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Abstract

We present an analytical way to study-the directional’ couplers (DCs) based on coupled
resonant optical waveguides (CROWSs) 1n the photonic crystal slab (PCS). It holds potential
for combining the applications of slow-light-propagation, nonlinear optical processes and
optical signal coupling in integrated photonic circuits. From the analytical equations derived
by the extended tight-binding theory (TBT), we can obtain the dispersion relations and the
electromagnetic (EM) mode distribution of a single PCS-CROW and the PCS-DCs. In the
dielectric-rod structures, we find that the dispersion curves of the opposite-type PCS-DCs
never cross and the frequency difference of them remains constant. Additionally, the
dispersion relation of the alternating-type PCS-DCs with larger defects possess a crossing
point, which will shift to the smaller wavevector and the higher frequency by increasing the
defect radius. At this crossing point, the energy in one waveguide will never transfer into

the other one and is also called the decoupling point. On the other hand, in the air-hole
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structures, we know that the dispersion curves of both the opposite-type and alternating-type
PCS-DCs have a decoupling point nearly fixed at a certain wavevector. Moreover, as
increasing the wavevector, the frequency difference between the curves of the opposite-type
PCS-DCs increases, and that of the alternating-type PCS-DCs increases and then decreases.
In conclusion, the dielectric-rod structure can be used to form the demultiplexers, and the
air-hole structures can be used to create the beam splitters. All of these theoretical analyses
from the TBT agree well with the numerical ones using the plane-wave expansion method,

and give the design rules for these kind of structures.
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Chapter 1 Introduction

1-1 Photonic crystal and Photonic crystal slab

1-1.1 Photonic crystal (PC)

In the last few decades, there have been many works on developing integrated photonic
circuits, which hold potential to confine and control electromagnetic (EM) waves on the scale
comparable to modern electronic devices and also can be created with integrated electronic
circuits to improve the device performance. Photonic crystal (PC) is composed of multi
-dimensional periodically arranged dielectfic materials with large refraction index difference,
which can provide a periodic dielectric funetion.for,light traveling. This kind of structures
was first proposed by Eli Yablonovitch-f1] and Sajeev John [2] in 1987, and have attracted a
great deal of attentions because of low loss-and high confinement of light, strong dispersive
properties [3,4] and capability of-fabricating in silicon substrates.

In the PCs, EM wave propagation is-inhibited in certain ranges of frequencies, which is
called photonic bandgap (PBG), and the photons with these frequencies can be trapped and
guided by creating defects in the crystal lattice. These features are much analogous to the
electronic band structures of semiconductors. In the PBG, the incident waves satisfy the
Bragg condition and will be completely reflected owing to the vanish of corresponding
eigenmodes, so the PC can be designed to prevent light propagating in certain direction with
specific frequencies. Furthermore, if the interaction between light and the lattice is
sufficiently strong, the PBG can extended to cover all possible directions, becoming a
complete PBG [5], which can be used to form omni-directional reflectors [6] and can act as an

efficient optical insulator. When we introduce some defects to break the translational



symmetry in the perfect PCs, which means to change the locations or sizes of the lattice
points, that can provide extended defect modes with frequencies inside the PBG.  Therefore,
the light with certain frequencies or directions can easily be controlled in the structures.

These characteristics of the PBG offers many novel applications of optical mode
confinement. For point defects, the defect modes can be strongly localized as in the optical
resonant cavities with high quality factor [7]. On the other hand, by using line defects, the
photonic crystal waveguides (PCWs) [8] can be created to restrict and to guide light from one
position to another. Different from the index-guiding in the traditional total internal
reflection (TIR) waveguides, whose disadvantages such as high energy loss and small bending
angle will increase the scale of optical devices, the PCWs allow light to propagate in a
medium with relatively low refraction index by the Bragg reflection, and can provide low

energy loss even through a sharply.bending [9] for widefange of frequencies.

1-1.2 Photonic crystal slab (PCS)

Generally, researches and <@pplications are mainly ‘about two-dimensional (2D) PC
structures because the design and fabrication of which are relatively easy. However, for
investigating the dispersion properties of practical PC devices with finite thickness, the
structures called photonic crystal slab (PCS) should be considered, which promises easier
fabrication using existing techniques. The PCS is a three-dimensional (3D) PC structure
with 2D periodicity on a plane whose height is comparable to the lattice constant [10], and
can use index guiding to confine light in the finite dimension, says the vertical direction.
This structure can be simply classified into two types [11] : the dielectric rods in low index
materials and the air holes in planar dielectric substrates. In general, the air-hole PCS is
relatively easy to design and to avoid fabrication errors, so that is widely used to form the

practical devices. To obtain the larger PBG in designing, the dielectric-rod and air-hole



structures are usually arranged with square lattice and triangular lattice individually, as shown
in Fig. 1.1(a) and Fig. 1.1(b), where a is the lattice constant. Furthermore, to prevent from
the multi-mode propagation in devices under operation frequencies [12], the air defects made
by reducing the radius of dielectric rods or enlarging the radius of air holes (reducing the

effective refraction index) are the better choices.

M.

Fig. 1.1 Photonic crystal slabs‘'made of(a) dielectric rodsin air with a square lattice and (b)

la

—
0.6a a

air holes in dielectric slab with-a triangular lattice. The marked parameters are used in the

simulations in Chapter 3.

In the PCS, owing to the lack of the translational symmetry in the vertical direction,
there are no pure transverse-electric (TE) modes and transverse-magnetic (TM) modes, but
rather the TE-like (even) modes and the TM-like (odd) modes, which are determined by that
the electric fields are mainly parallel or vertical to the slab plane. Additionally, because of
the finite thickness in the vertical direction, there exists a light line in the photonic band
diagram. The propagation modes under this line can localize around the defects and be
guided in waveguides. On the other hand, the radiation modes in the region above the light
line will leak their energy outward the slab. Therefore, for the photonic devices, we should

mainly focus on the propagation modes.



1-2 Coupled resonant optical waveguide (CROW)

The coupled resonant optical waveguide (CROW) is composed of linear periodic arrays
of identical point-defect cavities in the PC. This kind of structures was first proposed and
analyzed by Yariv et al. [13,14] in 1999. In the CROWSs, electric fields are strongly
localized in the defect cavities with high quality factor, and the propagation of EM waves can
be accomplished by the evanescent-field coupling or photon hopping between the adjacent
defects. Because of large group delay caused by the weak tunneling of waves among
cavities, the group velocity of light in the CROWSs can be several orders of magnitude smaller
than that in bulk materials with the same refraction index, and the dispersion curve of defect
modes is nearly flat. Such slow-light propagation has great significance for several devices
of optical communication systems, suich-as-group velocity dispersion (GVD) compensators
[15,16], optical buffers [17] andwdelay-lines [18,19]. . Furthermore, the high-Q cavities lead
to large field amplitude of defect modes, so the nonlinear interaction between photons and
materials will be enhanced. This property<is useful for many applications such as optical
pulse propagation [20-22], soliten optics [23-25], holegraphic recording [26] and efficient

second-harmonic generation (SHG) process [27,28].

1-3 Directional coupler (DC)

The directional coupler (DC), which can be created by placing a pair of parallel
waveguides closely in the PC [29] as in Fig. 1.2, is a kind of optical components for mixing or
separating the guided EM waves. For symmetric DCs, there are two dispersion curves
corresponding to one odd parity mode and one even parity mode, with respect to the
symmetry plane between the two waveguides. After an operation frequency is selected, the

guided modes can be expressed as the linear combination of these eigenmodes, and the



coupling length can be defined as m/Ak, where Ak is the wavevector difference between the
two dispersion curves. The light guided in one waveguide of the DC will be completely
coupled into another one after travels a coupling length as in Fig. 1.3 (a). In some cases, the
dispersion relations may have a crossing point due to the degeneracy of eigenmodes [11]. At
this so-called decoupling point, the coupling length becomes infinite, so the power transfer
between the two waveguides is eliminated as in Fig. 1.3 (b). These properties of optical
signal coupling are especially important for integrated photonic circuits so the DC has been
widely used in many devices, such as beam splitters [30,31], optical switches [32-34], add/
drop filters [35], and wavelength multiplexers / demultiplexers [36,37]. Therefore, turning
the decoupling point to get the proper coupling length at a certain range of frequencies is an

important issue.

