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摘要摘要摘要摘要 

 

    由光子晶體平板製成的耦合共振光波導以及指向性耦合器為一種能夠

結合光減速、光通訊以及光學非線性效應等應用的結構。藉由廣義的緊密

束縛理論所推導出來的解析方程式，我們可以用來分析此種結構的電磁場

模態分布以及色散曲線。在此論文中主要針對兩種不同型態:介電柱以及空

氣洞所形成的結構來加以分析，指向性耦合器基於波導之間的相對位置又

可分為對立型以及交替型兩種。利用調整所設計結構中缺陷的大小，我們

可以由數值模擬的方式來得到電場分布以及特徵頻率的變化，進而了解方

程式中耦合係數的改變，因此色散曲線的變動趨勢亦可被預測。藉著比較

平面波展開法的模擬結果，我們得知緊密束縛理論所推導出來的方程式可
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以成功的運用在上述缺陷調變所引起的現象，除了可以用少量的參數來控

制此種結構的色散行為外，亦可用來進行調變的規則設計。 
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Abstract 

 

We present an analytical way to study the directional couplers (DCs) based on coupled 

resonant optical waveguides (CROWs) in the photonic crystal slab (PCS).  It holds potential 

for combining the applications of slow-light propagation, nonlinear optical processes and 

optical signal coupling in integrated photonic circuits.  From the analytical equations derived 

by the extended tight-binding theory (TBT), we can obtain the dispersion relations and the 

electromagnetic (EM) mode distribution of a single PCS-CROW and the PCS-DCs.  In the 

dielectric-rod structures, we find that the dispersion curves of the opposite-type PCS-DCs 

never cross and the frequency difference of them remains constant.  Additionally, the 

dispersion relation of the alternating-type PCS-DCs with larger defects possess a crossing 

point, which will shift to the smaller wavevector and the higher frequency by increasing the 

defect radius.  At this crossing point, the energy in one waveguide will never transfer into 

the other one and is also called the decoupling point.  On the other hand, in the air-hole 

iii 



structures, we know that the dispersion curves of both the opposite-type and alternating-type 

PCS-DCs have a decoupling point nearly fixed at a certain wavevector.  Moreover, as 

increasing the wavevector, the frequency difference between the curves of the opposite-type 

PCS-DCs increases, and that of the alternating-type PCS-DCs increases and then decreases.  

In conclusion, the dielectric-rod structure can be used to form the demultiplexers, and the 

air-hole structures can be used to create the beam splitters.  All of these theoretical analyses 

from the TBT agree well with the numerical ones using the plane-wave expansion method, 

and give the design rules for these kind of structures. 
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Chapter 1   Introduction 

 

1-1  Photonic crystal and Photonic crystal slab 

 

1-1.1  Photonic crystal (PC) 

 

    In the last few decades, there have been many works on developing integrated photonic 

circuits, which hold potential to confine and control electromagnetic (EM) waves on the scale 

comparable to modern electronic devices and also can be created with integrated electronic 

circuits to improve the device performance.  Photonic crystal (PC) is composed of multi 

-dimensional periodically arranged dielectric materials with large refraction index difference, 

which can provide a periodic dielectric function for light traveling.  This kind of structures 

was first proposed by Eli Yablonovitch [1] and Sajeev John [2] in 1987, and have attracted a 

great deal of attentions because of low loss and high confinement of light, strong dispersive 

properties [3,4] and capability of fabricating in silicon substrates. 

In the PCs, EM wave propagation is inhibited in certain ranges of frequencies, which is 

called photonic bandgap (PBG), and the photons with these frequencies can be trapped and 

guided by creating defects in the crystal lattice.  These features are much analogous to the 

electronic band structures of semiconductors.  In the PBG, the incident waves satisfy the 

Bragg condition and will be completely reflected owing to the vanish of corresponding 

eigenmodes, so the PC can be designed to prevent light propagating in certain direction with 

specific frequencies.  Furthermore, if the interaction between light and the lattice is 

sufficiently strong, the PBG can extended to cover all possible directions, becoming a 

complete PBG [5], which can be used to form omni-directional reflectors [6] and can act as an 

efficient optical insulator.  When we introduce some defects to break the translational 
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symmetry in the perfect PCs, which means to change the locations or sizes of the lattice 

points, that can provide extended defect modes with frequencies inside the PBG.  Therefore, 

the light with certain frequencies or directions can easily be controlled in the structures.  

These characteristics of the PBG offers many novel applications of optical mode 

confinement.  For point defects, the defect modes can be strongly localized as in the optical 

resonant cavities with high quality factor [7].  On the other hand, by using line defects, the 

photonic crystal waveguides (PCWs) [8] can be created to restrict and to guide light from one 

position to another.  Different from the index-guiding in the traditional total internal 

reflection (TIR) waveguides, whose disadvantages such as high energy loss and small bending 

angle will increase the scale of optical devices, the PCWs allow light to propagate in a 

medium with relatively low refraction index by the Bragg reflection, and can provide low 

energy loss even through a sharply bending [9] for wide range of frequencies. 

 

1-1.2  Photonic crystal slab (PCS) 

 

    Generally, researches and applications are mainly about two-dimensional (2D) PC 

structures because the design and fabrication of which are relatively easy.  However, for 

investigating the dispersion properties of practical PC devices with finite thickness, the 

structures called photonic crystal slab (PCS) should be considered, which promises easier 

fabrication using existing techniques.  The PCS is a three-dimensional (3D) PC structure 

with 2D periodicity on a plane whose height is comparable to the lattice constant [10], and 

can use index guiding to confine light in the finite dimension, says the vertical direction.  

This structure can be simply classified into two types [11] : the dielectric rods in low index 

materials and the air holes in planar dielectric substrates.  In general, the air-hole PCS is 

relatively easy to design and to avoid fabrication errors, so that is widely used to form the 

practical devices.  To obtain the larger PBG in designing, the dielectric-rod and air-hole 
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structures are usually arranged with square lattice and triangular lattice individually, as shown 

in Fig. 1.1(a) and Fig. 1.1(b), where a is the lattice constant.  Furthermore, to prevent from 

the multi-mode propagation in devices under operation frequencies [12], the air defects made 

by reducing the radius of dielectric rods or enlarging the radius of air holes (reducing the 

effective refraction index) are the better choices. 

 

(a)                                    (b) 

 

 

 

 

 

 

Fig. 1.1  Photonic crystal slabs made of (a) dielectric rods in air with a square lattice and (b) 

air holes in dielectric slab with a triangular lattice.  The marked parameters are used in the 

simulations in Chapter 3. 

 

    In the PCS, owing to the lack of the translational symmetry in the vertical direction, 

there are no pure transverse-electric (TE) modes and transverse-magnetic (TM) modes, but 

rather the TE-like (even) modes and the TM-like (odd) modes, which are determined by that 

the electric fields are mainly parallel or vertical to the slab plane.  Additionally, because of 

the finite thickness in the vertical direction, there exists a light line in the photonic band 

diagram.  The propagation modes under this line can localize around the defects and be 

guided in waveguides.  On the other hand, the radiation modes in the region above the light 

line will leak their energy outward the slab.  Therefore, for the photonic devices, we should 

mainly focus on the propagation modes. 

 

3 



1-2  Coupled resonant optical waveguide (CROW) 

 

    The coupled resonant optical waveguide (CROW) is composed of linear periodic arrays 

of identical point-defect cavities in the PC.  This kind of structures was first proposed and 

analyzed by Yariv et al. [13,14] in 1999.  In the CROWs, electric fields are strongly 

localized in the defect cavities with high quality factor, and the propagation of EM waves can 

be accomplished by the evanescent-field coupling or photon hopping between the adjacent 

defects.  Because of large group delay caused by the weak tunneling of waves among 

cavities, the group velocity of light in the CROWs can be several orders of magnitude smaller 

than that in bulk materials with the same refraction index, and the dispersion curve of defect 

modes is nearly flat.  Such slow-light propagation has great significance for several devices 

of optical communication systems, such as group velocity dispersion (GVD) compensators 

[15,16], optical buffers [17] and delay lines [18,19].  Furthermore, the high-Q cavities lead 

to large field amplitude of defect modes, so the nonlinear interaction between photons and 

materials will be enhanced.  This property is useful for many applications such as optical 

pulse propagation [20-22], soliton optics [23-25], holographic recording [26] and efficient 

second-harmonic generation (SHG) process [27,28]. 

