THE IR
FRpESI BT

ARG TS TR
) RN F

A Study on New Techniques of Data Hiding in
Images and Text Documents and Their

Applications

\

A%

B3 2 3R
I F R E AEEL

Y4
Al

PERRY L E B

£

Bt e 3R ¢ 7 TR R e
BT 2P

A Study on New Techniques of Data Hiding
In Images and Text Documents and Their
Applications

Student: 1-Shi Lee
Advisor: Dr. Wen-Hsiang Tsai

PR A N N
FRPFga T g
RS

A Dissertation Submitted to
Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy
in Computer and Information Science

July 2008

Hsinchu, Taiwan, 300
Republic of China

PERR 4L B =¥

il

B X %X @ X =
BELARX X T FHEEHSHEE

ABEEFRBEZ MBI AAARBALTBEREENERENHE
RIBRARM ATAEFEF _EHREFE LB
WXAMEB AP SAXFHETRTEHIERGBTAER AR
EHIL BXH KK

MAE [IFAAE

AANBHAEE WFER - BERHRALIBAREALSEBERE
AaB T ANEGREN TERAE - LASMH,, 2B E AY
HBATHLHEARZAY BIXBREREEBERELGBETH
BRI ~ BRI SR B0 SRR ~ B R B &S R Ik
FHANA REEMELSEERAEEN FHFRITRERE K
%~ FTHRXFIEP -

WXAXEREB A ZEE AR

ARREBBORSE A %EHRMEE W 2HAK
XS s s W B
#H AERE

wEEL O A i

TERBOTHFTA22A

il

B ¥ x #® A #
HALBERXFHRRAE

$ﬁ%%%&ﬁzmm%x’%$A%@i§ﬁk$*mm%ﬁiﬁ
SRIBREN AT ANEEEF EHRAR L EMZM
WXMB /E%ﬂ%ﬁ%i%#ﬁ#“P@ﬁ'ﬁﬂﬁ%i&%&ﬁqﬁ%ﬁ%% 2R,
HEHIL B MR

B EE

ANGHAEE > UFEER - BRABRHMBIRBRE ANRGHHRL
MITERAE 2244, 22 ARBEERPMARIBL
B3 B AR E TR RNSK ERAFA N FEMESER
REEN > JEFETHMERIE -

R ARANGEEREEAPHFEHNCRT FERIERFRATES)

B — FHXRA TR
£ H BBHEMNE-
#H AERE

wags: & 1o Ik

TERBITHETAH28 A

v

HERETHEAELAXTFHE
T E

ID:GT008723809

ARBEFRBHLZAXARBALRIIBRETNLREASLAT
RARM AT AEFEE SRR T ERLZHX

WXHME ABBEXFHETEAENEAARTARAZIAR
WM B HK

LB EBERABA ZAEZ IR (2WHE) > FER - &40
BHBEEE T AR BRSRE O UME - R R A EEH
A X EFIHXEY > EFREMIEZ EFRIXRBXETFHEAL
ey R REKZANBAFEHRETZS Lk - ME - TEX
FlEp »

X OREEANESHMLZRERE - ME - TRAFIP LI - BREFH L
WM o

BEAZRK
P L2

RE 974 TH 288

EIRVASSEIPNE =

GEIATRERHE LI
HxXoREBEGHFELE
A T M T # K + £ E £
i ARBNXTHEPHTAMBHROBHRBRAZ AR
A EREAE, $EAER G FRT -
2t 4 2%
e S i ‘g
L ¥, -i"'{"l-'_ :i' ;"_|
EVEECIEY SN P g
| I
ZF" “e Ud == T
¥ & 9 ,ﬂ)
'fﬁ';-;,“g ¢l t;n”,}: 'f\%’]
3¢ 2 7t
15 9 4 4% hoL 4

+HEREH A+ & £ A A B

vi

Department of Computer Science
College of Computer Science
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

Date: July.29, 2008

We have carefully read the dissertation entitled _A Study on New
Techniques of Data Hiding in Images and Text Documents and

Their Applications submitted by 1-Shi Lee in partial fulfillment of the

requirements of the degree of Doctor of Philosophy and recommend its
ﬂfﬂ{’PfﬂﬂfE.

z/f}l. p - /
[If"l.la o ‘i iy l"."-ﬁ_,_ﬂ.:}

| / : - I:/" /_ll
A aeld A 4 _’fu_’.ﬂ',.

Cpﬂt-"(oﬂw'\- WLA

Thesis Advisor: %"‘ t ‘4’ 7& =t

8 =

Chisa._ L 'iv/;r ﬂ'*}y /m-._.?

' v

vil

g Y gL

2|
|4
pas

AL EFRER

AELH Y ALY 0 B NRTREFCRGE A2 2 3D
PR R o A B

ST 10 FBATS R 0 AU TR G o RFEE $5d

e R RIS CU gz PDFfre T S A - F A AHY R
af

I

AT R A BB R R AR o A A PR O 8 IR
MR gz AR R X A TARAER DR

)
=

B oRF AGBYHRL- IRV R

BFEAEBMPE S Bl > A2 A1 F MO HE F DEEEA R
x‘%%’?#i o »J{ I;f, s ﬂ\'ﬁvﬁi dr — 7}@4} ’;r 4’3‘?1‘7&\1’1”ASCII#*’ E%iz-fé?ﬁp% ,El. ‘%ﬁi{-‘?
3

R E P 7 g s gt F sk ePASCIAS &2 7 20utlook Express#? [E gt #R it

S TALE ¢ L

‘."'_'!\"\

PO RF AW & D - ART A EEOT R4S AR

viii

Frrz o B - f2 2 G TAALZEHHEAPITE A Rg 3 L AASCIEE 1

‘L""\l“\

BBk R MAR S % 2 o T - BT N RBE A R S ERR

-

g ik o LiE- H 0 A% T3NS)Y BRPASCIIE -7 3 E F i

® PDFAE P ch3t= % o B9 2 — % N AARE W > F - B SR EPDFM

:\rmL

B ookl AhT RN AT BT IEFONA FA AT RT Y o2 2
— R NRBA N T - PR IRBERT LG o - 7 % ¢ £ HTMLA,
VAR R NSnsg L AR FBe i Al 2 10/ 2, W G AIRTL
i, PeRAApIRPAELEY T FHRLEEE T AK IR NS Z L EF VAR

;??.r_}_o

X

A Study on New Techniques of Data Hiding
In Images and Text Documents and Their
Applications

Student: I-Shi Lee Advisor: Dr. Wen-Hsiang Tsai

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

Abstract

In this study, data hiding techniques for-image files and text documents and their
applications are investigated, and totally ten methods are proposed for binary,
grayscale, and color images, as well as email, software C'~ program, PDF, and
webpage files. First, two methods are proposed respectively for binary and grayscale
images based on human vision modeling and dynamic programming to reduce the
image distortion and increasing data hiding capacities. Also, a method is proposed for
hiding large-volume data in BMP color images, based on the use of color cubes and
the idea of color clustering. Then, a method is proposed for hiding secret messages in
emails using some special ASCII codes which are invisible in the window of Outlook
Express and IE Webmail browsers. Also proposed are two methods for data hiding in
software programs. One is used for security protection of software programs by

information sharing and authentication techniques using invisible ASCII control

codes. And the other is applicable to covert communication with the additional
capability of authenticating the hidden secret message. Furthermore, two methods are
proposed for data hiding in PDF files which are popular nowadays. One is useful for
covert communication and the other for PDF file authentication, both using certain
special ASCII codes. Finally, two methods are proposed for data hiding in web pages
which are browsed by lots of people in the world. One method is proposed for covert
communication and the other for authentication of web pages, both utilizing certain
space codes of various coding systems applicable in HTML files. Experimental results

show the feasibility and practicality of all the proposed methods.

X1

Acknowledgements

I would like to express my sincere appreciation to my advisor, Professor
Wen-Hsiang Tsai, for his patience and kind guidance throughout the course of this
dissertation study. Appreciation is extended to Mr. Jiun-Tsung Wang for his
programming support and helpful suggestions to my study on data hiding utilizing
PDF files. Thanks are also extended to the colleagues in the Computer Vision
Laboratory at National Chiao Tung University for their valuable help during this
study.

Finally, I am so grateful to my wife and my parents for their love, support, and

endurance. This dissertation is dedicated:to them.

Xii

Table of Contents

BB viii
ADSITACE ettt ettt
X
ACKNOWICAZEMENLS.......c..eiiiiiiiiiiieciie ettt ettt e et e et e et e e ae e seeesbeesseessseenseens xii
Table Of CONENLSeeviriieiiiieeiietcete ettt sttt e nees xiii
LSt Of TaDIES....c.eetieieeiieieee ettt ettt XVi
LSt OF FIGUIES ..eouvvieiiieiiieieece ettt ettt ettt e e e sbe e saesnseenne XVviii
Chapter I INtrodUCHION.........eeiiieiieiie ettt ettt ettt e beessaeetaeseseenseeeenas 1
1.1 Scope of Data Hiding Research...........cccoccueeviieiiiiiiiiniieiecieceeceeeeeee 1
1.2 Motivation Of STUAYccveeevieiiieiierie ettt 2
1.3 Contributions of This Studycccceevieriiiiiiiiiieiecie e 4
1.4 Dissertation Organizationcccceeeveerieerieenieesieeseeeieeseesseesseessveesseens 6

Chapter 2 Surveys of Related Studies and Brief Descriptions of Proposed Methods 7

2.1 Survey of Related Studies it i e 7
2.2 Brief Descriptions of Proposed Methods.............ccooveveiienieniieniennnnnne, 14
Chapter 3 Data Hiding in Binary Images with. Distortion-Minimizing Capabilities
by Optimal Block Pattern Coding and'Dynamic Programming Techniques.............. 21
3.1 Idea of Proposed MethOd. it 21
3.2 Proposed Data Embedding Processccccevevienieeiienieciieiiecieeeeene 22
33 Experimental ReSUILScccuieviiiiiieiieiiicieeeeeee e 37
34 Concluding Remarks..........ccccceeriiiiieniiiiieiecicceeee et 46
Chapter 4 Data Hiding in Grayscale Images by Dynamic Programming Based on A
Human Visual MOdel..........ccoiiiiiiiiiiiiieieeee et 49
4.1 Idea of Proposed Method.........c.coovieiieniiiiieiieeiieeecee e 49
4.2 Cost Function for Distortion Measurementcecceeeevereenieeneennene. 50
4.3 Proposed Horizontal Data Hiding Process..........ccccecvvevienieenienieeneenen. 55
4.4 Proposed Data ReCOVEry Processccceveeviieriieniieriieniieieeeve e 64
4.5 Experimental ReSUILScccuiiviiiiiiiiieiieiieecece e 66
4.6 Concluding Remarks..........c.ccovveriiiiieiiiiiiiecieeeeee e 73
Chapter 5 Data Hiding in Color Images by Color Replacements with Reduction of
Image Distortion and Change Noticeability.........c.cocveeruieriienienireriecie e 76
5.1 Idea of Proposed Method.........c.cooveeiieriieiieiieciieecceeee e 76
5.2 Detailed Algorithms of Proposed Data Embedding and Extraction......... 89
53 Experiment Results and DISCUSSIONSeeeveiieeriiieeiiieeniieeniieesiee e 92

xiii

5.4 Concluding Remarks...........ccccviiiiiiieiiiicciie e e 96
Chapter 6 Data Hiding in Emails and Applications by Unused ASCII Control Codes

98
6.1 Idea of Proposed Method...........cccvvieeiiieiiiieiieceeee e 98
6.2 Properties of Email SyStemsc..ccocuvieviiieniieeiiie e 99
6.3 Embedding ASCII Control Codes into Emailsccccceeveevciveenieennnnen. 101
6.4 Proposed Data Hiding Process for Emails..........ccccoeeveeniiiiiciienieeee. 104
6.5 Proposed Data Recovery Process for Emails.........ccccceeveiiivciieeniennnnen. 106
6.6 Proposed Authentication Process for Email Documents 107
6.7 Experimental RESUILSc..coeciiiiiiieiiiecieeeeceeeeeee e 109
6.8 Concluding Remarks...........cccoviiiiiieiiiiiciie e 117
Chapter 7 Security Protection of Software Programs by Information Sharing and
Authentication Techniques Using Invisible ASCII Control Codes...........c.ccuu........ 119
7.1 Idea of Proposed Method..........ccccvieviiieniiieiie e 119
7.2 Proposed Program Sharing Scheme...........cccccvveeviiiniiieniiieeie e, 121
7.3 Secret Program Recovery Scheme...........coocveveiiiiiiiieiciiecie e 125
7.4 Discussions on Security Proteetion..............cccceeveeeiienieeiienieinieeneeene 128
7.5 Experimental REeSUILS cosrmescsieeessnsseereeenreeenreenireesieeesiseeessseessnens 129
7.6 Concluding Remarks..........oul i e 130
Chapter 8 Covert Communication with Authentication via Software Programs
Using Invisible ASCIT COAES .. iuuui..rireiiis oo ioheite s iharteeereeesereeessreesssreesseesssseeessesennns 135
8.1 Idea of Proposed Method.............caieiinieiieeiiieeieeceeee e 135
8.2 Data Hiding Using Invisibl€ Codesccceevieeiieviiiniiciecieeeee, 137
8.3 Secret Hiding, Recovery and Authentication............cccccceeeviiieencieennnnennns 138
8.4 Experimental RESUILSc..ooecuiiiiiiiieiiiieieeee e 140
8.5 Concluding Remarks............cccvieiiiieiiiieciie e 140
Chapter 9 Covert Communication via PDF Files and PDF File Authentication by
INVISIDIE COAS ...ttt et et 144
9.1 Idea of Proposed Methodsccccuveeiieeiiieeiiie et 144
9.2 Principle of Encoding Message Data..........cccceeeviieeciiencieeeiieeeiee e, 146
9.3 Message Hiding and Recovery for Covert Communication and
Experimental RESUILSccoeiviiiiiiieciieceeceeeeeee e 149
9.4 PDF Authentication Process and Experimental Results 153
9.5 Concluding Remarks............ccovvieiiiiiiiiieciie e 158
Chapter 10 Secret Communication through Web Pages and Automatic Authentication
of Web Pages Using Special Space Codes in HTML Files.........cccccooeeviviiiieennennee. 160
10.1 Idea of Proposed Method..........ccccuvieviiieniiieiie e 160
10.2 Secret Message Coding Using Space Characters in HTML 162

X1V

10.3 Message Hiding and Experimental Resultsccccceeveiiencieencieeennnen. 165

10.4 Automatic Authentication of Web Page Text Contents.............ccue.en..... 172

10.5 Security Consideration and Experimental Results.............ccccceevvernnen. 174

10.6 Concluding Remarks...........cccccuieriiiiiiiiieciieeciee e 178

Chapter 11 Conclusions and Suggestions for Future Research.............ccccccceeenne. 180

T1.1 CONCIUSIONS...cutiiiiiiiieiiie ettt ettt ettt s 180

11.2 Suggestions for Future Researchcccceeeviiiiiiieeiiieeieecie e, 181

RETEIEIICES ..ttt et ettt et e st eenee
183

PUbLication LIStccc.eoiiiiiieiii e 192

Vet ettt e b e st b e h e e e bt e sateebeeeateeteen
194

XV

List of Tables

Table 3.1 Proposed block pattern encoding table...................coooiiiiiiiiiiian. 25
Table 3.2 An extraction table (table index B=0)..................cocoiiiiiiiiii i, 36
Table 3.3 Statistics of three stego-images for proposed algorithms...................... 47
Table 3.4 Statistics of 19 stego-images processed by proposed DPA.................... 48
Table 4.1 A block pattern encoding table proposed in this study......................... 59
Table 4.2 An extraction table (table number T=0)...................cooiiiiiiiian.. 66

Table 4.3 Statistics of stego-images yielded by DPA using optimal encoding table...71
Table 4.4 Comparison of run times for four methods for grayscale images (in unit of
< o3 T L 1 1 | 7 T 71
Table 4.5 Comparison of PSNR yalues of the four methods for grayscale images (in
UNIt OF dB) .. e 72
Table 4.6 Comparison of RS analysis results of the four methods for color images...73

Table 5.1 The colors in the (0, 0, 0)-th color'cube with base color (r, g, b) = (0, 0,

0 87
Table 5.3 Statistics of experimental results...............coviiiiiiiiiiiiiiiii 94
Table 6.1 ASCII control codes and description.............ccoevviuiiiiiiiiiiiiiinnanne. 100
Table 7.1. ASCII control codes and descriptions............ccoveiviiiiiiieiiieenneennnnnn. 120
Table 7. 2 Invisible character coding table..................oooiiiiiiiiiiin . 121
Table 8.1. Invisible codes under various environments................cooevueeeennennes 136
Table 9.1 ASCII codes selected for message representations in this study............ 145

Table 9.2 Null space coding table for message “This is a covert communication

XVi

Xxvil

List of Figures

Figure 1.1 Classification of data hiding techniques......................ooiiiiiiiiiinn, 3
Figure 3.1 Illustration of block patterns and corresponding binary values.............. 23

Figure 3.2 Division of input image into 2x2 blocks with separating lines (grids with

bold boundaries are 2x2 blocks for data embedding)........................ 27
Figure 3.3 An example of proposed data embedding process...............cceveviinnin. 29
Figure 3.4 An example of proposed data embedding process..............coeevuinnenn. 32
Figure 3.5 Flowchart of the proposed data embedding process..............c.coeevvnnnnn. 34
Figure 3.6 Flowchart of the proposed extraction process..............cocevvveeennannn.. 38

Figure 3.7 Input binary images, output stego-images with message data, and
difference images. (a):Binary image ‘NCTU”. (b) Stego-image using
greedy search and optimal encoding table.(c) Stego-image using DPA and
optimal encoding table. (d) The difference image between (a) and (c) in
which the white spots are difference pixels...............coooiiiiiiiiiinin, 39

Figure 3.8 Input binary images, output stego-images with message data, and the
difference images. (a) Binary image “Lena”. (b) The stego-image using the
greedy search algorithm and the optimal encoding table. (¢) The
stego-image using the DPA and the optimal encoding table. (d) The
difference image between (a) and (c) in which the white spots are
difference PixelS......c.ooviiiiiii e 41

Figure 3.9 Input binary images, output stego-images with message data, and
difference images. (a) Binary image “Patent.” (b) Stego-image resulting
from greedy search and optimal encoding table. (¢) Stego-image using

DPA and optimal encoding table. (d) An enlarged part of difference image

XViil

between (a) and (c) in which the white spots are difference pixels.........43

Figure 4.1 Three grayscale images and their 8 corresponding bit planes (from left to
right, original images, bpo, bpi, bp,, ..., and bps, respectively)............. 50
Figure 4.2 Division of input image into 2x2 blocks with separating lines (grids with
bold boundaries are 2x2 blocks for data embedding)........................ 58
Figure 4.3 An example of proposed data embedding process..............ocvvvveninnnn. 61
Figure 4.4 A cover image “House” with the size of 256x256 and its stego-image with
16440-bit message data embedded. (a) The cover image. (b) The
SEEZO-TIMAZC . . . ettt ettt et et ettt et e 67
Figure 4.5 Experimental results of three images. (a) The original images and their
corresponding bit planes (repeated from Figure 4.1). (b) The resulting

three stego-images and their corresponding bit planes (from left, bp,, bp,

(oo PSRN o] o /) TR (I e 68
Figure 4.6 PSNR values of stego-image.“Lena”using DPA........................oeel. 72
Figure 5.1 An illustration of range sets of color cubes...............c.ooiiiiiiiiii. 78

Figure 5.2 A color cube with 8 colors divided into four groups with base color (0, 0, 0)...... 82
Figure 5.3 Illustration of a 3D spherical coordinate system for use in even color
AISTIIDULION. .. 86

Figure 5.4 An example of color distribution in a color cube --- the 8 colors in group

Figure 5.5 An experimental result of message data embedding applied to Figure 5.1(a)
with a 256x256 cover image and a 22900-byte message data................ 95

Figure 5.6 A second experimental result with a 256x256 cover image and a
22900-DYLE MESSAZE. ... vevventteetentt et eteate ettt et e enee e eneas 95

Figure 5.7 A third experimental result of data embedding with a 512x512 cover image

XiX

and an 88200-byte MESSAZE.....vvvuriiritet i 96

Figure 5.8 A fourth experimental result of data embedding with a 512x512 cover

image and an 88200-byte MeSSAZE.ovvverririiiiitiieeiieineeneeaannns 96
Figure 6.1 Partial content of a cover email.................ooooiiiiiiiiiiii 110
Figure 6.2 Partial content of the stego-email generated from Figure 6.1............... 111
Figure 6.3 Partial content of an embedded secret data file.............................. 111
Figure 6.4 Partial content of the extracted secret data file............................... 112
Figure 6.5 Partial content of a cover email.................cooii 112

Figure 6.6 Partial content of the stego-email generated from Figure 6.5 before being

tranNSMItEEd. 113
Figure 6.7 Partial content of the stego-email received and displayed in IE............ 113
Figure 6.8 Content of the original secret file.....oilu...oooiiiiiiii i, 114
Figure 6.9 Content of the extracted.secret fil€.....x.ov oo, 114
Figure 6.10 Content of a stego-email ifot-authentication before transmission.........115

Figure 6.11 Authentication result of“‘pass’ after receiving a stego-email by Outlook

B X PSS, et 115
Figure 6.12 Authentication result of “pass” after receiving a stego-email by IE.....116
Figure 6.13 Authentication result of “fail” after receiving the stego-email by IE. The

word “Lee” in the content has been modified to be “lee”.................. 116
Figure 7.1 Illustration of invisible ASCII control codes in a comment of a source

00074 231 o U 123
Figure 7.2 Experimental results of sharing a secret program........................... 131
Figure 7.3 An experimental result of authenticating a destructed stego-program....134
Figure 8.1 An experimental result................ooi i 141
Figure 8.2 An example of authentication results.................ccoooviiiiiiiiinnin. .. 143

Figure 9.1 Display of all ASCII codes in Adobe Reader 8.1.2, in which only 20 and A0

XX

appear to be white spaces (the first spaces in the 3rd and the 11th lines).......... 146
Figure 9.2 Display of all ASCII codes in the window of Adobe Reader 8.1.2, in which the
width of AQ was set to be zero so that A0 becomes nonexistent (i.e., there is no

space before the first comma in the 11th row, as compared with Figure 9.1).....147

Figure 9.3 Invisibility of multiple AO’s at between-character locations........................ 148
Figure 9.4 An experimental result of null space coding.......................cooiel. 152
Figure 9.5 An experimental result for authenticating a PDF file................................. 157

Figure 10.1 Appearances of nine space codes as white spaces in the window of the

Figure 10.2 Invisibility of space codes for the message “sky” in an HTML text.....169

Figure 10.3 The embedded secret data.............cooeieiiiiiiiiiiiiiiiiii e 171

Figure 10.4 An experimental result’of authentication of a modified web page....... 177

XX1

Chapter 1

Introduction

1.1 Scope of Data Hiding Research

Data hiding is a type of information hiding, emphasizing the purpose of
embedding digital data behind multimedia of various forms. The multimedia into
which data are hidden are called cover media, like cover image, cover text, etc., and
the results are called stego-media, like stego-image, stego-text, etc. Applications of
data hiding include at least the following.

(1) Copyright protection --- the data hidden are of the forms of watermarks like
logos of companies, series numbers of products, etc.

(2) Covert communication -#= the data hidden ate secret messages sent from one
site to another. Data hiding for. the purpose of covert communication is
sometimes called steganography. The goal-of steganography is to arouse as
little notice from observers of the stego-media as possible.

(3) Multimedia authentication --- the hidden data are authentication signals in
various forms, created for the purposes of checking cover media’s fidelity,
integrity, utilization rights, etc.

(4) Secret sharing --- the hidden data are parts of certain multimedia forms like
text or image documents, and are taken as secret messages which are
embedded into several shares in other forms of multimedia. Only a sufficient
number of shares are collected can the secret message be recovered for
inspection.

(5) Data association --- the hidden data are various information, like metadata,

history, identification, etc., about the cover media. Data hiding in this way

facilitates close association of the data with the cover image for convenient
preservation or transmission of the cover media.

(6) Digital rights management --- the hidden data need not always be invisible; on
the contrary, we may embed a visible watermark on a video (like a movie) to
prevent it form being watched by a customer paying no fee. More generally,
data hiding may be used in applications of digital rights management, like pay

movie control, video distribution management, limitation of watch times, etc.

A classification of the techniques of data hiding which are related to this
dissertation study is illustrated in Figure 1.1.

In the following sections, the motivation of study is given in Section 1.2. The
contributions of this study and the organization of this dissertation are reported in

Sections 1.3 and 1.4, respectively:

1.2 Motivation of Study

Many data hiding techniques with.images as cover media have been proposed.
Most of the techniques were proposed for color and grayscale images because pixels
in such images take a wide range of values and so are more proper for data hiding.
Only a few techniques were proposed for binary images. In this study, we will
investigate more efficient methods for hiding more data in binary images.

On the other hand, the cover media need not always be images. On the Internet,
so many documents of formats other than images are being transmitted or displayed,
like e-mails, web pages, freeware, etc. If we can hide data behind e-mails, for
example, covert communication will be easily implemented. Authentication of
e-mails is also possible to prevent receiving false or illegally altered messages.
Furthermore, it is also desired to protect software from being stolen or illegal

distributed. If we can hide data into the source programs, then possibly protection of

2

software copyrights is achievable. It is noted by the way that studies of data hiding in

text contents are very few so far.

Data Hiding
Copyright Covert Multimedia Secret Data Digital rights
Protection communication | | authentication sharing association management

Figure 1.1. Classification of data hiding téchniques.

Most researches about data hiding in‘images lack serious considerations of image
distortion reduction in stego-images. It is desired in this study to design new
techniques of data hiding emphasizing optimality in image distortion reduction. In
doing so, it is also hoped that human vision modeling may be considered, so that
changes in the resulting stego-image can be less noticeable. It is noted here that most
existing data hiding methods are conducted in the frequency domain and thus are
useful for images compressed in the frequency domain like JPEG. For images of other
types like BMP, appropriate data hiding methods need be developed. And this is also
part of the goal of our study on data hiding in images.

On the other hand, it is also a goal of this study to devise new techniques for data
hiding in text documents, which are still few so far. Such techniques will be very
useful for daily uses because text documents like e-mails are popular and used or

watched every day by humans worldwide, especially for the purpose of

steganography.

1.3 Contributions of This Study

In this study, we propose ten data hiding techniques for various applications of
copyright protection, covert communication, authentication, and secret sharing. The
processed file types include two major categories, namely, image and document. The
former category includes binary, grayscale, and color images, and the latter type
includes email, software program, PDF, and HTML (web page). The contribution of
each of the ten techniques is described in the following.

(1) Data hiding in binary images --- the proposed technique has distortion-minimizing
capabilities by optimal block pattern coding and dynamic programming
techniques. Accordingly, not only more data bits can be embedded in an image
block on the average, but the resulting image ‘distortion is also reduced in an
optimal way.

(2) Data hiding in grayscale images --- the proposed technique is based on dynamic
programming and a human visual model with distortion-minimizing capabilities.
The proposed method can predict the PSNR value of the resulting image
according to the size of the data to be embedded before the embedding process
starts.

(3) Data hiding in color images --- the proposed technique is based on color
replacements with capabilities of reducing image distortion and change
noticeability. Color cubes and the idea of color clustering are used for
large-volume data hiding.

(4) Data hiding in emails and applications --- the proposed technique embeds data in
emails via Outlook Express and IE by some unused and invisible ASCII control

codes. Also described are two applications of the proposed data hiding technique,

covert communication via emails and authentication of emails.

(5) Security protection of software programs --- the proposed technique is based on
information sharing and authentication using invisible ASCII control codes. These
invisible codes are hidden in the camouflage program, resulting in a
stego-program for a participant to keep. To enhance security, three security
measures via the use of a secret random key are also proposed to prevent the
secret program from being recovered illegally, authenticate the stego-program and
check the stego-program whether it has been tampered with or not.

(6) Covert communication with authentication via software programs --- the proposed
technique is also based on the use of invisible ASCII codes. Each binary message,
after being encoded by certain ASCII codes and inserted at specific C++ program
locations, becomes invisible in:the source code.editors. A scheme for tamper-proof
authentication of the embedded.message has also been proposed.

(7) Covert communication via PDF ifiles----the proposed technique is based on the
use of special ASCII codes. A secret message, after being encoded by a special
ASCII code and embedded at between-word and between character locations in
the text of a PDF file, becomes invisible in the window of a common PDF reader,
creating a steganographic effect for secret transmission through the PDF file.

(8) Authentication of PDF files --- the proposed technique is based on the use of
invisible ASCII codes. To authenticate each word in a PDF file, a authentication
signal composed of multiple non-breaking space codes is generated from the
characters in the word and a random number. The authentication signal is invisible
for common PDF readers, thus reducing the probability for the authentication signal
to be tampered with.

(9) Secret communication via web pages --- the proposed technique is based on the

use of some special space codes in HTML. These codes, like the ASCII code 20,

5

appear to be white spaces as well. Message hiding and recovery with security
enhancement are also proposed.

(10) Automatic authentication of web pages --- the proposed technique is based on
the use of multiple special space codes in HTML. The propose method is useful
for checking automatically the integrity of the text content of a web page at the
word level. Special space codes are used again as authentication signals with
steganographic effects. Security enhancement techniques using secret keys and

multiple word encoding are also proposed.

1.4 Dissertation Organization

In the remainder of this dissertation, a survey of related studies and a more
detailed description of the ten proposed methods are given in Chapter 2. The proposed
methods are described one bylone in the subsequent chapters. In Chapter 3, the
proposed method for data hiding in binary images.is described. In Chapter 4, the
proposed method for data hiding in grayscale images is presented. In Chapter 5, the
proposed method for data hiding in color images is described. In Chapter 6, the
proposed method data hiding in emails and some applications are described. In
Chapter 7, the proposed method for security protection of software programs is
presented. In Chapter 8, the proposed method for covert communication with
authentication via software programs is described. In Chapter 9, the proposed
methods for covert communication via PDF files and authentication of PDF files are
described. In Chapter 10, the proposed methods for secret communication via web
pages and automatic authentication of web pages are described. Finally, in the last
chapter, conclusions of this study and some suggestions for future research are

included.

Chapter 2
Surveys of Related Studies and Brief
Descriptions of Proposed Methods

2.1 Survey of Related Studies

Many data hiding techniques have been proposed while this dissertation study is
dedicated to develop new data hiding techniques for various applications. Surveys of
related studies on data hiding are described first in the following, followed by brief

descriptions of the proposed methods.

2.1.1. Survey of Data Hiding in Binary Images

Many data hiding techniques have jbeen proposed for a variety of applications of
digital images in recent years [1-22]."Most of the techniques were proposed for color
and grayscale images because pixels i such images take a wide range of values and
so are more proper for data hiding. One simple method to data hiding in grayscale
images is to use the LSB replacement technique to hide secret data or authentication
signals. However, data hiding in binary images is a more challenging work. Because
binary image pixels have drastic contrast, it is easier for humans’ eyes to find out
pixel value changes in binary images. Therefore, it is more difficult to hide data into
binary images than into color or grayscale images. Wu et al. [12] embedded secret
data in specific image blocks that are selected with higher “flippability” scores by
pattern matching. Manipulated flippable pixels on the image region boundary are then
used to embed a significant amount of data without causing noticeable artifacts. Pan et
al. [6] changed pixel values in image blocks, mapped block contents into the secret

data, and used a secret key and a weight matrix to protect the hidden data. Given an

image block of size mxn, the scheme can conceal up to |_log2(m><n + 1)] bits of data in
the image by changing, at most, two bits in an image block. Tseng and Pan [8]
proposed a technique to alter an image bit into a new value identical to a neighboring
one. It can yield better hiding effect within a binary image. Koch and Zhao [2]
embedded a bit 0 or 1 in a block by changing the number of black pixels in the block
to be larger or smaller than that of white ones, respectively. In [5, 11], secret data are
concealed into dithered images by maneuvering dithering patterns. Tzeng and Tsai [9]
encoded the edge features of binary images into 4x4 block patterns, and authenticated
the images by pattern matching. Tzeng and Tsai [10] also proposed a new feature,
called surrounding edge count, for measuring the structural randomness in a 3x3
image block, and defined “pixel embeddability” from the viewpoint of minimizing
image distortion. Accordingly, embeddable image pixels suitable for hiding secret
data can be selected. Wu et al. [14].used even-odd relationships of lengths of run pairs
to embed information in binary 1mages; and-adjusted-the length of each run to an even

or odd value to represent the embedded bit value.

2.1.2. Survey of Data Hiding in Grayscale Images

Wang et al. [15] embedded an image in the fifth LSB bit plane of a cover
grayscale image, and employed an optimal substitution process based on a genetic
algorithm and a local pixel adjustment method to lower the distortion in the
stego-image. Chang et al. [16] used dynamic programming to obtain an optimal
solution for the LSB substitution method. Chan and Cheng [17, 18] presented an
optimal pixel adjustment process to improve the image quality of the stego-image
acquired by Wang’s schemes. Thien and Lin [19] proposed a method for hiding data
in images digit by digit using a modulus function. The method is better than simple

LSB substitution not only in eliminating false contours but also in reducing image

distortion. Lee and Chen [20] applied variable-sized LSB insertion to estimate the
maximum embedding capacity by a human visual system (HVS) property, and to
maintain image fidelity by removing false contours in smooth image regions. Liu et al.
[21] presented a novel bit plane-wise data hiding scheme using variable-depth LSB
substitution and employed post-processing to eliminate the resulting noticeable
artifacts.

Most of the above methods lack consideration of using precise human visual
models in improving the data hiding effect. Instead, Wu and Tsai [13] presented a
method based on the HVS by modifying quantization scales according to variation
insensitivity from smooth to contrastive to improve stego-image quality. And Lie and
Chang [22] presented an adjusted LSB technique with the number of LSBs adapting
to the pixels of different grayscales:

On the other hand, some steganalysis techniques were developed to detect secret
messages among stego-images: Lyu-and-Farid [23] developed a universal blind
detection scheme to detect hidden messages.in'stego-images, which uses wavelet-like
decomposition to build higher-order statistical models of natural images and adopts
the support vector machine as an optimal classifier to separate stego-images from
cover images. The method demonstrates good performance on JPEG images and the
selected statistics is rich enough to detect hidden data in the results yielded by a very
wide range of steganographic methods. In addition, to detect data hidden in LSBs in
the spatial domain, it is observed that the basic LSB substitution method changes
pixel values only between 2i and 2i + 1 in the i-th bit plane of the pixel value. This
leads to an effective steganalytic technique, the RS method proposed by Fridrich, et al.
[24], which not only can expose the presence of secret data but also can estimate the

length of the embedded data.