Fig. 1.2 An optical switch made of a directional coupler in the photonic crystal slab. [34]

(a) (b)

Fig. 1.3 Numerical simulation results of EM waves propagating in the DC (a) with a finite

coupling length or (b) operated under the decoupling point (with an infinite coupling length).



1-4 Numerical methods

To investigate the EM wave propagation in such photonic devices, several numerical
efficient algorithms such as the plane-wave expansion method (PWEM) [38,39] and the
finite-difference time-domain (FDTD) method [40,41] are generally used to simulate the

dispersion characteristics of the PC structures.

1-4.1 Plane-wave expansion method (PWEM)

The PWEM is good at analyzing the photonic band structures and waveguide modes for
a specific polarization of infinite periodic structures. It is operated by formulating and
solving the eigenvalue equations of the EM fields:

From the Maxwell’s equations, We know:that

\/—=D(r; H)= p(xi?) (1.1)

NV xE(,)==<0B(r, 1)/ 0t (1.2)
e B(r =0 (1.3)

YV x H(¥ )y =oD@010t+ J(r , 1), (1.4)

where E(r , 1) is the electric field intensity, H(r , 7) is the magnetic field intensity, D(r , 7) is
the electric flux density, B(r , f) is the magnetic flux density, p(r , t) is the electric charge
density, J(r , 7) is the electric current density, and r is the spatial coordinate, respectively.
Assume the dielectric materials are source-free, transparent, linear, isotropic, non-dispersive,

and non-magnetic, these equations can be written as

- E(r,n=0 (1.5)

7 xE(r, 1) =— o [6H(r , 1)/ 81] (1.6)
V- H(r,0)=0 (1.7)

7 xH(r, 1) = g &/x) [OE(r , 1)/ 61] , (1.8)



where ¢y is the permittivity of the free space, €4r) is the relative permittivity, and o is the
permeability of the free space. In form of time-harmonic electric fields and magnetic fields
E(r, 1) = E(r) exp(iwt) (1.9)
H(r, ) = H(r) exp(iw?) , (1.10)
we substitute Eq. (1.9) and Eq. (1.10) into Eq. (1.6) and Eq. (1.8), and obtains
V x E(r) + iou H(r) =0 (1.11)
V x H(r) —iwegp e(r) E(r) =0 . (1.12)
By calculating the curl of Eq. (1.12) :
V x[ledn)]" V x Hr)] = oo [V x E(®)] = 0 (1.13)
and using Eq. (1.11), we get
V x[[e®]" V x Hr)] = o & o H(r) . (1.14)
With the speed of light in the free space ¢y = 1/y/ (g0 to)sEq. (1.14) becomes
O H(r) =¥/ [[&0] | Vix H(r)] =(@/ co)” H(r) , (1.15)
where Oy is the hermitian operator. ~Similarly; we can obtain-from Eq. (1.11)
O E(r) =Ta(0)] W x IV x B@)] = (@) co)” E(r) . (1.16)
Because the PC is a periodic Structure, the dieleetric function &(r) can be written as
er)=¢g(r+T) (1.17)
T=wa +ua+uzas, (1.18)
where T is the lattice translation vector, {a;} are primitive translation vectors, u, u, and u3 are
integers, respectively. Therefore, we can also define the reciprocal lattice vector as
G=m;b; +myby+msbs, (1.19)
where {b;} are primitive translation vectors, m;, m, and ms are integers, and
a; * b; =2nd;; (1.20)

with the Kronecker’s delta function d;;. By expanding the [e(r)]"" into the Fourier series as

[e(r)]" =Y k(G) exp(iG * 1) (1.21)
G
kK(G)=(1/Ve) § can [e,(r)]'1 exp(-iG * r)dV, (1.22)

7



where V¢ is the volume of an unit cell. Applying the Bloch’s theorem to the fields, we

derive the following eigenfunctions for Eq. (1.15) and Eq. (1.16)

Epn(r) = 2. E(G) expli(k + G) * 1] (1.23)
G

Hi(r) =Y, Hio(G) expli(k + G) * 1] , (1.24)
G

where k indicates the wavevector and n denotes the index of photonic bands. By substituting
Eq. (1.23) and Eq. (1.24) into Eq. (1.15) and Eq. (1.16), we can obtain the eigenvalue
equations as

Y k(G -G (k+G’) x [(k+G”) X E(G”)] = —(pn / 0)” Exa(G) (1.25)
G’
Y (G -G (k+G) x [(k+G") x He(G)] =~(wsn/ c0)’ H(G),  (1.26)
G!

where wy, is the eigenfrequency for the specific fields Eg,(r) and Hg,(r). By solving these

two equations numerically, we can obtain the photonic band diagram of the PC structure.

1-4.2 Finite-difference time-domain (FDTD) meéthod

On the other hand, the FDTD method is regularly used to estimate the transmission and
reflection spectra for computational electromagnetic’ problems, and can deal with the
structures with finite boundary, which‘is hardto be done by the PWEM. This method is
directly derive from the Maxwell’s equations in the time-domain on a space grid to study the
characteristics of EM wave propagation at different time, and the fields are obtained by
iterating each other in time and spatial domains. Additionally, it can avoid mathematical
complexities of solving frequency-domain problems.

In the isotropic and lossless medium, Eq. (1.6) and Eq. (1.8) are equivalent to the

following scalar equations in the rectangular coordinate system:

&(r) (OE, / 01) = (0H,/ 0y) — (OH, / 07) (1.27)
e(r) (OE, / 1) = (0H,./ 0z7) — (OH, / O x) (1.28)
&(r) (OE, 1 0t) = (OH, / 0 x) — (OH, / 0y) (1.29)



to (OH, /1 0t)=(OE,/ 0z) — (CE;/ 0y) (1.30)

to (OH, / 0t) = (OE./ O0x) — (CEy/ 0z) (L.31)

wo (OH, 1 0t) = (OE, / 8y) — (OE, / 0x), (1.32)
where E(r , )= (E,,E,,E;)and H(r , 1) = (H, , H,, H;) . To denote a grid point of space as

(i,j,k)=({Ax,jAy, kAz) (1.33)

for any function of space and time, we assume

F(iAx , jAy , kAz , nAt) = F"(i ,j , k), (1.34)
where Ax , Ay, and Az are spatial discretizations, At is the time step, and i, j, k, n are integers.
By applying the central-difference approximations for both the spatial and temporal

differential equations, we obtain

OF™i,j,k)/ox=[F"(i+1/2,j,k —F"(i-1/2,j,k]/Ax (1.35)
OF™i,j, k)l 0y EXT,j+ 112, 0=FE (i ,j—1/2,k]/Ay (1.36)
OF"™i,j, k)l 0z=F"G,j k12~ F'G,j, k- 1/2)|/Az (1.37)

OF"(i,j, kot =[F"™" 20 jsky—F %G ,j, kA (1.38)

Substituting Eqgs. (1.35) — (1.38) into Eq¢ (1:27); we can get the following finite-difference
time-domain expression for the x compenent of electricfields :
E™G+ 12,7, k)=E"(+1/2,],k
+[At /e { [H,""G+ 172, j+ 172 k) - H.""( + 172 ,j = 1/2 , k)] | Ay