 

1-3  Directional coupler (DC) 

 

    The directional coupler (DC), which can be created by placing a pair of parallel 

waveguides closely in the PC [29] as in Fig. 1.2, is a kind of optical components for mixing or 

separating the guided EM waves.  For symmetric DCs, there are two dispersion curves 

corresponding to one odd parity mode and one even parity mode, with respect to the 

symmetry plane between the two waveguides.  After an operation frequency is selected, the 

guided modes can be expressed as the linear combination of these eigenmodes, and the 
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coupling length can be defined as π/∆k, where ∆k is the wavevector difference between the 

two dispersion curves.  The light guided in one waveguide of the DC will be completely 

coupled into another one after travels a coupling length as in Fig. 1.3 (a).  In some cases, the 

dispersion relations may have a crossing point due to the degeneracy of eigenmodes [11].  At 

this so-called decoupling point, the coupling length becomes infinite, so the power transfer 

between the two waveguides is eliminated as in Fig. 1.3 (b).  These properties of optical 

signal coupling are especially important for integrated photonic circuits so the DC has been 

widely used in many devices, such as beam splitters [30,31], optical switches [32-34], add / 

drop filters [35], and wavelength multiplexers / demultiplexers [36,37].  Therefore, turning 

the decoupling point to get the proper coupling length at a certain range of frequencies is an 

important issue. 

 

 

 

 

 

 

Fig. 1.2  An optical switch made of a directional coupler in the photonic crystal slab. [34] 

 

(a)                                     (b) 

 

 

 

 

 

Fig. 1.3  Numerical simulation results of EM waves propagating in the DC (a) with a finite 

coupling length or (b) operated under the decoupling point (with an infinite coupling length). 

5 



1-4  Numerical methods 

 

    To investigate the EM wave propagation in such photonic devices, several numerical 

efficient algorithms such as the plane-wave expansion method (PWEM) [38,39] and the 

finite-difference time-domain (FDTD) method [40,41] are generally used to simulate the 

dispersion characteristics of the PC structures. 

 

1-4.1  Plane-wave expansion method (PWEM) 

 

    The PWEM is good at analyzing the photonic band structures and waveguide modes for 

a specific polarization of infinite periodic structures.  It is operated by formulating and 

solving the eigenvalue equations of the EM fields. 

From the Maxwell’s equations, we know that 

▽•D(r , t) = ρ(r , t) 

▽ × E(r , t) = − ∂B(r , t) / ∂ t 

▽•B(r , t) = 0 

▽ × H(r , t) = ∂D(r , t) / ∂ t + J(r , t) , 

where E(r , t) is the electric field intensity, H(r , t) is the magnetic field intensity, D(r , t) is 

the electric flux density, B(r , t) is the magnetic flux density, ρ(r , t) is the electric charge 

density, J(r , t) is the electric current density, and r is the spatial coordinate, respectively.  

Assume the dielectric materials are source-free, transparent, linear, isotropic, non-dispersive, 

and non-magnetic, these equations can be written as 

▽•E(r , t) = 0 

▽ × E(r , t) = − µ0 [∂H(r , t) / ∂ t] 

▽•H(r , t) = 0 

▽ × H(r , t) = ε0 εr(r) [∂E(r , t) / ∂ t] , 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

6 



where ε0 is the permittivity of the free space, εr(r) is the relative permittivity, and µ0 is the 

permeability of the free space.  In form of time-harmonic electric fields and magnetic fields 

E(r , t) = E(r) exp(iωt) 

H(r , t) = H(r) exp(iωt) , 

we substitute Eq. (1.9) and Eq. (1.10) into Eq. (1.6) and Eq. (1.8), and obtains 

▽ × E(r) + iωµ0 H(r) = 0 

▽ × H(r) − iωε0 εr(r) E(r) = 0 . 

By calculating the curl of Eq. (1.12) : 

▽ × [[εr(r)]
-1

 ▽ × H(r)] − iωε0 [▽ × E(r)] = 0 

and using Eq. (1.11), we get 

▽ × [[εr(r)]
-1

 ▽ × H(r)] = ω
2
 ε0 µ0 H(r) . 

With the speed of light in the free space c0 = 1/√(ε0 µ0), Eq. (1.14) becomes 

ΘH H(r) = ▽ × [[εr(r)]
-1

 ▽ × H(r)] = (ω / c0)
2
 H(r) , 

where ΘH is the hermitian operator.  Similarly, we can obtain from Eq. (1.11) 

ΘE E(r) = [εr(r)]
-1

 ▽ × [▽ × E(r)] = (ω / c0)
2
 E(r) . 

    Because the PC is a periodic structure, the dielectric function ε(r) can be written as 

εr(r) = εr(r + T) 

T = u1 a1 + u2 a2 + u3 a3 , 

where T is the lattice translation vector, {ai} are primitive translation vectors, u1, u2 and u3 are 

integers, respectively.  Therefore, we can also define the reciprocal lattice vector as 

G = m1 b1 + m2 b2 + m3 b3 , 

where {bi} are primitive translation vectors, m1, m2 and m3 are integers, and 

ai•bj = 2π δij 

with the Kronecker’s delta function δij.  By expanding the [ε(r)]
-1

 into the Fourier series as 

[εr(r)]
-1

 = ∑ κ(G) exp(iG•r) 

κ(G) = (1 / VC)∫cell [εr(r)]
-1

 exp(−iG•r) dV , 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

G 
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where VC is the volume of an unit cell.  Applying the Bloch’s theorem to the fields, we 

derive the following eigenfunctions for Eq. (1.15) and Eq. (1.16) 

Ekn(r) = ∑ Ekn(G) exp[i(k + G)•r] 

Hkn(r) = ∑ Hkn(G) exp[i(k + G)•r] , 

where k indicates the wavevector and n denotes the index of photonic bands.  By substituting 

Eq. (1.23) and Eq. (1.24) into Eq. (1.15) and Eq. (1.16), we can obtain the eigenvalue 

equations as 

∑ κ(G − G’) (k + G’) × [(k + G’) × Ekn(G’)] = −(ωkn / c0)
2
 Ekn(G) 

∑ κ(G − G’) (k + G) × [(k + G’) × Hkn(G’)] = −(ωkn / c0)
2
 Hkn(G) , 

where ωkn is the eigenfrequency for the specific fields Ekn(r) and Hkn(r).  By solving these 

two equations numerically, we can obtain the photonic band diagram of the PC structure. 

 

1-4.2  Finite-difference time-domain (FDTD) method 

 

On the other hand, the FDTD method is regularly used to estimate the transmission and 

reflection spectra for computational electromagnetic problems, and can deal with the 

structures with finite boundary, which is hard to be done by the PWEM.  This method is 

directly derive from the Maxwell’s equations in the time-domain on a space grid to study the 

characteristics of EM wave propagation at different time, and the fields are obtained by 

iterating each other in time and spatial domains.  Additionally, it can avoid mathematical 

complexities of solving frequency-domain problems. 