2.1.3. Survey of Data Hiding in Color Images

Many techniques for data hiding in color images have been proposed in the past
decade [1, 7, 27] which may be categorized into two major methods: the
spatial-domain method and the frequency-domain method. In the former, secret data
are directly embedded in the characteristics of the pixels of the cover image, and in
the latter, the cover image is transformed first into frequency-domain coefficients, into
which secret data are embedded. In general, the frequency-domain method is more
robust against attacks while the spatial-domain method can hide more data. The
previously-surveyed methods for data hiding in binary and grayscale images are
conducted in the spatial domain. For the other method, related papers are very few
unless the previously-surveyed methods are adapted to be applicable to color images,
for example, by considering each edlor channel as a grayscale image. Tsai and Wang
[28] proposed a data hiding ‘technique ‘for ‘color. images using a binary space
partitioning tree, which partitions the RGB color space into voxels and embeds three

message bits into each voxel.

2.1.4. Survey of Data Hiding in Text Documents

In contrast with other multimedia, digital texts contain less redundant
information for embedding data. Most data hiding methods for digital text documents
try to encode information directly into the text itself or into the text format. One way
of into-text hiding is to exploit the natural redundancy of languages, and one way of
into-format hiding is to adjust inter-word or inter-line space [29]. On the other hand,
from the steganographic point of view, digital text documents can be classified into
two types: hard-copy and soft-copy [27]. A hard-copy text may be treated as a binary
image resulting from scanning a text document, while a soft-copy text may be

regarded as an American Standard Code for Information Interchange (ASCII) text that

10

can be edited by a text editing software like Notepad.

For a hard-copy text, which is interpreted as a highly-structured image,
information can be embedded into the layout or format of the image. Low et al. and
Brassil et al. [30-31] presented text-based steganographic methods which use the
distances between consecutive lines of texts or between consecutive words to hide
information. If the space between two lines is smaller than a threshold, a “0” is
represented; otherwise, a “1.”

In contrast with hard-copy texts and other digital media, soft-copy texts are more
difficult to hide data due to the lack of redundant information. Even a slight
modification, like rewriting a letter, may be noticed by a reader. However, huge
amounts of text documents that people deal with daily on the Internet are essentially
soft-copy texts in nature. Thus, the protection of digital rights of this type of text
document becomes more and mere.important.

Bender et al. [27] proposed the us€-ofinfrequent additional spaces to form secret
data and transmit them in soft-copy texts,” including inter-sentence spacing,
end-of-line spacing, and inter-word spacing in texts. For example, one space between
words is taken to represent a “0” and two spaces a “l.” Wayner [32] proposed a
method to use the context-free grammar to create secret text messages in cover files
for covert communication; the secret message is not embedded in the cover file
directly. And a receiver extracts the hidden message by parsing. A constraint is that
the cover text should be a meaningful message; otherwise, a reader will doubt it.

Cantrell and Dampier [33] proposed to embed data into unused spaces in file
headers. These spaces are invisible to usual users because they are disregarded when
the files are opened. The spaces can be seen when examined at the byte level, but few
users would do so. Johnson et al. [34] proposed another way to embed information in

unused spaces that are imperceptible to an observer, which is based on the fact that

11

usually operating systems allocate more space than the need of a file and the result
leaves some unused space to hide information. A third method is to create a hidden
partition in a file system to embed information. The partition is not viewed normally.
This concept has been expanded in a steganographic file system [35]. If a user knows
the file name and the password, access to the file will be granted; otherwise, no
evidence of the file will be revealed in the system of the hidden files.

Characteristics inherent in network protocols may also be taken advantage of to
hide information [36]. For example, TCP/IP packets can be used to transmit secret
messages across the Internet by embedding unused spaces in the packet header.
Finally, Chang and Tsai [37] proposed a special space encoding to embed copyright
information into the HTML text content. The bit “1” is encoded by inserting a
so-called pseudo-space string “ ” beforea real space, while the bit “0” is

represented by a normal space between two werds.orsentences.

2.1.5. Survey of Data Hiding and-Sharingin Software Programs

A survey about watermarking 1n-‘programs can be found in Zhu, et al. [54]. Two
methods have been identified: static and dynamic. The former inserts and extracts
watermarks in program codes without running the program while the latter does the
same in the execution state of a software object. Two respective examples are
Venkatesan, et al. [55] and Collberg and Thomborson [56]. There exist other methods
with digital text, sentence syntax, text typos, e-mails [1, 27, 53, 57-59] as cover
media.

The concept of secret sharing was proposed first by Shamir [46]. By a so-called
(k, n)-threshold scheme, the idea is to encode a secret data item into n shares for n
participants to keep, and any k or more of the shares can be collected to recover the

original secret, but any (k- 1) or fewer of them will gain no information about it. A

12

similar scheme, called visual cryptography, was proposed by Naor and Shamir [46]
for sharing an image. The scheme provides an easy and fast decryption process
consisting of xeroxing the shares onto transparencies and stacking them to reveal the
original image for visual inspection. This technique has been investigated further in
[48-50], though it is suitable for binary images only. Verheul and van Tilborg [51]
extended the visual cryptography technique for processing images with small numbers
of gray levels or colors. Lin and Tsai [52] proposed a digital version of the visual
cryptography scheme for color images with no limit on the number of colors. The n
shares obtained from a color image are hidden in n camouflage images which may be
selected to have well-known contents, like famous characters or paintings, to create

additional steganographic effects for security protection of the shares.

2.1.6. Survey of Data Hiding in PDE.Documents

Portable Document Format (PDF) files {63] are-popular nowadays, and so using
them as carriers of secret messages for covert communication is convenient. Though
there are some techniques of embedding data“in text files [57-58], studies of using
PDF files as cover media are very few, except Zhong et al. [64] in which integer
numerals specifying the positions of the text characters in a PDF file are used to
embed secret data.

For security, it is necessary to verify the authenticity of a file received from
another party or kept for a long time in a certain environment, before the file is used
for various purposes. This is the authentication problem of the file, which should be
solved for protection of the file against unintentional changes and malicious
manipulations. In the past, the information hiding method [1] has been adopted to
solve this problem but most studies were about images [10, 66-71]. There is yet no

investigation on the authentication of PDF files, though a related study about data

13

hiding in PDF files can be found in Zhong et al. [64]. Hiding data in documents other

than PDF files have also been investigated [61-62].

2.1.7. Survey of Data Hiding in HTML Documents

About hiding data in the HTML, Shirali-Shahreza [72] protects a Java applet in
an HTML file from being copied by hiding a special 8-character string with a key
within the Java applet. Wu and Lai [60] hide binary data in HTML files using various
properties of tags, like attributes. Wu, et al. [73] use hash functions to compute digests
of web page contents as watermarks. Chang and Tsai [37] insert extra white spaces in
HTML text to encode bits for watermarking, as done by some commercial software
[74].

There are very few studies on web page authentication using data hiding
techniques so far. Zhao and Lu {75] generated watermarks of web pages based on
principal component analysis and ‘embed them by upper and lower cases of letters in
HTML tags. The watermark was used to check the integrity of the entire web page.
Wau et al. [73] designed fast fragile watermarks for web pages based on hash functions
which generate digests of web pages quickly with case insensitivity. Two related
studies can be found in [37, 60] which utilize properties of spaces, tabs, tags,
attributes, etc., to encode and hide data bits into the HTML for purposes other than
web page authentication. And some more general studies about data hiding can be

found in [1, 76].

2.2 Brief Descriptions of Proposed Methods

In this dissertation study, we have developed totally ten methods, three for data
hiding in various images with distortion reduction capability, one for data hiding in
emails with capabilities of authenticating the hidden data, two for data hiding in
source programs, two for data hiding in PDF files, and finally two for data hiding in

14

web pages. They are briefly described in the remainder of this section

2.2.1. Data Hiding in Binary Images with Distortion-Minimizing
Capabilities by Optimal Block Pattern Coding and Dynamic
Programming Techniques

The first method we propose is a new technique which embeds data into a binary
image and minimizes the resulting image distortion in an optimal way. In a binary
image, there are two distinct pixel values, 0 and 1, corresponding to black and white
pixels, respectively. When data are embedded into a binary image, some image pixels
used for data hiding will be changed from black to white or reversely. The pixel value
changes will be called bit flippings in the sequel. To embed more data, more bit
flippings may be conducted; however, the quality of the resulting image will also get
worse. The bit flipping rates of mest data hiding methods for binary images are about

50%. We propose a new data hiding method which has the capability to conceal up to

three data bits in a 2x2 block, resulting-in-bit flipping rates lower than 50%. The

method can thus be used to embed more data.. This is achieved by a block pattern
coding technique. On the other hand, while it is desirable to embed more data, the
resulting image quality should be maintained in the mean time. For this purpose, two
optimization techniques are proposed. The first is to use multiple block pattern
encoding tables, from which an optimal one is selected for each input image. The
second technique is to use a dynamic programming algorithm to divide the message
data stream into appropriate bit segments for optimal data embedding in the image
blocks in the sense of minimizing the number of bit flippings. As a result, the
proposed method can achieve the goals of both increasing the embedded data volume
and reducing the resulting image distortion. Furthermore, the method can be used to

extract embedded data without referencing the original image.

15

2.2.2. Data Hiding in Grayscale Images by Dynamic Programming
Based on A Human Visual Model

The second method we propose is a new technique which embeds data into a
grayscale image, based on the use of a new HVS model, to estimate the number of
usable bits of each pixel in the cover image. Furthermore, a block pattern encoding
method is proposed to embed up to three data bits in a 2x2 block of the bit planes
without visible degrading of the stego-image quality. This is achieved by using two
optimization techniques. The first technique utilizes multiple block pattern encoding
tables, from which an optimal one is chosen for each input image; and the second
technique uses dynamic programming to divide the message data stream into
appropriate bit segments for optimal data bit embedding in the image blocks to
minimize a cost function. Especially, the propesed method can predict the PSNR
value of the stego-image according to the embedded data size before the embedding
process is started. Moreover, the proposed method can extract embedded data without
referencing the original image, and does not require post-processing to refine the
stego-image quality.
2.2.3. Data Hiding in Color Images by Color Replacements with

Reduction of Image Distortion and Change Noticeability

The third proposed method is a new one for hiding data in RGB color images
using color space partitioning and color encoding. The RGB color space is
partitioned into non-overlapping, equal-sized color clusters, each being cubic in shape,
called a color cube. The colors in each cube are used to represent fixed-length codes.
Message data hiding is accomplished by replacing selected image pixels’ colors with
closest ones in color cubes to embed corresponding codes representing the message
bits. And data extraction is a reverse process of data embedding. To reduce image
distortion, each color cube is designed to include a number of color groups, with all

16

colors in each group representing an identical code. The colors in each group are
distributed as separately as possible in the cube, and color replacement at an image
pixel is conducted by choosing as the replacing color the one in a group, which is
closest to the pixel’s color in the sense of Euclidean color distance. And to reduce the
noticeability of the resulting color changes, we select adaptively for use in data
embedding those cubes whose colors are more scattered in the cover image (that is,
the pixels whose colors are in these cubes are more separated mutually in the cover
image), so that the color changes on these pixels will arouse less notice from the
observer.
2.2.4. Data Hiding in Emails and Applications by Unused ASCII
Control Codes

The fourth proposed methodiis a new. technique for data hiding in emails via
Outlook Express and IE under theioperating system of the traditional Chinese version
of Microsoft Windows XP, service pack 2772002, The idea is based on the use of
unused ASCII codes. Secret data are encoded by special ASCII control codes and
embedded into cover emails by inserting the data into the text line ends in the body of
a given email. These ASCII control codes, when displayed both by Outlook Express
and IE, are invisible to the user, achieving the effect of steganography. Such invisible
ASCII control codes were found out in this study by a systematic test of all the ASCII
codes on various email server software systems and standards. The proposed data
encoding technique is a combination of five coding rules found in this study, which
insert special ASCII control codes into different places in email texts. The inserted
codes will not change the meanings of the sentences in the cover email, neither
causing any noticeable difference to the reader. Furthermore, hidden data can be

extracted from a stego-email completely to recover the original email text content.

17

Also described in this study are two applications of the proposed data hiding

technique, namely, covert communication via emails and authentication of emails. In

the former application, security is enhanced by the use of a secret key, and in the latter,

an authentication signal is generated from the cover email for email fidelity checking.

2.2.5. Security Protection of Software Programs by Information
Sharing and Authentication Techniques Using Invisible ASCII
Control Codes

The fifth proposed method is a new technique based on the use of some specific
ASCII control codes invisible in certain software editors. By the use of the logic
operation of “exclusive-OR,” each source program to be shared is transformed into a
number of shares, say N ones, which are then hidden respectively into N pre-selected
camouflage source programs, resulting in N stego=programs. Each stego-program still
can be compiled and executed-to.perform the function of the original camouflage
program, and each camouflage-program-may-be selected arbitrarily, thus enhancing
the steganographic effect.

To improve the security protection effect further, we propose additionally an
authentication scheme for verifying the correctness of the contents of the
stego-programs brought by the participants to join the process of secret program
recovery. This is advantageous to prevent any of the participants from accidental or
intentional provision of a false or destructed stego-program. The verified contents
include the share data and the camouflage program contained in each stego-program.
2.2.6. Covert Communication with Authentication via Software

Programs Using Invisible ASCII Codes
The sixth proposed method is a new one for covert communication by

embedding messages in source programs. A binary message, after being encoded into

18

some ASCII codes and embedded into certain C++ program locations, becomes

invisible in the source code editors of Visual C++ and C++ Builder under some

Windows OS environments, creating a steganographic effect. A tamper-proof

authentication scheme for the embedded message is also proposed.

2.2.7. Covert Communication via PDF Files and PDF File
Authentication by Invisible Codes

The seventh proposed method is a new technique for covert communication,
which embeds secret messages in PDF files. A message is regarded as a string of bits
or characters, which are then encoded with a special ASCII code by binary or unitary
coding. The results, after being embedded at the between-word or between-character
locations in the text of a PDF file, are found in this study to be invisible in the
windows of common PDF readersj creating a steganographic eftfect and achieving the
purpose of secret communication.

The eighth method is proposed’ forrauthenticating PDF files using a special
ASCII code AO. For each word ‘in the-text of a PDF file to be protected, an
authentication signal composed of repeating A0’s is generated from the 8-bit ASCII
codes of the characters composing the word as well as a random number. The signal is
then embedded to the right of the word. These AO’s are invisible in the window of
common PDF readers, enhancing the security of the embedded authentication signals.
Without the key for use in generating the random numbers, malicious creation of a
fake file is nearly impossible.

2.2.8. Secret Communication through Web Pages and Automatic

Authentication of Web Pages Using Special Space Codes in
HTML Files

The ninth proposed method is a new technique for secret communication by

19

embedding special space codes in the HTML files of web pages. These codes appear
as white spaces in the web page, and so may be used to encode secret message bits
with steganographic effects. The codes are the result of a thorough investigation of all
possible coding systems which can be applied in the HTML file. There are many of
such codes, and each of them may be used to encode at least three message bits,
increasing the data hiding capability.

The last proposed method is a new automatic authentication technique for
checking the integrity of web page text contents. The method, aiming to check the
authenticity of each single word, is based on a data hiding technique which uses some
special space codes as authentication signals. Such codes, which are found in this
study to be multiple and appear identical to normal white spaces in web pages, are
used to encode certain binary mapping results from the word contents. These codes
are then taken to replace the between-word spaces in the HTML codes, resulting in
good steganographic effects. Security enhancement has also been considered, and
related problems are solved by theuse.of seeret keys and a multiple word encoding

scheme.

20

Chapter 3

Data Hiding in Binary Images with
Distortion-Minimizing Capabilities by
Optimal Block Pattern Coding and

Dynamic Programming Techniques

3.1 ldea of Proposed Method

In a binary image, there are only two pixel values, 0 and 1, and the
corresponding pixels may be called black and white ones, respectively. When data are
embedded in a binary image, the image pixels will be changed from black to white or
from white to black. The distortion|ratel-1s: 50%. in general data hiding methods for
binary images. The method which we propose.in this study for data hiding in binary
images is based on a block pattern coding technique and a dynamic programming
algorithm. The method can be used to embed more data in a block of a binary image,
and minimize the resulting stego-image distortion simultaneously.

In order to embed more data in a binary image, more pixels need be changed;
however, the quality of the resulting stego-image will get worse. On the contrary, in
order to maintain the quality of the resulting image, the amount of the embedded data
should be limited. The proposed method is designed to be a compromise between the
embedded data volume and the resulting image distortion. The method can extract
embedded data without referencing the original image. It also has the merit of
concealing up to three data bits in a 2x2 block by changing the smallest number of
bits in a block. Contrastively, most existing methods for hiding data in binary images

can embed only one or two data bits in a 2x2 image block [7, 10, 12].

21

In the remainder of this chapter, the proposed method for dealing with 2x2 image
blocks is first described in Section 3.2. Some experimental results are shown in

Section 3.3, followed by some cluding remarks in Section 3.4.

3.2 Proposed Data Embedding Process

The proposed method is designed to hide secret data behind binary images in
random fashions controlled by secret keys. The method consists of a data embedding
process and a data extraction process. In this section, the principles behind the
proposed method are presented first, followed by the details of the proposed data

embedding and extraction processes.

A. Encoding Block Patterns for Secret Data Embedding

In order to embed secret data 1nto-@a binary cover image, every 2x2 block of the
cover image is regarded as a pattern with-a correspending 4-bit binary value in this
study, with each black pixel representing-a-bit 0.and each white one representing 1.
An illustration is shown in Figure 3.1!"Therefore, in a 2x2 block, possible binary
values of the block pattern are 0000, through 1111,, where “0000,” means an entirely
black block while “1111,” means an entirely white one.

The main idea of the proposed data hiding method is based on the use of a block
pattern encoding table which maps each block pattern into a certain code for use as
hidden data with the code being up to three bits in length. And data embedding is
accomplished by changing the block patterns so that the codes of the resulting blocks
become just the input secret data to be embedded. A block pattern encoding table
designed for use in this study is shown in Table 3.1. The idea behind the design of this
table is described as follows. It is emphasized, by the way, that such a table is just one

of the many possible ones usable for data hiding, and the proposed data embedding

22

process will choose from them an optimal one for each specific input image, as

described later.

2x2 block pattern Corresponding binary value
by | b, bbby
bs | by

E 0101

Figure 3.1 Illustration of block patterns and corresponding binary values.

The number of possible patteris n a 2%2:block are 16. This number is much
larger than the need to represent the two:secret bits ‘0’ and ‘1°, so we may use
multiple block patterns to represent a single secret value, allowing the possibility of
choosing among the patterns an optimal one to replace the original image block in the
data embedding process, thus reducing the resulting image distortion in the replaced
block. Furthermore, we wish to embed more data in a block, and for this goal we may
use a block pattern to represent more than one bit of secret data.

For example, we may use both the block pattern t; = 1101, and the pattern t, =
1110, to represent the two-bit secret value s = 00,. In this way, when we want to
embed, for example, the secret value s = 00, into a block B with pattern v = 0110,, we
have the two choices of block patterns t; = 1101, and t; = 1110, instead of the
conventional case of just one, from which we can choose t; = 1110, to replace the
pattern v = 0110, of the block B, resulting in the smaller distortion of just a 1-bit error.
Note that if only the choice of t; = 1101, is allowed, then the error will be 3 bits

which mean a larger distortion in the replaced block. It is such allowance of multiple

23

choices for block pattern replacement that achieves distortion reduction in the
proposed method.

More generally, we group in this study the 16 possible block patterns in a 2x2
block B into distinct sets according to the entropy values E of the block patterns,

where an entropy value E of a block pattern P is defined as follows:
E=- > pclog,p, =—Polog po—pilog pi
k

with po and p; being the occurrence probability values of black and white pixels

appearing in P computed as

Po = (number of black pixels in P)/4; p; = (number white pixels in P)/4.

A pattern P in a set with a higher entropy value E is presumably more random in
its black and white arrangement, and so is more suitable for hiding more secret data
without causing a noticeable change., There are-three possible entropy values 0, 0.811,
and 1 in a 2x2 block by the above definition; so we divide the 16 possible block
patterns into three sets. The first set with the entropy value 0 has two distinct block
patterns, one being the entirely white block, the other the entirely black. They are
denoted as A and F in Table 3.1 and are used to represent the secret data of 1 and 0,
respectively. That is, they encode the secret data of 0 and 1, respectively.

The second set with the entropy value 0.811 includes eight distinct block patterns,
which can be classified into two classes, one class with each pattern including one
black pixel and three white ones and the other class with each pattern including three
black pixels and one white one. The first class, denoted as B in Table 3.1, includes
four block patterns, and we use two block patterns of them to encode the secret value
00,, and the other two to encode the secret value 01,. When deciding which two

patterns should be selected to encode an identical secret value, we adopted the

24

“mismatch reduction criterion” of making the two selected patterns less different in
the number of mismatching pixel values when one of the two selected patterns is
superimposed on the other. We use the four block patterns of the other class, denoted

as E in Table 3.1, to encode the secret values 10, and 11, in a similar way.

Table 3.1 Proposed block pattern encoding table.

Encoded Block Encoded
Block |Entropy|Corresponding Entropy |Corresponding
Type secret || Type | pattern secret
pattern | value | binary value value | binary value
data data
A 0 1111 1 F . 0 0000 0
Bl Ei 0.811 1110 00 El E 0.811 0001 11
B2 E 0.811 1101 00 E2 ﬂ 0.811 0010 11
B3 Eﬂ 0.811 1011 01 E3 H 0.811 0100 10
B4 E 0.811 0111 0l E4 u 0.811 1000 10
Cl m 1 0011 011 Dl E 1 0110 100
C2 E 1 0101 011 D2 E 1 1001 101
C3 EI 1 1010 010
C4 w | 1100 010

The last set with the entropy value 1 has six distinct block patterns. So far we
have completed the encoding of all possible one-bit and two-bit secret values with ten
patterns. So the remaining six patterns in the 16 ones may be used to encode three-bit

secret values. But six patterns are not enough to encode all the eight three-bit secret

25

values, so we can only take care of some of them, following the aforementioned
mismatch reduction criterion. In particular, we use two block patterns to encode each
of the two 3-bit secret values 011, and 010,, and finally, the last two patterns to
encode the secret values 100, and 101,, respectively. The six patterns are denoted as

C1 through C4 and D1 and D2 in Table 3.1.

B. Sketch of proposed idea of data hiding

In the proposed data embedding process, the more data we embed in a 2x2 block,
the worse the resulting image quality becomes. Therefore, we must control the
number of destructed pixels in a block to reduce the resulting image distortion. The
idea of the proposed data embedding process is sketched as four major steps in the
following, which includes two folds.ef distortion.minimization.

(1) Dividing the input image into blocks:-We divide the input image into 2x2 blocks
with every two neighboring blocks-being separated by a 1-pixel-wide line, as
shown in Figure 3.2. The 1-pixel-wide band around each 2x2 block is said to be
the neighborhood of the block.

(2) Selecting a random list of embeddable blocks for data embedding: We then use a
secret key K as well as a random number generator f to select randomly a
sequential list of embeddable blocks. A block B is said to be embeddable in this
study if the following two conditions are satisfied: (a) the neighborhood of B is
not entirely black or white, (b) B has not been selected for data embedding yet.
The way we adopt to generate the random list of embeddable blocks is as follows:
(a) concatenate all blocks obtained in Step (1) above in sequence; (b) use K and f
to generate sequentially a random number f(K), divide it by the total number of
blocks, and take the remainder as a block number, denoted by N; (c) check block

N to see if it is an embeddable block; if not, then perform the same process until

26

an embeddable block is obtained; (d) append the obtained embeddable block to
the end of the desired random list; (e) stop the process when a sufficient number
of embeddable blocks for data embedding are obtained.

(3) Using multiple block pattern encoding tables for the first-fold distortion reduction:
We generate all possible block pattern encoding tables and select an optimal one
for use in the data embedding process, in the sense of introducing the least
distortion.

(4) Applying optimal search techniques for the second-fold distortion reduction:
Finally we apply the dynamic programming technique to segment the input
message data stream optimally into a series of codes and embed them in the input
image, according to a cost function designed in advance for measuring the degree
of the pattern change in eachiimage block. This reduces the resulting distortion

further in a global sense.

Figure 3.2. Division of input image into 2x2 blocks with separating lines (grids with

bold boundaries are 2x2 blocks for data embedding).

C. Use of Multiple Block Pattern Encoding Tables

The first distortion-reduction technique using multiple block pattern encoding

27

tables, as mentioned previously in the third major step of the proposed data;
embedding process, is based on the idea that a single encoding table will not be
suitable for every binary image in the embedding process. If a binary image is
destroyed very seriously in the data embedding process using Table 3.1, it will be
necessary to use another table with other combinations of block patterns and encoded
hidden data. For example, assume that a binary secret value v = 101, is to be
embedded into a sequence of three randomly selected image blockswith patterns
0000,0100, and 1111 by Table 3.1. The data embedding process using Table 3.1, as
illustrated in Figure 3.3(a), will select optimally the block pattern type D2 = 1001,
which encodes the three-bit secret value v = 101,, to replace the first selected block
with pattern 0000, resulting in reversing two bits. However, if we replace the encoded
secret data of type A in Table 3.1 with those of'type F, and replace those of all of
types B1 through B4 with those of.all of types El through E4, respectively, then we
will get a new block pattern encoding table-and.the use of it to hide the secret value v
= 101, will result in no bit reversing because here we can, as illustrated in Figure
3.3(b), select in sequence optimally the new pattern type F = 0000 (encoding the
secret data of 1,) and the new pattern type E3 = 0100 (encoding the secret data of 015,)
to encode together the secret data v = 101,. This means that adaptive table generations
and selections for use in data embedding help distortion reduction indeed. More
generally, by enumerating all possible ways for exchanging the encoded secret data of
certain types in Table 3.1 with those of the other types, we can get 128 distinct block
pattern encoding tables for selection in the data embedding process to minimize the

distortion.

28

D. Proposed Distortion-Minimizing Cost Function and Search Techniques for

Optimal Solutions

The cost function proposed in this study for use in the proposed data embedding
process to minimize image distortion is the total number of reversed bits in the
resulting stego-image. In Table 3.1, block patterns can be used to encode one, two, or
three secret bits. Correspondingly, we hide a binary secret value v by embedding the

first one, two, or three bits in the prefix of v into a block.

Meszage walue w="101"

1 2 2
selected block lList . H
Eeplacing block
(optimal)

Hidden bats 101

o of flipped bits o

{a) Block replacement using Table 1.

Ileszage value w="101"

| 2
Selected block list . H
Feplacing blocks . n
[optimal)

Hidden bits 1 01

Ma. of flipped bits 1] 1]

(b Block replacement using new table,

Figure 3.3. An example of proposed data embedding process

29

To determine how many bits should be embedded, we may calculate first the cost
function value for each of the three cases, and then replace the currently selected
block with the block pattern which corresponds to the case with the minimum cost
function value. This method provides a quick way for data embedding. However, it is
actually a greedy search and not an optimal solution.

To see this, for example, for the previously-mentioned example in which the
secret value v of 101, is embedded in three selected blocks with patterns 0000, 0100,
and 1111 by Table 3.1, by the above-mentioned greedy algorithm we first replace the
block with pattern 0000 by the block pattern E3 = 0100 to embed two bits 10. The
computed cost function value is 1 because a bit is reversed here. This cost is a local
minimal one. Next, we replace the block with pattern 0100 by the block pattern A=
1111 to embed the last bit 1of v, ahd get a local minimal cost value 3. The total cost
value is 4. Now, if we do not use the greedy algorithm from the beginning, and
replace instead the first block with pattern-0000 by the block pattern D2 = 1001 to
embed three bits 101 directly, then the total eost value will be reduced to 2 which is
smaller than the previous total cost 4. This shows that there indeed exist at least one
solution better than that found by the greedy method. Figure 3.4 illustrates the data
embedding process for this example. This is also true for many other examples, as
found by this study. And so the search of an optimal solution is meaningful, for which
the proposed method is dynamic programming.

In the proposed dynamic programming algorithm (abbreviated as DP in the
sequel), certain edit distances are defined to minimize the cost function, as described
in the following. Assume that the input secret data value to be hidden is in the form of
an Nn-bit string S, with S,[i] denoting its ith bit. Also, let the randomly selected blocks
for embedding the secret value be expressed as a list in the form of another string S,

with S,[i] denoting its ith block. Only one type of edit operation, namely, replacement,

30

is needed for use in the proposed algorithm to represent the image block replacement
operations involving S; and S, in the proposed secret data embedding process. The
edit distance of S; and S, is defined, according to the previous discussions, as the
minimum cost to transform S, into S; by edit operations according to an optimal block
pattern encoding table used in the data embedding process. Let C be a
two-dimensional cost matrix with its element C[i, j] denoting the minimum cost to
transform a substring of S, with bits S;[j] through S,[n]into a substring of S; with bits
Si[i] through S;[n]. Then C[1, 1] is the value of the minimum cost to transform S, into
S;. Also, let RC be a three-dimensional replacement cost matrix with its element RC(L,
i, j) denoting the cost for replacing the (j+1)th block in S,, denoted by S;[j], with the
block patterns encoding the initial L bits of a substring of S; with bits S[i] through
Si[n—1], where L may be 1, 2, or:3. By the above definitions, the value C[i, j] is
recursively just the value of the-minimum of all pessible values of RC(L, i, j)+C[i+L,
jt1], where L = 0, 1, and 3. And becatse.of-this, the size of C must be expanded to
n+2 x n. Furthermore, those elements of C with indices larger than n—1 should be
given certain values (0 or o) to specify their correspondences to “boundary
conditions”. Then, according to the dynamic programming technique, the minimum

edit distance may be computed by the following recursive formulas:

set initial values

CIn,jl=0, j=0,1,2,...n,

C[n+1,j]1=0, j=0,1,2,...n,

C[n+2,j1=0, j=0,1,2,...n,

Cli,n]=w, 1=0,1,2,...n—1,

31

C[',J]:OO, |,J:0, lazan_la

and thenforalli=0,1,...n—1,j=0, 1,...n—1, compute

C[i, j] = min{RC(1, i,))+C[i+1, j+1], RC(2, I, j)+C[i+2, j+1], RC(3, i,))+C[i+3,

JH1}.

Message valuev="101"

1 2 3
Selected block list . H
Replacing blocks H
(by greedy search)
Hidden bit(s) 10 1
Cost 1 3/~ (total cost =4)
Replacing block E
(by optimum search)
Hidden bits 101
Cost 2 (total cost = 2)

Figure 3.4. An example of proposed data embedding process.

Algorithm 3.1 Computing minimum cost for minimizing distortion in data
embedding process by DP.
Input: an n-bit secret code string Sy, a string of n randomly selected blocks S;, a block
pattern encoding table, a two-dimensional cost matrix C[i, j], fori =0, 1, ...,

n+2, j = 0, 1, ..., n with the initial values specified in the above recursive

32

formulas, a two-dimensional index matrix I[i, j], for i =0, 1, ... n—1, j = 0,
1, ... n—1, for recording the relative indices in the block pattern encoding table
after calculating C[i, j], and a two-dimensional matrix N[i, j], fori =0, 1, ...
n-1,j=0, 1, ... n—1, for recording the relative next step after calculating Cfi, j]

with each element given an initial value of minus one.

Output: C[i, j], the minimum cost to change the substring S,[j] through S,[n] into

Sufi ... n1, 1[i, j], and N[i, j].

Steps:

1. If C[i, j] is equal to an infinitive value o, continue the next step; else go to Step 4.

2. Calculate three temporary cost functions T[1], T[2], and T[3], record every next
step and the corresponding value as the indices index1, index2, and index3 of the
block pattern encoding table which is used i ¢€alculating the minimal cost in RC(1,
I,]), RC(2, 1, J), and RC(3, iz]),respectively, in.the following way:

2.1 T[1]=RC(,i,)) + C@+l, j+=Dsnext_step[l] = i+1, and acquire index].
2.2 T[2]=RC(2,1,]) + C(i+2; Jtl), next step[2] = i+2, and acquire index2.
2.3 T[3]=RC(3,1i,]j) + C(i+3, j+*1), next_step[3] = i+3. and acquire index3.

3. Take C(i, j) to be the minimum of the three temporary cost functions, record the
corresponding relative next step in NJi, j], and record the relative index in the
block pattern encoding table in I, j]

4. Return C[i, j].

Because every next step and the used indices of the block pattern encoding table

have been recorded, we can reconstruct the embedding process easily. The space

complexity and time complexity are both O(n”) for the DP. Now, the proposed data

embedding process is described in detail as an algorithm in the following. Figure 3.5

illustrates a flowchart of the data embedding process.

33

Selected 2x2 |, /S Secmt
Heock lists ke

Block pattem encoding tables

& hinary irmage
eriEt
data

step 3.2 @), (b, and (o)
In algorithm 2

¥
o+

Inircal total cost
= total cost

Mo

select another encoding table

Eeplace the minimal cost
block list into binary iz

& stego-ma ge

Figure 3.5 Flowchart of the proposed data embedding process.

Algorithm 3.2 Data embedding process using block pattern encoding tables and
DP.

Input: a binary image |, a secret data string S; with n bits, a secret key K as well as a
random number generator f, and 128 block pattern encoding tables.

Output: a stego-image S, an optimal block pattern encoding table B, a length of block

34

list L, and a minimal total cost Cyi,.
Steps:
1. Get a list of embeddable 2x2 blocks from the input image | in a way as described
previously.
2. Set the value of the desired minimal total cost Cpin to be infinitive.
3. For each block pattern encoding table B; among the 128 possible ones, perform the
following operations.
3.0 Calculate a total cost C; using B; and the DP.
3.1 If Cpi is larger than C;, perform the following operations.
a. Take C;jas the minimal total cost Cpp.
b. Set the optimal block pattern encoding table B as B;.
c. Sequentially, record every index obtained from Step 3.1 according to the
next-step matrix N-and index matrix.I, until an element of N is equal to
—1. Meanwhile, calculate L; the-length of the block list.
4. Replace the minimal-cost blocklist.with the selected block list of binary image |
by the recorded index sequence of block pattern encoding table B and the length
of the block list L.

5. Take the final result as the desired stego-image S.

E. Data recovery process

The goal of the proposed data recovery process is to extract the embedded bit
stream from a stego-image. In the proposed data extraction process, Table 3.1 is first
simplified as an extraction table as shown in Table 3.2. It is easier to use this table to
finish the extraction process, as follows. Figure 3.6 illustrates a flowchart of the data

recovery process.

35

Algorithm3.3 Secret data recovery process.