—[H," PG+ 172, k+ 1/2) = H,™ (i + 172 ,j, k= 1/2)] / Az }. (1.39)
Through the same procedures, we can obtain
E VUG, i+ 12, k) =E" G ,j+1/2, k)
+[At/ e { [He"™"2G,j+ 12, k+ 1/2) = H ™", j+ 172 , k= 1/2)] / Az

—[H"M PG+ 12, j+ 12,k - H, " 0= 1/2,j+ 172, k)] /Ax }, (1.40)
H"™PG+12,j+12, k) =H""(+1/2,j+1/2 k)
+ (At o) { [EX"G+ 172 ,j+ 1,k —E"G+1/2,7, ]/ Ay

—[E"(+1,j+12,k)=E"(,j+1/2,k)]/Ax }, (L.41)
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EG,j, k+1/2)=E."G,j, k+1/2)
+[Ar/e(0)] { [H,""PG+ 172, k+1/2) = H, (= 172, j , k+ 1/2)]  Ax
—[H ™G+ 12, k+1/2) = H G, - 12, k+ 12)] /Ay }, (1.42)

H G+ 12, k+ 12)=H "G, j+ 172, k+ 1/2)
+ (At o) { [E)"(L,j+ 12, k+ 1) —E)"(i,j+ 12, k)] /Az

—[E,"(,j+1,k+1/2)—E,"(i,j,k+1/2)]/Ay }, (1.43)
H,""2+ 172, ), k+1/2)=H," "+ 1/2,j , k+1/2)
+ (At o) { [E."(G+1,j,k+1/2)—E."(i,j,k+1/2)]/ Ax

—[ES"G+ 12, ,k+ D) —E,"(i+1/2,j,k]/Az}. (1.44)
Egs. (1.39) — (1.41) are the finite difference equations for the transverse electric (TE) waves,
and Egs. (1.42) — (1.44) are the equations for the transverse magnetic (TM) waves. In
addition, Fig. 1.4 is the Yee’s cell used to describe the.various field components for the FDTD
method that assume the components of-electric fields are in. the middle of the edges and of
magnetic fields are in the center of the faces tosatisfy the-curl relations of the Maxwell’s

equations.

4 Z E_,.
H Fy =
Ex r 3
> By
EJ‘
F 3 E Ex rF 3 qu
Mz
Hy
v & o /E,;
) Ay - ¥

X

Fig. 1.4 Components of the electric fields and the magnetic fields in the Yee’s cell.
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When using the FDTD method, we must set ideal absorbing boundary layers to keep the
calculating region from the reflection of EM waves, and the boundary condition of perfect
matched layers are the most efficient and widely used. Additionally, in order to ensure the
values converge to stable solutions, the time step should satisfy the restriction :

coAt < 1/ (A + (A0 + (M) 7. (1.45)
For increasing the simulation accuracy, a smaller grid size should be considered, but the

appropriate time step is also reduced, which makes the time-consuming in the computation.

1-5 Motivation

The CROWs made by periodic arrays of point defects in the PC will lead to a large group
delay for the propagation of EM waves, and-the-defécts can act as the optical cavities with
high quality factor. Therefore,‘the grouppvelocity of light'can be reduced by several orders
of magnitude, and the nonlinear interaction between the fields.-and materials can be enhanced.
On the other hand, the DC consist of a 'pair-of waveguides it the PC support two dispersion
curves with one odd mode and one even mode, and can‘be used to mix or separate the optical
signals of different frequencies by controlling the coupling length. In the symmetric
structures, these two dispersion curves may cross at a so-called decoupling point, and the EM
waves propagate under this point will have no energy coupling between the two waveguides.
For integrated photonic circuits, combining different types of structures is an important issue,
because that can hold more abilities and improve the performance of the whole systems. In
addition, 3D structures as the slab should be considered to approach actual devices. To our
best of knowledge, there is no research demonstrating the DCs based on CROWs in the PCS,
which holds potential to combine the applications of slow-light propagation, nonlinear optical
processes and optical signal coupling. Therefore, it is worth discussing the dispersion

behaviors and providing the effective models for this kind of structures.
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To design such photonic devices, numerical methods such as the PWEM and the FDTD
method are regularly used to simulate the band diagram and the characteristics of EM wave
propagation. However, these methods cannot provide a direct physical insight or a good
explanation for the simulation results, and they also require concentrated computing to reach
the coupling behaviors within the designed models. In the CROWs, the strong localization
of electric fields and the weak tunneling of EM waves have much in common with the
electronic transport in crystalline solids, which possess strong periodic potential from the
localized lattice atoms. Therefore, the tight-binding theory (TBT) in solid-state physics
[42,43] can be used to express the eigenmodes in the CROWSs, and the simple equations of the
dispersion relation can be derived analytically, which have the ability to describe the coupling
effects between the defect cavities [13]. This method and the derived equations have been
successively used in many studies)of“both linear“and nonlinear optical properties of the
CROW structures [13-16, 19-22;,24-271,-s0 we dnticipate using it to investigate and provide a

design concept on our structures.

1-6 Organization of the thesis

In this thesis, we first introduce the extended TBT to derive the analytical equations in
Chapter 2, which can be used to describe the dispersion relations and the mode distribution
for a single CROW and symmetric DCs made of CROWs in the PCS. We call these
structures the PCS-CROWSs and the PCS-DCs. The PCS-DCs can be classified into four
types from the relative positions of the PCS-CROWSs and the composition of the PCS. Then,
by modifying the size of the defects in the designed structures, we can obtain the variation of
electric fields among the cavities, and realize the changes of the parameters in the derived
equations that influence on the dispersion curves. In Chapter 3, we first discuss the

simulation errors due to the finite size of the super cell in the 3D PWEM, and the difference
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between the simulation results of 2D and 3D structures. Then, we show that the dispersion
behaviors of the PCS-CROWs and the PCS-DCs analytically predicted by the TBT agree well
with the numerical results simulated by the PWEM, and the design rules of these structures
are given. Additionally, we also discuss the possible applications for the different types of

PCS-DCs. Finally, the conclusion and perspectives are presented in Chapter 4.
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Chapter 2 Theoretical Analysis

2-1 Tight-binding theory (TBT)

The tight-binding theory (TBT) was first used in solid-state physics to describe the
electronic transport in a strong periodic potential from the lattice atoms. In these atoms,
electrons are tightly bound around the nucleus, and their wavefunctions will overlap due to
the small separation between lattice points. As these atoms approaching, the Coulomb
interaction of the nuclei and electrons will split the energy levels and form the electronic band
structures. By the tight-binding approximation, the propagation modes of electron waves of
the overall system are closely related to the eigenmodes of individual lattice atoms, and the
influences between different dattice points..are. ‘considered as small perturbations.
Additionally, this method also has been successfully used.in various photonic structures
similar to the crystalline solids:

In this chapter, we use the‘extended TBT:to analyze,the coupling effects of a single
CROW in the PCS (PCS-CROW) and: the-DEs-made of CROWSs in the PCS (PCS-DCs).
This method assume that the strongly localized electric fields around an isolated defect are not
perturbed much by the presence of the other defects, and the finite coupling should exist
between successive defect cavities. In addition, the eigenmodes of each point defects are
assumed as single modes, and the total fields of propagation modes can be expressed as the
linear combination of these defect modes. Hence, the analytical equations of the dispersion
relations of these structures can be directly derived, and the design rules of which can be
controlled by only few parameters about the coupling strength and the eigenfrequency of

these defect cavities.
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2-2 TBT in a single PCS-CROW

