

資訊學院
資訊科學與工程研究所

博 士 論 文

在影像與文字檔案中進行資料隱藏的技

術與應用之研究
A Study on New Techniques of Data Hiding in

Images and Text Documents and Their
Applications

研 究 生: 李義溪
指 導 教 授: 蔡 文 祥 博士

中華民國九十七年七月

 ii

在影像與文字檔案中進行資料隱藏的技術

與應用之研究

A Study on New Techniques of Data Hiding
in Images and Text Documents and Their

Applications

研 究 生 : 李 義 溪 Student: I-Shi Lee

指 導 教 授 : 蔡 文 祥 博士 Advisor: Dr. Wen-Hsiang Tsai

國 立 交 通 大 學 資 訊 學 院
資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation Submitted to
Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

in Computer and Information Science

July 2008
Hsinchu, Taiwan, 300

Republic of China

中華民國 九十七 年 七 月

 iii

 iv

 v

 vi

 vii

 viii

在影像與文字檔案中進行資料隱藏的技術與應用之

研究

研究生：李 義 溪 指導教授： 蔡文祥博士

國立交通大學資訊學院

資訊工程系

資訊科學與工程研究所

摘 要

本博士論文冀能領先全球研究，發展出將資料隱藏於影像及本文文字檔的

技術及其應用。本論文總共提出了 10 種新方法，分別適用於黑白，灰階及彩色

影像，以及電子郵件，CP

++
P軟體程式，PDF和網頁等檔案類型。首先，本論文提

出二種新方法分別針對黑白及灰階影像，基於人眼視覺模型及動態規劃技術去降

低影像扭曲程度並增加資料被隱藏的容量。接著，本論文提出一種新方法可將大

量資料藏於BMP彩色影像中，本方法係利用色彩立體方塊及色彩叢集的觀念來

隱藏資料。然後，本論文提出一種利用特殊的ASCII控制碼將秘密訊息隱藏於電

子郵件中的新方法，這些特殊的ASCII碼顯示在Outlook Express與IE 網路郵件

的瀏覽視窗中是使用者看不見的。接著本論文提出二種將資料隱藏於原始程式的

 ix

新方法。其中一種方法係利用資訊分享與驗證的技巧及人眼看不見的ASCII控制

碼來保護軟體程式的安全。另一種技術是應用於秘密通訊，同時可驗證隱藏訊息

真偽的新方法。更進一步，本論文提出二種利用特殊的ASCII碼將資訊隱藏於通

用的PDF檔中的新方法。其中之ㄧ應用於秘密通訊，另一個應用於驗證PDF檔的

真偽。最後，本論文提出二種新方法將資訊隱藏於大家常瀏覽的網頁中。其中之

ㄧ應用於秘密通訊，另一個應用於驗證網頁的真偽。二種方法皆是利用HTML檔

中各種不同的編碼系統的特殊空白碼。以上本論文提出之 10 種方法,皆為創新之

作, 且已投稿於國內外重要期刊。實驗結果顯示本論文提出的方法皆具有可行性

及實用性。

 x

A Study on New Techniques of Data Hiding
in Images and Text Documents and Their

Applications

Student: I-Shi Lee Advisor: Dr. Wen-Hsiang Tsai

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

In this study, data hiding techniques for image files and text documents and their

applications are investigated, and totally ten methods are proposed for binary,

grayscale, and color images, as well as email, software CP

++
P program, PDF, and

webpage files. First, two methods are proposed respectively for binary and grayscale

images based on human vision modeling and dynamic programming to reduce the

image distortion and increasing data hiding capacities. Also, a method is proposed for

hiding large-volume data in BMP color images, based on the use of color cubes and

the idea of color clustering. Then, a method is proposed for hiding secret messages in

emails using some special ASCII codes which are invisible in the window of Outlook

Express and IE Webmail browsers. Also proposed are two methods for data hiding in

software programs. One is used for security protection of software programs by

information sharing and authentication techniques using invisible ASCII control

 xi

codes. And the other is applicable to covert communication with the additional

capability of authenticating the hidden secret message. Furthermore, two methods are

proposed for data hiding in PDF files which are popular nowadays. One is useful for

covert communication and the other for PDF file authentication, both using certain

special ASCII codes. Finally, two methods are proposed for data hiding in web pages

which are browsed by lots of people in the world. One method is proposed for covert

communication and the other for authentication of web pages, both utilizing certain

space codes of various coding systems applicable in HTML files. Experimental results

show the feasibility and practicality of all the proposed methods.

 xii

Acknowledgements

I would like to express my sincere appreciation to my advisor, Professor

Wen-Hsiang Tsai, for his patience and kind guidance throughout the course of this

dissertation study. Appreciation is extended to Mr. Jiun-Tsung Wang for his

programming support and helpful suggestions to my study on data hiding utilizing

PDF files. Thanks are also extended to the colleagues in the Computer Vision

Laboratory at National Chiao Tung University for their valuable help during this

study.

Finally, I am so grateful to my wife and my parents for their love, support, and

endurance. This dissertation is dedicated to them.

 xiii

Table of Contents

0HTU摘 要UT .. 81Hviii
1HTUAbstractUT ..
 82Hx

2HTUAcknowledgementsUT.. 83Hxii
3HTUTable of ContentsUT ... 84Hxiii
4HTUList of Tables UT... 85Hxvi
5HTUList of FiguresUT .. 86Hxviii
6HTUChapter 1UT TUIntroductionUT.. 87H1

7HTU1.1UT TUScope of Data Hiding ResearchUT ... 88H1
8HTU1.2UT TUMotivation of StudyUT ... 89H2
9HTU1.3UT TUContributions of This StudyUT ... 90H4
10HTU1.4UT TUDissertation Organization UT .. 91H6

11HTUChapter 2UT TUSurveys of Related Studies and Brief Descriptions of Proposed MethodsUT 92H7
12HTU2.1UT TUSurvey of Related StudiesUT .. 93H7
13HTU2.2UT TUBrief Descriptions of Proposed Methods UT ... 94H14

14HTUChapter 3UT TUData Hiding in Binary Images with Distortion-Minimizing Capabilities
by Optimal Block Pattern Coding and Dynamic Programming TechniquesUT.............. 95H21

15HTU3.1UT TUIdea of Proposed Method UT ... 96H21
16HTU3.2UT TUProposed Data Embedding ProcessUT ... 97H22
17HTU3.3UT TUExperimental ResultsUT ... 98H37
18HTU3.4UT TUConcluding Remarks UT.. 99H46

19HTUChapter 4UT TUData Hiding in Grayscale Images by Dynamic Programming Based on A
Human Visual ModelUT.. 100H49

20HTU4.1UT TUIdea of Proposed Method UT ... 101H49
21HTU4.2UT TUCost Function for Distortion MeasurementUT ... 102H50
22HTU4.3UT TUProposed Horizontal Data Hiding ProcessUT... 103H55
23HTU4.4UT TUProposed Data Recovery ProcessUT .. 104H64
24HTU4.5UT TUExperimental ResultsUT ... 105H66
25HTU4.6UT TUConcluding Remarks UT.. 106H73

26HTUChapter 5UT TUData Hiding in Color Images by Color Replacements with Reduction of
Image Distortion and Change NoticeabilityUT... 107H76

27HTU5.1UT TUIdea of Proposed Method UT ... 108H76
28HTU5.2UT TUDetailed Algorithms of Proposed Data Embedding and ExtractionUT 109H89
29HTU5.3UT TUExperiment Results and DiscussionsUT ... 110H92

 xiv

30HTU5.4UT TUConcluding Remarks UT.. 111H96
31HTUChapter 6UT TUData Hiding in Emails and Applications by Unused ASCII Control CodesUT

 112H98
32HTU6.1UT TUIdea of Proposed Method UT ... 113H98
33HTU6.2UT TUProperties of Email SystemsUT .. 114H99
34HTU6.3UT TUEmbedding ASCII Control Codes into EmailsUT 115H101
35HTU6.4UT TUProposed Data Hiding Process for EmailsUT ... 116H104
36HTU6.5UT TUProposed Data Recovery Process for EmailsUT... 117H106
37HTU6.6UT TUProposed Authentication Process for Email DocumentsUT 118H107
38HTU6.7UT TUExperimental ResultsUT ... 119H109
39HTU6.8UT TUConcluding Remarks UT.. 120H117

40HTUChapter 7UT TUSecurity Protection of Software Programs by Information Sharing and
Authentication Techniques Using Invisible ASCII Control CodesUT 121H119

41HTU7.1UT TUIdea of Proposed Method UT ... 122H119
42HTU7.2UT TUProposed Program Sharing SchemeUT... 123H121
43HTU7.3UT TUSecret Program Recovery SchemeUT... 124H125
44HTU7.4UT TUDiscussions on Security Protection UT.. 125H128
45HTU7.5UT TUExperimental ResultsUT ... 126H129
46HTU7.6UT TUConcluding Remarks UT.. 127H130

47HTUChapter 8UT TUCovert Communication with Authentication via Software Programs
Using Invisible ASCII CodesUT ... 128H135

48HTU8.1UT TUIdea of Proposed Method UT ... 129H135
49HTU8.2UT TUData Hiding Using Invisible CodesUT ... 130H137
50HTU8.3UT TUSecret Hiding, Recovery and AuthenticationUT... 131H138
51HTU8.4UT TUExperimental ResultsUT ... 132H140
52HTU8.5UT TUConcluding Remarks UT.. 133H140

53HTUChapter 9UT TUCovert Communication via PDF Files and PDF File Authentication by
Invisible CodesUT ... 134H144

54HTU9.1UT TUIdea of Proposed Methods UT ... 135H144
55HTU9.2UT TUPrinciple of Encoding Message DataUT ... 136H146
56HTU9.3UT TUMessage Hiding and Recovery for Covert Communication and
Experimental ResultsUT ... 137H149
57HTU9.4UT TUPDF Authentication Process and Experimental ResultsUT 138H153
58HTU9.5UT TUConcluding Remarks UT.. 139H158

59HTUChapter 10UT TUSecret Communication through Web Pages and Automatic Authentication
of Web Pages Using Special Space Codes in HTML FilesUT 140H160

60HTU10.1UT TUIdea of Proposed Method UT ... 141H160
61HTU10.2UT TUSecret Message Coding Using Space Characters in HTMLUT 142H162

 xv

62HTU10.3UT TUMessage Hiding and Experimental ResultsUT ... 143H165
63HTU10.4UT TUAutomatic Authentication of Web Page Text ContentsUT.......................... 144H172
64HTU10.5UT TUSecurity Consideration and Experimental ResultsUT................................. 145H174
65HTU10.6UT TUConcluding Remarks UT.. 146H178

66HTUChapter 11UT TUConclusions and Suggestions for Future ResearchUT 147H180
67HTU11.1UT TUConclusionsUT.. 148H180
68HTU11.2UT TUSuggestions for Future ResearchUT ... 149H181

69HTUReferencesUT ..
 150H183

70HTUPublication ListUT .. 151H192
71HTUVitaUT ..
 152H194

 xvi

List of Tables

Table 3.1 Proposed block pattern encoding table…………………………………….25

Table 3.2 An extraction table (table index B=0)………………………………….......36

Table 3.3 Statistics of three stego-images for proposed algorithms………………….47

Table 3.4 Statistics of 19 stego-images processed by proposed DPA……………..…48

Table 4.1 A block pattern encoding table proposed in this study………………….…59

Table 4.2 An extraction table (table number T=0)……………………………………66

Table 4.3 Statistics of stego-images yielded by DPA using optimal encoding table…71

Table 4.4 Comparison of run times for four methods for grayscale images (in unit of

sec.)………………………………………………………………………..71

Table 4.5 Comparison of PSNR values of the four methods for grayscale images (in

unit of dB)…………………………………………………………………72

Table 4.6 Comparison of RS analysis results of the four methods for color images...73

Table 5.1 The colors in the (0, 0, 0)-th color cube with base color (r, g, b) = (0, 0,

0)…………………………………………………………………………...81

Table 5.2 Color encoding table for the (0, 0, 0)-th color cube with base color (0, 0,

0)…………………………………………………………………………...87

Table 5.3 Statistics of experimental results…………………………………………..94

Table 6.1 ASCII control codes and description…………………………………….100

Table 7.1. ASCII control codes and descriptions…………………………………...120

Table 7. 2 Invisible character coding table………………………………………….121

Table 8.1. Invisible codes under various environments…………………………….136

Table 9.1 ASCII codes selected for message representations in this study…………145

Table 9.2 Null space coding table for message “This is a covert communication

 xvii

method”…………………………………………………………………..151

Table 10.1 Character representations in HTML…………………………………….164

 xviii

List of Figures

Figure 1.1 Classification of data hiding techniques…………………………………...3

Figure 3.1 Illustration of block patterns and corresponding binary values………..…23

Figure 3.2 Division of input image into 2×2 blocks with separating linesP

P(grids with

bold boundaries are 2×2 blocks for data embedding)……………………27

Figure 3.3 An example of proposed data embedding process………………………..29

Figure 3.4 An example of proposed data embedding process………………………..32

Figure 3.5 Flowchart of the proposed data embedding process……………………...34

Figure 3.6 Flowchart of the proposed extraction process……………………………38

Figure 3.7 Input binary images, output stego-images with message data, and

difference images. (a) Binary image “NCTU”. (b) Stego-image using

greedy search and optimal encoding table. (c) Stego-image using DPA and

optimal encoding table. (d) The difference image between (a) and (c) in

which the white spots are difference pixels………………………………39

Figure 3.8 Input binary images, output stego-images with message data, and the

difference images. (a) Binary image “Lena”. (b) The stego-image using the

greedy search algorithm and the optimal encoding table. (c) The

stego-image using the DPA and the optimal encoding table. (d) The

difference image between (a) and (c) in which the white spots are

difference pixels………………………………………………………….41

Figure 3.9 Input binary images, output stego-images with message data, and

difference images. (a) Binary image “Patent.” (b) Stego-image resulting

from greedy search and optimal encoding table. (c) Stego-image using

DPA and optimal encoding table. (d) An enlarged part of difference image

 xix

between (a) and (c) in which the white spots are difference pixels……...43

Figure 4.1 Three grayscale images and their 8 corresponding bit planes (from left to

right, original images, bpB0 B, bpB1B, bpB2 B, …, and bpB7B, respectively)………….50

Figure 4.2 Division of input image into 2×2 blocks with separating linesP

P(grids with

bold boundaries are 2×2 blocks for data embedding)……………………58

Figure 4.3 An example of proposed data embedding process………………………..61

Figure 4.4 A cover image “House” with the size of 256×256 and its stego-image with

16440-bit message data embedded. (a) The cover image. (b) The

stego-image………………………………………………………………67

Figure 4.5 Experimental results of three images. (a) The original images and their

corresponding bit planes (repeated from Figure 4.1). (b) The resulting

three stego-images and their corresponding bit planes (from left, bpB0 B, bpB1B,

bpB2 B, …, bpB7B)………………………………………………………………68

Figure 4.6 PSNR values of stego-image “Lena” using DPA……..………………….72

Figure 5.1 An illustration of range sets of color cubes……………………………….78

Figure 5.2 A color cube with 8 colors divided into four groups with base color (0, 0, 0)……82

Figure 5.3 Illustration of a 3D spherical coordinate system for use in even color

distribution……..…………………………………………………………………86

Figure 5.4 An example of color distribution in a color cube --- the 8 colors in group

3.……………………………………………………………………...…..87

Figure 5.5 An experimental result of message data embedding applied to Figure 5.1(a)

with a 256×256 cover image and a 22900-byte message data…………....95

Figure 5.6 A second experimental result with a 256×256 cover image and a

22900-byte message……………………………………………………...95

Figure 5.7 A third experimental result of data embedding with a 512×512 cover image

 xx

and an 88200-byte message………………………………………………96

Figure 5.8 A fourth experimental result of data embedding with a 512×512 cover

image and an 88200-byte message……………………………………….96

Figure 6.1 Partial content of a cover email………………………………………….110

Figure 6.2 Partial content of the stego-email generated from Figure 6.1…………...111

Figure 6.3 Partial content of an embedded secret data file…………………………111

Figure 6.4 Partial content of the extracted secret data file………………………….112

Figure 6.5 Partial content of a cover email…………………………………………112

Figure 6.6 Partial content of the stego-email generated from Figure 6.5 before being

transmitted………………………………………………………………113

Figure 6.7 Partial content of the stego-email received and displayed in IE………...113

Figure 6.8 Content of the original secret file………………………………………..114

Figure 6.9 Content of the extracted secret file……………………………………...114

Figure 6.10 Content of a stego-email for authentication before transmission……...115

Figure 6.11 Authentication result of “pass” after receiving a stego-email by Outlook

Express…………………………………………………………………115

Figure 6.12 Authentication result of “pass” after receiving a stego-email by IE…..116

Figure 6.13 Authentication result of “fail” after receiving the stego-email by IE. The

word “Lee” in the content has been modified to be “lee”………………116

Figure 7.1 Illustration of invisible ASCII control codes in a comment of a source

program………………………………………………………………..123

Figure 7.2 Experimental results of sharing a secret program………………………131

Figure 7.3 An experimental result of authenticating a destructed stego-program….134

Figure 8.1 An experimental result…………………………………………………..141

Figure 8.2 An example of authentication results…...……………………………….143

Figure 9.1 Display of all ASCII codes in Adobe Reader 8.1.2, in which only 20 and A0

 xxi

appear to be white spaces (the first spaces in the 3rd and the 11th lines)……….146

Figure 9.2 Display of all ASCII codes in the window of Adobe Reader 8.1.2, in which the

width of A0 was set to be zero so that A0 becomes nonexistent (i.e., there is no

space before the first comma in the 11th row, as compared with Figure 9.1)…..147

Figure 9.3 Invisibility of multiple A0’s at between-character locations……………………148

Figure 9.4 An experimental result of null space coding…………………………….152

Figure 9.5 An experimental result for authenticating a PDF file……………………………157

Figure 10.1 Appearances of nine space codes as white spaces in the window of the

IE………………………………………………………………………164

Figure 10.2 Invisibility of space codes for the message “sky” in an HTML text…..169

Figure 10.3 The embedded secret data…………………………………………...…171

Figure 10.4 An experimental result of authentication of a modified web page…….177

 1

Chapter 1

Introduction

1.1 Scope of Data Hiding Research

Data hiding is a type of information hiding, emphasizing the purpose of

embedding digital data behind multimedia of various forms. The multimedia into

which data are hidden are called cover media, like cover image, cover text, etc., and

the results are called stego-media, like stego-image, stego-text, etc. Applications of

data hiding include at least the following.

(1) Copyright protection --- the data hidden are of the forms of watermarks like

logos of companies, series numbers of products, etc.

(2) Covert communication --- the data hidden are secret messages sent from one

site to another. Data hiding for the purpose of covert communication is

sometimes called steganography. The goal of steganography is to arouse as

little notice from observers of the stego-media as possible.

(3) Multimedia authentication --- the hidden data are authentication signals in

various forms, created for the purposes of checking cover media’s fidelity,

integrity, utilization rights, etc.

(4) Secret sharing --- the hidden data are parts of certain multimedia forms like

text or image documents, and are taken as secret messages which are

embedded into several shares in other forms of multimedia. Only a sufficient

number of shares are collected can the secret message be recovered for

inspection.

(5) Data association --- the hidden data are various information, like metadata,

history, identification, etc., about the cover media. Data hiding in this way

 2

facilitates close association of the data with the cover image for convenient

preservation or transmission of the cover media.

(6) Digital rights management --- the hidden data need not always be invisible; on

the contrary, we may embed a visible watermark on a video (like a movie) to

prevent it form being watched by a customer paying no fee. More generally,

data hiding may be used in applications of digital rights management, like pay

movie control, video distribution management, limitation of watch times, etc.

A classification of the techniques of data hiding which are related to this

dissertation study is illustrated in Figure 1.1.

In the following sections, the motivation of study is given in Section 1.2. The

contributions of this study and the organization of this dissertation are reported in

Sections 1.3 and 1.4, respectively.

1.2 Motivation of Study

Many data hiding techniques with images as cover media have been proposed.

Most of the techniques were proposed for color and grayscale images because pixels

in such images take a wide range of values and so are more proper for data hiding.

Only a few techniques were proposed for binary images. In this study, we will

investigate more efficient methods for hiding more data in binary images.

On the other hand, the cover media need not always be images. On the Internet,

so many documents of formats other than images are being transmitted or displayed,

like e-mails, web pages, freeware, etc. If we can hide data behind e-mails, for

example, covert communication will be easily implemented. Authentication of

e-mails is also possible to prevent receiving false or illegally altered messages.

Furthermore, it is also desired to protect software from being stolen or illegal

distributed. If we can hide data into the source programs, then possibly protection of

 3

software copyrights is achievable. It is noted by the way that studies of data hiding in

text contents are very few so far.

Data Hiding

Copyright

Protection

Covert

communication

Multimedia

authentication

Secret

sharing

Data

association

Digital rights

management

Figure 1.1. Classification of data hiding techniques.

Most researches about data hiding in images lack serious considerations of image

distortion reduction in stego-images. It is desired in this study to design new

techniques of data hiding emphasizing optimality in image distortion reduction. In

doing so, it is also hoped that human vision modeling may be considered, so that

changes in the resulting stego-image can be less noticeable. It is noted here that most

existing data hiding methods are conducted in the frequency domain and thus are

useful for images compressed in the frequency domain like JPEG. For images of other

types like BMP, appropriate data hiding methods need be developed. And this is also

part of the goal of our study on data hiding in images.

On the other hand, it is also a goal of this study to devise new techniques for data

hiding in text documents, which are still few so far. Such techniques will be very

useful for daily uses because text documents like e-mails are popular and used or

watched every day by humans worldwide, especially for the purpose of

 4

steganography.

1.3 Contributions of This Study

In this study, we propose ten data hiding techniques for various applications of

copyright protection, covert communication, authentication, and secret sharing. The

processed file types include two major categories, namely, image and document. The

former category includes binary, grayscale, and color images, and the latter type

includes email, software program, PDF, and HTML (web page). The contribution of

each of the ten techniques is described in the following.

(1) Data hiding in binary images --- the proposed technique has distortion-minimizing

capabilities by optimal block pattern coding and dynamic programming

techniques. Accordingly, not only more data bits can be embedded in an image

block on the average, but the resulting image distortion is also reduced in an

optimal way.

(2) Data hiding in grayscale images --- the proposed technique is based on dynamic

programming and a human visual model with distortion-minimizing capabilities.

The proposed method can predict the PSNR value of the resulting image

according to the size of the data to be embedded before the embedding process

starts.

(3) Data hiding in color images --- the proposed technique is based on color

replacements with capabilities of reducing image distortion and change

noticeability. Color cubes and the idea of color clustering are used for

large-volume data hiding.

(4) Data hiding in emails and applications --- the proposed technique embeds data in

emails via Outlook Express and IE by some unused and invisible ASCII control

codes. Also described are two applications of the proposed data hiding technique,

 5

covert communication via emails and authentication of emails.

(5) Security protection of software programs --- the proposed technique is based on

information sharing and authentication using invisible ASCII control codes. These

invisible codes are hidden in the camouflage program, resulting in a

stego-program for a participant to keep. To enhance security, three security

measures via the use of a secret random key are also proposed to prevent the

secret program from being recovered illegally, authenticate the stego-program and

check the stego-program whether it has been tampered with or not.

(6) Covert communication with authentication via software programs --- the proposed

technique is also based on the use of invisible ASCII codes. Each binary message,

after being encoded by certain ASCII codes and inserted at specific C++ program

locations, becomes invisible in the source code editors. A scheme for tamper-proof

authentication of the embedded message has also been proposed.

(7) Covert communication via PDF files --- the proposed technique is based on the

use of special ASCII codes. A secret message, after being encoded by a special

ASCII code and embedded at between-word and between character locations in

the text of a PDF file, becomes invisible in the window of a common PDF reader,

creating a steganographic effect for secret transmission through the PDF file.

(8) Authentication of PDF files --- the proposed technique is based on the use of

invisible ASCII codes. To authenticate each word in a PDF file, a authentication

signal composed of multiple non-breaking space codes is generated from the

characters in the word and a random number. The authentication signal is invisible

for common PDF readers, thus reducing the probability for the authentication signal

to be tampered with.

(9) Secret communication via web pages --- the proposed technique is based on the

use of some special space codes in HTML. These codes, like the ASCII code 20,

 6

appear to be white spaces as well. Message hiding and recovery with security

enhancement are also proposed.

(10) Automatic authentication of web pages --- the proposed technique is based on

the use of multiple special space codes in HTML. The propose method is useful

for checking automatically the integrity of the text content of a web page at the

word level. Special space codes are used again as authentication signals with

steganographic effects. Security enhancement techniques using secret keys and

multiple word encoding are also proposed.

1.4 Dissertation Organization

In the remainder of this dissertation, a survey of related studies and a more

detailed description of the ten proposed methods are given in Chapter 2. The proposed

methods are described one by one in the subsequent chapters. In Chapter 3, the

proposed method for data hiding in binary images is described. In Chapter 4, the

proposed method for data hiding in grayscale images is presented. In Chapter 5, the

proposed method for data hiding in color images is described. In Chapter 6, the

proposed method data hiding in emails and some applications are described. In

Chapter 7, the proposed method for security protection of software programs is

presented. In Chapter 8, the proposed method for covert communication with

authentication via software programs is described. In Chapter 9, the proposed

methods for covert communication via PDF files and authentication of PDF files are

described. In Chapter 10, the proposed methods for secret communication via web

pages and automatic authentication of web pages are described. Finally, in the last

chapter, conclusions of this study and some suggestions for future research are

included.

 7

Chapter 2

Surveys of Related Studies and Brief

Descriptions of Proposed Methods

2.1 Survey of Related Studies

Many data hiding techniques have been proposed while this dissertation study is

dedicated to develop new data hiding techniques for various applications. Surveys of

related studies on data hiding are described first in the following, followed by brief

descriptions of the proposed methods.

2.1.1. Survey of Data Hiding in Binary Images

Many data hiding techniques have been proposed for a variety of applications of

digital images in recent years [1-22]. Most of the techniques were proposed for color

and grayscale images because pixels in such images take a wide range of values and

so are more proper for data hiding. One simple method to data hiding in grayscale

images is to use the LSB replacement technique to hide secret data or authentication

signals. However, data hiding in binary images is a more challenging work. Because

binary image pixels have drastic contrast, it is easier for humans’ eyes to find out

pixel value changes in binary images. Therefore, it is more difficult to hide data into

binary images than into color or grayscale images. Wu et al. [12] embedded secret

data in specific image blocks that are selected with higher “flippability” scores by

pattern matching. Manipulated flippable pixels on the image region boundary are then

used to embed a significant amount of data without causing noticeable artifacts. Pan et

al. [6] changed pixel values in image blocks, mapped block contents into the secret

data, and used a secret key and a weight matrix to protect the hidden data. Given an

 8

image block of size m×n, the scheme can conceal up to ⎣logB2 B(m×n + 1)⎦ bits of data in

the image by changing, at most, two bits in an image block. Tseng and Pan [8]

proposed a technique to alter an image bit into a new value identical to a neighboring

one. It can yield better hiding effect within a binary image. Koch and Zhao [2]

embedded a bit 0 or 1 in a block by changing the number of black pixels in the block

to be larger or smaller than that of white ones, respectively. In [5, 11], secret data are

concealed into dithered images by maneuvering dithering patterns. Tzeng and Tsai [9]

encoded the edge features of binary images into 4×4 block patterns, and authenticated

the images by pattern matching. Tzeng and Tsai [10] also proposed a new feature,

called surrounding edge count, for measuring the structural randomness in a 3×3

image block, and defined “pixel embeddability” from the viewpoint of minimizing

image distortion. Accordingly, embeddable image pixels suitable for hiding secret

data can be selected. Wu et al. [14] used even-odd relationships of lengths of run pairs

to embed information in binary images, and adjusted the length of each run to an even

or odd value to represent the embedded bit value.

2.1.2. Survey of Data Hiding in Grayscale Images

Wang et al. [15] embedded an image in the fifth LSB bit plane of a cover

grayscale image, and employed an optimal substitution process based on a genetic

algorithm and a local pixel adjustment method to lower the distortion in the

stego-image. Chang et al. [16] used dynamic programming to obtain an optimal

solution for the LSB substitution method. Chan and Cheng [17, 18] presented an

optimal pixel adjustment process to improve the image quality of the stego-image

acquired by Wang’s schemes. Thien and Lin [19] proposed a method for hiding data

in images digit by digit using a modulus function. The method is better than simple

LSB substitution not only in eliminating false contours but also in reducing image

 9

distortion. Lee and Chen [20] applied variable-sized LSB insertion to estimate the

maximum embedding capacity by a human visual system (HVS) property, and to

maintain image fidelity by removing false contours in smooth image regions. Liu et al.

[21] presented a novel bit plane-wise data hiding scheme using variable-depth LSB

substitution and employed post-processing to eliminate the resulting noticeable

artifacts.

Most of the above methods lack consideration of using precise human visual

models in improving the data hiding effect. Instead, Wu and Tsai [13] presented a

method based on the HVS by modifying quantization scales according to variation

insensitivity from smooth to contrastive to improve stego-image quality. And Lie and

Chang [22] presented an adjusted LSB technique with the number of LSBs adapting

to the pixels of different grayscales.

On the other hand, some steganalysis techniques were developed to detect secret

messages among stego-images. TLyu and Farid [23]T developed a universal blind

detection scheme to detect hidden messages in stego-images, which uses wavelet-like

decomposition to build higher-order statistical models of natural images and adopts

the support vector machine as an optimal classifier to separate stego-images from

cover images. TThe method Tdemonstrates good performance on JPEG images and the

selected statistics is rich enough to detect hidden data in the results yielded by a very

wide range of steganographic methods. In addition, to detect data hidden in LSBs in

the spatial domain, it is observed that the basic LSB substitution method changes

pixel values only between 2i and 2i + 1 in the i-th bit plane of the pixel value. This

leads to an effective steganalytic technique, the RS method proposed by Fridrich, et al.

[24], which not only can expose the presence of secret data but also can estimate the

length of the embedded data.

 10

2.1.3. Survey of Data Hiding in Color Images

Many techniques for data hiding in color images have been proposed in the past

decade [1, 7, 27] which may be categorized into two major methods: the

spatial-domain method and the frequency-domain method. In the former, secret data

are directly embedded in the characteristics of the pixels of the cover image, and in

the latter, the cover image is transformed first into frequency-domain coefficients, into

which secret data are embedded. In general, the frequency-domain method is more

robust against attacks while the spatial-domain method can hide more data. The

previously-surveyed methods for data hiding in binary and grayscale images are

conducted in the spatial domain. For the other method, related papers are very few

unless the previously-surveyed methods are adapted to be applicable to color images,

for example, by considering each color channel as a grayscale image. Tsai and Wang

[28] proposed a data hiding technique for color images using a binary space

partitioning tree, which partitions the RGB color space into voxels and embeds three

message bits into each voxel.

2.1.4. Survey of Data Hiding in Text Documents

In contrast with other multimedia, digital texts contain less redundant

information for embedding data. Most data hiding methods for digital text documents

try to encode information directly into the text itself or into the text format. One way

of into-text hiding is to exploit the natural redundancy of languages, and one way of

into-format hiding is to adjust inter-word or inter-line space [29]. On the other hand,

from the steganographic point of view, digital text documents can be classified into

two types: hard-copy and soft-copy [27]. A hard-copy text may be treated as a binary

image resulting from scanning a text document, while a soft-copy text may be

regarded as an American Standard Code for Information Interchange (ASCII) text that

 11

can be edited by a text editing software like Notepad.

