2) + O(L(2) )]
1

SN R WA )+ O L),

1 3.
3. FOI’§<OZ<§.

A()OC(s/e)
- [?(1 -2t -\ of z>%>] x [ °r (a - %) (1 2o
b A (Bmn) a2 4 1+ O - z|-“+3>]
=5t (a3 - o Paa - o)
i o-2) (D) 0m - s

S=Dla—H(1—2)*+0(1—-22), ifl<a<i
(@— DA =2+ 0|1 —z]7°+7), if 1<a<?i.
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A(2)0C(z/e)
_ [?(1 — )z — % +0((1 - 2)?)

[ %L@ n % n %(1 ) %(1 —2)+0(]1 - z!L(z>>]
_ ﬁ“ _ L)+ #(1 — )7+ O(L(2))

2 1\ =3 —o+1 —a+3
+ —=T =g (1—2) "+ K, + K (1—2)+0(1 —2|7“"2)

VT a—1
\/§ 1 1 1 —a 7 _a+l
—TKa(l—Z) +mr (Oz—é) (1—2’) _EKQ+O(’1_Z’ )

This complete the proof of Theorem 3.1. 1
Moreover, applying the result in Theorem 2.1 and Theorem 2.2 to Theorem 3.1 gives

the excepted value of X,,. This establishes Theorem 1.3.

3.2 Higher Moments

Now, we turn back to the distributional recurrence (1.3) to estimate the moments of
higher orders. Here, we will analyze separately the cases 0 < o < % in Section 3.2.1,

and % < «in Section 3.2.2. The technique used to derive the asymptotics is induction.
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321 j<a

Raising both side of (1.3) to the integral power £ yields

k

X,* =
k17 k27 k3

k1 v* ko o\ ks
( )Xsn X, s, (n™)"s.
k1+ko+ks=k

Taking expectations and conditioning on the size S,,, we obtain
k
E(X,*) =E[Es,( ) X, X5 g, (n)")].
kh k?) k3 l "
k1+ko+ks=k

Set 71, (k) := E(X,,*). Then, the recurrence becomes

2 (kl, IZ kg) mSn(kl)mn_sn(kQ)(na)kg)

k1+ka+ks=k

mn(k) = Esn (

and consequently,

n—_1
k . ’ ks
- an,j Z (klv ko, k3> i (R )7, (k) (n®)*.

Jj=i ki1+ko+ka=k

Isolating the two k-th powers yields

n C;Cp—

An k fd J - n=—J 4 k Anf k
(k) = 1) 2. (ria; (k) + 1, (k)

7j=1

+ ( k )(na)k3 n—1 n Cjcn j ~ (k‘ ) (k )

1 2.
k1+ka+ks=k kl’ kQ’ ks j=1 2( - 1) Cn
ky,ka<k
Multiply both sides by , we obtain

N n—1
1 o
n M (k)cn _ Z cjcn, ij(k;)
, en

n e
k ks L < iy (k1) cnjmin_i(k )
+ 2 : ( ) - g ] 1 n—jln—j\2
k1+ka+ks=k F1, o, ks 2 J=1 e
k1,ka<k
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Let m, (k) = %ﬁj(k) Then

n—1 n—1
n—1 Cp—i k
my (k) = E ~—m;(k)+ g ( ) E m;(k1)my,—;(ks).
n perii ko +ha+hs=Fk b, ez, by a 1

k1,ko<k

Multiplying by 2" and summing over n> 1,

S (k)" _Zzggj (3.12)

n>1 n>1 j=1
1= k
a\k n
D IRCOLDY (k, . kg)mﬂkomn_j(b)z
k1+ko+ks=k Jj=1
k’l,k:2<k

Let My(z) denote the ordinary generating function-of m,, (k), i.e.,

= Zmn(k,‘)z

n>1l
Then, the relation (3.12) becomes
N dw z
_/ Mi(w)="<Mi(2)C (=) = Re(2), (3.13)
0
where
n—1
1, k .
= S S e )k
n>1 k1+ko+ks=k j=1 1, 2, 3
k1,ka<k
]{5 n—1
= T () X0 S mm
k1+ka+ks=k 1y v25 o3 n>
k1,ka<k
k Oks 1
- Lo oo ke (B(2) )Q[éMkl(Z)MkQ(z)]
krthotha=k 1213
k1,k2<k
with

B(2)%% = ?(z)@ - OB(2).