In the isotropic and lossless medium, Eq. (1.6) and Eq. (1.8) are equivalent to the 

following scalar equations in the rectangular coordinate system: 

ε(r) (∂Ex / ∂ t) = (∂Hz / ∂ y) − (∂Hy / ∂ z) 

ε(r) (∂Ey / ∂ t) = (∂Hx / ∂ z) − (∂Hz / ∂ x) 

ε(r) (∂Ez / ∂ t) = (∂Hy / ∂ x) − (∂Hx / ∂ y) 

(1.23) 

(1.24) 

G 

G 

(1.25) 

(1.26) 

G’ 

G’ 

(1.27) 

(1.28) 

(1.29) 
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µ0 (∂Hx / ∂ t) = (∂Ey / ∂ z) − (∂Ez / ∂ y) 

µ0 (∂Hy / ∂ t) = (∂Ez / ∂ x) − (∂Ex / ∂ z) 

µ0 (∂Hz / ∂ t) = (∂Ex / ∂ y) − (∂Ey / ∂ x) , 

where E(r , t) = (Ex , Ey , Ez) and H(r , t) = (Hx , Hy , Hz) .  To denote a grid point of space as 

(i , j , k) = (i∆x , j∆y , k∆z) 

for any function of space and time, we assume 

F(i∆x , j∆y , k∆z , n∆t) = F
 n

(i , j , k), 

where ∆x , ∆y , and ∆z are spatial discretizations, ∆t is the time step, and i, j, k, n are integers.  

By applying the central-difference approximations for both the spatial and temporal 

differential equations, we obtain 

∂ F n
(i , j , k) / ∂ x = [F

 n
(i + 1/2 , j , k) − F

 n
(i − 1/2 , j , k)]/∆x 

∂ F n
(i , j , k) / ∂ y = [F

 n
(i , j + 1/2 , k) − F

 n
(i , j − 1/2 , k)]/∆y 

∂ F n
(i , j , k) / ∂ z = [F

 n
(i , j , k + 1/2) − F

 n
(i , j , k − 1/2)]/∆z 

∂ F n
(i , j , k) / ∂ t = [F

 n+1/2
(i , j , k) − F

 n−1/2
(i , j , k)]/∆t . 

Substituting Eqs. (1.35) − (1.38) into Eq. (1.27), we can get the following finite-difference 

time-domain expression for the x component of electric fields : 

Ex
 n+1

(i + 1/2 , j , k) = Ex
 n

(i + 1/2 , j , k) 

+ [∆t / ε(r)] { [Hz
 n+1/2

(i + 1/2 , j + 1/2 , k) − Hz
 n+1/2

(i + 1/2 , j − 1/2 , k)] / ∆y  

          − [Hy
 n+1/2

(i + 1/2 , j , k + 1/2) − Hy
 n+1/2

(i + 1/2 , j , k − 1/2)] / ∆z }. 

Through the same procedures, we can obtain  

Ey
 n+1

(i , j + 1/2 , k) = Ey
 n
(i , j + 1/2 , k) 

+ [∆t / ε(r)] { [Hx
 n+1/2

(i , j + 1/2 , k + 1/2) − Hx
 n+1/2

(i , j + 1/2 , k − 1/2)] / ∆z  

          − [Hz
 n+1/2

(i + 1/2 , j + 1/2 , k) − Hz
 n+1/2

(i − 1/2 , j + 1/2 , k)] / ∆x }, 

Hz
 n+1/2

(i + 1/2 , j + 1/2 , k) = Hz
 n−1/2

(i + 1/2 , j + 1/2 , k)  

+ (∆t / µ0) { [Ex
 n

(i + 1/2 , j + 1 , k) − Ex
 n

(i + 1/2 , j , k)] / ∆y  

         − [Ey
 n

(i + 1 , j + 1/2 , k) − Ey
 n

(i , j + 1/2 , k)] / ∆x }, 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

(1.40) 

(1.41) 
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Ez
 n+1

(i , j , k + 1/2) = Ez
 n

(i , j , k + 1/2) 

+ [∆t / ε(r)] { [Hy
 n+1/2

(i + 1/2 , j , k + 1/2) − Hy
 n+1/2

(i − 1/2 , j , k + 1/2)] / ∆x  

          − [Hx
 n+1/2

(i , j + 1/2 , k + 1/2) − Hx
 n+1/2

(i , j − 1/2 , k + 1/2)] / ∆y }, 

Hx
 n+1/2

(i , j + 1/2 , k + 1/2) = Hx
 n−1/2

(i , j + 1/2 , k + 1/2)  

+ (∆t / µ0) { [Ey
 n

(i , j + 1/2 , k + 1) − Ey
 n

(i , j + 1/2 , k)] / ∆z  

         − [Ez
 n

(i , j + 1 , k + 1/2) − Ez
 n

(i , j , k + 1/2)] / ∆y }, 

Hy
 n+1/2

(i + 1/2 , j , k + 1/2) = Hy
 n−1/2

(i + 1/2 , j , k + 1/2)  

+ (∆t / µ0) { [Ez
 n

(i + 1 , j , k + 1/2) − Ez
 n

(i , j , k + 1/2)] / ∆x  

         − [Ex
 n

(i + 1/2 , j , k + 1) − Ex
 n

(i + 1/2 , j , k)] / ∆z }. 

Eqs. (1.39) − (1.41) are the finite difference equations for the transverse electric (TE) waves, 

and Eqs. (1.42) − (1.44) are the equations for the transverse magnetic (TM) waves.  In 

addition, Fig. 1.4 is the Yee’s cell used to describe the various field components for the FDTD 

method that assume the components of electric fields are in the middle of the edges and of 

magnetic fields are in the center of the faces to satisfy the curl relations of the Maxwell’s 

equations. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4  Components of the electric fields and the magnetic fields in the Yee’s cell. 

 

(1.42) 

(1.43) 

(1.44) 
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    When using the FDTD method, we must set ideal absorbing boundary layers to keep the 

calculating region from the reflection of EM waves, and the boundary condition of perfect 

matched layers are the most efficient and widely used.  Additionally, in order to ensure the 

values converge to stable solutions, the time step should satisfy the restriction : 

c0 ∆t  ≤  1 / √[(∆x)
−2

 + (∆y)
−2

 + (∆z)
−2

] . 

For increasing the simulation accuracy, a smaller grid size should be considered, but the 

appropriate time step is also reduced, which makes the time-consuming in the computation. 

 

1-5  Motivation 

 

    The CROWs made by periodic arrays of point defects in the PC will lead to a large group 

delay for the propagation of EM waves, and the defects can act as the optical cavities with 

high quality factor.  Therefore, the group velocity of light can be reduced by several orders 

of magnitude, and the nonlinear interaction between the fields and materials can be enhanced.  

On the other hand, the DC consist of a pair of waveguides in the PC support two dispersion 

curves with one odd mode and one even mode, and can be used to mix or separate the optical 

signals of different frequencies by controlling the coupling length.  In the symmetric 

structures, these two dispersion curves may cross at a so-called decoupling point, and the EM 

waves propagate under this point will have no energy coupling between the two waveguides.  

For integrated photonic circuits, combining different types of structures is an important issue, 

because that can hold more abilities and improve the performance of the whole systems.  In 

addition, 3D structures as the slab should be considered to approach actual devices.  To our 

best of knowledge, there is no research demonstrating the DCs based on CROWs in the PCS, 

which holds potential to combine the applications of slow-light propagation, nonlinear optical 

processes and optical signal coupling.  Therefore, it is worth discussing the dispersion 

behaviors and providing the effective models for this kind of structures. 

(1.45) 
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    To design such photonic devices, numerical methods such as the PWEM and the FDTD 

method are regularly used to simulate the band diagram and the characteristics of EM wave 

propagation.  However, these methods cannot provide a direct physical insight or a good 

explanation for the simulation results, and they also require concentrated computing to reach 

the coupling behaviors within the designed models.  In the CROWs, the strong localization 

of electric fields and the weak tunneling of EM waves have much in common with the 

electronic transport in crystalline solids, which possess strong periodic potential from the 

localized lattice atoms.  Therefore, the tight-binding theory (TBT) in solid-state physics 

[42,43] can be used to express the eigenmodes in the CROWs, and the simple equations of the 

dispersion relation can be derived analytically, which have the ability to describe the coupling 

effects between the defect cavities [13].  This method and the derived equations have been 

successively used in many studies of both linear and nonlinear optical properties of the 

CROW structures [13-16, 19-22, 24-27], so we anticipate using it to investigate and provide a 

design concept on our structures. 