For a hard-copy text, which is interpreted as a highly-structured image,

information can be embedded into the layout or format of the image. Low et al. and

Brassil et al. [30-31] presented text-based steganographic methods which use the

distances between consecutive lines of texts or between consecutive words to hide

information. If the space between two lines is smaller than a threshold, a “0” is

represented; otherwise, a “1.”

In contrast with hard-copy texts and other digital media, soft-copy texts are more

difficult to hide data due to the lack of redundant information. Even a slight

modification, like rewriting a letter, may be noticed by a reader. However, huge

amounts of text documents that people deal with daily on the Internet are essentially

soft-copy texts in nature. Thus, the protection of digital rights of this type of text

document becomes more and more important.

Bender et al. [27] proposed the use of infrequent additional spaces to form secret

data and transmit them in soft-copy texts, including inter-sentence spacing,

end-of-line spacing, and inter-word spacing in texts. For example, one space between

words is taken to represent a “0” and two spaces a “1.” Wayner [32] proposed a

method to use the context-free grammar to create secret text messages in cover files

for covert communication; the secret message is not embedded in the cover file

directly. And a receiver extracts the hidden message by parsing. A constraint is that

the cover text should be a meaningful message; otherwise, a reader will doubt it.

Cantrell and Dampier [33] proposed to embed data into unused spaces in file

headers. These spaces are invisible to usual users because they are disregarded when

the files are opened. The spaces can be seen when examined at the byte level, but few

users would do so. Johnson et al. [34] proposed another way to embed information in

unused spaces that are imperceptible to an observer, which is based on the fact that

 12

usually operating systems allocate more space than the need of a file and the result

leaves some unused space to hide information. A third method is to create a hidden

partition in a file system to embed information. The partition is not viewed normally.

This concept has been expanded in a steganographic file system [35]. If a user knows

the file name and the password, access to the file will be granted; otherwise, no

evidence of the file will be revealed in the system of the hidden files.

Characteristics inherent in network protocols may also be taken advantage of to

hide information [36]. For example, TCP/IP packets can be used to transmit secret

messages across the Internet by embedding unused spaces in the packet header.

Finally, Chang and Tsai [37] proposed a special space encoding to embed copyright

information into the HTML text content. The bit “1” is encoded by inserting a

so-called pseudo-space string “ ” before a real space, while the bit “0” is

represented by a normal space between two words or sentences.

2.1.5. Survey of Data Hiding and Sharing in Software Programs

A survey about watermarking in programs can be found in Zhu, et al. [54]. Two

methods have been identified: static and dynamic. The former inserts and extracts

watermarks in program codes without running the program while the latter does the

same in the execution state of a software object. Two respective examples are

Venkatesan, et al. [55] and Collberg and Thomborson [56]. There exist other methods

with digital text, sentence syntax, text typos, e-mails [1, 27, 53, 57-59] as cover

media.

The concept of secret sharing was proposed first by Shamir [46]. By a so-called

(k, n)-threshold scheme, the idea is to encode a secret data item into n shares for n

participants to keep, and any k or more of the shares can be collected to recover the

original secret, but any (k − 1) or fewer of them will gain no information about it. A

 13

similar scheme, called visual cryptography, was proposed by Naor and Shamir [46]

for sharing an image. The scheme provides an easy and fast decryption process

consisting of xeroxing the shares onto transparencies and stacking them to reveal the

original image for visual inspection. This technique has been investigated further in

[48-50], though it is suitable for binary images only. Verheul and van Tilborg [51]

extended the visual cryptography technique for processing images with small numbers

of gray levels or colors. Lin and Tsai [52] proposed a digital version of the visual

cryptography scheme for color images with no limit on the number of colors. The n

shares obtained from a color image are hidden in n camouflage images which may be

selected to have well-known contents, like famous characters or paintings, to create

additional steganographic effects for security protection of the shares.

2.1.6. Survey of Data Hiding in PDF Documents

Portable Document Format (PDF) files [63] are popular nowadays, and so using

them as carriers of secret messages for covert communication is convenient. Though

there are some techniques of embedding data in text files [57-58], studies of using

PDF files as cover media are very few, except Zhong et al. [64] in which integer

numerals specifying the positions of the text characters in a PDF file are used to

embed secret data.

For security, it is necessary to verify the authenticity of a file received from

another party or kept for a long time in a certain environment, before the file is used

for various purposes. This is the authentication problem of the file, which should be

solved for protection of the file against unintentional changes and malicious

manipulations. In the past, the information hiding method [1] has been adopted to

solve this problem but most studies were about images [10, 66-71]. There is yet no

investigation on the authentication of PDF files, though a related study about data

 14

hiding in PDF files can be found in Zhong et al. [64]. Hiding data in documents other

than PDF files have also been investigated [61-62].

2.1.7. Survey of Data Hiding in HTML Documents

About hiding data in the HTML, Shirali-Shahreza [72] protects a Java applet in

an HTML file from being copied by hiding a special 8-character string with a key

within the Java applet. Wu and Lai [60] hide binary data in HTML files using various

properties of tags, like attributes. Wu, et al. [73] use hash functions to compute digests

of web page contents as watermarks. Chang and Tsai [37] insert extra white spaces in

HTML text to encode bits for watermarking, as done by some commercial software

[74].

There are very few studies on web page authentication using data hiding

techniques so far. Zhao and Lu [75] generated watermarks of web pages based on

principal component analysis and embed them by upper and lower cases of letters in

HTML tags. The watermark was used to check the integrity of the entire web page.

Wu et al. [73] designed fast fragile watermarks for web pages based on hash functions

which generate digests of web pages quickly with case insensitivity. Two related

studies can be found in [37, 60] which utilize properties of spaces, tabs, tags,

attributes, etc., to encode and hide data bits into the HTML for purposes other than

web page authentication. And some more general studies about data hiding can be

found in [1, 76].

2.2 Brief Descriptions of Proposed Methods

In this dissertation study, we have developed totally ten methods, three for data

hiding in various images with distortion reduction capability, one for data hiding in

emails with capabilities of authenticating the hidden data, two for data hiding in

source programs, two for data hiding in PDF files, and finally two for data hiding in

 15

web pages. They are briefly described in the remainder of this section

2.2.1. Data Hiding in Binary Images with Distortion-Minimizing

Capabilities by Optimal Block Pattern Coding and Dynamic

Programming Techniques

The first method we propose is a new technique which embeds data into a binary

image and minimizes the resulting image distortion in an optimal way. In a binary

image, there are two distinct pixel values, 0 and 1, corresponding to black and white

pixels, respectively. When data are embedded into a binary image, some image pixels

used for data hiding will be changed from black to white or reversely. The pixel value

changes will be called bit flippings in the sequel. To embed more data, more bit

flippings may be conducted; however, the quality of the resulting image will also get

worse. The bit flipping rates of most data hiding methods for binary images are about

50%. We propose a new data hiding method which has the capability to conceal up to

three data bits in a 2×2 block, resulting in bit flipping rates lower than 50%. The

method can thus be used to embed more data. This is achieved by a block pattern

coding technique. On the other hand, while it is desirable to embed more data, the

resulting image quality should be maintained in the mean time. For this purpose, two

optimization techniques are proposed. The first is to use multiple block pattern

encoding tables, from which an optimal one is selected for each input image. The

second technique is to use a dynamic programming algorithm to divide the message

data stream into appropriate bit segments for optimal data embedding in the image

blocks in the sense of minimizing the number of bit flippings. As a result, the

proposed method can achieve the goals of both increasing the embedded data volume

and reducing the resulting image distortion. Furthermore, the method can be used to

extract embedded data without referencing the original image.

 16

2.2.2. Data Hiding in Grayscale Images by Dynamic Programming

Based on A Human Visual Model

The second method we propose is a new technique which embeds data into a

grayscale image, based on the use of a new HVS model, to estimate the number of

usable bits of each pixel in the cover image. Furthermore, a block pattern encoding

method is proposed to embed up to three data bits in a 2×2 block of the bit planes

without visible degrading of the stego-image quality. This is achieved by using two

optimization techniques. The first technique utilizes multiple block pattern encoding

tables, from which an optimal one is chosen for each input image; and the second

technique uses dynamic programming to divide the message data stream into

appropriate bit segments for optimal data bit embedding in the image blocks to

minimize a cost function. Especially, the proposed method can predict the PSNR

value of the stego-image according to the embedded data size before the embedding

process is started. Moreover, the proposed method can extract embedded data without

referencing the original image, and does not require post-processing to refine the

stego-image quality.

2.2.3. Data Hiding in Color Images by Color Replacements with

Reduction of Image Distortion and Change Noticeability

The third proposed method is a new one for hiding data in RGB color images

using color space partitioning and color encoding. The RGB color space is

partitioned into non-overlapping, equal-sized color clusters, each being cubic in shape,

called a color cube. The colors in each cube are used to represent fixed-length codes.

Message data hiding is accomplished by replacing selected image pixels’ colors with

closest ones in color cubes to embed corresponding codes representing the message

bits. And data extraction is a reverse process of data embedding. To reduce image

distortion, each color cube is designed to include a number of color groups, with all

 17

colors in each group representing an identical code. The colors in each group are

distributed as separately as possible in the cube, and color replacement at an image

pixel is conducted by choosing as the replacing color the one in a group, which is

closest to the pixel’s color in the sense of Euclidean color distance. And to reduce the

noticeability of the resulting color changes, we select adaptively for use in data

embedding those cubes whose colors are more scattered in the cover image (that is,

the pixels whose colors are in these cubes are more separated mutually in the cover

image), so that the color changes on these pixels will arouse less notice from the

observer.

2.2.4. Data Hiding in Emails and Applications by Unused ASCII

Control Codes

The fourth proposed method is a new technique for data hiding in emails via

Outlook Express and IE under the operating system of the tTraditionalT TChineseT version

of Microsoft Windows XP, service pack 2, 2002. The idea is based on the use of

unused ASCII codes. Secret data are encoded by special ASCII control codes and

embedded into cover emails by inserting the data into the text line ends in the body of

a given email. These ASCII control codes, when displayed both by Outlook Express

and IE, are invisible to the user, achieving the effect of steganography. Such invisible

ASCII control codes were found out in this study by a systematic test of all the ASCII

codes on various email server software systems and standards. The proposed data

encoding technique is a combination of five coding rules found in this study, which

insert special ASCII control codes into different places in email texts. The inserted

codes will not change the meanings of the sentences in the cover email, neither

causing any noticeable difference to the reader. Furthermore, hidden data can be

extracted from a stego-email completely to recover the original email text content.

 18

Also described in this study are two applications of the proposed data hiding

technique, namely, covert communication via emails and authentication of emails. In

the former application, security is enhanced by the use of a secret key, and in the latter,

an authentication signal is generated from the cover email for email fidelity checking.

2.2.5. Security Protection of Software Programs by Information

Sharing and Authentication Techniques Using Invisible ASCII

Control Codes

The fifth proposed method is a new technique based on the use of some specific

ASCII control codes invisible in certain software editors. By the use of the logic

operation of “exclusive-OR,” each source program to be shared is transformed into a

number of shares, say N ones, which are then hidden respectively into N pre-selected

camouflage source programs, resulting in N stego-programs. Each stego-program still

can be compiled and executed to perform the function of the original camouflage

program, and each camouflage program may be selected arbitrarily, thus enhancing

the steganographic effect.

To improve the security protection effect further, we propose additionally an

authentication scheme for verifying the correctness of the contents of the

stego-programs brought by the participants to join the process of secret program

recovery. This is advantageous to prevent any of the participants from accidental or

intentional provision of a false or destructed stego-program. The verified contents

include the share data and the camouflage program contained in each stego-program.

2.2.6. Covert Communication with Authentication via Software

Programs Using Invisible ASCII Codes

The sixth proposed method is a new one for covert communication by

embedding messages in source programs. A binary message, after being encoded into

 19

some ASCII codes and embedded into certain C++ program locations, becomes

invisible in the source code editors of Visual C++ and C++ Builder under some

Windows OS environments, creating a steganographic effect. A tamper-proof

authentication scheme for the embedded message is also proposed.

2.2.7. Covert Communication via PDF Files and PDF File

Authentication by Invisible Codes

The seventh proposed method is a new technique for covert communication,

which embeds secret messages in PDF files. A message is regarded as a string of bits

or characters, which are then encoded with a special ASCII code by binary or unitary

coding. The results, after being embedded at the between-word or between-character

locations in the text of a PDF file, are found in this study to be invisible in the

windows of common PDF readers, creating a steganographic effect and achieving the

purpose of secret communication.

The eighth method is proposed for authenticating PDF files using a special

ASCII code A0. For each word in the text of a PDF file to be protected, an

authentication signal composed of repeating A0’s is generated from the 8-bit ASCII

codes of the characters composing the word as well as a random number. The signal is

then embedded to the right of the word. These A0’s are invisible in the window of

common PDF readers, enhancing the security of the embedded authentication signals.

Without the key for use in generating the random numbers, malicious creation of a

fake file is nearly impossible.

2.2.8. Secret Communication through Web Pages and Automatic

Authentication of Web Pages Using Special Space Codes in

HTML Files

The ninth proposed method is a new technique for secret communication by

 20

embedding special space codes in the HTML files of web pages. These codes appear

as white spaces in the web page, and so may be used to encode secret message bits

with steganographic effects. The codes are the result of a thorough investigation of all

possible coding systems which can be applied in the HTML file. There are many of

such codes, and each of them may be used to encode at least three message bits,

increasing the data hiding capability.

The last proposed method is a new automatic authentication technique for

checking the integrity of web page text contents. The method, aiming to check the

authenticity of each single word, is based on a data hiding technique which uses some

special space codes as authentication signals. Such codes, which are found in this

study to be multiple and appear identical to normal white spaces in web pages, are

used to encode certain binary mapping results from the word contents. These codes

are then taken to replace the between-word spaces in the HTML codes, resulting in

good steganographic effects. Security enhancement has also been considered, and

related problems are solved by the use of secret keys and a multiple word encoding

scheme.

 21

Chapter 3

Data Hiding in Binary Images with

Distortion-Minimizing Capabilities by

Optimal Block Pattern Coding and

Dynamic Programming Techniques

3.1 Idea of Proposed Method

In a binary image, there are only two pixel values, 0 and 1, and the

corresponding pixels may be called black and white ones, respectively. When data are

embedded in a binary image, the image pixels will be changed from black to white or

from white to black. The distortion rate is 50% in general data hiding methods for

binary images. The method which we propose in this study for data hiding in binary

images is based on a block pattern coding technique and a dynamic programming

algorithm. The method can be used to embed more data in a block of a binary image,

and minimize the resulting stego-image distortion simultaneously.

In order to embed more data in a binary image, more pixels need be changed;

however, the quality of the resulting stego-image will get worse. On the contrary, in

order to maintain the quality of the resulting image, the amount of the embedded data

should be limited. The proposed method is designed to be a compromise between the

embedded data volume and the resulting image distortion. The method can extract

embedded data without referencing the original image. It also has the merit of

concealing up to three data bits in a 2×2 block by changing the smallest number of

bits in a block. Contrastively, most existing methods for hiding data in binary images

can embed only one or two data bits in a 2×2 image block [7, 10, 12].

 22

In the remainder of this chapter, the proposed method for dealing with 2×2 image

blocks is first described in Section 3.2. Some experimental results are shown in

Section 3.3, followed by some cluding remarks in Section 3.4.

3.2 Proposed Data Embedding Process

The proposed method is designed to hide secret data behind binary images in

random fashions controlled by secret keys. The method consists of a data embedding

process and a data extraction process. In this section, the principles behind the

proposed method are presented first, followed by the details of the proposed data

embedding and extraction processes.

A. Encoding Block Patterns for Secret Data Embedding

In order to embed secret data into a binary cover image, every 2×2 block of the

cover image is regarded as a pattern with a corresponding 4-bit binary value in this

study, with each black pixel representing a bit 0 and each white one representing 1.

An illustration is shown in Figure 3.1. Therefore, in a 2×2 block, possible binary

values of the block pattern are 0000B2 B through 1111 B2B, where “0000B2 B” means an entirely

black block while “1111B2 B” means an entirely white one.

The main idea of the proposed data hiding method is based on the use of a block

pattern encoding table which maps each block pattern into a certain code for use as

hidden data with the code being up to three bits in length. And data embedding is

accomplished by changing the block patterns so that the codes of the resulting blocks

become just the input secret data to be embedded. A block pattern encoding table

designed for use in this study is shown in Table 3.1. The idea behind the design of this

table is described as follows. It is emphasized, by the way, that such a table is just one

of the many possible ones usable for data hiding, and the proposed data embedding

 23

process will choose from them an optimal one for each specific input image, as

described later.

2×2 block pattern Corresponding binary value

 bB1 BbB2BbB3 BbB4 B

0101

Figure 3.1 Illustration of block patterns and corresponding binary values.

The number of possible patterns in a 2×2 block are 16. This number is much

larger than the need to represent the two secret bits ‘0’ and ‘1’, so we may use

multiple block patterns to represent a single secret value, allowing the possibility of

choosing among the patterns an optimal one to replace the original image block in the

data embedding process, thus reducing the resulting image distortion in the replaced

block. Furthermore, we wish to embed more data in a block, and for this goal we may

use a block pattern to represent more than one bit of secret data.

For example, we may use both the block pattern t B1B = 1101B2 B and the pattern tB2 B =

1110 B2 B to represent the two-bit secret value s = 00 B2 B. In this way, when we want to

embed, for example, the secret value s = 00 B2B into a block B with pattern v = 0110B2 B, we

have the two choices of block patterns tB1 B = 1101B2 B and tB2 B = 1110B2 B instead of the

conventional case of just one, from which we can choose t B2B = 1110B2 B to replace the

pattern v = 0110B2 Bof the block B, resulting in the smaller distortion of just a 1-bit error.

Note that if only the choice of tB1 B = 1101B2B is allowed, then the error will be 3 bits

which mean a larger distortion in the replaced block. It is such allowance of multiple

bB1 B bB2 B

bB3 B bB4 B

 24

choices for block pattern replacement that achieves distortion reduction in the

proposed method.

More generally, we group in this study the 16 possible block patterns in a 2×2

block B into distinct sets according to the entropy values E of the block patterns,

where an entropy value E of a block pattern P is defined as follows:

E = − k
k

k pp∑ 2log = −pB0 B logB2 B pB0 B − pB1 BlogB2 B pB1 B

with pB0 B and pB1B being the occurrence probability values of black and white pixels

appearing in P computed as

p B0 B = (number of black pixels in P)/4; pB1 B = (number white pixels in P)/4.

A pattern P in a set with a higher entropy value E is presumably more random in

its black and white arrangement, and so is more suitable for hiding more secret data

without causing a noticeable change. There are three possible entropy values 0, 0.811,

and 1 in a 2×2 block by the above definition, so we divide the 16 possible block

patterns into three sets. The first set with the entropy value 0 has two distinct block

patterns, one being the entirely white block, the other the entirely black. They are

denoted as A and F in Table 3.1 and are used to represent the secret data of 1 and 0,

respectively. That is, they encode the secret data of 0 and 1, respectively.

The second set with the entropy value 0.811 includes eight distinct block patterns,

which can be classified into two classes, one class with each pattern including one

black pixel and three white ones and the other class with each pattern including three

black pixels and one white one. The first class, denoted as B in Table 3.1, includes

four block patterns, and we use two block patterns of them to encode the secret value

00 B2 B, and the other two to encode the secret value 01B2 B. When deciding which two

patterns should be selected to encode an identical secret value, we adopted the

 25

“mismatch reduction criterion” of making the two selected patterns less different in

the number of mismatching pixel values when one of the two selected patterns is

superimposed on the other. We use the four block patterns of the other class, denoted

as E in Table 3.1, to encode the secret values 10B2 B and 11B2 B in a similar way.

Table 3.1 Proposed block pattern encoding table.

Type
Block

pattern

Entropy

value

Corresponding

binary value

Encoded

secret

data

A

0 1111 1

B1

0.811 1110 00

B2

0.811 1101 00

B3

0.811 1011 01

B4

0.811 0111 01

C1

1 0011 011

C2

1 0101 011

C3

1 1010 010

C4

1 1100 010

Type

Block

pattern
Entropy

value

Corresponding

binary value

Encoded

secret

data

F 0 0000 0

E1 0.811 0001 11

E2 0.811 0010 11

E3 0.811 0100 10

E4 0.811 1000 10

D1 1 0110 100

D2 1 1001 101

The last set with the entropy value 1 has six distinct block patterns. So far we

have completed the encoding of all possible one-bit and two-bit secret values with ten

patterns. So the remaining six patterns in the 16 ones may be used to encode three-bit

secret values. But six patterns are not enough to encode all the eight three-bit secret

 26

values, so we can only take care of some of them, following the aforementioned

mismatch reduction criterion. In particular, we use two block patterns to encode each

of the two 3-bit secret values 011B2 B and 010B2 B, and finally, the last two patterns to

encode the secret values 100B2 B and 101 B2 B, respectively. The six patterns are denoted as

C1 through C4 and D1 and D2 in Table 3.1.

B. Sketch of proposed idea of data hiding

In the proposed data embedding process, the more data we embed in a 2×2 block,

the worse the resulting image quality becomes. Therefore, we must control the

number of destructed pixels in a block to reduce the resulting image distortion. The

idea of the proposed data embedding process is sketched as four major steps in the

following, which includes two folds of distortion minimization.

(1) Dividing the input image into blocks: We divide the input image into 2×2 blocks

with every two neighboring blocks being separated by a 1-pixel-wide line, as

shown in Figure 3.2. The 1-pixel-wide band around each 2×2 block is said to be

the neighborhood of the block.

(2) Selecting a random list of embeddable blocks for data embedding: We then use a

secret key K as well as a random number generator f to select randomly a

sequential list of embeddable blocks. A block B is said to be embeddable in this

study if the following two conditions are satisfied: (a) the neighborhood of B is

not entirely black or white, (b) B has not been selected for data embedding yet.

The way we adopt to generate the random list of embeddable blocks is as follows:

(a) concatenate all blocks obtained in Step (1) above in sequence; (b) use K and f

to generate sequentially a random number f(K), divide it by the total number of

blocks, and take the remainder as a block number, denoted by N; (c) check block

N to see if it is an embeddable block; if not, then perform the same process until

 27

an embeddable block is obtained; (d) append the obtained embeddable block to

the end of the desired random list; (e) stop the process when a sufficient number

of embeddable blocks for data embedding are obtained.

(3) Using multiple block pattern encoding tables for the first-fold distortion reduction:

We generate all possible block pattern encoding tables and select an optimal one

for use in the data embedding process, in the sense of introducing the least

distortion.

(4) Applying optimal search techniques for the second-fold distortion reduction:

Finally we apply the dynamic programming technique to segment the input

message data stream optimally into a series of codes and embed them in the input

image, according to a cost function designed in advance for measuring the degree

of the pattern change in each image block. This reduces the resulting distortion

further in a global sense.

Figure 3.2. Division of input image into 2×2 blocks with separating linesP

P(grids with

bold boundaries are 2×2 blocks for data embedding).

C. Use of Multiple Block Pattern Encoding Tables

The first distortion-reduction technique using multiple block pattern encoding

 28

tables, as mentioned previously in the third major step of the proposed data;

embedding process, is based on the idea that a single encoding table will not be

suitable for every binary image in the embedding process. If a binary image is

destroyed very seriously in the data embedding process using Table 3.1, it will be

necessary to use another table with other combinations of block patterns and encoded

hidden data. For example, assume that a binary secret value v = 101B2 B is to be

embedded into a sequence of three randomly selected image blockswith patterns

0000,0100, and 1111 by Table 3.1. The data embedding process using Table 3.1, as

illustrated in Figure 3.3(a), will select optimally the block pattern type D2 = 1001,

which encodes the three-bit secret value v = 101B2 B, to replace the first selected block

with pattern 0000, resulting in reversing two bits. However, if we replace the encoded

secret data of type A in Table 3.1 with those of type F, and replace those of all of

types B1 through B4 with those of all of types E1 through E4, respectively, then we

will get a new block pattern encoding table and the use of it to hide the secret value v

= 101B2 B will result in no bit reversing because here we can, as illustrated in Figure

3.3(b), select in sequence optimally the new pattern type F = 0000 (encoding the

secret data of 1B2 B) and the new pattern type E3 = 0100 (encoding the secret data of 01B2B)

to encode together the secret data v = 101B2 B. This means that adaptive table generations

and selections for use in data embedding help distortion reduction indeed. More

generally, by enumerating all possible ways for exchanging the encoded secret data of

certain types in Table 3.1 with those of the other types, we can get 128 distinct block

pattern encoding tables for selection in the data embedding process to minimize the

distortion.

 29

D. Proposed Distortion-Minimizing Cost Function and Search Techniques for

Optimal Solutions

The cost function proposed in this study for use in the proposed data embedding

process to minimize image distortion is the total number of reversed bits in the

resulting stego-image. In Table 3.1, block patterns can be used to encode one, two, or

three secret bits. Correspondingly, we hide a binary secret value v by embedding the

first one, two, or three bits in the prefix of v into a block.

Figure 3.3. An example of proposed data embedding process

 30

To determine how many bits should be embedded, we may calculate first the cost

function value for each of the three cases, and then replace the currently selected

block with the block pattern which corresponds to the case with the minimum cost

function value. This method provides a quick way for data embedding. However, it is

actually a greedy search and not an optimal solution.

To see this, for example, for the previously-mentioned example in which the

secret value v of 101B2B is embedded in three selected blocks with patterns 0000, 0100,

and 1111 by Table 3.1, by the above-mentioned greedy algorithm we first replace the

block with pattern 0000 by the block pattern E3 = 0100 to embed two bits 10. The

computed cost function value is 1 because a bit is reversed here. This cost is a local

minimal one. Next, we replace the block with pattern 0100 by the block pattern A=

1111 to embed the last bit 1of v, and get a local minimal cost value 3. The total cost

value is 4. Now, if we do not use the greedy algorithm from the beginning, and

replace instead the first block with pattern 0000 by the block pattern D2 = 1001 to

embed three bits 101 directly, then the total cost value will be reduced to 2 which is

smaller than the previous total cost 4. This shows that there indeed exist at least one

solution better than that found by the greedy method. Figure 3.4 illustrates the data

embedding process for this example. This is also true for many other examples, as

found by this study. And so the search of an optimal solution is meaningful, for which

the proposed method is dynamic programming.

In the proposed dynamic programming algorithm (abbreviated as DP in the

sequel), certain edit distances are defined to minimize the cost function, as described

in the following. Assume that the input secret data value to be hidden is in the form of

an n-bit string S B1B with SB1B[i] denoting its ith bit. Also, let the randomly selected blocks

for embedding the secret value be expressed as a list in the form of another string SB2 B

with S B2 B[i] denoting its ith block. Only one type of edit operation, namely, replacement,

 31

is needed for use in the proposed algorithm to represent the image block replacement

operations involving SB1B and SB2 B in the proposed secret data embedding process. The

edit distance of SB1 B and S B2B is defined, according to the previous discussions, as the

minimum cost to transform SB2 B into SB1 B by edit operations according to an optimal block

pattern encoding table used in the data embedding process. Let C be a

two-dimensional cost matrix with its element C[i, j] denoting the minimum cost to

transform a substring of SB2B with bits SB2 B[j] through S B2B[n]B Binto a substring of SB1 B with bits

S B1 B[i] through SB1 B[n]. Then C[1, 1] is the value of the minimum cost to transform SB2 B into

S B1 B. Also, let RC be a three-dimensional replacement cost matrix with its element RC(L,

i, j) denoting the cost for replacing the (j+1)th block in SB2 B, denoted by SB2 B[j], with the

block patterns encoding the initial L bits of a substring of SB1 B with bits S B1 B[i] through

S B1 B[n−1], where L may be 1, 2, or 3. By the above definitions, the value C[i, j] is

recursively just the value of the minimum of all possible values of RC(L, i, j)+C[i+L,

j+1], where L = 0, 1, and 3. And because of this, the size of C must be expanded to

n+2 × n. Furthermore, those elements of C with indices larger than n−1 should be

given certain values (0 or ∞) to specify their correspondences to “boundary

conditions”. Then, according to the dynamic programming technique, the minimum

edit distance may be computed by the following recursive formulas:

set initial values

C[n, j] = 0, j = 0, 1, 2,…n,

C[n+1, j] = 0, j = 0, 1, 2,…n,

C[n+2, j] = 0, j = 0, 1, 2,…n,

C[i, n] = ∞, i = 0, 1, 2,…n−1,

 32

C[i, j] = ∞, i, j = 0, 1, 2,…n−1;

and then for all i = 0, 1, …n−1, j = 0, 1,…n−1, compute

C[i, j] = min{RC(1, i, j)+C[i+1, j+1], RC(2, i, j)+C[i+2, j+1], RC(3, i, j)+C[i+3,

j+1]}.

Message value v = "101"

Selected block list

Replacing blocks
(by greedy search)

Hidden bit(s) 10 1

Cost 1 3 (total cost = 4)

Replacing block
 (by optimum search)

Hidden bits 101

Cost 2 (total cost = 2)

1 2 3

Figure 3.4. An example of proposed data embedding process.

Algorithm 3.1 Computing minimum cost for minimizing distortion in data

embedding process by DP.

Input: an n-bit secret code string SB1B, a string of n randomly selected blocks SB2 B, a block

pattern encoding table, a two-dimensional cost matrix C[i, j], for i = 0, 1, …,

n+2, j = 0, 1, …, n with the initial values specified in the above recursive

 33

formulas, a two-dimensional index matrix I[i, j], for i = 0, 1, … n−1, j = 0,

1, … n–1, for recording the relative indices in the block pattern encoding table

after calculating C[i, j], and a two-dimensional matrix N[i, j], for i = 0, 1, …

n-1, j = 0, 1, … n–1, for recording the relative next step after calculating C[i, j]

with each element given an initial value of minus one.

Output: C[i, j], the minimum cost to change the substring SB2B[j] through SB2B[n] into

S B1 B[i … n], I[i, j], and N[i, j].

Steps:

1. If C[i, j] is equal to an infinitive value ∞, continue the next step; else go to Step 4.

2. Calculate three temporary cost functions T[1], T[2], and T[3], record every next

step and the corresponding value as the indices index1, index2, and index3 of the

block pattern encoding table which is used in calculating the minimal cost in RC(1,

i, j), RC(2, i, j), and RC(3, i, j), respectively, in the following way:

2.1 T[1] = RC(1, i, j) + C(i+1, j+1), next_step[1] = i+1, and acquire index1.

2.2 T[2] = RC(2, i, j) + C(i+2, j+1), next_step[2] = i+2, and acquire index2.

2.3 T[3] = RC(3, i, j) + C(i+3, j+1), next_step[3] = i+3. and acquire index3.

3. Take C(i, j) to be the minimum of the three temporary cost functions, record the

corresponding relative next step in N[i, j], and record the relative index in the

block pattern encoding table in I[i, j]

4. Return C[i, j].

Because every next step and the used indices of the block pattern encoding table

have been recorded, we can reconstruct the embedding process easily. The space

complexity and time complexity are both O(nP

2
P) for the DP. Now, the proposed data

embedding process is described in detail as an algorithm in the following. Figure 3.5

illustrates a flowchart of the data embedding process.

 34

Figure 3.5 Flowchart of the proposed data embedding process.

Algorithm 3.2 Data embedding process using block pattern encoding tables and

DP.

Input: a binary image I, a secret data string SB1 B with n bits, a secret key K as well as a

random number generator f, and 128 block pattern encoding tables.

Output: a stego-image S, an optimal block pattern encoding table B, a length of block

 35

list L, and a minimal total cost CBmin B.

Steps:

1. Get a list of embeddable 2×2 blocks from the input image I in a way as described

previously.