~
ks times
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Note that the equation (3.13) is the same as the equation (3.8), so the solution of this
equation (3.13) is given by

M(z) = Z/j/e / O Ry (w

with My(z) = C(z/e) and M, (z) = A(z)oC(z/e).

Now, we can state the result about the singular expansion of the generating function

Cw /e) (3.14)

My (z) at z =1 when a > 1.

Proposition 3.1. Let ¢ > 0 be given. Then, the generating function My(z) is analytic

in some A-domain. Moreover, it admits the following singular expansions at z = 1

2
Mi(z) = gAk(l . Z)—k(a—i—%)-i-% O~ Z|_k(a+%)+%+c), k>1,
where
o — %, for % <a <l
% e, fora=1
1

5 fora>1

and the coefficients are defined by following recurrence:

k—1 k
1 b V2 Plka+£-1)
Ay = - ( _)A-Ak; + 2k Ay 2 : (3.15)
4; od I((k—1a+%—1)
fork > 2, A = \/%F(a —3)

Proof.
We prove this proposition by induction.

For £k = 1, the proposition has been established in Theorem (3.1) with M;(z) =
A(z)oC(z/e).

For k > 2, we claim that R (z) admits a singular expansion

Rk(z) = Ak(l _ z>fk(o¢+%)+1 + O<|1 o Z|7k(a+%)+1+c)’
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and this will give us the desired result.

For the proof, we divide Ry(z) into five parts as (1) k3 = 0, k1 # 0, ko # 0; (2) k3 # 0,
ki # 0, ko # 05 (3) ks # 0, k1 # 0, ko = 05 (4) ks # 0, k1 = 0, ka # 0; (5) ks # 0,
k1 = 0, ko = 0, and analyze them separately.

1. For ks =0, k1 # 0, ky # O:

Since ky,ko are both nonzero, it follows from the induction hypothesis that

Mkl (z)Mk‘z (Z)

VA1 - 2y o - z\kwww]

1
2
1
2

2

V2

>< —i
2

A, (1 — z)_k2(°‘+%)+% +O(]1 - Z‘kz(a+§)+;+C)]
1
:ZAklAkQ(l — 2) ) EEDF L0 (11— 2| tRletg) ey,

Thus, the contribution to Ry (z) in this case is

-1

1
4 Z (f) A A, (D 2) H a2l bl (| 1L 2] Fot ) ite),

j=1
2. FOI']{Jg 7&0, ]{?1 7&0, ]{?2 7£O

Here, we make use of Lemma (2.1) to express

- Li_ atl 2)+O(|1 — 2 _(k1+k:2)(a+%)+1+c
A0 ((ky + ko) (o + %) —1) (k1+ka)( +§)+2,0( ) (| | )

Agy Ap, C(—=(ky + ko) (@ + 3) +2)
4 (k) (et ) —1)

[(kﬁl + ]{52)(0[ + %) < 2]
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Then,

2
Ak‘1Ak’2 Li ( )
AT ((ky + ko) (o + 1) — 1) ikt 3)—keat20

+ LZ._]%O"O(Z)@O(H — Z|—(k‘1+k2)(a+%)+1+c)

(B © |5 ()0, ()

AklAkz .
- T Lq
A0 ((ky + ko) (a4 5) — 1)

:O(ll — Zl—k(a+%)+k73+1) + O(|1 . Z|—k(a+%)+1+c)

— 1
et byt pa(2) FO(]1 = 2RO

=O(|1 — 2| Mt t14e) - gince ky>1.
Thus, the contribution to Ry(2) in this case is

O(|1 — z| Heta)titey,

3. FOI’k’g?éo,k’l#O,k'QZOZ

First, we have

1 1
S Miu ()M (2) =5 M) Ol )