Input: a stego-image |I” presumably including a secret bit stream S; and the secret key
K as well as the random number generator f used in the data embedding
process; the index table B that points outs which table is used in the
embedding process, and the length of the block list L.

Output: the secret bit stream S or a report of failure to recover the secret.

Steps:

1. Extract a list of 2x2 embeddable blocks from the stego-image I’ by the secret
key K, the random number generator f, and the length L.

2. For each 2x2 embeddable block in I’, compute the corresponding block
pattern P, and look P up in the table B to decode the data bits embedded in
the block.

3. Take all the extracted data.bits in sequence as the desired secret bit stream S.

Table 3.2 An extraction table (table index B=0).

Corresponding Corresponding
binary value of |Encoded secret data|| binary value of Encoded secret
block pattern block pattern data

1111 1 0111 01
1110 00 0110 100
1101 00 0101 011
1100 010 0100 10
1011 01 0011 011
1010 010 0010 11
1001 101 0001 11
1000 10 0000 0

36

3.3 Experimental Results

Some experimental results of applying the proposed method are shown in
Figures 3.7, 3.8, and 3.9. Figures 3.7(a), 3.8(a) and 3.9(a) show three binary cover
images of the sizes 687x534, 512x512, and 2320x3408, respectively. Two streams of
message data were generated by a random fashion. One is a stream of 2432 bits,
which was embedded into each of the binary images shown in Figures 3.7(a), and
3.9(a). The other is 992-bit long, which was embedded into the binary image shown in
Figure 3.8(a). The stego-images obtained by embedding the message data using the
greedy search algorithm and the optimal encoding table among the 128 ones are
shown in Figures 3.7(b), 3.8(b) and 3.9(b), respectively. And the stego-images after
embedding the message using the DPA and the optimal encoding table among the 128
ones are shown in Figures 3.7(c), 3:8(c) and 3.9(¢), respectively. Figure 3.8(d) shows
the difference between Figures 3.8(a) and 3.8(¢) in terms of white pixels. And Figure
3.9(d) show similarly enlarged-version-of-parts of the differences between Figures
3.9(a) and 3.9(c), for better inspection effects:

Note that the original input images are included in Figures 3.7(d), 3.8(d) and
3.9(d) in gray values as the backgrounds to show more clearly the difference spots.
Tables 3.3 shows the statistical data of the stego-images of Figures 3.7(a), 3.8(a), and
3.9(a) for the proposed algorithms, in which we list the numbers of the selected table
index, the used blocks, the minimum cost values and the length of secret data. The
minimum cost values show that the DP is the best, the greedy algorithm using an
optimal encoding table among the 128 possible ones is the next, and the greedy
algorithm using just an encoding table is the worst. For other images, similar results
can be observed. For the images shown here, the average number of secret data
embedded in a block, using the DP algorithm, is about 1.7 bits. And the distortion rate

computed as the ratio of the number of reversed bits to the length of the secret data,

37

using the DP algorithm, is about in the range from 0.37 to 0.39, which is smaller than

0.5 yielded by most existing data hiding methods for binary images.

sSecwet ey § Bleck length £

l l Calculate
Extract a 2x2 corresponding
embeddable block » binary value of
list each block
patem

Refer table B

:

Extmaction tables

v

Extracted
data

Figure 3.6 Flowchart of the proposed extraction process.

Furthermore, we tested 17 images that are obtained from an image database of
the USC, and the results are listed in Table 3.4. As shown there, the average number
of message data embedded in a block, using the DPA, is about 1.9388 bits. And the
average distortion rate using the DPA is 35.53%, which is smaller than 50% yielded

by most existing data hiding methods for binary images.

38

o ¥ #j‘?ﬁ % é&‘ ;
wd&adl

FABI =

(b)

Figure 3.7 Input binary images, output stego-images with secret data, and the

differences. (a) Binary image “NCTU”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret

data using DP algorithm. (d) The difference image after embedding secret data.

39

PR B

oA BN E

(d)

Figure 3.7 Input binary images, output stego-images with secret data, and the

differences. (a) Binary image “NCTU”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) The difference image after embedding secret data
(continued).

40

(b)

Figure 3.8 Input binary images, stego-images with secret data, and differences. (a)

Binary image “Lena”. (b) Stego-images after embedding secret data using
greedy algorithm. (c¢) Stego-images after embedding secret data using DP

algorithm. (d) Difference image after embedding secret data.

41

(d)

Figure 3.8 Input binary images, stego-images with secret data, and differences. (a)

Binary image “Lena”. (b) Stego-images after embedding secret data using
greedy algorithm. (¢) Stego-images after embedding secret data using DP

algorithm. (d) Difference image after embedding secret data (continued).

42

United States Patent

000 B O A0 O O 1
US005414308A

{19] (1] Patent Number: 5,414,308
Lee et al. [451 Date of Patent: May 9, 1995
[54] HIGH FREQUENCY CLOCK GENERATOR 5,122,677 6/1992 Sato . 328/137
WITH MULTIPLEXER 5,122,757 6/1992 Weber et al. 328/61
5,136,180 8/1992 Caviasca et al. . 328/137
{751 Inventors: I-Shi Lee, Taipei; Tim H. T. Shen, 5,144,254 9/1992 Wilke 307/271
Tao-Yuan; Stephen R. M. Huang; 5,151,613 9/1992 Satou et al. 328/61
Judy C. L. Kue, both of Hsin Chu, all 5,179,348 1/1993 Thompson . . 307/271
of Taiwan, Prov. of China 5,231,389 7/1993 Y: hi 331/46
. Winbond Blectronics Co " 5,254,960 1071993 Hikichi .. 331746
[73] Assignee: Hsli[:lccl';lu T:iiva‘:-;m;srov.rg‘tzréh;):a’ Primary Examiner—Timothy P. Callahan
’ ’ Assistant Examiner—Trong Phan
{211 Appl. No.: 921,889 Attorney, Agent, or Firm—Skjerven, Morrill,
[22] Filed: Jul. 29, 1992 MacPherson, Franklin & Friel; Alan H. MacPherson
[51] Int. HO3L 7/00; HO3B 1,04 7] ABSTRACT
[52] U.S.CL. ... 327/293; 331/46; A high frequency clock generator has a plurality of
331/49; 331/56; 327/291; 327/295; 327/296; quartz crystals capable of providing various output
327/407 frequencies coupled to multiple oscillator circuits. The
[58] Field of Searchcceeeeeeennns 328/61, 62, 63, 72, output line from each oscillator circuit is coupled to one
328/137, 104, 154; 307/269, 241, 243, 271; or more multiplexers so that the user can select one or
331/162, 49, 46, 54, 56 more output frequencies at the same time. The multiple
[s61 References Cited clock oscillator circuits and the multiplexer(s) are fabri-

U.S. PATENT DOCUMENTS

3,594,656 7/1971 Tsukamoto . 331/54
4,199,726 4/1980 Bukosky et al. 328/61
5,066,868 11/1981 Doty, II et al. 328/61
5,099,141 3/1992 Utsunomiya . 328/137
Xo
11—
Xo A1
“T T
X4
12 —

cated as an integrated circuit to minimize the degrading
effects of weather and dust, to provide a fixed capaci-
tive value and inverter bandwidth product, and to im-
prove clock generator stability.

15 Claims, 6 Drawing Sheets

. <20
—lo
i Fq
I =
I3
So S
30
—lo F2
I3 o
12
I3

0~

differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret

data using DP algorithm. (d) An enlarged part of difference image between

(2)

Figure 3.9 Input binary images, output stego-images with secret data, and the

(a) and (c) in which the white spots are difference pixels.

43

IIIIIII||I|I|IIIIIIII!IIIIII@L!!!II||I||I|l||"!|l|l||l|I|||I|I|III|II|II

5414308A

United States Patent 1] Patent Number: 5,414,308
Lee et al. 451 Date of Patent: May 9, 1995
[54] HIGH FREQUENCY CLOCK GENERATOR 5,122,677 6/1992 . 328/137
WITH MULTIPLEXER 5,122,757 6/1992 .. 328/61
. 5,136,180 8/1992 328/137
{751 Inventors: I-Shi Lee, Taipei; Tim H. T. Shen, 5,144,254 9/1992 307/271
Tao-Yuan; Stephen R. M. Huang; 5,151,613 9/1992 Satou et al. 328/61
Judy C. L. Kuo, both of Hsin Chu, all 5,179,348 1/1993 Thompson 307/271
of Taiwan, Prov. of China 5,231,389 7/1993 Yamauchi . 331/46
- Winbond Bl G 5,254,960 1071993 Hikichi ..
73] Assignee: ‘inbond Electronics Corporation, . . .
Hsinchu, Taiwan, Prov. of China Primary Examiner—Timothy P. Callahan
Assistant Examiner—Trong Phan
[21] Appl. No.: 921,889 Attorney, Agent, or Firm—Skjerven, Morrill,
[22] Filed: Jul. 29, 1992 MacPherson, Franklin & Friel; Alan H. MacPherson
[51] . HO3L 7/00; HO3B 1/04 157} ABSTRACT
[52] Us.CL .. 327/293; 331/46; A high frequency clock generator has a plurality of
331/49; 331/56; 327/291; 327/295; 327/296; quartz crystals capable of providing various output
327/407 frequencies coupled to multiple oscillator circuits. The
[58] Field of Searchccccoueenmnae 328/61, 62, 63, 72, output line from each oscillator circuit is coupled to one
328/137, 104, 154; 307/269, 241, 243, 271; or more multiplexers so that the user can select one or
331/162, 49, 46, 54, 56 more output frequencies at the same time. The multiple
. clock oscillator circuits and the multiplexer(s) are fabri-
[56] References Cited cated as an integrated circuit to minimize the degrading
U.S. PATENT DOCUMENTS effects of weather and dust, to provide a fixed capaci-

3,594,656 7/1971 Tsukamoto 331754 tive value and inverter bandwidth product, and to im-

4,199,726 4/1980 Bukosky et al. . 328/61 prove clock generator stability.
5,066,868 11/1981 Doty, Il et al. 328/61
5,099,141 3/1992 Utsunomiya 328/137 15 Claims, 6 Drawing Sheets
Xp o——
1M —
1
X“*—I&“—{;%‘——L‘
CiI Co==
X4
12—
A A
X c 1: 2 2 <20
i 0
I T o
_ = = Nl Fy
X 2
13 -——-Xz M A 3
Gi Co '3
; l So 84
X3 0——
" A Ao 4
ooy b4 52
CiI Co==
5
6 30
Lo |r
—l4 > .
:d

-

(b)

Figure 3.9 Input binary images, output stego-images with secret data, and the
differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between

(a) and (c) in which the white spots are difference pixels (continued).

44

A 00O

United States Patent 9 (i1] Patent Number: 5,414,308
Lee et al. [4s1 Date of Patent: May 9, 1995
[54] HIGH FREQUENCY CLOCK GENERATOR 5,122,677 6/1992 Sato . 328/137
WITH MULTIPLEXER 5,122,757 6/1992 Weber et al. 328/61
5,136,180 8/1992 Caviasca et al. . . 328/137
{751 Inventors: I-Shi Lee, Taipei; Tim H. T. Shen, 5,144,254 9/1992 Wilke 307/271
Tao-Yuan; Stephen R. M. Huang; 5,151,613 9/1992 Satou et al. 328/61
Judy C. L. Kuo, both of Hsin Chu, all 5,179,348 1/1993 Thompson . 307/271
of Taiwan, Prov. of China 5,231,389 7/1993 Yamauchi . 331/46
i Winbond Electronics Co tio 5,254,960 10/1993 Hikichi . 331746
[73] Assignee: Hs]innc';;lu, Taeizvazljl;srov.rg?réhh?; Primary Examifzer—Timothy P. Callahan
Assistant Examiner—Trong Phan
{21] Appl. No.: 921,889 Attorney, Agent, or Firm—Skjerven, Morrill,
[22] Filed: Jul. 29, 1992 MacPherson, Franklin & Friel; Alan H. MacPherson
[511 HO3L 7/00; HO3B 1/04 7} ABSTRACT
[52] U.S. Cl .ccuooreeicireceeceennecrenaeear 327/293; 331/46; A high frequency clock generator has a plurality of
331/49; 331/56; 327/291; 327/295; 327/296; quartz crystals capable of providing various output
327/407 frequencies coupled to multiple oscillator circuits. The
[58] Field of Search . .. 328/61, 62, 63, 72, output line from each oscillator circuit is coupled to one
328/137, 5 307/269, 241, 243, 271; or more multiplexers so that the user can select one or
331/162, 49, 46, 54, 56 rriore output frequencies at the same time. The multiple
N clock oscillator circuits and the multiplexer(s) are fabri-
[sél References Cited cated as an integrated circuit to minimize the degrading
U.S. PATENT DOCUMENTS effects of weather and dust, to provide a fixed capaci-
3,594,656 7/1971 Tsukamoto . 331754 tive value and inverter ban_d'width product, and to im-
4,199,726 4/1980 Bukosky et al. 328/61 Prove clock generator stability.

15 Claims, 6 Drawing Sheets

5,066,868 11/1981 Doty, II et al. 328/61
5,099,141 3/1992 Utsunomiya ...
X
11—
Xo &
CII COI
X4
12—
X4 S
CiI COI
Xo
13 —
Xo 5 A1c
0
L I
X3
14 —
X3 41
CII Co
5
6

2 20
—i |0
I Fy
lo -
3
i3
So $1
4
30
—1lo F2
L o
12
'3
Sp 84

differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (c) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between

Figure 3.9 Input binary images, output stego-images with secret data, and the

(a) and (c) in which the white spots are difference pixels (continued).

45

(d)

Figure 3.9 Input binary images, output stego-images with secret data, and the

differences. (a) Binary image “Patent”. (b) Stego-images after embedding
secret data using greedy algorithm. (¢) Stego-images after embedding secret
data using DP algorithm. (d) An enlarged part of difference image between

(a) and (c) in which the white spots are difference pixels (continued).

3.4 Concluding Remarks

A novel optimal method “for ‘hiding=secret data into binary images with a
distortion minimization effect and a“larger data embedding capability has been
proposed. An optimal block pattern encoding table is chosen from 128 alternative
ones for use in the proposed data embedding process to minimize distortion in the
stego-image. The method can minimize further the distortion using the dynamic
programming technique and can embed up to three bits in a 2x2 image block.
Therefore, by our method, not only more data can be embedded in a binary image, but
also the distortion rate of the stego-image can be effectively reduced.

The proposed method is based on the use of 2x2 blocks in data embedding
process. It may be extended by processing larger-sized blocks, because when the
block size is larger, the number of the block patterns which can be selected to encode

a certain secret value becomes larger as well, resulting possibly in a greater reduction

46

of image distortion.

Table 3.3 Statistics of three stego-images for proposed algorithms.

Table | Used | Cost | Length of

stego-image Algorithm .
index | blocks | value |secret data
Greedy Algorithm
(using just a fixed encoding 0 1528 1153
table)
NCTU Greedy Algorithm 2432

(using the optimal one among 16 1526 1115
128 encoding tables)

DP 26 1418 954

Greedy Algorithm
(using just a fixed encoding 0 621 431
table)

Greedy Algorithm 992

Lena
(using the optimal one among | 30 637 401

128 encoding tables)
DP 41 582 369

Greedy Algorithm
(using just a fixed encoding 0 1439 1037
table)

Patent Greedy Algorithm 2432

(using the optimal one among | 70 1530 1007
128 encoding tables)

DP 24 1433 924

Other future works may be directed to designing a better cost function for the
human visual system, constraining certain conditions for the cost function to find a
better image quality, and finding a better encoding table for replacing selected blocks

to reduce stego-image distortion further.

47

Table 3.4 Statistics of 19 stego-images processed by proposed DPA.

Image No. Table No. of used Cost value Message Distortion | Embedding
of USC number blocks data length rate density
4.2.03 22 482 369 992 0.37 2.06
4.2.06 66 516 351 992 0.35 1.92
5.2.08 57 500 356 992 0.36 1.98
5.2.09 41 527 352 992 0.35 1.88
5.2.10 6 523 336 992 0.34 1.90
7.1.01 24 508 361 992 0.36 1.95
7.1.03 70 521 346 992 0.35 1.90
7.1.04 70 507 362 992 0.36 1.96
7.1.05 6 530 343 992 0.35 1.87
7.1.06 8 525 349 992 0.35 1.89
7.1.07 18 533 345 992 0.35 1.86
7.1.08 66 508 353 992 0.36 1.95
7.1.09 57 507 353 992 0.36 1.96
7.1.10 18 514 352 992 0.35 1.93

boat.512 57 507 360 992 0.36 1.96

elain.512 6 499 358 992 0.36 1.99
house 6 495 355 992 0.36 2.00

average 0.3553 1.9388

48

Chapter 4

Data Hiding in Grayscale Images by
Dynamic Programming Based on A Human
Visual Model

4.1 ldea of Proposed Method

Eight bits represent a pixel’s intensity in a grayscale image. The bit plane formed
by the same bit of each pixel in the grayscale image is a binary image. Figure 4.1
shows the eight bit planes of each of three given 128x128 grayscale images. The
image of each bit plane is zoomed out_for. comparison. It is observed that the LSB
plane bpy is almost fully randomiized. If:the message is embedded in bp,, the result
will appear almost unaltered to-human eyes: On the Contrary, random noise areas are
less in a more significant bit planhe: The most-significant-bit plane bp; contains almost
no noise, and data cannot be embedded easily in it without causing significant visual
changes. We may embed message data into bit planes in the order of bpy, bp, ..., bps.
This scheme is termed horizontal data hiding, to be contrastive with traditional
vertical data hiding methods which embed data into the bits b7, bs, ..., by of each
pixel in the order of by through b, where by is the LSB of the pixel. Compared with
the vertical data hiding method, horizontal data hiding can reduce more distortion in
the stego-image, as revealed in the results of this study.

On the other hand, embedding data directly in bit planes will cause visible
damages to the edges in the bit planes. To overcome this difficulty, in this study we
design a new cost function which considers certain perception characteristics of the

HVS, and adopt a method proposed in Lee and Tsai [25] for data embedding. Each bit

49

plane is regarded to have a different weight in its capability for data hiding, and the
new cost function is designed accordingly to measure the degree of distortion

resulting from pixel value changes. The details are discussed in the following.

Figure 4.1 Three grayscale images and their 8 corresponding bit planes (from left to

right, original images, bpo, bpi, bp, ..., and bp,, respectively).

In the following sections, the proposed eost function for distortion measurement
is given first in Section 4.2.-The proposed horizontal data hiding and recovery
processes are described in Section 4.3 and-Section 4:4, respectively. The experimental

results are shown in Section 4.5, followed by'concluding remarks in Section 4.6.

4.2 Cost Function for Distortion Measurement

Since stego-images are viewed by human vision, the characteristics of the HVS
must be exploited in designing a data embedding process. Two of such characteristics
are useful here. First, human perception is more sensitive to grayscale changes in
smooth areas than in texture areas in a grayscale image. Second, human perception is
sensitive to relative luminance rather than absolute one. Designing the cost function
for distortion measurement for data embedding must take these two characteristics

into consideration, as elaborated in the following.

50

A. Computing Number of Data-Embeddable Bits with Consideration of

Neighborhood Grayscale Value Change

For the first consideration, assume that a pixel P with grayscale value g is to be
used to embed message data. Let MAX denote the maximum grayscale value, and
MIN the minimum, in the 3x3 block with P as the center, which we call the
neighborhood of P. Then, the maximum between-pixel grayscale range in this block
is A = MAX — MIN. According to the previous discussions, to avoid a significant
change of the smoothness degree with respect to the neighborhood of P, the new
grayscale value ¢’ resulting from the data embedding is restricted in this study to
remain in the range of g + A/2. Then, we define a maximum number D of

data-embeddable bits at P as

D =[logx(A/2) [= LdogA ~ 1.4 =logs(MAX — MIN) — 1. (1)

B. Computing Number of Data-Embeddable Bits with Consideration of Pixel’s

Luminance Change

For the second consideration mentioned above, let f denote the luminance of a
pixel P with grayscale value g where 1 < f < 100. According to the Fechner law [26],
the relative luminance property perceived by the HVS may be expressed as a contrast

value ¢ computed by
cC= 50><10g10f

where 0 < ¢ < 100. Moreover, according to the Weber law [26], the maximum
allowable change Ac of the contrast value ¢ according to the principle of “just
noticeable difference (JND)” about the pixel’s luminance change is about 2. That is, if

the luminance of a pixel is changed too much so that Ac is larger than 2, the change

51

will be noticeable to the HVS. Accordingly, we can compute in another way a
maximum number of data-embeddable bits in the 8 bits of a pixel’s grayscale value,
as described next.

First, we want to compute the maximum luminance change (Af)max in accordance
with the maximum allowable contrast change (AC)max = 2. With ¢ being the contrast of

pixel P, let Cmax denote the maximum possible contrast value. Then, we have

f
2 = (AC)max = Cmax — C = 50X10g10fmax - 50x10g10f = 50xlog;o r;ax ,

which can be reduced to be

f[;ax — 10(2/50) — 100.04‘

So, the maximum allowable luminance change can.be expressed as

f
(Af)max = fmax —f= (

";ax — 1) f=(10"%— 1) x f = 0.0965 x f.

And so we may impose the following censtraint to the value of f:
(Af)max/f < 0.0965. 2)

On the other hand, in a monochrome image the luminance f in the range of [1
100] is represented by the grayscale value ¢ in the range [0 255], such that g may be
computed by the mapping g = (f — 1) x (255/99) ~ 2.576(f — 1), or equivalently, the
mapping f ~ 0.3882g + 1, which specifies a linear relation between f and g. Hence,
from Constraint (2), we can, after some derivations, get the following new constraint

for grayscale changes according to the principle of IND:
0.0965 > (Af)max/f = (AQ)max/(g + 2.576) 3)

where (AQ)max, corresponding to (Af)max, denotes the maximum grayscale change in

52

the pixel’s neighborhood. That is, if the above constraint (3) is set for data embedding,
the changes of grayscales in the stego-image will not be detectable by human eyes
according to the principle of JND.

Now, we discuss how many bits can be utilized for data embedding for each
possible grayscale value g. If 5 bits of the pixel’s grayscale are used for embedding
message data, the maximum grayscale change at the pixel will be (AQ)nax = 2°— 1 =
31. And according to Constraint (3), g must be larger than 319, which, however, is out
of the grayscale range [0, 255]. This means that embedding 5 or more bits of message
data into a pixel is impractical according to the principle of IND. As a result, bps, bps,
bpe, and bp; are not used for data embedding in this study. If 4 LSBs of g are changed,
then (AQ)max = 2°— 1 = 15, and by Constraint (3) we get g >153. That is, when the
constraint g > 153 is satisfied, we can embed data into the 4 LSBs of g without
causing a noticeable luminance €hange according to the principle of JND.

However, the binary value of 1153.is-10011001,. After the 4 LSBs of g are
changed, the new value of g might become a.value in the range of 10010000, through
10011000,, which is smaller than 153, causing a violation of Constraint (3). Therefore,
we must change the above constraint g > 153 to be g > 160 where 160 = 10100000,
such that after any 4-bit data are embedded into the 4 LSBs of g, the resulting new
value g' of g will always be larger than 160, thus satisfying Constraint (3). In other
words, to meet Constraint (3), only when a given pixel’s grayscale g satisfies g > 160
can the 4 LSBs of g be replaced by 4-bit message data. And in short, 4 bits are the
upper limit to be embedded in a pixel’s grayscale according to the principle of JND.

Similarly, if 3 bits are changed, then (AQ)max = 2>~ 1=7, and by Constraint (3)
as well as a similar reasoning process, the constraint g > 72 should be satisfied, where
72 = 01001000,. If 2 bits are changed, the constraint g > 32 is required, where 32 =

00100000,. Finally, if 1 bit is changed, g > 10 is necessary, where 10 = 00001010,. In

53

summary, we embed an appropriate number B of message bits in a pixel’s grayscale g

according to the following rule to satisfy the principle of IND:

if g > 160, then B = 4;
if g > 72, then B = 3;
ifg>32,then B=2;
ifg>10, thenB=1;

otherwise, B = 0. (4)

C. Combining Results of Two Considerations

To combine the results of the above two considerations, it is not difficult to
figure out that the maximum number of data-embeddable bits at a pixel should be
taken to be E = min(D, B) where.D and Brare as specified in (1) and (4), respectively.

Let the grayscale value g of a pixel P.in binary form be denoted as g = (97 gs Os
g4 U3 U2 01 Qo)2, and the replacement cost of gi in the i-th bit plane be denoted as C;

where 0 <i < 3. According to the previousdiscussions, C; is defined in this study as:

ifi < (E - 1), then C; = 82"V7; otherwise, C; = .

The above definition of cost function gives more penalties to replacements of more

significant bits. In more detail, we have the following results:

ifE=4,thenCy=1,C; =2, C,=4, C3=8, and C4 through C; = o0;
if E=3, then Cy =2, C; =4, C, =8, and C; through C; = o0;

if E=2, then Cy =4, C; =8, and C, through C; = o0;

if E =1, then Cy = 8§, and C, through C; = o0;

if E =0, then C, through C; = o0.

54

4.3 Proposed Horizontal Data Hiding Process

The proposed method is implemented as an algorithm which can be divided into
two stages: (1) embedding of some control data, followed by (2) embedding of
message data. The control data include the necessary information for use in the data
recovery process. All data are embedded in the bit planes by the block pattern
encoding method. As mentioned previously, each of the bit planes bp, through bp; can
be viewed as a binary image and they together can be regarded as concatenated into a
sequence for data embedding. In this section, the idea to deal with the binary image is

presented first, followed by the proposed process.

A. Block Pattern Encoding for Data Embedding

In order to embed a message,into a binary image, every 2x2 image block is
regarded as a pattern with a 4-bit binary value in which each bit of 0 corresponds to a
black pixel and each 1 a white one. The proposed data embedding process is based on
the use of a block pattern encoding table which maps each block pattern into a certain
code with each code being one, two, or three bits of the message data to be hidden.
And data embedding is accomplished by changing the block bit values so that the
corresponding code of the resulting block pattern become just some bits of the input
message data to be embedded. A possible block pattern encoding table designed for
use in this study is shown in Table 4.1. It is emphasized, by the way, that such a table
is just one of the many possible tables which may be used for data hiding, and the
proposed data embedding process will choose from them an optimal one for each
specific input binary image, as described later.

Suppose that we want to embed one bit in a 2x2 block. The number of possible
patterns in a 2x2 block are 16. This number is much larger than the required number

of 2 to represent the two different message bits ‘0’ and ‘1’ in a block, so we may use

55

more than one block pattern to represent a single message bit (0 or 1), allowing the
possibility of choosing among the block patterns an optimal one to replace the
original block in the data embedding process and thus reducing more distortion in the
resulting block. On the other hand, we wish to embed more data in a block, not just a
bit as just mentioned; and for this we may use a block pattern to represent more than
one bit, as is done in this study. In short, we want to achieve both minimum-cost bit
replacement and maximum-volume data embedding.

As an illustration, we may use either the block pattern t; = 1011, or the pattern t,
= 0111, to represent the two-bit message value S = 01,. In this way, when we want to
embed, for example, the message value s = 01, into a block B with value v = 1010,,
we have the two alternative block patterns t; = 1011, and t, = 0111, to choose to
replace v =1010,, instead of the conventional case.of just one. And if we choose t; =
1011, to replace v =1010,, then less distortion of just a 1-bit error (occurring at the
LSB position) will result. Contrastively,-if-only, one block pattern, say, t, = 01115 is
available, then an error of 3 bits will tesult, causing more distortion in the resulting
block. It is such an allowance of multiple choices for block pattern replacement that
achieves more distortion reduction in the proposed method. By the way, the
previously-mentioned bit errors are used just for convenience of illustrating the
advantage of multiple choices of replacing blocks; they in fact should be the

replacement costs defined previously.

B. Data Embedding in Binary Images

The proposed data embedding process in binary bit-plane images consists of four
major steps and includes two folds of distortion minimization, as described in the
following.

(I) Computing bit costs for data embedding: We calculate the replacement cost value

56

for each bit in the image according to the cost function defined in Section 4.2.

(II) Dividing the input image into blocks: We first divide each of the bit planes bp,
through bps into non-overlap 2x2 blocks with every two neighboring blocks
separated by a l-pixel-wide line of pixels in between, as shown in Figure 4.2.
And next, we select the first n “embeddable” blocks and concatenate them
sequentially, where n is the length of the message data string to be embedded. A
block is said to be embeddable in this study if the replacement cost value of any
bit of the block is not infinite.

(IIT) Using multiple block pattern encoding tables for the first-fold distortion
reduction: We generate all possible block pattern encoding tables and select an
optimal one for use in the data embedding process, in the sense of introducing the
least distortion. The reason is:that a single block pattern encoding table will not
be suitable for every input-binary image;-if an image is destroyed seriously after
data embedding using a specificitable like-Table 4.1, it will be appropriate to use
another table with other combinations of block patterns to encode the message
data. Specifically, we exchange the encoded message data of certain types in

Table 4.1 with those of the other types in the following way:

exchange the message data “0” with the message data “1”;

exchange the message data “00” with the message data “01”;

exchange the message data “10” with the message data “11”;

exchange the message data “010” with the message data “011”’;

exchange the message data “100” with the message data “101”;

exchange the message data “00” and “01” with the message data “10” and
“11,” respectively;

exchange the message data “010” and “011” with the message data “100”

57

and “101,” respectively.

By enumerating all possible cases in the above way, we can get the 128 distinct
tables (numbered from 0 to 127) for selection to minimize the distortion.

(IV) Applying search techniques for the second-fold distortion reduction: Finally, we
apply the dynamic programming technique to segment the input message data
stream optimally into a series of codes and embed them in the input image,
according to the cost function proposed previously. This reduces the resulting

distortion further in a global sense.

Figure 4.2 Division of input image into 2x2 blocks with separating
lines (grids with bold boundaries are 2x2 blocks for data
embedding).

C. Search for Optimal Solutions

The search cost proposed in this study for use in the adopted search technique is
the total replacement cost in the resulting stego-image, computed from the summation
of the replacement costs of all the bit changes in the replaced blocks. In Table 4.1,
block patterns can be used to encode one, two, or three message bits. Accordingly,
when we embed a binary message value v, we have the three choices of embedding
one, two, and three initial bits of v into a block. To determine how many bits should

58

be embedded in a selected block, we may calculate first the cost for each of the three
cases, and replace the selected block with the block pattern corresponding to the
minimum cost. This method provides a quick way for data embedding; however, it is

just a greedy search algorithm and in general does not yield an optimal solution.

Table 4.1 A block pattern encoding table proposed in this study.

Encoded Block Encoded
Block |Corresponding Corresponding
Type message Type| pattern message
pattern | binary value binary value
data data
0 1111 1 1 . 0000 0
2 Ei 1110 00 3 E 0001 11
4 E 1101 00 0 ﬂ 0010 11
6 Eﬂ 1011 01 7 H 0100 10
8 E 0111 01 9 u 1000 10
10 m 0011 011 11 E 0110 100
12 E 0101 011 13 E 1001 101
14 EI 1010 010 15 w 1100 010

To see this, for example, suppose that the message value v of 011, is to be
embedded in three selected blocks with patterns B; = 0100, B, = 0100, and B; = 1100
according to Table 4.1. And as illustrated in Figure 4.3, suppose also that the costs of
replacing the four bits are computed to be 2, 1, 1, and 2 for By; to be 1, 4, 4, and 1 for

B,; and to be 4, 4, 1, and 1 for B;. By the above-mentioned greedy search algorithm,

59

we replace B; = 0100 with the block pattern 0000 of type 1 to embed the initial bit O
of v. The replacement cost for this block is 2x0 + 1x1 + 1x0 + 2x0 = 1 because a bit
(the second bit) is flipped here with its corresponding cost being 1 and the other bits
in the original block are not changed. This cost is a local minimum. Next, we replace
B, = 0100 with the block pattern 0001 of type 3 to embed the last two bits 11, of v,
and the replacement cost is 1x0 + 4x1 + 4x0 + 1x1 = 5. Therefore the total
replacement cost for embedding vis 1 +5 = 6.

Now, if we do not use the greedy search algorithm at the beginning, and replace
instead B; = 0100 by the block pattern 0101 of type 12 in Table 4.1 to embed the three
bits 011, of v directly, then the total replacement cost value will be reduced to be 2x0
+ Ix0 + 1x0 + 2x1 = 2 which is smaller than the previously-computed total
replacement cost of 6. This shows that there indeed exists at least one solution better
than that found by the greedy search algorithim.-Figure 4.3 illustrates the data
embedding process for this examplé: This-is-also true for many other examples, as
found by this study. And so the search-of an optimal solution is meaningful, for which

the proposed method is dynamic programming.

D. Dynamic Programming for Data Embedding

In the proposed dynamic programming algorithm (abbreviated as DPA hereafter),
edit distances are defined for cost minimization in the search. Assume that the input
message data to be embedded are in the form of an n-bit string S; with S;[i] denoting
its i-th bit. Also, let n 2x2 embeddable blocks be selected as a list in advance for data
embedding and expressed as another string S, with S;[i] denoting its i-th block. For
convenience, let Sy[i ~j] denote a substring of Sx with bits or blocks Sy[i] through Sy[j],
where k=1,2 and i,j=1,2,...,n.

Only one type of edit operation, namely, replacement, is used in the proposed

60

DPA to specify the image block replacement operations involving S; and S; in the
proposed data embedding process. The edit distance between S; and S, is defined,
according to the previous discussions, as the minimum total replacement cost to
transform S, into S; by editing operations according to a certain block pattern

encoding table.

Message value v=“011"

1 2 3
Selected block list H E m

Cost function of

corresponding % é 411 ‘1‘ ‘1‘ ‘1‘
bit
Replacing blocks . E
(by greedy search)
Hidden bit(s) 0 11
Cost 1 5 (total replaced cost= 6)
Replacing block lEI
(by optimum search)
Hidden bits 011
Cost 2 (total replaced cost = 2)

Figure 4.3 An example of proposed data embedding process.

Let C be an nxn cost matrix with its element C[j, i] denoting the minimum total
replacement cost to transform a substring S;[j ~m] of S, into a substring S;[i ~n] of S,
where m < n. Then C[1, 1] is the minimum total replacement cost to transform S;[1 ~
m] into S;[1 ~n] (i. e., to transform the substring of S, into the entire string of S;),

where 1 <m < n. Also, let RC be a cost function with each of its element RC(j, i, L)

61

denoting the minimum replacement cost for replacing the j-th block S;[j] of S, with
the block pattern which encodes the initial L bits of the substring S;[i ~n] of S; with
=1, 2, or 3. We define RC(j, i, L)y=0ifi+L>n+1.