2. Set the value of the desired minimal total cost CBmin B to be infinitive.

3. For each block pattern encoding table BBi B among the 128 possible ones, perform the

following operations.

3.0 Calculate a total cost CBi B using BBi B and the DP.

3.1 If CBmin B is larger than CBi B, perform the following operations.

a. Take CBi B as the minimal total cost CBmin B.

b. Set the optimal block pattern encoding table B as BBi B.

c. Sequentially, record every index obtained from Step 3.1 according to the

next-step matrix N and index matrix I, until an element of N is equal to

−1. Meanwhile, calculate L, the length of the block list.

4. Replace the minimal-cost block list with the selected block list of binary image I

by the recorded index sequence of block pattern encoding table B and the length

of the block list L.

5. Take the final result as the desired stego-image S.

E. Data recovery process

The goal of the proposed data recovery process is to extract the embedded bit

stream from a stego-image. In the proposed data extraction process, Table 3.1 is first

simplified as an extraction table as shown in Table 3.2. It is easier to use this table to

finish the extraction process, as follows. Figure 3.6 illustrates a flowchart of the data

recovery process.

 36

Algorithm3.3 Secret data recovery process.

Input: a stego-image I’ presumably including a secret bit stream S; and the secret key

K as well as the random number generator f used in the data embedding

process; the index table B that points outs which table is used in the

embedding process, and the length of the block list L.

Output: the secret bit stream S or a report of failure to recover the secret.

Steps:

1. Extract a list of 2×2 embeddable blocks from the stego-image I’ by the secret

key K , the random number generator f, and the length L.

2. For each 2×2 embeddable block in I’, compute the corresponding block

pattern P, and look P up in the table B to decode the data bits embedded in

the block.

3. Take all the extracted data bits in sequence as the desired secret bit stream S.

Table 3.2 An extraction table (table index B=0).

Corresponding
binary value of
block pattern

Encoded secret data

1111 1
1110 00
1101 00
1100 010
1011 01
1010 010
1001 101
1000 10

Corresponding
binary value of
block pattern

Encoded secret
data

0111 01
0110 100
0101 011
0100 10
0011 011
0010 11
0001 11
0000 0

 37

3.3 Experimental Results

Some experimental results of applying the proposed method are shown in

Figures 3.7, 3.8, and 3.9. Figures 3.7(a), 3.8(a) and 3.9(a) show three binary cover

images of the sizes 687×534, 512×512, and 2320×3408, respectively. Two streams of

message data were generated by a random fashion. One is a stream of 2432 bits,

which was embedded into each of the binary images shown in Figures 3.7(a), and

3.9(a). The other is 992-bit long, which was embedded into the binary image shown in

Figure 3.8(a). The stego-images obtained by embedding the message data using the

greedy search algorithm and the optimal encoding table among the 128 ones are

shown in Figures 3.7(b), 3.8(b) and 3.9(b), respectively. And the stego-images after

embedding the message using the DPA and the optimal encoding table among the 128

ones are shown in Figures 3.7(c), 3.8(c) and 3.9(c), respectively. Figure 3.8(d) shows

the difference between Figures 3.8(a) and 3.8(c) in terms of white pixels. And Figure

3.9(d) show similarly enlarged version of parts of the differences between Figures

3.9(a) and 3.9(c), for better inspection effects.

Note that the original input images are included in Figures 3.7(d), 3.8(d) and

3.9(d) in gray values as the backgrounds to show more clearly the difference spots.

Tables 3.3 shows the statistical data of the stego-images of Figures 3.7(a), 3.8(a), and

3.9(a) for the proposed algorithms, in which we list the numbers of the selected table

index, the used blocks, the minimum cost values and the length of secret data. The

minimum cost values show that the DP is the best, the greedy algorithm using an

optimal encoding table among the 128 possible ones is the next, and the greedy

algorithm using just an encoding table is the worst. For other images, similar results

can be observed. For the images shown here, the average number of secret data

embedded in a block, using the DP algorithm, is about 1.7 bits. And the distortion rate

computed as the ratio of the number of reversed bits to the length of the secret data,

 38

using the DP algorithm, is about in the range from 0.37 to 0.39, which is smaller than

0.5 yielded by most existing data hiding methods for binary images.

Figure 3.6 Flowchart of the proposed extraction process.

Furthermore, we tested 17 images that are obtained from an image database of

the USC, and the results are listed in Table 3.4. As shown there, the average number

of message data embedded in a block, using the DPA, is about 1.9388 bits. And the

average distortion rate using the DPA is 35.53%, which is smaller than 50% yielded

by most existing data hiding methods for binary images.

 39

(a)

(b)

Figure 3.7 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “NCTU”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) The difference image after embedding secret data.

 40

(c)

(d)

Figure 3.7 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “NCTU”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) The difference image after embedding secret data
(continued).

 41

(a)

(b)
Figure 3.8 Input binary images, stego-images with secret data, and differences. (a)

Binary image “Lena”. (b) Stego-images after embedding secret data using
greedy algorithm. (c) Stego-images after embedding secret data using DP
algorithm. (d) Difference image after embedding secret data.

 42

(c)

(d)
Figure 3.8 Input binary images, stego-images with secret data, and differences. (a)

Binary image “Lena”. (b) Stego-images after embedding secret data using
greedy algorithm. (c) Stego-images after embedding secret data using DP
algorithm. (d) Difference image after embedding secret data (continued).

 43

(a)

Figure 3.9 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between
(a) and (c) in which the white spots are difference pixels.

 44

(b)

Figure 3.9 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between
(a) and (c) in which the white spots are difference pixels (continued).

 45

(c)

Figure 3.9 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between
(a) and (c) in which the white spots are difference pixels (continued).

 46

(d)

Figure 3.9 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between
(a) and (c) in which the white spots are difference pixels (continued).

3.4 Concluding Remarks

A novel optimal method for hiding secret data into binary images with a

distortion minimization effect and a larger data embedding capability has been

proposed. An optimal block pattern encoding table is chosen from 128 alternative

ones for use in the proposed data embedding process to minimize distortion in the

stego-image. The method can minimize further the distortion using the dynamic

programming technique and can embed up to three bits in a 2×2 image block.

Therefore, by our method, not only more data can be embedded in a binary image, but

also the distortion rate of the stego-image can be effectively reduced.

The proposed method is based on the use of 2×2 blocks in data embedding

process. It may be extended by processing larger-sized blocks, because when the

block size is larger, the number of the block patterns which can be selected to encode

a certain secret value becomes larger as well, resulting possibly in a greater reduction

 47

of image distortion.

Table 3.3 Statistics of three stego-images for proposed algorithms.

stego-image Algorithm
Table
index

Used
blocks

Cost
value

Length of
secret data

Greedy Algorithm
(using just a fixed encoding

table)
0 1528 1153

Greedy Algorithm
(using the optimal one among

128 encoding tables)
16 1526 1115

NCTU

DP 26 1418 954

2432

Greedy Algorithm
(using just a fixed encoding

table)
0 621 431

Greedy Algorithm
(using the optimal one among

128 encoding tables)
30 637 401

Lena

DP 41 582 369

992

Greedy Algorithm
(using just a fixed encoding

table)
0 1439 1037

Greedy Algorithm
(using the optimal one among

128 encoding tables)
70 1530 1007

Patent

DP 24 1433 924

2432

Other future works may be directed to designing a better cost function for the

human visual system, constraining certain conditions for the cost function to find a

better image quality, and finding a better encoding table for replacing selected blocks

to reduce stego-image distortion further.

 48

Table 3.4 Statistics of 19 stego-images processed by proposed DPA.

Image No.

of USC

Table

number

No. of used

blocks
Cost value

Message

data length

Distortion

rate

Embedding

density

4.2.03 22 482 369 992 0.37 2.06

4.2.06 66 516 351 992 0.35 1.92

5.2.08 57 500 356 992 0.36 1.98

5.2.09 41 527 352 992 0.35 1.88

5.2.10 6 523 336 992 0.34 1.90

7.1.01 24 508 361 992 0.36 1.95

7.1.03 70 521 346 992 0.35 1.90

7.1.04 70 507 362 992 0.36 1.96

7.1.05 6 530 343 992 0.35 1.87

7.1.06 8 525 349 992 0.35 1.89

7.1.07 18 533 345 992 0.35 1.86

7.1.08 66 508 353 992 0.36 1.95

7.1.09 57 507 353 992 0.36 1.96

7.1.10 18 514 352 992 0.35 1.93

boat.512 57 507 360 992 0.36 1.96

elain.512 6 499 358 992 0.36 1.99

house 6 495 355 992 0.36 2.00

average 0.3553 1.9388

 49

Chapter 4

Data Hiding in Grayscale Images by

Dynamic Programming Based on A Human

Visual Model

4.1 Idea of Proposed Method

Eight bits represent a pixel’s intensity in a grayscale image. The bit plane formed

by the same bit of each pixel in the grayscale image is a binary image. Figure 4.1

shows the eight bit planes of each of three given 128×128 grayscale images. The

image of each bit plane is zoomed out for comparison. It is observed that the LSB

plane bpB0 B is almost fully randomized. If the message is embedded in bpB0 B, the result

will appear almost unaltered to human eyes. On the contrary, random noise areas are

less in a more significant bit plane. The most-significant-bit plane bp B7B contains almost

no noise, and data cannot be embedded easily in it without causing significant visual

changes. We may embed message data into bit planes in the order of bpB0B, bpB1 B, …, bpB7B.

This scheme is termed horizontal data hiding, to be contrastive with traditional

vertical data hiding methods which embed data into the bits bB7 B, bB6 B, …, b B0 B of each

pixel in the order of bB0 B through bB7 B, where bB0 B is the LSB of the pixel. Compared with

the vertical data hiding method, horizontal data hiding can reduce more distortion in

the stego-image, as revealed in the results of this study.

On the other hand, embedding data directly in bit planes will cause visible

damages to the edges in the bit planes. To overcome this difficulty, in this study we

design a new cost function which considers certain perception characteristics of the

HVS, and adopt a method proposed in Lee and Tsai [25] for data embedding. Each bit

 50

plane is regarded to have a different weight in its capability for data hiding, and the

new cost function is designed accordingly to measure the degree of distortion

resulting from pixel value changes. The details are discussed in the following.

Figure 4.1 Three grayscale images and their 8 corresponding bit planes (from left to
right, original images, bpB0 B, bpB1B, bpB2 B, …, and bpB7B, respectively).

In the following sections, the proposed cost function for distortion measurement

is given first in Section 4.2. The proposed horizontal data hiding and recovery

processes are described in Section 4.3 and Section 4.4, respectively. The experimental

results are shown in Section 4.5, followed by concluding remarks in Section 4.6.

4.2 Cost Function for Distortion Measurement

Since stego-images are viewed by human vision, the characteristics of the HVS

must be exploited in designing a data embedding process. Two of such characteristics

are useful here. First, human perception is more sensitive to grayscale changes in

smooth areas than in texture areas in a grayscale image. Second, human perception is

sensitive to relative luminance rather than absolute one. Designing the cost function

for distortion measurement for data embedding must take these two characteristics

into consideration, as elaborated in the following.

 51

A. Computing Number of Data-Embeddable Bits with Consideration of

Neighborhood Grayscale Value Change

For the first consideration, assume that a pixel P with grayscale value g is to be

used to embed message data. Let MAX denote the maximum grayscale value, and

MIN the minimum, in the 3×3 block with P as the center, which we call the

neighborhood of P. Then, the maximum between-pixel grayscale range in this block

is Δ = MAX − MIN. According to the previous discussions, to avoid a significant

change of the smoothness degree with respect to the neighborhood of P, the new

grayscale value g′ resulting from the data embedding is restricted in this study to

remain in the range of g ± Δ/2. Then, we define a maximum number D of

data-embeddable bits at P as

D = ⎣logB2B(Δ/2)⎦ = ⎣(logB2 BΔ − 1⎦ = ⎣logB2 B(MAX − MIN) − 1⎦. (1)

B. Computing Number of Data-Embeddable Bits with Consideration of Pixel’s

Luminance Change

For the second consideration mentioned above, let f denote the luminance of a

pixel P with grayscale value g where 1 ≤ f ≤ 100. According to the Fechner law [26],

the relative luminance property perceived by the HVS may be expressed as a contrast

value c computed by

c = 50×logB10Bf

where 0 ≤ c ≤ 100. Moreover, according to the Weber law [26], the maximum

allowable change Δc of the contrast value c according to the principle of “just

noticeable difference (JND)” about the pixel’s luminance change is about 2. That is, if

the luminance of a pixel is changed too much so that Δc is larger than 2, the change

 52

will be noticeable to the HVS. Accordingly, we can compute in another way a

maximum number of data-embeddable bits in the 8 bits of a pixel’s grayscale value,

as described next.

First, we want to compute the maximum luminance change (Δf) BmaxB in accordance

with the maximum allowable contrast change (Δc) BmaxB = 2. With c being the contrast of

pixel P, let cBmaxB denote the maximum possible contrast value. Then, we have

2 = (Δc)BmaxB = c BmaxB − c = 50×logB10Bf BmaxB − 50×logB10Bf = 50×logB10B

maxf
f

,

which can be reduced to be

maxf
f

 = 10P

(2/50)
P = 10 P

0.04
P.

So, the maximum allowable luminance change can be expressed as

(Δf)BmaxB = f BmaxB − f = (maxf
f

 − 1) × f = (10P

0.04
P − 1) × f ≈ 0.0965 × f.

And so we may impose the following constraint to the value of f:

(Δf)Bmax B/ f ≤ 0.0965. (2)

On the other hand, in a monochrome image the luminance f in the range of [1

100] is represented by the grayscale value g in the range [0 255], such that g may be

computed by the mapping g = (f − 1) × (255/99) ≈ 2.576(f − 1), or equivalently, the

mapping f ≈ 0.3882g + 1, which specifies a linear relation between f and g. Hence,

from Constraint (2), we can, after some derivations, get the following new constraint

for grayscale changes according to the principle of JND:

0.0965 ≥ (Δf) Bmax B/ f = (Δg)Bmax B/(g + 2.576) (3)

where (Δg)BmaxB, corresponding to (Δf) BmaxB, denotes the maximum grayscale change in

 53

the pixel’s neighborhood. That is, if the above constraint (3) is set for data embedding,

the changes of grayscales in the stego-image will not be detectable by human eyes

according to the principle of JND.

Now, we discuss how many bits can be utilized for data embedding for each

possible grayscale value g. If 5 bits of the pixel’s grayscale are used for embedding

message data, the maximum grayscale change at the pixel will be (Δg)BmaxB = 2P

5
P− 1 =

31. And according to Constraint (3), g must be larger than 319, which, however, is out

of the grayscale range [0, 255]. This means that embedding 5 or more bits of message

data into a pixel is impractical according to the principle of JND. As a result, bpB4 B, bp B5 B,

bp B6 B, and bpB7 B are not used for data embedding in this study. If 4 LSBs of g are changed,

then (Δg)BmaxB = 2P

4
P− 1 = 15, and by Constraint (3) we get g >153. That is, when the

constraint g > 153 is satisfied, we can embed data into the 4 LSBs of g without

causing a noticeable luminance change according to the principle of JND.

However, the binary value of 153 is 10011001B2 B. After the 4 LSBs of g are

changed, the new value of g might become a value in the range of 10010000B2 B through

10011000 B2B, which is smaller than 153, causing a violation of Constraint (3). Therefore,

we must change the above constraint g > 153 to be g > 160 where 160 = 10100000B2 B

such that after any 4-bit data are embedded into the 4 LSBs of g, the resulting new

value g' of g will always be larger than 160, thus satisfying Constraint (3). In other

words, to meet Constraint (3), only when a given pixel’s grayscale g satisfies g ≥ 160

can the 4 LSBs of g be replaced by 4-bit message data. And in short, 4 bits are the

upper limit to be embedded in a pixel’s grayscale according to the principle of JND.

Similarly, if 3 bits are changed, then (Δg) BmaxB = 2P

3
P − 1 = 7, and by Constraint (3)

as well as a similar reasoning process, the constraint g ≥ 72 should be satisfied, where

72 = 01001000B2 B. If 2 bits are changed, the constraint g ≥ 32 is required, where 32 =

00100000B2 B. Finally, if 1 bit is changed, g ≥ 10 is necessary, where 10 = 00001010B2 B. In

 54

summary, we embed an appropriate number B of message bits in a pixel’s grayscale g

according to the following rule to satisfy the principle of JND:

if g ≥ 160, then B = 4;

if g ≥ 72, then B = 3;

if g ≥ 32, then B = 2;

if g ≥ 10, then B = 1;

otherwise, B = 0. (4)

C. Combining Results of Two Considerations

To combine the results of the above two considerations, it is not difficult to

figure out that the maximum number of data-embeddable bits at a pixel should be

taken to be E = min(D, B) where D and B are as specified in (1) and (4), respectively.

Let the grayscale value g of a pixel P in binary form be denoted as g = (g B7B gB6 B gB5 B

g B4 B gB3 B gB2 B gB1B gB0 B)B2 B, and the replacement cost of gBi B in the i-th bit plane be denoted as CBi B

where 0 ≤ i ≤ 3. According to the previous discussions, CBi B is defined in this study as:

if i ≤ (E − 1), then CBi B = 8/2 P

(Ε−1)−i
P; otherwise, CBi B = ∞.

The above definition of cost function gives more penalties to replacements of more

significant bits. In more detail, we have the following results:

if E = 4, then CB0 B = 1, CB1 B = 2, CB2 B = 4, CB3 B = 8, and CB4 B through CB7 B = ∞;

if E = 3, then CB0 B = 2, CB1 B = 4, CB2 B = 8, and CB3 B through CB7 B = ∞;

if E = 2, then CB0 B = 4, CB1 B = 8, and CB2 B through CB7 B = ∞;

if E =1, then CB0 B = 8, and CB1 B through CB7 B = ∞;

if E = 0, then CB0 B through CB7 B = ∞.

 55

4.3 Proposed Horizontal Data Hiding Process

The proposed method is implemented as an algorithm which can be divided into

two stages: (1) embedding of some control data, followed by (2) embedding of

message data. The control data include the necessary information for use in the data

recovery process. All data are embedded in the bit planes by the block pattern

encoding method. As mentioned previously, each of the bit planes bpB0B through bpB3 B can

be viewed as a binary image and they together can be regarded as concatenated into a

sequence for data embedding. In this section, the idea to deal with the binary image is

presented first, followed by the proposed process.

A. Block Pattern Encoding for Data Embedding

In order to embed a message into a binary image, every 2×2 image block is

regarded as a pattern with a 4-bit binary value in which each bit of 0 corresponds to a

black pixel and each 1 a white one. The proposed data embedding process is based on

the use of a block pattern encoding table which maps each block pattern into a certain

code with each code being one, two, or three bits of the message data to be hidden.

And data embedding is accomplished by changing the block bit values so that the

corresponding code of the resulting block pattern become just some bits of the input

message data to be embedded. A possible block pattern encoding table designed for

use in this study is shown in Table 4.1. It is emphasized, by the way, that such a table

is just one of the many possible tables which may be used for data hiding, and the

proposed data embedding process will choose from them an optimal one for each

specific input binary image, as described later.

Suppose that we want to embed one bit in a 2×2 block. The number of possible

patterns in a 2×2 block are 16. This number is much larger than the required number

of 2 to represent the two different message bits ‘0’ and ‘1’ in a block, so we may use

 56

more than one block pattern to represent a single message bit (0 or 1), allowing the

possibility of choosing among the block patterns an optimal one to replace the

original block in the data embedding process and thus reducing more distortion in the

resulting block. On the other hand, we wish to embed more data in a block, not just a

bit as just mentioned; and for this we may use a block pattern to represent more than

one bit, as is done in this study. In short, we want to achieve both minimum-cost bit

replacement and maximum-volume data embedding.

As an illustration, we may use either the block pattern tB1 B = 1011B2B or the pattern tB2 B

= 0111B2 B to represent the two-bit message value s = 01B2 B. In this way, when we want to

embed, for example, the message value s = 01B2 B into a block B with value v = 1010B2 B,

we have the two alternative block patterns tB1B = 1011B2 B and t B2B = 0111B2 B to choose to

replace v =1010B2 B, instead of the conventional case of just one. And if we choose tB1 B =

1011 B2B to replace v =1010 B2 B, then less distortion of just a 1-bit error (occurring at the

LSB position) will result. Contrastively, if only one block pattern, say, tB2 B = 0111B2 B is

available, then an error of 3 bits will result, causing more distortion in the resulting

block. It is such an allowance of multiple choices for block pattern replacement that

achieves more distortion reduction in the proposed method. By the way, the

previously-mentioned bit errors are used just for convenience of illustrating the

advantage of multiple choices of replacing blocks; they in fact should be the

replacement costs defined previously.

B. Data Embedding in Binary Images

The proposed data embedding process in binary bit-plane images consists of four

major steps and includes two folds of distortion minimization, as described in the

following.

(I) Computing bit costs for data embedding: We calculate the replacement cost value

 57

for each bit in the image according to the cost function defined in Section 4.2.

(II) Dividing the input image into blocks: We first divide each of the bit planes bpB0 B

through bpB3 B into non-overlap 2×2 blocks with every two neighboring blocks

separated by a 1-pixel-wide line of pixels in between, as shown in Figure 4.2.

And next, we select the first n “embeddable” blocks and concatenate them

sequentially, where n is the length of the message data string to be embedded. A

block is said to be embeddable in this study if the replacement cost value of any

bit of the block is not infinite.

(III) Using multiple block pattern encoding tables for the first-fold distortion

reduction: We generate all possible block pattern encoding tables and select an

optimal one for use in the data embedding process, in the sense of introducing the

least distortion. The reason is that a single block pattern encoding table will not

be suitable for every input binary image; if an image is destroyed seriously after

data embedding using a specific table like Table 4.1, it will be appropriate to use

another table with other combinations of block patterns to encode the message

data. Specifically, we exchange the encoded message data of certain types in

Table 4.1 with those of the other types in the following way:

exchange the message data “0” with the message data “1”;

exchange the message data “00” with the message data “01”;

exchange the message data “10” with the message data “11”;

exchange the message data “010” with the message data “011”;

exchange the message data “100” with the message data “101”;

exchange the message data “00” and “01” with the message data “10” and

“11,” respectively;

exchange the message data “010” and “011” with the message data “100”

 58

and “101,” respectively.

By enumerating all possible cases in the above way, we can get the 128 distinct

tables (numbered from 0 to 127) for selection to minimize the distortion.

(IV) Applying search techniques for the second-fold distortion reduction: Finally, we

apply the dynamic programming technique to segment the input message data

stream optimally into a series of codes and embed them in the input image,

according to the cost function proposed previously. This reduces the resulting

distortion further in a global sense.

Figure 4.2 Division of input image into 2×2 blocks with separating
linesP

P(grids with bold boundaries are 2×2 blocks for data

embedding).

C. Search for Optimal Solutions

The search cost proposed in this study for use in the adopted search technique is

the total replacement cost in the resulting stego-image, computed from the summation

of the replacement costs of all the bit changes in the replaced blocks. In Table 4.1,

block patterns can be used to encode one, two, or three message bits. Accordingly,

when we embed a binary message value v, we have the three choices of embedding

one, two, and three initial bits of v into a block. To determine how many bits should

 59

be embedded in a selected block, we may calculate first the cost for each of the three

cases, and replace the selected block with the block pattern corresponding to the

minimum cost. This method provides a quick way for data embedding; however, it is

just a greedy search algorithm and in general does not yield an optimal solution.

Table 4.1 A block pattern encoding table proposed in this study.

Type
Block

pattern

Corresponding

binary value

Encoded

message

data

0

1111 1

2

1110 00

4

1101 00

6

1011 01

8

0111 01

10

0011 011

12

0101 011

14

1010 010

Type

Block

pattern
Corresponding

binary value

Encoded

message

data

1 0000 0

3 0001 11

5 0010 11

7 0100 10

9 1000 10

11 0110 100

13 1001 101

15 1100 010

To see this, for example, suppose that the message value v of 011B2B is to be

embedded in three selected blocks with patterns BB1 B = 0100, BB2 B = 0100, and BB3 B = 1100

according to Table 4.1. And as illustrated in Figure 4.3, suppose also that the costs of

replacing the four bits are computed to be 2, 1, 1, and 2 for BB1 B; to be 1, 4, 4, and 1 for

BB2 B; and to be 4, 4, 1, and 1 for BB3 B. By the above-mentioned greedy search algorithm,

 60

we replace BB1 B = 0100 with the block pattern 0000 of type 1 to embed the initial bit 0

of v. The replacement cost for this block is 2×0 + 1×1 + 1×0 + 2×0 = 1 because a bit

(the second bit) is flipped here with its corresponding cost being 1 and the other bits

in the original block are not changed. This cost is a local minimum. Next, we replace

BB2 B = 0100 with the block pattern 0001 of type 3 to embed the last two bits 11B2 B of v,

and the replacement cost is 1×0 + 4×1 + 4×0 + 1×1 = 5. Therefore the total

replacement cost for embedding v is 1 + 5 = 6.

Now, if we do not use the greedy search algorithm at the beginning, and replace

instead BB1 B = 0100 by the block pattern 0101 of type 12 in Table 4.1 to embed the three

bits 011B2 B of v directly, then the total replacement cost value will be reduced to be 2×0

+ 1×0 + 1×0 + 2×1 = 2 which is smaller than the previously-computed total

replacement cost of 6. This shows that there indeed exists at least one solution better

than that found by the greedy search algorithm. Figure 4.3 illustrates the data

embedding process for this example. This is also true for many other examples, as

found by this study. And so the search of an optimal solution is meaningful, for which

the proposed method is dynamic programming.

D. Dynamic Programming for Data Embedding

In the proposed dynamic programming algorithm (abbreviated as DPA hereafter),

edit distances are defined for cost minimization in the search. Assume that the input

message data to be embedded are in the form of an n-bit string SB1 B with SB1 B[i] denoting

its i-th bit. Also, let n 2×2 embeddable blocks be selected as a list in advance for data

embedding and expressed as another string S B2B with SB2 B[i] denoting its i-th block. For

convenience, let SBkB[i～j] denote a substring of SBkB with bits or blocks SBkB[i] through SBkB[j],

where k =1, 2 and i, j = 1, 2, …, n.

Only one type of edit operation, namely, replacement, is used in the proposed

 61

DPA to specify the image block replacement operations involving SB1 B and S B2 B in the

proposed data embedding process. The edit distance between SB1 B and SB2 B is defined,

according to the previous discussions, as the minimum total replacement cost to

transform SB2 B into SB1 B by editing operations according to a certain block pattern

encoding table.

Figure 4.3 An example of proposed data embedding process.

Let C be an n×n cost matrix with its element C[j, i] denoting the minimum total

replacement cost to transform a substring SB2 B[j～m] of SB2 B into a substring SB1 B[i～n] of SB1 B,

where m ≤ n. Then C[1, 1] is the minimum total replacement cost to transform S B2 B[1～

m] into SB1 B[1～n] (i. e., to transform the substring of SB2 B into the entire string of SB1 B),

where 1 ≤ m ≤ n. Also, let RC be a cost function with each of its element RC(j, i, L)

Message value v = “011”

Selected block list

Replacing blocks
(by greedy search)

Hidden bit(s) 0 11

Cost 1 5 (total replaced cost = 6)

Replacing block
(by optimum search)

Hidden bits 011

Cost 2 (total replaced cost = 2)

1 2 3

2 1
21

Cost function of
corresponding

bit
1 4

14
4 4

1 1

 62

denoting the minimum replacement cost for replacing the j-th block SB2B[j] of SB2 B with

the block pattern which encodes the initial L bits of the substring SB1 B[i～n] of S B1 B with

　 = 1, 2, or 3. We define RC(j, i, L) = ∞ if i + L > n + 1.

By the above definitions, the value C[j, i] is recursively just the minimum of all

the possible values of RC(j, i, L) + C[j+1, i+ L], where L = 1, 2 or 3. Also, we define

C[j, i] = 0 if i > n or j > n. Then, according to dynamic programming, the minimum

search cost and its corresponding solution may be computed by the following

algorithm.

Algorithm 4.1 Computing minimum search cost for minimizing distortion by the

DPA.

Input: (1) an n-bit message data string SB1B; (2) a string SB2 B of n selected blocks; (3) a

block pattern encoding table T; (4) an n×n cost matrix C[j, i], for i, j = 1, 2, …,

n; (5) an n×n type matrix I with its element I[j, i] used for recording the block

pattern in T used for replacing SB2 B[j] in calculating C[j, i]; and (6) an n×n

segmentation matrix N with its element N[j, i] used for recording the number

of initial bits of SB1 B[i～n] used in calculating C[j, i].

Output: C[j, i], I[j, i], and N[j, i] for all i, j = 1, 2, …, n.

Steps:

3. Set all C[j, i] initially to be ∞ for all i, j = 1, 2, …, n.

4. Starting from i = n and j = n, for each pair of (j, i) with i, j = 1, 2, …, n, perform

the following steps.

2.1 If C[j, i] is equal to ∞, continue the next step (Step 2.2); else increment i and j

to calculate the next C[j, i].

2.2 Take C[j, i] to be the minimum of the three replacement costs, RC(j, i, 1) +

C[j+1, i+1], RC(j, i, 2) + C[j+1, i+2], and RC(j, i, 3) + C[j+1, i+3]; and record

the corresponding number of the processed initial bits (1, 2, or 3) of S B1 B[i～n]

 63

in N[j, i], and the corresponding type of the used block pattern of T in I[j, i].

In the above algorithm, the number of initial bits of S B1 B[i～n] and the used block

pattern type in each recursive step are recorded in matrices N and I, respectively,

which are used in the data embedding process, as described in the next algorithm.

Algorithm 4.2 Data embedding using block pattern encoding tables and the DPA.

Input: (1) a grayscale image G; (2) a secret message data string SB1 B with n bits; (3) a

control message data string SBc Bwith m bits, including a table number TBoptB

(specifying the block pattern encoding table used) with seven bits, followed by

a value LBoptB (specifying the number of selected blocks used) with m − 7 bits;

and (4) 128 block pattern encoding tables.

Output: a stego-image G'.

Steps:

1. Compute the cost of each bit of G as mentioned previously.

2. Get a list BBmB of m 2×2 embeddable blocks sequentially from the bit planes bp B0 B

through bpB3 B of G in order for embedding the m bits of SBcB. Following BBmB, get also

a list BBnB of n 2×2 embeddable blocks sequentially for the n bits of SB1B. Let BBmB and

BBn B also include the position information of each selected block.

3. For each block pattern encoding table T among the input 128 ones, with SB1B, BBn B,

and T as input, apply Algorithm 4.1 to calculate the cost matrix C[j, i], the type

matrix I[j, i], and the segmentation matrix N[j, i] for all i, j = 1, 2, …, n.

4. Find the minimum CBmin B of the 128 values of C[1, 1] computed in the last step,

and set TBopt B to be the table number of the corresponding block pattern encoding

table used in computing CBmin B.

5. Use the block pattern encoding table TBoptB, the type matrix IBmin B, and the

 64

segmentation matrix NBmin B corresponding to CBmin B, and the position information of

each block in BBn, Bto embed the string SB1B into bpB0 B through bpB3 B of G to get an initial

stego-image GBi B.

6. Set the value LBoptB to be the number of the blocks used for embedding SB1 B in the

last step.

7. Using S BcB (including TBopt B and LBoptB), BBmB, and T= 1 as input, apply Algorithm 4.1 to

calculate the cost matrix C[j, i], the type matrix I[j, i], and the segmentation

matrix N[j, i] for all i, j = 1, 2, …, m.

8. Use the block pattern encoding table Table 4.1, the type matrix I and the

segmentation matrix N in the last step, and the position information of each

block in BBm, Bto embed the substring SBcB into bpB0 B through bpB3 B of GBi B to get the final

stego-image G'.