We begin our analysis by considering two cases : a single CROW consist of reduced rods
in the PCS with a square lattice of dielectric rods in air ; and a single CROW consist of
enlarged holes in the PCS with a triangular lattice of air holes in a dielectric slab, as shown in
Fig. 2.1(a) and Fig. 2.1(b). The lattice constant of the PCS is a, and the propagation
direction of waveguides are along x-direction. In addition, the dielectric-rod PCS with
square lattice and the air-hole PCS with triangular lattice can lead to relatively large PBG to
obtain the behaviors of the defect bands, and the air defects made by reduced rods or enlarged

holes can support the single-mode propagation.

s‘ ‘t

QQ\‘ v 000?
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D00 0000

Fig. 2.1 Structures of a single CROW made in the PCS (a) with a square lattice of dielectric

rods in air and (b) with a triangular lattice of air holes in dielectric slab. a is the lattice

constant, and C; , C_; , C, , C_; are the coupling coefficients between the point defects.
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By applying the TBT, we assume that each EM mode of the point defects has an
eigenfrequency ay and is unable to be affected much by the presence of the other defects [13].
The mode of an isolated defect is given by E(r, ) = Ey(r) u(f), where Eo(r) and u(t) = U,
exp(—iant) are the spatial and the temporal amplitudes of the cavity eigenmode, and Uy is a
constant amplitude. For the perturbed mode at defect site n, these amplitudes are E,(r) =
Eo(r — 2nax) and u,(7), where x is the unit direction vector along the waveguide. Therefore,
the total field of the CROW is the summation of all defect modes as E(r,?) = > E,(r) u,(?).
Due to the weak coupling of the cavities, we consider the influences only by the nearest and
the next-nearest neighboring defects, and the coupled equation to relate u, and u,., can be

derived by using the slowly varying amplitude approximation [23] as

i @t/ 91) = (@u1 €ty = 5 Cp ey + 1) 2.1)

p=l

where Cj represents a small shift to'the eigenfrequency of a single point defect due to the
dielectric perturbation from the neighboring defects; and C, = C_, is the coupling coefficient

between defects at sites n and #'4 p. This parameter is defined as

iy ‘ Ae(r) Eo(r — 2nax) + Eov— 201 + pax) d*r
¢, = —J= . Q)

-

‘ [t Ha(r — 2nax)| 2 + o(r) |[Eg(r — 2nax)| 4] d°r

o —oo

which is proportional to the electric field amplitudes at defect sites, and Ae(r) = &’ (r) — &(r) is
the difference of dielectric constants between the perturbed system (coupled defects) &’(r) and
the unperturbed system (an isolated defect) e(r), and p =0, 1, 2. Let u,(t) = U exp(2ikna —
iant), where k is the propagation constant, and U is the constant amplitude. By substituting

this into Eq. (2.1), the dispersion relation of a single PCS-CROW can be written as

2
(k) = (ar — Co) — 2. 2C), cos(2pka), (2.3)
p=1
where Cy stands for the relative shift for all wavevectors to the eigenfrequency of a single

point defect, and C, leads to the sinusoidal modulation of dispersion curves.

16



2-3 TBT in the PCS-DCs

When a second identical PCS-CROW is created to form a symmetric DC, that can be
classified into two types from the relative positions of the two waveguides. One is the
opposite-type PCS-DC, where the defect sites of both the PCS-CROWSs are the same (n, n + 1,
n + 2, ... etc) as shown in Fig. 2.2(a) and Fig. 2.2(b). The other is the alternating-type
PCS-DC, where the defect sites of one PCS-CROW (n, n + 1, n + 2, ... etc) and of another one
(n + 1/2, n + 3/2, ... etc) are shown in Fig. 2.3(a) and Fig. 2.3(b). In addition, the distance

between the two waveguides is D, and the slab plane is xy-plane.

\&Qll

=2 -1 n+1 n+2

i

(b)

v @D\

GOGOOOQOQ

Fig. 2.2 Structures of the opposite-type PCS-DCs made of (a) a square lattice of dielectric

rods in air, and (b) a triangular lattice of air holes in dielectric slab. @ and f are the coupling
coefficients of one PCS-CROW induced by the nearest neighboring and the next-nearest

neighboring defects of another PCS-CROW.
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Fig. 2.3 Structures of the alternating-type PCS-DCs-made of (a) a square lattice of dielectric

rods in air, and (b) a triangular lattice of-air holes in dielectri€ slab.

2-3.1 Opposite-type PCS-DC

In the opposite-type PCS-DC, u,(t) and w,(f) are the temporal amplitudes of the perturbed
mode at defect site n of the two PCS-CROWs, and the coupled equation can be derived in the

Same way as

2
i (6 Un /0 t) = (a)) - CO) Up — Z Cp (un+p + un—p) -av,— ﬂ(vn+l + Vn—l) (24)

p=1

2
i (6 Vn / 6t) = (ab - CO) Vi — Z Cp (vn+p + Vn—p) - u, — ﬂ(unﬂ + un—l) s (25)

p=1

where « and f are the coupling coefficients of a defect at site n in one PCS-CROW induced
by the nearest neighboring (at site n) and the next-nearest neighboring (at sites n + 1) defects
of another PCS-CROW, and have the same form as C, in Eq. 2.2. These coupling

coefficients are defined as
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oy ‘ Ae(r) Eo(r — 2nax) + Eqo(r — 2nax+ Dy) dr
o = — (2.6)
‘ [teg Ho(r — 2nax)| 2 + a(r) [Eo(r — 2nax)| 2] dr

& —oo

oy ‘ Ae(r) Eg(r — 2nax) + Eor — 2(n + Dax + Dy) d&°r
g = — ) 2.7

‘ [0 Hy(r — 2nax)| 2 + &(r) [Eq(r — 2nax)| 4] d

' —oo

where y is the unit direction vector along y-direction. Let u,(f) = U exp(2ikna — i@, t) and v,(f)
= V expRikna — ia» t), where U and V are the constant amplitudes. By substituting these
into Eq. (2.4) and Eq. (2.5), we can obtain

U(ay— an)+V[a+28cos(2ka)] =0 (2.8)

V(- @)+ U [a+ 28 cos(2ka)] =0, (2.9)
where @ (k) is the dispersion relation of a single PES<=CROW in Eq. (2.3). Therefore, the
dispersion relation of the opposite-type PCS-DC can be.expressed as

a(k) = an(k) + Lo +2/5 cos(2ka)), (2.10)

where « causes the frequency shift and S leads to the'sinusoidal modulation of the dispersion
curves. Under the condition |5/al >+1/2, these curves will cross at a wave vector k =

[cos ™ (—a/ 2)] / 2a , where ar+ 23 cos(2ka) = 0.

2-3.2 Alternating-type PCS-DC

On the other hand, in the alternating-type PCS-DC, u,(t) is the temporal amplitude of the
perturbed mode at defect site n of one PCS-CROW, and v,,1,2(?) is the same thing at defect

site n + 1/2 of another PCS-CROW.  Similarly, the coupled equation can be written as

2
1(Qu,/01) = (an — Cy) un_ch (un+p+un—p) (2.11)

p=1

= & Vns12 + Vic12) = B Vs + Va)
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2
1(0Vps12/ 0t) = (@ — Co) Vur12 = 2, Cp Wns124p + Vir12-p) (2.12)

p=1
- a(un + un+1) - ﬂ(un+2 + un—l) )
where « and /3 are the coupling coefficients of a defect at site n in one PCS-CROW induced
by the nearest neighboring (at sites n + 1/2) and the next-nearest neighboring (at sites n + 3/2)

defects of another PCS-CROW, and are defined as

y ‘ Ae(r) Eg(r — 2nax) *+ Eq(r— 2(n+ 1/2)ax + Dy) dr
o= ——= (2.13)
‘ [teg Ho(r — 2nax)| 2 + &(r) [Eg(r — 2nax)| 4] d*r

o ‘ Aa(r) Eg(r — 2nax) + Eg(r— 2(n+ 3/2)ax + Dy) dr
p=—= L (2.14)