By the above definitions, the value C[j, i] is recursively just the minimum of all
the possible values of RC(j, I, L) + C[j+1, i+ L], where L =1, 2 or 3. Also, we define
C[j, i]=0if i > n or j > n. Then, according to dynamic programming, the minimum
search cost and its corresponding solution may be computed by the following
algorithm.

Algorithm 4.1 Computing minimum search cost for minimizing distortion by the
DPA.
Input: (1) an n-bit message data string S;; (2) a string S, of n selected blocks; (3) a
block pattern encoding table T; (4) an nxncost matrix C[j, i], fori,j=1, 2, ...,
n; (5) an nxn type matrix I, with its element 1fj, i] used for recording the block
pattern in T used for replacing-S;[j}-in caleulating C[j, i]; and (6) an nxn
segmentation matrix N with-its-element NJ[j, i] used for recording the number
of initial bits of S;[i ~n] used in calculating Cfj, i].
Output: C[j, i], I[J, i], and N[j, i] for all i, j=1, 2, ..., n.
Steps:
3. Setall CJj, i] initially to be oo for all i, j=1, 2, ..., n.
4. Starting from i = n and j = n, for each pair of (j, i) with i, j =1, 2, ..., n, perform
the following steps.
2.1 If C[j, 1] is equal to oo, continue the next step (Step 2.2); else increment i and |
to calculate the next C[j, i].
2.2 Take C[j, i] to be the minimum of the three replacement costs, RC(j, i, 1) +
C[j+1, i+1], RC(, i, 2) + C[j+1, i+2], and RC(], i, 3) + C[j+1, i+3]; and record
the corresponding number of the processed initial bits (1, 2, or 3) of S;[i ~n]

62

in NJj, i], and the corresponding type of the used block pattern of T in I[j, i].

In the above algorithm, the number of initial bits of S;[i ~n] and the used block

pattern type in each recursive step are recorded in matrices N and I, respectively,

which are used in the data embedding process, as described in the next algorithm.

Algorithm 4.2 Data embedding using block pattern encoding tables and the DPA.

Input: (1) a grayscale image G; (2) a secret message data string S; with n bits; (3) a

control message data string S with m bits, including a table number T
(specifying the block pattern encoding table used) with seven bits, followed by
a value Loy (specifying the number of selected blocks used) with m — 7 bits;

and (4) 128 block pattern encoding tables:

Output: a stego-image G'.

Steps:

1. Compute the cost of each bit of G as mentioned previously.

2. Get a list By, of m 2x2 embeddable blocks sequentially from the bit planes bp,
through bp; of G in order for embedding the m bits of S.. Following By, get also
a list B of n 2x2 embeddable blocks sequentially for the n bits of S;. Let By, and
Bn also include the position information of each selected block.

3. For each block pattern encoding table T among the input 128 ones, with S;, By,
and T as input, apply Algorithm 4.1 to calculate the cost matrix C[j, i], the type
matrix I[j, i], and the segmentation matrix N[j, i] foralli,j=1,2, ..., n.

4. Find the minimum C,;, of the 128 values of C[1, 1] computed in the last step,
and set T,y to be the table number of the corresponding block pattern encoding
table used in computing Cpip.

5. Use the block pattern encoding table Ty, the type matrix Iy, and the

63

segmentation matrix N, corresponding to Cp,ip, and the position information of
each block in By, to embed the string S; into bpy through bp; of G to get an initial
stego-image G;.

6. Set the value L,y to be the number of the blocks used for embedding S; in the
last step.

7. Using S¢ (including Ty and Loyt), Bm, and T=1 as input, apply Algorithm 4.1 to
calculate the cost matrix C[j, i], the type matrix I[j, i], and the segmentation
matrix N[j, i] forall i, j=1,2, ..., m.

8. Use the block pattern encoding table Table 4.1, the type matrix I and the
segmentation matrix N in the last step, and the position information of each
block in By, to embed the substring S, into bp, through bps of G; to get the final

stego-image G'.

Simply speaking, the above algorithm embeds the control message and the secret
message data sequentially into the first m and n.émbeddable blocks in Steps 8 and 5,

respectively.

4.4 Proposed Data Recovery Process

The goal of data recovery is to extract the embedded message data from a
stego-image. Before the proposed data recovery process is started, Table 4.1 is
simplified in advance as an extraction table as shown in Table 4.2. The other 127
encoding tables are converted similarly. It is easier to use this type of table to carry

out the recovery process described in the following.

Algorithm 4.3 Message data recovery.
Input: a stego-image G' including a message bit stream S.
Output: the message bit stream S.

64

Steps:

1.

2.

Calculate the cost of every bit of G' as mentioned previously.

Get m 2x2 embeddable blocks sequentially from bp, through bp; of G' as a list
L.

For each 2x2 block P of Ly, compute the binary value v corresponding to the
block pattern, and decode v by looking v up in the block pattern encoding table
Table 1 to get the corresponding encoded message data bits as the data recovery
result of P.

Concatenate the initial m data bits extracted in the last step into a sequence as a
desired control message data S..

Get the initial 7 data bits of S; as T, and the remaining m — 7 data bits of S, as
Lopt, which specify respectively (1) the optimal block pattern encoding table Top
used in data embedding;=and'(2) the .number of 2x2 blocks of G' used in
embedding S in the bp, through:bps-of G~

Also, get Loy 2x2 selected blocks sequentially from bp, through bp; of G' as a
list L.

For each 2x2 block P of L, compute the binary value v corresponding to the
block pattern, and decode v by looking v up in the block pattern encoding table
Topt to get the corresponding encoded message data bits as the data recovery
result of P.

Concatenate all the data bits extracted in the last step into a sequence as the

desired message bit stream S and exit.

For security consideration, we encrypt further the control message by a secret

key before the data embedding process, and embed the result into bpy through bps at

bit positions randomly generated with a distinct secret key as well as a random

65

number generator. The reverse process can be easily performed to get the original
control message. The same method is also applied to the message data to get a higher

degree of data protection.

4.5 Experimental Results

Figures 4.4 and 4.5 illustrate some experimental results of applying the proposed
method. The bit streams of message data in Figures 4.4 and 4.5 were generated
randomly. The stego-image “House” of size 256x256 with a high PSNR value of
56.88 dB obtained by embedding 16440 bits (about 2KB) message data using the DPA
and the optimal block pattern encoding table among the 128 ones is shown at the right
side of Figure 4.4. The cover image is depicted in the left side of Figure 4.4 for
comparison. The result shows that, the proposed method can be applied to embed
message data in a grayscale image and :obtain:a'good-quality stego-image without

noticeable artifacts in the smooth regions:

Table 4.2 An extraction table (table number T=0).

Corresponding Corresponding
. Encoded message) Encoded message
binary value of binary value of
data data
block pattern block pattern
1111 1 0111 01
1110 00 0110 100
1101 00 0101 011
1100 010 0100 10
1011 01 0011 011
1010 010 0010 11
1001 101 0001 11
1000 10 0000 0

Figure 4.5(b) illustrates three grayscale stego-images “House”, “Lena” and “Jet,”

66

and their 8 corresponding bit planes. For comparison, Figure 4.1 is repeated as Figure
4.5(a) here. The three stego-images of size 128x128 were obtained by embedding
1000 bytes of message data using the proposed DPA and the optimal encoding table.
The PSNR values are 46.90 dB, 49.33dB and 48.80 dB, respectively. Compared with
the cover images in Figure 4.1 and their 8 corresponding bit planes, it can be seen that

the stego-images retain most significant textures.

(b)
Figure 4.4 A cover image “House” with the size of 256x256 and its stego-image with
16440-bit message data embedded. (a) The cover image. (b) The stego-image.

Table 4.3 summarizes the statistical data of the stego-image “Lena” using the
DPA and the optimal encoding table, including the message data length, the PSNR
value, the selected block pattern encoding table, the numbers of used blocks, the

minimum replacement cost values, and the average of the numbers of embedded bits

67

per block. The message data bit stream in Tables 3 was generated randomly.

In more detail, the result from Table 4.3 is transformed into Figs. 6. When the
amount of the embedded data is smaller than 1000B, the PSNR values in Table 4.3 are
all larger than 49dB. And the differences in the stego-images cannot be noticed by

human eyes.

(b)
Figure 4.5 Experimental results of three images. (a) The original images and their
corresponding bit planes (repeated from Figure 4.1). (b) The resulting
three stego-images and their corresponding bit planes (from left, bpo, bp;,

bps, ..., bpy).

Figure 4.6 also reveals that the relation between the PSNR value yielded by the
proposed method and the embedded data amount is approximately linear. The PSNR
value of the DPA decreases about 3.3225 dB when the embedded data size increases
200 bytes. Thus, the proposed DPA method can predict the PSNR value before the
data embedding process starts according to the message data size. From Table 4.3, the

PSNR value of the DPA can be estimated by a simple line fitting method to be

68

PSNR = 62.5870 — (m — 1) x 3.3225 (dB), 1 <m < 5,

where m denotes the size of message data in the unit of 200 bytes for 128x128
grayscale images. Similar results can be observed for the other images. Moreover, the
equation of the PSNR value can be extended and used for grayscale images of any
sizes by applying the proposed DPA. For a grayscale image of size HxW, if the above
value of m denotes the size of the message data in the unit of (200xHxW)/(128x128)
bytes, then the resulting PSNR value still can be estimated using the above equation.
Note that this merit of predictable PSNR values enables a user of the proposed
method to determine how large a cover image should be selected for a certain given
amount of message data.

Furthermore, we may compute a distortion rate for each stego-image. This rate is
computed in this study as the ratio of theshumber of bit flippings (changing bit 0 to 1
or 1 to 0 in data embedding) to-the length of the message data. Most existing vertical
data hiding methods yield distortion rates -of-about 50% for grayscale images because
of the characteristic of randomness in'bit" flippings. In most existing vertical data
hiding methods, when 200-byte secret message data are embedded into a 128x128
grayscale image, these data will be divided into pieces of 4 bits and each piece is
embedded into the bits bs, by, by, and by of a pixel. Then the average grayscale change
of the pixel, measured in terms of the number of flipped bits, may be computed to be
1x50% + 2x50% + 4x50% + 8x50% = 7.5. Consequently, the corresponding mean
square-error value MSE of the stego-image may be computed to be MSE =
[(200x8)/4]x(7.5%7.5)]/(128x128) where (200x8)/4 is the number pixels required for
embedding the 200-byte message data, 7.5x7.5 is the square error incurred at each
pixel, and 128x128 is the image size. Finally, the PSNR value of the stego-image may

be computed to be 10xlog(255*/MSE) = 46.75 dB. If the secret data is embedded by a

69

horizontal data hiding method without distortion optimization, the corresponding
average grayscale change of the pixel may be computed to be 1x50% + 1x50% +
1x50% + 1x50% = 2. And the corresponding MSE of the stego-image may be
computed to be MSE = [(200x8)/4]x(2x2)]/(128%128). Finally, the corresponding
PSNR value of the stego-image may be computed to be 10xlog(255*/MSE) = 58.23
dB, which is larger than that of the vertical method. However, as seen in Table 4.3 the
PSNR value of our method is an even larger value of 62.48 dB, which means the
proposed method is superior to the conventional vertical data hiding method in
distortion reduction.

The proposed DPA method takes long computation time to obtain the optimal
solution when the volume of the message data is large. If time is a major concern,
then the greedy search method mentioned previously may be used. As a comparison,
we list in Table 4.4 the run times.spent by the proposed methods (DPA and greedy
search) and two others on a PC with'a-3.4G Pentium 4 CPU for some grayscale
images with two typical image sizes and. three input message lengths. One of the two
other methods is the simplest “1-LSB” which embeds message data in the LSB of
each pixel. The other is “Hide4PGP” whose program was downloaded from the

website http://www.heinz-repp.onlinehome.de/Hide4PGP.htm. As can been see from

the table, the DPA takes about a minute to embed a message of 200 bytes and more
than 35 minutes to embed 1200-byte data, while all the other three methods takes little
times to accomplish the works. Therefore, the DPA can only be used for non-real-time
applications with the need of distortion reduction, though the greedy search method
may be used as a suboptimal substitute of it.

We also conduct an additional comparison of image distortion caused by the
above-mentioned four methods for the same set of images of Table 4.4. The result is

shown in Table 4.5 from which we see clearly that the proposed DPA method yields

70

the largest PSNR values for all the tested images, indicating its effectiveness for

reducing image distortion.

Table 4.3 Statistics of stego-images yielded by DPA using optimal encoding table.

] Message data | PSNR | Table | No.ofused| Cost Embedded bit
Stego-image
length (bytes) | (dB) |number| Dblocks value | number per block

200 62.48 8 779 1774 2.054

400 59.37 57 1636 3243 1.956

Lena 600 55.57 57 2297 5680 2.09

(128x128) 800 52.96 | 57 3101 | 8355 2.064

1000 49.33 8 3826 11699 2.091

1200 46.74 57 4295 16248 2.235

Table 4.4 Comparison of run times for four methods for grayscale images (in unit of

sec.).
)) Greedy]
Size Stego- image DPA 1-LSB Hide4PGP
search

Lena256+200B 60 0.079 0.00016 0.0068
Lena256+1200B 2112 0.437 0.00097 0.0072
House256+200B 60 0.079 0.00016 0.0068

256x256
House256+1000B 1473 0.366 0.00081 0.0071
Jet256+200B 59 0.079 0.00016 0.0068
Jet256+1200B 1082 0.439 0.00097 0.0072

71

PSNR vs Embedded data
PSNR
80

60 T, .
40
20

1 2 3 4 5 6 Unit: 200 bytes

Figure 4.6 PSNR values of stego-image “Lena” using DPA.

Table 4.5 Comparison of PSNR values of the four methods for grayscale images (in

unit of dB).
)) Greedy)
Size Stego- image DPA 1-LSB Hide4PGP
search

Lena256+200B 68.45 67.51 67.23 67.28

Lena256+1200B 6070 59173 59.49 59.46

House256+200B 68.64 67:60 67.07 67.29

256x256

House256+1000B 61.53 60.60 60.21 60.21

Jet256+200B 68.34 67.52 67.15 67.16

Jet256+1200B 60.74 59.72 59.44 59.58

Finally, we applied steganalysis to the four the methods using a software tool

available at http://diit.sourceforge.net, which is an open-source implementation of RS

analysis developed by Fridrich, et al. [24]. We made a comparison of the analysis
results shown in Table 4.6. Because the tool was designed for 24-bit color images
with three color channels, we apply the proposed DPA and the greedy search method
by embedding the message data evenly into image blocks of the three channels of R,
G, and B alternatively, with the first block selected from R, the second from G, the

third from B, the fourth from R again, and so on. For the 1-LSB method, we embed

72

the data similarly except that bits instead of blocks are selected from the three
channels alternatively. The third column in Table 4.6 specifies the detected message
length of the cover image. This length value may be regarded as a “bias” of the RS
detector, which supposedly should be zero because no message is hidden in the cover
image. The last four columns specify the detected message lengths of the four
methods, from whose contents we see that the DPA method is more robust against
steganalysis than the greedy search method, and is not obviously so than the other two

methods.

Table 4.6 Comparison of RS analysis results of the four methods for color images.

Detected]I?le;tsesc;teg Detected Detected
) Cover Detected . message length ff S message message
Size imace C | message Stego-image'S length of S celded b length of S | length of S
1mag length of C yielded by | ¥ q Y| yielded by | vyielded by
DPA groedy 1-LSB | Hide4PGP
search
Lena256| 379.58B| Lena256+200B 458.42B 497.65B| 529.13B 510.38B
Lena256| 379.58B| Lena256+1200B}-" 1174.06B| =« 1378.88B| 1737.28B 999.68B
256x | House256] 508.05B| House256+200B 596.93B 626.86B| 561.83B 552.40B
256 | House256] 508.05B|House256+1000B] 1330.27B| 1646.94B| 1607.94B 1310.35B
Jet256| 731.17B Jet256+200B 751:60B 839.44B| §819.19B 772.44B
Jet256| 731.17B Jet256+1200B| 1341.43B| 1403.21B| 1244.48B 1406.40B

4.6 Concluding Remarks

A data hiding method for hiding message data into grayscale images with
distortion reduction effects have been proposed. Two novel techniques for reducing
distortions in resulting stego-images have been adopted, one being an optimal
dynamic programming algorithm, and the other the use of multiple block pattern
encoding tables. First, a cost function has been proposed to estimate the weight of
each bit in each pixel to be replaced according to an HVS model. Next, a horizontal
data hiding scheme in which message data are embedded in a sequence of bit planes

has also been proposed to decrease possible distortions in stego-images. Also, an

73

optimal block pattern encoding table is chosen from 128 alternative ones for use in
data embedding to minimize image distortion. The encoding tables are designed in
such a way that up to three bits in a 2x2 image block can be embedded. Finally, the
proposed method minimizes further the distortion using dynamic programming based
on the proposed cost function. The proposed method can predict the PSNR value of a
sego-image before the embedding process starts according to the size of the data to be
embedded.

The space and time complexities of the proposed dynamic programming
algorithm are both quadratic. The algorithm costs more time to embed a long secret
message. But in certain applications there is no need of real-time processing, and
optimality in data embedding volumes or minimization in image distortion is the main
concern. In such cases, the proposed method is good to use. On the other hand, if time
is really concerned, then one-can' alternatively. use the proposed greedy search
algorithm, that takes only linear computation-time and still minimize distortion in the
stego-image in a suboptimal way. Tf high-speed processing is necessary, our method
can be adapted to run on a parallel computer. In particular, each of the 128 block
pattern encoding tables may be processed separately, and the dynamic programming
process may be parallelized, too.

At least two methods may be adopted to make the proposed method more robust.
First, multiple copies of a secret message may be embedded in the input image
randomly with control by a key, so that an attack will not entirely destroy the secret
information. And after the data are extracted by the proposed method, we may apply a
voting scheme to recover the secret. The second method is to try to place secret data
in the more significant bits of the cover image, for example, in bp, and bps in the
proposed method, assuming that most attacks to BMP images are conducted to the

LSBs. Because the information encoded in these bit-planes cannot be removed in

74

most applications (otherwise, the image will be seriously distorted or destructed),
hopefully this method will work in real applications.

The proposed method processes 2x2 blocks in the data embedding process. It
may be extended to process larger-sized blocks because when the block size is larger,
the number of the block patterns which can be selected to encode a certain message
value becomes larger as well, resulting possibly in greater reduction of image
distortion. Other future works may be directed to embed multiple message data in a
grayscale image for protecting the intellectual property right and authenticating
multimedia data, to define more general cost functions for other HVS models, and to

design better encoding tables to reduce image distortion further.

75

Chapter 5
Data Hiding in Color Images by Color
Replacements with Reduction of Image

Distortion and Change Noticeability

5.1 Idea of Proposed Method

The basic idea of the proposed method for data hiding in RGB color images is to
encode certain colors in the color space, and embed given message bits into selected
scattered image pixels by replacing these pixels’ colors by the encoded colors. And
extraction of the message is a reverse process, consisting of finding image pixels with
encoded colors and decoding these colorsito get the’'embedded message bits.

Appropriate techniques must be devised for the above simple idea of data
embedding and extraction to be catried out effectively. The concern of reducing image
content distortion and color change noticeability should be taken into consideration in
these techniques. Also, the common requirement of data recoverability in data
extraction need be met.

The techniques proposed in this study satisfy these aims and are described in the
following.

In the remainder of this chapter, the detailed algorithms of the proposed data
embedding and extraction are given in Section 5.2. In Section 5.3, some experiment

results and discussions are described, followed by concluding remarks in Section 5.4.

A. Proposed technique for reduction of color change noticeability

It is unnecessary to use all of the huge number of colors in the color space for

data embedding by color replacements. Instead, we partition them into

76

non-overlapping cubic-shaped clusters, called color cubes, and find out those cubes
better for use in data embedding. More specifically, we find out image pixels with
their colors “falling” in each color cube, and check the scattering degree of these
pixels. Presumably, image pixels located more separately in the cover image are more
suitable for data embedding because the changes of their colors, appearing to be
farther way from one another, will attract less notice from observers. On the contrary,
color changes at less scattered pixels tend to create visual artifacts and arouse more
suspicion. Based on this idea, we propose in this study the following scheme of

reducing the noticeability caused by image pixels’ color changes.

1. Partition the RGB color space into color cubes.

2. Collect the set of pixels in thescover image with their colors “falling” in each
color cube, called the range set of the color cube.

3. Define the degree of pixel scattering of each:color cube by a certain scatter
measure of the pixels in the fange set of the color cube.

4. Sort into a list the color cubes with nonempty range sets by their pixel scattering
degrees, with the color cube with the largest scattering degree on the top of the
list.

5. Sort further those color cubes with equal pixel scattering degrees by their range
set sizes, meaning that color cubes with larger range sets will be used first for
data embedding.

6. According to the length of the message to be hidden, select from the top of the
color cube list a sufficient number of color cubes for use in data embedding.

7. Use the pixels of the range sets of the selected color cubes as the locations for

data embedding by color replacements.

77

Let S = {P;, P,, ..., Py} denote the range set of a color cube C with n pixels. The
scatter measure mentioned in Step 3 above for C, denoted as M, is defined as the
mean of the Euclidean distances of all the pixel pairs in P, i.e., is defined as

Z| P| _Pj |
_—I’J

M = (1)

n

where the Euclidean distance |P; — Pj| between any two pixels P;j and P; at image
coordinates (Uj, Vi) and (uj, Vj), respectively, is computed as |P; — Pj| = [(U; — uj)2 + (Vi —
Vj)z]l/ 2. A larger value of M means higher pixel separateness of S in the cover image.

As an illustration of the range sets of color cubes, Figure 5.1(a) shows a cover
image and Figure 5.1(b) is the range set of a color cube found in (a), shown as a

binary image with each white dot indi(":atihg,"é'pixel in the set. The range set may be

seen to include pixels with some-dark green colors. | -

(a) Cover image. (b) Range set of a color cube.

Figure 5.1. An illustration of range sets of color cubes.

B. Proposed technique for reduction of image content distortion

78

For convenience of data processing, the number of colors included in each color
cube is taken to be a power of 2 in this study. If all the colors in a color cube, say with
2" ones, are used for data embedding, each color may be used to represent m message
bits. The embedding work of an m-bit message segment then is to replace the color of
an image pixel in the range set of a color cube by the color of the 2™ ones in the color
cube, which corresponds to the value of the m message bits.

However, to reduce the image distortion resulting from such color replacements,
we propose in this study to allow multiple colors, instead of just a single one, to
represent an identical message segment. For example, if we allow, say, 2" colors as a
group to represent a message segment, then whenever an image pixel’s color is to be
replaced by one in the color cube, there will be 2" choices, and the one closest to the
pixel’s color may be taken as the replacing color, thus achieving the purpose of
reducing image distortion due to-the.color replacement.

Consequently, each color eube las’discussed above should be expanded to have
2"2™ = 2™" colors, instead of just 2™-ones, if émbedding of m-bit message segments
is still desired. And because of the property of having three color channels in an RGB

2m+n

image, m+n must be a multiple of 3 for to be the cube of an integer M (i.e., M?),
meaning that each color cube has the side length of M. That is, it must be true that m +
n = 3k for some positive integer k such that 2™" = 2% = (2% = (2%) x 2*) x (2% = M?
with M = 2 If not, then the color cluster will not form a cube; instead, it becomes a
rectangular parallelepiped (also called a cuboid), which is less convenient to handle
due to side asymmetry.

For example, if we take m =2 and n = 1, then each color cube has 221 = 8 colors,
divided into 4 groups with each group including two colors. One of such color cubes
is shown in Figure 5.2, in which the four color groups are G; = {(0, 0, 0), (1, 1, 1)},
G>=1{(1,0,0), (0, 1, 1)}, G3 = {(1, 1, 0), (0, 1, 1)}, G4 = {(0, 1, 0), (1, 0, 1)} and the

79

two colors in each group are located diagonally in opposite directions, where each
color is expressed as a 3-tuple (r, g, b) with r, g, and b being the values of the R, G,

and B channels, respectively. Such color cubes are too small to be useful. The color

cube adopted for use in the experiment of this study is taken to include 2™™" = 2" =

64 colors with m = 3 and n = 3, i.e., with 8 groups of 8 colors. Therefore, for 8-bit R,
G, and B color channels, there are totally (256/4) x (256/4) x (256/4) = 64 color
cubes.

For convenience of discussions, we define a base color for each color cube as the
one in the cube with the smallest of the summation of the r, g, and b values. By

identifying color cubes with three indexes i, j, k for the three dimensions of R, G, and

B, respectively, it is not difficult to figure out that the base color (£°, g;, b/) for the

(i, J, k)-th color cube for m = 3 and n = 3. may be computed by
e 4, [gIESy, b, IS 4k, (2)

where i, j, k=0, 1, ..., 63, and the'values of the 64 colors in the cube may be

computed by

r= rib’ rib+1, r.ib+2’ r|b+3;
9= g;, g°+1, 9j+2, g;+3;
b= b>, b’+1, b’ +2, b>+3. (3)

For example, the (0, 0, 0)-th color cube with base color (0, 0, 0) is shown in

Table 5.1. Simply adding the base color values (r”, g°, by) respectively to the color

channel values in the table, we can get the table for the (i, j, k)-th color cube.

According to the above idea, we propose the following scheme for reduction of

80

image distortion.

Table 5.1 The colors in the (0, 0, 0)-th color cube with base color (r, g, b) = (0, 0, 0).

No. Color No. Color No. Color No. Color
1 (0,0,0) 17 (1,0,0) 33 (2,0,0) 49 (3,0,0)
2 (0,0, 1) 18 (1,0, 1) 34 (2,0, 1) 50 (3,0, 1)
3 0,0,2) 19 (1,0,2) 35 (2,0,2) 51 (3,0,2)
4 (0,0,3) 20 (1,0,3) 36 (2,0,3) 52 (3,0,3)
5 (0,1,0) 21 (1,1,0) 37 2,1,0) 53 (3,1,0)
6 (0,1, 1) 22 (1,1, 1) 38 2,1,1) 54 3,1,
7 (0,1,2) 23 (1,1,2) 39 2,1,2) 55 (3,1,2)
8 0,1,3) 24 (1,1,3) 40 2,1,3) 56 3,1,3)
9 (0,2,0) 25 (1,2,0) 41 (2,2,0) 57 (3,2,0)
10 0,2, 1) 26 (1,2, 1) 42 2,2,1) 58 (3,2, 1)
11 0,2,2) 27 (1,2,2) 43 2,2,2) 59 3,2,2)
12 0,2,3) 28 (1,2,3) 44 (2,2,3) 60 (3,2,3)
13 (0,3,0) 29 (1,3,0) 45 (2,3,0) 61 (3,3,0)
14 (0,3, 1) 30 (1,3, 1) 46 2,3, 1) 62 (3,3, 1)
15 0,3,2) 31 (1,3,2) 47 2,3,2) 63 (3,3,2)
16 (0,3,3) 32 (1,3,3) 48 (2,3,3) 64 (3,3,3)

1. Define each color cube to have 2™ colors, divided into 2™ groups with each
group including 2" colors, where '+ n'=3k.for some positive integer k.

2. Assign the colors in the color cube!into igroups such that the colors in each group
are distributed evenly, forthe purpese of achieving more effectively the goal of
reducing image distortion due to color replacements as discussed above.

3. Encode identically all the 2" colors in each group into an m-bit message segment,
1.e., represent the m message bits identically by any color in the group.

4. When an image pixel P in the range set of a color cube C is to be used for
embedding an m-bit message segment H, find the group G in C whose colors
represent the value of H.

5. Find the color ¢' in G which is closest to ¢ in the sense of Euclidean color
distance.

6. Replace ¢ by ¢’ to complete the data embedding work at pixel P.

In Step 5 above, the Euclidean color distance between the two colors ¢ = (r, ¢, b)

and ¢' = (', g', b") are defined to be [c — ¢'| = [(r = I')* + (g — g")* + (b — b")*]"2.

81

C. Proposed technique for extraction of embedded data

A merit of the previously-proposed technique of data hiding (including
partitioning the color space into non-overlapping color cubes as well as replacing a
pixel’s color with another one, both in an identical color cube) is the resulting
assurance of data recoverability in the data extraction stage. There are two reasons
which guarantee this merit, as described in the following.

(1) Although some original colors in the cover image have been replaced, each of the
replacing colors is in the same color cube as that of the replaced one at an image
pixel. This ensures that if we use the pixels’ colors in the stego-image to find the
range set of each color cube, as is done in the data extraction process, the result
will be the same as that found in_the data hiding process. This means that the
pixels where data were hidden:will notibe missed in the data extraction process.

(2) Only color cubes with more-scattered range sets are utilized for data embedding,

B
Co=(1,0,1)
€2 =1(0,0,1
32 = (). ‘
2 =011 co=(l 1,1
¢1=(0,0,0 €1 =(1,0,0)
1= () '_ -
C41=(0,1,0) ‘/,C“ Lo

G

Figure 5.2 A color cube with 8 colors divided into four groups with base color (0, 0, 0).

82

and so if we select similarly color cubes with more-scattered range sets in the data
extraction process, then the same set of color cubes will be found, from whose
range sets we can extract exactly the previously-embedded message bits.

The proposed scheme for data extraction is described in the following.

1. Partition the color space in the same way as done in the data embedding process.

2. Collect the range set of each color cube from the pixels in the given stego-image.

3. Compute the scattering degree of the range set of each color cube.

4. Sort the color cubes into a list in the same way as done in the data embedding
process described previously.

5. Select a sufficient number of color cubes from the top of the list according to the
length of the embedded message.

6. Follow the color encoding rule used in data‘embedding to decode as a message
segment the color of each pixel in the range set of each color cube selected in the
last step.

7. Concatenate all the decoded message segments in order into a message as the

extraction result.

In Step 5 above, to decide how many color cubes should be selected, the length
of the message (in the unit of bit) should be known in advance. For this, we take the
message length as part of the data to be hidden and append it to the message data as
the prefix, in the form of a fixed number of bytes. If the value of the message length,
expressed as a bit sequence, is shorter than the length of all the bytes allocated for it,
then we pad sufficient leading 0’s to it to fill up the bytes. In this way, the message
length will be embedded first as a fixed number of bytes into the image, and in the
data extraction process it can be extracted first as well from a fixed number of bytes

hidden in the stego-image, from which the total number of remaining data bits can be

&3

decided, and the message bits extracted properly.

D. Even distribution of cube colors into groups for image distortion reduction

As mentioned previously, we assign the colors in the color cube into groups such
that the colors in each group are distributed evenly. Consequently, a color in the group
closest to an image pixel’s color can be selected for color replacement, in order to
reduce the resulting image distortion. Here we describe the technique we use for
achieving such a goal of even distribution of colors in groups. First, it is not difficult
to see that the desired distributions in the groups should be symmetric to each other.
To accomplish this, we adopt the following steps, using the first color cube with base
color (0, 0, 0) as an example for explanation of the detail. For other color cubes, the
corresponding steps are the same exeept the base color. Table 2 shows the details of
the involved computation resultsiin the steps.

1. Take the 64 color values of thecolor cube’as Euclidean coordinates, and
compute its centroid, whichas(1.5, 1.5, 1.5).

2. Transform the Euclidean coordinates into new ones through a translation of (1.5,
1.5, 1.5).

3. Transform the new Euclidean coordinates (r, g, b) into 3D spherical coordinates

(p, 6, ¢) by the following formula:
p=(+g’+b)'"? g=tan’(gb), O=tan'[b/(r+g})"?]

where p is the distance from the origin to a point in the Euclidean space, 8 is
the zenith angle with respect to the R-axis, ¢ is the azimuth angle with respect
to the B-axis, as shown in Figure 5.3, and the function tan”! has values in the
range from —90° to +90°.

4. To facilitate the purpose of even distribution of group colors, modify the range

84

of tan™' such that the computed values of @lie in the range 0° < #< 360° with 0°
indicating the direction of the R-axis.

5. Use in order the values of p, ¢, and @to sort the 64 colors into a list.

6. Assign the 64 colors of the color cube evenly into the 8 groups using the list
according to the following criteria to achieve the goal of even distribution of
group colors:

(1) each group has an equal number of colors which have a certain value of p;
(2) the colors of each group have as many angles of as possible;
(3) the 8 color groups, when seen as grid points, are symmetric to one another.

7. Regard all the 8 colors in each color group to be identical, and encode each
group to represent one of the eight 3-bit segments 000 through 111, as

mentioned previously.

In Step 6 above, to satisfy Critetia’(2)-and-(3) we normalize the angle values of 8
of all the grid points with respect‘to-each of the angles of “8 selected symmetric
points” and listed them for easier selection of appropriate colors into the groups. For
the 64-color cubes, these 8 symmetric points may be selected to be the 8 corners of
the cube, as done in our experiment. The result of color distribution for the first color
cube with base color (0, 0, 0) is shown in Table 2. And an example of the color
distribution result for group 3, which includes the corner of (0, 0, 0), is shown in . The
assigned 8 colors in the group are (1, 2, 2), (3, 2, 2), (1, 0, 2), (2, 2, 3), (2, 3, 0), (0, 1,
0), (3,0, 1), (0, 0, 0).

The above process is designed for color cubes with 64 colors. It is not difficult to
modify the process to fit more general cases of color cubes with 2™" colors
mentioned before.

Furthermore, as an example of data embedding at image pixels, let P be a pixel

85

with color ¢ = (r, g, b) = (1, 3, 2) and assume that the 3-bit message segment we want
to embed is 010. The color cube used is that described in Table 2 and the group of
colors involved is the third shown in Figure 5.4. The color in the group closest to C is
c' = (1, 2, 2) with a distance of 1 to c. Therefore, the color ¢ = (1, 3, 2) of P is replaced

by ¢' = (1, 2, 2) in the data embedding process.

»
»

v
)

G

Figure 5.3 Illustration of a 3D spherical coordinate system for use in even color distribution.

As a deeper investigation of the effect of the above even distribution of group
colors in a color cube, we tried to compute the value of the peak of the signal-to-noise
ratio (PSNR) for the worst case of color replacements, which occurs when the colors
of all image pixels are replaced with the most dissimilar colors in color cubes. For this,
we have two cases. One is when the colors of each group in a color cube are not
evenly distributed. Then, the largest Euclidean color distance resulting from a color
replacement obviously will be |(3, 3, 3) — (0, 0, 0)| = (3x3H)"? = 27 . The other case

86

/o — 1% R

Figure 5.4 An example of color distribution in a color cube --- the 8 colors in group 3.

is when the even distribution is done as shown in “Table 5.2. Then, according to a
computer program written in this study-which-computes exhaustively the Euclidean
color distances between every pair of colors in'the color cube based on the groups of
Table 3, the largest Euclidean color distance is d = J4.