 

1-6  Organization of the thesis 

 

    In this thesis, we first introduce the extended TBT to derive the analytical equations in 

Chapter 2, which can be used to describe the dispersion relations and the mode distribution 

for a single CROW and symmetric DCs made of CROWs in the PCS.  We call these 

structures the PCS-CROWs and the PCS-DCs.  The PCS-DCs can be classified into four 

types from the relative positions of the PCS-CROWs and the composition of the PCS.  Then, 

by modifying the size of the defects in the designed structures, we can obtain the variation of 

electric fields among the cavities, and realize the changes of the parameters in the derived 

equations that influence on the dispersion curves.  In Chapter 3, we first discuss the 

simulation errors due to the finite size of the super cell in the 3D PWEM, and the difference 
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between the simulation results of 2D and 3D structures.  Then, we show that the dispersion 

behaviors of the PCS-CROWs and the PCS-DCs analytically predicted by the TBT agree well 

with the numerical results simulated by the PWEM, and the design rules of these structures 

are given.  Additionally, we also discuss the possible applications for the different types of 

PCS-DCs.  Finally, the conclusion and perspectives are presented in Chapter 4. 
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Chapter 2   Theoretical Analysis 

 

2-1  Tight-binding theory (TBT) 

 

    The tight-binding theory (TBT) was first used in solid-state physics to describe the 

electronic transport in a strong periodic potential from the lattice atoms.  In these atoms, 

electrons are tightly bound around the nucleus, and their wavefunctions will overlap due to 

the small separation between lattice points.  As these atoms approaching, the Coulomb 

interaction of the nuclei and electrons will split the energy levels and form the electronic band 

structures.  By the tight-binding approximation, the propagation modes of electron waves of 

the overall system are closely related to the eigenmodes of individual lattice atoms, and the 

influences between different lattice points are considered as small perturbations.  

Additionally, this method also has been successfully used in various photonic structures 

similar to the crystalline solids. 

    In this chapter, we use the extended TBT to analyze the coupling effects of a single 

CROW in the PCS (PCS-CROW) and the DCs made of CROWs in the PCS (PCS-DCs).  

This method assume that the strongly localized electric fields around an isolated defect are not 

perturbed much by the presence of the other defects, and the finite coupling should exist 

between successive defect cavities.  In addition, the eigenmodes of each point defects are 

assumed as single modes, and the total fields of propagation modes can be expressed as the 

linear combination of these defect modes.  Hence, the analytical equations of the dispersion 

relations of these structures can be directly derived, and the design rules of which can be 

controlled by only few parameters about the coupling strength and the eigenfrequency of 

these defect cavities. 
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2-2  TBT in a single PCS-CROW 

 

    We begin our analysis by considering two cases : a single CROW consist of reduced rods 

in the PCS with a square lattice of dielectric rods in air ; and a single CROW consist of 

enlarged holes in the PCS with a triangular lattice of air holes in a dielectric slab, as shown in 

Fig. 2.1(a) and Fig. 2.1(b).  The lattice constant of the PCS is a, and the propagation 

direction of waveguides are along x-direction.  In addition, the dielectric-rod PCS with 

square lattice and the air-hole PCS with triangular lattice can lead to relatively large PBG to 

obtain the behaviors of the defect bands, and the air defects made by reduced rods or enlarged 

holes can support the single-mode propagation. 

 

             (a) 

 

 

 

 

 

             (b) 

 

 

 

 

Fig. 2.1  Structures of a single CROW made in the PCS (a) with a square lattice of dielectric 

rods in air and (b) with a triangular lattice of air holes in dielectric slab.  a is the lattice 

constant, and C1 , C−1 , C2 , C−2 are the coupling coefficients between the point defects. 
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By applying the TBT, we assume that each EM mode of the point defects has an 

eigenfrequency ω0 and is unable to be affected much by the presence of the other defects [13].  

The mode of an isolated defect is given by E(r , t) = E0(r) u(t), where E0(r) and u(t) = U0 

exp(−iω0 t) are the spatial and the temporal amplitudes of the cavity eigenmode, and U0 is a 

constant amplitude.  For the perturbed mode at defect site n, these amplitudes are En(r) = 

E0(r − 2nax) and un(t), where x is the unit direction vector along the waveguide.  Therefore, 

the total field of the CROW is the summation of all defect modes as E(r , t) = ∑ En(r) un(t).  

Due to the weak coupling of the cavities, we consider the influences only by the nearest and 

the next-nearest neighboring defects, and the coupled equation to relate un and un+p can be 

derived by using the slowly varying amplitude approximation [23] as 

i (∂ un / ∂ t) = (ω0 − C0) un − ∑ Cp (un+p + un−p) , 

where C0 represents a small shift to the eigenfrequency of a single point defect due to the 

dielectric perturbation from the neighboring defects, and Cp = C−p is the coupling coefficient 

between defects at sites n and n + p.  This parameter is defined as 

 

 

which is proportional to the electric field amplitudes at defect sites, and ∆ε(r) = ε’(r) − ε(r) is 

the difference of dielectric constants between the perturbed system (coupled defects) ε’(r) and 

the unperturbed system (an isolated defect) ε(r), and p = 0, 1, 2.  Let un(t) = U exp(2ikna − 

iω1t), where k is the propagation constant, and U is the constant amplitude.  By substituting 

this into Eq. (2.1), the dispersion relation of a single PCS-CROW can be written as 

ω1(k) = (ω0 − C0) − ∑ 2Cp cos(2pka), 

where C0 stands for the relative shift for all wavevectors to the eigenfrequency of a single 

point defect, and Cp leads to the sinusoidal modulation of dispersion curves. 

n 

p = 1 

2 

(2.1) 

(2.2) ,

p = 1 

2 

(2.3) 
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2-3  TBT in the PCS-DCs 

 

    When a second identical PCS-CROW is created to form a symmetric DC, that can be 

classified into two types from the relative positions of the two waveguides.  One is the 

opposite-type PCS-DC, where the defect sites of both the PCS-CROWs are the same (n, n + 1, 

n + 2, ... etc) as shown in Fig. 2.2(a) and Fig. 2.2(b).  The other is the alternating-type 

PCS-DC, where the defect sites of one PCS-CROW (n, n + 1, n + 2, ... etc) and of another one 

(n + 1/2, n + 3/2, ... etc) are shown in Fig. 2.3(a) and Fig. 2.3(b).  In addition, the distance 

between the two waveguides is D, and the slab plane is xy-plane. 

 

             (a) 

 

 

 

 

 

             (b) 

 

 

 

 

Fig. 2.2  Structures of the opposite-type PCS-DCs made of (a) a square lattice of dielectric 

rods in air, and (b) a triangular lattice of air holes in dielectric slab.  α and β are the coupling 

coefficients of one PCS-CROW induced by the nearest neighboring and the next-nearest 

neighboring defects of another PCS-CROW. 
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             (a) 

 

 

 

 

 

             (b) 

 

 

 

 

Fig. 2.3  Structures of the alternating-type PCS-DCs made of (a) a square lattice of dielectric 

rods in air, and (b) a triangular lattice of air holes in dielectric slab. 

 

2-3.1  Opposite-type PCS-DC 

 

    In the opposite-type PCS-DC, un(t) and vn(t) are the temporal amplitudes of the perturbed 

mode at defect site n of the two PCS-CROWs, and the coupled equation can be derived in the 

same way as 

i (∂ un / ∂ t) = (ω0 − C0) un − ∑ Cp (un+p + un−p) − α vn − β (vn+1 + vn−1) 

i (∂ vn / ∂ t) = (ω0 − C0) vn − ∑ Cp (vn+p + vn−p) − α un − β (un+1 + un−1) , 

where α and β are the coupling coefficients of a defect at site n in one PCS-CROW induced 

by the nearest neighboring (at site n) and the next-nearest neighboring (at sites n + 1) defects 

of another PCS-CROW, and have the same form as Cp in Eq. 2.2.  These coupling 

coefficients are defined as 

 

p = 1 

p = 1 

2 

2 

(2.4) 

(2.5) 
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where y is the unit direction vector along y-direction. Let un(t) = U exp(2ikna − iω2 t) and vn(t) 

= V exp(2ikna − iω2 t), where U and V are the constant amplitudes.  By substituting these 

into Eq. (2.4) and Eq. (2.5), we can obtain 

U (ω2 − ω1) + V [α + 2β cos(2ka)] = 0 

V (ω2 − ω1) + U [α + 2β cos(2ka)] = 0, 

where ω1(k) is the dispersion relation of a single PCS-CROW in Eq. (2.3).  Therefore, the 

dispersion relation of the opposite-type PCS-DC can be expressed as 

ω2(k) = ω1(k) + [α + 2β cos(2ka)], 

where α causes the frequency shift and β leads to the sinusoidal modulation of the dispersion 

curves.  Under the condition |β/α| > 1/2, these curves will cross at a wave vector k = 

[cos
-1

(−α / 2β)] / 2a , where α + 2β cos(2ka) = 0. 