‘ [teg Ho(r — 2nax)| 2 + &(r) [Eo(r — 2nax)| 4] dr

Let u,(f) = U exp(2ikna — i@ t).and v,+1p(t) =Vexp[2ik(n + 1/2)a — ia» t], where U and V are
the constant amplitudes, and substituting these into Eq. (2:11)and Eq. (2.12). We can gain
U (@ — ap)+2V.[@costka) + B cos(3ka)] =0 (2.15)
V(wy, — o) +2U fareostka) + fcos(3ka)] =0, (2.16)
and the dispersion relation of the alternating-type PCS-DC can be derived as
(k) = wy (k) + 2[ acos(ka) + B cos(3ka)] , (2.17)
where both « and Slead to the sinusoidal modulation of the dispersion curves, which will

cross at a wavevector k = cos ' [\ 3 — (a/ B /2] / a under the condition |5/ cd > 1/3.
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Chapter 3 Simulation Results and Discussion

3-1 PWEM of the three-dimensional PC structures

When simulating the PC structures by the PWEM, we must select a finite super cell to
repeat and to form the whole infinite structure. However, when a specific super cell is
chosen, we find that there will exist some guiding modes different from the defect modes in
the PBG, and the corresponding electric field distribution of these modes is not localized in
the defects but extended over the whole cell. Additionally, frequencies of these modes are
highly influenced by the size of the super cell, so that can be determined as the artifact caused
by the boundary conditions of the finite: €ell. " 'We, call these fake modes as the boundary

guiding modes (BGMs).

0.40
(@) Cavity mode ®) 040
.......... BGMs o
T 0.39/—L o ks
S N T~ s T
= I e > 0.38- TSl
€038 ¥ g o,
g S 0.371 S
g g -7 N
L 0.371 % 0.36] 5, < aside of the
—[ super cell
0.3

6 T T T T T 0.35 T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
k (2n/aL) k (2n/aL)

Fig. 3.1 Dispersion curves and corresponding mode distribution of a single dielectric-rod
PCS-CROW (a) simulated by the super cell of size 2a * 9a * 4a and (b) by varying the size of

the super cell from 7a to 10a in y-direction.

For the PCS-CROW structures, the existence of the BGMs will interfere with the defect

modes in the PBG, and cause the discontinuities or jumping to the dispersion curves as in Fig.
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3.1(a), which prevent us from obtaining the real values of the defect bands. However,
because the BGMs will generally shift to the lower frequencies as the size of the super cell
increases, the dispersion relations can be free from these simulation errors by proper choosing
the cell boundaries, as shown in Fig. 3.1(b). Additionally, the non-integral size of the
boundaries may cause the surface modes, whose field distribution is mainly localized around
the interface between the boundaries, and that also can be eliminated by carefully adjusting
the simulation cell.

On the other hand, from the PWEM simulation results of the dielectric-rod PCS-CROW
and the 2D structures made with the same parameters in Fig. 3.2(a), we find that the
dispersion curves of the PCS-CROW nearly parallel shift to the higher frequencies as
compared with the 2D structures. It may because the evanescent waves will extend outside
the slab, which makes the effective refraction index.bécome lower than the 2D cases. In
such cases, the group velocities determined by the slope of the curves are approximately equal.
On the other hand, for the amr-hole PCS-CROW and corresponding 2D structures in Fig.
3.2(b), their dispersion curves’are, no longer parallel to each other. In addition, the group
velocities of the 2D cases are larger than that in thes/PCS-CROW because the electric fields

are mainly localized in the dielectric connection between the defect holes.

(a) T T U |- — 2D (defect radius = 0.06 a)
0.42 - \ —— 2D (defect radius = 0.08 a)
Y R 3D (defect radius = 0.06 a)
............. \ 3D (defect radius = 0.08 a)
~ oapk e o M=:-- light line
© Y
g \
~ \
— 0.38} -
-
Q
ol
@
=
g 0.36 |- _
[T
0.34 |- _
1 1 1 1 1 1

0.00 0.05 0.10 0.15 0.20 0.25

Wavevector (2x/ a)

22



(b) T T T T T T T T T T T
024 e LT ) 7
—~ 0231 s
m
9
E
™~
- 0.221- -
>
2 - -
£ - ~ -
@
S
E‘ 0.21 -
L - —— 2D (defect radius = 0.46 a)
— — 2D (defect radius = 0.48 a)
020~  faes 3D (defect radius = 0.46 a)
. 3D (defect radius = 0.48 a)

0.00 0.05 0.10 0.15 0.20 0.25

Wavevector (2x/ a)
Fig. 3.2 Dispersion relations of a single PCS-CROW and corresponding 2D structures made
of (a) dielectric rods in air with a square lattice and (b) air holes in dielectric substrate with a

triangular lattice.

3-2 Dielectric-rod structures

In the next sections, in order to examine‘the validity of the equations derived by the TBT,
we first use the PWEM to simulate the eigenfrequency.shift and the variation of electric field
distribution of a single point defect in/the PCS 'by modifying the defect radius, and the
changes of the coupling coefficients in these equations can be obtained. Therefore, the
predictions based on the TBT can be verified by comparing with the dispersion relations done
by the PWEM. Furthermore, from the dispersion behaviors of the PCS-DCs with different
types, we can also discuss their possible applications for photonic devices.

First, we focus on the structures made by a square lattice of dielectric rods in air, as
shown in Fig. 2.1(a), Fig. 2.2(a) and Fig. 2.3(a), and the radius, the height and the dielectric
constant of the dielectric rods are 0.2a, 2a, 12, respectively, where a is the lattice constant.
The chosen refraction index corresponds to the EM waves with 1.75 pm wavelength

propagating in the silicon at room temperature, as in Fig. 3.3 [44].
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Fig. 3.3 The relationship between the refraction index of silicon and the wavelength of EM

waves at room temperature [44], where the blue circle indicates the dielectric constant we use

in the simulations.

Additionally, the other parametefs. are-chosen‘to form a relatively large PBG, which is

convenient for observing the behavioers-of the defect'modes. From the photonic band

diagrams of the structure with perfect lattice for diffetent polarization waves, as shown in Fig.

3.4(a) and Fig. 3.4(b), it is clear that the-TM-like polarization EM waves (electric fields are

mainly parallel to the rod axis) are easier to generate the larger PBG, which localized in the

frequency region from 0.333 (2nc/a) to 0428 2xrc/a).
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Fig. 3.4 Photonic band diagrams of the perfect dielectric-rod PCS for (a) TM-like and (b)
TE-like polarization EM waves, where the gray lines are the light line and the TM-like PBG is

marked, and (c) first Brillouin zone of square lattice with irreducible zone for calculation.

3-2.1 Modifying a point defect

Because the EM waves rguided in this kind of structures are chosen as the TM-like
polarization, the x-component (&) and y-component (£,) ©Of electric field amplitudes are too
small to influence the coupling effects between-the defects and can be neglected. Therefore,
we consider only the electric fields of z-polarization (E;), and the field distribution of a single
point defect simulated by the PWEM is shown in Fig. 3.5, which is mainly localized around
the defect rod and has opposite signs when extending to the nearest neighboring rods.

To realize the variation of parameters in the derived equations, we first modify the radius
of the defect from 0.06a to 0.12a. As the PWEM simulation result shown in Fig. 3.6,
enlarging the defect radius will shift the eigenfrequency ax of a single point defect toward the
lower frequencies because of more fields being confined in the defect rod [45] consistent with

the results around X = Oa in Fig. 3.7(a).
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Fig. 3.5 Electric field distribution of z-polarization for a point defect localized at the center

of the dielectric-rod PCS, and the defect radius is modified as 0.1 a.
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Fig. 3.6 Eigenfrequencies of a point defect in the dielectric-rod PCS.