Accordingly, for the 2" case the maximum mean-square error (MSE) for the
stego-image may be computed to be MSEn, = d*/3 = 4/3, and the corresponding
worst PSNR value is PSNR,;, = 10 x log[2552/MSEmaX] = 10x1log[65025/(4/3)] = 46.88
dB which 1is quite high. In contrast, the former case has PSNRyi,
10xlog[65025/(27/3)] = 38.59 dB which is lower. In short, the 2" case, which is what

we have implemented in this study, has less image distortion.

Table 5.2 Color encoding table for the (0, 0, 0)-th color cube with base color (0, 0, 0).

b ¢ v d
r g group code
P (degree) | (degree)

87

2 1 2 0.9 35 315
2 3 2 1.7 18 72
0 1 2 1.7 18 198
1 1 3 1.7 65 225
3 2 0 2.2 -43 18 000
1 0 0 2.2 -43 252
0 3 1 2.2 -13 135
3 3 0 2.6 -35 45
2 2 2 0.9 35 45
0 2 2 1.7 18 162
2 0 2 1.7 18 288
2 1 3 1.7 65 315
1 3 0 2.2 -43 108 0ot
3 1 0 2.2 -43 342
0 0 1 2.2 -13 225
0 3 0 2.6 -35 135
1 2 2 0.9 35 135
3 2 2 1.7 18 18
1 0 2 1.7 18 252
2 2 3 1.7 65 45
2 3 0 2.2 -43 72 010
0 1 0 2.2 -43 198
3 0 1 2.2 -13 315
0 0 0 2.6 -35 225
1 1 2 0.9 35 225
1 3 2 1.7 18 108
3 1 2 A7 18 342
1 2 3 1.7 65 135 011
0 2 0 B2 -43 162
2 0 0 22 -43 288
3 3 1 2.2 -13 45
3 0 0 2.6 =35 315
2 1 1 0.9 -35 315
1 1 0 1.7 -65 225
2 3 1 1.7 =18 72
0 1 1 1.7 -18 198
0 3 2 2.2 13 135 100
3 2 3 2.2 43 18
1 0 3 2.2 43 252
3 3 3 2.6 35 45
2 2 1 0.9 -35 45
2 1 0 1.7 -65 315
0 2 1 1.7 -18 162
2 0 1 1.7 -18 288 101
0 0 2 2.2 13 225
1 3 3 2.2 43 108
3 1 3 2.2 43 342
0 3 3 2.6 35 135
1 2 1 0.9 -35 135
2 2 0 1.7 -65 45
3 2 1 1.7 -18 18
1 0 1 1.7 -18 252 110
3 0 2 2.2 13 315
2 3 3 2.2 43 72
0 1 3 2.2 43 198
0 0 3 2.6 35 225
1 1 1 0.9 -35 225 111
1 2 0 1.7 -65 135
1 3 1 1.7 -18 108
3 1 1 1.7 -18 342

88

3 3 2 2.2 13 45
0 2 3 2.2 43 162
2 0 3 2.2 43 288
3 0 3 2.6 35 315

5.2 Detailed Algorithms of Proposed Data Embedding and

Extraction

We now describe the detailed algorithms for data embedding and extraction. We
assume that the maximum length of given messages to be embedded is B bytes (8B

bits) long.

Algorithm 5.1 Data embedding process.
Input: a cover image |, a message Guinithe form of a bit string, and the color
encoding tables (like Table 2) for coloricubes with 64 colors defined by Egs.
(2) and (3).
Output: a stego-image |I' with G'embedded.
Steps:
A. Finding the range sets of the color cubes ---
1. Find the range set S; from the cover image | for each color cube C;.
2. Compute the scattering degree M; of each C; by Eq. (1).
3. Sort all non-empty S; into a list L according to their values of M; with the top
of the list corresponding to the largest M;.
B. Creating extended message data ---
4. Pad 0’s, if necessary, to the front of the bit string representing the length of
message G so that the resulting bit string, T, occupies B bytes.
5. Concatenate T and G in order, to form a third string T'.

6. Count the number of bits in T', append 0’s to the end of T', if necessary, to

&9

make the total number N of bits a multiple of 3, call the resulting bit string an
extended message, and denote it by G'.
C. Embedding of message data ---

7. Regard all the pixels in each range set S in L in the raster-scan order as a
sequence Qj, and concatenate all sequences of Qj in order into a longer one Q.

8. Embed sequentially every 3-bit segment H of G' into pixels in Q in order in
the following way, until all bits of G' are exhausted:
(1) take sequentially an unprocessed pixel P in Q with color c;
(2) find out the color cube C whose range set includes P;
(3) find out the color group p of C, whose corresponding code is equal to H;
(4) find out the color ¢' in p which is closest to ¢ in the sense of Euclidean

color distance;

(5) replace c of P by c"in the cover image.

The data extraction process 1S described as an algorithm in the following. We
assume the embedded data in the given stego-image is the extended message G'
mentioned in the previous algorithm, which includes the original message G preceded
by the value of the length of G in the form of B bytes.

Algorithm 5.2 Data extraction process.
Input: a stego-image I', and the color encoding tables (like Table 2) for color cubes
with 64 colors defined by Eqgs. (2) and (3).
Output: the message G.
Steps:
A. Finding the range sets of the color cubes ---
1. Find the range set S; from the stego image I' for each color cube C;.

2. Compute the scattering degree M; of each C; by Eq. (1).

90

3.

Sort all non-empty S; into a list L according to their values of M; with the top

of the list corresponding to the largest M.

B. Extracting the length of the message

4,

Regard all the pixels in each range set Sj in L in the raster-scan order as a

sequence Qj, and concatenate all sequences of Q; in order into a longer one

Q.

Extract B bytes of data from Q first to obtain the length N of the message G

in the following way:

(1) take sequentially an unprocessed pixel P in Q with color c';

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, which includes C';

(4) find out the 3-bit code correspondingto p;

(5) repeat the above steps.until the concatenation of all the found 3-bit codes
in order, denoted as-K, isjjust-more.than B bytes long;

(6) take the first B bytes of K.and convert it into an integer as the message

length N, and the tail portion R in K as the leading bits of the message G.

C. Extracting the message data

6.

7.

Compute N' =[N/3Twhere [- | means the ceiling function.

Repeating the following steps N' times:

(1) take sequentially an unprocessed pixel P in Q with color C';

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, which includes c';

(4) find out the 3-bit code of p;

Concatenate R extracted in Step 5 and all the codes extracted in Step 7 in

order as a bit string, and take the first N bits of it as the desired message G.

91

5.3 Experiment Results and Discussions

A series of experiments have been conducted in this study on BMP images.
Some experimental results are shown in Figs. 5 through 8. Figure 5.5 is a continuation
of Figure 5.1. Figure 5.5(a) shows the stego-image resulting from embedding 22900
bytes of message data into the cover image shown in Figure 5.1(a) which is of the size
256x256. And Figure 5.5(b) shows the difference between Figure 5.1(a) and Figure
5.5(a) as a color image I" (called a difference image), which is produced in the
following way, assuming that (r, g, b) is a color in the cover image I, (r', g', b") the
corresponding color in the stego-image I', and (r", g", b") the computed difference

color:

X" =X —x'|+128 if X —x'| #0;

=255 ifx —x'|=0,

where X =1, g, or b. The concept behind the-above computation is to set a difference
value of 0 to be 255 and a non-zero one"to be around 128. Consequently, an
unprocessed pixel with three zero difference values will become a white pixel in the
difference image 1", while a processed pixel will have a color (r", g", b") with all the
three color channel values around 128. As can be seen from Figure 5.5(b), most of the
pixels in the cover image have been utilized for data embedding, but the stego-image
looks almost identical to the cover image of Figure 5.1(a) due to the effectiveness of
image distortion and change noticeability reduction. It can also be observed from
Figure 5.5(b) that the processed pixels are quite random in their locations, and more
uniform regions, like those on the clothes, yield range sets with smaller scatter
measures, as expected, which are not used for data embedding (seen as white-pixel

clusters in the figure). The rate of processed pixels (called processed pixel rate in the

92

sequel) is (22900x8) + 3 + (256x256) = 0.932 and the PSNR value was computed to
be 48.59 dB which is better than the worse-case value 46.88 dB, as it should be.
Totally, 1628 color cubes have been utilized.

Figure 5.6 shows another experimental result with a 256x256 cover image. The
processed pixel rate is again 0.932, the computed PSNR value is 48.23 dB, and the
number color cubes used is 5242. A similar phenomenon of leaving uniform regions
unused for data embedding is observed (most on the flowers at the lower part of the
cover image). For illustrations, we also include the range set of a color cube as Figure
5.6(b). Two more examples of experimental results with 512x512 cover images are
shown in Figs. 7 and 8. The message data embedded are 88200 bytes long, and the
processed pixel rates are (88200x8) + 3 + (512x512) ~ 0.897, for both cases. The
PSNR values are 48.70 dB and 48.27 dB, respectively.

More statistics data about- our' experiments.are shown in Table 5.3, in which
images 4.1.03, 4.1.01, 4.2.04, 4:2.07.are-these.in Figs. 5.5 through 5.8, respectively.
All the images come from the USC image database. From the table, we see that the
PSNR values of all the stego-images are over 48 dB.

The experiments were conducted for color cubes with 64 colors and color groups
of 8 colors. Color cubes and color groups of sizes other than those used in the
experiments of this study may also be applied for various application needs. In
general, larger-sized color cubes will lead to larger embedding capacity of each color
replacement (that is, more bits are encoded by each replacing color) if the size of each

color group is fixed.

93

Table 5.3 Statistics of experimental results.

S,lze of Size of Processed |No. ofused| PSNR
No.| Image 1mage message .
, pixel rate | color cubes (dB)
(pixels) |data (bytes)
1 4.1.01 256x256 22900 0.932 5242 48.23
2 4.1.02 256x256 22900 0.932 3329 48.49
3 4.1.03 256x256 22900 0.932 1628 48.59
4 4.1.05 256x256 22900 0.932 3840 48.68
5 4.2.01 512x512 88200 0.879 5514 48.36
6 4.2.02 512x512 88200 0.879 5446 49.19
7 4.2.04 512x512 88200 0.879 9908 48.70
8 4.2.05 512x512 88200 0.879 6626 48.61
9 4.2.06 512x512 88200 0.879 17093 48.60
10| 4.2.07 512x512 88200 0.879 17110 48.27
11 House 512x512 88200 0.879 16048 48.68

On the other hand, with the size of the color cube being fixed, larger-sized color
groups, though reducing more distottion-eaused by color replacements, will lead to
less embedding capability (that is, ‘less: bits-ate encoded by each color group). The
original cover image is not needed in data recovery, so the proposed method is a blind
scheme. The PSNR values of the stego-images constructed in the experiments are
high, showing that the aim of image distortion reduction carried out by the use of
color groups is accomplished. The stego-images look almost identical to the cover
images, showing that another aim of reducing color change noticeability is also
reached. Furthermore, secret keys may be used to randomize the message data before
they are embedded into the cover image or/and randomize the sequence of pixels
(sequence Q in Algorithms 5.1 and 5.2) into which the data are embedded, in order to
enhance data security. Illegal recovery of the embedded data will so obtain just a
sequence of noise. The proposed method is thus appropriate for uses in

steganographic applications.

94

(a) Stego-image. (b) Difference image.

Figure 5.5 An experimental result of message data embedding applied to Figure
5.1(a) with a 256x256 cover image and a 22900-byte message data.

(b) Range set of a color cube.

&

L

(c) Stego-image. (d) Difference image.

Figure 5.6 A second experimental result with a 256x256 cover image and a
22900-byte message.

95

(a) Cover image. (b) Stego-image. (c) Difference image.

Figure 5.7 A third experimental result of data embedding with a 512x512 cover image
and an 88200-byte message.

ek £

(a) Cover image. b) image. (c) Difference image.

Figure 5.8 A fourth experimental result of data embedding with a 512x512 cover
image and an 88200-byte message.

5.4 Concluding Remarks

A novel method for hiding large-volume message data in RGB images has been
proposed. The method is based on the idea of changing selected image pixels’ colors
by similar ones which encode the message bits. The replacing colors come from some
selected color cubes in the color space, and the image pixels come from the range sets
of the color cubes. Data recoverability is ensured by the use of color cubes and range

sets. The color cubes are selected in such a way that the pixels in their range sets are

96

as separated as possible. This reduces the noticeability caused by the color changes.
Each replacing color comes from the choice of an optimal one from a group of evenly
distributed colors in a color cube. This reduces the resulting image distortion due to
the color replacements.

Experimental results show the feasibility of the proposed method for
large-volume data hiding as well as the effectiveness of reducing image distortion and
change noticeability. The method is a blind data hiding technique; the original cover
image is not required in the data extraction process. Future researches may be directed
to dynamic uses of variable-sized color cubes, random distributions of groups’ colors

in color cubes, uses of the proposed method for various applications, etc.

97

Chapter 6
Data Hiding in Emails and Applications by
Unused ASCII Control Codes

6.1 Idea of Proposed Method

ASCII codes, usually expressed as hexadecimal numbers, are used very
commonly to represent text for information interchange on computers. Parts of the
ASCII codes, namely, from 00 through 1F, are used as control codes which are listed
in Table 1. They were originally designed to control computer peripheral devices like
printers, tape drivers, teletypes, etc. But now they are rarely used for their original
purpose because of the rapid development of néw peripheral hardware technologies,
except those codes for text display control, such as OA with the meaning of line feed
and 08 with the meaning of backspace.“Besides, some of the control codes, when
displayed by a text editing program,or.a browser on monitors, are invisible; and some
others are shown as spaces under certain software environments, just like the function
of the original ASCII space code 20. These two types of ASCII codes may be utilized
to increase secret data encoding variability in the data hiding process. For
convenience of reference, we say that the former type displays a null space, in
contrast with the white space displayed by the latter type.

On the other hand, as computer technology spreads throughout the world, many
coding standards have been developed to facilitate the expression of non-English
alphabets. But these alphabet coding standards, such as the Unicode and the Big 5, all
include the ASCII codes as the kernel set. For example, the popular Unicode standard,
UTF-8, equates exactly to the ASCII codes for code values below 128. Therefore, the
good property of the ASCII control codes for embedding secret data in text documents

98

is still preserved in various coding standards.

In this study, it is desired to use the white-space and null-space codes to embed
data in text documents of the Unicode UTF-8 format without causing noticeable
artifacts under the popular software environments of Outlook Express, IE, and the
operating system of the traditional Chinese version of Microsoft Windows XP, service
pack 2, 2002.

In the remainder of this chapter, some properties of email systems and
embedding ASCII control codes into emails are described in Sections 6.2, and 6.3,
respectively. The proposed methods for data hiding and recovery processes for emails
are introduced in Sections 6.4 and 6.5 respectively. Some experimental results are

shown in Section 6.7, followed by some concluding remarks in Section 6.8.

6.2 Properties of Email Systems

In this study, it is assumé that all-emails are transmitted through the popular
Simple Mail Transfer Protocol (SMTP) [38-40] and that users retrieve their emails
from remote server systems of the Post Office Protocol version 3 (POP3) standard
[41]. In addition, most emails nowadays are of the Multipurpose Internet Mail
Extensions (MIME) format [42-44] which is compatible with the SMTP standard.

However, some mail server systems do not follow the SMTP standard precisely
[44]. Therefore, before we make use of an email document for data embedding, we
must find out servers which do not change the content of an email body, or must set
up a new SMTP server. Otherwise, data embedded in the email might be destroyed
before being read and retrieved on the server of the receiver end.

According to the SMTP standard [40], According to the SMTP standard The
codes 0D for carriage return (CR) and OA for line feed (LF) must appear together as

ODOA (denoted as CRLF in the sequel) for use at the end of each line. A text line, if

99

folded, should be limited to be 78 characters in length, excluding CRLF. Here, by
folding we mean to split a long text line into multiple shorter ones. A folding will
occur when a CRLF is inserted in a line to replace a space, separating the line into two

parts.

Table 6.1 ASCII control codes and description.

Dec | Hex | Char Description Dec | Hex | Char Description
0 0 NUL null character 16 10 DLE data link escape
1 1 SOH start of header 17 11 DC1 device control 1
2 2 STX start of text 18 12 DC2 device control 2
3 3 ETX end of text 19 13 DC3 device control 3
4 4 EOT end of transmission 20 14 DC4 device control 4
5 5 ENQ enquiry 21 15 | NAK | negative acknowledge
6 6 ACK acknowledge 22 16 | SYN synchronize
7 7 BEL bell (ring) 23 17 ETB | end transmission block
8 8 BS backspace 24 18+ CAN cancel
9 9 HT horizontal tab 25 19 EM end of medium
10 A LF line feed 26— 1A | SUB substitute
11 B VT vertical tab 27 1B ESC escape
12 C FF form feed 28 1C FS file separator
13 D CR carriage return 29 1D GS group separator
14 E SO shift out 30 1E RS record separator
15 F SI shift in 31 IF usS unit separator

Outlook Express, after being opened, often has a smaller window for viewing the
mail content. The window width is about 70 characters. In this study, we propose to
hide secret data in an email by adding ASCII control codes at the end of each text line
with the resulting line being of this width, such that when the resulting stego-email is
opened by Outlook Express, the mail body can fit the window width, thus increasing
the steganographic effect. For this aim, we fold the original email lines into shorter

ones, each being 65 characters in length, leaving 5 characters at each line end as a

100

data embedding slot.

Another popular protocol by which emails are accessed on a server is the Internet
Message Access Protocol version 4 (IMAP4) [45]. The IMAP4 supports single
web-mail servers and permits manipulations of mailboxes as remote message folders
in a way that is functionally equivalent to local folders. Web mails enjoy its popularity
because people can use the same client software to both surf the Internet and
transmit/receive emails. And IE is probably the most popular browser for
manipulating web mails. In this study, we assume that Outlook Express 6.0 and IE 6.0

are used as the client software to manipulate emails.

6.3 Embedding ASCII Control Codes into Emails

In this study, we identify five possible ways for secret data embedding in emails
by use of ASCII control codes. They are listed as.follows.

(1) White-space coding --- As mentioned previouisly, there are many different
white-space codes, each of which, when displayed, appears to be a white space,
yielding the same effect as the original ASCII space code 20. For example, under
the environment of the Big 5 standard using Outlook Express, each of the three
ASCII codes, 07, 09, and 0C, will be displayed as a white space, as found in this
study. Therefore, we can use each of them to replace a white space in an email
text in a data hiding process, with the resulting stego-email bringing no reader’s
notice.

(2) Inserting multiple white-space codes at text line ends --- We may place multiple
white-space codes before the CRLF at the end of a text line. Since no character
but background white spaces are shown after the CRLF, these additionally
inserted white-space codes, though displayed as visible white spaces, will be

connected to the background white spaces and thus bring no noticeable effect to

101

the reader.

(3) Null-space coding --- As mentioned previously, there are many null-space codes,
which are displayed as nothing. We can thus insert them at any position in a line
for any repetitions in a data hiding process without causing the reader’s notice.
For example, under the environment of the UTF-8 standard using IE, the four
null-space codes 1C, 1D, 1E, and 1F, as found in this study, are invisible.

(4) Inserting multiple null-space codes at text line ends --- We may place null-space
codes repetitively at the end of a text line without causing noticeable effect
because they are invisible when displayed, as in the case of (2) above.

(5) Combining techniques of the above --- We may combine the above techniques in
arbitrary ways if both white-space and null-space coding are applicable in the

environment.

In the above discussions, we see that the ASCII control codes usable for
embedding secret data are variant for different kinds of servers, browsers, and
character sets. In order to have a systematic investigation in this aspect, in this study
we created an email file which includes all ASCII control codes shown in Table 1 to
find out SMTP server software suitable for data embedding, as well as the
corresponding appearances of the ASCII control codes after they are processed and
displayed in the environment of such server software. The investigation results are
described as follows.

First, we have found four SMTP email servers which do not change the text
contents of emails, and so can be used as standard SMTP servers for the purpose of
data embedding in this study. Their uniform resource locators (URLs) are

http://cis.nctu.edu.tw, http://mis.tsint.edu.tw, http://tw.yahoo.com and

http://www.hotmail.com. The first is located in the Department of Computer Science

102

at National Chiao Tung University in Taiwan, with an SMTP software of Twig 2.7.7.
The department has additionally another SMTP server system, Horde, for web mails.
The second server is located at the Department of Management Information at
Technology and Science Institute of Northern Taiwan. The SMTP software is
SendMail 8.12. The third server is located in Taiwan and deals with web mails with
the name Yahoo! Mail. The last server is Hotmail, a web mail server of Microsoft
Corporation. After registering at any of these four servers, a user may read, transmit,
or receive emails by Outlook Express or IE.

In this study, the email format we use is MIME 1.0, the content-type is
text/plain, and the character set is UTF-8. These formats are very commonly used
and so are adopted in this study for data hiding applications.

After a systematic test of the /ASCII character set on the above-mentioned four
servers, we found that the hexadecimal ASCII.control codes appropriate for data
embedding under both the Outlook Express-and the 1E environments are 1C, 1D, 1E,
and 1F. These four codes all appear-to. be invisible on the IE browser, and all are
shown as white spaces in the Outlook Express window. They can so be used for data
embedding respectively according to the techniques of (2) and (4) mentioned above.
However, our goal is to take into account simultaneously, instead of respectively, the
techniques of (2) and (4), resulting in a method of repeatedly placing these four
ASCII control codes at the ends of email text lines. The displayed result of the
stego-email will be of no difference from the appearance of the original cover email,
thus achieving the steganographic effect.

More specifically, we use the following encoding rules to embed secret data
into the text line ends of a cover email.

1. Encode 2-bit binary secret data “00,” “01,” “10,” and “11” with the four ASCII

codes 1C, 1D, 1E, and 1F, respectively.

103

2. Put the unique combined ASCII codes 201E in front of a sequence of secret data
as its start signal, and append another copy of it at the sequence tail as the end
signal.

3. Use the unique combined ASCII codes 201C to encode the 1-bit data ‘0,” and the
combined codes 201D to encode ‘1.

4. Use the unique combined ASCII codes 201F as a separator to stop the underline
display that starts from a special lexical token of the network protocol, like http,

ftp, email, ..., etc.

Rule 4 above is necessary because otherwise the extra white-space codes we
insert at the end of a text line, when happening to be connected to the end of a
network protocol text line, will ,appear to be underlined white spaces, like in

http://cis.nctu.edu.tw ,-which ‘obviously are against the purpose of

steganography.
Based on the above rules, we describe the proposed data hiding algorithm for

the purpose of covert communication and authentication in the next section.

6.4 Proposed Data Hiding Process for Emails

We first describe the technique we propose to embed secret data into an email as
Algorithm 6.1 below, and then describe how to transmit the stego-email by Outlook
Express or IE. In the following, when we refer to an email, we mean its text body,

excluding the header.

Algorithm 6.1 Data embedding in an email.
Input: a secret data file S and a cover email E long enough to hide S.
Output: a stego-email E'.

Steps:

104

Set the format of the cover email E to MIME 1.0, the content-type to text/plain,

and the character set to UTF-8.

. Fold sequentially each long text line in E with over 65 characters into a

65-character line by inserting a CRLF to replace the first space code 20 found

backward from the 65th character breakpoint in the line.

Check every line in the resulting E to see if there exists in it any special lexical

token of the network protocol right before the CRLF; if so, insert a separator code

201F before the CRLF so that we can insert secret data in between the separator

code and the CRLF, as described next.

Get a text line from E, starting from the first, and perform the following

operations.

4.1

Insert the start signal 201E before the CRLF which appears at the line end.

4.2 Compute the embedding,capacity EC between the start signal and the CRLF

4.3

in the following way:

EC = 70 — position of ERLF in the text line,

which means the number of secret data bits we can insert before the CRLF

until the line becomes 70 characters long and should not be made longer, as

discussed previously.

Perform one of the following three cases (assuming that |S| means the length

of S):

(1) if EC # 0 and || > 1, then get a pair of bits from the prefix of S, encode
it with the corresponding code (one of 1C, 1D, 1E, 1F), insert the result
before the CRLF, decrement EC by 1, decrement S| by 2, and perform
Step 4.3 again;

(2) if EC = 0 and S| > 1, then get the next text line in E and perform Step

4.2;

105

(3) if |S| £ 1, then continue.
9. Check S to see if there still remains a single bit B in S. If so, then:

(1) if EC # 0, insert the code 201C before the CRLF if B is ‘0’ or the code 201D
ifBis ‘1°;

(2) if EC = 0, then get a text line in E with nonzero embedding capacity EC and
conduct the insertion as in Step 5(1) above.

10. Append the end signal 201E at the end of all the codes inserted in the previous
steps.

11. Output the result as the desired stego-email E'.

After a stego-mail E' is obtained, we want to send it to the receiver site through
Outlook Express or IE as a tradifional email ‘or.a web mail, respectively. For the
former way using Outlook Express, we open a .new email, denoted as E,, set the
character set of E, to UTF-8, expandithe window size of E, to the maximum, copy the
text body of E' into E,, and finally send-the result'to the receiver without encrypting it.
For the latter way using IE, we use IE to log in the selected web mail server, and do

all the same to complete the mail transmission.

6.5 Proposed Data Recovery Process for Emails

At the receiver end, after a stego-mail is received by the use of Outlook Express or
IE, its content of ASCII codes is checked for secret data extraction. The algorithm for

this purpose is described as follows.

Algorithm 6.2 Data Recovery from a stego-email text body.
Input: a stego-email text E', presumably including a secret data file S.
Output: the file S.

Steps:

106

1. Scan separator signals 201F in E' and remove all of them, if there exists any.
2. Scan the resulting E' to find the start signal 201E in E' and remove it
3. Perform the following steps.
3.1 Get a pair of ASCII codes in order from E.
3.2 If the code pair P is the end signal of 201E, then perform Step 4; otherwise:
(1) if P is either 201C or 201D, then decode P to be the bit 0 or 1,
respectively;
(2) if P is neither 201C nor 201D, then check each code Q in P and if Q is
one of 1C, 1D, 1E, and 1F, then decode Q to get the corresponding
secret bit pair (one of 00, 01, 10, and 11) and remove Q.
3.3 Go to Step 3.1.
4. Remove the end signal.
5. Concatenate all the decoded-secret data bits extracted in the previous steps into a

sequence as the desired secret data file-S.and exit:

6.6 Proposed Authentication'Process for Email Documents

The data embedding and extraction techniques proposed previously, in addition
to being useful for the purpose of covert communication, may be used for the purpose
of email authentication. More specifically, by embedding appropriately-designed
codes as an authentication signal, the signal, when extracted, can be used to check the
fidelity of a received email, proving that it was transmitted by a specified server and
not tampered with before received. In this study, we achieve this goal by embedding
an authentication signal into an email by Algorithm 6.1 to generate an authenticable
stego-email. The signal is generated by the use of the content of an email by a
division operation. The fidelity verification work is accomplished by matching the

authentication signal extracted from a given authenticable stego-email with that

107

computed directly from the original text content of the email. The details are

described as two algorithms below.

Algorithm 6.3 Generation of an authenticable email.

Input: a cover email E and a secret key K.

Output: an authenticable email E'.

Steps:

1. Fold each long text line in E with over 65 characters into a 65-character line by
inserting a CRLF code to replace the first space code found backward from the
65th character breakpoint.

2. Compute a value M by summing up all the ASCII code values in the resulting E
after excluding all the special codes of 1C, 1D, 1E, 1F, 201C, 201D, 201E, and
201F.

3. Compute an authentication Signal A as.the remainder of dividing M by the secret
key K.

4. Use Algorithm 1 to embed A into E to obtain an authenticable email as the desired

output E".

In Step 2 above, the reason of excluding the special codes is that these codes are

to be used for embedding the authentication signal A in Step 4.

Algorithm 6.4 Authentication of an email.
Input: a stego-email E', presumably including an authentication signal; and a secret
key K.
Output: an authentication message about the fidelity of the displayed text content of
E'.
Steps:

108

1. Compute a value M by summing up all the ASCII code values in E' after
excluding all the special codes of 1C, 1D, 1E, 1F, 201C, 201D, 201E, and 201F.

2. Compute an authentication signal A as the remainder of dividing M by the secret
key K.

3. Extract the hidden authentication signal A' from E' by Algorithm 2.

4. Compare A" with A, and if they are identical, then output the authentication

b

message “pass,” meaning the displayed text content of E' is genuine; else, the

message “fail,” meaning the reverse.

6.7 Experimental Results

Figures 6.1 through 6.4 illustrate some experimental results of applying
Algorithms 6.1 and 6.2 for covert communication using Outlook Express. Figure 6.1
shows part of the content of a 9.3KB|cover email. Figure 6.2 shows part of the content
of the stego-email (12.7KB) obtained by-applying Algorithm 6.1 with the cover email
as the input. This content was displayed with Qutlook Express by a receiver with
email address tmpl68@mis.tsint.edu.tw, to whom the stego-email was sent. From
Figure 6.2, we see that no difference can be seen in the stego-email, when it is
compared with the cover email. Figure 6.3 shows the content of the 1.07KB secret
data file embedded in the stego-email. And Figure 6.4 shows the content of the
1.07KB secret data file extracted from the stego-email shown in Figure 6.2 by
applying Algorithm 6.2. The two file contents can be seen to be the same. These
results show that the proposed method of data hiding and recovery is feasible.

Figures 6.5 through 6.9 illustrate some additional experimental results of
applying the proposed algorithms using IE. All password portions in the emails in
these figures were blackened for protecting the privacy of the mail owners. Figure 6.5

shows the content of a 2.42KB cover email. Figure 6.6 shows the content of the

109

corresponding stego-email (2.54KB) generated by Algorithm 1. Figure 6.7 shows part
of the content of the stego-email seen as a web mail in IE at a receiver site with

address gis87809@cis.nctu.edu.tw. Figure 6.8 shows the content of the original secret

data file with 27 bytes. Figure 6.9 shows the content of the secret data file that was
extracted from the stego-email shown in Figure 6.7. Again, the original and the
extracted secret data are seen identical.

The experiments presented above were conducted under the condition that the
transmitter’s and the receiver’s operations were performed on the same server.
Actually, we also conducted experiments in which the transmitter’s and receiver’s

operations were performed on difference servers. For example, one server we used

was the mail server at Yahoo! in Taiwan, and the other a mail server in the

e (-3 8 @ X 4] W) W)
EE 2. @F FIE A6 i i EHE
FHEE: Lee
HH: 200768168 T4 08:26
- tmp168: Lee
E8: test sample

----- Original Message ——--- A
From: Shiuhpyng Shieh

To: facult\gcs nctu. edu. tw

Cc: hkchen ; Chris Tseng : sherry_wang@ITRI. ORG.TW ;

margaret@ITRI. ORG. TW

Sent: Wednesday, September 21, 2005 10:26 AM

Subject: ACM Symposium on InformAtion. Computer and

Communications Security

(final call-for-papers)

Dear colleagues,

You are cordially invited to submit your papers to the ACM
Symposium on [nfom_{twn, Computer and Eommumcahons
Security, / /
This conference is considered as one of the three best
security conferences sponsored by ACM SIGSAC.

Since the ACM ASIACCS conference submission deadline Oct. 1 is
approaching, we are sending you the final CFP. Please help us
distribute the attached final CFP (in three formats, pure
text, PDF and Word) as much as possible. In the meantime,
please also seriously consider submitting your papers to thls

nrnfaranan Veie aantveihotinn ie seantls anneaniadnd

& 2 Windows ... ¥ |) ZEEEData Hi.., W ¢ E... =) - & &R TF06:29

Figure 6.1 Partial content of a cover email.

110

ascii direct - Unicode (UTF-8)
| EED &/8E BRU IE(D HEQAD ﬁﬂﬁ(}l)

E%E =X. W9F §Eﬂ1 filpR 5 [—E | iSrRsk
FHEE: User&

B 200756238 T4 03:30

W tmp168@mis.tsint.edu.tw
=H ascii direct

----- Original Message -----

From: Shiuhpyng Shieh

To: facult)‘gcs. nctu. edu. tw

Cc: hkchen ; Chris Tseng ; sherry_wang@ITRI. ORG. TVW ;
margaret@[TR1. ORG. TW

Sent: Wednesday, September 21, 2005 10:26 AM
Subject: ACM Symposium on InformAtion, Computer and
Communications Security

(final call-for-papers)

Dear colleagues,

You are cordially invited to submit your papers to the ACM
Symposium on Informition, Computer and Communications
Security, http://www. sinica.iis. edu/ASIACCS2006/.

This conference is considered as one of the three best
security conferences sponsored by ACM SIGSAC.

Since the ACM ASIACCS conference submission deadline Oct. 1 is
approaching, we are sending you the final CFP. Please help us
distribute the attached final CFP (in three formats, pure
text, PDF and Word) as much as possible. In the meantime,
please also seriously consider submitting your papers to this

conference. Your contribution is greatly appreciated. The
conference 1 s he ld Ta

1n the beaut

ring. Please

The advance of Internet brings convenience to people. Through the
Internet people can transmit a message to each other easily. But
illegal users can intercept private data, accounts and passwords,
too. Even e-mails may be embedded viruses or worms in the attached
files or tamper with contents on resulting in misrepresentation of
them. Therefore, effective methods for two applications, including
covert communication, and tamper proofing, on text-type e-mail
documents are proposed in this study. For covert communication,
secret messages are encoded as ASCII control codes and embedded into
a text-type e-mail by data hiding techniques. With imperceptible
modifications of text contents, the hidden secret can be transmitted
securely. For tamper proofing of e-mail content, an authentication
signal generation and embedding method is proposed for verifying
whether or not the content has been tampered with. Furthermore, a
stego-enail can be extracted the embedded secret data and made a

comeback to the original cover email. Good experimental results show 3

the feasibility of the proposed methods.

Figure 6.3 Partial content of an embedded secret data file.

111

P resutl after transmition -

EEE REE BROQ BRRY) REBH

The advance of Internet [ll'illgs convenience to PE[IP].E. Tlll'lll.lgh the
Internet people can transmit a message to each other easily. But
illegal users can intercept private data, accounts and passwords,
too. Even e-mails may be embedded viruses or worms in the attached
files or tamper with contents on resulting in misrepresentation of
them. Therefore, effective methods for two applications, including
covert communication, and tamper proofing, on text-type e-mail
documents are proposed in this study. For covert communication,
secret messages are encoded as ASCII control codes and embedded into
a text-type e-mail by data hiding techniques. With imperceptible
modifications of text contents, the hidden secret can be transmitted
securely. For tamper proofing of e-mail content, an authentication
signal generation and embedding method is proposed for verifying
whether or not the content has been tampered with. Furthermore, a
stegn—email can be extracted the embedded secret data and made a
comeback to the m’iginal cover email. Good experinental results show
the feasibility of the proposed methods.