Simply speaking, the above algorithm embeds the control message and the secret

message data sequentially into the first m and n embeddable blocks in Steps 8 and 5,

respectively.

4.4 Proposed Data Recovery Process

The goal of data recovery is to extract the embedded message data from a

stego-image. Before the proposed data recovery process is started, Table 4.1 is

simplified in advance as an extraction table as shown in Table 4.2. The other 127

encoding tables are converted similarly. It is easier to use this type of table to carry

out the recovery process described in the following.

Algorithm 4.3 Message data recovery.

Input: a stego-image G' including a message bit stream S.

Output: the message bit stream S.

 65

Steps:

1. Calculate the cost of every bit of G' as mentioned previously.

2. Get m 2×2 embeddable blocks sequentially from bp B0 B through bpB3 B of G' as a list

LBmB.

3. For each 2×2 block P of LBmB, compute the binary value v corresponding to the

block pattern, and decode v by looking v up in the block pattern encoding table

Table 1 to get the corresponding encoded message data bits as the data recovery

result of P.

4. Concatenate the initial m data bits extracted in the last step into a sequence as a

desired control message data SBcB.

5. Get the initial 7 data bits of S BcB as TBopt B, and the remaining m − 7 data bits of S BcB as

LBopt,B which specify respectively (1) the optimal block pattern encoding table TBopt B

used in data embedding; and (2) the number of 2×2 blocks of G' used in

embedding SBcB in the bpB0 B through bpB3 B of G'.

6. Also, get LBopt B 2×2 selected blocks sequentially from bpB0 B through bp B3 B of G' as a

list L.

7. For each 2×2 block P of L, compute the binary value v corresponding to the

block pattern, and decode v by looking v up in the block pattern encoding table

TBopt B to get the corresponding encoded message data bits as the data recovery

result of P.

8. Concatenate all the data bits extracted in the last step into a sequence as the

desired message bit stream S and exit.

For security consideration, we encrypt further the control message by a secret

key before the data embedding process, and embed the result into bpB0 B through bpB3 Bat

bit positions randomly generated with a distinct secret key as well as a random

 66

number generator. The reverse process can be easily performed to get the original

control message. The same method is also applied to the message data to get a higher

degree of data protection.

4.5 Experimental Results

Figures 4.4 and 4.5 illustrate some experimental results of applying the proposed

method. The bit streams of message data in Figures 4.4 and 4.5 were generated

randomly. The stego-image “House” of size 256×256 with a high PSNR value of

56.88 dB obtained by embedding 16440 bits (about 2KB) message data using the DPA

and the optimal block pattern encoding table among the 128 ones is shown at the right

side of Figure 4.4. The cover image is depicted in the left side of Figure 4.4 for

comparison. The result shows that the proposed method can be applied to embed

message data in a grayscale image and obtain a good-quality stego-image without

noticeable artifacts in the smooth regions.

Table 4.2 An extraction table (table number T=0).

Corresponding
binary value of
block pattern

Encoded message
data

1111 1
1110 00
1101 00
1100 010
1011 01
1010 010
1001 101
1000 10

Corresponding
binary value of
block pattern

Encoded message
data

0111 01
0110 100
0101 011
0100 10
0011 011
0010 11
0001 11
0000 0

Figure 4.5(b) illustrates three grayscale stego-images “House”, “Lena” and “Jet,”

 67

and their 8 corresponding bit planes. For comparison, Figure 4.1 is repeated as Figure

4.5(a) here. The three stego-images of size 128×128 were obtained by embedding

1000 bytes of message data using the proposed DPA and the optimal encoding table.

The PSNR values are 46.90 dB, 49.33dB and 48.80 dB, respectively. Compared with

the cover images in Figure 4.1 and their 8 corresponding bit planes, it can be seen that

the stego-images retain most significant textures.

(a)

(b)
Figure 4.4 A cover image “House” with the size of 256×256 and its stego-image with

16440-bit message data embedded. (a) The cover image. (b) The stego-image.

Table 4.3 summarizes the statistical data of the stego-image “Lena” using the

DPA and the optimal encoding table, including the message data length, the PSNR

value, the selected block pattern encoding table, the numbers of used blocks, the

minimum replacement cost values, and the average of the numbers of embedded bits

 68

per block. The message data bit stream in Tables 3 was generated randomly.

In more detail, the result from Table 4.3 is transformed into Figs. 6. When the

amount of the embedded data is smaller than 1000B, the PSNR values in Table 4.3 are

all larger than 49dB. And the differences in the stego-images cannot be noticed by

human eyes.

(a)

(b)
Figure 4.5 Experimental results of three images. (a) The original images and their

corresponding bit planes (repeated from Figure 4.1). (b) The resulting
three stego-images and their corresponding bit planes (from left, bpB0B, bp B1 B,
bp B2 B, …, bpB7B).

Figure 4.6 also reveals that the relation between the PSNR value yielded by the

proposed method and the embedded data amount is approximately linear. The PSNR

value of the DPA decreases about 3.3225 dB when the embedded data size increases

200 bytes. Thus, the proposed DPA method can predict the PSNR value before the

data embedding process starts according to the message data size. From Table 4.3, the

PSNR value of the DPA can be estimated by a simple line fitting method to be

 69

PSNR = 62.5870 − (m − 1) × 3.3225 (dB), 1 ≤ m ≤ 5,

where m denotes the size of message data in the unit of 200 bytes for 128×128

grayscale images. Similar results can be observed for the other images. Moreover, the

equation of the PSNR value can be extended and used for grayscale images of any

sizes by applying the proposed DPA. For a grayscale image of size H×W, if the above

value of m denotes the size of the message data in the unit of (200×H×W)/(128×128)

bytes, then the resulting PSNR value still can be estimated using the above equation.

Note that this merit of predictable PSNR values enables a user of the proposed

method to determine how large a cover image should be selected for a certain given

amount of message data.

Furthermore, we may compute a distortion rate for each stego-image. This rate is

computed in this study as the ratio of the number of bit flippings (changing bit 0 to 1

or 1 to 0 in data embedding) to the length of the message data. Most existing vertical

data hiding methods yield distortion rates of about 50% for grayscale images because

of the characteristic of randomness in bit flippings. In most existing vertical data

hiding methods, when 200-byte secret message data are embedded into a 128×128

grayscale image, these data will be divided into pieces of 4 bits and each piece is

embedded into the bits b B3 B, b B2 B, bB1 B, and bB0 B of a pixel. Then the average grayscale change

of the pixel, measured in terms of the number of flipped bits, may be computed to be

1×50% + 2×50% + 4×50% + 8×50% = 7.5. Consequently, the corresponding mean

square-error value MSE of the stego-image may be computed to be MSE =

[(200×8)/4]×(7.5×7.5)]/(128×128) where (200×8)/4 is the number pixels required for

embedding the 200-byte message data, 7.5×7.5 is the square error incurred at each

pixel, and 128×128 is the image size. Finally, the PSNR value of the stego-image may

be computed to be 10×log(255P

2
P/MSE) = 46.75 dB. If the secret data is embedded by a

 70

horizontal data hiding method without distortion optimization, the corresponding

average grayscale change of the pixel may be computed to be 1×50% + 1×50% +

1×50% + 1×50% = 2. And the corresponding MSE of the stego-image may be

computed to be MSE = [(200×8)/4]×(2×2)]/(128×128). Finally, the corresponding

PSNR value of the stego-image may be computed to be 10×log(255P

2
P/MSE) = 58.23

dB, which is larger than that of the vertical method. However, as seen in Table 4.3 the

PSNR value of our method is an even larger value of 62.48 dB, which means the

proposed method is superior to the conventional vertical data hiding method in

distortion reduction.

The proposed DPA method takes long computation time to obtain the optimal

solution when the volume of the message data is large. If time is a major concern,

then the greedy search method mentioned previously may be used. As a comparison,

we list in Table 4.4 the run times spent by the proposed methods (DPA and greedy

search) and two others on a PC with a 3.4G Pentium 4 CPU for some grayscale

images with two typical image sizes and three input message lengths. One of the two

other methods is the simplest “1-LSB” which embeds message data in the LSB of

each pixel. The other is “Hide4PGP” whose program was downloaded from the

website H72HTUhttp://www.heinz-repp.onlinehome.de/Hide4PGP.htmUTH. As can been see from

the table, the DPA takes about a minute to embed a message of 200 bytes and more

than 35 minutes to embed 1200-byte data, while all the other three methods takes little

times to accomplish the works. Therefore, the DPA can only be used for non-real-time

applications with the need of distortion reduction, though the greedy search method

may be used as a suboptimal substitute of it.

We also conduct an additional comparison of image distortion caused by the

above-mentioned four methods for the same set of images of Table 4.4. The result is

shown in Table 4.5 from which we see clearly that the proposed DPA method yields

 71

the largest PSNR values for all the tested images, indicating its effectiveness for

reducing image distortion.

Table 4.3 Statistics of stego-images yielded by DPA using optimal encoding table.

Stego-image
Message data
length (bytes)

PSNR
(dB)

Table
number

No. of used
blocks

Cost
value

Embedded bit
number per block

200 62.48 8 779 1774 2.054

400 59.37 57 1636 3243 1.956

600 55.57 57 2297 5680 2.09

800 52.96 57 3101 8355 2.064

1000 49.33 8 3826 11699 2.091

Lena

(128×128)

1200 46.74 57 4295 16248 2.235

Table 4.4 Comparison of run times for four methods for grayscale images (in unit of
sec.).

Size Stego- image DPA
Greedy
search

1-LSB Hide4PGP

Lena256+200B 60 0.079 0.00016 0.0068

Lena256+1200B 2112 0.437 0.00097 0.0072

House256+200B 60 0.079 0.00016 0.0068

House256+1000B 1473 0.366 0.00081 0.0071

Jet256+200B 59 0.079 0.00016 0.0068

256×256

Jet256+1200B 1082 0.439 0.00097 0.0072

 72

Figure 4.6 PSNR values of stego-image “Lena” using DPA.

Table 4.5 Comparison of PSNR values of the four methods for grayscale images (in
unit of dB).

Size Stego- image DPA
Greedy
search

1-LSB Hide4PGP

Lena256+200B 68.45 67.51 67.23 67.28

Lena256+1200B 60.70 59.73 59.49 59.46

House256+200B 68.64 67.60 67.07 67.29

House256+1000B 61.53 60.60 60.21 60.21

Jet256+200B 68.34 67.52 67.15 67.16

256×256

Jet256+1200B 60.74 59.72 59.44 59.58

Finally, we applied steganalysis to the four the methods using a software tool

available at H73HTUhttp://diit.sourceforge.netUTTH, which is an Topen-source implementation of RS

analysis developed by TFridrich, et al.T [24]. We made a comparison of the analysis

results shown in Table 4.6. Because the tool was designed for 24-bit color images

with three color channels, we apply the proposed DPA and the greedy search method

by embedding the message data evenly into image blocks of the three channels of R,

G, and B alternatively, with the first block selected from R, the second from G, the

third from B, the fourth from R again, and so on. For the 1-LSB method, we embed

PSNR vs Embedded data

0

20

40

60

80

1 2 3 4 5 6

PSNR

Unit: 200 bytes

 73

the data similarly except that bits instead of blocks are selected from the three

channels alternatively. The third column in Table 4.6 specifies the detected message

length of the cover image. This length value may be regarded as a “bias” of the RS

detector, which supposedly should be zero because no message is hidden in the cover

image. The last four columns specify the detected message lengths of the four

methods, from whose contents we see that the DPA method is more robust against

steganalysis than the greedy search method, and is not obviously so than the other two

methods.

Table 4.6 Comparison of RS analysis results of the four methods for color images.

Size Cover
image C

Detected
message

length of C
Stego-image S

Detected
message

length of S
yielded by

DPA

Detected
message

length of S
yielded by

greedy
search

Detected
message

length of S
yielded by

1-LSB

Detected
message

length of S
yielded by
Hide4PGP

Lena256 379.58B Lena256+200B 458.42B 497.65B 529.13B 510.38B
Lena256 379.58B Lena256+1200B 1174.06B 1378.88B 1737.28B 999.68B

House256 508.05B House256+200B 596.93B 626.86B 561.83B 552.40B
House256 508.05B House256+1000B 1330.27B 1646.94B 1607.94B 1310.35B

Jet256 731.17B Jet256+200B 751.60B 839.44B 819.19B 772.44B

256×
256

Jet256 731.17B Jet256+1200B 1341.43B 1403.21B 1244.48B 1406.40B

4.6 Concluding Remarks

A data hiding method for hiding message data into grayscale images with

distortion reduction effects have been proposed. Two novel techniques for reducing

distortions in resulting stego-images have been adopted, one being an optimal

dynamic programming algorithm, and the other the use of multiple block pattern

encoding tables. First, a cost function has been proposed to estimate the weight of

each bit in each pixel to be replaced according to an HVS model. Next, a horizontal

data hiding scheme in which message data are embedded in a sequence of bit planes

has also been proposed to decrease possible distortions in stego-images. Also, an

 74

optimal block pattern encoding table is chosen from 128 alternative ones for use in

data embedding to minimize image distortion. The encoding tables are designed in

such a way that up to three bits in a 2×2 image block can be embedded. Finally, the

proposed method minimizes further the distortion using dynamic programming based

on the proposed cost function. The proposed method can predict the PSNR value of a

sego-image before the embedding process starts according to the size of the data to be

embedded.

The space and time complexities of the proposed dynamic programming

algorithm are both quadratic. The algorithm costs more time to embed a long secret

message. But in certain applications there is no need of real-time processing, and

optimality in data embedding volumes or Tminimization in image distortionT is the main

concern. In such cases, the proposed method is good to use. On the other hand, if time

is really concerned, then one can alternatively use the proposed greedy search

algorithm, that takes only linear computation time and still minimize distortion in the

stego-image in a suboptimal way. If high-speed processing is necessary, our method

can be adapted to run on a parallel computer. In particular, each of the 128 block

pattern encoding tables may be processed separately, and the dynamic programming

process may be parallelized, too.

At least two methods may be adopted to make the proposed method more robust.

First, multiple copies of a secret message may be embedded in the input image

randomly with control by a key, so that an attack will not entirely destroy the secret

information. And after the data are extracted by the proposed method, we may apply a

voting scheme to recover the secret. The second method is to try to place secret data

in the more significant bits of the cover image, for example, in bpB2 B and bpB3 B in the

proposed method, assuming that most attacks to BMP images are conducted to the

LSBs. Because the information encoded in these bit-planes cannot be removed in

 75

most applications (otherwise, the image will be seriously distorted or destructed),

hopefully this method will work in real applications.

The proposed method processes 2×2 blocks in the data embedding process. It

may be extended to process larger-sized blocks because when the block size is larger,

the number of the block patterns which can be selected to encode a certain message

value becomes larger as well, resulting possibly in greater reduction of image

distortion. Other future works may be directed to embed multiple message data in a

grayscale image for protecting the intellectual property right and authenticating

multimedia data, to define more general cost functions for other HVS models, and to

design better encoding tables to reduce image distortion further.

 76

Chapter 5

Data Hiding in Color Images by Color

Replacements with Reduction of Image

Distortion and Change Noticeability

5.1 Idea of Proposed Method

The basic idea of the proposed method for data hiding in RGB color images is to

encode certain colors in the color space, and embed given message bits into selected

scattered image pixels by replacing these pixels’ colors by the encoded colors. And

extraction of the message is a reverse process, consisting of finding image pixels with

encoded colors and decoding these colors to get the embedded message bits.

Appropriate techniques must be devised for the above simple idea of data

embedding and extraction to be carried out effectively. The concern of reducing image

content distortion and color change noticeability should be taken into consideration in

these techniques. Also, the common requirement of data recoverability in data

extraction need be met.

The techniques proposed in this study satisfy these aims and are described in the

following.

In the remainder of this chapter, the detailed algorithms of the proposed data

embedding and extraction are given in Section 5.2. In Section 5.3, some experiment

results and discussions are described, followed by concluding remarks in Section 5.4.

A. Proposed technique for reduction of color change noticeability

It is unnecessary to use all of the huge number of colors in the color space for

data embedding by color replacements. Instead, we partition them into

 77

non-overlapping cubic-shaped clusters, called color cubes, and find out those cubes

better for use in data embedding. More specifically, we find out image pixels with

their colors “falling” in each color cube, and check the scattering degree of these

pixels. Presumably, image pixels located more separately in the cover image are more

suitable for data embedding because the changes of their colors, appearing to be

farther way from one another, will attract less notice from observers. On the contrary,

color changes at less scattered pixels tend to create visual artifacts and arouse more

suspicion. Based on this idea, we propose in this study the following scheme of

reducing the noticeability caused by image pixels’ color changes.

1. Partition the RGB color space into color cubes.

2. Collect the set of pixels in the cover image with their colors “falling” in each

color cube, called the range set of the color cube.

3. Define the degree of pixel scattering of each color cube by a certain scatter

measure of the pixels in the range set of the color cube.

4. Sort into a list the color cubes with nonempty range sets by their pixel scattering

degrees, with the color cube with the largest scattering degree on the top of the

list.

5. Sort further those color cubes with equal pixel scattering degrees by their range

set sizes, meaning that color cubes with larger range sets will be used first for

data embedding.

6. According to the length of the message to be hidden, select from the top of the

color cube list a sufficient number of color cubes for use in data embedding.

7. Use the pixels of the range sets of the selected color cubes as the locations for

data embedding by color replacements.

 78

Let S = {PB1 B, PB2B, …, PBnB} denote the range set of a color cube C with n pixels. The

scatter measure mentioned in Step 3 above for C, denoted as M, is defined as the

mean of the Euclidean distances of all the pixel pairs in P, i.e., is defined as

,
| |i j

i j
P P

M
n

−
=

∑
 (1)

where the Euclidean distance |PBi B − PBj B| between any two pixels PBi B and PBj B at image

coordinates (uBi B, v Bi B) and (uBj B, v Bj B), respectively, is computed as |PBi B − PBj B| = [(u Bi B − u Bj B) P

2
P + (v Bi B −

v Bj B)P

2
P]P

1/2
P. A larger value of M means higher pixel separateness of S in the cover image.

As an illustration of the range sets of color cubes, Figure 5.1(a) shows a cover

image and Figure 5.1(b) is the range set of a color cube found in (a), shown as a

binary image with each white dot indicating a pixel in the set. The range set may be

seen to include pixels with some dark green colors.

(a) Cover image. (b) Range set of a color cube.

Figure 5.1. An illustration of range sets of color cubes.

B. Proposed technique for reduction of image content distortion

 79

For convenience of data processing, the number of colors included in each color

cube is taken to be a power of 2 in this study. If all the colors in a color cube, say with

2 P

m
P ones, are used for data embedding, each color may be used to represent m message

bits. The embedding work of an m-bit message segment then is to replace the color of

an image pixel in the range set of a color cube by the color of the 2P

m
P ones in the color

cube, which corresponds to the value of the m message bits.

However, to reduce the image distortion resulting from such color replacements,

we propose in this study to allow multiple colors, instead of just a single one, to

represent an identical message segment. For example, if we allow, say, 2P

n
P colors as a

group to represent a message segment, then whenever an image pixel’s color is to be

replaced by one in the color cube, there will be 2P

n
P choices, and the one closest to the

pixel’s color may be taken as the replacing color, thus achieving the purpose of

reducing image distortion due to the color replacement.

Consequently, each color cube as discussed above should be expanded to have

2P

n
P×2P

m
P = 2P

m+n
P colors, instead of just 2P

m
P ones, if embedding of m-bit message segments

is still desired. And because of the property of having three color channels in an RGB

image, m+n must be a multiple of 3 for 2P

m+n
P to be the cube of an integer M (i.e., MP

3
P),

meaning that each color cube has the side length of M. That is, it must be true that m +

n = 3k for some positive integer k such that 2P

m+n
P = 2P

3k
P = (2 P

k
P) P

3
P = (2 P

k
P) × (2 P

k
P) × (2P

k
P) = M P

3
P

with M = 2P

k
P. If not, then the color cluster will not form a cube; instead, it becomes a

rectangular parallelepiped (also called a cuboid), which is less convenient to handle

due to side asymmetry.

For example, if we take m = 2 and n = 1, then each color cube has 2P

2+1
P = 8 colors,

divided into 4 groups with each group including two colors. One of such color cubes

is shown in Figure 5.2, in which the four color groups are GB1 B = {(0, 0, 0), (1, 1, 1)},

GB2 B = {(1, 0, 0), (0, 1, 1)}, GB3 B = {(1, 1, 0), (0, 1, 1)}, GB4 B = {(0, 1, 0), (1, 0, 1)} and the

 80

two colors in each group are located diagonally in opposite directions, where each

color is expressed as a 3-tuple (r, g, b) with r, g, and b being the values of the R, G,

and B channels, respectively. Such color cubes are too small to be useful. The color

cube adopted for use in the experiment of this study is taken to include 2 P

m+n
P = 2P

3+3
P =

64 colors with m = 3 and n = 3, i.e., with 8 groups of 8 colors. Therefore, for 8-bit R,

G, and B color channels, there are totally (256/4) × (256/4) × (256/4) = 64 P

3
P color

cubes.

For convenience of discussions, we define a base color for each color cube as the

one in the cube with the smallest of the summation of the r, g, and b values. By

identifying color cubes with three indexes i, j, k for the three dimensions of R, G, and

B, respectively, it is not difficult to figure out that the base color (b
ir , b

jg , b
kb) for the

(i, j, k)-th color cube for m = 3 and n = 3 may be computed by

b
ir = 4i, b

jg = 4j, b
kb = 4k, (2)

where i, j, k = 0, 1, …, 63, and the values of the 64 colors in the cube may be

computed by

r = b
ir , b

ir +1, b
ir +2, b

ir +3;

g = b
jg , b

jg +1, b
jg +2, b

jg +3;

b = b
kb , b

kb +1, b
kb +2, b

kb +3. (3)

For example, the (0, 0, 0)-th color cube with base color (0, 0, 0) is shown in

Table 5.1. Simply adding the base color values (b
ir , b

jg , b
kb) respectively to the color

channel values in the table, we can get the table for the (i, j, k)-th color cube.

According to the above idea, we propose the following scheme for reduction of

 81

image distortion.

Table 5.1 The colors in the (0, 0, 0)-th color cube with base color (r, g, b) = (0, 0, 0).

No. Color No. Color No. Color No. Color
1 (0, 0, 0) 17 (1, 0, 0) 33 (2, 0, 0) 49 (3, 0, 0)
2 (0, 0, 1) 18 (1, 0, 1) 34 (2, 0, 1) 50 (3, 0, 1)
3 (0, 0, 2) 19 (1, 0, 2) 35 (2, 0, 2) 51 (3, 0, 2)
4 (0, 0, 3) 20 (1, 0, 3) 36 (2, 0, 3) 52 (3, 0, 3)
5 (0, 1, 0) 21 (1, 1, 0) 37 (2, 1, 0) 53 (3, 1, 0)
6 (0, 1, 1) 22 (1, 1, 1) 38 (2, 1, 1) 54 (3, 1, 1)
7 (0, 1, 2) 23 (1, 1, 2) 39 (2, 1, 2) 55 (3, 1, 2)
8 (0, 1, 3) 24 (1, 1, 3) 40 (2, 1, 3) 56 (3, 1, 3)
9 (0, 2, 0) 25 (1, 2, 0) 41 (2, 2, 0) 57 (3, 2, 0)
10 (0, 2, 1) 26 (1, 2, 1) 42 (2, 2, 1) 58 (3, 2, 1)
11 (0, 2, 2) 27 (1, 2, 2) 43 (2, 2, 2) 59 (3, 2, 2)
12 (0, 2, 3) 28 (1, 2, 3) 44 (2, 2, 3) 60 (3, 2, 3)
13 (0, 3, 0) 29 (1, 3, 0) 45 (2, 3, 0) 61 (3, 3, 0)
14 (0, 3, 1) 30 (1, 3, 1) 46 (2, 3, 1) 62 (3, 3, 1)
15 (0, 3, 2) 31 (1, 3, 2) 47 (2, 3, 2) 63 (3, 3, 2)
16 (0, 3, 3) 32 (1, 3, 3) 48 (2, 3, 3) 64 (3, 3, 3)

1. Define each color cube to have 2P

m+n
P colors, divided into 2P

m
P groups with each

group including 2P

n
P colors, where m + n = 3k for some positive integer k.

2. Assign the colors in the color cube into groups such that the colors in each group

are distributed evenly, for the purpose of achieving more effectively the goal of

reducing image distortion due to color replacements as discussed above.

3. Encode identically all the 2P

n
P colors in each group into an m-bit message segment,

i.e., represent the m message bits identically by any color in the group.

4. When an image pixel P in the range set of a color cube C is to be used for

embedding an m-bit message segment H, find the group G in C whose colors

represent the value of H.

5. Find the color c' in G which is closest to c in the sense of Euclidean color

distance.

6. Replace c by c' to complete the data embedding work at pixel P.

In Step 5 above, the Euclidean color distance between the two colors c = (r, g, b)

and c' = (r', g', b') are defined to be |c − c'| = [(r − r')P

2
P + (g − g')P

2
P + (b − b') P

2
P]P

1/2
P.

 82

C. Proposed technique for extraction of embedded data

A merit of the previously-proposed technique of data hiding (including

partitioning the color space into non-overlapping color cubes as well as replacing a

pixel’s color with another one, both in an identical color cube) is the resulting

assurance of data recoverability in the data extraction stage. There are two reasons

which guarantee this merit, as described in the following.

(1) Although some original colors in the cover image have been replaced, each of the

replacing colors is in the same color cube as that of the replaced one at an image

pixel. This ensures that if we use the pixels’ colors in the stego-image to find the

range set of each color cube, as is done in the data extraction process, the result

will be the same as that found in the data hiding process. This means that the

pixels where data were hidden will not be missed in the data extraction process.

(2) Only color cubes with more-scattered range sets are utilized for data embedding,

R

B

G

cB11B = (0, 0, 0)

cB12B = (1, 1, 1)

cB21B = (1, 0, 0)

cB22B = (0, 1, 1)

cB31B = (1, 1, 0)

cB32B = (0, 0, 1)

cB41 B = (0, 1, 0)

cB42B = (1, 0, 1)

Figure 5.2 A color cube with 8 colors divided into four groups with base color (0, 0, 0).

 83

and so if we select similarly color cubes with more-scattered range sets in the data

extraction process, then the same set of color cubes will be found, from whose

range sets we can extract exactly the previously-embedded message bits.

The proposed scheme for data extraction is described in the following.

1. Partition the color space in the same way as done in the data embedding process.

2. Collect the range set of each color cube from the pixels in the given stego-image.

3. Compute the scattering degree of the range set of each color cube.

4. Sort the color cubes into a list in the same way as done in the data embedding

process described previously.

5. Select a sufficient number of color cubes from the top of the list according to the

length of the embedded message.

6. Follow the color encoding rule used in data embedding to decode as a message

segment the color of each pixel in the range set of each color cube selected in the

last step.

7. Concatenate all the decoded message segments in order into a message as the

extraction result.

In Step 5 above, to decide how many color cubes should be selected, the length

of the message (in the unit of bit) should be known in advance. For this, we take the

message length as part of the data to be hidden and append it to the message data as

the prefix, in the form of a fixed number of bytes. If the value of the message length,

expressed as a bit sequence, is shorter than the length of all the bytes allocated for it,

then we pad sufficient leading 0’s to it to fill up the bytes. In this way, the message

length will be embedded first as a fixed number of bytes into the image, and in the

data extraction process it can be extracted first as well from a fixed number of bytes

hidden in the stego-image, from which the total number of remaining data bits can be

 84

decided, and the message bits extracted properly.

D. Even distribution of cube colors into groups for image distortion reduction

As mentioned previously, we assign the colors in the color cube into groups such

that the colors in each group are distributed evenly. Consequently, a color in the group

closest to an image pixel’s color can be selected for color replacement, in order to

reduce the resulting image distortion. Here we describe the technique we use for

achieving such a goal of even distribution of colors in groups. First, it is not difficult

to see that the desired distributions in the groups should be symmetric to each other.

To accomplish this, we adopt the following steps, using the first color cube with base

color (0, 0, 0) as an example for explanation of the detail. For other color cubes, the

corresponding steps are the same except the base color. Table 2 shows the details of

the involved computation results in the steps.

1. Take the 64 color values of the color cube as Euclidean coordinates, and

compute its centroid, which is (1.5, 1.5, 1.5).

2. Transform the Euclidean coordinates into new ones through a translation of (1.5,

1.5, 1.5).

3. Transform the new Euclidean coordinates (r, g, b) into 3D spherical coordinates

(ρ, θ, φ) by the following formula:

ρ = (rP

2
P + gP

2
P + bP

2
P) P

1/2
P, φ = tanP

-1
P(g/b), θ =tanP

-1
P[b/(rP

2
P+gP

2
P) P

1/2
P]

where ρ is the distance from the origin to a point in the Euclidean space, θ is

the zenith angle with respect to the R-axis, φ is the azimuth angle with respect

to the B-axis, as shown in Figure 5.3, and the function tan P

-1
P has values in the

range from −90 P

o
P to +90 P

o
P.

4. To facilitate the purpose of even distribution of group colors, modify the range

 85

of tanP

−1
P such that the computed values of θ lie in the range 0P

o
P ≤ θ < 360P

o
P with 0P

o
P

indicating the direction of the R-axis.

5. Use in order the values of ρ, φ, and θ to sort the 64 colors into a list.

6. Assign the 64 colors of the color cube evenly into the 8 groups using the list

according to the following criteria to achieve the goal of even distribution of

group colors:

(1) each group has an equal number of colors which have a certain value of ρ;

(2) the colors of each group have as many angles of θ as possible;

(3) the 8 color groups, when seen as grid points, are symmetric to one another.

7. Regard all the 8 colors in each color group to be identical, and encode each

group to represent one of the eight 3-bit segments 000 through 111, as

mentioned previously.

In Step 6 above, to satisfy Criteria (2) and (3) we normalize the angle values of θ

of all the grid points with respect to each of the angles of “8 selected symmetric

points” and listed them for easier selection of appropriate colors into the groups. For

the 64-color cubes, these 8 symmetric points may be selected to be the 8 corners of

the cube, as done in our experiment. The result of color distribution for the first color

cube with base color (0, 0, 0) is shown in Table 2. And an example of the color

distribution result for group 3, which includes the corner of (0, 0, 0), is shown in . The

assigned 8 colors in the group are (1, 2, 2), (3, 2, 2), (1, 0, 2), (2, 2, 3), (2, 3, 0), (0, 1,

0), (3, 0, 1), (0, 0, 0).

The above process is designed for color cubes with 64 colors. It is not difficult to

modify the process to fit more general cases of color cubes with 2P

m+n
P colors

mentioned before.

Furthermore, as an example of data embedding at image pixels, let P be a pixel

 86

with color c = (r, g, b) = (1, 3, 2) and assume that the 3-bit message segment we want

to embed is 010. The color cube used is that described in Table 2 and the group of

colors involved is the third shown in Figure 5.4. The color in the group closest to c is

c' = (1, 2, 2) with a distance of 1 to c. Therefore, the color c = (1, 3, 2) of P is replaced

by c' = (1, 2, 2) in the data embedding process.

As a deeper investigation of the effect of the above even distribution of group

colors in a color cube, we tried to compute the value of the peak of the signal-to-noise

ratio (PSNR) for the worst case of color replacements, which occurs when the colors

of all image pixels are replaced with the most dissimilar colors in color cubes. For this,

we have two cases. One is when the colors of each group in a color cube are not

evenly distributed. Then, the largest Euclidean color distance resulting from a color

replacement obviously will be |(3, 3, 3) − (0, 0, 0)| = (3×3P

2
P) P

1/2
P = 27 . The other case

R

G

B

φ

ρ

θ

Figure 5.3 Illustration of a 3D spherical coordinate system for use in even color distribution.