 

2-3.2  Alternating-type PCS-DC 

 

    On the other hand, in the alternating-type PCS-DC, un(t) is the temporal amplitude of the 

perturbed mode at defect site n of one PCS-CROW, and vn+1/2(t) is the same thing at defect 

site n + 1/2 of another PCS-CROW.  Similarly, the coupled equation can be written as 

i (∂ un / ∂ t) = (ω0 − C0) un − ∑ Cp (un+p + un−p)  

− α (vn+1/2 + vn−1/2) − β (vn+3/2 + vn−3/2) 

(2.6) 

(2.7) ,

(2.8) 

(2.9) 

(2.10) 

(2.11) 

p = 1 

2 
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i (∂ vn+1/2 / ∂ t) = (ω0 − C0) vn+1/2 − ∑ Cp (vn+1/2+p + vn+1/2−p)  

− α (un + un+1) − β (un+2 + un−1) , 

where α and β are the coupling coefficients of a defect at site n in one PCS-CROW induced 

by the nearest neighboring (at sites n + 1/2) and the next-nearest neighboring (at sites n + 3/2) 

defects of another PCS-CROW, and are defined as 

 

 

Let un(t) = U exp(2ikna − iω2 t) and vn+1/2(t) = V exp[2ik(n + 1/2)a − iω2 t], where U and V are 

the constant amplitudes, and substituting these into Eq. (2.11) and Eq. (2.12).  We can gain 

U (ω2 − ω1) + 2V [α cos(ka) + β cos(3ka)] = 0 

V (ω2 − ω1) + 2U [α cos(ka) + β cos(3ka)] = 0 , 

and the dispersion relation of the alternating-type PCS-DC can be derived as 

ω2(k) = ω1(k) + 2[α cos(ka) + β cos(3ka)] , 

where both α and β lead to the sinusoidal modulation of the dispersion curves, which will 

cross at a wavevector k = cos
-1

[√ 3 − (α / β) / 2] / a under the condition |β/α| > 1/3. 

 

 

 

 

 

(2.12) 

p = 1 

2 

(2.13) 

(2.14) .

(2.15) 

(2.16) 

(2.17) 
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Chapter 3   Simulation Results and Discussion 

 

3-1  PWEM of the three-dimensional PC structures 

 

    When simulating the PC structures by the PWEM, we must select a finite super cell to 

repeat and to form the whole infinite structure.  However, when a specific super cell is 

chosen, we find that there will exist some guiding modes different from the defect modes in 

the PBG, and the corresponding electric field distribution of these modes is not localized in 

the defects but extended over the whole cell.  Additionally, frequencies of these modes are 

highly influenced by the size of the super cell, so that can be determined as the artifact caused 

by the boundary conditions of the finite cell.  We call these fake modes as the boundary 

guiding modes (BGMs). 

 

(a)                                    (b) 

 

 

 

 

 

 

Fig. 3.1  Dispersion curves and corresponding mode distribution of a single dielectric-rod 

PCS-CROW (a) simulated by the super cell of size 2a * 9a * 4a and (b) by varying the size of 

the super cell from 7a to 10a in y-direction. 

 

    For the PCS-CROW structures, the existence of the BGMs will interfere with the defect 

modes in the PBG, and cause the discontinuities or jumping to the dispersion curves as in Fig. 
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3.1(a), which prevent us from obtaining the real values of the defect bands.  However, 

because the BGMs will generally shift to the lower frequencies as the size of the super cell 

increases, the dispersion relations can be free from these simulation errors by proper choosing 

the cell boundaries, as shown in Fig. 3.1(b).  Additionally, the non-integral size of the 

boundaries may cause the surface modes, whose field distribution is mainly localized around 

the interface between the boundaries, and that also can be eliminated by carefully adjusting 

the simulation cell. 

    On the other hand, from the PWEM simulation results of the dielectric-rod PCS-CROW 

and the 2D structures made with the same parameters in Fig. 3.2(a), we find that the 

dispersion curves of the PCS-CROW nearly parallel shift to the higher frequencies as 

compared with the 2D structures.  It may because the evanescent waves will extend outside 

the slab, which makes the effective refraction index become lower than the 2D cases.  In 

such cases, the group velocities determined by the slope of the curves are approximately equal.  

On the other hand, for the air-hole PCS-CROW and corresponding 2D structures in Fig. 

3.2(b), their dispersion curves are no longer parallel to each other.  In addition, the group 

velocities of the 2D cases are larger than that in the PCS-CROW because the electric fields 

are mainly localized in the dielectric connection between the defect holes.  
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              (b) 

 

 

 

 

 

 

 

Fig. 3.2  Dispersion relations of a single PCS-CROW and corresponding 2D structures made 

of (a) dielectric rods in air with a square lattice and (b) air holes in dielectric substrate with a 

triangular lattice. 

 

3-2  Dielectric-rod structures 

 

    In the next sections, in order to examine the validity of the equations derived by the TBT, 

we first use the PWEM to simulate the eigenfrequency shift and the variation of electric field 

distribution of a single point defect in the PCS by modifying the defect radius, and the 

changes of the coupling coefficients in these equations can be obtained.  Therefore, the 

predictions based on the TBT can be verified by comparing with the dispersion relations done 

by the PWEM.  Furthermore, from the dispersion behaviors of the PCS-DCs with different 

types, we can also discuss their possible applications for photonic devices. 

    First, we focus on the structures made by a square lattice of dielectric rods in air, as 

shown in Fig. 2.1(a), Fig. 2.2(a) and Fig. 2.3(a), and the radius, the height and the dielectric 

constant of the dielectric rods are 0.2a, 2a, 12, respectively, where a is the lattice constant.  

The chosen refraction index corresponds to the EM waves with 1.75 µm wavelength 

propagating in the silicon at room temperature, as in Fig. 3.3 [44]. 
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Fig. 3.3  The relationship between the refraction index of silicon and the wavelength of EM 

waves at room temperature [44], where the blue circle indicates the dielectric constant we use 

in the simulations. 

 

Additionally, the other parameters are chosen to form a relatively large PBG, which is 

convenient for observing the behaviors of the defect modes.  From the photonic band 

diagrams of the structure with perfect lattice for different polarization waves, as shown in Fig. 

3.4(a) and Fig. 3.4(b), it is clear that the TM-like polarization EM waves (electric fields are 

mainly parallel to the rod axis) are easier to generate the larger PBG, which localized in the 

frequency region from 0.333 (2πc/a) to 0.428 (2πc/a). 
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   (b)                                          (c) 

 

 

 

 

 

 

 

Fig. 3.4  Photonic band diagrams of the perfect dielectric-rod PCS for (a) TM-like and (b) 

TE-like polarization EM waves, where the gray lines are the light line and the TM-like PBG is 

marked, and (c) first Brillouin zone of square lattice with irreducible zone for calculation. 