Figure 6.4 Partial content of the extracted secret data file.

@& EES Registration - Unicode (UTF-8)

 HMED SEE MRV TED BEAM HHH -
¢ ® 9| 3 X 0 © | w
OW 2%. &% S @ BB

FFE: pattem Recognition

H#: 2006E9F 78 E4F 10:58
WfF#: gis87809@cis.nctu.edu.tw
*5: EES Registration

Dear Mr. I-Shi Lee,

You have received this message because you have registered, or have been registered by an Editor,
for the Elsevier Editorial System - the online submission and peer review tracking system for
Pattern Recognition.

Here is your username and confidential password, which you will need to access the Elsevier
Editorial System at v /pr.t.

Your username is: gis87809@cis. nctu. edu. tw
Your password 1s:

Please save this information in a safe place.

Once you login, you may change vour password and other personal information by selecting the "Change
details” option on the menu bar at the top of the page.

Kind regards,

Elsevier Editorial System
Pattern Recognition

Figure 6.5 Partial content of a cover email.

112

® EES Registration - Unicode (UTF-8) (=53
»

- 1BRE #/EE BRY IEOD QM REH
& & .8 2 X © O W
EE 2. S#F FUED Bk R
FFE: Pattern Recognition
B 200659878 £ 10:58

WHFE: gis87809@cis.nctu.edu.tw
*5: EES Registration

Dear Mr. I-Shi Lee,

You have received this message because you have registered, or

have been registered by an Editor, for the Elsevier Editorial
System - the online submission and peer review tracking system
for Pattern Recognition.

Here is vour username and confidential password, which you
will need to access the Elsevier Editorial System at
http://ees. elsevier. com/pr/.

Your username is: gis87809Gcis. nctu. edu. tw
Your password is:

Please save this information in a safe place.

Once you login, you may change your password and other]
personal information by selecting the "Change details” option
on the menu bar at the top of the page.

Kind regards,

Elsevier Editorial System
Pattern Recognition

.-_?-?‘ﬁ-: i :Es-_li‘ "
Figure 6.6 Partial content of the s;?g"” ﬁi,gf@gﬁt&d from Figure 6.5 before being
- G = L0 4

-ITI

transmitted.

A TWIG [#{4] - Microsoft Internet Explorer - O] X

BED #EO HEL HTIEEQ IED ®HEBH ar

QL FH-© HNREG PES SRBF @ v B LE

§HE(D) |8 hutps:/fmail cis.nctu.edu.twitwig/index php3?&itwig_session=a%3A8%3A%TBs%IATRIA% 2mailbox %2 v | B BE 4 ®

Google (G~ vHEE 2 D @ BE BIERER VHTERE - »®R3- 0 O EE-

12 =-H<whtsai@cis.nctu.edu.tw> 3 A
=21gis87809@cis.nctu.edu.tw

EF. Swhtsai@cis.nctu.edu.tw
5o -:BASCI| test 9

St FEHL
Dear Mr. I-Shi Lee,

You have received this message because you have registered, or

have been registered by an Editor, for the Elsevier Editorial

System - the online submission and peer review tracking system
for Pattern Recognition.

Here is your username and confidential password, which you
will need to access the Elsevier Editorial System at
http://ees.elsevier.com/pr/.

Your username is: gis87809Gcis.nctu.edu.tw
Your password is:

Please save this information in a safe place.

| fncaiiin PR P P) T P e Dt RPN by N

£ S @ MWew

¥ Q=g G CHe @l ATWL. = C = TP - &= 5]

Figure 6.7 Partial content of the stego-email received and displayed in IE.

113

P secret file - SEEA
BRE BBE BR0Q BBV HHEE

http://www.nctu.edu.tw/

Figure 6.8 Content of the original secret file.

BED® ®/EE #BROQ BEY) RHEH

http://www.nctu.edu.tw/

Figure 6.9 Content of the extracted secret file.

Figures 6.10 to 6.13 illustrate some experimental results of applying the
proposed email authentication method. Figure 6.10 shows the content of a stego-email
which was generated by Algorithm 6.3. The password portion in the stego-email was
also blackened for protecting privacy. The embedded secret data are invisible to a
casual reader. Figure 6.11 shows part of the content of the stego-email file after being

received by Outlook Express, and the authentication result of “pass”.

114

@& EES Registration - Unicode (UTF-8) =03
BEE #EO® HEY IED FEFM REG ar

& & .8 e X © O)
EE 2. #@F FE Wk 8 T &Rk

FF#E: Ppattern Recognition

H#: 200659878 EF 10:58
e gis87809@cis.nctu.edu.tw
ESi=H EES Registration

Dear Mr. I-Shi Lee,

You have received this message because you have registered, or have been registered by an Editor,
for the Elsevier Editorial System - the online submission and peer review tracking system for
Pattern Recognition.

Here is your username and confldentlal passwmd. which you will need to access the Elsevier
Editorial System at :

Your username is: gis87809@cis. nctu. edu. tw
Your password is:

Please save this information in a safe place.

Once you login, you may change your password and other personal information by selecting the "Change
details” option on the menu bar at the top of the page.

Kind regards,

Elsevier Editorial System
Pattern Recognition

He
chatlon before transmission.

|.'|
=]

et < {pancogwe]semx P =) A
Feceived: fiom localhost (localhost [127.0.0.17 —
by rreedl.cis.netu.edu. e (5,15 608,13, 4) with ESMTE id k72 NATSAS5T
fox <gi<BPR0P@ cis. notedw twer; Thay, 7 Sep 2006 10:59:44 +0800 (C2T) 1494501774 1434501774

lenvelope-fiom patcog @ elsevier.com)
Feceived: fom rmedl cis.nete edw tw (1270017
by localhost (il cis. netw edu. tw [127.0.0 1] Carmaniad-new, port 1000240
with LMTF 1d 242906 for <zis P00 cis notuedw fur
Thy, 7&ep 2006 10:5%:44 +0200 (8 T)

Faceived: fiom eleodsi0087 ees alsevier.com (elaodfsi0657 ees.alsevier.com [145.56.215.159] |
by rreedlocds.nobyedu b (313602, 13,40 wath ESMTP id k372wl WI2EM3 -
fou <gisBM00@ cis. notwedu twes; Thy, 7 fep 2006 10:58:56 +0800 (C2T)
lenvelope-fiom patoog@® elseviercon)

Feceived: fiomn elaoef=1 50817 caspund e lsavier com (unvenfied) by elsosf=30687 ses eloaviar oo

(Content Technologies SR TERS 4.5.14) wath EXMIE id < TP02085 01244 720590
@ alacecf=3 06T eaz eleevier core fon <gisB A0 ciz noty. edu tws;
Thi, 7 Bep 2006 05:58:52 40100
Feceived: fiorn ELBOHFR150817 ([145.96.215 177 by elsceds15081 7 eespuod elsevier. com with Micuosoft
EMTEEVC(R.0.5790.18300;
Thay, 7 Bep 2006 03:52:38 40100

From: "Pattem Fecognition” < pateog @ else vier.come

To: <gisBPal9E ois noty edu. tu=

Subject: EE? Regictation

Diate: Thu, 07 Bep 2006 05:52:38 +0100

Content-Trpe: texctplain: chasset="TTTF-3" b

Pass

Figure 6.11 Authentication result of “pass” after receiving a stego-email by Outlook

Express.

115

EECD

)

Lbea ML, b Lee,

FHEREREE D)

BERRLD)

Tou haore received this message becanse you heve wgisteved, oo
have been wegistered by an Editor, for the Elsevier Editoral 1434501774 1434501774
Barstern - the online subrrdssion snd peet wview tacling syshern
fox Pattern Fecognition.

Hete is your wsemsome snd confidential pesswoed, which you
wrill need to access the Elsevier Editodal Bystermn at
hbtpeifees aloevier conipe’.

Vo wsemanme is: gisB 78008 ois.notu edu b

ch\up:asswmdis:-

Fleass save this inforredion in o safe place.

(Chneee you login, you meyr change your passwond and other
pevsomal infrernadion by selecting the "Change detadls” option
om the menu beg 2t the top of the page.

Eind wegauds,

Flzavier Editadal Systern
Pattem Fecognition

- D\ABCB 6 programs\source program\Paper 3 Data hiding in Text\200706... ‘:”EHX|
BEW) BEOD HHERERCD EEFEO

Do M, L& lee, TN

Vo hawe received this ressege because you heawe wmgistered, o 274570608 1434501774
have been wegisteved by an Editor, for the Elsevier Editodal
Srsterm - the online subrmdission and peex seview tacking systern
frx Pattern Fecognition.

Hae iz your wsemame and confidential passwoud, which you
will need to sccess the Elsevier Editadal System at
httpeflees elsevier comipe’.

Vo wsemaime 1s: gish P09 o1z et ed. tur
Vour passwoud. i=: [NNGING

Flesse save this information in = safe place.

Cmie you login, o ey chenge o pesswond. snd other
personal information by selecting the "Change details" option Paﬂ
om the Trenu bex at the top of the page.

Eind egauds,

Elsewier Editoial Sarstermn
Patterm Fecognition et

Figure 6.13. Authentication result of “fail” after receiving the stego-email by IE. The

word “Lee” in the content has been modified to be “lee.”

Figure 6.12 shows part of the content of the stego-email after being received by

116

IE, and the authentication result of “pass”, too. Figure 6.13 shows part of the content
of the stego-email file after being received by IE, and the authentication result of
“fail,” since the content has been tampered with (the word “Lee” has been changed to

“lee”). These results show that the proposed email authentication method is effective.

6.8 Concluding Remarks

In this study, we propose a method to embed secret data into emails via the use
of the ASCII codes under the operating system of the traditional Chinese version of
Microsoft Windows XP, service pack 2, 2002. After a systematic test of all the ASCII
codes on various email server software systems and standards, four special ASCII
control codes 1C, 1D, 1E, and 1F have been found to be invisible at the line ends of
email texts on the SMTP email server in the environment of Outlook Express or IE. A
technique has been proposed to utilize these special codes to encode secret data,
which is a combination of five coding rules found in this study. Each stego-email can
be transmitted to a receiver, and read as a normal email. Extra long lines of emails are
folded to be of a proper length for normal displays on email servers to increase
steganographic effects. The experiment results prove the feasibility of the proposed
method.

In this study, 2-bit secret data are embedded into a white space of a text email.
Comparing to other methods proposed by Bender et al. [27] and Chang and Tsai [37]
in which on average each secret bit needs 1.5 white spaces to encode (one white space
representing a “0,” and two white spaces representing a “1,” leading to the average of
1x0.5+2x0.5 = 1.5 spaces for a secret bit), the proposed method needs only 0.5 white
space for each secret bit (one ASCII code representing 2 secret bits), which is an

increase of the embedding capacity for three times.

117

The proposed methods may put into practice in the four servers as listed
previously. However, not all mail servers fully follow the SMTP standard. Instead,
some mail servers have their own ways of management, like Gmail and Yahoo! Mail,
which delete redundant spaces and undefined characters. So, the proposed method is
inapplicable to these two servers. Other applicable techniques should be investigated,
and are left for further study. Another topic worth future investigation is to apply the
proposed data hiding technique to check the integrity of an email, in addition to the
fidelity check scheme proposed in this study. Finally, we may extend both the

convert communication and authentication works of this study to dealing with web

pages.

118

Chapter 7

Security Protection of Software Programs
by Information Sharing and Authentication
Techniques Using Invisible ASCII Control
Codes

7.1 ldea of Proposed Method

ASCII codes, usually expressed as hexadecimal numbers, are used very
commonly to represent texts for information interchanges on computers. Some of the
ASCII codes of 00 through 1F were used as,control codes to control computer
peripheral devices like printers,‘tape drivers, teletypes, etc. (see Table 7. 1). But now
they are rarely used for their original putposes because of the rapid development of
new peripheral hardware technologies, except those codes for text display controls,
such as OA and 08 with the meanings of “line feed” and “backspace,” respectively. It
is found in this study that some of the ASCII control codes, when displayed by certain
text editors under some OS environments, are invisible. Such ASCII codes may be
utilized for various secret data hiding purposes [53].

The finding of such invisible codes resulted from a systematic test of all the
ASCII control codes in the environment of the VC' editor of Microsoft Visual
Studio .NET 2003, Service Pack 1. Four of such codes so found are 1C, 1D, 1E, and
1F, which are invisible in the comments or character strings of VC' programs (see
Table 7. 2). Such codes will simply be said invisible in subsequent discussions.

As an illustrative example, in Figure 7.1 we show a simple source program in

Figure 7.1(a) with a short comment “test a file.” In the comment, we inserted

119

consecutively the four codes 1C, 1D, 1E, and 1F between the letters “s” and “t” in the
word “test.” Their existences can be checked with the text editor UltraEdit 32, as can
be seen from Figure 7.1(b). But the four codes are invisible in the VC' editor, as can
be seen from Figure 7.1(a). Such invisibility usually will arouse no suspicion and so
achieve a steganographic effect, since, unless necessary, people will always use the
VC' editor for program inspection and development. We utilize such an “invisibility
phenomenon” for hiding both share data and authentication signals in source

programs in this study, as described in the following.

Table 7.1. ASCII control codes and descriptions.

Dec | Hex | Char Description Dec | Hex | Char Description
0 0 NUL null character 16 10 DLE data link escape
1 1 SOH start of header 17 11 DC1 device control 1
2 2 STX start-of text 18 12 DC2 device control 2
3 3 ETX end of text 19 13 DC3 device control 3
4 4 EOT end of transmission 20 14 DC4 device control 4
5 5 ENQ enquiry. 21 15" | NAK | negative acknowledge
6 6 ACK acknowledge 22 16 | SYN synchronize
7 7 BEL bell (ring) 23 17 ETB | end transmission block
8 8 BS backspace 24 18 | CAN cancel
9 9 HT horizontal tab 25 19 EM end of medium
10 A LF line feed 26 1A | SUB substitute
11 B VT vertical tab 27 1B ESC escape
12 C FF form feed 28 1C FS file separator
13 D CR carriage return 29 1D GS group separator
14 E SO shift out 30 1E RS record separator
15 F SI shift in 31 IF usS unit separator

For the purpose of program sharing among several participants, after a given
secret source program is transformed into shares, each share is transformed further

into a string of the above-mentioned invisible ASCII control codes, which is then

120

embedded into a corresponding camouflage source program held by a participant. And
for the purpose of security protection, authentication signals, after generated, are
transformed as well into invisible ASCII control codes before embedded. These two
data transformations are based on a binary-to-ASCII mapping proposed in this study,
which is described as a table as shown in Table 7. 2, called invisible character coding

table by regarding each ASCII code as a character.

Table 7. 2 Invisible character coding table.

Bit pair Corresponding invisible ASCII code
00 1C
01 1D
10 1E
11 IF

Specifically, after the share and the-authentication signal data are transformed
into binary strings, the bit pairs 00,°01;:10;:and 11 in the strings are encoded into the
hexadecimal ASCII control codes 1C, 1D, 1E, and 1F, respectively. To promote
security, a secret random key is also used in generating the authentication signal. The
details are described in the next section.

In the remainder of this chapter, the secret program sharing and recovery
schemes are introduced in Sections 7.2 and 7.3, respectively. The security protection
problem is discussed in Section 7.4. Some experimental results are shown in Section

7.5, followed by concluding remarks in Section 7.6.

7.2 Proposed Program Sharing Scheme

In the sequel, by a program we always mean a source program. A sketch of the

proposed process for sharing a secret program is described as follows.

121

(1) Creating shares --- Apply exclusive-OR operations to the contents of the secret
program and all the camouflage programs, and divide the resulting string into N
segments as shares, with the one for the k-th participant to keep being denoted as
Ex.

(2) Generating authentication signals --- For each camouflage program Py, use the
random key value Y to compute two modulo-Y values from the binary values of
the contents of Py and Ey, respectively; and concatenate them as the authentication
signal Ay for Py.

(3) Encoding and hiding shares and authentication signals --- Encode Ex and Ay
respectively into invisible ASCII control codes by the invisible character coding
table (Table 7. 2) and hide them evenly at the right sides of all the characters of
the comments of camouflage program Py, resulting in a stego-program for the k-th

participant to keep.

A detailed algorithm for the above.scheme is given in the following. We assume
that the length of a program is measured as the number of the ASCII characters in it.
Also, given two ASCII characters C and D, each with 8 bits, denoted as C = ¢(C;...C;
and D = dod;...d;, we define the result of “exclusive-ORing” the two characters as E =
C®D = ege;...e7 with ej = ¢i@®d; for i = 0, 1, ..., 7 where @ denotes the bitwise
exclusive-OR operation. Note that E has eight bits, too. And given two equal-lengthed
character strings S and T, we define the result of exclusive-ORing them, U = S&@T, as

that resulting from exclusive-ORing the corresponding characters in the two strings.

122

@9 test - Microsoft Visual C++ [design] - test.cpp

File Edit Wew Project Build Debug Tools wWindow Help

H-tm-=Ja y Debug - BE=
4% % 7% .
£ test.cpp| 4 I X || Properties 1%
o = #include <iostream> = | ﬂ =
2 . El
& using namespace std; = (& 2
2L = [21)E) ;.
=) . I
=]] int main() %
i
L cout <<"hello world!!!"™ <<endl; // test a file
2 }
=
1 | »
Cutput o x
|Build j
A
Bebuild A4ll: 1 succeeded, 0 failed, 0 skipped 0
I v
] »
Task List | E7] Command wWindow Bl Output
Rebuild All succesded Ln 17 Col1 chi NS

‘s start 5o v | € UlbraEdit - [... 89 2 Microsof ..~ EN O EH Y 0(R zarM

(a) A source program with four inyjsible ASCii’c’ogtrol codes inserted in the comment
“test a file.” K e

- 8 X

_@File Edit Search Project Wiew Format Column Macro Scripting Advanced Window Help

| DcSH SRE D2 |MEB @ k@[v éaha s

I
(]
¥

x| test.cpp |

T 1 2 3 4 5 6 7 8 9 5 b e d e § =
0000003 0h: 20 6D 61 69 G6E 2§ &9 0D OA 7B Ol Q&L 20 63 6F 75 ; main()..{.. cou =
00000040h: 74 20 3C 3C 22 68 65 o6C 6C oF 20 77 6F 72 aC 64 ; t <<"hello world
00000050h: 21 21 21 22 20 3C 3C 65 6E 64 6C 3B Z0 2F 2ZF 20 ; !!'!™ <<endl; //
O0o000&60k: 74 65 73 1C 1D 1E 1F 74 20 61 20 66 69 &6C 65 0D ; tes... . a file.
0000007 0n: 0OA 20 7D HE

(b) The program seen in the window of the text editor UltraEdit with the four ASCII
control codes visible between the letters “s” and “t” of the word “test” in the

comment.

Figure 7.1 Illustration of invisible ASCII control codes in a comment of a source

program.

Algorithm 7.1 Program sharing and authentication.
Input: (1) a secret program P of length Ag; (2) N pre-selected camouflage programs

Pi, Pa, ..., Py of lengths A4, Ay, ..., An, respectively; and (3) a secret key which

123

is a random binary number Y with length Ay (in the unit of bit).
Output: N stego-programs, P;', P,', ..., Py, in each of which a share and an
authentication signal are hidden.
Steps:
Stage 1. Creating shares from the secret program.
1. Create N + 1 character strings, all of the length As of P, from the secret program
and the camouflage programs in the following way.
1.1 Scan the characters (including letters, spaces, and ASCII codes) in the secret
program Py line by line, and concatenate them into a character string S;.
1.2 Do the same to each camouflage program Py, k = 1, 2, ..., N, to create a
character string Sy of length A (not A) either by discarding the extra characters
in Py if Ax > A or by repeating the characters of Py at the end of Sk if A < A,
when Ay # .
2. Compute the new string E =S@PS;BS,B-BSy.
3. Divide E into N segments E;, E3, .. En.as-shares.
Stage 2. Generating authentication signals from the contents of the shares and
the camouflage programs.
4. Generate an authentication signal Ay for each camouflage program Py, k=1, 2, ...,

N, using the data of Sy and Ey as follows.

4.1 Regarding Sy as a sequence of 8-bit integers with each character in Sy
composed of 8 bits, compute the sum of the integers, take the modulo-Y value
of the sum as As,, transform Ag, into a binary number, and adjust its length to
be Ay, the length of the key Y, by padding leading 0’s if necessary.

4.2 Do the same to Ey to obtain a binary number Ag, with length Ay, too.

4.3 Concatenate Ask and AEk to form a new binary number Ay with length 2Ay as

the authentication signal of Py.

124

Stage 3. Encoding and hiding the share data and authentication signals.
5. For each camouflage program Py, k=1, 2, ..., N, perform the following tasks.
5.1 Concatenate the share Ex and the authentication signal Ay as a binary string Fy.
5.2 Encode every bit pair of Fy into an invisible ASCII control code according to
the invisible coding table (Table 7. 2), resulting in a code string F'.
5.3 Count the number m of characters in all the comments of Py.
5.4 Divide Fy' evenly into m segments, and hide them in order into Py, with each
segment hidden to the right of a character in the comments of Py.

6. Take the final camouflage programs P,', P,', ..., Py' as the output stego-programs.

In Step 3, we assume that the number of characters in the secret program is a
multiple of N, the number of participants, for'simplicity of algorithm description; if
not, it can be made so by appending a sufficient:number of blank spaces at the end of
the original secret program. In Steps 4.1.and 4.2, the:purpose we compute the signals
ASk and AEk from the contents ‘of the camouflage program Py and the share Ey,
respectively, for use in generating the authentication signal Ay is to prevent any
participant from intentionally or accidentally changing the contents of the original
camouflage program or the hidden share; illegal tampering with them will be found
out in the process of secret program recovery described in the next section. It is also
noted that each stego-program yielded by the algorithm still can be compiled and

executed to perform the function of the original camouflage program.

7.3 Secret Program Recovery Scheme

A sketch of the proposed process for recovering the secret source program is
described as follows, for which it is assumed that the stego-program brought to the

recovery activity by participant K is denoted as Py'. Also, the original key with value Y

125

used in Algorithm 7.1 is provided.

(1)

2)

)

Extracting hidden shares and authentication signals --- Scan the comments of
each stego-program Py' to collect the invisible ASCII control codes hidden in
them and concatenate the codes as a character string; decode the string into a
binary one by the invisible character coding table (Table 7. 2); and divide the
string into two parts, the share data Ex and the authentication signal Ax. Also,
remove the hidden codes from Py’ to get the original camouflage program Py.
Authenticating the shares and the camouflage programs --- Use the authentication
signal Ay as well as the key Y to check the correctness of the contents of the
extracted share data Ex and the camouflage program Py by decomposing Ay into
two signals and matching them with the modulo-Y values of the binary values of
Px and Ey, respectively. Issue.warning messages if either or both authentications
fail.

Recovering the secret program -+ Apply-exclusive-OR operations to the extracted
share data E; through Ey and the camouflage programs P; through Py to

reconstruct the secret program Ps.

The secret program recovery process is described as a detailed algorithm in the

following.

Algorithm 7.2 Authentication of the stego-programs and recovery of the secret

program.

Input: N stego-programs P, P', ..., PN' provided by the N participants and the secret

key Y with length v used in secret program sharing (Algorithm 7.1).

Output: the secret program P hidden in the N stego-programs if the shares and the

camouflage programs in the stego-programs are authenticated to be correct.

Steps:

126

Stage I. extracting hidden shares and authentication signals.

1.

For each stego-program Py, k =1, 2, ..., N, perform the following tasks to get the

contents of the camouflage programs and the authentication signals.

1.1 Scan the comments in Py' line by line, and collect the invisible ASCII codes
located to the right of the comment characters as a character string Fy'.

1.2 Remove all the collected characters of F' from Py', resulting in a program Py
with length |, which presumably is the original camouflage program.

1.3 Decode the characters in Fy' using the invisible character coding table (Table 7.
2) into a sequence of bit pairs, denoted as Fy.

1.4 Regarding Fy as a binary string, divide it into two segments Ey and A¢ with the
length of the latter being fixed to be 2Ay, which presumably are the hidden

share and the authentication'signal, respectively.

1.5 Divide A into two equal-lengthed binary numbers As, and Ag, .

Stage I1. Authenticating share-data:and-.camouflage programs.

2. Concatenate all Ey, k =1, 2, ...,"N,in order; resulting in a string E with length Ag

which presumably equals A, the length of the secret program to be recovered.

Foreach k=1, 2, ..., N, perform the following authentication operations.

3.1 Create a character string S¢ of length Ag from the characters in Py either by
discarding extra characters in Py if Ax > Ag or by repeating the characters of
Py at the end of Sk if Ax < Ag, when Ax # Ag.

3.2 Regarding S as a sequence of 8-bit integers with each character in Sy
composed of 8 bits, compute the sum of the integers, take the modulo-Y
value of the sum as Ag/, transform A, into a binary number, and adjust its
length to be Ay, the length of the key Y, by padding leading 0’s if necessary.

3.3 Do the same to Ey, resulting in a binary number AEk'.

3.4 Compare As' with the previously extracted As,; if mismatching, issue the

127

message “the camouflage program is not genuine,” and stop the algorithm.
3.5 Compare Ag,' with the previously extracted Ag,; if mismatching, issue the
message “the share data have been changed,” and stop the algorithm.
Stage I11. Recovering the secret program.
4. Compute Sg = E®S|®S,...®Sy, and regard it as a character string.
5. Use the ASCII codes 0D and OA (“carriage return” and “line feed”) in S as
separators, break S into program lines to reconstruct the original secret program

Ps as output.

Note that in Step 4 above, we conduct the exclusive-OR operations of
E®S,®S,®...8Sy. This will indeed result in the desired Sg because E was computed as
E = S@S@S5,®...®Sy in Step 2 of Algorithm 7.1, and so

E®S ®S:®...0S\ = (Si@S|@S5:8...05y) DS DS, D... DSy
= 5B(5,BS))D...&(SNDBSn)
= S,@0@0®...80 = S;
by the commutative and associative laws of the exclusive-OR operation and the facts
that X®X = 0 and X&®0 = X for any bit X, where the bold character 0 is used to

represent 8 consecutive bits of zero, i.e., 0 = 00000000.

7.4 Discussions on Security Protection

In the previous discussions, we assume that the proposed algorithms of secret
sharing and recovery (Algorithms 7.1 and 7.2) are known to the public, and that the
key Y is held by a supervisor other than any of the N participants. The key is provided
by the supervisor as an input to the secret program sharing and recovery processes
described by Algorithms 7.1 and 7.2; it is not available to any participant. Under these

assumptions and by Algorithm 7.2 above, if any participant changes the content of the

128

camouflage program or that of the share contained in the stego-program which he/she
holds before the secret program recovery process, such illegal tampering will be
found out and warnings issued during the recovery process.

However, there still exists in the two algorithms another kind of weakness in
security protection of the secret program. That is, the secret program may be
recovered illegally if all the stego-programs are stolen by a person who knows the
algorithms, because then he/she may run Algorithm 7.2 to extract the secret program
without performing Step 3, as can be figured out!

One way to remove this weakness is to use the secret key to randomize the
result of E = S@S,BS,®...8Sy computed in Step 2 in Algorithm 7.1 before E is
divided into shares in the next step. We implement this by letting the secret key Y join
the exclusive-OR operation of Step 2 after expanding Y repeatedly to have a length
equal to that of the secret program,Ss. That'is,.in Step-2 of Algorithm 7.1 we repeat the
key Y’s and concatenate them until the length-of the expanded key Y' in the unit of
character (8 bits for a character) is ‘€qual to A, the length of Ss, and then compute E
instead as E = S;@S,@S5,D...OSN@Y'. Correspondingly, in Step 4 of Algorithm 7.2 we
expand Y similarly to get Y', and then compute S, instead as Sq = E®S;BS,®...OSNDY".
The properties of the exclusive-OR operation assure that the Sg so computed is the
desired secret program in its string form. In this way, without the key Y, S; obviously

cannot be recovered, and so the previously-mentioned weakness is removed.

7.5 Experimental Results

In one of our experiments, we applied the proposed schemes described
previously to share a secret program among three participants. The main part of the
secret program seen in the window of the Microsoft VC™ editor is shown in Figure

7.2(a), which has the function of generating a secret key from an input seed. And part

129

of one of the three camouflage programs is shown in Figure 7.2(b). After hiding the
shares and the authentication signals in the comments of each camouflage programs,
the stego-program resulting from Figure 7.2(b) appears to be the upper part of Figure
7.2(c) which is not different from that of Figure 7.2(b). The real content of the
stego-program seen in the window of the UltraEdit 32 editor is shown in the lower
part of Figure 7.2(c) which includes the ASCII codes representing the program on the
left and the appearance of the codes as characters on the right. The recovered secret
program is shown in Figure 7.2(d), which is identical to that shown in Figure 7.2(a).
We also tested the case of recovery with one of the stego-images (the second one)
being damaged, as shown in Figure 7.3(a). The proposed scheme issued a warning

message, as shown in Figure 7.3(b).

7.6 Concluding Remarks

For the purpose of protecting software programs, new techniques for sharing
secret source programs and authentication of resulting stego-programs using four
special ASCII control codes invisible in the window of the Microsoft VC' editor
have been proposed. The proposed sharing scheme divides the result of
exclusive-ORing the contents of the secret program and a group of camouflage
programs into shares, each of which is then encoded into a sequence of invisible
ASCII control codes before being embedded into the comments of the corresponding
camouflage program. The resulting stego-programs are kept by the participants of the
sharing process. The original function of each camouflage program is not destroyed in
the corresponding stego-program. The sharing of the secret program and the
invisibility of the special ASCII codes as share data provides two-fold security

protection of the secret program.

130

@9 StaticCharMethods - Microsoft Visual C++ [design] - Form1.h*
Eile Edit “iew Project Buld Debug Tools Window Help

B-a-czEd & 5 &- » Debug - - EE T
BRbon EE 22 4% %5,
©®| AssemblyInfa.cop | stdafi.cpp | Forml.h [Design]® \ resource. b Forml.h® ‘ Fatrnl.resi \ CObject Browser | Forml.cpp d4b x
g I%Forml j j
=
A LJ] Types in Forml.h -
= = private: woid BuildOutput| String *inputCharscter |
el ¢
— String foutput, foucl, ¥Foucz;
ﬁ‘ unsigned int K, K left, K right:
[a)
o K =Convert::Tolnt3Z (inputCharacter) ;
g ¥_left = Comvert::ToInt3Z (3"33597");
% ¥_right= Convert::Tolnt3Z (3"z237");
K = K % K_left :
outl= Conwvert::ToStringi(K);

= outz= Convert::ToString (K*K_right);

output = String::Concat| ocutl,out?, S™rin");:

outputTextBox->Text = output:

H

-
4 »

| cutput x|
Build hd
Done —
< il | >
Ready Ln 55 Col 13 NS

' start

(a) Main part of the secret source program seen in the window of the Microsoft VC™

editor.

#2 splash - Microsoft Visual C++ [design] - MainFrm.cpp

Eile Edit “iew Project Buld Debug Tools Window Help

B-a-czEd & Debug - o -RE=ERRD 2

B % b e ZZ2 A% K.
MainFrm.cpp| 4k x 0
'5@ I%CMa\nFrame j I-:-_.GetThisCIass j g
o
§ E\I/.-" MainFrw.cpp : implementation of the CMainFrame class = 2
g I — z
3 =3

#include "stdafx.h”
#include "splash.h"

#include "MainFrm.h'™
#include "Splashl.h™

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS _FILE[] = _ FILE_:
#endif

SEPEEEEGETEEE R R TP R RS E SR LSRR F RS

/4 CHainFrame

IMPLEMENT DYMCREATE (CMainFramwe, CFramelind)

-
. | »

| cutput x|
D —

Ready L1 Col1 Chi NS

' start

(b) Part of one camouflage program seen in the window of Microsoft Visual C"

editor.

Figure 7.2 Experimental results of sharing a secret program.

131

Eile Edit “iew Project Buld Debug Tools Window Help
@'h'ﬁ'ﬂﬁ & B3 Debug v | '?@ﬁ'}% =
B &b == % % % .

MainFrm.cpp| 4k x

B4 MainFrw.cpp @ implementation of the CMainFrames olass

I

»
=
g
T
7

djaH 2weuda @

#include "stdafx.h”
#include "splash.h"

#include "MainFrm.h'™
#include "Splashl.h™

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS _FILE[] = _ FILE_:
#endif

SEPEEEEGETEEE R R TP R RS E SR LSRR F RS

/4 CHainFrame
IMPLEMENT DYMCREATE (CMainFramwe, CFramelind)

BEGIN_NESSAGE_MAP (CMainFrame, CFramelnd)
JAALAFE M3G MAP (CMainFrame) f
b »

Cutput 7 x

Ready L1 Col1 Chi NS

_ﬁFi\e Edit Search Project Wiew Format Column Macro Scripting Adwanced \indow Help -8 x

@ »oum e s

DEcH sa@m 2@

0 1 2 3 ¢4 5 & 7 9 9 2 b e d e =
0000000Ch: BF 2F 20 1C 4D 1E 61 1C 65 1E 6E 1C 46 1E 72 .M.a.i.n.F.r =
00000010h: 6D 1D ZE 1C 63 1C 70 1C 70 1F 20 1C 34 1E 20 T O T
00000020h: 69 1C 6D 1C 70 1C 6C 1F 65 1iF 6D 1C 65 1C 6E im.p.l.e.m.e.n.
00000030h: 74 1E 61 1C 74 1C 69 1C 6F 1E 6E 1C 20 1F &F t.a.t.i.0.n. .0 b
00000040h: 66 1F 20 1C 74 1D 65 1D 65 1E 20 1C 43 1C 4D £. .t.h.e. .C.M.
00000050h: 61 1C 69 1C 6E 1C 46 1F 72 1E 61 1D 6D 1C 65 a.i.n.F.r.a.m.e.
00000060h: 20 1D 63 1C 6C 1C 61 1C 73 1F 73 1C OD Ok ZF couloaag.as.. A
00000070h: OD OA OD O& 23 69 6E 63 6C 75 64 65 20 22 73#include "st
00000080h: 64 61 66 78 2ZE 88 22 OD Ok 23 69 6E 63 6C 75 dafx.h”..#includ
00000090h: 65 20 22 73 70 6C 61 73 68 ZE 68 22 OD OA OD e "splash.h"...
000000a0h: 23 659 6E 63 6C 75 64 65 20 22 4D 61 69 6E 46 #include "MainFr
000000bOh: 6D ZE 68 22 OD OA 23 69 6E 63 6C 75 64 65 20 m.h"..#include "
000000c0h: 53 70 6C 61 73 68 31 2E 68 22 OD 04 OD 0Oh 23 Splashl.h"....#i
000000dOh: 66 64 65 66 20 SF 4% 45 42 S5 47 0D D4 23 6% fdef _DEBUG..#de
000000e0h: 66 63 6E 65 20 6E 65 77 20 44 45 42 55 47 SF fine new DEBUG N
000000£0h: 45 57 OD OA 23 75 6E 64 65 66 20 54 48 49 53 EW..#undef THIS_
00000100h: 46 49 4C 45 OD OA 73 74 61 74 69 63 20 63 68 FILE..static cha
00000110h: 72 20 54 48 49 53 5F 46 49 4C 45 5B 5D 20 3D r THIS FILE[] =
0000012Z0h: SF SF 46 49 4C 45 S5F SF 3B O DA 23 65 6E 6% __FILE_ ;..#endi
00000130h: 66 OD Ok OD OL 2F ZF 2ZF 1C 2F 1D ZF 1C 2F 1D Y T Y Y
00000140h: 1C 2F 1D 2F 1c 2F 1D 2F 1D 2F 1E 2F 1F 2F 1D PV VY Y N
00000150h: 1C 2ZF 1D 2F 1E 2F 1C ZF 1D 2F 1C ZF 1D 2F 1D AT YAV Y Y SV
00000160k: 1C 2F 1C 2F 1F 2F 1C 2F 1D 2F 1E 2F 1C 2F 1D IV A S S Y
00000170h: 1C 2F 1F 2F 1E 2F 1D 2F 1E 2F 1E 2F 1C 2F 1D IEEY VY Y Y VN
00000180h: 1E 2F 1D 2F 1F 2F 1D 2ZF 1C 2ZF 1D ZF 1E 2F 1C I Y Y
00000190h: 1C 2F 1D 2F 1F 2F 1C 2F 1D 2F 1E 2F 1E 2F 1C PV VY Y N
000001a0h: 1C ZF 1C 2F 1E 2F 1C ZF 1D 2F 1E ZF 1C 2F 1C AT YAV Y Y SV 3
< | 2
Far Help, press F1 Paos: OH, 0, 0 Dos CiC++ Mod: 4/6/2008 1:34:09 AM File Size: 3518 INS

(c) The stego-program resulting from (b) seen in the window of Microsoft Visual C"

editor (upper part) and UltraEditor 32 editor (lower part).