For observing the influence of this modification on the neighboring regions of the defect ,
Fig. 3.7(a) and Fig. 3.7(b) show how the electric field distribution varies with the different
defect sizes along y = Oa axis and y = 2a axis on the slab plane done by the PWEM. From
Fig. 3.7(a), the fields along y = Oa axis are mainly localized on the rods at X = Oa and X = + «,
and will extend to the air region as reducing the defect radius. On the other hand, from Fig.
3.7(b), the fields along y = 2a axis are relatively smaller than that along y = Oa axis, and have

no certain trends at different sites when the defect radius varying.

26



(a) 10 T T T T T T T
~~~~~~~~ defect radius =0.06 a
- --~-defect radius =0.08 a e @0 0o 0 00
—_ 8 defect radius =0.10 a ¢ o0 o0 000
w' defect radius =0.12 a ® o000 00
— 6_ s u@ugnam P Pn Pu n
1] * @ @& @ @® @ @
-g r * ®@ @ @ & @ O
e 4+ _
E_ ¢ @ @ o @ @ 0
g L
= 2T i
2 r
E 0 B RS % -
g
2 9L _
i 2
_4 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4
X(a)
(b) 2.0 _ :
“““““ defect radius =0.06 a
- - -~-defect radius =0.08 a
- 1.6 defect radius =0.10 a
w' defect radius =0.12 a
- 1.2}
@
= I
>
= 0.8 |
o
E I
< 0.4 |
2 i
o 0of
1qo->' L
m 0.4
_08 1 1 1 1 1 1 1

X(a)

Fig. 3.7 Electric field distribution of z-polarization on the slab plane along (a) y = Oa axis

and (b) y = 2a axis of a point defect in the dielectric-rod PCS.

3-2.2 Properties of a single PCS-CROW

As defined in Eq. (2.2), C; and C, are the nearest neighboring and the next-nearest
neighboring coupling coefficients of one point defect in a single PCS-CROW. By observing
the electric field amplitudes of z-polarization around X = Oa and X = 2a along the propagation
axis (y = Oa axis) on the slab plane as in Fig. 3.7(a), we find that the field in a single point

defect has the same sign as it extends to the nearest neighboring defects, i.e. Eo(r — 2nax)
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Eo.(r — 2(n + 1)ax) > 0, and C, can be estimated being negative due to the negative Ag(r) of
the air defects, which are created by reducing the effective refraction index. The magnitude
of C; is proportional to the multiplication of the fields at X = Oa and X = 2a and the
eigenfrequency ap, and the estimated value (normalized) are plotted in Fig. 3.8. It will
increase as the defect radius increases. On the other hand, C, is much smaller than C; due to

the small field amplitude at X = 4a and can be neglected.

Coupling coefficient

0.06 007 008 009 010 011 0.12
Defect Radius (a)

Fig. 3.8 Estimated values (normalized) of - the - coupling coefficient C; in a single

dielectric-rod PCS-CROW.

From the dispersion relation derived by the TBT in Eq. (2.3), we know that the frequency
shift of curves is primarily dominated by the eigenfrequency a and the cosine modulation is
mainly caused by the coupling coefficient C;. Therefore, the dispersion curves should move
toward the lower frequency by increasing the defect radius because of the decrease of the
eigenfrequency @y as the PWEM simulation result in Fig. 3.9. In addition, because the
coupling coefficient C; is of negative value, the curves will decrease at the higher value of

wavevector, which is caused by the decrease of the term C; cos(2ka).
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Fig. 3.9 Dispersion curves of a single dielectric-rod PCS-CROW.

3-2.3 Properties of the opposite-type PCS-DCs

Similarly, for the opposite-type PCS-DCss. the defined nearest neighboring coupling
coefficient & and the next-nearest neighboring coupling coefficient £ can be estimated from
the electric field distribution of z-polarization along y =24 axis on the slab plane as in Fig.
3.7(b). According to Eq. (2.6) and Eq. (2.7), weé know that.«x dominated by the fields around
X = Oa is much larger than £ dominated by-the-fields around X = 2a and they possess the
opposite signs. The values and the ratio of these two coefficients are plotted in Fig. 3.10(a)
and Fig. 3.10(b).

Therefore, from the derived Eq. (2.10), the dispersion curves never have a crossing point
due to |4/al < 1/2, and the frequency difference between the two curves is nearly a constant
for all wavevectors, which is dominated by the term & + 28 cos(2ka). As expected, these
predicted trends are consistent with the simulation result by the PWEM in Fig. 3.11.
Additionally, the frequency shift of the dispersion curves by varying the defect radius and the
decrease of them at the larger wavevector are caused by the frequency @i(k) of a single

PCS-CROW as mentioned above.
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Fig. 3.10 (a) Estimated values (normalized) of-the coupling coefficients @ and £ in the

opposite-type dielectric-rod PCS-DCs, and:(b)-the'tatio. |5/ A for the crossing of curves.
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Fig. 3.11 Dispersion curves of the opposite-type dielectric-rod PCS-DCs.
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3-2.4 Properties of the alternating-type PCS-DCs

On the other hand, we can analyze the alternating-type PCS-DCs by similar methods.
From the electric field distribution of z-polarization along y = 2a axis on the slab plane as in
Fig. 3.7(b), the coupling coefficients & dominated by the fields around X = la and S
dominated by the fields around X = 3a can be obtained by Eq. (2.13) and Eq. (2.14). Owing
to the longer distance between the coupling defects, the magnitude of & is much smaller than
that in the opposite-type PCS-DCs. Additionally, these two coefficients possess the opposite
sign, and the ratio |5/ d increases as the defect radius increases because of the decreasing of ¢,

as plotted in Fig. 3.12(a) and Fig. 3.12(b).
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Fig. 3.12 (a) Estimated values (normalized) of the coupling coefficients & and £ in the

alternating-type dielectric-rod PCS-DCs, and (b) the ratio |5/ d for the crossing of curves.

Therefore, from the derived Eq. (2.17), as the condition |#/ad > 1/3 is reached, all the
dispersion curves should have a crossing point, and this decoupling point will shift to the
smaller wavevectors k = cos '[N 3 — (&/ B) / 2] / a by increasing the defect radius, which is
caused by the increasing of the ratio |f/al. At this point, the waves propagating in one
PCS-CROW will not couple into another. These discussed features are almost consistent
with the simulation results done by the PWEM in Fig. 3.13. The absence of the decoupling
point of the curves for the structure with defect radius 0.06a may be caused by the crossing
above the light line.

Additionally, because « and Siboth lead to the'sintusoidal modulation of the dispersion
curves, two decoupling points may exist-in the.2D simulation results. However, in the 3D
simulations, one of these points-i8 generally localized above the light line in the first Brillouin
zone where the electric fields’.can not be confined in the PCS, so we focus on only one

decoupling point of the propagationsmodes.
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Fig. 3.13 Dispersion curves of the alternating-type dielectric-rod PCS-DCs.
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3-3 Air-hole structures

Second, we consider the structures made by a triangular lattice of air holes in dielectric
slab, as shown in Fig. 2.1(b), Fig. 2.2(b) and Fig. 2.3(b), and the radius of the holes, the height
and the dielectric constant of the slab are 0.3a, a, 12, respectively. From the photonic band
diagrams of the structure with perfect lattice in Fig. 3.14(a) and Fig. 3.14(b), it is clear that the
TE-like polarization waves (electric fields are manly parallel to the slab plane) are easier to

form the PBG, which localized in the frequency region from 0.233 (2nc/a) to 0.307 (2nc/a).
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Fig. 3.14 Photonic band diagram of the perfect air-hole PCS for (a) TE-like and (b) TM-like
polarization EM waves, and (c) first Brillouin zone of triangular lattice with irreducible zone.
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3-3.1 Modifying a point defect

Owing to the TE-like polarization of the EM waves propagating in these structures, the
coupling effects contributed by the z-component (E;) of electric field amplitudes are much
smaller than that by transverse fields and can be ignored. Therefore, only the electric fields
of x-polarization (E,) and y-polarization (E,) should be taken into consideration, and the
distribution of field intensity of a single point defect hole simulated by the PWEM is plotted
in Fig. 3.15, which is mainly localized at the dielectric connections around the defect hole and
the neighboring air holes. In this case, the contribution of E, and E, to the coupling