 87

is when the even distribution is done as shown in Table 5.2. Then, according to a

computer program written in this study which computes exhaustively the Euclidean

color distances between every pair of colors in the color cube based on the groups of

Table 3, the largest Euclidean color distance is d = 4 .

Accordingly, for the 2P

nd
P case the maximum mean-square error (MSE) for the

stego-image may be computed to be MSEBmax B = dP

2
P/3 = 4/3, and the corresponding

worst PSNR value is PSNRBmin B = 10 × log[255P

2
P/MSEBmax B] = 10×log[65025/(4/3)] ≈ 46.88

dB which is quite high. In contrast, the former case has PSNRBmin B =

10×log[65025/(27/3)] ≈ 38.59 dB which is lower. In short, the 2P

nd
P case, which is what

we have implemented in this study, has less image distortion.

Table 5.2 Color encoding table for the (0, 0, 0)-th color cube with base color (0, 0, 0).

r g b ρ
φ

(degree)

θ

(degree)
group code

R

B

G

Figure 5.4 An example of color distribution in a color cube --- the 8 colors in group 3.

 88

2 1 2 0.9 35 315
2 3 2 1.7 18 72
0 1 2 1.7 18 198
1 1 3 1.7 65 225
3 2 0 2.2 -43 18
1 0 0 2.2 -43 252
0 3 1 2.2 -13 135
3 3 0 2.6 -35 45

1 000

2 2 2 0.9 35 45
0 2 2 1.7 18 162
2 0 2 1.7 18 288
2 1 3 1.7 65 315
1 3 0 2.2 -43 108
3 1 0 2.2 -43 342
0 0 1 2.2 -13 225
0 3 0 2.6 -35 135

2 001

1 2 2 0.9 35 135
3 2 2 1.7 18 18
1 0 2 1.7 18 252
2 2 3 1.7 65 45
2 3 0 2.2 -43 72
0 1 0 2.2 -43 198
3 0 1 2.2 -13 315
0 0 0 2.6 -35 225

3 010

1 1 2 0.9 35 225
1 3 2 1.7 18 108
3 1 2 1.7 18 342
1 2 3 1.7 65 135
0 2 0 2.2 -43 162
2 0 0 2.2 -43 288
3 3 1 2.2 -13 45
3 0 0 2.6 -35 315

4 011

2 1 1 0.9 -35 315
1 1 0 1.7 -65 225
2 3 1 1.7 -18 72
0 1 1 1.7 -18 198
0 3 2 2.2 13 135
3 2 3 2.2 43 18
1 0 3 2.2 43 252
3 3 3 2.6 35 45

5 100

2 2 1 0.9 -35 45
2 1 0 1.7 -65 315
0 2 1 1.7 -18 162
2 0 1 1.7 -18 288
0 0 2 2.2 13 225
1 3 3 2.2 43 108
3 1 3 2.2 43 342
0 3 3 2.6 35 135

6 101

1 2 1 0.9 -35 135
2 2 0 1.7 -65 45
3 2 1 1.7 -18 18
1 0 1 1.7 -18 252
3 0 2 2.2 13 315
2 3 3 2.2 43 72
0 1 3 2.2 43 198
0 0 3 2.6 35 225

7 110

1 1 1 0.9 -35 225
1 2 0 1.7 -65 135
1 3 1 1.7 -18 108
3 1 1 1.7 -18 342

8 111

 89

3 3 2 2.2 13 45
0 2 3 2.2 43 162
2 0 3 2.2 43 288
3 0 3 2.6 35 315

5.2 Detailed Algorithms of Proposed Data Embedding and

Extraction

We now describe the detailed algorithms for data embedding and extraction. We

assume that the maximum length of given messages to be embedded is B bytes (8B

bits) long.

Algorithm 5.1 Data embedding process.

Input: a cover image I, a message G in the form of a bit string, and the color

encoding tables (like Table 2) for color cubes with 64 colors defined by Eqs.

(2) and (3).

Output: a stego-image I' with G embedded.

Steps:

A. Finding the range sets of the color cubes ---

1. Find the range set SBi B from the cover image I for each color cube CBi B.

2. Compute the scattering degree MBi B of each CBi B by Eq. (1).

3. Sort all non-empty SBi B into a list L according to their values of MBi B with the top

of the list corresponding to the largest MBi B.

B. Creating extended message data ---

4. Pad 0’s, if necessary, to the front of the bit string representing the length of

message G so that the resulting bit string, T, occupies B bytes.

5. Concatenate T and G in order, to form a third string T'.

6. Count the number of bits in T', append 0’s to the end of T', if necessary, to

 90

make the total number N of bits a multiple of 3, call the resulting bit string an

extended message, and denote it by G'.

C. Embedding of message data ---

7. Regard all the pixels in each range set SBj B in L in the raster-scan order as a

sequence QBj B, and concatenate all sequences of QBj B in order into a longer one Q.

8. Embed sequentially every 3-bit segment H of G' into pixels in Q in order in

the following way, until all bits of G' are exhausted:

(1) take sequentially an unprocessed pixel P in Q with color c;

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, whose corresponding code is equal to H;

(4) find out the color c' in p which is closest to c in the sense of Euclidean

color distance;

(5) replace c of P by c' in the cover image.

The data extraction process is described as an algorithm in the following. We

assume the embedded data in the given stego-image is the extended message G'

mentioned in the previous algorithm, which includes the original message G preceded

by the value of the length of G in the form of B bytes.

Algorithm 5.2 Data extraction process.

Input: a stego-image I', and the color encoding tables (like Table 2) for color cubes

with 64 colors defined by Eqs. (2) and (3).

Output: the message G.

Steps:

A. Finding the range sets of the color cubes ---

1. Find the range set SBi B from the stego image I' for each color cube CBi B.

2. Compute the scattering degree MBi B of each CBi B by Eq. (1).

 91

3. Sort all non-empty SBi B into a list L according to their values of MBi B with the top

of the list corresponding to the largest MBi B.

B. Extracting the length of the message

4. Regard all the pixels in each range set SBj B in L in the raster-scan order as a

sequence QBj B, and concatenate all sequences of QBj B in order into a longer one

Q.

5. Extract B bytes of data from Q first to obtain the length N of the message G

in the following way:

(1) take sequentially an unprocessed pixel P in Q with color c';

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, which includes c';

(4) find out the 3-bit code corresponding to p;

(5) repeat the above steps until the concatenation of all the found 3-bit codes

in order, denoted as K, is just more than B bytes long;

(6) take the first B bytes of K and convert it into an integer as the message

length N, and the tail portion R in K as the leading bits of the message G.

C. Extracting the message data

6. Compute N' = ⎡N/3⎤ where ⎡⋅⎤ means the ceiling function.

7. Repeating the following steps N' times:

(1) take sequentially an unprocessed pixel P in Q with color c';

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, which includes c';

(4) find out the 3-bit code of p;

8. Concatenate R extracted in Step 5 and all the codes extracted in Step 7 in

order as a bit string, and take the first N bits of it as the desired message G.

 92

5.3 Experiment Results and Discussions

A series of experiments have been conducted in this study on BMP images.

Some experimental results are shown in Figs. 5 through 8. Figure 5.5 is a continuation

of Figure 5.1. Figure 5.5(a) shows the stego-image resulting from embedding 22900

bytes of message data into the cover image shown in Figure 5.1(a) which is of the size

256×256. And Figure 5.5(b) shows the difference between Figure 5.1(a) and Figure

5.5(a) as a color image I'' (called a difference image), which is produced in the

following way, assuming that (r, g, b) is a color in the cover image I, (r', g', b') the

corresponding color in the stego-image I', and (r'', g'', b'') the computed difference

color:

x'' = |x − x'| + 128 if |x − x'| ≠ 0;

 = 255 if |x − x'| = 0,

where x = r, g, or b. The concept behind the above computation is to set a difference

value of 0 to be 255 and a non-zero one to be around 128. Consequently, an

unprocessed pixel with three zero difference values will become a white pixel in the

difference image I'', while a processed pixel will have a color (r'', g'', b'') with all the

three color channel values around 128. As can be seen from Figure 5.5(b), most of the

pixels in the cover image have been utilized for data embedding, but the stego-image

looks almost identical to the cover image of Figure 5.1(a) due to the effectiveness of

image distortion and change noticeability reduction. It can also be observed from

Figure 5.5(b) that the processed pixels are quite random in their locations, and more

uniform regions, like those on the clothes, yield range sets with smaller scatter

measures, as expected, which are not used for data embedding (seen as white-pixel

clusters in the figure). The rate of processed pixels (called processed pixel rate in the

 93

sequel) is (22900×8) ÷ 3 ÷ (256×256) ≈ 0.932 and the PSNR value was computed to

be 48.59 dB which is better than the worse-case value 46.88 dB, as it should be.

Totally, 1628 color cubes have been utilized.

Figure 5.6 shows another experimental result with a 256×256 cover image. The

processed pixel rate is again 0.932, the computed PSNR value is 48.23 dB, and the

number color cubes used is 5242. A similar phenomenon of leaving uniform regions

unused for data embedding is observed (most on the flowers at the lower part of the

cover image). For illustrations, we also include the range set of a color cube as Figure

5.6(b). Two more examples of experimental results with 512×512 cover images are

shown in Figs. 7 and 8. The message data embedded are 88200 bytes long, and the

processed pixel rates are (88200×8) ÷ 3 ÷ (512×512) ≈ 0.897, for both cases. The

PSNR values are 48.70 dB and 48.27 dB, respectively.

More statistics data about our experiments are shown in Table 5.3, in which

images 4.1.03, 4.1.01, 4.2.04, 4.2.07 are those in Figs. 5.5 through 5.8, respectively.

All the images come from the USC image database. From the table, we see that the

PSNR values of all the stego-images are over 48 dB.

The experiments were conducted for color cubes with 64 colors and color groups

of 8 colors. Color cubes and color groups of sizes other than those used in the

experiments of this study may also be applied for various application needs. In

general, larger-sized color cubes will lead to larger embedding capacity of each color

replacement (that is, more bits are encoded by each replacing color) if the size of each

color group is fixed.

 94

Table 5.3 Statistics of experimental results.

No. Image
Size of
image

(pixels)

Size of
message

data (bytes)

Processed
pixel rate

No. of used
color cubes

PSNR

(dB)

1 4.1.01 256×256 22900 0.932 5242 48.23
2 4.1.02 256×256 22900 0.932 3329 48.49
3 4.1.03 256×256 22900 0.932 1628 48.59
4 4.1.05 256×256 22900 0.932 3840 48.68
5 4.2.01 512×512 88200 0.879 5514 48.36
6 4.2.02 512×512 88200 0.879 5446 49.19
7 4.2.04 512×512 88200 0.879 9908 48.70
8 4.2.05 512×512 88200 0.879 6626 48.61
9 4.2.06 512×512 88200 0.879 17093 48.60
10 4.2.07 512×512 88200 0.879 17110 48.27
11 House 512×512 88200 0.879 16048 48.68

On the other hand, with the size of the color cube being fixed, larger-sized color

groups, though reducing more distortion caused by color replacements, will lead to

less embedding capability (that is, less bits are encoded by each color group). The

original cover image is not needed in data recovery, so the proposed method is a blind

scheme. The PSNR values of the stego-images constructed in the experiments are

high, showing that the aim of image distortion reduction carried out by the use of

color groups is accomplished. The stego-images look almost identical to the cover

images, showing that another aim of reducing color change noticeability is also

reached. Furthermore, secret keys may be used to randomize the message data before

they are embedded into the cover image or/and randomize the sequence of pixels

(sequence Q in Algorithms 5.1 and 5.2) into which the data are embedded, in order to

enhance data security. Illegal recovery of the embedded data will so obtain just a

sequence of noise. The proposed method is thus appropriate for uses in

steganographic applications.

 95

(a) Stego-image. (b) Difference image.

Figure 5.5 An experimental result of message data embedding applied to Figure
5.1(a) with a 256×256 cover image and a 22900-byte message data.

(a) Cover image. (b) Range set of a color cube.

(c) Stego-image. (d) Difference image.

Figure 5.6 A second experimental result with a 256×256 cover image and a
22900-byte message.

 96

(a) Cover image. (b) Stego-image. (c) Difference image.

Figure 5.7 A third experimental result of data embedding with a 512×512 cover image
and an 88200-byte message.

(a) Cover image. (b) Stego-image. (c) Difference image.

Figure 5.8 A fourth experimental result of data embedding with a 512×512 cover
image and an 88200-byte message.

5.4 Concluding Remarks

A novel method for hiding large-volume message data in RGB images has been

proposed. The method is based on the idea of changing selected image pixels’ colors

by similar ones which encode the message bits. The replacing colors come from some

selected color cubes in the color space, and the image pixels come from the range sets

of the color cubes. Data recoverability is ensured by the use of color cubes and range

sets. The color cubes are selected in such a way that the pixels in their range sets are

 97

as separated as possible. This reduces the noticeability caused by the color changes.

Each replacing color comes from the choice of an optimal one from a group of evenly

distributed colors in a color cube. This reduces the resulting image distortion due to

the color replacements.

Experimental results show the feasibility of the proposed method for

large-volume data hiding as well as the effectiveness of reducing image distortion and

change noticeability. The method is a blind data hiding technique; the original cover

image is not required in the data extraction process. Future researches may be directed

to dynamic uses of variable-sized color cubes, random distributions of groups’ colors

in color cubes, uses of the proposed method for various applications, etc.

 98

Chapter 6

Data Hiding in Emails and Applications by

Unused ASCII Control Codes

6.1 Idea of Proposed Method

ASCII codes, usually expressed as hexadecimal numbers, are used very

commonly to represent text for information interchange on computers. Parts of the

ASCII codes, namely, from 00 through 1F, are used as control codes which are listed

in Table 1. They were originally designed to control computer peripheral devices like

printers, tape drivers, teletypes, etc. But now they are rarely used for their original

purpose because of the rapid development of new peripheral hardware technologies,

except those codes for text display control, such as 0A with the meaning of line feed

and 08 with the meaning of backspace. Besides, some of the control codes, when

displayed by a text editing program or a browser on monitors, are invisible; and some

others are shown as spaces under certain software environments, just like the function

of the original ASCII space code 20. These two types of ASCII codes may be utilized

to increase secret data encoding variability in the data hiding process. For

convenience of reference, we say that the former type displays a null space, in

contrast with the white space displayed by the latter type.

On the other hand, as computer technology spreads throughout the world, many

coding standards have been developed to facilitate the expression of non-English

alphabets. But these alphabet coding standards, such as the Unicode and the Big 5, all

include the ASCII codes as the kernel set. For example, the popular Unicode standard,

UTF-8, equates exactly to the ASCII codes for code values below 128. Therefore, the

good property of the ASCII control codes for embedding secret data in text documents

 99

is still preserved in various coding standards.

In this study, it is desired to use the white-space and null-space codes to embed

data in text documents of the Unicode UTF-8 format without causing noticeable

artifacts under the popular software environments of Outlook Express, IE, and the

operating system of the tTraditionalT TChineseT version of Microsoft Windows XP, service

pack 2, 2002.

In the remainder of this chapter, some properties of email systems and

embedding ASCII control codes into emails are described in Sections 6.2, and 6.3,

respectively. The proposed methods for data hiding and recovery processes for emails

are introduced in Sections 6.4 and 6.5 respectively. Some experimental results are

shown in Section 6.7, followed by some concluding remarks in Section 6.8.

6.2 Properties of Email Systems

In this study, it is assume that all emails are transmitted through the popular

Simple Mail Transfer Protocol (SMTP) [38-40] and that users retrieve their emails

from remote server systems of the Post Office Protocol version 3 (POP3) standard

[41]. In addition, most emails nowadays are of the Multipurpose Internet Mail

Extensions (MIME) format [42-44] which is compatible with the SMTP standard.

However, some mail server systems do not follow the SMTP standard precisely

[44]. Therefore, before we make use of an email document for data embedding, we

must find out servers which do not change the content of an email body, or must set

up a new SMTP server. Otherwise, data embedded in the email might be destroyed

before being read and retrieved on the server of the receiver end.

According to the SMTP standard [40], According to the SMTP standard The

codes 0D for carriage return (CR) and 0A for line feed (LF) must appear together as

0D0A (denoted as CRLF in the sequel) for use at the end of each line. A text line, if

 100

folded, should be limited to be 78 characters in length, excluding CRLF. Here, by

folding we mean to split a long text line into multiple shorter ones. A folding will

occur when a CRLF is inserted in a line to replace a space, separating the line into two

parts.

Table 6.1 ASCII control codes and description.

Dec Hex Char Description Dec Hex Char Description

0 0 NUL null character 16 10 DLE data link escape

1 1 SOH start of header 17 11 DC1 device control 1

2 2 STX start of text 18 12 DC2 device control 2

3 3 ETX end of text 19 13 DC3 device control 3

4 4 EOT end of transmission 20 14 DC4 device control 4

5 5 ENQ enquiry 21 15 NAK negative acknowledge

6 6 ACK acknowledge 22 16 SYN synchronize

7 7 BEL bell (ring) 23 17 ETB end transmission block

8 8 BS backspace 24 18 CAN cancel

9 9 HT horizontal tab 25 19 EM end of medium

10 A LF line feed 26 1A SUB substitute

11 B VT vertical tab 27 1B ESC escape

12 C FF form feed 28 1C FS file separator

13 D CR carriage return 29 1D GS group separator

14 E SO shift out 30 1E RS record separator

15 F SI shift in 31 1F US unit separator

Outlook Express, after being opened, often has a smaller window for viewing the

mail content. The window width is about 70 characters. In this study, we propose to

hide secret data in an email by adding ASCII control codes at the end of each text line

with the resulting line being of this width, such that when the resulting stego-email is

opened by Outlook Express, the mail body can fit the window width, thus increasing

the steganographic effect. For this aim, we fold the original email lines into shorter

ones, each being 65 characters in length, leaving 5 characters at each line end as a

 101

data embedding slot.

Another popular protocol by which emails are accessed on a server is the Internet

Message Access Protocol version 4 (IMAP4) [45]. The IMAP4 supports single

web-mail servers and permits manipulations of mailboxes as remote message folders

in a way that is functionally equivalent to local folders. Web mails enjoy its popularity

because people can use the same client software to both surf the Internet and

transmit/receive emails. And IE is probably the most popular browser for

manipulating web mails. In this study, we assume that Outlook Express 6.0 and IE 6.0

are used as the client software to manipulate emails.

6.3 Embedding ASCII Control Codes into Emails

In this study, we identify five possible ways for secret data embedding in emails

by use of ASCII control codes. They are listed as follows.

(1) White-space coding --- As mentioned previously, there are many different

white-space codes, each of which, when displayed, appears to be a white space,

yielding the same effect as the original ASCII space code 20. For example, under

the environment of the Big 5 standard using Outlook Express, each of the three

ASCII codes, 07, 09, and 0C, will be displayed as a white space, as found in this

study. Therefore, we can use each of them to replace a white space in an email

text in a data hiding process, with the resulting stego-email bringing no reader’s

notice.

(2) Inserting multiple white-space codes at text line ends --- We may place multiple

white-space codes before the CRLF at the end of a text line. Since no character

but background white spaces are shown after the CRLF, these additionally

inserted white-space codes, though displayed as visible white spaces, will be

connected to the background white spaces and thus bring no noticeable effect to

 102

the reader.

(3) Null-space coding --- As mentioned previously, there are many null-space codes,

which are displayed as nothing. We can thus insert them at any position in a line

for any repetitions in a data hiding process without causing the reader’s notice.

For example, under the environment of the UTF-8 standard using IE, the four

null-space codes 1C, 1D, 1E, and 1F, as found in this study, are invisible.

(4) Inserting multiple null-space codes at text line ends --- We may place null-space

codes repetitively at the end of a text line without causing noticeable effect

because they are invisible when displayed, as in the case of (2) above.

(5) Combining techniques of the above --- We may combine the above techniques in

arbitrary ways if both white-space and null-space coding are applicable in the

environment.

In the above discussions, we see that the ASCII control codes usable for

embedding secret data are variant for different kinds of servers, browsers, and

character sets. In order to have a systematic investigation in this aspect, in this study

we created an email file which includes all ASCII control codes shown in Table 1 to

find out SMTP server software suitable for data embedding, as well as the

corresponding appearances of the ASCII control codes after they are processed and

displayed in the environment of such server software. The investigation results are

described as follows.

First, we have found four SMTP email servers which do not change the text

contents of emails, and so can be used as standard SMTP servers for the purpose of

data embedding in this study. Their uniform resource locators (URLs) are

H74HTUhttp://cis.nctu.edu.twUTH, H75HTUhttp://mis.tsint.edu.twUTH, H76HTUhttp://tw.yahoo.comUTH and

H77HTUhttp://www.hotmail.comUTH. The first is located in the Department of Computer Science

 103

at National Chiao Tung University in Taiwan, with an SMTP software of Twig 2.7.7.

The department has additionally another SMTP server system, Horde, for web mails.

The second server is located at the Department of Management Information at

Technology and Science Institute of Northern Taiwan. The SMTP software is

SendMail 8.12. The third server is located in Taiwan and deals with web mails with

the name Yahoo! Mail. The last server is Hotmail, a web mail server of Microsoft

Corporation. After registering at any of these four servers, a user may read, transmit,

or receive emails by Outlook Express or IE.

In this study, the email format we use is MIME 1.0, the content-type is

text/plain, and the character set is UTF-8. These formats are very commonly used

and so are adopted in this study for data hiding applications.

After a systematic test of the ASCII character set on the above-mentioned four

servers, we found that the hexadecimal ASCII control codes appropriate for data

embedding under both the Outlook Express and the IE environments are 1C, 1D, 1E,

and 1F. These four codes all appear to be invisible on the IE browser, and all are

shown as white spaces in the Outlook Express window. They can so be used for data

embedding respectively according to the techniques of (2) and (4) mentioned above.

However, our goal is to take into account simultaneously, instead of respectively, the

techniques of (2) and (4), resulting in a method of repeatedly placing these four

ASCII control codes at the ends of email text lines. The displayed result of the

stego-email will be of no difference from the appearance of the original cover email,

thus achieving the steganographic effect.

More specifically, we use the following encoding rules to embed secret data

into the text line ends of a cover email.

1. Encode 2-bit binary secret data “00,” “01,” “10,” and “11” with the four ASCII

codes 1C, 1D, 1E, and 1F, respectively.

 104

2. Put the unique combined ASCII codes 201E in front of a sequence of secret data

as its start signal, and append another copy of it at the sequence tail as the end

signal.

3. Use the unique combined ASCII codes 201C to encode the 1-bit data ‘0,’ and the

combined codes 201D to encode ‘1.’

4. Use the unique combined ASCII codes 201F as a separator to stop the underline

display that starts from a special lexical token of the network protocol, like http,

ftp, email, …, etc.

Rule 4 above is necessary because otherwise the extra white-space codes we

insert at the end of a text line, when happening to be connected to the end of a

network protocol text line, will appear to be underlined white spaces, like in

Uhttp://cis.nctu.edu.tw U, which obviously are against the purpose of

steganography.

Based on the above rules, we describe the proposed data hiding algorithm for

the purpose of covert communication and authentication in the next section.

6.4 Proposed Data Hiding Process for Emails

We first describe the technique we propose to embed secret data into an email as

Algorithm 6.1 below, and then describe how to transmit the stego-email by Outlook

Express or IE. In the following, when we refer to an email, we mean its text body,

excluding the header.

Algorithm 6.1 Data embedding in an email.

Input: a secret data file S and a cover email E long enough to hide S.

Output: a stego-email E'.

Steps:

 105

5. Set the format of the cover email E to MIME 1.0, the content-type to text/plain,

and the character set to UTF-8.

6. Fold sequentially each long text line in E with over 65 characters into a

65-character line by inserting a CRLF to replace the first space code 20 found

backward from the 65th character breakpoint in the line.

7. Check every line in the resulting E to see if there exists in it any special lexical

token of the network protocol right before the CRLF; if so, insert a separator code

201F before the CRLF so that we can insert secret data in between the separator

code and the CRLF, as described next.

8. Get a text line from E, starting from the first, and perform the following

operations.

4.1 Insert the start signal 201E before the CRLF which appears at the line end.

4.2 Compute the embedding capacity EC between the start signal and the CRLF

in the following way:

EC = 70 − position of CRLF in the text line,

which means the number of secret data bits we can insert before the CRLF

until the line becomes 70 characters long and should not be made longer, as

discussed previously.

4.3 Perform one of the following three cases (assuming that |S| means the length

of S):

(1) if EC ≠ 0 and |S| > 1, then get a pair of bits from the prefix of S, encode

it with the corresponding code (one of 1C, 1D, 1E, 1F), insert the result

before the CRLF, decrement EC by 1, decrement |S| by 2, and perform

Step 4.3 again;

(2) if EC = 0 and |S| > 1, then get the next text line in E and perform Step

4.2;

 106

(3) if |S| ≤ 1, then continue.

9. Check S to see if there still remains a single bit B in S. If so, then:

(1) if EC ≠ 0, insert the code 201C before the CRLF if B is ‘0’ or the code 201D

if B is ‘1’;

(2) if EC = 0, then get a text line in E with nonzero embedding capacity EC and

conduct the insertion as in Step 5(1) above.

10. Append the end signal 201E at the end of all the codes inserted in the previous

steps.

11. Output the result as the desired stego-email E'.

After a stego-mail E' is obtained, we want to send it to the receiver site through

Outlook Express or IE as a traditional email or a web mail, respectively. For the

former way using Outlook Express, we open a new email, denoted as EBnB, set the

character set of EBn B to UTF-8, expand the window size of EBn B to the maximum, copy the

text body of E' into EBnB, and finally send the result to the receiver without encrypting it.

For the latter way using IE, we use IE to log in the selected web mail server, and do

all the same to complete the mail transmission.

6.5 Proposed Data Recovery Process for Emails

At the receiver end, after a stego-mail is received by the use of Outlook Express or

IE, its content of ASCII codes is checked for secret data extraction. The algorithm for

this purpose is described as follows.

Algorithm 6.2 Data Recovery from a stego-email text body.

Input: a stego-email text E', presumably including a secret data file S.

Output: the file S.

Steps:

 107

1. Scan separator signals 201F in E' and remove all of them, if there exists any.

2. Scan the resulting E' to find the start signal 201E in E' and remove it

3. Perform the following steps.

3.1 Get a pair of ASCII codes in order from E.

3.2 If the code pair P is the end signal of 201E, then perform Step 4; otherwise:

(1) if P is either 201C or 201D, then decode P to be the bit 0 or 1,

respectively;

(2) if P is neither 201C nor 201D, then check each code Q in P and if Q is

one of 1C, 1D, 1E, and 1F, then decode Q to get the corresponding

secret bit pair (one of 00, 01, 10, and 11) and remove Q.

3.3 Go to Step 3.1.

4. Remove the end signal.

5. Concatenate all the decoded secret data bits extracted in the previous steps into a

sequence as the desired secret data file S and exit.

6.6 Proposed Authentication Process for Email Documents

The data embedding and extraction techniques proposed previously, in addition

to being useful for the purpose of covert communication, may be used for the purpose

of email authentication. More specifically, by embedding appropriately-designed

codes as an authentication signal, the signal, when extracted, can be used to check the

fidelity of a received email, proving that it was transmitted by a specified server and

not tampered with before received. In this study, we achieve this goal by embedding

an authentication signal into an email by Algorithm 6.1 to generate an authenticable

stego-email. The signal is generated by the use of the content of an email by a

division operation. The fidelity verification work is accomplished by matching the

authentication signal extracted from a given authenticable stego-email with that

 108

computed directly from the original text content of the email. The details are

described as two algorithms below.

Algorithm 6.3 Generation of an authenticable email.

Input: a cover email E and a secret key K.

Output: an authenticable email E'.

Steps:

1. Fold each long text line in E with over 65 characters into a 65-character line by

inserting a CRLF code to replace the first space code found backward from the

65th character breakpoint.

2. Compute a value M by summing up all the ASCII code values in the resulting E

after excluding all the special codes of 1C, 1D, 1E, 1F, 201C, 201D, 201E, and

201F.

3. Compute an authentication signal A as the remainder of dividing M by the secret

key K.

4. Use Algorithm 1 to embed A into E to obtain an authenticable email as the desired

output E'.

In Step 2 above, the reason of excluding the special codes is that these codes are

to be used for embedding the authentication signal A in Step 4.

Algorithm 6.4 Authentication of an email.

Input: a stego-email E', presumably including an authentication signal; and a secret

key K.

Output: an authentication message about the fidelity of the displayed text content of

E'.

Steps:

 109

1. Compute a value M by summing up all the ASCII code values in E' after

excluding all the special codes of 1C, 1D, 1E, 1F, 201C, 201D, 201E, and 201F.

2. Compute an authentication signal A as the remainder of dividing M by the secret

key K.

3. Extract the hidden authentication signal A' from E' by Algorithm 2.

4. Compare A' with A, and if they are identical, then output the authentication

message “pass,” meaning the displayed text content of E' is genuine; else, the

message “fail,” meaning the reverse.

6.7 Experimental Results

Figures 6.1 through 6.4 illustrate some experimental results of applying

Algorithms 6.1 and 6.2 for covert communication using Outlook Express. Figure 6.1

shows part of the content of a 9.3KB cover email. Figure 6.2 shows part of the content

of the stego-email (12.7KB) obtained by applying Algorithm 6.1 with the cover email

as the input. This content was displayed with Outlook Express by a receiver with

email address tmp168@mis.tsint.edu.tw, to whom the stego-email was sent. From

Figure 6.2, we see that no difference can be seen in the stego-email, when it is

compared with the cover email. Figure 6.3 shows the content of the 1.07KB secret

data file embedded in the stego-email. And Figure 6.4 shows the content of the

1.07KB secret data file extracted from the stego-email shown in Figure 6.2 by

applying Algorithm 6.2. The two file contents can be seen to be the same. These

results show that the proposed method of data hiding and recovery is feasible.

Figures 6.5 through 6.9 illustrate some additional experimental results of

applying the proposed algorithms using IE. All password portions in the emails in

these figures were blackened for protecting the privacy of the mail owners. Figure 6.5

shows the content of a 2.42KB cover email. Figure 6.6 shows the content of the

 110

corresponding stego-email (2.54KB) generated by Algorithm 1. Figure 6.7 shows part

of the content of the stego-email seen as a web mail in IE at a receiver site with

address H78HTUgis87809@cis.nctu.edu.twUTH. Figure 6.8 shows the content of the original secret

data file with 27 bytes. Figure 6.9 shows the content of the secret data file that was

extracted from the stego-email shown in Figure 6.7. Again, the original and the

extracted secret data are seen identical.

The experiments presented above were conducted under the condition that the

transmitter’s and the receiver’s operations were performed on the same server.

Actually, we also conducted experiments in which the transmitter’s and receiver’s

operations were performed on difference servers. For example, one server we used

was the mail server at Yahoo! in Taiwan, and the other a mail server in the

Department of Computer Science at National Chiao Tung University in Taiwan. The

results remained unchanged.

Figure 6.1 Partial content of a cover email.

 111

Figure 6.2 Partial content of the stego-email generated from Figure 6.1.

Figure 6.3 Partial content of an embedded secret data file.

 112

Figure 6.4 Partial content of the extracted secret data file.

Figure 6.5 Partial content of a cover email.

 113

Figure 6.6 Partial content of the stego-email generated from Figure 6.5 before being

transmitted.

Figure 6.7 Partial content of the stego-email received and displayed in IE.

 114

Figure 6.8 Content of the original secret file.