% \/7§Ak1(1 == z)fkl(o&%)"‘% + O((l _ Z)*kl(OHr%)Jr%Jrc)

x [1—v2(1 =22+ O(|1 — 2)]
V2

7 A (- 2)heFD T 4 O((1 — 2)hleta)ate)
\/§Ak1 ) )

Li L +O((1 — —ki(at+z)+3+c

AT (k1 (o + %) — %) Z—k1(a+§)+g,o(z) (( z) )

V24, ((—Fki(a+ 3)
) _
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Thus, we obtain

(B © |5, ()0C)]

2 e
\/§Ak ) )
- 1 Li_ 1y_ 30(2) + Li_tono(2)00((1 — 2 —ki(at35)+5+c
AT(ky(a+ 1) = 1) "ty ksat2,0(2) kser0(2)@0((1 — 2) )
\/§Ak1 L ks 1
- Li + O((1 — z) kot +5+e
AT (R (o + 3) = 5) harh+ias0(2) T O(1 = 2) )

ki1 , f
:QAM P(ka+ 3 —3) (1— Z)—k(a+%)+%3+$ L O(1— Z‘—ka—§+%+§+c)
4 "Tlkha+i -1
O(|1 — 2| Fematite), if k3>2;
= I(ka+%—-1) —_ka—=k —ka—Ek c :
P A TGty (L= DT RTENE O(1 — 2| Fat1e), ik = 1.

Thus, the contribution to Rj(z) in this case is

V2 [(ka+ & —1)
— kAR E
4 T((k= Do+ £—1)

(1 N | Z)—ka—g—i—l 4+ O(H o Z|—ka—§+1+c).

4. FOI’kg 7&0, kl :O, k‘z 7&0
This case is the same as the previous one. Hence, we also have the contribution

V2 [(ka+5=1)

ko k okt 1te
TkAk_1F<<k—1)a+E—1)<1_z) k 2+1—|—O(|1—Z| ka—5+1+ )
2

5. FOI’k’g?éo,lﬁ:O,k’g:OI

Since
1 1 o1 l
§Mk1(2)Mk2(2) = EC<Z/€) =5 \/5(1 _ b4 o(1 - 2)
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(B |53 (:)Mi(2)| =810 |50/

—— rﬂ)LU + Litao(2)00(]1 - 2|
=O(|1 — 2| 7**%)
—O(|1 — z| Hota)tlte)  gg >0

Thus, the contribution to Ry(z) is

O(|1 — z|7Mars)+itey,

Adding all these five cases, we get

T 1o V2 [ka+£—1) ek
Rk(z) = [— Z (])A]Ak_] + TkAk_lr((k v l)a ” % _ 1) (1 - Z)

j=1
L O({1— 2| Foatitey
= Ak(l — Z)—k(a—k%)-ﬁ-l - O(‘l -~ z‘—k(a—i—%)-{-l-{-c)

Finally, with the relation (3.14), we get

2 1 1 1 1
My,(z) = gAku — z) 7Rt ts L Ol & 2| Rleta)Tate)
and this completes the proof. 1
Corollary 3.1. Under the random spanning tree model, the k-th moment of X,, which

satisfies the distributional recurrence (1.3) with the initial condition X, = 0 is

B = e fﬁ gy o,
where
o — %, as % <a<l
c:= % —€ asa=1
%, asa >1
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Proof.

Since the generating function My (2) of m,, (k) = <=2=®) — C"E(fﬁ) for v > 3 satisfies

2
My(z) = \/T—Ak<l — z)Heta)ts L O(|1 — 2| Rt tate),

By Theorem (2.1) and Theorem (2.2), we have

oE(XF) \/§A nkle+s)—3 13

en 2 'Tlk(a+ )= 1)

Moreover, with

ﬁ(l +O(%)>,

Cp =

we obtain the desired result. . 1

322 0<a<j

Now, we discuss the case where a@ < % Since the mean a;, = E(X,,) = %Kan +
O(nc“r%), the main tetm is of order n, irrespective of the value of «. Thus, we need to
apply the centering technique to get dependence on o. Consider the original distribu-
tional recurrence (3.1). Defining X, =X, %K oy then we obtain the distributional

recurrence of X, as follows:
— d = — 2 — K,
Xn=Xgs, +X,_5 +n% forn>2, Xlz—7. (3.16)