 

3-2.1  Modifying a point defect 

 

    Because the EM waves guided in this kind of structures are chosen as the TM-like 

polarization, the x-component (Ex) and y-component (Ey) of electric field amplitudes are too 

small to influence the coupling effects between the defects and can be neglected.  Therefore, 

we consider only the electric fields of z-polarization (Ez), and the field distribution of a single 

point defect simulated by the PWEM is shown in Fig. 3.5, which is mainly localized around 

the defect rod and has opposite signs when extending to the nearest neighboring rods. 

    To realize the variation of parameters in the derived equations, we first modify the radius 

of the defect from 0.06a to 0.12a.  As the PWEM simulation result shown in Fig. 3.6, 

enlarging the defect radius will shift the eigenfrequency ω0 of a single point defect toward the 

lower frequencies because of more fields being confined in the defect rod [45] consistent with 

the results around X = 0a in Fig. 3.7(a). 
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Fig. 3.5  Electric field distribution of z-polarization for a point defect localized at the center 

of the dielectric-rod PCS, and the defect radius is modified as 0.1 a. 

 

 

 

 

 

 

 

 

 

Fig. 3.6  Eigenfrequencies of a point defect in the dielectric-rod PCS. 

 

    For observing the influence of this modification on the neighboring regions of the defect , 

Fig. 3.7(a) and Fig. 3.7(b) show how the electric field distribution varies with the different 

defect sizes along y = 0a axis and y = 2a axis on the slab plane done by the PWEM.  From 

Fig. 3.7(a), the fields along y = 0a axis are mainly localized on the rods at X = 0a and X = + a, 

and will extend to the air region as reducing the defect radius.  On the other hand, from Fig. 

3.7(b), the fields along y = 2a axis are relatively smaller than that along y = 0a axis, and have 

no certain trends at different sites when the defect radius varying. 
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Fig. 3.7  Electric field distribution of z-polarization on the slab plane along (a) y = 0a axis 

and (b) y = 2a axis of a point defect in the dielectric-rod PCS. 

 

3-2.2  Properties of a single PCS-CROW 

 

    As defined in Eq. (2.2), C1 and C2 are the nearest neighboring and the next-nearest 

neighboring coupling coefficients of one point defect in a single PCS-CROW.  By observing 

the electric field amplitudes of z-polarization around X = 0a and X = 2a along the propagation 

axis (y = 0a axis) on the slab plane as in Fig. 3.7(a), we find that the field in a single point 

defect has the same sign as it extends to the nearest neighboring defects, i.e. E0z(r − 2nax) 
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E0z(r − 2(n + 1)ax) > 0, and C1 can be estimated being negative due to the negative ∆ε(r) of 

the air defects, which are created by reducing the effective refraction index.  The magnitude 

of C1 is proportional to the multiplication of the fields at X = 0a and X = 2a and the 

eigenfrequency ω0, and the estimated value (normalized) are plotted in Fig. 3.8.  It will 

increase as the defect radius increases.  On the other hand, C2 is much smaller than C1 due to 

the small field amplitude at X = 4a and can be neglected. 

 

 

 

 

 

 

 

 

 

Fig. 3.8  Estimated values (normalized) of the coupling coefficient C1 in a single 

dielectric-rod PCS-CROW. 

 

From the dispersion relation derived by the TBT in Eq. (2.3), we know that the frequency 

shift of curves is primarily dominated by the eigenfrequency ω0 and the cosine modulation is 

mainly caused by the coupling coefficient C1.  Therefore, the dispersion curves should move 

toward the lower frequency by increasing the defect radius because of the decrease of the 

eigenfrequency ω0 as the PWEM simulation result in Fig. 3.9.  In addition, because the 

coupling coefficient C1 is of negative value, the curves will decrease at the higher value of 

wavevector, which is caused by the decrease of the term C1 cos(2ka). 
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Fig. 3.9  Dispersion curves of a single dielectric-rod PCS-CROW. 

 

3-2.3  Properties of the opposite-type PCS-DCs 

 

    Similarly, for the opposite-type PCS-DCs, the defined nearest neighboring coupling 

coefficient α and the next-nearest neighboring coupling coefficient β can be estimated from 

the electric field distribution of z-polarization along y = 2a axis on the slab plane as in Fig. 

3.7(b).  According to Eq. (2.6) and Eq. (2.7), we know that α dominated by the fields around 

X = 0a is much larger than β dominated by the fields around X = 2a and they possess the 

opposite signs.  The values and the ratio of these two coefficients are plotted in Fig. 3.10(a) 

and Fig. 3.10(b). 

Therefore, from the derived Eq. (2.10), the dispersion curves never have a crossing point 

due to |β/α| < 1/2, and the frequency difference between the two curves is nearly a constant 

for all wavevectors, which is dominated by the term α + 2β cos(2ka).  As expected, these 

predicted trends are consistent with the simulation result by the PWEM in Fig. 3.11.  

Additionally, the frequency shift of the dispersion curves by varying the defect radius and the 

decrease of them at the larger wavevector are caused by the frequency ω1(k) of a single 

PCS-CROW as mentioned above. 
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Fig. 3.10  (a) Estimated values (normalized) of the coupling coefficients α and β in the 

opposite-type dielectric-rod PCS-DCs, and (b) the ratio |β/α| for the crossing of curves. 

 

 

 

 

 

 

 

 

 

Fig. 3.11  Dispersion curves of the opposite-type dielectric-rod PCS-DCs. 
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3-2.4  Properties of the alternating-type PCS-DCs 

 

    On the other hand, we can analyze the alternating-type PCS-DCs by similar methods. 

From the electric field distribution of z-polarization along y = 2a axis on the slab plane as in 

Fig. 3.7(b), the coupling coefficients α dominated by the fields around X = 1a and β 

dominated by the fields around X = 3a can be obtained by Eq. (2.13) and Eq. (2.14).  Owing 

to the longer distance between the coupling defects, the magnitude of α is much smaller than 

that in the opposite-type PCS-DCs.  Additionally, these two coefficients possess the opposite 

sign, and the ratio |β/α| increases as the defect radius increases because of the decreasing of α, 

as plotted in Fig. 3.12(a) and Fig. 3.12(b). 
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Fig. 3.12  (a) Estimated values (normalized) of the coupling coefficients α and β in the 

alternating-type dielectric-rod PCS-DCs, and (b) the ratio |β/α| for the crossing of curves. 

 

Therefore, from the derived Eq. (2.17), as the condition |β/α| > 1/3 is reached, all the 

dispersion curves should have a crossing point, and this decoupling point will shift to the 

smaller wavevectors k = cos
-1

[√ 3 − (α / β) / 2] / a by increasing the defect radius, which is 

caused by the increasing of the ratio |β/α|.  At this point, the waves propagating in one 

PCS-CROW will not couple into another.  These discussed features are almost consistent 

with the simulation results done by the PWEM in Fig. 3.13.  The absence of the decoupling 

point of the curves for the structure with defect radius 0.06a may be caused by the crossing 

above the light line. 

Additionally, because α and β both lead to the sinusoidal modulation of the dispersion 

curves, two decoupling points may exist in the 2D simulation results.  However, in the 3D 

simulations, one of these points is generally localized above the light line in the first Brillouin 

zone where the electric fields can not be confined in the PCS, so we focus on only one 

decoupling point of the propagation modes. 

 

 

 

 

 

 

 

 

 

Fig. 3.13  Dispersion curves of the alternating-type dielectric-rod PCS-DCs. 
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3-3  Air-hole structures 

 

    Second, we consider the structures made by a triangular lattice of air holes in dielectric 

slab, as shown in Fig. 2.1(b), Fig. 2.2(b) and Fig. 2.3(b), and the radius of the holes, the height 

and the dielectric constant of the slab are 0.3a, a, 12, respectively.  From the photonic band 

diagrams of the structure with perfect lattice in Fig. 3.14(a) and Fig. 3.14(b), it is clear that the 

TE-like polarization waves (electric fields are manly parallel to the slab plane) are easier to 

form the PBG, which localized in the frequency region from 0.233 (2πc/a) to 0.307 (2πc/a). 
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Fig. 3.14  Photonic band diagram of the perfect air-hole PCS for (a) TE-like and (b) TM-like 

polarization EM waves, and (c) first Brillouin zone of triangular lattice with irreducible zone. 
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3-3.1  Modifying a point defect 

 

    Owing to the TE-like polarization of the EM waves propagating in these structures, the 

coupling effects contributed by the z-component (Ez) of electric field amplitudes are much 

smaller than that by transverse fields and can be ignored.  Therefore, only the electric fields 

of x-polarization (Ex) and y-polarization (Ey) should be taken into consideration, and the 

distribution of field intensity of a single point defect hole simulated by the PWEM is plotted 

in Fig. 3.15, which is mainly localized at the dielectric connections around the defect hole and 

the neighboring air holes.  In this case, the contribution of Ex and Ey to the coupling 

coefficients should be discussed individually. 