Figure 6.9 Content of the extracted secret file.

Figures 6.10 to 6.13 illustrate some experimental results of applying the

proposed email authentication method. Figure 6.10 shows the content of a stego-email

which was generated by Algorithm 6.3. The password portion in the stego-email was

also blackened for protecting privacy. The embedded secret data are invisible to a

casual reader. Figure 6.11 shows part of the content of the stego-email file after being

received by Outlook Express, and the authentication result of “pass”.

 115

Figure 6.10 Content of a stego-email for authentication before transmission.

Figure 6.11 Authentication result of “pass” after receiving a stego-email by Outlook

Express.

 116

Figure 6.12. Authentication result of “pass” after receiving a stego-email by IE.

Figure 6.13. Authentication result of “fail” after receiving the stego-email by IE. The

word “Lee” in the content has been modified to be “lee.”

Figure 6.12 shows part of the content of the stego-email after being received by

 117

IE, and the authentication result of “pass”, too. Figure 6.13 shows part of the content

of the stego-email file after being received by IE, and the authentication result of

“fail,” since the content has been tampered with (the word “Lee” has been changed to

“lee”). These results show that the proposed email authentication method is effective.

6.8 Concluding Remarks

In this study, we propose a method to embed secret data into emails via the use

of the ASCII codes under the operating system of the t TraditionalT TChinese T version of

Microsoft Windows XP, service pack 2, 2002. After a systematic test of all the ASCII

codes on various email server software systems and standards, four special ASCII

control codes 1C, 1D, 1E, and 1F have been found to be invisible at the line ends of

email texts on the SMTP email server in the environment of Outlook Express or IE. A

technique has been proposed to utilize these special codes to encode secret data,

which is a combination of five coding rules found in this study. Each stego-email can

be transmitted to a receiver, and read as a normal email. Extra long lines of emails are

folded to be of a proper length for normal displays on email servers to increase

steganographic effects. The experiment results prove the feasibility of the proposed

method.

In this study, 2-bit secret data are embedded into a white space of a text email.

Comparing to other methods proposed by Bender et al. [27] and Chang and Tsai [37]

in which on average each secret bit needs 1.5 white spaces to encode (one white space

representing a “0,” and two white spaces representing a “1,” leading to the average of

1×0.5+2×0.5 = 1.5 spaces for a secret bit), the proposed method needs only 0.5 white

space for each secret bit (one ASCII code representing 2 secret bits), which is an

increase of the embedding capacity for three times.

 118

The proposed methods may put into practice in the four servers as listed

previously. However, not all mail servers fully follow the SMTP standard. Instead,

some mail servers have their own ways of management, like Gmail and Yahoo! Mail,

which delete redundant spaces and undefined characters. So, the proposed method is

inapplicable to these two servers. Other applicable techniques should be investigated,

and are left for further study. Another topic worth future investigation is to apply the

proposed data hiding technique to check the integrity of an email, in addition to the

fidelity check scheme proposed in this study. Finally, we may extend both the

convert communication and authentication works of this study to dealing with web

pages.

 119

Chapter 7

Security Protection of Software Programs

by Information Sharing and Authentication

Techniques Using Invisible ASCII Control

Codes

7.1 Idea of Proposed Method

ASCII codes, usually expressed as hexadecimal numbers, are used very

commonly to represent texts for information interchanges on computers. Some of the

ASCII codes of 00 through 1F were used as control codes to control computer

peripheral devices like printers, tape drivers, teletypes, etc. (see Table 7. 1). But now

they are rarely used for their original purposes because of the rapid development of

new peripheral hardware technologies, except those codes for text display controls,

such as 0A and 08 with the meanings of “line feed” and “backspace,” respectively. It

is found in this study that some of the ASCII control codes, when displayed by certain

text editors under some OS environments, are invisible. Such ASCII codes may be

utilized for various secret data hiding purposes [53].

The finding of such invisible codes resulted from a systematic test of all the

ASCII control codes in the environment of the VCP

++
P editor of Microsoft Visual

Studio .NET 2003, Service Pack 1. Four of such codes so found are 1C, 1D, 1E, and

1F, which are invisible in the comments or character strings of VCP

++
P programs (see

Table 7. 2). Such codes will simply be said invisible in subsequent discussions.

As an illustrative example, in Figure 7.1 we show a simple source program in

Figure 7.1(a) with a short comment “test a file.” In the comment, we inserted

 120

consecutively the four codes 1C, 1D, 1E, and 1F between the letters “s” and “t” in the

word “test.” Their existences can be checked with the text editor UltraEdit 32, as can

be seen from Figure 7.1(b). But the four codes are invisible in the VCP

++
P editor, as can

be seen from Figure 7.1(a). Such invisibility usually will arouse no suspicion and so

achieve a steganographic effect, since, unless necessary, people will always use the

VCP

++
P editor for program inspection and development. We utilize such an “invisibility

phenomenon” for hiding both share data and authentication signals in source

programs in this study, as described in the following.

Table 7.1. ASCII control codes and descriptions.

Dec Hex Char Description Dec Hex Char Description

0 0 NUL null character 16 10 DLE data link escape

1 1 SOH start of header 17 11 DC1 device control 1

2 2 STX start of text 18 12 DC2 device control 2

3 3 ETX end of text 19 13 DC3 device control 3

4 4 EOT end of transmission 20 14 DC4 device control 4

5 5 ENQ enquiry 21 15 NAK negative acknowledge

6 6 ACK acknowledge 22 16 SYN synchronize

7 7 BEL bell (ring) 23 17 ETB end transmission block

8 8 BS backspace 24 18 CAN cancel

9 9 HT horizontal tab 25 19 EM end of medium

10 A LF line feed 26 1A SUB substitute

11 B VT vertical tab 27 1B ESC escape

12 C FF form feed 28 1C FS file separator

13 D CR carriage return 29 1D GS group separator

14 E SO shift out 30 1E RS record separator

15 F SI shift in 31 1F US unit separator

For the purpose of program sharing among several participants, after a given

secret source program is transformed into shares, each share is transformed further

into a string of the above-mentioned invisible ASCII control codes, which is then

 121

embedded into a corresponding camouflage source program held by a participant. And

for the purpose of security protection, authentication signals, after generated, are

transformed as well into invisible ASCII control codes before embedded. These two

data transformations are based on a binary-to-ASCII mapping proposed in this study,

which is described as a table as shown in Table 7. 2, called invisible character coding

table by regarding each ASCII code as a character.

Table 7. 2 Invisible character coding table.

Bit pair Corresponding invisible ASCII code

00 1C
01 1D
10 1E
11 1F

Specifically, after the share and the authentication signal data are transformed

into binary strings, the bit pairs 00, 01, 10, and 11 in the strings are encoded into the

hexadecimal ASCII control codes 1C, 1D, 1E, and 1F, respectively. To promote

security, a secret random key is also used in generating the authentication signal. The

details are described in the next section.

In the remainder of this chapter, the secret program sharing and recovery

schemes are introduced in Sections 7.2 and 7.3, respectively. The security protection

problem is discussed in Section 7.4. Some experimental results are shown in Section

7.5, followed by concluding remarks in Section 7.6.

7.2 Proposed Program Sharing Scheme

In the sequel, by a program we always mean a source program. A sketch of the

proposed process for sharing a secret program is described as follows.

 122

(1) Creating shares --- Apply exclusive-OR operations to the contents of the secret

program and all the camouflage programs, and divide the resulting string into N

segments as shares, with the one for the k-th participant to keep being denoted as

EBkB.

(2) Generating authentication signals --- For each camouflage program PBkB, use the

random key value Y to compute two modulo-Y values from the binary values of

the contents of PBkB and EBkB, respectively; and concatenate them as the authentication

signal ABkB for PBkB.

(3) Encoding and hiding shares and authentication signals --- Encode EBkB and A Bk B

respectively into invisible ASCII control codes by the invisible character coding

table (Table 7. 2) and hide them evenly at the right sides of all the characters of

the comments of camouflage program PBkB, resulting in a stego-program for the k-th

participant to keep.

A detailed algorithm for the above scheme is given in the following. We assume

that the length of a program is measured as the number of the ASCII characters in it.

Also, given two ASCII characters C and D, each with 8 bits, denoted as C = cB0 BcB1 B...cB7 B

and D = dB0 BdB1 B...dB7B, we define the result of “exclusive-ORing” the two characters as E =

C⊕D = eB0 BeB1 B...eB7 B with eBi B = cBi B⊕dBi B for i = 0, 1, ..., 7 where ⊕ denotes the bitwise

exclusive-OR operation. Note that E has eight bits, too. And given two equal-lengthed

character strings S and T, we define the result of exclusive-ORing them, U = S⊕T, as

that resulting from exclusive-ORing the corresponding characters in the two strings.

 123

(a) A source program with four invisible ASCII control codes inserted in the comment
“test a file.”

(b) The program seen in the window of the text editor UltraEdit with the four ASCII

control codes visible between the letters “s” and “t” of the word “test” in the
comment.

Figure 7.1 Illustration of invisible ASCII control codes in a comment of a source
program.

Algorithm 7.1 Program sharing and authentication.

Input: (1) a secret program PBs B of length λ BsB; (2) N pre-selected camouflage programs

PB1 B, PB2 B, ..., PBN B of lengths λ B1B, λ B2 B, ..., λ BN B, respectively; and (3) a secret key which

 124

is a random binary number Y with length λBY B (in the unit of bit).

Output: N stego-programs, PB1 B', PB2 B', ..., PBN B', in each of which a share and an

authentication signal are hidden.

Steps:

Stage 1. Creating shares from the secret program.

1. Create N + 1 character strings, all of the length λ Bs B of PBs B, from the secret program

and the camouflage programs in the following way.

1.1 Scan the characters (including letters, spaces, and ASCII codes) in the secret

program PBs B line by line, and concatenate them into a character string SBs B.

1.2 Do the same to each camouflage program PBkB, k = 1, 2, ..., N, to create a

character string SBkB of length λ Bs B (not λBkB) either by discarding the extra characters

in PBkB if λ BkB > λBs B or by repeating the characters of PBkB at the end of SBkB if λ BkB < λBs B,

when λ BkB ≠ λ Bs B.

2. Compute the new string E = SBs B⊕SB1 B⊕SB2 B⊕...⊕SBN B.

3. Divide E into N segments EB1 B, EB2B, ..., EBN B as shares.

Stage 2. Generating authentication signals from the contents of the shares and

the camouflage programs.

4. Generate an authentication signal ABkB for each camouflage program PBkB, k = 1, 2, ...,

N, using the data of SBkB and EBkB as follows.

4.1 Regarding SBkB as a sequence of 8-bit integers with each character in SBkB

composed of 8 bits, compute the sum of the integers, take the modulo-Y value

of the sum as ABSkB

, transform ABSkB

 into a binary number, and adjust its length to

be λ BY B, the length of the key Y, by padding leading 0’s if necessary.

4.2 Do the same to EBkB to obtain a binary number ABEkB

 with length λ BY B, too.

4.3 Concatenate ABSkB

 and ABEkB

 to form a new binary number ABkB with length 2λ BY B as

the authentication signal of PBkB.

 125

Stage 3. Encoding and hiding the share data and authentication signals.

5. For each camouflage program PBkB, k = 1, 2, ..., N, perform the following tasks.

5.1 Concatenate the share EBkB and the authentication signal ABkB as a binary string FBkB.

5.2 Encode every bit pair of FBkB into an invisible ASCII control code according to

the invisible coding table (Table 7. 2), resulting in a code string FBkB'.

5.3 Count the number m of characters in all the comments of PBkB.

5.4 Divide FBkB' evenly into m segments, and hide them in order into PBkB, with each

segment hidden to the right of a character in the comments of PBkB.

6. Take the final camouflage programs PB1 B', PB2B', ..., PBN B' as the output stego-programs.

In Step 3, we assume that the number of characters in the secret program is a

multiple of N, the number of participants, for simplicity of algorithm description; if

not, it can be made so by appending a sufficient number of blank spaces at the end of

the original secret program. In Steps 4.1 and 4.2, the purpose we compute the signals

ABSkB

 and ABEkB

 from the contents of the camouflage program PBkB and the share EBk B,

respectively, for use in generating the authentication signal ABkB is to prevent any

participant from intentionally or accidentally changing the contents of the original

camouflage program or the hidden share; illegal tampering with them will be found

out in the process of secret program recovery described in the next section. It is also

noted that each stego-program yielded by the algorithm still can be compiled and

executed to perform the function of the original camouflage program.

7.3 Secret Program Recovery Scheme

A sketch of the proposed process for recovering the secret source program is

described as follows, for which it is assumed that the stego-program brought to the

recovery activity by participant k is denoted as PBkB'. Also, the original key with value Y

 126

used in Algorithm 7.1 is provided.

(1) Extracting hidden shares and authentication signals --- Scan the comments of

each stego-program PBkB' to collect the invisible ASCII control codes hidden in

them and concatenate the codes as a character string; decode the string into a

binary one by the invisible character coding table (Table 7. 2); and divide the

string into two parts, the share data EBkB and the authentication signal ABkB. Also,

remove the hidden codes from PBkB' to get the original camouflage program PBkB.

(2) Authenticating the shares and the camouflage programs --- Use the authentication

signal ABkB as well as the key Y to check the correctness of the contents of the

extracted share data EBkB and the camouflage program PBkB by decomposing ABkB into

two signals and matching them with the modulo-Y values of the binary values of

PBkB and EBkB, respectively. Issue warning messages if either or both authentications

fail.

(3) Recovering the secret program --- Apply exclusive-OR operations to the extracted

share data EB1 B through EBN B and the camouflage programs PB1 B through PBN B to

reconstruct the secret program PBs B.

The secret program recovery process is described as a detailed algorithm in the

following.

Algorithm 7.2 Authentication of the stego-programs and recovery of the secret

program.

Input: N stego-programs PB1 B', PB2 B', ..., PBN B' provided by the N participants and the secret

key Y with length 　BY B used in secret program sharing (Algorithm 7.1).

Output: the secret program PBs B hidden in the N stego-programs if the shares and the

camouflage programs in the stego-programs are authenticated to be correct.

Steps:

 127

Stage I. extracting hidden shares and authentication signals.

1. For each stego-program PBkB', k = 1, 2, ..., N, perform the following tasks to get the

contents of the camouflage programs and the authentication signals.

1.1 Scan the comments in PBkB' line by line, and collect the invisible ASCII codes

located to the right of the comment characters as a character string FBkB'.

1.2 Remove all the collected characters of FBkB' from PBkB', resulting in a program P Bk B

with length 　 BkB, which presumably is the original camouflage program.

1.3 Decode the characters in FBkB' using the invisible character coding table (Table 7.

2) into a sequence of bit pairs, denoted as FBkB.

1.4 Regarding FBkB as a binary string, divide it into two segments EBkB and ABkB with the

length of the latter being fixed to be 2λBY B, which presumably are the hidden

share and the authentication signal, respectively.

1.5 Divide ABkB into two equal-lengthed binary numbers ABSkB

 and ABEkB

.

Stage II. Authenticating share data and camouflage programs.

2. Concatenate all EBkB, k =1, 2, ..., N, in order, resulting in a string E with length λ BE B

which presumably equals λ BsB, the length of the secret program to be recovered.

3. For each k = 1, 2, ..., N, perform the following authentication operations.

3.1 Create a character string SBkB of length λ BEB from the characters in PBkB either by

discarding extra characters in PBkB if λ BkB > λBEB or by repeating the characters of

PBkB at the end of SBkB if λ BkB < λ BEB, when λ BkB ≠ λ BEB.

3.2 Regarding SBkB as a sequence of 8-bit integers with each character in SBkB

composed of 8 bits, compute the sum of the integers, take the modulo-Y

value of the sum as ABSkB

', transform ABSkB

' into a binary number, and adjust its

length to be λ BY B, the length of the key Y, by padding leading 0’s if necessary.

3.3 Do the same to EBkB, resulting in a binary number ABEkB

'.

3.4 Compare ABSkB

' with the previously extracted ABSkB

; if mismatching, issue the

 128

message “the camouflage program is not genuine,” and stop the algorithm.

3.5 Compare ABEkB

' with the previously extracted ABEkB

; if mismatching, issue the

message “the share data have been changed,” and stop the algorithm.

Stage III. Recovering the secret program.

4. Compute SBs B = E⊕SB1B⊕SB2B⊕...⊕SBN B, and regard it as a character string.

5. Use the ASCII codes 0D and 0A (“carriage return” and “line feed”) in SBs B as

separators, break SBs B into program lines to reconstruct the original secret program

PBs B as output.

Note that in Step 4 above, we conduct the exclusive-OR operations of

E⊕SB1B⊕SB2 B⊕...⊕SBN B. This will indeed result in the desired SBs B because E was computed as

E = SBs B⊕SB1 B⊕SB2 B⊕...⊕SBN B in Step 2 of Algorithm 7.1, and so

E⊕SB1B⊕SB2 B⊕...⊕SBN B = (SBs B⊕SB1 B⊕SB2 B⊕...⊕SBN B)⊕SB1 B⊕SB2 B⊕...⊕SBN B

= SBs B⊕(SB1 B⊕SB1 B)⊕...⊕(SBN B⊕SBN B)

= SBs B⊕0⊕0⊕...⊕0 = SBs B

by the commutative and associative laws of the exclusive-OR operation and the facts

that X⊕X = 0 and X⊕0 = X for any bit X, where the bold character 0 is used to

represent 8 consecutive bits of zero, i.e., 0 = 00000000.

7.4 Discussions on Security Protection

In the previous discussions, we assume that the proposed algorithms of secret

sharing and recovery (Algorithms 7.1 and 7.2) are known to the public, and that the

key Y is held by a supervisor other than any of the N participants. The key is provided

by the supervisor as an input to the secret program sharing and recovery processes

described by Algorithms 7.1 and 7.2; it is not available to any participant. Under these

assumptions and by Algorithm 7.2 above, if any participant changes the content of the

 129

camouflage program or that of the share contained in the stego-program which he/she

holds before the secret program recovery process, such illegal tampering will be

found out and warnings issued during the recovery process.

However, there still exists in the two algorithms another kind of weakness in

security protection of the secret program. That is, the secret program may be

recovered illegally if all the stego-programs are stolen by a person who knows the

algorithms, because then he/she may run Algorithm 7.2 to extract the secret program

without performing Step 3, as can be figured out!

One way to remove this weakness is to use the secret key to randomize the

result of E = SBs B⊕SB1B⊕SB2B⊕...⊕SBN B computed in Step 2 in Algorithm 7.1 before E is

divided into shares in the next step. We implement this by letting the secret key Y join

the exclusive-OR operation of Step 2 after expanding Y repeatedly to have a length

equal to that of the secret program SBs B. That is, in Step 2 of Algorithm 7.1 we repeat the

key Y’s and concatenate them until the length of the expanded key Y' in the unit of

character (8 bits for a character) is equal to λBs B, the length of SBs B, and then compute E

instead as E = SBs B⊕SB1B⊕SB2B⊕...⊕SBN B⊕Y'. Correspondingly, in Step 4 of Algorithm 7.2 we

expand Y similarly to get Y', and then compute SBs B instead as SBs B = E⊕SB1 B⊕SB2 B⊕...⊕SBN B⊕Y'.

The properties of the exclusive-OR operation assure that the SBs B so computed is the

desired secret program in its string form. In this way, without the key Y, SBs B obviously

cannot be recovered, and so the previously-mentioned weakness is removed.

7.5 Experimental Results

In one of our experiments, we applied the proposed schemes described

previously to share a secret program among three participants. The main part of the

secret program seen in the window of the Microsoft VCP

++
P editor is shown in Figure

7.2(a), which has the function of generating a secret key from an input seed. And part

 130

of one of the three camouflage programs is shown in Figure 7.2(b). After hiding the

shares and the authentication signals in the comments of each camouflage programs,

the stego-program resulting from Figure 7.2(b) appears to be the upper part of Figure

7.2(c) which is not different from that of Figure 7.2(b). The real content of the

stego-program seen in the window of the UltraEdit 32 editor is shown in the lower

part of Figure 7.2(c) which includes the ASCII codes representing the program on the

left and the appearance of the codes as characters on the right. The recovered secret

program is shown in Figure 7.2(d), which is identical to that shown in Figure 7.2(a).

We also tested the case of recovery with one of the stego-images (the second one)

being damaged, as shown in Figure 7.3(a). The proposed scheme issued a warning

message, as shown in Figure 7.3(b).

7.6 Concluding Remarks

For the purpose of protecting software programs, new techniques for sharing

secret source programs and authentication of resulting stego-programs using four

special ASCII control codes invisible in the window of the Microsoft VCP

++
P editor

have been proposed. The proposed sharing scheme divides the result of

exclusive-ORing the contents of the secret program and a group of camouflage

programs into shares, each of which is then encoded into a sequence of invisible

ASCII control codes before being embedded into the comments of the corresponding

camouflage program. The resulting stego-programs are kept by the participants of the

sharing process. The original function of each camouflage program is not destroyed in

the corresponding stego-program. The sharing of the secret program and the

invisibility of the special ASCII codes as share data provides two-fold security

protection of the secret program.

 131

(a) Main part of the secret source program seen in the window of the Microsoft VCP

++
P

editor.

(b) Part of one camouflage program seen in the window of Microsoft Visual CP

++
P

editor.

Figure 7.2 Experimental results of sharing a secret program.

 132

(c) The stego-program resulting from (b) seen in the window of Microsoft Visual CP

++
P

editor (upper part) and UltraEditor 32 editor (lower part).

Figure 7.2 Experimental results of sharing a secret program (continued).

 133

(d) Recovered secret program seen in the window of Microsoft Visual CP

++
P editor.

Figure 7.2 Experimental results of sharing a secret program (continued).

In the secret program recovery process, the reversibility property of the

exclusive-OR operation is adopted to recover the secret program using the share data

extracted from the stego-programs. To enhance security of keeping the camouflage

programs, a secret random key is adopted to verify, during the recovery process,

possible incidental or intentional tampering with the hidden share and the camouflage

program content in each stego-program. The key is also utilized to prevent

unauthorized recovery of the secret program by illegal collection of all the

stego-programs and unauthorized execution of part of the proposed algorithms.

Experimental results have shown the feasibility of the proposed method. Future

research may be directed to applying the invisible ASCII control codes to other

applications, such as watermarking of software programs for copyright protection,

secret hiding in software programs for covert communication, authentication of

software program correctness, and so on.

 134

(a) Destructed stego-program of Figure 7.2(b) seen in the window of Microsoft Visual
CP

++
P editor (the changed characters are highlighted).

(b) A message showing the content of the original camouflage program has been
changed.

Figure 7.3 An experimental result of authenticating a destructed stego-program.

 135

Chapter 8
Covert Communication with Authentication

via Software Programs Using Invisible

ASCII Codes

8.1 Idea of Proposed Method

ASCII codes, expressed as hexadecimal numbers, were designed to represent

8-bit characters for information interchange. It is found in this study that some ASCII

codes, when embedded in certain locations in CP

++
P programs, become invisible in the

source code editors of Visual C++ and C++ Builder under certain Windows OS

environments. This phenomenon may be utilized for data hiding.

In Chapter 7, we have proposed a method for security protection of software

programs by information sharing and authentication techniques using some invisible

ASCII control codes. The principle of data hiding in source programs is still suitable

for covert communication here. But more invisible codes have been found in this

study, which are categorized into two types, one appearing as nothing like being

non-existing, and the other as spaces just like the ASCII space code 20. We call the

former null code and the latter spacing code. Inserting invisible codes into a program

do not change its function.

Such invisibility was found in fours environments formed by Microsoft Visual

Studio (MVS) .NET 2003 and Borland CP

++
P Builder (BCB), version 6, in Windows XP

Service Pack 2 and its Chinese version, which will be called the English and Chinese

OS, respectively, subsequently. The details are summarized in Table 8.1.

In type-1 environment with the MVS in the English OS, four null codes, 1C, 1D,

 136

1E, 1F, were found, which are invisible when inserted between two characters in a

comment in a program. One spacing code, A0, has been found, which appears as a

space when inserted between two words in a comment. Also found as a spacing code

is the tab-control code 09, which in default appears as four spaces when inserted

before the end of a program line, i.e., before the code pair, 0D0A, for carriage return

and line feed. The codes, A0 and 09, will be called between-word and line-end spacing

codes, respectively.

For the other three environment types, invisible codes also exist and are listed in

Table 8.1 except that type-2 environment has no null code. Also, 09 appears to be

eight spaces in BCB instead of four as in MVS.

Table 8.1. Invisible codes under various environments.

Environment Null codes
Between-word

spacing codes

Line-end

spacing codes

Type 1: MVS under
English OS

1C-1F A0 09

Type 2: BCB under
English OS

None A0 09

Type 3: MVS under
Chinese OS

1C-1F 01-08, 0B-0F, 80 09, 0B, 0C

Type 4: BCB under
Chinese OS

1C-1F, 80 01-08, 0B-19, 1B 09, 0B, 0C

In the remainder of this chapter, the principle of data hiding for use in covert

communication is introduced in Section 8.2. The secret hiding, recovery and

authentication processes are described in Section 8.3. The experimental results are

shown in Section 8.4. Finally, some concluding remarks are given in Section 8.5.

 137

8.2 Data Hiding Using Invisible Codes

We conduct data hiding using invisible codes in three ways as follows.

1. Alternative space coding

Whenever a space represented by 20 appears between two words in a comment,

it may be replaced by a between-word spacing code, like A0 for type-1 environment,

without causing visual difference in a source code editor. When there are 2P

n
P−1

between-word spacing codes CB1 B, ..., CB2n−1 B, by regarding 20 as CB0 B we may embed n bits

bB1 B, bB2B, ..., bBn B as follows:

if bB1 BbB2B....bBn B = m, replace 20 by CBmB

which we call alternative space coding.

For the first two environments in Table 8.1, 1-bit alternative space coding is

applicable. And for the latter two, there are 14 and 23 spacing codes, respectively and

so 3-bit and 4-bit alternative space coding are applicable, respectively.

2. Line-end space coding

We may place multiple line-end spacing codes before each program line end

without causing visual difference in a source code editor because such codes appear

just like background spaces in the window of the editor. Since the code 20 may be

used as well to create spaces, when there are 2P

n
P−1 line-end spacing codes CB1B, ..., CB2n−1 B,

by regarding 20 as CB0 B we may embed n bits bB1 B, bB2B, ..., bBn B as follows:

if bB0 BbB1B...bBn B = m, embed CBmB before the line end

which we will call line-end space coding.

For the first two environments, there is only one line-end spacing code 09, so

1-bit line-end coding is applicable. For the latter two, since there are three such codes

 138

09, 0B, and 0C, 2-bit coding can be implemented.

Line-end space coding may be repeated unlimited times before the each line end

to increase the data hiding rate. But to avoid creating long lines which reduce the

steganographic effect, we require that each processed program line should not appear

to be longer than the longest original program line.

3. Null space coding

Except for type-2 environment, there are four null codes, 1C, 1D, 1E, 1F. Let

them be represented by CB0 B through CB3 B, respectively. We can embed a bit pair bB0 BbB1B as

follows:

if bB0 BbB1B = m, insert CBmB between two characters in a comment

which we call null space coding

Null space coding may be applied repetitively unlimited times as well. In practice,

we embed message bits evenly into all between-character spaces among the comments

so that the times will be limited.

8.3 Secret Hiding, Recovery and Authentication

The proposed data hiding process essentially is to apply alternative, line-end, and

null space coding in order. Since the three schemes are applied to distinct locations in

a program, the data may be recovered without ambiguity. As an example, we describe

in the following an algorithm for type-1 environment. To facilitate data recovery, we

prefix to the beginning of the input binary string of the message a binary number

specifying the length of the input, resulting in an extended bit string S.

1. At each between-word space coded by 20, remove the leading bit b from S, and

replace 20 by A0 if b =1.

2. Find the maximum LBmax B of all program line lengths.

 139

3. For each program line, repeat the operations of removing the leading bit b from S

and inserting before the line end the code 0D0A if b = 1; or 20 if b = 0, until the

length of the line, as it appears in the source code editor, reaches LBmax B.

4. Count the number M of all between-character positions in the comments, as well

as the number L of the remaining bits in S; compute the ceiling value ⎡L/M⎤; add 1

to it to make it even if it is not; and denote the final value as q.

5. For each between-character position in the comments, take q leading bits from S,

and for every two bits bB0 BbB1B of them, insert CBmB into the position if bB0 BbB1 B = m, where

CBmB is one of CB0 B through CB3 B representing 1C, 1D, 1E, and 1F, respectively.

The proposed data recovery process, after extracting from the input string the

leading bits which specify the length of the original message, performs essentially the

reverse versions of the three coding schemes involved in the data hiding process. The

details are omitted due to the page limit.

In the proposed authentication scheme, we use a 16-bit key K and the input

message string to generate an authentication signal A which is then embedded in the

stego-program as well using null space coding. The signal is computed as the

modulo-K value of the sum of the key value and the 16 bits of every two characters in

the input message string. Then, in the data recovery process, the embedded

authentication signal A is extracted to match with an authentication signal A'

computed similarly from the extracted message content and the key. If the embedded

message content has not been tampered with, then A and A' will match. If not, then the

message must have been modified. In such a way, even when the data hiding

algorithm is known to the public as is usually assumed, without the secret key it is

impossible to pass such an authentication process with a modified stego-program.

 140

8.4 Experimental Results

One of the experiments we conducted for type-1 environment is reported here. A

message “This is a new covert communication method” is embedded into a cover

program, part of which is shown in Figure 8.1(a). The binary form of the message is

obtained from the ASCII characters representing the message. It is U00000001U

U01100000U U01010100U U01101000U... in which the first 16 bits specify the length of the

message string, and the remaining ones represents T, h, and so on. And the encoding

result of it is 20 20 20 20 20 20 20 A0 20 A0 A0 20 20 20 20 20 ... The stego-program

seen in the source code editor is shown in Figure 8.1(b), which looks no difference

from Figure 8.1(a). And the real content of the program seen in the UltraEdit editor is

shown in Figure 8.1(c), in which the hidden invisible codes can be seen with those for

the first 16 bits being enclosed by rectangles. The recovered message is shown in

Figure 8.1(d). As a demonstration of authentication, we show in Figure 8.2(a) a

modified version of the stego-program of Figure 8.1(b) in the UltraEdit editor, in

which the codes fro the 8th and 9th bits of the message have been modified. The

authentication result is shown in Figure 8.2(b) in which a warning message issued by

the data recovery process is seen.

8.5 Concluding Remarks

A new method to covert communication via CP

++
P source programs using invisible

ASCII codes has proposed. A secret message is encoded by some special ASCII codes,

which are embedded in a cover program. Such codes are invisible in the source code

editors of Visual C++ and C++ Builder under Windows environments, creating a good

steganographic effect without changing the original function of the cover program.

To enhance security, tamper-proof authentication of the stego-program content

using a secret key has also been proposed. Without the key, false messages cannot

 141

pass the authentication process. Experimental results show the feasibility of the

proposed method. Future works may be directed to applying the proposed data hiding

technique to other applications.

(a) Cover program seen in source code editor.

(b) Stego-program seen in source code editor.

Figure 8.1 An experimental result.

 142

(c) Stego-program seen in UltraEdit.

(d) Recovered message.

Figure 8.1 An experimental result (continued).

 143

(a) A modified stego-program of Figure 8. 1(b).

(b) A warning message issued by authentication process.

Figure 8. 2 An example of authentication results.

 144

Chapter 9

Covert Communication via PDF

Files and PDF File Authentication by

Invisible Codes

9.1 Idea of Proposed Methods
Portable Document Format (PDF) files, created by Adobe Systems for document

exchange [63], are very popular for document exchange nowadays. The format was

created by Adobe Systems and is a type of fixed layout for representing documents in

a manner independent of the application software, hardware, and operating system.