This recurrence is the same as recurrence (3.1) except for the initial value. Thus, we
can derive the generating function of the moments of X,, as before. Define 71, (k) :=
E(YZ) and m, (k) := %Z(k) Let M (z) denote the ordinary generating function of
m, (k) in n. Then we have

T(e) = ~ 5 o 3T [, elBweCt/eP

dw
Clw/e)’
(3.17)
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and consequently,
Vi(e) = 5ol (o= 5) 027 = 2 01— o0
and

= () T e | g 61

for k>2, where

Bz = (
k1 +ko+ks=k k17k27k3

k‘l,k2</€

Lemma 3.1. The generating function M () admits the following singular expansions

at z = 1:
V2 O(|1_Z|_%)7 for0<a<i
-7 2
Mz(Z) = 7142(1 — Z)—Za—% R O(|1 ” Zl_%L(z)Q), fora _ l.
O(|L = 2|, fort<a<l
1
Where AQ = %A12 + % andAl _ F(j;_ﬂ?).

Proof.
With the relation (3.18), we have

= (-5) o o,

where
Ry(2) = %B(Z)®2@0(2/6)2 + M, (2)* +2B(2)® (M1 (2)C(z/e)) .

Here, we will compute $ B(2)*?0C (z/e)?, M1(z)? and 2B(z)® (M:(2)C(z/e)) sep-

arately to obtain the singular expansion of M(z).
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For a#1, we have

1 o - 1 V2(E) V2
§B(z) ©C(z/e)” =Li_24(2)® <§+ I’(—%) - F(—%)
V2o .
) iaa)00( )
—Co+ O(|1 — 2| 72+)

Lis o(2) + O(1 - zy)>

with C a constant.

Moreover,

Mi(2)* = <§A1(1 —2) = zKa +O(]1 - z|_a+§)>

:%AIQ(l ~ )2 ol 29,

Finally, with

I\/;Al(l —2)7" = ZKQ + 01—z %03)
we have
2B(2)® (M, (2)C(z/e))
=Li—a0(2)® (%u_wp(g) +O(|1 — 2| F3) — gKa _vaa,s (_r?(j) 1))
:%Li_mﬂ,o(z) + Li_ao(2)00(|1 — 2|7*T2)
=01+ %(1 —2)72 4 O(|1 — 2|2 t2)
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where (' is a constant.
Combining the above three parts, we get
Roz) = Cy + As(1 — 2)72* + O(|1 — 2| 2+2),

where (), is a constant and A, = %A12 + %
Thus,

/ SoFialw w/e)

_/( 20d5(1 — )21 4 O(|1 — 2|23 (1 + V2(1 — 2)% + O(|1 — 2|))dw

0

:/ —20Ay(1 — 2) 72 + O T = 2727 2) duw
0

) Lo+ A(1—2)"22 £ O(|1 — 2f72012), i 0 < <
Ay(1 = 2)72 (1 — z=22%3), ifl <<

M= =

Finally, we obtain

— K&\’ Clle 2/6
Mz(z)_< 9 ) (z/e) C(z/e) / Oulta( /)
:gAz(l—z) 2273 1O Z|72a)+0(’1_2’7%)

) LA -APEE 012 2), ifo<a<i
‘/75142(1— 2)72075 4+ O(|1 — 2|72, if{ <a<i.

For o = i, the proof is almost the same as the case of a;«%. First, we have

%B(Z)GQQC(Z/G)Q =Li_1(2)® (% + \1{?5(5)) — Ff%)LiS’O(Z) +O(]1 — z|)>
V2

- _ F(—%)LZIO( z)+ Li_ 1( )OO(|1 — z|)
=0(L(2))
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And,

NI

M1(2)2 = (?Al(l — Z>_

>

2
Ki+0(|1—z|i)>

1 1 1
=54 (1= 2)72 + 0(]1 =2 79).