 

 

 

 

 

 

 

 

 

Fig. 3.15  Intensity distribution of the transverse-polarized electric fields for a point defect 

localized at the center of the air-hole PCS, and the defect radius is modified as 0.5 a. 

 

    To obtain the variation of the defined parameters, we modify the radius of the defect hole 

from 0.44a to 0.50a.  As the PWEM simulation result shown in Fig. 3.16, enlarging the 

defect radius will cause the blueshift to the eigenfrequency ω0 of a single point defect due to 

the less concentration of electric fields in the defect hole [45]. 
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Fig. 3.16  Eigenfrequencies of a point defect in the air-hole PCS. 

 

    In order to realize the influence of this modification on the neighboring regions of the 

defect, Fig. 3.17(a) and Fig. 3.17(b) show the electric field distribution of x-polarization 

varying with the different defect sizes along y = 0a axis and y = 2a axis on the slab plane by 

the PWEM, and Fig. 3.17(c) and Fig. 3.17(d) are the y-polarization electric field distribution 

under the same conditions.  Different from the dielectric-rod structures, the fields at defect 

sites are almost unchanged by changing the defect radius, which can be explained as the 

electric fields in the air-hole structures are mainly localized at the connections between holes. 
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Fig. 3.17  Electric field distribution of x-polarization on the slab plane along (a) y = 0a axis 

and (b) y = 2a axis, and of y-polarization along (c) y = 0a axis and (d) y = 2a axis of a single 

point defect in the air-hole PCS. 
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3-3.2  Properties of a single PCS-CROW 

 

    Considering a single PCS-CROW, C1 and C2 are the nearest neighboring and the 

next-nearest neighboring coupling coefficients of a point defect as defined in Eq. (2.2).  

From Fig. 3.17(a), we find that Ex around X = 0a and X = 2a along y = 0a axis have the 

opposite signs and can be slightly influenced by the defect radius.  Furthermore, Ex around X 

= 4a is relatively small and nearly unchanged.  Therefore, as in Fig. 3.18(a), when the defect 

radius increases, C1 of Ex can be estimated being positive and slightly decreases, and C2 of Ex 

remains unaffected.  On the other hand, from Fig. 3.17(c), Ey around X = 0a, 2a and 4a are 

much smaller than Ex, so C1 and C2 of Ey are too small to be taken into consideration.  These 

coefficients of Ey are about two orders of magnitude smaller than that of Ex as in Fig. 3.18(b). 

From the dispersion relation derived by the TBT in Eq. (2.3), we know that the frequency 

shift of curves is primarily dominated by the eigenfrequency ω0 and the cosine modulation is 

mainly caused by the coupling coefficient C1 and C2 of the Ex.  According to the PWEM 

simulation results in Fig. 3.19, the curves will increase and then decrease as the wavevector 

becoming larger due to the cosine modulation caused by the terms C1 cos(2ka) and C2 

cos(4ka).  In addition, the curves just shift to the higher frequency by enlarging the defect 

holes because of the increase of the eigenfrequency ω0. 
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Fig. 3.18  Estimated values (normalized) of the coupling coefficient C1 and C2 of (a) Ex and 

(b) Ey in a single air-hole PCS-CROW. 

  

 

 

 

 

 

 

 

 

Fig. 3.19  Dispersion curves of a single air-hole PCS-CROW. 

 

3-3.3  Properties of the opposite-type PCS-DCs 

 

    Similarly, for the opposite-type PCS-DCs, the nearest neighboring coupling coefficient α 

and the next-nearest neighboring coupling coefficient β can be discussed from Ex and Ey 

distribution along y = 2a axis as in Fig. 3.17(b) and Fig. 3.17(d).  Additionally, the fields are 

almost independent from the size of the defects as in a single PCS-CROW.  Based on Eq. 
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(2.6) and Eq. (2.7), the amount of coupling coefficients can be expressed just as the 

combination of the contribution from the fields with different polarization.  From Ex in Fig. 

3.17(b), we find that the magnitude of α contributed by the fields around X = 0a is about 

twice of β contributed by the fields around X = 2a and have the opposite signs.  On the other 

hand, from Ey in Fig. 3.17(d), the α is almost zero and the magnitude of β is smaller than that 

of Ex.  The values of these coupling coefficients and the total ratio between them are plotted 

in Fig. 3.20(a) and Fig. 3.20(b). 
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Fig. 3.20  (a) Estimated values (normalized) of the coupling coefficients α and β of Ex and 

Ey in the opposite-type air-hole PCS-DCs, and (b) the ratio |β/α| for the crossing of curves. 
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Therefore, from the derived Eq. (2.10), we know that all the dispersion relations will 

have a decoupling point under the condition |β/α| > 1/2, and the wavevector position of which 

is nearly a constant, which is caused by the small influence of the defect size on the field 

distribution.  Furthermore, due to the opposite sign of the coefficients α and β, the frequency 

difference between the splitting curves increases as the wavevector increases, which is 

dominated by the term α + 2β cos(2ka), and reaches the maximum value at the edge of the 

first Brillouin zone.  Additionally, the frequency shift and sinusoidal modulation of curves 

with various defect radii is caused by the variation of ω1(k) as mentioned above.  These 

predicted trends are consistent with the simulation results done by the PWEM in Fig. 3.21. 

 

 

 

 

 

 

 

 

 

Fig. 3.21  Dispersion curves of the opposite-type air-hole PCS-DCs. 

 

3-3.4  Properties of the alternating-type PCS-DCs 

 

    On the other hand, in the alternating-type PCS-DCs, we can discuss in the same way by 

inspecting Ex and Ey distribution along y = 2a axis in Fig. 3.17(b) and Fig. 3.17(d), and the 

defined coupling coefficients α contributed by the fields around X = 1a and β contributed by 

the fields around X = 3a can be obtained from Eq. (2.13) and Eq. (2.14).  For both Ex and Ey, 

α and β are small and almost unaffected by the defect radius, shown in Fig. 3.22(a).  
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However, the total ratio |β/α| can be modified as in Fig. 3.22(b), which decreases as the defect 

radius increases because of the increase of α, that may caused by the small value of α as the 

denominator. 
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Fig. 3.22  (a) Estimated values (normalized) of the coupling coefficients α and β of Ex and 

Ey in the alternating-type air-hole PCS-DCs, and (b) the ratio |β/α| for the crossing of curves. 

 

    Consequently, according to the terms of cosine modulation α cos(ka) + β cos(3ka) in Eq. 

(2.17), the dispersion relation would have two crossing points under the condition |β/α| > 1/3, 

and one of which is at the edge of the first Brillouin zone.  As plotted in Fig. 3.23, the 

wavevector positions of the decoupling points are nearly constants as in the opposite-type 
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PCS-DCs, but will slightly shift to the larger values as the defect radius increases.  

Additionally, we find that the frequency difference between the two splitting curves increases 

and then decreases as the wavevector shifting to the larger values because α and β both 

positive and lead to the sinusoidal modulation of the dispersion curves. 

 

 

 

 

 

 

 

 

 

Fig. 3.23  Dispersion curves of the alternating-type air-hole PCS-DCs. 