Each PDF file contains a complete description of a 2-D document which includes

texts, fonts, images, and vector graphics. Many PDF readers and writers are available

for reading and creating PDF files.

Additionally, ASCII codes were designed to represent 8-bit characters for

information interchange [65]. There are totally 256 of them among which 95 ones are

printable, numbered 32 to 7E (hexadecimal). These 95 codes together with the control

code 0A (for line feeding) are used for representing secret messages in this study.

They are listed in Table 9.1. The width of a text character represented by an ASCII

code as seen in a PDF reader may be specified by a value in an array called “widths”

in the type-1 font dictionary in a PDF file [63].

It is found in this study that the ASCII code A0 (for non-breaking space), when

embedded in a string of text characters, become invisible in the PDF reader, Adobe

Reader 8.1.2, under the Windows OS environment. This phenomenon may be utilized

for data hiding, as done in this study.

 145

On the other hand, for security it is necessary to verify the authenticity of a file

received from another party or kept for a long time in a certain environment, before

the file is used for various purposes. This is the authentication problem of the file,

which should be solved for protection of the PDF file against unintentional changes

and malicious manipulations.

As mentioned previously, we have proposed a method using a data hiding

technique for covert communication via PDF files and a method for authentication of

PDF files by the invisible codes mentioned above. The principle for the former

method will be described in Section 9.2. The detail of it will be described in Section

9.3, and the detail of the latter method will be described in Section 9.4. Some

concluding remarks are given in Section 9.5.

Table 9.1 ASCII codes selected for message representations in this study.
Index Chara-

cter
Hexadeci-
mal code Index Chara-

cter
Hexadeci-
mal code Index Chara-

cter
Hexadeci-
mal code Index Chara-

cter
Hexadeci-
mal code

1 LF 0A 25 7 37 49 O 4F 73 g 67
2 20 26 8 38 50 P 50 74 h 68
3 ! 21 27 9 39 51 Q 51 75 i 69
4 " 22 28 : 3A 52 R 52 76 j 6ª
5 # 23 29 ; 3B 53 S 53 77 k 6B
6 $ 24 30 < 3C 54 T 54 78 l 6C
7 % 25 31 = 3D 55 U 55 79 m 6D
8 & 26 32 > 3E 56 V 56 80 n 6E
9 ' 27 33 ? 3F 57 W 57 81 o 6F

10 (28 34 @ 40 58 X 58 82 p 70
11) 29 35 A 41 59 Y 59 83 q 71
12 * 2A 36 B 42 60 Z 5ª 84 r 72
13 + 2B 37 C 43 61 [5B 85 s 73
14 , 2C 38 D 44 62 \ 5C 86 t 74
15 - 2D 39 E 45 63] 5D 87 u 75
16 . 2E 40 F 46 64 ^ 5E 88 v 76
17 / 2F 41 G 47 65 _ 5F 89 w 77
18 0 30 42 H 48 66 ` 60 90 x 78
19 1 31 43 I 49 67 a 61 91 y 79
20 2 32 44 J 4A 68 b 62 92 z 7A
21 3 33 45 K 4B 69 c 63 93 { 7B
22 4 34 46 L 4C 70 d 64 94 | 7C
23 5 35 47 M 4D 71 e 65 95 } 7D
24 6 36 48 N 4E 72 f 66 96 ~ 7E

 146

9.2 Principle of Encoding Message Data

Two types of invisibility may be created from A0. One type is created by

specifying the width of A0 appearing in the PDF reader to be the same as that of the

original white space represented by the ASCII code 20. Then, after being inserted

between two words in the text of a PDF file, A0 appears to be exactly the same as a

white space exhibited by the code 20. Figure 9.1 illustrates this phenomenon. So A0

and 20 may be used alternatively as between-word spaces so that we may encode a bit

b of the secret message and embed it at a between-word location according to the

following binary coding technique:

if b = 1, then replace 20 at the between-word location by A0; else, make no change

 (1)

which we will call alternative space coding.

Figure 9.1 Display of all ASCII codes in Adobe Reader 8.1.2, in which only 20 and A0
appear to be white spaces (the first spaces in the 3rd and the 11th lines)

The other type of invisibility is created by setting the width of A0 to be zero in

the PDF file. Then after being inserted between two characters, A0 appears to be

 147

nothing just like nonexistent in a PDF reader, as found in this study. Figure 9.2

illustrates this phenomenon. This invisibility is still true even when multiple A0’s are

all embedded at a single between-character location. Figure 9.3 illustrates this

phenomenon. We say that A0 is used as a null code in this way, and contrastively, as a

spacing code in alternative space coding described by (1) above.

Figure 9.2 Display of all ASCII codes in the window of Adobe Reader 8.1.2, in which
the width of A0 was set to be zero so that A0 becomes nonexistent (i.e., there is
no space before the first comma in the 11th row, as compared with Figure 9.1).

Note that the width of the original space code 20 cannot be changed to be zero

because it is used as a normal space between every two words in a PDF file. So, A0,

when used as a null code, has no symmetrical code for use to implement binary

coding like (1). But we may still hide a character C of the message by unitary coding

at a between-character location in the following way:

if the index of C = m, embed m consecutive A0’s at the between-character location

 (2)

which will be called null space coding.

 148

Note that A0 can only be used in one of the two ways of coding and not in both

in each page of a PDF file because its width can only be specified once for each PDF

page.

(a) Appearance in Adobe Reader 8.1.2 of a sentence “I am a boy” with one, two, and three
A0’s inserted at locations between the characters a and m, b and o, and o and y.

(b) Appearances of the A0’s in the window of UltraEdit (in the highlighted portion).

Figure 9.3 Invisibility of multiple A0’s at between-character locations.

Alternative space coding has the advantage of incurring no increase of the PDF

file size because it just replaces the space exhibited by 20 by another exhibited by A0.

 149

However, if the between-word locations in a PDF file are few, then only a small

number of bits may be embedded. On the contrary, since theoretically an unlimited

number of A0’s as null codes may be inserted at a between-character location, and

since there are much more between-character locations than between-word locations,

encoding efficiency of null space coding is much higher. But an obvious disadvantage

is that the resulting PDF file size will be increased.

Therefore, three ways of coding for use in different application conditions,

namely, pure alternative space coding, pure null space coding, and a mixture of them.

In the third way, we may use alternative space coding first to embed as many bits in

the secret message as possible, and then apply null space coding to embed the

remaining portion of the message (in unit of character) using the last pages of the PDF

files.

9.3 Message Hiding and Recovery for Covert Communication and

Experimental Results

Normal text messages may be represented by the 96 characters with their

corresponding ASCII codes listed in Table 9.1. For alternative space coding, each

secret message should be transformed first into a bit string. For this, we concatenate

the binary ASCII codes (each consisting of 8 bits) of the characters in the message as

the desired string. The bit string then is embedded, bit by bit sequentially, into the

between-word locations in the cover PDF file according to Rule (1) above.

To implement null space coding, the secret message is regarded as a string of

characters represented by the 96 ASCII codes listed in Table 9.1. However, to reduce

the total number of inserted A0’s and so the resulting stego-file size, instead of

applying Rule (2) above directly in which the number of A0’s used to encode a

character C is the index value m of C, we use less A0’s to encode characters with

 150

higher occurrence frequencies in the secret message, following the principle of

Huffman coding. That is, we assign a single A0 to encode the character with the

largest frequency, two A0’s to encode the character with the second largest frequency,

and so on. And those characters among the 96 ones which do not appear in the secret

message are encoded by zero A0 (because these characters will not be processed in

the message decoding procedure). The encoding result is summarized as a table,

called the null space coding table, with 96 entries filled with the corresponding

numbers of A0’s so obtained. For example, given the secret message “This is a covert

communication method,” after counting the frequencies of the 16 distinct characters

in it, we have the corresponding null space coding table as shown in Table 9.2, in

which all 0’s in the entries have been removed to make the table more readable.

Every message will have a distinct null space coding table. For the purpose of

message decoding using this table, it should be embedded as well in the cover PDF

file as part of the hidden data. In practice, we do not embed all the content of the table

but the numbers of A0’s only into the first 96 consecutive between-character locations

in the text of the cover PDF.

Finally, it is mentioned that the data recovery process is essentially a reverse of

the data hiding process, with retrieval of the null space coding table conducted first,

followed by extraction and decoding of the hidden message.

We report one of the experiments we conducted for null space coding here. The

input secret message is “This is a covert communication method” to which the

corresponding null space coding table has been shown in Table 9.2. After the table

followed by the message was embedded into the cover PDF file shown in Figure

9.4(a), the initial part of the stego-file appearing in the UltraEdit window is shown in

Figure 9.4(b), from which we can see the repeating A0’s encoding each of the 96

commonly-used characters.

 151

Table 9.2 Null space coding table for message “This is a covert communication
method.”

Index
Chara-

cter

#A0’s

embe-

dded

Frequ-

ency
Index

Chara-

cter

#A0’s

embe-

dded

Frequ-

ency
Index

Chara-

cter

#A0’s

embe-

dded

Frequ-

ency
Index

Chara-

cter

#A0’s

embe-

dded

Frequ

ency

1 LF 12 1 25 7 49 O 73 g

2 1 5 26 8 50 P 74 h 9 2

3 ! 27 9 51 Q 75 i 2 4

4 " 28 : 52 R 76 j

5 # 29 ; 53 S 77 k

6 $ 30 < 54 T 13 1 78 l

7 % 31 = 55 U 79 m 5 3

8 & 32 > 56 V 80 n 10 2

9 ' 33 ? 57 W 81 o 3 4

10 (34 @ 58 X 82 p

11) 35 A 59 Y 83 q

12 * 36 B 60 Z 84 r 15 1

13 + 37 C 61 [85 s 11 2

14 , 38 D 62 \ 86 t 6 3

15 - 39 E 63] 87 u 16 1

16 . 40 F 64 ^ 88 v 17 1

17 / 41 G 65 _ 89 w 77

18 0 42 H 66 ` 90 x 78

19 1 43 I 67 a 7 2 91 y 79

20 2 44 J 68 b 92 z 7A

21 3 45 K 69 c 4 3 93 { 7B

22 4 46 L 70 d 14 1 94 | 7C

23 5 47 M 71 e 8 2 95 } 7D

24 6 48 N 72 f 96 ~ 7E

In our experiments, to generate a stego-file, the process goes in the following

way. First, we embed the text of the secret message into the PDF text in the “.txt.”

format. We then tranform the result into a PDF file by a special PDF writer, which

was implemented in this study, as the desired stego-file.

In particular, we can see in the highlight portion the 12 A0’s representing the

 152

ASCII code 0A (line feed), the single A0 representing the space code 20, the 13 A0’s

representing the character T (the first character in the secret message), and so on. The

stego-file appears as Figure 9.4(c) which is identical to Figure 9.4(a). The recovered

message is shown in Figure 9.4(d).

(a) Cover file seen in Adobe Reader 8.1.2 window.

(b) Stego-file seen in UltraEdit window.

Figure 9.4 An experimental result of null space coding.

 153

(c) Stego-file seen in Adobe Reader 8.1.2 window.

(d) Extracted message.

Figure 9.4 An experimental result of null space coding (continued).

9.4 PDF Authentication Process and Experimental Results

As mentioned previously, the ASCII code A0, when embedded between two

characters in PDF texts with its width set to zero (i.e., with no width), appears to be

nothing like nonexistent in the PDF reader, Adobe Reader 8.1.2, under the Windows

OS environment. This invisibility is still true when multiple A0’s are embedded at a

single between-character location. Embedding of such invisible codes in PDF files as

authentication signals will enhance the security of the signals. Note that A0 is not

used in common text contents.

The proposed PDF file authentication method generates an 8-bit number for each

word in the text of the PDF file to be protected, with the help of a secret key in order

 154

to enhance security of the generated value. The value for each word then is

transformed into a number of repeating A0’s as the desired authentication signal,

which is then embedded to the right of the word for use in future authentication.

Before describing the details of the proposed authentication signal generating

and embedding process, we define some notations. We know that 1-bit

exclusive-ORing of two bits a and b, a⊕b, results in 0 if a = b and 1 if a ≠ b. We

define 8-bit exclusive-OR operation on two ASCII codes A = aB1 BaB2 B...aB8 B and B =

bB1 BbB2B...bB8 B as A⊕B = cB1 BcB2 B...cB8B where each cBi B = aBi B⊕bBi B for i = 1, 2, ..., 8.

Let a word W in the text T of a PDF file F be expressed as a string of characters

represented by their corresponding 8-bit ASCII codes AB, BAB　B, ..., ABn B, that is, let W =

AB1 BAB2 B...ABnB. And let k be a secret key used as the seed for an 8-bit random number

generating function f. The proposed authentication signal generating and embedding

process is as follows.

1. Scan the text T in the input PDF file F, and for each word W = AB1 BAB2B...ABn B in T, use

the key k and the function f to generate in order a random number K.

2. Compute an 8-bit number S for W as S = AB1 B⊕AB2 B⊕...⊕ABnB⊕K.

3. Map S to an integer N which is the modulo-8 value of S, i.e., compute N = S mod

8.

4. Embed N repeating A0’s as the authentication signal for W to the right of W, i.e.,

embed them at the location between the character ABn B and the white space next to

ABn B.

5. Repeat the above steps until all words in T are processed.

For example, let the word being processed is W = “an” whose hexadecimal

ASCII codes are 61 and 6E, and binary codes are 01100001 and 01101110,

respectively. Suppose that the random number generated by f is K = 01010101. The

 155

8-bit value S then is [(01100001) ⊕ (01101110)] ⊕ (01010101) = (00001111) ⊕

(01010101) = 01011010, which is 90 in decimal form. And so N is 90 mod 8 = 2.

Consequently, we embed two A0’s to the right of W.

The detail of the authentication process with input PDF file F' is as follows,

where the key k and the random number generator f are the same as those used in the

authentication signal generation scheme. The purpose of the process is to check the

integrity of the text T' in F'.

1. Scan the text T' in the input file F'; and for each word W' = AB1 B'AB2 B'... ABmB' in T',

count the number N of A0’s embedded to the right of W', and use the key k and the

function f to generate in order a random number K.

2. Compute an 8-bit value S' for W' as S' = AB1 B' ⊕AB2 B' ⊕...⊕ABn B' ⊕K.

3. Map S' to an integer N' which is the modulo-8 value of S', i.e., compute N' = S'

mod 8.

4. Compare N' and N, and if N' ≠ N, regard W' as having been modified and mark it

by changing all its characters into squares.

5. Repeat the above process until all words in T' are processed.

Continuing the last example, suppose that the word “an” has been modified to be

simply “a” because of the noun after it has been changed. Then, W' = “a” has a single

binary code 01100001. Also, assume that no word in the file has been deleted so that

the random number K generated for it is the same as that used before, i.e., K =

01010101. So S' = 01100001⊕01010101 = 00110100 which is 52 in decimal form.

And thus N' = 52 mod 8 = 4. But we know from the last example that the number N of

embedded A0’s for the current word is N = 2 which is not equal to 4. So we can

decide that the word “a” is a result of tampering.

We take the modulo-8 value of the generated 8-bit number S or S' as the number

 156

of the invisible code A0 to be embedded. So, there are 8 possible cases, 0 through 7

A0’s being embedded. This means that the probability for an attacker to guess the

number of embedded A0’s correctly to create a fake word is 1/8. To increase the

security, we may, for example, take the modulo-12 value or even the modulo-16 value

instead. Then, the probability will be decreased to 1/12 or 1/16 at the expense of

inserting more A0’s for each word. If this is still not satisfiable to the application need,

one further enhancement is to compute the authentication signal using not just the

data of the current word and the generated random number, but also the computed

8-bit number for the previous word, so that the formula S = AB1 B⊕AB2B⊕...⊕ABn B⊕K used in

Step 2 of the authentication signal generating and embedding process described above

is changed to S = AB1 B⊕AB2 B⊕...⊕ABn B⊕K⊕S' with S' being the 8-bit number computed for

the previous word. In this way, even if the number of A0’s is guessed correctly for the

current word (with a probability of 1/8), that for each of all the subsequent words

must also be guessed, in contrast to the original case of independent guessing for each

single word. The probability for correct guessing for the current word and all the

subsequent ones will decrease exponentially because if there are k words after the

current one, this probability is (1/8) P

k+1
P = 1/8P

k+1
P.

We report a simple one of the experiments we have conducted. The text in a PDF

file to be protected includes three lines of words: “Name: Lee, I-Shi,” “Birthday: May

25, 1961,” and “Sex: male.” To have a complete authentication of all the characters in

the text, the punctuation next to a word is also considered as part of the word in the

authentication signal generation. So, totally there are nine words in the above three

text lines. The appearance of these lines in the window of Adobe Reader 8.1.2 is

shown in Figure 9.5(a). After the corresponding numbers of A0’s for the nine words

are computed and embedded to the right of the words, the resulting PDF file looks

like Figure 9.5(b) which is identical to Figure 9.5(a), meaning that the inserted A0’s

 157

are invisible indeed. The appearance of the resulting file in the UltraEdit window is

shown in Figure 9.5(c), in which we can see the embedded A0’s to the right of the

words. We then simulated the case that the text in the file was tampered with

intentionally, so that the last name “Lee” and the year “1961” were changed to be

“Lin” and “1951,” respectively. After the proposed authentication process was applied

to the modified PDF file, the resulting PDF file is shown in Figure 9.5(d) in which the

modified words have been marked as squares. Note that in the above results, for

simpler demonstration using the figures, we did not adopt random numbers in the

computations of the authentication signals.

(a) Appearance of three text lines of original PDF file in window of Adobe Reader 8.1.2.

(b) Appearance of resulting PDF file with authentication signals (A0’s) embedded.

Figure 9.5 An experimental result for authenticating a PDF file.

 158

(c) Appearance of resulting PDF file in window of UltraEdit (the A0’s can be seen).

(d) Appearances of authentication result with squares indicating detected changes.

Figure 9.5 An experimental result for authenticating a PDF file (continued).

9.5 Concluding Remarks

A new covert communication method via PDF files is proposed. A secret

message may be hidden steganographically into PDF files by alternative space coding

and null space coding using the special ASCII code A0 which is invisible between

words and between characters in the windows of common PDF readers if its width is

set to be the same as that of the space code 20 and to be zero, respectively.

Experimental results show the feasibility of the proposed method.

Also, a method for authenticating PDF files using a special ASCII code A0 has

been proposed. For each word in the text of a PDF file to be protected, an

authentication signal composed of repeating A0’s is generated from the 8-bit ASCII

 159

codes of the characters composing the word as well as a random number. The signal is

then embedded to the right of the word. These A0’s are invisible in the window of

common PDF readers, enhancing the security of the embedded authentication signals.

A corresponding authentication process to check the integrity of a processed PDF

file has also been proposed. Each modified word in the file will be detected. Without

the original secret key for use in generating the random numbers, malicious creation

of a fake file is nearly impossible. Experimental results show the feasibility of the

proposed authentication method.

Future researches may be directed to applying the proposed methods to other

applications like watermarking of PDF files for copyright protection, enhancing the

security of the proposed method, etc.

 160

Chapter 10

Secret Communication through Web Pages

and Automatic Authentication of Web Pages

Using Special Space Codes in HTML Files

10.1 Idea of Proposed Method

Due to high accessibility on the Internet, it is convenient to use the web page as a

communication channel by hiding secret messages in the HTML file of a cover web

page. A merit here is that the secret message cannot be destructed illegally unless the

website publishing the web page is intruded and the HTML file modified.

The proposed new secret communication method by embedding special space

codes in the HTML files of web pages is described here. These codes appear as white

spaces in the web page, and so may be used to encode secret message bits with

steganographic effects. The codes are the result of a thorough investigation of all

possible coding systems which can be applied in the HTML file. There are many of

such codes, and each of them may be used to encode at least three message bits,

increasing the data hiding capability and eliminating the weakness of certain methods

[37] of using more than two space codes to encode one bit and creating undesirable

double spacing at originally single-spaced between-word locations.

The proposed method carries out the communication work between two sites, a

sender and a receiver, through the Internet via web page publishing and downloading

in the following way.

1. At the sender site:

 161

1.1 Create a web page containing mainly a piece of text.

1.2 Hide the secret message to be transmitted in the HTML file of the page by the

proposed method.

1.3 Publish the web page on the Internet to make it accessible.

2. At the receiver site:

2.1 Browse the web page on the Internet.

2.2 Download its HTML codes by a code editor like UltraEdit or by a special

program (not directly by the web browser using the “save as new file”

command).

2.3 Extract the secret message hidden in the codes by the proposed method.

On the other hand, with rapid network technology developments, web pages

published on the Internet often suffer from attacks. It is desired to have an automatic

authentication scheme to check the fidelity and integrity of concerned web pages

periodically without invoking human visual inspection. Specifically, it is wished to

verify the text content of each web page more precisely at the word level. A new

method based on the data hiding method for this purpose is proposed in this study.

A new automatic authentication method for checking the integrity of web page

text contents is proposed. The method, aiming to check the authenticity of each single

word, is based on a data hiding technique which uses some special space codes as

authentication signals. Such codes, which are found in this study to be multiple and

appear identical to normal white spaces in web pages, are used to encode certain

binary mapping results from the word contents. These codes are then taken to replace

the between-word spaces in the HTML codes, resulting in good steganographic effects.

Security enhancement has also been considered, and related problems are solved by

the use of secret keys and a multiple word encoding scheme.

 162

In the sequel, in Section 10.2 we describe how secret messages are encoded. In

Section 10.3, we describe the detail of the proposed covert communication method

and some experimental result. In Section 10.4, we describe the proposed scheme to

generate authentication signals using the special space codes, followed by the

authentication signal embedding as well as authentication processes. The techniques

proposed for security enhancement are described in Section 10.5, followed by some

experimental results. Finally, some concluding remarks in Section 10.6.

10.2 Secret Message Coding Using Space Characters in

HTML

The HTML, Hypertext Markup Language, was created for describing the

structure of a web page, including its appearance and semantics. Many coding

systems are applicable in the HTML to specify characters used in the web pages. It is

found in this study that there exist many codes in the HTML, all of which appear to be

a white space in the window of the web page browser of the Internet Explore (IE).

These codes come from two distinct types of space characters, named (normal) space

and non-breaking space, and are specified in the following ways.

1. Direct character entry of the (normal) space ---

A white space will appear in a line of HTML if the space bar on the keyboard

is pushed during character typing, and the hexadecimal ASCII code 20 will be

inserted in the program codes of the HTML file.

2. Numeric character reference of the (normal) space ---

We can also represent a (normal) space character in the HTML using a

so-called numeric character reference, by the form &#xhhhh;, where hhhh =

0020 is the hexadecimal value representing the character's Unicode scalar value;

 163

or by the form &#dddd;, where dddd = 0032 is the decimal value equivalent to

the hexadecimal value. That is, we may represent the white space as or

 . It is found in this study that the code with the semicolon “;” missing

is displayed as a space as well in the IE browser, while the code without

the semicolon will not but as the code itself, a peculiar phenomenon! A

constraint to use is that the character following it should not be a digit

number; otherwise, it will become another code. We assume this constraint is

satisfied in the HTML text in which this code is embedded.

3. Numeric character reference of the non-breaking space ---

The non-breaking space with the hexadecimal ASCII code A0 is displayed in

a web page browser like IE as a white space, too. Therefore, we may similarly

represent it in the HTML using a numeric character reference, by one of the three

forms , , and (without a semicolon).

4. Character entity reference of the non-breaking space ---

The HTML accepts a third way of character specification, called character

entity reference, which is a short-length text name used to identify a character. For

the non-breaking space, it is . It is found that without the semicolon, the

code still appears to be a white space, so two codes are available for

representing the white space.

Totally, nine distinct codes may be used to specify a character which appears to

be a white space in the web page browser of the IE, as summarized in Table 10.1.

They are called space codes subsequently. An illustration of the appearances of all the

space codes is shown in Figure 10.1. The first eight space codes of the nine ones are

used to encode three message bits in this study as shown in the last table column,

although all nine of them may be used to encode a digit of a novenary number as well.

 164

Table 10.1 Character representations in HTML.

No. name Reference type Code
type

Code inserted in
HTML

Bits
encoded

1 (normal) space
direct character

entry
ASCII

typed space (with
20h inserted)

000

2 (normal) space
numeric character

reference
Unicode 001

3 (normal) space
numeric character

reference
Unicode 010

4 (normal) space
numeric character

reference
Unicode 011

5
non-breaking

space
numeric character

reference
Unicode 100

6
non-breaking

space
numeric character

reference
Unicode 101

7
non-breaking

space
numeric character

reference
Unicode 110

8
non-breaking

space
character entity

reference
HTML
name

 111

9
non-breaking

space
character entity

reference
HTML
name

 unused

(a) The space codes seen in the window of the IE.

Figure 10.1 Appearances of nine space codes as white spaces in the window of the IE.

 165

(b) The codes inserted at between-word locations seen in the window of the
FrontPage.

Figure 10.1 Appearances of nine space codes as white spaces in the window of the IE
(continued).

10.3 Message Hiding and Experimental Results

During message hiding, we regard a given message as a sequence of characters,

including letters, punctuations, white spaces, symbols, etc. Each character is

represented as an 8-bit ASCII code, resulting in a string of bits which we encode three

by three into the first eight space codes shown in Table 10.1. Each space code is then

embedded at a between-word location in the cover text in the HTML file, replacing

the original code 20h there, resulting in a stego-text. The embedded codes, after being

extracted during message recovery, can be decoded uniquely by table lookup using

Table 10.1.

To increase the security of the embedded message, we use a random number

generator to randomize the order of the characters in the message string before they

are encoded sequentially. A secret key is provided as the seed for the generator. The

key is used again in message recovery to re-arrange the order of the extracted

characters. Without the key, if the hidden characters cannot be properly re-ordered to

get the correct message.

The detailed algorithms for embedding a gven message is as follows.

 166

Algorithm 10.1 Embedding of a secret message.

Input: a secret message S in the form of a character string, a cover HTML text T, a

secret key K, and a random number generator f.

Output: a stego-HTML text T' with S embedded.

Steps:

1. Create a randomized version S' = CB1 B'CB2 B'...CBn B' of S = CB1 BCB2 B...CBn B in the following way,

where CBi B and CBi B' represent characters of S and S', respectively, and n is the number

of characters in S.

1.1 Generate n distinct random numbers kB1 B, kB2 B, ..., kBnB, within the range of 1

through n using the generator f with the secret key K as the seed.

1.2 For i = 1, 2, .., n, take CBi B' in S' to be CBkiB

 in S.

2. Convert the length n of S in the unit of character into a binary number and add

leading 0’s to it to form a 3m-bit binary string B, where m is a pre-selected integer

such that 3m is no smaller than the length of any possible message to be hidden.

3. Transform each character in S' into its 8-bit binary ASCII code and concatenate

them to form a binary string SB1B.

4. Concatenate B and SB1 B to form a binary string S''.

5. Embed S'' in T in the following way.

5.1 Append zero, one, or two 0’s to SB1 B to form another binary string SB2 B with its

length nB2 B being a multiple of 3.

5.2 Encode every three bits of SB2B into a space code D according to the last

column of Table 10.1.

5.3 Embed D in T by replacing the (normal) space code 20h at a between-word

location, starting from the top leftmost one in T in a raster scanning order.

6. Take the resulting HTML text T' as the output.

 167

In the above algorithm we assume that the text T is long enough to embed the

message S. Also, the length of the message is also embedded in the leading

between-word locations in T. This is necessary for the later work of message recovery

to extract a correct numbers of characters from the stego-text. The detailed algorithm

for extracting the embedded message is as follows.

Algorithm 10.2. Extraction of a secret message.

Input: a stego-HTML text T' with a message S embedded, and a secret key K and a

random number generator f as those used in Algorithm 10.1.

Output: the embedded message S.

Steps:

1. Extract the length n of the embedded message S in T' in the following way.

1.1 For each of the m leading between-word locations in T' where m is a

pre-selected integer mentioned in Algorithm 10.1, acquire the space code

embedded there and decode it into three bits according to the last column of

Table 10.1, resulting in a 3m-bit binary string B.

1.2 While ignoring the leading 0’s in B, convert it into an integer n which

presumably is the length of the embedded message S.

2. Compute the value nB1B = ⎡n×8/3⎤ which is the number of between-word locations

in T' where S is embedded.

3. For each of the nB1 B between-word locations after the m leading ones in T', acquire

the space code there and decode it into three bits according to the last column of

Table 10.1, resulting in 3nB1 B-bit binary string SB2B.

4. Take the leading n×8 bits of SB2 B to form a string S' and transform every 8 bits of S'

into an ASCII character.

5. Create a randomized version S = CB1 BCB2 B...CBn B of S' = CB1 B'CB2 B'...CBn B' in the following way,

 168

where CBi B and CBi B' represent characters of S and S', respectively, and n is the number

of characters in S'.

5.1 Generate n distinct random numbers kB1 B, kB2 B, ..., kBnB, within the range of 1

through n using the generator f with the same secret key K as the seed.

5.2 For i = 1, 2, .., n, take CBi B in S to be CBkiB

' in S', resulting in a string of characters

S = CB1 BCB2 B...CBn B as the desired output.

For security consideration, the length of secret data should be long enough, e. g.,

more than 256 characters, to reduce the probability for a hacker to guess the message

correctly. Otherwise, another way of security protection may be adopted, that is, to

conduct the reordering operation in Step 1 of Algorithm 10.1 and Step 5 of Algorithm

10.2 in unit of bits instead of in unit of characters. Since there are normally so many

bits, it is almost impossible to get a correct guess. If these measures of security

enhancement are taken, it can be figured out from the above algorithm that without a

correct key, the embedded message, even when the stego-text is intercepted, is almost

impossible to be recovered by a hacker.

In order to have a clear illustration of the proposed method and to see clearly the

embedded codes in web page and HTML editor windows, we report first a simple

example of the experiments we conducted without embedding the length of the

message and without using a secret key. Let the message to be embedded be “sky”

whose three characters “s,” “k,” and “y” have 8-bit ASCII codes 01110011, 01101011,

and 01111001, respectively. So the message in binary string form is 011 100 110 110

101 101 111 001 which includes eight 3-bit segments, and can be encoded into eight

space codes . We

embedded these codes at eight consecutive between-word locations in the following

HTML text:

 169

This is a secret communication method through HTML files.

Then the result is:

This is a new communication method through HTML&#

x20;files.

This stego-text, when observed in the web page browser of the IE, appears to be

identical to that of the cover text, as shown in Figure 10.2.

Another example of our experimental results is shown in Figure 10.3, in which

we show a cover text in the IE and the Frontpage windows in Figures 10.3(a) and

10.3(b), respectively; and a secret message in the Notepad window in Figure 10.3(c).

The length of the message is 96 characters which are embedded first into the cover

text as a 15-bit number. The stego-text appearing in the IE and the Frontpage

windows is shown in Figures 10.3(d) and 10.3(e), repsectively. From the identicalness

of Figures 10.3(a) and 10.3(d), the steganographic effect of the space codes is

confirmed.

(a) Cover text seen in the window of the IE.

Figure 10.2. Invisibility of space codes for the message “sky” in an HTML text.

 170

(b) Cover text seen in the window of the FrontPage editor.

(c) Stego-text seen in the window of the IE.

(d) Stego-text seen in the window of the FrontPage editor.

Figure 10.2. Invisibility of space codes for the message “sky” in an HTML text
(continued).

 171

(a) Cover text seen in the window of the IE.

(b) Cover text seen in the window of the FrontPage editor.

(c) A secret message seen in the Notepad window.

Figure 10.3. The embedded secret data.

 172

(d) Stego-text seen in the window of the IE.