Moreover,
2B (IO (/) =ty o2)+ iy (21000 21
V2AIT(3) -1
:Ti)(l_Z) + O(L(2))

Combining the above three parts as usual, we get

Ro(2) = Ay (I=12)72% + O(L(2)),

142, V24D
where Ay = ;A" + F(li) 2o
Thus,

| oo g

_ /Z(—ZozAg(l — ) RO — 2 L)) (LAA(1 — 2)F + O(|1 = 2[))dw

0

:/ 20 4s(1— 2)7% + O(|1 =2 L)) dw
0

=Ay(1—2)7% + O(L(2)?).
Finally, we obtain

Mg(z):<—%)2 Clz/e) Z/Ze/e / B B (w

C(zfe)
:?@(1 —2) M+ O(|1 — 2|72 L(2)?).

w/ Clw/e)

This completes the proof. 1
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Proposition 3.2. The generating function M (z) is analytic in some A-domain. More-

over, it admits the following singular expansions at z = 1

_ 2 L o
Mk(z) - gAk<1 - Z)ik(a+§)+§ + O(|1 — Z|*k(a+§)+§+a>.

The coefficients are defined by following recurrence:

k—1 i
1 k 2 Nka+ %5 —1
Ak - = E (J)A]Ak—] + \/_kAk—l ( @ 2 )

1A 2 L((k—Da+5-1)
fork >, A= T(a—})
Proof.

For k = 2, the result has been established in Lemma (3.1).

Now, we analyze the case for k>2.

First, we consider My, (2)M,(z)for ki, ka#0. When ki, k»>2, it follows from the
induction hypothesis that

V2

_Akl(l = Z)_kl(a—i_%)—’—% + O(|1 — z|_k1(a+é)+§+a>]

2
V2
2

1— —

M (T (2) =5

X

Apy (1 — 2) (8450 o1 — z|—kz<a+;>+;+a)]
1
:A_LAklAk2<1 — Z)'(k1+k2)(0t+%)+1 + O(‘l _ Z‘*(k1+k2)(a+%)+1+a>‘

When either £, or ks equals to 1, we also have

V2

ST, () 5 A (1= 2) D 4 o1 - Z|k1<a+5>+;+a>]

1
M () =5 |5

V2

X-;&O—d“—%m+0m—aa%1

1
:ZAlAkl(]‘ _ Z)—(k1+1)(oc+%)+1 +O(|1 - Z|—(k1+1)(a+%)+1+a)’
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and

1— 1
§M1(2)2 = ZIAlQ(l — 2)7204 -+ O(‘l — Z‘ia).

— 1 1 — a+l «
W, (M (2) = Ak Ay (1= ) B DI L (|1 ot sy

for ky, ko£0.

As in the previous section, we divide Ry(z) into five parts as (1) k3 = 0, k; # 0,
ko # 0; 2) ks # 0, k1 # 0,k # 0; B) k3 # 0, k1 # 0, by = 0; (4) k3 # 0, by = 0,
ko £ 0;(5) k3 # 0, ky = 0, ko = 0, and analyze them separately.

1. For k3 =0, k; # 0, ky # O:

The contribution to Ry (z) is:

2 (kfl@) e M)

ki1+ko=
k‘1 ko <k;

=—Z ("Jhte (= AR o1 e,

2. Forkg,;éO,kl#O,kg;éO:

First, as in Proposition 3.1, we have

%Mkl (Z)Mka (z)

Ap, Ap _

— 1 2 L ) O 1
AT((ky + ko) (@ +3) — 1) I_(ty k)@t b)+20(2) + O(]

_ Apy Ay, C(— (k1 + ko) (a + %) +2)

4 T((kr + ko) (o + %) —-1)

Z‘*(k1+k2)(a+%)+1+a>

[(k1 + k2) (o + %) <2l.
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(B © |30 (:) ()

Lq z
4F(<k1 + ]{]2)(01 + %) _ 1) —(k1+k2)(a+%)—k3a+2,0( )