Figure 7.2 Experimental results of sharing a secret program (continued).

132

@9 StaticCharMethods - Microsoft Visual C++ [design] - Form1.h*

Fle Edit “iew Project Buld Debug Tools Window Help

G- SE@ L BE oo B0 ebe - B - BE= 2
E % b =2 4% %%
©|| AssemblyInfo.cpp | stdafx.cpp | Farml.h [Design]* | resource.h Forml.h"“FDrml.resx Object Browser | Forml.cpp 4 b X
g |a(§Form1 ﬂ |‘Buwld0utput j
: 3
= -
&= = private: wvoid BuildOutput| String *inputCharscter |
el ¢
String Toutput, Foutl, Toutz:
q unsigned int K, E_left, K right;
fal
&T K =Convert::ToInt3Z (inputCharacter) ;
; ¥_left = Convert::TolInt3Z (3"33597");
[E“ ¥_right= Convert::Tolnt3Z (3"z237");
K=K * E left ;
outl= Convert::ToString(E);
@ outz= Convert::Todtring (K*E_right):
output = String::Concat| outl,out2, S"™rin");
outputTextBox—->Text = output;
H
=
4 3
Cutput 7 x
Build j
Turen
£ ¥

Ready LnS1 Col 42 Ch 33 NS

i4 start

(d) Recovered secret program seen in the window of Microsoft Visual C" editor.

Figure 7.2 Experimental results of sharing a secret program (continued).

In the secret program recoveny .process, thf; reversibility property of the
exclusive-OR operation is ad0p£ed to ‘rre‘covve; vthe“‘secret program using the share data
extracted from the stego-programs. To enhance security of keeping the camouflage
programs, a secret random key is adopted to verify, during the recovery process,
possible incidental or intentional tampering with the hidden share and the camouflage
program content in each stego-program. The key is also utilized to prevent
unauthorized recovery of the secret program by illegal collection of all the
stego-programs and unauthorized execution of part of the proposed algorithms.

Experimental results have shown the feasibility of the proposed method. Future
research may be directed to applying the invisible ASCII control codes to other
applications, such as watermarking of software programs for copyright protection,

secret hiding in software programs for covert communication, authentication of

software program correctness, and so on.

133

@9 splash - Microsoft Visual C++ [design] - MainFrm.cpp*

Fle Edit “iew Project Buld Debug Tools Window Help

BA-m-e @ BB oo - 8-) by - ol - leEHE T
Bl & baa €€ T2 4% %%.
6 MainFrm.cpp"‘l 4 b X
g I%CMa\nFrame j I":.GatTh\sC\ass j
2 = // MainFrm.cpp : implementation of the CHMainFrame class =
= I =
o
— #include "stdafx.h” —
ﬁ‘ #include "’
g_. #include "MainFrm.h'"
= #include "Splashi.h™
o
H

#ifdef DEEUG
#define new DEBUG_NEW

=l #undef THIZ_FILE
static char THIS_FILE[] = _ FILE_ :
fendif
SOFEEEETT T e i i i i i dddddddddidddddddddiddddiddddsddddiddddiddddsridddiiddisid
/¢ CHMainFrame
4 | 3
| outpu 7 x|
=
Reeady Lns Cal 18 ch g NS

(a) Destructed stego-program of Figure 7.2(b) seen in the window of Microsoft Visual
C"" editor (the changed charact hted).

ers are highlig
g

a o
Bty s

/G RECOVER_VERIFY EXIT

Authentication code Secret code
BE487598246078 258497625483

MainFrm.cpp is Fail

The camouflage program is not genuine,

4 start 2 ams.. | C+Buider 6 ' op LR SHzPM

(b) A message showing the content of the original camouflage program has been
changed.

Figure 7.3 An experimental result of authenticating a destructed stego-program.

134

Chapter 8

Covert Communication with Authentication
via Software Programs Using Invisible
ASCII Codes

8.1 Idea of Proposed Method

ASCII codes, expressed as hexadecimal numbers, were designed to represent
8-bit characters for information interchange. It is found in this study that some ASCII
codes, when embedded in certain locations in C' programs, become invisible in the
source code editors of Visual C++ and C%#+, Builder under certain Windows OS
environments. This phenomenon may bé utilized. for data hiding.

In Chapter 7, we have proposed a method for:security protection of software
programs by information sharing‘and ‘authentication techniques using some invisible
ASCII control codes. The principle of data hiding in source programs is still suitable
for covert communication here. But more invisible codes have been found in this
study, which are categorized into two types, one appearing as nothing like being
non-existing, and the other as spaces just like the ASCII space code 20. We call the
former null code and the latter spacing code. Inserting invisible codes into a program
do not change its function.

Such invisibility was found in fours environments formed by Microsoft Visual
Studio (MVS) .NET 2003 and Borland C" Builder (BCB), version 6, in Windows XP
Service Pack 2 and its Chinese version, which will be called the English and Chinese
OS, respectively, subsequently. The details are summarized in Table 8.1.

In type-1 environment with the MVS in the English OS, four null codes, 1C, 1D,

135

1E, 1F, were found, which are invisible when inserted between two characters in a
comment in a program. One spacing code, A0, has been found, which appears as a
space when inserted between two words in a comment. Also found as a spacing code
is the tab-control code 09, which in default appears as four spaces when inserted
before the end of a program line, i.e., before the code pair, 0DOA, for carriage return
and line feed. The codes, A0 and 09, will be called between-word and line-end spacing
codes, respectively.

For the other three environment types, invisible codes also exist and are listed in
Table 8.1 except that type-2 environment has no null code. Also, 09 appears to be

eight spaces in BCB instead of four as in MVS.

Table 8.1. Invisible codesiunder various environments.

) Between-word Line-end
Environment Null codes))
spacing codes spacing codes

Type 1: MVS under

1C-1F A0 09
English OS
Type 2: BCB under
. None A0 09
English OS
Type 3: MVS under
1C-1F 01-08, 0B-0F, 80 | 09, 0B, 0C

Chinese OS

Type 4: BCB under

_ 1C-1F, 80 01-08, 0B-19, 1B 09, 0B, 0C
Chinese OS

In the remainder of this chapter, the principle of data hiding for use in covert
communication is introduced in Section 8.2. The secret hiding, recovery and
authentication processes are described in Section 8.3. The experimental results are

shown in Section 8.4. Finally, some concluding remarks are given in Section 8.5.

136

8.2 Data Hiding Using Invisible Codes

We conduct data hiding using invisible codes in three ways as follows.
1. Alternative space coding

Whenever a space represented by 20 appears between two words in a comment,
it may be replaced by a between-word spacing code, like A0 for type-1 environment,
without causing visual difference in a source code editor. When there are 2"-1

between-word spacing codes Cy, ..., Con_j, by regarding 20 as Cy we may embed n bits

by, by, ..., by as follows:
if bib,....b, = m, replace 20 by C,,

which we call alternative space coding.
For the first two environments in Table 8.1,.1-bit alternative space coding is
applicable. And for the latter two, there are 14 and 23 spacing codes, respectively and

so 3-bit and 4-bit alternative space coding are-applicable, respectively.
2. Line-end space coding

We may place multiple line-end spacing codes before each program line end
without causing visual difference in a source code editor because such codes appear

just like background spaces in the window of the editor. Since the code 20 may be

used as well to create spaces, when there are 2"-1 line-end spacing codes Cy, ..., Con_j,

by regarding 20 as Cy we may embed n bits by, by, ..., by, as follows:
if bob;...b, = m, embed C,, before the line end

which we will call line-end space coding.
For the first two environments, there is only one line-end spacing code 09, so

1-bit line-end coding is applicable. For the latter two, since there are three such codes

137

09, 0B, and 0C, 2-bit coding can be implemented.

Line-end space coding may be repeated unlimited times before the each line end
to increase the data hiding rate. But to avoid creating long lines which reduce the
steganographic effect, we require that each processed program line should not appear

to be longer than the longest original program line.
3. Null space coding

Except for type-2 environment, there are four null codes, 1C, 1D, 1E, 1F. Let
them be represented by C, through Cs, respectively. We can embed a bit pair bob; as

follows:
if bob; = m, insert C,, between two characters in a comment

which we call null space coding
Null space coding may be applied repetitively unlimited times as well. In practice,
we embed message bits evenly into.all between-character spaces among the comments

so that the times will be limited.

8.3 Secret Hiding, Recovery and Authentication

The proposed data hiding process essentially is to apply alternative, line-end, and
null space coding in order. Since the three schemes are applied to distinct locations in
a program, the data may be recovered without ambiguity. As an example, we describe
in the following an algorithm for type-1 environment. To facilitate data recovery, we
prefix to the beginning of the input binary string of the message a binary number
specifying the length of the input, resulting in an extended bit string S.

1. At each between-word space coded by 20, remove the leading bit b from S, and
replace 20 by A0 if b =1.

2. Find the maximum L, of all program line lengths.

138

3. For each program line, repeat the operations of removing the leading bit b from S
and inserting before the line end the code 0DOA if b = 1; or 20 if b = 0, until the
length of the line, as it appears in the source code editor, reaches Ly,x.

4. Count the number M of all between-character positions in the comments, as well
as the number L of the remaining bits in S; compute the ceiling value [L/MT; add 1
to it to make it even if it is not; and denote the final value as Q.

5. For each between-character position in the comments, take g leading bits from S,
and for every two bits bob; of them, insert Cy, into the position if bob; = m, where

Cn is one of Cy through C; representing 1C, 1D, 1E, and 1F, respectively.

The proposed data recovery process, after extracting from the input string the
leading bits which specify the length-0f the original message, performs essentially the
reverse versions of the three coding schemes involved in the data hiding process. The
details are omitted due to the page limit.

In the proposed authentication scheme, we use a 16-bit key K and the input
message string to generate an authentication signal A which is then embedded in the
stego-program as well using null space coding. The signal is computed as the
modulo-K value of the sum of the key value and the 16 bits of every two characters in
the input message string. Then, in the data recovery process, the embedded
authentication signal A is extracted to match with an authentication signal A'
computed similarly from the extracted message content and the key. If the embedded
message content has not been tampered with, then A and A" will match. If not, then the
message must have been modified. In such a way, even when the data hiding
algorithm is known to the public as is usually assumed, without the secret key it is

impossible to pass such an authentication process with a modified stego-program.

139

8.4 Experimental Results

One of the experiments we conducted for type-1 environment is reported here. A
message “This is a new covert communication method” is embedded into a cover
program, part of which is shown in Figure 8.1(a). The binary form of the message is
obtained from the ASCII characters representing the message. It is 00000001

01100000 01010100 01101000... in which the first 16 bits specify the length of the

message string, and the remaining ones represents T, h, and so on. And the encoding
result of it is 20 20 20 20 20 20 20 A0 20 A0 A0 20 20 20 20 20 ... The stego-program
seen in the source code editor is shown in Figure 8.1(b), which looks no difference
from Figure 8.1(a). And the real content of the program seen in the UltraEdit editor is
shown in Figure 8.1(c), in which the hidden invisible codes can be seen with those for
the first 16 bits being enclosed by rectangles. The recovered message is shown in
Figure 8.1(d). As a demonstration. of authentication, we show in Figure 8.2(a) a
modified version of the stego-program-of-Figure,;8.1(b) in the UltraEdit editor, in
which the codes fro the 8th and 9th bits_of the message have been modified. The
authentication result is shown in Figure 8.2(b) in which a warning message issued by

the data recovery process is seen.

8.5 Concluding Remarks

A new method to covert communication via C'' source programs using invisible
ASCII codes has proposed. A secret message is encoded by some special ASCII codes,
which are embedded in a cover program. Such codes are invisible in the source code
editors of Visual C++ and C++ Builder under Windows environments, creating a good
steganographic effect without changing the original function of the cover program.

To enhance security, tamper-proof authentication of the stego-program content

using a secret key has also been proposed. Without the key, false messages cannot

140

pass the authentication process. Experimental results show the feasibility of the
proposed method. Future works may be directed to applying the proposed data hiding

technique to other applications.

Fle Edit ‘View Debug Tools Window Help

) =EHa 3 Ml e E T
% %% .

cover prngram.cpp‘ 4 b X

= // The secret data is "this is a new covert conmunication mechod.™ =

4/ This program is used to construct the class CPwddlgDboc and its menber functions.
4/ Date: zZ0020205
I R N R S R R SR SRR RN S

#include "stdafx.h'
#include "pwddlg.h”
#include "pwddlgDoc.h"

#ifdef _DEEUG
#define new DEBUS_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_ ;
Hendif

FELTEESFETEETTEE R BRI F I TSP d TIPS F i F AR F T Ed i d i i piriiidd
// CPwddlglDoc construction/destruction
E CPuwddlgloc: s CPuddlgloc ()
{
A4 TODO: add one-time construction cods here

Ready Lni Col 1 Chi NS

e T
iy Start

(a) Cover program seen in squfif'ce code editor.

55 ¢

Eile Edit Wiew Debug Tools ‘Window Help

%% % % .

Stego program.cpp |

EP/‘ The secret data is "this is a new covert communication method. "™

/7 Thisz progream is used to construct the class CPwddlgDoc and its member functions.
/f Date: 20080205

FEORELFEATd T ddid i dddddiddidididd i d i iiidddiddd i idiidididisiiviifiis

#include "stdafx.h"
#include "pwddlg.h™
#include "pwddlgDoc.h'”

#ifdef _DEEUG
#define new DEBUS_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_ ;
#endif L |

FEOTELFEATEE AT d i id i ddddddiddid i i s ddddd i ididd i idddiiidiisiidiiiiiiiiidd

// CPuwddlgloe construction/destruction

E CPuwddlgloc: s CPuddlgloc ()
{
A4 TODO: add one-time construction cods here

Ready Ln1 Col1 Chi IS

(b) Stego-program seen in source code editor.

Figure 8.1 An experimental result.

141

EEECELEIEEE

el
01 3 45 6 7§ 9 &b g d 7'

00000000h: 2F 2F @] 54 1E 68 1C 73 1D €5 IF 63 1D 72 ; //JT.b.e 3.e.c.x =

00000010k: 1€ 65 1D 74 1D 69 11 73 : .e.t d.a.t.a 1.8

00000020h0: zz 1E 74 1E k] ; ".t.hii.sdi.sa

00000030k 6E 1F 65 1C 77 65 1C 72 : N.E.T C.0.V.E.T

00000040h: 1F 74 63 1D &F 1F 6E IF 69 ; .t c.o.m.m.u.n.i

00000050h: 1€ 63 61 74 69 6F 6E 64 2E 22 : .cation method.”

00000060h: 7z &F 67 .// This prog L |

0000007 0h: 6F 20 63 : ram iz used to c

00000080h0: 63 6C 61 ; onstruct the cla

00000090h: 20 &1 6E ; 99 CPuddlgDoc an

000000&0h: 66 75 6E ; d its wewber fun

000000k0h: £1 74 €5 : criona...// Date

000000c0h: 34 AD 32 30 30 38 30 20 20 20 ; : 20080205

000000d0h: 20 20 OD 04 2F 2F 2F 2F 2F zF : S AIAEEEEY

000000e0h: 2F 2F 2F 2F 2F 2F 2F ZF 2F 2F : JAL0000000 000000

000000£0h: 2F 2F 2F 2F 2F 2F 2F aF 2F ZF : JOSFELASIPEEEEES

00000100h: 2F 2F 2F 2F 2F 2F 2F ZF 2F 2F : JAL0000000 000000

00000110h: ZF 2ZF ZF 2F 2F 2F 2F ZF ZF ZF ; JASASPASIRN Y

00000120h: 2F 2F OD 04 20 20 20 20 0D D& 2 /7., ..

00000130h: 23 69 6E 63 6C 75 64 61 66 78 : finclude "stdafx

00000140h: 2ZE 68 22 20 20 20 20 23 89 6E : .h" .. #in

00000150h: 63 6C 75 64 65 20 22 2E 68 22 ; clude "pwddlg.h”

00000160h: 20 20 20 20 20 20 20 £3 6C 75 : ..#inclu

00000170h: 64 65 20 22 70 77 64 2E 68 22 ; de "pwddlgloc.h”

00000180h: 20 20 20 09 09 20 09 20 20 z0 -

00000190h: 20 20 20 0D O& 23 69 44 45 42 : ..#ifdef DEE

000001a0h: 55 47 20 20 20 20 20 64 65 66 ; UG . .#def 2

< | >

Pos: 2H, DOS5 I+ Mod: 4/20{2008 32PM | File Size: 1319 i

Tools Window Help

Paper 6 secret data.tut |

This is & new covert communication method.

4

Ready
‘4 start

== Ren

(d) Recovered message.

Figure 8.1 An experimental result (continued).

142

jF\\e Edit Search Project Wiew Format Calumn Macro Scripting Advanced Window Help -8 x

'DUCH SR EME @ »oli[be g

B 1 2 3 4 5 6 78 9 abedef =

00000000k: 2F 2F 20 54 1E 68 1C 65 20 73 1D 65 1F 63 1D 72 ; // T.h.e s.e.c.r
00000010h: 1C 65 1D 74 20 &4 1D 61 1F 74 1C 61 20 65 1D 73 : .e.t d.a.t.a i.s
000000zZ0h: 20 22 1E 74 1F 68 1E 69 1D 73 20 69 1D 73 20 61 ; ".t.h.i.5 1.5 a
00000030 6E 1F &5 1C 77 @l 63 1C 6F 1E 76 1F 65 1C 72 ; n.E.mIc.D.v.E.r
Q0000040 74 A0 63 1D 6F 1F &D 1C 6D 1C 75 1D 6E 1F €3 ; .t ¢ m.m.u.n. i

000000S50h: 12 &3 61 74 69 AF AE A0 6D 65 74 68 6F 64 ZE 22 ; .cation method.™
00000060h: 20 08 OD OL 2F 2ZF 20 54 65 68 73 20 70 72 6F 67 : ...// This prog
00000070h: 72 &1 6D 20 69 73 Z0 75 73 65 64 20 74 6F 20 63 ; ram i=s used to o
000000S0k: 6F 6E 73 74 72 75 63 74 MO0 74 65 €5 20 63 6C 61 : onstruct the cla
00000090h: 73 73 A0 43 50 77 64 64 AC 67 44 6F 63 Z0 61 6E ; ss CPuddlgloc an

000000=a0h: 64 A0 69 74 73 20 6D €5 6D 62 65 72 20 66 75 6E : d its mewber fun
000000R0, 63 74 69 6F 6E 73 2E OD DA 2F 2F 20 44 61 74 65 ; ctions...// Date
000000c0! 3A AD 32 30 30 38 30 32 30 35 20 20 20 20 20 20 ; : 20030205

000000d0h: 20 20 OD 0A 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F : APEEEAEA IS
000000e0h: 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F ; S/ 7000070007007
000000£0h: 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F : /077000070070 70000
00000100h: 2F ZF ZF 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F ZF : /0000 0000000007
00000110h: 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F 2F : /0770000000700
00000120h: 2F 2F OD O 20 20 20 20 20 20 20 20 20 20 OD O& ; //.. .
00000130h: 23 69 6E 63 6C 75 64 65 20 22 73 74 64 61 66 78 ; #include "stdafx

00000140k: 2E 68 22 20 20 20 20 20 20 20 20 OD O 23 69 6E ; .h" .. H#in
00000150k: 63 &6C 75 64 65 20 22 70 77 64 64 6C 67 ZE 65 22 : clude "pwddlg.h™
00000160h: 20 20 20 20 20 20 20 20 0D Ok 23 69 BE 63 6C V5 ; L.#inclu

00000170 64 65 zZ0 22 70 77 64 £4 &C 67 44 6F 63 ZE 63 22 : de "pwddlghoc.h"

0ooog1so, 20 20 20 08 09 20 09 0D DA 20 20 20 20 20 20 20 ; PR

00000190h: 20 20 20 OD 04 23 69 66 A4 65 A6 20 S5F 44 45 42 ; -.#ifdef _DEB

000001&a0h: 55 47 20 20 20 20 20 20 20 20 OD OA 23 64 65 66 ; UG .. #def a2
<] »

: 4/20f2008 4 PM | File Size: 1319 M5

(a) A modified stego-program of Figure 8. 1(b).

|2

/7 This pragram is uzed ta construct the class CPwddigDac and its member functions,

/¢ Date: 20080205

B A R R e et e Authentication code Secret code
253156 5847385168

Hinclude "stdafs b

Hinclude "'prddig.h"

Hinclude "'pwddigDac.h'

Hifdef _DEBUG

Hdefine new DEBUG_ME'w

Hundef THIS_FILE

static char THIS_FILE[]= __FILE_:
Hendif

R R R R P D R T
// CPwddigDoe constiuction/destiuction

CPaddgDoc: CPaddpDac() Q The message has been modified.

A/ T0D0: add one-time constuction code here

CPwddigDoc: -~ CPwddigh oc)
{

i
L L R e R -

74 start

(b) A warning message issued by authentication process.

Figure 8. 2 An example of authentication results.

143

Chapter 9
Covert Communication via PDF

Files and PDF File Authentication by

Invisible Codes

9.1 ldea of Proposed Methods

Portable Document Format (PDF) files, created by Adobe Systems for document
exchange [63], are very popular for document exchange nowadays. The format was
created by Adobe Systems and is a type of fixed layout for representing documents in
a manner independent of the application software, hardware, and operating system.
Each PDF file contains a complete description of a 2-D document which includes
texts, fonts, images, and vector ‘graphics=Many-PDE readers and writers are available
for reading and creating PDF files.

Additionally, ASCII codes were designed to represent 8-bit characters for
information interchange [65]. There are totally 256 of them among which 95 ones are
printable, numbered 32 to 7E (hexadecimal). These 95 codes together with the control
code 0OA (for line feeding) are used for representing secret messages in this study.
They are listed in Table 9.1. The width of a text character represented by an ASCII
code as seen in a PDF reader may be specified by a value in an array called “widths”
in the type-1 font dictionary in a PDF file [63].

It is found in this study that the ASCII code A0 (for non-breaking space), when
embedded in a string of text characters, become invisible in the PDF reader, Adobe
Reader 8.1.2, under the Windows OS environment. This phenomenon may be utilized

for data hiding, as done in this study.

144

On the other hand, for security it is necessary to verify the authenticity of a file
received from another party or kept for a long time in a certain environment, before
the file is used for various purposes. This is the authentication problem of the file,
which should be solved for protection of the PDF file against unintentional changes
and malicious manipulations.

As mentioned previously, we have proposed a method using a data hiding
technique for covert communication via PDF files and a method for authentication of
PDF files by the invisible codes mentioned above. The principle for the former
method will be described in Section 9.2. The detail of it will be described in Section
9.3, and the detail of the latter method will be described in Section 9.4. Some

concluding remarks are given in Section 9.5.

Table 9.1 ASCII codes selected for message representations in this study.

Index Chara- | Hexadeci- Index Chara- | Hexadeci- Index Chara- | Hexadeci- Index Chara- | Hexadeci-
cter mal code cter mal code cter mal code cter mal code
1 LF 0A 25 7 37 49 (0] 4F 73 g 67
2 20 26 8 38 50 P 50 74 h 68
3 ! 21 27 9 39 51 Q 51 75 i 69
4 " 22 28 : 3A 52 R 52 76] 6"
5 # 23 29 ; 3B 53 S 53 77 k 6B
6 $ 24 30 < 3C 54 T 54 78 1 6C
7 % 25 31 = 3D 55 U 55 79 m 6D
8 & 26 32 > 3E 56 \ 56 80 n 6E
9 ! 27 33 ? 3F 57 w 57 81 0 6F
10 (28 34 @ 40 58 X 58 82 P 70
11) 29 35 A 41 59 Y 59 83 q 71
12 * 2A 36 B 42 60 Z 5% 84 r 72
13 + 2B 37 C 43 61 [5B 85 s 73
14 s 2C 38 D 44 62 \ 5C 86 t 74
15 - 2D 39 E 45 63] 5D 87 u 75
16 . 2E 40 F 46 64 " S5E 88 v 76
17 / 2F 41 G 47 65 _ SF 89 W 77
18 0 30 42 H 48 66) 60 90 X 78
19 1 31 43 1 49 67 a 61 91 y 79
20 2 32 44 J 4A 68 b 62 92 z TA
21 3 33 45 K 4B 69 c 63 93 { 7B
22 4 34 46 L 4C 70 d 64 94 | 7C
23 5 35 47 M 4D 71 e 65 95 } 7D
24 6 36 48 N 4E 72 f 66 96 ~ 7E

145

9.2 Principle of Encoding Message Data

Two types of invisibility may be created from AO. One type is created by
specifying the width of A0Q appearing in the PDF reader to be the same as that of the
original white space represented by the ASCII code 20. Then, after being inserted
between two words in the text of a PDF file, AO appears to be exactly the same as a
white space exhibited by the code 20. Figure 9.1 illustrates this phenomenon. So A0
and 20 may be used alternatively as between-word spaces so that we may encode a bit
b of the secret message and embed it at a between-word location according to the

following binary coding technique:

if b = 1, then replace 20 at the between-word location by AO; else, make no change

(1

which we will call alternative spELCe codiﬁi].:. TR

Fle Edit ¥iew Document Tools ‘Window Help *

e D) ca—

LA & () -
0,1.2,3.4,5,6.7.8,9,:,;,<.=>7,
@ABCDEF.GHI.J.KL MNO
PQRSTUVWXYZI[..].” _.
“La,b.e.doe fog hoiLj,

Sun A A G,
EI.I.I.1.

4.4.4,a.4. 4 @mc, e ¢ & e.i.i.i.1,

0.0,0,6,06.0,06,+, 0,0.0,0,0,¥.p.¥.

Figure 9.1 Display of all ASCII codes in Adobe Reader 8.1.2, in which only 20 and A0
appear to be white spaces (the first spaces in the 3rd and the 11th lines)

The other type of invisibility is created by setting the width of A0 to be zero in

the PDF file. Then after being inserted between two characters, A0 appears to be

146

nothing just like nonexistent in a PDF reader, as found in this study. Figure 9.2
illustrates this phenomenon. This invisibility is still true even when multiple AO’s are
all embedded at a single between-character location. Figure 9.3 illustrates this
phenomenon. We say that A0 is used as a null code in this way, and contrastively, as a

spacing code in alternative space coding described by (1) above.

Fle Edit Yiew Document Tor

=17 “i3

RS % & (L) R e
0.1,2.3.4,5,6,7.8,9.:,:.<.=>7,
@AB.CDEFGHILJ.KL MNO
PQRS TUVWXY.Z[,\.].", _

“,a.b.e.d.e.f.g.hij. k.1, mn, o,
p.q.rLos.tu VWX, VL Z, (L)~

L=V OY L L A A g,
AAAAAAZEZCEEEEII.I.I.
a,d.a.a.d.a.®¢.¢,é.¢é,¢é,1.1.1.1,

0., 6.6.6.0,06,+ 0,0, 0. 0,147 pb. ¥,

0
[

B xR 710PM

Der

Figure 9.2 Display of all ASCII codes'inthe window of Adobe Reader 8.1.2, in which
the width of AQ was set to be zero so that A0 becomes nonexistent (i.e., there is

no space before the first comma in the 11th row, as compared with Figure 9.1).

Note that the width of the original space code 20 cannot be changed to be zero
because it is used as a normal space between every two words in a PDF file. So, AO,
when used as a null code, has no symmetrical code for use to implement binary
coding like (1). But we may still hide a character C of the message by unitary coding
at a between-character location in the following way:

if the index of C = m, embed m consecutive AQ’s at the between-character location

2

which will be called null space coding.

147

Note that A0 can only be used in one of the two ways of coding and not in both

in each page of a PDF file because its width can only be specified once for each PDF

page.

am_a_boy_v2.pdf - Adobe

File Edit Yiew Document Tools ‘Window Help *

= BN <R

@ABCDEFGHLJ. KLMNO
PQRSTUVWXYZI[.\.]1.%
“Labc.de fig hij k1. m

LG TS, T UV, WX,V Z

LTL- BT

A% L

. . ET 111
00000 UUUUY DB
il

&, &,
3.6, 6,

AO’s inserted at locations betﬁééﬁ the..
o —H4

A
@ Ultrakdit - [D:\Paper, 7A_am_a_boy. vZ.pdf]
(@ Fle Edt Search Project View Format Colmn Marro Striphing Advanced window Help HEES

¢SS H SQ 8 = [l & % 5|k E
B+ 2 3 45 6 7§ 9 3 b g d g f _

00001030R: DS 2C D6 2C D7 2C DB 2C D8 2C DA 2C DE 2C DC 2C : 0,0,%,,0,0,0,0,
00001040R: DD 2C DE 2C DF 2C 29 20 54 64 04 45 54 04 Oh 42 ; ¥,B,8,) T1.ET..B
00001050R: 54 04 2F 54 54 32 20 31 20 54 66 Ok 3z 31 20 30 ; T./TT2 1 Tf.21 O
0O0001060R: 20 30 20 32 31 20 39 30 20 32 38 30 20 54 6D O& ; 0 21 90 280 Trm.
00001070R: 30 20 67 O 2D 30 2E 30 30 30 31 20 54 63 04 30 ; 0 g.-0.0001 Te.o
00001080R: 20 54 77 Ok 28 EO 2C E1i 2¢ E2 2C E3 2¢ E4 2C ES : Tu.(&,4,48,484
00001080h: 2€ E6 2¢ E7 2C ES 2C ES 2C Eh 2C EB 2C EC 2C ED : ,&,¢,2,8,8,8,1,1
000010a0h: 2¢ EE 2¢ EF 2C 29 20 54 6k Di 45 54 Ok Ok 42 54 : ,i,%,) T3.ET..BT
000010b0Oh: DA 2F 54 54 32 20 31 20 54 66 DA 32 31 20 30 20 ; ./TT2 1 Tf.21 0

000010c0h: 30 20 32 31 20 39 30 20 32 35 30 20 54 6D OA 30 ; 0 21 90 250 Tw.O
000010d0h: 20 &7 Ok 2D 30 2E 30 30 30 31 20 54 63 0k 30 20 : g.-0.0001 Te.o

000010e0h: 54 77 Ok 28 FO 2€ F1 2C F2 2C F3 2C F4 2C FS5 2C : Tw. (8,5,0,0,0,8,
000010£0h: Fé 2€ F7 2C F8 2C F9 2C Fi 2C FB 2C FC 2C FD 2C : 8,%,8,8,4,8, 4, §,
00001100k: FE 2¢ FF 2C 29 20 54 64 Ok 32 31 20 30 20 P,¥,) Ti.21 00

00001110h: 31 20 39 30 20 35 30 20 54 6D O 21 90 150 Twm. (il
0 g |

00001120h:
;Ta. ET..e

00001130h:
00001140h: ; ndstream.endobi.
00001150h: ;18 0 chis</Subty
00001160h: ; pe/TypeD/Descend
00001170h: ; antFonts[30 0 R]
00001180h: ; /BaseFont/ INFHOC
00001180h: : +Gulim/Encoding/
000011a0h: : Tdentity-BH/Type/
000011k0h: : Fonts>>.endobi. 18
0 ohi<e/Subrype

000011c0h:
000011d0h: : /Typel/Descendan

E31

) 2

For Help, press F1 Pos: L11eH, 4382, C0 [Mod: 5/4/2008 7:20:10PM_ BytesSel: 16 IS

(b) Appearances of the AQ’s in the window of UltraEdit (in the highlighted portion).

Figure 9.3 Invisibility of multiple AO’s at between-character locations.

Alternative space coding has the advantage of incurring no increase of the PDF

file size because it just replaces the space exhibited by 20 by another exhibited by A0.

148

However, if the between-word locations in a PDF file are few, then only a small
number of bits may be embedded. On the contrary, since theoretically an unlimited
number of AQ’s as null codes may be inserted at a between-character location, and
since there are much more between-character locations than between-word locations,
encoding efficiency of null space coding is much higher. But an obvious disadvantage
is that the resulting PDF file size will be increased.

Therefore, three ways of coding for use in different application conditions,
namely, pure alternative space coding, pure null space coding, and a mixture of them.
In the third way, we may use alternative space coding first to embed as many bits in
the secret message as possible, and then apply null space coding to embed the
remaining portion of the message (in unit of character) using the last pages of the PDF

files.

9.3 Message Hiding and Recovery for Cevert Communication and
Experimental Results

Normal text messages may be represented by the 96 characters with their
corresponding ASCII codes listed in Table 9.1. For alternative space coding, each
secret message should be transformed first into a bit string. For this, we concatenate
the binary ASCII codes (each consisting of 8 bits) of the characters in the message as
the desired string. The bit string then is embedded, bit by bit sequentially, into the
between-word locations in the cover PDF file according to Rule (1) above.