(e) Stego-text seen in the window of the FrontPage editor.

Figure 10.3. The embedded secret data (cont’d).

10.4 Automatic Authentication of Web Page Text Contents

To accomplish the goal of authenticating automatically the text of a web page at

the word level, an authentication signal should be created for each word in the text,

and embedded in the HTML codes of the text for periodical verification by a program

implementing the authentication process. Warning should be issued if any word in the

text is authenticated to have been modified, deleted, or inserted. An authentication

 173

signal generation and embedding process utilizing the space codes discussed

previously as authentication signals is proposed as follows.

1. Map each word w in the HTML codes of the text of the web page to be protected by

a function h into a binary integer s, called the numerical authentication signal of w,

i.e., compute s = h(w).

2. Encode s by a space code c of the first eight ones listed in Table 10.1, called the

symbolic authentication signal of w.

3. Replace the original space code 20 located at the right-hand side of w by the code c.

Since each space code also appears to be a white space in a web page browser,

the resulting stego-HTML codes will appear in the browser to be a web page totally

identical to the original one, arousing no suspicion from the observer. On the other

hand, the proposed automatic authentication process is just a process of matching the

previously-embedded authentication signal s for each word w' with the one s'

computed from the current content of w' using the same mapping function h.

As a simple example, let the word w to be protected be “no” whose two

characters have the decimal ASCII codes 110 and 111, respectively. Assume that the

mapping function h takes the modulo-8 value of the sum of the decimal ASCII code

values of the characters in the word. Then, the computed numerical authentication

signal s for w is s = h(w) = (110 + 111) mod 8 = 5 whose 3-bit equivalent binary

number is 101. According to Table 10.1, the space code encoding 101 is

which is then taken to replace the hexadecimal code 20 to the right of the word. Now,

suppose that the word “no” has been modified to be “ok” with an opposite meaning.

The decimal ASCII code values for the two characters in it are 111 and 107. So the

numerical authentication signal for this word w' is s' = h(w') = (111 + 107) mod 8 = 2

whose 3-bit equivalent is 010 and is encoded by the space code . This space

 174

code is different from the embedded one . So it is decided that the word “ok”

is a result of tampering.

10.5 Security Consideration and Experimental Results

The above-mentioned simple processes, however, have several weaknesses in

security from the viewpoint of automatic authentication without human involvement,

as discussed in the following, in which solutions for removing these weaknesses are

also proposed.

(1) Word position disordering and replacement of entire web page contents --- A

hacker, who knows the above processes (including the used function h) as is usually

assumed in information hiding studies, may destroy the web page content by just

exchanging the orders of the words (each word assumed to include the embedded

space code next to it). It can be figured out that this false web page can pass the

authentication process. Even worse is the case that the hacker replaces the entire text

content of a web page with all authentication signals for the new words recomputed

and embedded. Such a fake web page obviously will also pass the above

authentication. We propose to solve these problems by first putting the words into a

certain order and then generating a series of corresponding random numbers, one for a

word, to compute the authentication signals by the mapping sBi B = h(wBi B, kBi B) where kBi B is

the random number generated for wBi B. The random numbers are generated by a

function controlled by a secret key as the seed. In this way, a web page with changed

word orders cannot pass the authentication process, as can be figured out, because a

word w with its position changed will now be given a different random number so that

the computed numerical authentication signal becomes different from the

previously-embedded one. Also, it is easy to see that a hacker’s replacement of the

entire text content of a web page with embedded authentication signals computed

 175

without a key will not pass the authentication process now.

(2) Guessing of authentication signals without a key --- The above modified

process of authentication signal generation still has a weakness, i.e., the generated

authentication signal for each word is a 3-bit number, which is encoded into one of

the eight space codes so that the probability to guess it correctly is 1/8. That is, after

inserting a replacing word, the hacker only has to guess the authentication signal for

the word eight times before he/she can pass the authentication of the word. This is not

secure enough. As a remedy, we propose to allow the mapping function h(w, k) to

yield a numerical authentication signal which, when transformed into binary, has

more bits than three. For example, if we allow h to yield 12 bits which may be

encoded, three by three, into four space codes, then we may use four words to provide

the four white spaces at their right-hand sides to embed the four space codes. This

way of multiple word encoding is equivalent to regard four words as a single one by

concatenating them together. More generally, if we want to yield 3n bits as the

numerical authentication signal, we regard every n words as a single one in computing

the authentication signal s = h(w, k). The signal s is encoded into n space codes which

are then embedded at the right-hand sides of the n words. Additionally, the mapping h

may be taken to be any reasonable function, such as one of the various existing

hashing algorithms. We may even adopt the famous secure SHA-1 algorithm as h with

54 words as input, and use a secret key as the seed to generate random numbers as its

initial values. The algorithm yields 160 bits as output, to which we may affix two bits

of 0’s. We then encode the resulting 162 bits into 54 space codes (54 = 162/3) and

embed the codes at the right-hand sides of the 54 words. The security of the protected

54 words will then be very high.

For a clearer illustration, we report a simple one of the experiments we have

conducted, without using random numbers in computing the authentication signals.

 176

The text in an HTML file to be protected includes three text lines: “Personal Data:”

“Name: I-Shi Lee, Mr.” and “Tel: (09)8672555.” The corresponding web page seen in

the IE window is shown in Figure 10.4(a). We regard a punctuation following a word

as part of the word, and adopted a simple mapping function h which considers two

words as a single one, adds up the decimal values of the ASCII codes of all the

characters in them to obtain a sum S, takes the modulo-64 value M of S as a 6-bit

numerical authentication signal s, and encodes M as two 3-bit numbers into two space

codes by Table 10.1 as the symbolic authentication signal. These two space codes are

finally taken to replace the two normal space codes 20 located to the right of the two

words. That is, if the two words are wB1 B = cB11BcB12B...cB1n1B

 and wB2 B = cB21BcB22 B...cB2n2B

 with cBijB’s

being their ASCII codes and dBijB the corresponding decimal values, then we compute s

as s = h(wB1B, wB2 B) = (dB11B+dB12B +...+dB1n1B

+dB21B+dB22B+...+dB2n2B

) mod 64 = bB1BbB2 B...bB6 B, with bB1 BbB2 BbB3B

encoded into a space code and bB4 BbB5 BbB6B into another. After all the symbolic

authentication signals for the word pairs were computed in this way and embedded

appropriately, the resulting web page, as viewed in the IE window, appears to be as

Figure 10.4(b), which looks no different from that shown in Figure 10.4(a). Figure

10.4(c) shows the corresponding stego-HTML codes in the FrontPage window, which

can be seen to include all the space codes. To simulate web page intrusion and

modification, the last name “Lee” in the second line was replaced by another, “Lin.”

After the authentication process was performed, the word pair “Lin, Mr.” was

authenticated to have been tampered with, and so was marked as bold italic, as shown

in Figure 10.4(d). More of our experimental results show the feasibility of the

proposed method.

A problem mentioned previously which need be solved is that the two space

codes and , after being inserted, should not be followed by digits;

otherwise, they will be regarded as codes with more digits instead of 32 and 160. One

 177

way out is to append to either of and one additional space code other

than these two to stop this ambiguity, and decode the resulting code pair as just the

first one only, which may still be done uniquely.

(a) Original web page seen in IE.

(b) Web page with embedded authentication signals (space codes) seen in IE.

Figure 10.4 An experimental result of authentication of a modified web page.

 178

(c) Content of (b) with embedded space codes seen in FrontPage.

(d) Web page with detected modified word pair “Lee, Mr.” marked as bold italic.

Figure 10.4 An experimental result of authentication of a modified web page

(continued).

10.6 Concluding Remarks

A new secret communication method via web pages using special space codes in

HTML files has been proposed. These codes appear as white spaces in the web page,

and so may be used to encode secret message bits with steganographic effects. The

codes are the result of a thorough investigation of all possible coding systems which

can be applied in the HTML file. The character string of each message, before being

embedded, is randomized with a secret key to enhance the security against illegal

intercept and extraction. The original message embedded in the HTML text is

non-destructible unless the web page server is intruded. Our experimental results

show that the proposed method is feasible.

Also, an automatic authentication method for verifying a web page against illegal

modifications of the words in the text of the web page has been proposed. The special

space codes are used to encode binary mapping results from the word contents as

 179

authentication signals, and are embedded at between-word spaces in the HTML codes.

Security enhancement techniques to prevent illicit word tampering and guessing of

authentication signals have also been proposed, including the use of secret keys and

the scheme of multiple word encoding. Experimental results show the feasibility of

the proposed method.

Future researches may be directed to utilizing the space codes in other data

hiding applications, further promotion of the security of the proposed method, and

applying the space codes to other purposes, like copy protection.

 180

Chapter 11

Conclusions and Suggestions for

Future Research

11.1 Conclusions

In this dissertation, we have proposed ten techniques for data hiding in various

types of images and text documents. Discussions and concluding remarks for each

method have been given at the end of each chapter before. A brief summary of them

are as follows:

(1) data hiding in binary images with distortion-minimizing capabilities by optimal

block pattern coding and dynamic programming techniques;

(2) data hiding in grayscale images by dynamic programming based on a human

visual model;

(3) data hiding in emails and applications by unused ASCII control codes;

(4) data hiding in color images by color replacements with reduction of image

distortion and change noticeability;

(5) security protection of software programs by information sharing and

authentication techniques using invisible ASCII control codes;

(6) covert communication with authentication via software programs using invisible

ASCII codes;

(7) covert communication via PDF files by a data hiding technique;

(8) authentication of PDF files by invisible ASCII codes;

(9) secret communication via web pages using special space codes in HTML files;

(10) automatic authentication of web pages by data hiding using multiple space codes

 181

in HTML files.

Experimental results have also been shown to prove the feasibility and

practicality of the proposed methods.

11.2 Suggestions for Future Research

In the subsequent study, the following topics will be investigated.

(1) Data hiding in binary images ---

The proposed method is based on the use of 2×2 blocks. It may be extended by

processing larger blocks because then, the number of block patterns which can be

selected to encode messages will become larger as well, resulting in greater

reductions of image distortions. However, there is a tradeoff here, i.e., the

resulting data embedding capacity will decrease. Other future works may be

directed to designing a better cost function from the perspective of the human

visual system, imposing more constraints on the cost function to yield better

image quality, and finding a better way to design encoding tables to reduce

stego-image distortion further.

(2) Data hiding in grayscale images ---

The methods proposed previously are for data hiding in binary images. But binary

images are few in real applications. Therefore, it is desired to extend the methods

for data hiding in grayscale images. One possible way is to extent to embed

multiple message data in a grayscale image for protecting the intellectual property

right and authenticating multimedia data. It is also hoped that the human vision

model be considered in the extension so that the resulting stego-image will cause

less noticeability from observers. Other future works may be directed to design

better encoding tables to reduce image distortion further.

(3) Data hiding in color images ---

 182

Needless to say, data hiding in color images is even more useful for real

applications. Although the methods for grayscale images may be extended directly

to color images by considering each color channel as a grayscale image, we want

to design a more genuine method by dealing the color image itself. Future

researches may be directed to minimizing image distortion by uses of

variable-sized color cubes, uses of a perspective HVS, random distributions of

groups’ colors in color cubes, etc. It is also hoped that the proposed method can be

extended for various applications.

(4) Data hiding in text documents ---

It is desired to design data hiding methods for embedding data in e-mails in the

future study. Possible applications of such methods include covert communication

through e-mails and authentication of e-mail fidelity and integrity. It is also hoped

that data hiding in software programs can be developed in this study, so that

intellectual properties of various programs can be protected. Any illegal

duplication or stealing of protected programs with embedded owner information

can be disclosed. Finally, more investigations on hiding data in PDF and HTML

documents utilize the rich data structures in such document formats.

 183

References

[1] S. Katzenbeisser and F. A. P. Petitolas, Information Hiding Techniques for

Steganography and Digital Watermarking, Artech House, Boston, U. S. A., 2000.

[2] E. Koch and J. Zhao, "Embedding robust labels into images for copyright

protection," Proceedings of the International Congress on Intellectual Property

Rights for Specialized Information, Knowledge and New Techniques, pp.

242-251, Munich, Germany, 1995.

[3] D. Kundur, “Energy allocation principles for high capacity data hiding,”

Proceedings of the IEEE International Conference on Image Processing,

Vancouver, Canada, Vol. 1, pp. 423-426, September 2000.

[4] L. M. Marvel, J. C. G. Boncelet, and C. T. Retter, “Spread spectrum image

steganography,” IEEE Transactions on Image Processing, Vol. 8, No. 8, pp.

1075-1083, August 1999.

[5] K. Matsui and K. Tanaka, "Video-steganography: how to secretly embed a

signature in a picture," Proceedings of the IMA Intellectual Property Project,

Vol.1, No. 1, 1994.

[6] H. K. Pan, Y. Y. Chen, and Y. C. Tseng, ”A secure data hiding scheme for

two-color images,” Proceedings of the IEEE Fifth Symposium on Computers and

Communications(ISCC2000), pp. 750-755, Antibes, France, July 2000.

[7] M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia data-embedding and

watermarking technologies,” Proceedings of the IEEE, Vol. 86, pp. 1064-1088,

1998.

[8] Y. C. Tseng and H. K. Pan, "Secure and invisible data hiding in 2-color images,"

Proceedings of the IEEE INFOCOM 2001 The Conference on Computer

Communications, No. 1, pp. 887-896, Anchorage, Alaska, U. S. A. 2001.

 184

[9] C. H. Tzeng and W. H. Tsai, “A new technique for authentication of image/video

for multimedia applications,” Proceedings of the ACM Multimedia 2001

Workshops --- Multimedia and Security: New Challenges, pp. 23-26, Ottawa,

Ontario, Canada, Oct. 2001.

[10] C. H. Tzeng and W. H. Tsai, “A new approach to authentication of binary images

for multimedia communication with distortion reduction and security

enhancement,” IEEE Commun. Lett., Vol. 7, No. 9, pp. 443–445, Sep. 2003.

[11] H. C. Wang, "Data hiding techniques for printed binary images," Proceedings of

the IEEE International Conference on Information Technology: Coding and

Computing, pp. 55-59, Las Vegas, NV, U. S. A., April 2001.

[12] M. Wu, E. Tang, and B. Liu, “Data hiding in digital binary image,” Proceedings

of the IEEE International Conference on Multimedia & Exposition

2000(ICME’00), Vol. 1, pp. 393-396, New York, New York, 2000.

[13] D. C. Wu and W. H. Tsai, “Spatial-domain image hiding using an image

differencing,” Processings of the IEE Proceedings-Vision, Image, and Signal, Vol.

147, No. 1, pp. 29-37, Feb. 2000.

[14] D. C. Wu, M. K. Hsu, and J. H. Jheng, “Data hiding and authentication

techniques for 2-color digital documents based on adjusting lengths of runs,”

Proceedings of the 16th IPPR Conference on Computer Vision, Graphics and

Image Processing (CVGIP 2003), pp. 818-822, Kinmen, Taiwan, R. O. C., Aug.

2003.

[15] R. Z. Wang, C. F. Lin, and J. C. Lin, “Hiding data in Images by optimal

moderately-significant-bit replacement,” IEEE Electronics Letters, Vol. 36, No.

25, pp. 2069-2070, December 2000.

[16] C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding optimal least-significant-bit

substitution in image hiding by dynamic programming strategy,” Pattern

 185

Recognition, Vol. 36, pp. 1583-1595, 2003.

[17] C. K. Chan, and L. M. Cheng, “Improved hiding data in images by optimal

moderately-significant-bit replacement,” IEEE Electronics Letters, Vol. 37, No.

16, pp. 1017-1018, August 2001.

[18] C. K. Chan, and L. M. Cheng, “Hiding data in images by simple LSB

substitution,” Pattern Recognition, Vol. 37, pp. 469-474, 2004.

[19] C. C. Thien and J. C. Lin, “A simple and high-hiding capacity method for hiding

digit-by-digit data in images based on modulus function,” Pattern Recognition,

Vol. 36, pp. 2875-2881, 2003.

[20] Y. K. Lee and L. H. Chen, “High capacity image steganographic model,” IEE

Proceedings on Vision, Image Signal Process, Vol. 147 No. 3, June 2000.

[21] S. H. Liu, T. H. Chen, H. X. Yao, and W. Gao, “A variable depth LSB data

hiding technique in images,” Proceedings of the 3rd International Conference on

Machine Learning and Cybernetics, pp. 3990-3994, Shanghai, P. R. China,

August 2004.

[22] W. N. Lie and L. C. Chang, “Data hiding in images with adaptive numbers of

least significant bits based on the human visual system,” Proceedings of the

IEEE International Conference on Image Processing, Vol. 1, pp. 286-290, Taipei,

Taiwan, R. O. C., October 1999.

[23] TS. TLyuT and H. Farid, T“ T TDetectingT hidden messages using higher-order statistics

and support vector machinesT,” T Lecture Notes in Computer Science, Vol. 2578, pp.

340-354, 2003.

[24] TJ. TFridrichT, M. Goljan, TandT R. Du, T“ TDetecting LSB steganography in color and

gray-scale images T,” T IEEE Multimedia, Vol. 8, No. 4, pp. 22-28, 2001. T

[25] I. S. Lee and W. H. Tsai, “Data hiding in binary images with

distortion-minimizing capabilities by optimal block pattern coding and dynamic

 186

programming techniques,” IEICE Transactions on Information and Systems, Vol.

E90-D, No. 8, pp. 1142-1150, 2007.

[26] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Singapore,

1989.

[27] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,”

IBM System Journal, Vol. 35, No. 3 & 4, Feb. 1996.

[28] Y. Y. Tsai and C. M. Wang, “A novel data hiding scheme for color images using a

BSP tree,” Journal of Systems and Software, Vol. 80, pp. 429–437, 2007.

[29] D. C. Lou and J. L. Liu, “Steganographic Method for Secure Communications,”

Computers and Security, Vol. 21, No. 5, pp. 449-460, Oct. 2002.

[30] Low, S. H., N. F. Maxemchuk, and A. M. Lapone, “Document Identification for

Copyright Protection Using Centroid Detection,” IEEE Transactions on

Communication, Vol. 46, No. 3, pp. 372-383, 1998.

[31] J., Brassil, N. F. Maxemchuk, and L. O’Gorman, “Electronic Marking and

Identification Techniques to Discourage Document Copying,” Proceedings of the

13th Annual IEEE Conference on Computer Communications(INFOCOM’94),

pp.1278-1287, Toronto, Ontario, Canada,1994.

[32] P. Wayner, “Strong Theoretical Steganography,” Cryptologia, Vol. XIX/3, pp.

285-299, 1995.

[33] G. Cantrell and D. D. Dampier, “ TExperiments in Hiding Data Inside the File

Structure of Common Office Documents: A Stegonography Application,”T

TProceedings of the 2004 International Symposium on Information and

Communication Technologies, pp. T146-151, Las Vegas, Nevada, U. S. A., 2004.

[34] N. F. Johnson, Z. Duric, and S. Jajodia, Information Hiding: Steganography and

Watermarking-Attacks and Countermeasures, Kluwer Academic Publishers,

Boston, MA, U. S. A., 2001.

 187

[35] R., Anderson, R. Needham, and A. Shamir, “The Steganographic file System,”

Proceedings of the Second International Workshop on Information Hiding,

Lecture Notes in Computer Science, Vol. 1525, pp. 73-82, Springer, Berlin,

Germany, 1998.

[36] T. G., Handel, and M. T. Stanford, “Hiding Data in the OSI Network Model,”

Proceedings of the First International Workshop on Information Hiding, pp.

23-38, Cambridge, UK, 1996.

[37] Y. H. Chang and W. H. Tsai, “A steganographic method for copyright protection

of HTML documents,” Proceedings of the 2003 National Computer Symposium,

Taichung, Taiwan, R. O. C., Dec. 2003.

[38] J. B. Postel, "Simple Mail Transfer Protocol," STD 10, RFC 821, IETF, August

1982.

[39] D. Crocker, "Standard for the Format of ARPA Internet Text Messages," STD 11,

RFC 822, IETF, August 1982.

[40] P. Resnick, "Internet Message Format," RFC 2822, IETF, April 2001.

[41] J. G. Myers and M. T. Rose, “Standard Post Office Protocol - Version 3,” STD

53, RFC 1939, IETF, May 1996.

[42] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies," RFC 2045, IETF, Nov. 1996.

[43] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types," RFC 2046, IETF, Nov. 1996.

[44] N, Freed. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)

Part Five: Conformance Criteria and Examples," RFC 2049, IETF, Nov. 1996.

[45] M. Crispin, " Internet Message Access Protocol - Version 4rev1," RFC 3501,

IETF, March 2003

[46] A. Shamir, “How to share a secret,” Communications of the Association for

 188

Computing Machinery, Vol. 22, No. 11, pp. 612-613, 1979.

[47] M. Naor and A. Shamir, “Visual cryptography,” Advances in Cryptology ---

EUROCRYPT’94, Lecture Notes in Computer Science, Vol. 950, pp. 1-12, 1995.

[48] G. Ateniese, C. Blundo, A. De Santis, and D. R. Stinson, “Visual cryptography

for general access structures,” Information and Computation, Vol. 129, pp.

86-106, 1996.

[49] M. Naor and B. Pinkas, “Visual authentication and identification,” Advances in

Cryptology --- CRYPTO’97, Lecture Notes in Computer Science, Vol. 1294, pp.

322-336, 1997.

[50] C. Blundo and A. De Santis, “Visual cryptography schemes with perfect

reconstruction of black pixels,” Computers & Graphics, Vol. 22, No. 4, pp.

449-455, 1998.

[51] E. R. Verheul and H. C. A. van Tilborg, “Construction and properties of k out of

n visual secret sharing schemes,” Designs, Codes, and Cryptography, Vol. 11, pp.

179-196, 1997.

[52] C. C. Lin and W. H. Tsai, “Secret image sharing with steganography and

authentication,” Journal of Systems & Software, Vol. 73, No. 3, pp. 405-414,

2004.

[53] I. S. Lee and W. H. Tsai “Data hiding in emails and applications by unused

ASCII control codes,” Proceedings of the 2007 National Computer Symposium,

Vol. 4, pp. 414-422, Taichung, Taiwan, R. O. C., Dec. 2007.

[54] W. Zhu, C. Thomborson, and F. Y. Wang, “A survey of software watermarking,”

Proceedings of the IEEE International Conference on Intelligence and Security

Informatics, Lecture Notes in Computer Science, Vol. 3495, pp. 454-458, May

2005.

[55] R. Venkatesan, V. Vazirani, and S. Sinha. “A graph theoretic approach to

 189

software watermarking,” Proceedings of the 4th International Information

Hiding Workshop, Lecture Notes in Computer Science, Vol. 2137, pp. 157-168,

Apr. 2001.

[56] C. Collberg and C. Thomborson. “Watermarking, tamper-proofing, and

obfuscation ⎯ tools for software protection,” IEEE Transactions on Software

Engineering, Vol. 28, pp. 735-746, 2002.

[57] H. M. Meral, E. Sevinc, E. Unkar, B. Sankur, A. S. Ozsoy, and T. Gungor,

“Syntactic tools for text watermarking,” Proceedings of the SPIE International

Conference on Security, Steganography, and Watermarking of Multimedia

Contents, San Jose, CA, Jan.-Feb. 2007.

[58] M. Topkara, U. Topkara, and M. J. Atallah, “Information hiding through errors: a

confusing approach,” Proceedings of the SPIE International Conference on

Security, Steganography, and Watermarking of Multimedia Contents, San Jose,

CA, Jan.-Feb. 2007.

[59] F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn, “Information hiding - A

survey,” Proceedings of the IEEE, Special Issue on Protection of Multimedia

Content, Vol. 87, No. 7, pp. 1062-1078, July 1999.

[60] D. C. Wu and P. H. Lai, “Novel Techniques of Data Hiding in HTML

Documents,” Proceedings of the 2005 Conference on Digital Contents

Managements & Applications, pp. 21-30, Kaohsiung, Taiwan, R. O. C., June,

2005.

[61] T. Y. Liu and W. H. Tsai, “A New Steganographic Method for Data Hiding in

Microsoft Word Documents by A Change Tracking Technique,” IEEE

Transactions on Information Forensics and Security, Vol. 2, No. 1, pp. 24-30,

March 2007.

[62] T. Y. Liu and W. H. Tsai, “Robust Watermarking in Slides of Presentations by

 190

Blank Space Coloring: A New Approach,” accepted and to appear in

Transactions on Data Hiding and Multimedia Security, Lecture Notes in

Computer Science.

[63] Adobe Systems Incorporated, Portable document format reference manual,

Version 1.7, http://www.adobe.com, November, 2006.

[64] S. Zhong, X. Cheng and T. Chen, “Data hiding in a kind of PDF texts for secret

communication,” Int’l Journal of Network Security, Vol.4, No.1, pp.17–26, Jan.

2007.

[65] ASCII Code - The extended ASCII table. Retrieved April 30, 2008, from

http://www.ascii-code.com/

[66] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekal, “Hierarchical watermarking

for secure image authentication with localization,” IEEE Trans. Image

Processing, Vol. 11, pp. 585–505, June 2002.

[67] D. Coppersmith, F. Mintzer, C. Tresser, C. W. Wu, and M. M. Yeung, “Fragile

imperceptible digital watermark with privacy control,” Proceedings of the SPIE,

Security and Watermarking of Multimedia Contents, pp. 79–84, San Jose, CA,

Jan. 2000.

[68] E. Izquierdo and V. Guerra, “An Ill-Posed Operator for Secure Image

Authentication,” IEEE Trans. Circuits & Systems for Video Technology, Vol. 13,

No. 8, pp. 842-852, August 2003.

[69] S. Walton, “Information authentication for a slippery new age,” Dr. Dobbs

Journal, Vol. 20, No. 4, pp. 18–26, Apr. 1995.

[70] P. W. Wong, “A public key watermark for image verification and

authentication,” Proceedings of the International Conference on Image

Processing (ICIP), Vol. 1, pp. 425-429, Chicago, Illinois, October. 1998.

[71] M. M. Yeung and F. Mintzer, “An invisible watermarking technique for image

 191

verification,” Proceedings of the International Conference on Image Processing

(ICIP), Vol. 2, pp.680-683, Santa Barbara, CA., 1997.

[72] M. Shirali-Shahreza, “Java applets copy protection by steganography,”

Proceedings of the 2006 Int’l Conference on Intelligent Information Hiding &

Multimedia Signal Processing, pp. 388-391, Pasadena, California, U. S. A., Dec.

2006.

[73] C. C. Wu, C. C. Chang and S. R. Yang, “An efficient fragile watermarking for

web pages tamper-proof,” Advances in Web and Network Technologies, and

Information Management, Lecture Notes in Computer Science, Vol. 4537, pp.

654-663, Springer, Berlin, Germany, 2007.

[74] Invisible Secrets. Retrieved May 15, 2008, from

H79HTUhttp://www.invisiblesecrets.comUTH.

[75] Q. Zhao and H. Lu, “PCA-based web page watermarking,” Pattern Recognition,

Vol. 40, pp. 1334 – 1341, 2007.

[76] S. Voloshynovskiy, T. Pun, J. Fridrich, F. Pérez-González, and N. Memon (Guest

Editors), H80HSpecial Issue on Security Of Data Hiding TechnologiesH, Signal

Processing, Vol. 82, Iss. 10, pp. 1511-1512, Oct. 2002.

 192

Publication List

Journal Papers:

(1) I. S. Lee and W. H. Tsai, "Data Hiding in Binary Images with Distortion-

Minimizing Capabilities by Optimal Block Pattern Coding and Dynamic

Programming Techniques," IEICE Transactions on Information and Systems, Vol.

E90-D, No. 8, pp. 1142-1150, August 2007 T(SCI)T .

(2) I. S. Lee and W. H. Tsai, "Data Hiding in Grayscale Images by Dynamic

Programming

Based on A Human Visual Model," Pattern Recognition. (to be

published after minor revision) T(SCI) T

(3) I. S. Lee and W. H. Tsai, "Security Protection of Software Programs by

Information Sharing and Authentication Techniques Using Invisible ASCII

Control Codes," accepted for International Journal of Network Security.

(4) I. S. Lee and W. H. Tsai, "Data Hiding in Emails and Applications by Unused

ASCII Control Codes," accepted for Journal of Information Technology and

Applications.

(5) I. S. Lee and W. H. Tsai, "Data Hiding in Color Images by Color Replacements

with Reduction of Image Distortion and Change Noticeability," submitted to IET

Image Processing.

(6) I. S. Lee and W. H. Tsai, "Covert Communication with Authentication via

Software Programs Using Invisible ASCII Codes --- A New Approach,"

submitted to IEEE Signal Processing Letters.

(7) I. S. Lee and W. H. Tsai, "A New Method for Covert Communication via PDF

Files by A Data Hiding Technique," submitted to Signal Processing.

(8) I. S. Lee and W. H. Tsai, "PDF File Authentication by Invisible Codes,"

submitted to Tamkang Journal of Science and Engineering(EI).

 193

(9) I. S. Lee and W. H. Tsai, "Secret Communication via Web Pages Using Special

Space Codes in HTML Files," submitted to International Journal of Applied

Science and Engineering.

(10) I. S. Lee and W. H. Tsai, "Automatic Authentication of Web Pages by Data

Hiding Using Multiple Space Codes in HTML Files," submitted to Signal

Processing.

Conference Papers

[1] I. S. Lee and W. H. Tsai, "A Dynamic-Programming Approach to Data Hiding in

Binary Image Using Block Pattern Coding with Distortion Minimization,"

Proceedings of 2003 National Computer Symposium (NCS 2003), Taichung,,

Taiwan, pp. 1406-1413, December 18-19, 2003.

[2] I. S. Lee and W. H. Tsai, "Data Hiding in Grayscale Images by Dynamic

Programming Based on A Human Visual," 20th Compuer Vision, Graphics, and

Image Processing (CVGIP) 2007 conference proceeding, Miaoli, Taiwan, pp.

204-209, August 19-21, 2007. (Excellent paper award of CVGIP 2007)

[3] I. S. Lee and W. H. Tsai, "Data Hiding in Emails and Applications by Unused

ASCII Control Codes," in Proceedings of 2007 National Computer Symposium,

Taichung, Taiwan, Taichung, R. O. C , pp. 414-422, December 20-21, 2007. (Best

paper award of Information Security and Networks Workshop of NCS 2007)

[4] I. S. Lee and W. H. Tsai, " Security Protection of Software Programs by

Information Sharing and Authentication Techniques Using Invisible ASCII

Control Codes," accepted for 21th Compuer Vision, Graphics, and Image

Processing (CVGIP) 2008 conference proceeding, Ilan, Taiwan, August 24-26,

2008.

 194

Vita

I-Shi Lee was born in Taipei, Taiwan, R.O.C., in 1961. He received the B. S.

degree in electronic engineering from National Taiwan University of Science and

Technology, Taipei, Taiwan, Republic of China in 1987, the M. S. degree in the

Department of Computer Science and Information Science at National Chiao Tung

University in 1989, and the Ph.D. degree in the Institute of Computer Science and

Engineering, College of Computer Science from National Chiao Tung University in

2008.

In 1992, he joined the Department of Management Information at Northern

Taiwan Institute of Science and Technology and acted as a lecturer from 1992 to now.

His recent research interests include pattern recognition, watermarking, and image

hiding.

	A Study on New Techniques of Data Hiding in Images and Text Documents and Their Applications
	A. Encoding Block Patterns for Secret Data Embedding
	B. Sketch of proposed idea of data hiding
	C. Use of Multiple Block Pattern Encoding Tables
	D. Proposed Distortion-Minimizing Cost Function and Search Techniques for Optimal Solutions
	E. Data recovery process