coefficients should be discussed individually.
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Fig. 3.15 Intensity distribution of the transverse-polarized electric fields for a point defect

localized at the center of the air-hole PCS, and the defect radius is modified as 0.5 a.

To obtain the variation of the defined parameters, we modify the radius of the defect hole
from 0.44a to 0.50a. As the PWEM simulation result shown in Fig. 3.16, enlarging the
defect radius will cause the blueshift to the eigenfrequency @y of a single point defect due to

the less concentration of electric fields in the defect hole [45].
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Fig. 3.16 Eigenfrequencies of a point defect in the air-hole PCS.

In order to realize the influence of this modification on the neighboring regions of the
defect, Fig. 3.17(a) and Fig. 3.17(b) show the‘electric field distribution of x-polarization
varying with the different defect sizes along.y,=0aaxis‘and y = 2a axis on the slab plane by
the PWEM, and Fig. 3.17(c) and Fig. 3:17(d) are the y-polarization electric field distribution
under the same conditions. Different fromthe dielectric-rod structures, the fields at defect
sites are almost unchanged by .changing the .defect radius, which can be explained as the

electric fields in the air-hole structurés are mainly-localized at the connections between holes.
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Fig. 3.17 Electric field distribution of x-polarization on the slab plane along (a) y = Oa axis
and (b) y = 2a axis, and of y-polarization along (c) y = Oa axis and (d) y = 2a axis of a single

point defect in the air-hole PCS.
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3-3.2 Properties of a single PCS-CROW

Considering a single PCS-CROW, C; and C, are the nearest neighboring and the
next-nearest neighboring coupling coefficients of a point defect as defined in Eq. (2.2).
From Fig. 3.17(a), we find that E, around X = Oa and X = 2a along y = Oa axis have the
opposite signs and can be slightly influenced by the defect radius. Furthermore, E, around X
= 4a is relatively small and nearly unchanged. Therefore, as in Fig. 3.18(a), when the defect
radius increases, C; of E, can be estimated being positive and slightly decreases, and C; of E,
remains unaffected. On the other hand, from Fig. 3.17(c), E, around X = Oa, 2a and 4a are
much smaller than E,, so C; and C; of E| are too small to be taken into consideration. These
coefficients of E) are about two orders of magnitude smaller than that of E, as in Fig. 3.18(b).

From the dispersion relation derived-by-the-TBT.inEq. (2.3), we know that the frequency
shift of curves is primarily dominated by-the eigenfrequency ay and the cosine modulation is
mainly caused by the coupling coefficient C; and C; of the.E,. According to the PWEM
simulation results in Fig. 3.19;"the curves'will increase and then decrease as the wavevector
becoming larger due to the cosinewmodulation caused/by the terms C; cos(2ka) and C;
cos(4ka). In addition, the curves just‘shift to the higher frequency by enlarging the defect

holes because of the increase of the eigenfrequency ay.
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Fig. 3.18 Estimated values (normalized) of the coupling coefficient C; and C; of (a) E, and

(b) E, in a single air-hole PCS-CROW.
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Fig. 3.19 Dispersion curves of a single air-hole PCS-CROW.

3-3.3 Properties of the opposite-type PCS-DCs

Similarly, for the opposite-type PCS-DCs, the nearest neighboring coupling coefficient &
and the next-nearest neighboring coupling coefficient fcan be discussed from E, and E,
distribution along y = 2a axis as in Fig. 3.17(b) and Fig. 3.17(d). Additionally, the fields are

almost independent from the size of the defects as in a single PCS-CROW. Based on Eq.
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(2.6) and Eq. (2.7), the amount of coupling coefficients can be expressed just as the
combination of the contribution from the fields with different polarization. From E; in Fig.
3.17(b), we find that the magnitude of « contributed by the fields around X = Oa is about
twice of £ contributed by the fields around X = 2a and have the opposite signs. On the other
hand, from E, in Fig. 3.17(d), the ais almost zero and the magnitude of £ is smaller than that
of E,. The values of these coupling coefficients and the total ratio between them are plotted

in Fig. 3.20(a) and Fig. 3.20(b).

@ 0. —F——mF—F

0.02

0.01F ~~ — — _ _ o

0.00 - - & 4 A e

-0.01 - .

Coupling coefficients

-0.02 - .

-0.03

044 045 046 047 048 049 0.50

Defect Radius (a)

(b)u_ﬁe_""""""'_

0.65 |- .

0.64

0.63 .

0.62 .

16/ a|

0.61 - .
0.60 | .
0.59 .

0.58 .

0.44 045 0.46 0.47 048 0.49 0.50
Defect Radius (a)

Fig. 3.20 (a) Estimated values (normalized) of the coupling coefficients & and f of E, and

E, in the opposite-type air-hole PCS-DCs, and (b) the ratio |/ dl for the crossing of curves.
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Therefore, from the derived Eq. (2.10), we know that all the dispersion relations will
have a decoupling point under the condition |5/al > 1/2, and the wavevector position of which
is nearly a constant, which is caused by the small influence of the defect size on the field
distribution.  Furthermore, due to the opposite sign of the coefficients @ and f, the frequency
difference between the splitting curves increases as the wavevector increases, which is
dominated by the term & + 2/ cos(2ka), and reaches the maximum value at the edge of the
first Brillouin zone. Additionally, the frequency shift and sinusoidal modulation of curves
with various defect radii is caused by the variation of @i (k) as mentioned above. These

predicted trends are consistent with the simulation results done by the PWEM in Fig. 3.21.
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Fig. 3.21 Dispersion curves of the opposite-type air-hole PCS-DCs.

3-3.4 Properties of the alternating-type PCS-DCs

On the other hand, in the alternating-type PCS-DCs, we can discuss in the same way by
inspecting E, and E, distribution along y = 2a axis in Fig. 3.17(b) and Fig. 3.17(d), and the
defined coupling coefficients & contributed by the fields around X = la and £ contributed by
the fields around X = 3a can be obtained from Eq. (2.13) and Eq. (2.14). For both E, and E,,

o and f are small and almost unaffected by the defect radius, shown in Fig. 3.22(a).
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However, the total ratio |/al can be modified as in Fig. 3.22(b), which decreases as the defect

radius increases because of the increase of ¢, that may caused by the small value of & as the

denominator.
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Fig. 3.22 (a) Estimated values (normalized) of the coupling coefficients & and S of E, and

E, in the alternating-type air-hole PCS-DCs, and (b) the ratio |5/ d for the crossing of curves.

Consequently, according to the terms of cosine modulation & cos(ka) + £ cos(3ka) in Eq.

(2.17), the dispersion relation would have two crossing points under the condition |5/l > 1/3,

and one of which is at the edge of the first Brillouin zone.

As plotted in Fig. 3.23, the

wavevector positions of the decoupling points are nearly constants as in the opposite-type
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PCS-DCs, but will slightly shift to the larger values as the defect radius increases.
Additionally, we find that the frequency difference between the two splitting curves increases
and then decreases as the wavevector shifting to the larger values because « and f both

positive and lead to the sinusoidal modulation of the dispersion curves.
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Fig. 3.23 Dispersion curves of the alternating-type air-hole’PCS-DCs.

3-4 Applications of the PCS-DCs

We have discussed the dispersion ‘behaviors of ‘the dielectric-rod and air-hole PCS-DCs
with different types, and find an effective modal to provide the design concepts. For the
opposite-type dielectric-rod PCS-DCs, the frequency difference between the dispersion curves
is nearly a constant for all wavevectors, as shown in Fig. 3.11, which means that the coupling
length of the device is almost unchanged for the waves with a certain range of frequencies.
As expressed in Fig. 3.24(a), this feature can be used to separate the waves with frequencies
Aay from a broadband optical signal with frequencies Aw;, + Aa», where Ay is in the
frequency range mentioned above. In addition, because the coupling lengths for the
separated waves are the same, these waves can keep their relative phases after coupling from