 

3-4  Applications of the PCS-DCs 

 

    We have discussed the dispersion behaviors of the dielectric-rod and air-hole PCS-DCs 

with different types, and find an effective modal to provide the design concepts.  For the 

opposite-type dielectric-rod PCS-DCs, the frequency difference between the dispersion curves 

is nearly a constant for all wavevectors, as shown in Fig. 3.11, which means that the coupling 

length of the device is almost unchanged for the waves with a certain range of frequencies.  

As expressed in Fig. 3.24(a), this feature can be used to separate the waves with frequencies 

∆ω2 from a broadband optical signal with frequencies ∆ω1 + ∆ω2, where ∆ω2 is in the 

frequency range mentioned above.  In addition, because the coupling lengths for the 

separated waves are the same, these waves can keep their relative phases after coupling from 

one waveguide into another one.  Furthermore, for the alternating-type dielectric-rod 
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PCS-DCs, the position of the decoupling point can be modified by varying the defect radius, 

as shown in Fig. 3.13.  Waves with the frequency corresponding to the decoupling point can 

stay in one waveguide without coupled into another one.  Therefore, we can separate the 

waves with a certain frequency ω1 from a wideband optical signal with frequencies ∆ω by 

properly choosing the parameters of the device, as expressed in Fig. 3.24(b).  In conclusion, 

these two structures can be used to form the demultiplexers for different ranges of frequencies, 

and can provide the slow-light propagation at the small wavevectors. 

 

(a)                                      (b) 
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Fig. 3.24  Applications for the (a) opposite-type and (b) alternating-type dielectric-rod 

PCS-DCs, and for the (c) opposite-type air-hole PCS-DCs. 

 

    For the air-hole PCS-DCs, the wavevector position of the decoupling point is almost 

fixed under different defect radii, so this kinds of structures are hard to be used to separate 

waves.  However, for the opposite-type PCS-DCs, the dispersion curves can support only 

one even mode or one odd mode at a certain frequency, as shown in Fig. 3.21, which means 

that the output waves of the two waveguides will have the same phase or a phase difference π.  

As expressed in Fig. 3.24(c), the incident waves will be separated with a specific phase 

difference (zero or π) in the two waveguides after propagating a sufficient long distance, and 
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can be used to form the beam splitters.  In addition, that can provide the slow-light 

propagation near the edge of first Brillouin zone.  On the other hand, for the alternating-type 

PCS-DCs, because the dispersion relations show the multi-mode propagation, this structure is 

hard to be used due to the complexity of designing. 
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Chapter 4   Conclusion and Perspectives 

 

4-1  Conclusion 

 

    By applying the extended tight-binding theory (TBT), which includes the coupling 

effects up to the next-nearest neighboring defects, we successfully derive the analytical 

equations used to describe the dispersion behaviors and the mode distribution of the 

symmetric directional couplers (DCs) based on the coupled resonant optical waveguides 

(CROWs) in the photonic crystal slab (PCS).  We choose the structures created by a square 

lattice of dielectric rods in air and a triangular lattice of air holes in a dielectric slab, and the 

defects are formed by reducing the effective refraction index, which means to reduce the 

radius of dielectric rods or to enlarge the radius of air holes. 

Additionally, for the 3D PWEM simulations, there may exist the fake guiding modes 

called the boundary guiding modes (BGMs) in the photonic bandgap (PBG) due to the finite 

size of the simulation super cell.  These modes can interfere with the defect modes and cause 

the discontinuities to the dispersion curves.  By proper choosing the non-integral times of the 

lattice constant as the cell boundaries, we can shift the BGMs outward the PBG and the 

dispersion relation will free from the simulation errors. 

In a single PCS-CROW, the eigenfrequency ω0 of a single point defect will cause the 

frequency shift to the dispersion curves, and the coupling coefficients C1 and C2 lead to the 

sinusoidal modulation.  In the opposite-type PCS-DCs, the nearest neighboring coupling 

coefficient α causes the splitting and the next-nearest neighboring coupling coefficient β leads 

to the sinusoidal modulation of the dispersion curves, which will cross at a point under the 

condition |β/α| > 1/2.  On the other hand, in the alternating-type PCS-DCs, both α and β lead 

to the sinusoidal modulation to the dispersion relations, and the curves will have a decoupling 
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point under the condition |β/α| > 1/3. 

In the dielectric-rod structures, the coupling coefficients are dominated by the electric 

fields parallel to the rod axis (z-polarization) owing to the TM-like polarization propagating 

waves, and ω0 will shift toward the lower frequency by increasing the radius of the defect 

rods.  For a single PCS-CROW, C2 is much smaller than C1 and can be neglected, and C1 can 

be estimated being negative.  The dispersion curves of that will move toward the lower 

frequency by increasing the defect radius, and decrease at the higher values of the wavevector.  

In addition, for the opposite-type PCS-DCs, we find that α is much larger than β and they 

possess the opposite sign.  Therefore, the dispersion curves never have a crossing point, and 

the frequency difference between them is nearly a constant for all wavevectors, which can be 

used to separate the waves with the frequencies in a certain range from a broadband optical 

signal.  On the other hand, for the alternating-type PCS-DCs, the magnitude of α is much 

smaller than that in the opposite-type PCS-DCs and the ratio |β/α| increases as the defect 

radius increases due to the decrease of α.  Consequently, the dispersion curves of the 

structures with the larger defect rods may have a crossing point, which will shift to the smaller 

wavevector by increasing the defect radius.  At this so-called decoupling point, the EM 

waves will propagate in one waveguide without leaking to another one, and the coupling 

length becomes infinite.  This feature can be used to separate the waves with a certain 

frequency from a wideband optical signal by properly choosing the parameters of the device. 

     On the other hand, in the air-hole structures, the coupling coefficients are dominated by 

the electric fields parallel to the slab plane (x-polarization and y-polarization) due to the 

TE-like polarization propagating waves, and the enlarging of defect holes will cause the 

blueshift to the eigenfrequency ω0.  For a single PCS-CROW, C1 and C2 of the y-polarization 

waves are too small to be taken into consideration, and these coupling coefficient can be just 

slightly influenced by the defect radius.  The dispersion curves of that will increase and then 

decrease as the wavevector becoming larger due to the cosine modulation, and just shift to the 
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higher frequency by enlarging the defect radius.  For the opposite-type PCS-DCs, we find 

that the magnitude of α is about twice the magnitude of β and they have the opposite sign, 

and both of them are nearly independent from the size of defects.  Therefore, there exists a 

decoupling point of all the dispersion relations, and the wavevector position of this point is 

almost a constant.  In addition, the frequency difference between the curves increases at the 

larger wavevector, and reaches the maximum value at the edge of the first Brillouin zone.  

Furthermore, because this structure can support only one even mode or one odd mode at a 

certain frequency, that can be used to form the beam splitters with the slow-light propagation 

near the zone edge.  On the other hand, for the alternating-type PCS-DCs, α and β are small 

and almost unaffected by the defect radius as in the opposite-type PCS-DCs.  Consequently, 

the dispersion relations also have a decoupling point with a certain wavevector.  Moreover, 

the frequency difference between the curves would increase and then decrease as increasing 

of the wavevector.  However, owing to the multi-mode propagation, this structure is hard to 

be used due to the complexity of designing.  In conclusion, these features discussed by the 

TBT are confirmed by the PWEM simulations, and this analytical method provide valuable 

design concepts on the PCS-DCs in integrated photonic circuits, which can be controlled by 

only few parameters related to the coupling effects. 

 

4-2  Perspectives 

 

    In this thesis, we have discussed the coupling effects and dispersion behaviors in 

different types of PCS-DCs, and the characteristics of the signal couplings in these structures 

have been obtained.  However, we consider only the linear optical effects in these structures.  

The other advantages of the PCS-DCs as the slow-light propagation and nonlinear interaction 

are also valuable topics, which can make the DCs become the active optical components.  

For example, the incident EM waves with different intensities can be separated by the 
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propagating conditions tuned by nonlinear effects.  Therefore, the properties of the nonlinear 

PCS-DCs should be further investigated as the future works, and the devices can be designed 

to examine whether this kind of structures have practical values. 
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