頁次

中文摘要	i
英文摘要	ii
誌 謝	iii
目 錄	iv
表目錄	vi
圖目錄	vii
第一章	緒論1
1.1	研究背景與動機1
1.2	研究目的
第二章	文獻回顧 4
2.1	光子晶體(Photonic Crystal)介紹與應用5
2.1.1	光子晶體(Photonic Crystal)簡介 5
2.1.2	二維光子晶體(2-D Photonic Crystal)的製作方法 6
2.1.3	光子晶體(Photonic Crystal)的應用10
2.2	兆赫頻段(Terahertz Wave)10
2.3	深刻電鑄模造製程技術(LIGA Process) 12
2.3.1	LIGA 製程簡介 12
2.3.2	同步輻射光源 X-ray15
2.4	SU-8超深X光光刻技術(SU-8 Ultra-Deep X-ray Lithography) 17
2.4.1	SU-8厚膜光阻17
2.4.2	厚膜光阻製程18
2.4.3	鼓膜光罩設計與製作19

2. 4.4	光刻結果21
2 .5	兆赫頻段光學量測系統22
第三章	實驗規劃
第四章	初步結果與討論41
4.1	氧淬火(oxygen quench)效應41
4.2	光子晶體結構深刻製程45
4.2.1	頂部支架(Top frame)結構設計與製程的建立 48
4.2.2	降低毛細管力作用 50
4.3	微結構量測
4.4	模擬與光學量測結果 54
第五章	總結
第六章	未來展望
參考文獻	74

表目錄

	真	次
表 2.1	SU-8 2050 之主要成分	24

圖目錄

	了。 「」	〔次
圖 2.1	典型的 2D 光子晶體週期性結構	25
圖 2.2	應用電子束微影法製造的棒狀二維光子晶體	25
圖 2.3	應用 AFM 在 Si(110)晶面上製作微影圖形的示意圖	25
圖 2.4	AFM 微影所製作出的二維表面結構	26
圖 2.5	使用 AFM 與雷射在表面對正、負光阻微影的示意圖	26
圖 2.6	雷射直寫微影法所得到的結果	27
圖 2.7	應用 µSL 製程所得的兆赫波段二維光子晶體	27
圖 2.8	由上至下分別為自由空間光子晶體與掺了雜質之光子晶體	28
	中的態密度分布	
圖 2.9	THz 波段在頻譜上的範圍	29
圖 2.10	鈾同位素分離結構	29
圖 2.11	深刻電鑄模造製程技術	30
圖 2.12	傳統X光光罩製程圖	30
圖 2.13	共型光罩製程圖	31
圖 2.14	同步輻射涵蓋的波長範圍	31
圖 2.15	同步輻射產生的機制	31
圖 2.16	SU-8 光阻的分子組合結構圖	. 32
圖 2.17	SU-8 光阻之反應機制	32
圖 2.18	傳統與新式 X-ray 光罩在結構上比較之示意圖	33
圖 2.19	鼓膜製作程序之示意圖與實際成品(鼓膜Si~20μm)	33
圖 2.20	吸收體製作程序之示意圖與實際成品(吸收體 Au~15µm)	34
圖 2.21	兆赫頻段光學量測系統	35
圖 3.1	18B Micromachining 光束線設計圖	40

圖 4.1	光阻分别靜置在氧氣與氮氣中6小時後的光刻結果	56
圖 4.2	SU-8在不同氧處理時間下的FTIR 吸收光譜圖	56
圖 4.3	相同厚度的SU-8光阻在氧中置放不同時間對顯影速率的影:	57
	響音	
圖 4.4(a	a) 沒有進行氧處理所造成的光刻品質不理想	57
圖 4.4(1	b) 有進行氧處理造成氧的抑制作用得到良好的光刻品質	58
圖 4.5	經過氧處理6小時後的光刻結果SEM圖	58
圖 4.6	PCF X-ray 光罩	58
圖 4.7	SU-8在不同氛圍且不同氧處理時間下的FTIR光譜吸收圖:	59
圖 4.8	光子晶體設計圖	59
圖 4.9	因為吸附效應所造成的傾倒現象	50
圖 4.10	結構受毛細管力推擠示意圖	50
圖 4.11	毛細管壓力(capillary pressure)產生機制	50
圖 4.12	利用第二道光罩建立支架結構流程圖	51
圖 4.13	(a) 第一道光罩圖	51
圖 4.13	(b) 第二道光罩圖	51
圖 4.14	沒建立支架結構的曝光結果(Top view)	52
圖 4.15	有建立支架結構的曝光結果(Top view,支架的曝光劑量150)	52
	mJ/cm ²)	
圖 4.16	支架結構(Side view,支架的曝光劑量 150 mJ/cm ²)	53
圖 4.17	SU-8 2000 系列之膜厚對不同波長的光吸收效率	53
圖 4.18	以波長 254nm 的 Deep UV 做為支架結構的曝光光源所建立。	54
	的光刻結果(支架的曝光劑量 150mJ/cm ²)	
圖 4.19	在不同曝光光源下的曝光劑量與其相對應的支架厚度	54
圖 4.20	光子晶體在不同溫度下的乾燥過程	55

圖 4.21	改善乾燥過程後得到了良好的光子晶體結構	66
圖 4.22	薄膜量測系統拉伸示意圖	66
圖 4.23	百格測驗結果	66
圖 4.24	百格測驗的 UV 曝光劑量對殘留區域的關係	67
圖 4.25	使用光學顯微鏡配合影像處理軟體,分別量測 UV、X-ray	67
	光罩以及光阻頂部與底部的結構直徑	
圖 4.26	兆赫頻段光子晶體能帶模擬圖	68
圖 4.27	光學量測結果	69
圖 4.28	孔徑大小與試片規格的差異所產生的漏光情形	70