one waveguide into another one. Furthermore, for the alternating-type dielectric-rod
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PCS-DCs, the position of the decoupling point can be modified by varying the defect radius,
as shown in Fig. 3.13.  Waves with the frequency corresponding to the decoupling point can
stay in one waveguide without coupled into another one. Therefore, we can separate the
waves with a certain frequency @; from a wideband optical signal with frequencies A by
properly choosing the parameters of the device, as expressed in Fig. 3.24(b). In conclusion,
these two structures can be used to form the demultiplexers for different ranges of frequencies,

and can provide the slow-light propagation at the small wavevectors.
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Fig. 3.24 Applications for the (a)/opposite-type and (b) alternating-type dielectric-rod

PCS-DCs, and for the (c) opposite-type air-hole PCS-DCs.

For the air-hole PCS-DCs, the wavevector position of the decoupling point is almost
fixed under different defect radii, so this kinds of structures are hard to be used to separate
waves. However, for the opposite-type PCS-DCs, the dispersion curves can support only
one even mode or one odd mode at a certain frequency, as shown in Fig. 3.21, which means
that the output waves of the two waveguides will have the same phase or a phase difference .
As expressed in Fig. 3.24(c), the incident waves will be separated with a specific phase

difference (zero or m) in the two waveguides after propagating a sufficient long distance, and
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can be used to form the beam splitters. In addition, that can provide the slow-light
propagation near the edge of first Brillouin zone. On the other hand, for the alternating-type
PCS-DCs, because the dispersion relations show the multi-mode propagation, this structure is

hard to be used due to the complexity of designing.
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Chapter 4 Conclusion and Perspectives

4-1 Conclusion

By applying the extended tight-binding theory (TBT), which includes the coupling
effects up to the next-nearest neighboring defects, we successfully derive the analytical
equations used to describe the dispersion behaviors and the mode distribution of the
symmetric directional couplers (DCs) based on the coupled resonant optical waveguides
(CROW?5) in the photonic crystal slab (PCS). We choose the structures created by a square
lattice of dielectric rods in air and a triangular lattice of air holes in a dielectric slab, and the
defects are formed by reducing the effective refraction index, which means to reduce the
radius of dielectric rods or to enlagge the radius of ait holes:

Additionally, for the 3D PWEM simulations, there may exist the fake guiding modes
called the boundary guiding modes (BGMs) in the photonic bandgap (PBG) due to the finite
size of the simulation super cell..+ These modes.can interfere with the defect modes and cause
the discontinuities to the dispersion curves:=By-ptoper choosing the non-integral times of the
lattice constant as the cell boundaries, we can shift the BGMs outward the PBG and the
dispersion relation will free from the simulation errors.

In a single PCS-CROW, the eigenfrequency a of a single point defect will cause the
frequency shift to the dispersion curves, and the coupling coefficients C; and C;lead to the
sinusoidal modulation. In the opposite-type PCS-DCs, the nearest neighboring coupling
coefficient & causes the splitting and the next-nearest neighboring coupling coefficient S leads
to the sinusoidal modulation of the dispersion curves, which will cross at a point under the
condition |#/ad > 1/2.  On the other hand, in the alternating-type PCS-DCs, both rand flead

to the sinusoidal modulation to the dispersion relations, and the curves will have a decoupling
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point under the condition |5/ dd > 1/3.

In the dielectric-rod structures, the coupling coefficients are dominated by the electric
fields parallel to the rod axis (z-polarization) owing to the TM-like polarization propagating
waves, and ay will shift toward the lower frequency by increasing the radius of the defect
rods. For a single PCS-CROW, C; is much smaller than C; and can be neglected, and C; can
be estimated being negative. The dispersion curves of that will move toward the lower
frequency by increasing the defect radius, and decrease at the higher values of the wavevector.
In addition, for the opposite-type PCS-DCs, we find that « is much larger than £ and they
possess the opposite sign. Therefore, the dispersion curves never have a crossing point, and
the frequency difference between them is nearly a constant for all wavevectors, which can be
used to separate the waves with the frequencies in a certain range from a broadband optical
signal. On the other hand, for théalternating-type*PCS-DCs, the magnitude of « is much
smaller than that in the opposite-type-PCS-DCs and the, ratio |f/al increases as the defect
radius increases due to the decrease of @. “Consequentlyy the dispersion curves of the
structures with the larger defect rods may.have a-crossing point, which will shift to the smaller
wavevector by increasing the defect radius. At this‘so-called decoupling point, the EM
waves will propagate in one waveguide without leaking to another one, and the coupling
length becomes infinite. This feature can be used to separate the waves with a certain
frequency from a wideband optical signal by properly choosing the parameters of the device.

On the other hand, in the air-hole structures, the coupling coefficients are dominated by
the electric fields parallel to the slab plane (x-polarization and y-polarization) due to the
TE-like polarization propagating waves, and the enlarging of defect holes will cause the
blueshift to the eigenfrequency ay. For a single PCS-CROW, C; and C; of the y-polarization
waves are too small to be taken into consideration, and these coupling coefficient can be just
slightly influenced by the defect radius. The dispersion curves of that will increase and then

decrease as the wavevector becoming larger due to the cosine modulation, and just shift to the

46



higher frequency by enlarging the defect radius. For the opposite-type PCS-DCs, we find
that the magnitude of « is about twice the magnitude of £ and they have the opposite sign,
and both of them are nearly independent from the size of defects. Therefore, there exists a
decoupling point of all the dispersion relations, and the wavevector position of this point is
almost a constant. In addition, the frequency difference between the curves increases at the
larger wavevector, and reaches the maximum value at the edge of the first Brillouin zone.
Furthermore, because this structure can support only one even mode or one odd mode at a
certain frequency, that can be used to form the beam splitters with the slow-light propagation
near the zone edge. On the other hand, for the alternating-type PCS-DCs, « and £ are small
and almost unaffected by the defect radius as in the opposite-type PCS-DCs. Consequently,
the dispersion relations also have a decoupling point with a certain wavevector. Moreover,
the frequency difference between the curves would increase and then decrease as increasing
of the wavevector. However, Owing to-the multi-mode propagation, this structure is hard to
be used due to the complexity=of designing. In-conclusions-these features discussed by the
TBT are confirmed by the PWEM simulations;-and this analytical method provide valuable
design concepts on the PCS-DCs 1n integrated photeni€ circuits, which can be controlled by

only few parameters related to the coupling effects.

4-2 Perspectives

In this thesis, we have discussed the coupling effects and dispersion behaviors in
different types of PCS-DCs, and the characteristics of the signal couplings in these structures
have been obtained. However, we consider only the linear optical effects in these structures.
The other advantages of the PCS-DCs as the slow-light propagation and nonlinear interaction
are also valuable topics, which can make the DCs become the active optical components.

For example, the incident EM waves with different intensities can be separated by the
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propagating conditions tuned by nonlinear effects. Therefore, the properties of the nonlinear
PCS-DCs should be further investigated as the future works, and the devices can be designed

to examine whether this kind of structures have practical values.
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