+ Li—k‘30¢,0(2)®0(’1 — Z’_(k1+k2)(a+%)+k73+1+a)
AklAkQ i
CAD((ky + ko) (@ 3) — 1) Li_yrayitaa(2) + O]

1 Z|—k(o¢+%)+1+a)'
Now, k3<k — 2,0 —k(a+ ) + £ + 1 < 0. Thus,

1— __
(B()™) © | Ty
:O(|1 . Zl—k(a+%)+73+1) —|—O(| Z| —k(a+5 )+1+ +a)

=O(|1 <2 MFDEHY) - gince ky>1.
Thus, the contribution to Ry (%) is

O(Il o Zl_k(a+%)+l+a).

3. Forkg#O,kl#O,kQZO:

As in Proposition 3.1, we have

5T (:)C(:/e)

V2

= Al =2) k@5 L O((1 — 2) it +s+a)

4F(kf1(\(/y_fk1) —1 Ll‘fk‘l(aJr )+ ( )+ O((1—2)~ kl(a+%)+%+a)
V245 (—hi(a+3) +3) 1, 3
Tk p-p et
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Thus, we obtain

2
V24,

= Lt g oty —paasd 0(2) + Li_gaa0(2 ®0((1 — 2 —k1(a+3)+3+a ‘
A (k(a + 1y = 1) ohalet =k +20(2) ksa0(2)©O((1 — 2) )

(B © |5, ()0C)]

Now, k3<k — 1,s0 —k(a + %) + %3 + 1 < 0. Thus,

(B © |5, ()0C)]

V24,

: S NONITE SR I SN
TAl(ki(a+ 5) - l)Lz_k(a+%)+k73+%70(z) +O((1 = z) Mt tate)
2 2
k1L
1T 5 " 9
O(|1 — z| ko5 Hitay, if ky>2;
=\ v I(ka+&=1)

P iy =2 S O R, ifky = 1

Thus, the contribution'to R (2) is

'k E
QkAk,l (O‘+2 )

(1 LN Z)~ka—§+l i O(|1 o Z|fkaf§+1+a).
4 I((k—1Da+r=1)

4. Fork37é0,k1:0,k27é0:

This case is the same as the previous one. Hence, we also have a contribution

V2 M(ka+£%-1)
Y kA '
4 T((k—1)a+5—1)

(1 . Z)flmngrl 4 O(|1 o Z|fkaf§+1+a>

5. Forkg,;éO,klzo,kg:O:

The computation is the same as in Proposition 3.1. Thus, we obtain

§Mk1(Z)M]€2(Z) = %C(Z/e)Z — O(ll - Zl—k(a+%)+1+a).
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Adding all these five cases, we get

_ 1 7k V2 [(ka+ % —1) ok

j=1
+ O(H . Z,—k;a—%—l—l—l—a)
= Ap(1 - Z)fk(a+%)+1 +O(1 - Zlfk(a+%)+1+a>

Finally, with the relation (3.18), we get

N 2 1 1
Wi(z) =2 A1 — 250D 4 01— o Mot DHe) 01 — <)

J;Ak(l — o) He R RO gD,

as k>2. This concludes the proof. 1

Corollary 3.2. Under the random spanning tree model, the k-th moment of X ,, which

satisfies the distributional recurrence (3.16) is

— Ak\/7_T k 1 1y
E(X, )= (at3) | Q(pkla+s)—

f0r0<a<%.
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Chapter 4

Limiting Distributions

4.1 The Method of Moments

In this chapter, we will use our moment estimates with the method of moments to derive
the limiting distributions for our distributional recurrence (3.1). Now, we introduce this

method (for the proofsee [3]).

Definition 4.1. Let F, F,, be distribution functions. F; converge weakly to I if
lim F,(x) = F(x)

for every continuity point x of F'; this will be denoted by F,, 4 F

Theorem 4.1. Let ;1 be probability measure on the line having finite moments oy, =
[ a*u(dx) of all orders. If the power series Y., ayr*/k! has a positive radius of

convergence, then |1 is the only probability measure with the moments oy, s, . . ..

Theorem 4.2. Suppose that the distribution of X is determined by its moments, that
the X,, have moments of all orders, and that lim, E[X]| = E[X"] forr =1, 2, ---
Then X,, % X.
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4.2 Proof of Theorem 1.4

So far, we have obtained the asympotics of moments. For 0 < a < %, we have

—_ Akﬁ k 1 1y_
E(X,) = n*et2) 4 O(pHleta)=e),
D(k(a+3)—3)
Hence, .
7n Ak\/7_T _
E = +O0(n™“
) T n-n o
Similarly, for o > % we have
X, 1" Ap/T
E = +0(n™°).
[n“*%] P(k(a+2)—3) (™)

Where A, is defined in recurrence (3.15)-and cis defined in Theorem 3.1.

Lemma 4.1. Let &/ = a + % There exists-a constant D < oo depending only on «

such that
Ay

kp.a'k
7 <D"k

Sfor k>1.

Proof.

We prove this Lemma by induction.

For each o > 0 be given, choose ko such that 4% ~1(k=¢" + k=2¢'*1) < 1/2 for all
k > k.

Then, for k<k,, the inequality is satisfied if we choose D large enough.

For k>ky, setting s, := % and dividing (3.15) by k!, we obtain

k—1
1 V2 ['(ka' —1)
== sk e . 4.1
o 4j:15]8k3+ g ok "T(ka/ =1 — a) @1
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By Stirling's formula, we can find a constant 74/ < oo depending only on « such that,

for k>2,
[(ka/ — 1)
Fka! — 1 —a)

Moreover, define v = ?’y’ . Then, the recurrence (4.1) becomes

<~k

k—1
1 (0%
[sel<7 > Isillsk-s| + vk sk .

j=1
Thus, by the induction hypothesis, we have

D& :
skl <= D (k= )" )" kD (ks = )0

j=1
Since j7(k — j)*77 decreases as j increases for 0 < j < g, we can bound the sum by

the j = 1 term, the 7 = k£ <1 term and £ — 3 times j = 2 term. Then, for £>2

Dk / /1 !
sl < Ak -y (EE © Bk < 2t 7 DD

Dk / / / / ’
ST(ZLQ (k — 1)(k—1)oz + 4 (k’ - 2)(k—2)a +1) -I—")/Dk_lkia k—%

SDk4o¢’—l<k(k—1)a’ 4 k(k—2)a'+1) + ,ka—lkoc’k—%
= 47 Sy LR DR
Now, choosing D even larger 'such that %k*% < %, we can obtain that
[4a’—1(k—“’ 4R 4 %k’_%} <1,

for k>ky, and this prove the lemma. |

Following Lemma (4.1), we conclude that

AT ke
That) -

2

for large enough D depending on c.. Now, following Theorem 4.1, the lemma implies
that X,, and X, suitably normalized have limiting distributions that is characterized by

their moments and this completes Theorem 1.4.
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Chapter 5

Conclusion

We conclude this thesis with some remarks. The recurrence that we studied in this
thesis is a "divide-and-conquer"-recurrence. More precisely, it is a stochastic divide-
and-conquer recurrence; that is the-splitting size S is a random variable (depending
on n) with support spread over a whole subinterval in (0,7). Moreover, our recur-
rence is one example of a so-called "tree recurrences". In [4], Fill, Flajolet and Kapur
introduced three kinds of tree recurrences that.are of special interest in combinatorial
mathematics and analysis of algorithms: the binary search tree recurrence, the union-
find tree recurrence (the recurrence studied-in this thesis) and the uniform binary tree
recurrence. They gave the expected value of the cost of these recurrences and discussed
how to find the idea of the derivation of the higher moments. In [5], Fill and Kapur
gave a full analysis of the uniform binary tree recurrence, including the expected value,
higher moments and the limiting distribution. In this thesis, we proved similar results
for the union-find tree recurrence, except for the limiting distribution of the case o = %
and the case of the toll function ¢, = logn. Indeed, these cases and, more generally,
toll functions of the form n®(log n)” are feasible as well. However, one needs to extend

the result for the Hadamard products slightly (to include L(z) terms).
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