To implement null space coding, the secret message is regarded as a string of
characters represented by the 96 ASCII codes listed in Table 9.1. However, to reduce
the total number of inserted AO’s and so the resulting stego-file size, instead of
applying Rule (2) above directly in which the number of A0’s used to encode a

character C is the index value m of C, we use less AO’s to encode characters with

149

higher occurrence frequencies in the secret message, following the principle of
Huffman coding. That is, we assign a single A0 to encode the character with the
largest frequency, two AQ’s to encode the character with the second largest frequency,
and so on. And those characters among the 96 ones which do not appear in the secret
message are encoded by zero AQ (because these characters will not be processed in
the message decoding procedure). The encoding result is summarized as a table,
called the null space coding table, with 96 entries filled with the corresponding
numbers of A0’s so obtained. For example, given the secret message “This is a covert
communication method,” after counting the frequencies of the 16 distinct characters
in it, we have the corresponding null space coding table as shown in Table 9.2, in
which all 0’s in the entries have been removed to make the table more readable.

Every message will have a distinct null space coding table. For the purpose of
message decoding using this table,.it should.be embedded as well in the cover PDF
file as part of the hidden data. In practice;-we-do not embed all the content of the table
but the numbers of A0’s only into the first 96.consecutive between-character locations
in the text of the cover PDF.

Finally, it is mentioned that the data recovery process is essentially a reverse of
the data hiding process, with retrieval of the null space coding table conducted first,
followed by extraction and decoding of the hidden message.

We report one of the experiments we conducted for null space coding here. The
input secret message is “This is a covert communication method” to which the
corresponding null space coding table has been shown in Table 9.2. After the table
followed by the message was embedded into the cover PDF file shown in Figure
9.4(a), the initial part of the stego-file appearing in the UltraEdit window is shown in
Figure 9.4(b), from which we can see the repeating A0’s encoding each of the 96

commonly-used characters.

150

Table 9.2 Null space coding table for message “This is a covert communication

method.”
#A0’s #A0’s #A0’s #A0’s
Chara- Frequ- Chara- Frequ- Chara- Frequ- Chara- Frequ
Index embe- Index embe- Index embe- Index embe-
cter ency cter ency cter ency cter ency
dded dded dded dded
1 | LF |12] 1 |25 |7 49 | O 3| g
2 1 5 | 26 | 8 50 | P 74 | h 9 2
3 ! 27 | 9 51 | Q 75 | i 2 4
4 " 28 52 | R 76 | j
5 # 29 | 53| s 77 | k
6 $ 30 | < 54 | T |13 1 | 78| 1
7 | % 31 | = 55 | U 79 | m | 5 3
8 | & 32| > 56 | V 80 | n | 10 | 2
9 ' 33 | 2 57 | W 81 | o 3 4
10 | (4 | @ 58 | X 82 | p
1|) 35 | A 59 | Y 83 | q
12 | * 36 | B 60 |7z 8 | r | 15 | 1
13 | + 37 | C 61 | [85 | s | 11 | 2
14 | 33 | D G 86 | t 6 3
15 | - 39 | E 63|] 87 | u | 16 | 1
16 | . 40 | F 64 |an 88 | v | 17 | 1
17 | / 41 G 65| _ 89 | w | 77
18 | 0 4 | H 66 | ° 9 | x | 78
19 | 1 43 I 67 | a 7 2 191 |y | 79
20 | 2 44 J 68 | b 92 | z | 7A
21 | 3 45 | K 69 | ¢ 4 3 19| (| 7B
2 | 4 46 | L 70 | d | 14 | 1 | 9 | | 7C
23 | 5 47 | M 71 | e 8 2 19|} | D
24 | 6 48 | N 72| f 9% | ~ | 7E

In our experiments, to generate a stego-file, the process goes in the following
way. First, we embed the text of the secret message into the PDF text in the “.txt.”
format. We then tranform the result into a PDF file by a special PDF writer, which

was implemented in this study, as the desired stego-file.

In particular, we can see in the highlight portion the 12 AQ’s representing the

151

ASCII code 0A (line feed), the single A0 representing the space code 20, the 13 AQ’s
representing the character T (the first character in the secret message), and so on. The
stego-file appears as Figure 9.4(c) which is identical to Figure 9.4(a). The recovered

message is shown in Figure 9.4(d).

Data hiding in images is a useful technique for many
applications, such as copyright protection, covert
communication, multimedia authentication, information
sharing, etc. The image into which a message is hidden 1s
called a cover image, and the result a stego-image. Many
techniques for data hiding in images have been proposed in
the past decade [1-3]. They may be categorized into two
major approaches: the spatial-domain approach and the
frequency-domain approach. In the former, secret data are
directly embedded in the characteristics of the pixels of
the cover image. and in the latter, the cover image is

S .

be Re

édérjﬁ. 1.2 window.

Fle Edt Search Froject View Format Column Macro Scriping Advanced Window Help

00000&e0h: : /Length 2950.>>.
00000af0h: 73 74 72 65 61 6D 0L 2F 47 53 31 20 £7 73 04 42 ; stream./GS1 gs.B
00000R00h: 54 OA 2F 54 54 32 20 31 20 54 66 Ok 32 31 20 30 ; T./TTZ 1 TE£.21 0
00000k10k: 20 30 20 32 31 20 33 30 20 37 35 30 20 54 6D Ok : 0 21 30 750 Tm.
00000b20h: 0 g.-0.0001 Tc.0
00000b30h:
00000b40h:
00000bS50k:
00000b60h:
00000L70h:
00000RE0h: [A 42

00000b90h: ; T./TT2 1 Tf.21 0
00000baOh: 20 30 20 32 31 20 33 30 20 37 32 30 20 54 6D O& ; O 21 30 720 Tm.
00000pb0Oh: 30 20 &7 OAL 2D 30 ZE 30 30 30 31 20 54 63 Ok 30 ; 0 g.-0.0001 Te.O
00000ke0h: 20 54 77 OA4 25 61 70 70 6C 69 63 61 74 659 6F 6E ; Tw. (application
00000bdOk: 73 A0 A0 A0 AO AO AO AO 2C 20 A0 AO AO RO 73 AO ; = . =
00000beOh: A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 AD AD AD 75 AD AD ; u
00000RL£0h: A0 AD A0 A0 A0 A0 83 65 20 A0 AO A0 A0 A0 AO A0 ch
00000z00k: AO AD 61 RO AO 73 20 63 6F A0 AO AOQ RO RO 70 AO a s co »
00000c10h: A0 AO RO AO AO AO RO AO AO 79 AD AD AD 72 69 67 ; ¥ rig
00000c20h: A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 AO AO AD 63 ; h
00000c30h: A0 AD A0 RO A0 AO AOD RO RO A0 AO 74 A0 RO AO AO T

Pos: b3SH, 2869, CO DOS Mod: 54/2008 7:37:02 PM Eytes Sel: 51

(b) Stego-file seen in UltraEdit window.

Figure 9.4 An experimental result of null space coding.

152

o Stops PUF. il - Aidabe Rnades

Data hiding in images is a useful technique for many
applications, such as copyright protection, covert
communication, multimedia authentication, information
sharing, etc. The image into which a message is hidden is
called a cover image, and the result a stego-image. Many
techniques for data hiding in images have been proposed in
the past decade [1-3]. They may be categorized into two
major approaches: the spatial-domain approach and the
frequency-domain approach. In the former, secret data are
directly embedded in the characteristics of the pixels of

the cover image, and in the latter, the cover image is

Fil= Edit View Insert Format Help

e £ #4

rThis is & covert communication method

JFar Help, press F1 T

(d) Extrépﬁed fﬁcs_sa;g%:.

Figure 9.4 An experimental 'resglt' of null spaée coding (continued).

g b L e
E .

9.4 PDF Authentication Process and Experimental Results

As mentioned previously, the ASCII code A0, when embedded between two
characters in PDF texts with its width set to zero (i.e., with no width), appears to be
nothing like nonexistent in the PDF reader, Adobe Reader 8.1.2, under the Windows
OS environment. This invisibility is still true when multiple A0’s are embedded at a
single between-character location. Embedding of such invisible codes in PDF files as
authentication signals will enhance the security of the signals. Note that A0 is not
used in common text contents.

The proposed PDF file authentication method generates an 8-bit number for each

word in the text of the PDF file to be protected, with the help of a secret key in order

153

to enhance security of the generated value. The value for each word then is
transformed into a number of repeating AQ’s as the desired authentication signal,
which is then embedded to the right of the word for use in future authentication.

Before describing the details of the proposed authentication signal generating
and embedding process, we define some notations. We know that 1-bit
exclusive-ORing of two bits a and b, a®b, results in 0 if a = b and 1 if a # b. We
define 8-bit exclusive-OR operation on two ASCII codes A = a;a,...a3 and B =
bib,...bg as A®B = c;C,...Cs where each ¢j = ai®b; fori=1, 2, ..., 8.

Let a word W in the text T of a PDF file F be expressed as a string of characters
represented by their corresponding 8-bit ASCII codes A, A , ..., A, that is, let W =
AiA;...An. And let k be a secret key used as the seed for an 8-bit random number
generating function f. The proposed authentication signal generating and embedding

process is as follows.

1. Scan the text T in the input PDFE file F, and for each word W = A|A,...Ay in T, use
the key k and the function f to generate'in"order a random number K.

2. Compute an 8-bit number S for W as S = A|@A,D...DA,EK.

3. Map S to an integer N which is the modulo-8 value of S, i.e., compute N = S mod
8.

4. Embed N repeating A0’s as the authentication signal for W to the right of W, i.e.,
embed them at the location between the character A, and the white space next to
An.

5. Repeat the above steps until all words in T are processed.

For example, let the word being processed is W = “an” whose hexadecimal
ASCII codes are 61 and 6E, and binary codes are 01100001 and 01101110,
respectively. Suppose that the random number generated by f is K = 01010101. The

154

8-bit value S then is [(01100001) © (01101110)] & (01010101) = (00001111) &
(01010101) = 01011010, which is 90 in decimal form. And so N is 90 mod 8 = 2.
Consequently, we embed two AQ’s to the right of W.

The detail of the authentication process with input PDF file F' is as follows,
where the key k and the random number generator f are the same as those used in the
authentication signal generation scheme. The purpose of the process is to check the

integrity of the text T' in F'.

1. Scan the text T' in the input file F'; and for each word W' = A'Ay"... Ay’ in T,
count the number N of A0’s embedded to the right of W', and use the key k and the
function f to generate in order a random number K.

2. Compute an 8-bit value S' for W' as:S"=A, DA, ®...0A," K.

3. Map S' to an integer N' whigh 1s the modulo-8-value of S', i.e., compute N' = &'
mod 8.

4. Compare N' and N, and if N“# N, regard'W" as having been modified and mark it
by changing all its characters into squares.

5. Repeat the above process until all words in T' are processed.

Continuing the last example, suppose that the word “an” has been modified to be
simply “a” because of the noun after it has been changed. Then, W' = “a” has a single
binary code 01100001. Also, assume that no word in the file has been deleted so that
the random number K generated for it is the same as that used before, i.e., K =
01010101. So S' = 01100001©01010101 = 00110100 which is 52 in decimal form.
And thus N' = 52 mod 8 = 4. But we know from the last example that the number N of
embedded AOQ’s for the current word is N = 2 which is not equal to 4. So we can
decide that the word “a” is a result of tampering.

We take the modulo-8 value of the generated 8-bit number S or S' as the number

155

of the invisible code A0 to be embedded. So, there are 8 possible cases, 0 through 7
AO0’s being embedded. This means that the probability for an attacker to guess the
number of embedded AO’s correctly to create a fake word is 1/8. To increase the
security, we may, for example, take the modulo-12 value or even the modulo-16 value
instead. Then, the probability will be decreased to 1/12 or 1/16 at the expense of
inserting more AQ’s for each word. If this is still not satisfiable to the application need,
one further enhancement is to compute the authentication signal using not just the
data of the current word and the generated random number, but also the computed
8-bit number for the previous word, so that the formula S = A|®A,®...OA,®K used in
Step 2 of the authentication signal generating and embedding process described above
is changed to S = A|@AD... DAPKDS' with S' being the 8-bit number computed for
the previous word. In this way, even 1f the number.of A0’s is guessed correctly for the
current word (with a probability of 1/8), that for each of all the subsequent words
must also be guessed, in contrast to the‘original-case of independent guessing for each
single word. The probability for correct guessing for the current word and all the
subsequent ones will decrease exponentially because if there are k words after the
current one, this probability is (1/8)‘“rl =1/8%1,

We report a simple one of the experiments we have conducted. The text in a PDF
file to be protected includes three lines of words: “Name: Lee, [-Shi,” “Birthday: May
25, 1961,” and “Sex: male.” To have a complete authentication of all the characters in
the text, the punctuation next to a word is also considered as part of the word in the
authentication signal generation. So, totally there are nine words in the above three
text lines. The appearance of these lines in the window of Adobe Reader 8.1.2 is
shown in Figure 9.5(a). After the corresponding numbers of A0’s for the nine words
are computed and embedded to the right of the words, the resulting PDF file looks

like Figure 9.5(b) which is identical to Figure 9.5(a), meaning that the inserted AO’s

156

are invisible indeed. The appearance of the resulting file in the UltraEdit window is
shown in Figure 9.5(c), in which we can see the embedded AO’s to the right of the
words. We then simulated the case that the text in the file was tampered with
intentionally, so that the last name “Lee” and the year “1961” were changed to be
“Lin” and “1951,” respectively. After the proposed authentication process was applied
to the modified PDF file, the resulting PDF file is shown in Figure 9.5(d) in which the
modified words have been marked as squares. Note that in the above results, for
simpler demonstration using the figures, we did not adopt random numbers in the

computations of the authentication signals.

Name: Lee. I-Shi.
Birthday: May 25, 1961,
Sex: male.

Name: Lee. I-Shi.
Birthday: May 25, 1961,
Sex: male.

(b) Appearance of resulting PDF file with authentication signals (A0’s) embedded.

Figure 9.5 An experimental result for authenticating a PDF file.

157

€ UltraEdit - [0:Waper Blstego POF.pdi]
Ml Fie ER Seawth Poect Wew Formsl Colem Heow Soiplig Advaed Wiskoer Helo

¢+ JdSH 98 EW LAk oAl 5

(' T o O Y Y T O I O BT Y |

OUOUOAbUN: ©6 61 6C 73 65 ZF 55 43 5 34 &F 94 65 06 6l 75 ; Iamlme/UCHI/Delau
00000acOn: 4 IF 53 4D 20 30 ZE 30 32 3E 3E OD 65 6F & .02 nd
ONO0OwA0k: &F 62 On 32 34 20 30 20 &F &2 AL DA Ok 3C 3 1324 0 ob). .
ODOOOasOh: 2F 4C 65 GE 67 74 60 20 32 37 34 0L IF IE 04 7 JLength 274.>>.8
ONO0OAfOR: T4 72 &5 &1 &D OA 2F 47 53 31 20 &7 73 O& 42 54 : tream./GS1 gn.BT
0D00OLOOL: OA IF 54 54 32 20 31 20 54 66 OA 32 31 20 30 20 : ./TT2 1 TL.21 0
O000UB10R: J0 20 32 31 20 33 I0 20 37 35 20 20 4 6D O I0 ; 0 21 I0 V50 Te.0
O000GRI0N
0000030k
00000b40h;
ODNOOOLS0R: DA 45 54 DA OA 42 54 04 2F 54 54 32 20 31 20 54 ; .ET..BT./TT2 1 T
OOO0UBGUR: 66 OA 92 31 20 J0 20 20 20 32 I1 20 II I0 20 I7 ; £.31 00 21 I0 7
O000ORTOR: 32 30 20 54 &b OA 30 20 &7 OA 2D 30 2E 30 30 30 :
ODOOOLEOK: 31 20 54 63 OA 30 20 54 77 OA 28 42 69 72 74 68 :
DOQUOBS0nR: £4 61 79 34 A0 AD KD 20 SD 61 79 A AD A0 AD MO : day: nay
ONOOOBAOR: 20 32 35 2C A0 AD A0 20 31 35 36 31 2C AD AD M 2
00000LLOL: 29 I0 54 6A OA 45 54 OA DA 42 54 OA 2F 54 54 3
ODO0ObEOh: 20 J1 20 54 66 OA 32 J1 20 30 20 J0 20 IT IL 20 ;1 TE.E1 0 @ 21
0000ORAON: 33 30 20 36 39 30 20 59 S0 OA 30 20 &7 Ok 2D 3
OUOOObeOh: ZE J0 J0 20 I1 20 54 I UA 0 20 5% 77 OA 20 5
00000B£0h: €5 78 34 AD AD AD AD 20 D €1 6C €5 2E AD AD A
DOOODENNh: 20 20 54 A4 DA 45 54 04 DA 65 &%
OOO0OCI0h: &1 6D Ok 65 6F 63 6F 62 64 OD 32 35 20 I0 i
O0000EZ0R: £2 &4 3C 3C 2F 53 75 E2 74 79 70 ES 2F S4 79 T

g--0.0001 Te.0
Tw. [

20 4% iD h T3

BJc</ Suheype/ Typ
00000c30h: 65 30 2F 44 65 73 63 65 6E 64 61 6E 74 46 6F 6E : e0/DesvendantFon
UDODOCAUR: T4 T 5D 32 39 20 J0 20 ST 5D 2F 4T 61 TI 65 46 : tS[I9 0 RI/Daser
OOO00RS0R: 6F GE 74 2F 43 42 4B 47 49 47 2B 54 69 6D €5 73 : one/CEHGIGHTimes
UUDDOCEUN: 4E 85 TT 53 6F 60 61 BE 30 53 4D 54 IF 54 6F 55 ; NewRomanFSHT/ToU
00000c70n: 6 65 63 6F 64 65 20 32 36 30 30 20 52 2F 45 6F ; nicode 26 0 R/Em

(c) Appearance of resulting PDF file in window of UltraEdit (the AO’s can be seen).

T 5. |
e et et e’ - -
- ORI = L
»
L]

Name: [T [-Shi,

Birthday: May 25, (TTTT
Sex: male.

"

il | A - i1
(d) Appearances of authentication résult With'squares indicating detected changes.

Figure 9.5 An experimental result for aqﬁ:henﬁcating a PDF file (continued).

9.5 Concluding Remarks

A new covert communication method via PDF files is proposed. A secret
message may be hidden steganographically into PDF files by alternative space coding
and null space coding using the special ASCII code A0 which is invisible between
words and between characters in the windows of common PDF readers if its width is
set to be the same as that of the space code 20 and to be zero, respectively.
Experimental results show the feasibility of the proposed method.

Also, a method for authenticating PDF files using a special ASCII code A0 has
been proposed. For each word in the text of a PDF file to be protected, an

authentication signal composed of repeating AO’s is generated from the 8-bit ASCII

158

codes of the characters composing the word as well as a random number. The signal is
then embedded to the right of the word. These AQ’s are invisible in the window of
common PDF readers, enhancing the security of the embedded authentication signals.

A corresponding authentication process to check the integrity of a processed PDF
file has also been proposed. Each modified word in the file will be detected. Without
the original secret key for use in generating the random numbers, malicious creation
of a fake file is nearly impossible. Experimental results show the feasibility of the
proposed authentication method.

Future researches may be directed to applying the proposed methods to other
applications like watermarking of PDF files for copyright protection, enhancing the

security of the proposed method, etc.

159

Chapter 10
Secret Communication through Web Pages
and Automatic Authentication of Web Pages

Using Special Space Codes in HTML Files

10.1 Idea of Proposed Method

Due to high accessibility on the Internet, it is convenient to use the web page as a
communication channel by hiding secret messages in the HTML file of a cover web
page. A merit here is that the secret message cannot be destructed illegally unless the
website publishing the web page is intruded.and the HTML file modified.

The proposed new secret communicationt, method by embedding special space
codes in the HTML files of web pages is described here. These codes appear as white
spaces in the web page, and so may.be used to encode secret message bits with
steganographic effects. The codes are the'result of a thorough investigation of all
possible coding systems which can be applied in the HTML file. There are many of
such codes, and each of them may be used to encode at least three message bits,
increasing the data hiding capability and eliminating the weakness of certain methods
[37] of using more than two space codes to encode one bit and creating undesirable
double spacing at originally single-spaced between-word locations.

The proposed method carries out the communication work between two sites, a
sender and a receiver, through the Internet via web page publishing and downloading

in the following way.

1. At the sender site:

160

1.1 Create a web page containing mainly a piece of text.

1.2 Hide the secret message to be transmitted in the HTML file of the page by the
proposed method.

1.3 Publish the web page on the Internet to make it accessible.

2. At the receiver site:

2.1 Browse the web page on the Internet.

2.2 Download its HTML codes by a code editor like UltraEdit or by a special
program (not directly by the web browser using the “save as new file”
command).

2.3 Extract the secret message hidden in the codes by the proposed method.

On the other hand, with rapid network technology developments, web pages
published on the Internet often suffer from attacks. It is desired to have an automatic
authentication scheme to check thelfidelity-and integrity of concerned web pages
periodically without invoking human:wvisual.inspection. Specifically, it is wished to
verify the text content of each web page more precisely at the word level. A new
method based on the data hiding method for this purpose is proposed in this study.

A new automatic authentication method for checking the integrity of web page
text contents is proposed. The method, aiming to check the authenticity of each single
word, is based on a data hiding technique which uses some special space codes as
authentication signals. Such codes, which are found in this study to be multiple and
appear identical to normal white spaces in web pages, are used to encode certain
binary mapping results from the word contents. These codes are then taken to replace
the between-word spaces in the HTML codes, resulting in good steganographic effects.
Security enhancement has also been considered, and related problems are solved by

the use of secret keys and a multiple word encoding scheme.

161

In the sequel, in Section 10.2 we describe how secret messages are encoded. In
Section 10.3, we describe the detail of the proposed covert communication method
and some experimental result. In Section 10.4, we describe the proposed scheme to
generate authentication signals using the special space codes, followed by the
authentication signal embedding as well as authentication processes. The techniques
proposed for security enhancement are described in Section 10.5, followed by some

experimental results. Finally, some concluding remarks in Section 10.6.

10.2 Secret Message Coding Using Space Characters in
HTML

The HTML, Hypertext Markup Language, was created for describing the
structure of a web page, including its app€arance and semantics. Many coding
systems are applicable in the HTML to specify characters used in the web pages. It is
found in this study that there exist many.codes in the HTML, all of which appear to be
a white space in the window of ‘the . web page browser of the Internet Explore (IE).
These codes come from two distinct types of space characters, named (normal) space

and non-breaking space, and are specified in the following ways.

1. Direct character entry of the (normal) space ---

A white space will appear in a line of HTML if the space bar on the keyboard
is pushed during character typing, and the hexadecimal ASCII code 20 will be
inserted in the program codes of the HTML file.

2. Numeric character reference of the (normal) space ---

We can also represent a (normal) space character in the HTML using a

so-called numeric character reference, by the form &#xhhhh;, where hhhh =

0020 is the hexadecimal value representing the character's Unicode scalar value;

162

or by the form &#dddd;, where dddd = 0032 is the decimal value equivalent to
the hexadecimal value. That is, we may represent the white space as or
 . It is found in this study that the code with the semicolon “;” missing
is displayed as a space as well in the IE browser, while the code without
the semicolon will not but as the code itself, a peculiar phenomenon! A
constraint to use is that the character following it should not be a digit
number; otherwise, it will become another code. We assume this constraint is
satisfied in the HTML text in which this code is embedded.

Numeric character reference of the non-breaking space ---

The non-breaking space with the hexadecimal ASCII code A0 is displayed in
a web page browser like IE as a white space, too. Therefore, we may similarly
represent it in the HTML using'a numeric chatacter reference, by one of the three
forms , , and (without a semicolon).

Character entity reference of the non-breaking space ---

The HTML accepts a third way. of character specification, called character
entity reference, which is a short-length text name used to identify a character. For
the non-breaking space, it is . It is found that without the semicolon, the
code still appears to be a white space, so two codes are available for

representing the white space.

Totally, nine distinct codes may be used to specify a character which appears to

be a white space in the web page browser of the IE, as summarized in Table 10.1.

They are called space codes subsequently. An illustration of the appearances of all the

space codes is shown in Figure 10.1. The first eight space codes of the nine ones are

used to encode three message bits in this study as shown in the last table column,

although all nine of them may be used to encode a digit of a novenary number as well.

163

Table 10.1 Character representations in HTML.

No name Reference tvpe Code Code inserted in Bits
' yP type HTML encoded
direct charact typed ith
. (normal) space irect character ASCIL ype s.pace (wi 000
entry 20h inserted)
ic charact
2 (normal) space fumerte chatactet Unicode 001
reference
ic charact
3 (normal) space fumerte charactet Unicode 010
reference
ic charact
4 (normal) space HHmEne Charaeter | Unicode 011
reference
-breaki ic charact
s non-breaking numeric character | . . . QXA 100
space reference
-breaki ic charact
6 non-breaking numeric ¢ argg er Unicode 2#160; 101
space reference ,
“breaki ic character | . -
; non-breaking numerighiragieiiIRen, . % de #4160 110
space reference ; ;
“breaki haracter entity | HTME
g non-breaking character en 1ty 4= H T : 11
space reference name
-breaki haract ti HTML
9 non-breaking character entity unused
space reference name

<3 Test of appearances of space codes - Microsoft Internet Explorer |Z||E|E|
;r

File Edit Wiew Favarites Tools Help

>

. —~ a
> W) ﬂ \ELI " / 'Search % Favorites @}' -

-
Address |@ D:\Paper 104 Test of appearances of space codes_(including codes).htm v | a Go

This is a new authentication method using special space codes.

€ [

I@ Done _J Iy Computer

(a) The space codes seen in the window of the IE.

Figure 10.1 Appearances of nine space codes as white spaces in the window of the IE.

164

Microsoft FrontPage - D:\Paper, 10\Test of appearances of space codes_(including codes).htm

! Fle Edt ew Insert Formak Tools Table Data Frames ‘window Help Type a queskion for help (=

J Test of appearances ...cluding codes).htm X

<body >

<htnl>

<head>

<meta http-equiv="Content-Type” content="text/html; charset=ascii™>

<titlexTest of appearances of space codes</title:

</heads

<body>

<p>iI'his ize#xZ0;as#32 neve#iZauthenticatione#xal nethode#l60 usings#lé0specialenbsp spacesnbspoodes. </p
</body>

</html> v

Cdpesign B spiit Qi Preview |

Line 7, Column 4 Default Custo‘n; i

~

(b) The codes inserted at between-word locations seen in the window of the

FrontPage.

Figure 10.1 Appearances of nine space codes as white spaces in the window of the IE

(continued).

10.3 Message Hiding and Experimental Results

During message hiding, we regard a given message as a sequence of characters,
including letters, punctuations, white spaees, .symbols, etc. Each character is
represented as an 8-bit ASCII code, resuliing-in-a string of bits which we encode three
by three into the first eight space codes shown in Table 10.1. Each space code is then
embedded at a between-word location in the cover text in the HTML file, replacing
the original code 20h there, resulting in a stego-text. The embedded codes, after being
extracted during message recovery, can be decoded uniquely by table lookup using
Table 10.1.

To increase the security of the embedded message, we use a random number
generator to randomize the order of the characters in the message string before they
are encoded sequentially. A secret key is provided as the seed for the generator. The
key is used again in message recovery to re-arrange the order of the extracted
characters. Without the key, if the hidden characters cannot be properly re-ordered to
get the correct message.

The detailed algorithms for embedding a gven message is as follows.

165

Algorithm 10.1 Embedding of a secret message.

Input: a secret message S in the form of a character string, a cover HTML text T, a

secret key K, and a random number generator f.

Output: a stego-HTML text T' with S embedded.

Steps:

1.

Create a randomized version S' = C,'C,"...C,' of S = C,C,...C,, in the following way,

where C; and C;' represent characters of S and S', respectively, and n is the number

of characters in S.

1.1 Generate n distinct random numbers K;, ks, ..., Ky, within the range of 1
through n using the generator f with the secret key K as the seed.

1.2 Fori=1,2,..,n,take Ci'in S' to be Cy; in S.

Convert the length n of S in the unit of character into a binary number and add

leading 0’s to it to form a 3m-bit binary string B, where m is a pre-selected integer

such that 3m is no smaller than the length-of.any possible message to be hidden.

Transform each character in S"inte.its 8-bit binary ASCII code and concatenate

them to form a binary string S;.

Concatenate B and S, to form a binary string S".

Embed S" in T in the following way.

5.1 Append zero, one, or two 0’s to S; to form another binary string S, with its
length n, being a multiple of 3.

5.2 Encode every three bits of S, into a space code D according to the last
column of Table 10.1.

5.3 Embed D in T by replacing the (normal) space code 20h at a between-word
location, starting from the top leftmost one in T in a raster scanning order.

Take the resulting HTML text T' as the output.

166

In the above algorithm we assume that the text T is long enough to embed the
message S. Also, the length of the message is also embedded in the leading
between-word locations in T. This is necessary for the later work of message recovery
to extract a correct numbers of characters from the stego-text. The detailed algorithm

for extracting the embedded message is as follows.

Algorithm 10.2. Extraction of a secret message.
Input: a stego-HTML text T' with a message S embedded, and a secret key K and a
random number generator f as those used in Algorithm 10.1.

Output: the embedded message S.

Steps:

1. Extract the length n of the embedded message S in T' in the following way.

1.1 For each of the m leading between-word locations in T' where m is a
pre-selected integer mentioned.in” Algorithm 10.1, acquire the space code
embedded there and decode. it into three bits according to the last column of
Table 10.1, resulting in a 3m-bit binary string B.

1.2 While ignoring the leading 0’s in B, convert it into an integer N which
presumably is the length of the embedded message S.

2. Compute the value n; = [nx8/3] which is the number of between-word locations
in T' where S is embedded.

3. For each of the n; between-word locations after the m leading ones in T', acquire
the space code there and decode it into three bits according to the last column of
Table 10.1, resulting in 3n;-bit binary string S,.

4. Take the leading nx8 bits of S, to form a string S' and transform every 8 bits of S'
into an ASCII character.

5. Create a randomized version S = C;C,...C,, of S' = C,'C,"...C,)" in the following way,

167

where C; and C;' represent characters of S and S', respectively, and n is the number

of characters in S'.

5.1 Generate n distinct random numbers Kk, ki, ..., Ky, within the range of 1
through n using the generator f with the same secret key K as the seed.

5.2 Fori=1,2,.,n, take Cjin S to be Cy' in S', resulting in a string of characters

S =C,C,...C, as the desired output.

For security consideration, the length of secret data should be long enough, e. g.,
more than 256 characters, to reduce the probability for a hacker to guess the message
correctly. Otherwise, another way of security protection may be adopted, that is, to
conduct the reordering operation in Step 1 of Algorithm 10.1 and Step 5 of Algorithm
10.2 in unit of bits instead of in unit:0f characters. Since there are normally so many
bits, it is almost impossible to"get a correct guess. If these measures of security
enhancement are taken, it can be figured-out from the above algorithm that without a
correct key, the embedded message, even when the stego-text is intercepted, is almost
impossible to be recovered by a hacker.

In order to have a clear illustration of the proposed method and to see clearly the
embedded codes in web page and HTML editor windows, we report first a simple
example of the experiments we conducted without embedding the length of the
message and without using a secret key. Let the message to be embedded be “sky”
whose three characters “s,” “k,” and “y” have 8-bit ASCII codes 01110011, 01101011,
and 01111001, respectively. So the message in binary string form is 011 100 110 110
101 101 111 001 which includes eight 3-bit segments, and can be encoded into eight
space codes
O0; . We
embedded these codes at eight consecutive between-word locations in the following

HTML text:

168

This is a secret communication method through HTML files.
Then the result is:

This is a new communication method through HTML&#

x20;files.

This stego-text, when observed in the web page browser of the IE, appears to be
identical to that of the cover text, as shown in Figure 10.2.

Another example of our experimental results is shown in Figure 10.3, in which
we show a cover text in the IE and the Frontpage windows in Figures 10.3(a) and
10.3(b), respectively; and a secret message in the Notepad window in Figure 10.3(c).
The length of the message is 96 cﬁéifal:ters V;/_h'iéh_are embedded first into the cover
text as a 15-bit number. The :stego-té;;'t ’:;iplr).éarihg in the IE and the Frontpage
windows is shown in Figures 103(d)and}9%{e), yep'lsectively. From the identicalness
of Figures 10.3(a) and 10.3(d),: the-.stegagographic effect of the space codes is

confirmed.

A This is a new secret communication method - Microsoft Internet E... |Z||E|[z|
L

File Edit Miew Faworites Tools Help

il

~ _/I |£l \ELI A, Search ‘tﬁr Favarites @} -
Address | €] D:\Paper Sindes. htm ~ a Go
M
This is a secret communication method through HTML files.

[

@ Done _& My Computer

(a) Cover text seen in the window of the IE.

Figure 10.2. Invisibility of space codes for the message “sky” in an HTML text.

169

[%] Microsoft FrontPage - D:\Paper 9\index. htm

! Fle Edit ‘iew Insert Formak Tools Table Data Frames Window Help

Jindeu.htm

i <head-

Slemeta http-equiv="Content-Type"™ content="text/htunl; charset=ascii">
JletitlesCowver text</title>

< heads

<hody>

<p>This i3 a secret communication method through HTML files.</p

< hodys

< html=

T L

o -1

[Fa]

—
=

LdDesign B split (B Code | SPreview |

[

=]

Line 10, Colurnn 1 Default | Custom

(b) Cover text seen in the window of the FrontPage editor.

2 This is a new secret communication method - Microsoft Internet E... |._||E|

File Edit \Miew Faworites Tools Help

eﬂack v \‘_;I @ @ \-_;t] pSearch *Favurites @ Bv

Address | @] hetp:/{140.113.87. 136 index. htm v Go

X
'1:

X

This is a secret communication method through HTML files,

[

£

I@ Dane 8 Internet

(c) Stego-text seen in the window of the IE.

[E] Microsoft FrontPage - D:\Paper 9\index. htm

! Fle Edit ‘iew Insert Format Tools Table Data Frames Window Help Type a question for help

-

J index.htm

S <meta http-equiv="Content-Type” content="text/html; charset=ascii”>
dletitle=Stego-text/ritles

3

=]

ILine 9, Calumn 1 Default | Cuskam

(d) Stego-text seen in the window of the FrontPage editor.

Figure 10.2. Invisibility of space codes for the message “sky” in an HTML text

(continued).

170

2} This is a new communication method. - Microsoft Internet Explorer, E|

File Edit Wiew Favorites Tools Help

Qut - @ KRB G P Yoo @ -2 B-LJE B

Address |@ [uiPaper caver HTML, htm vl &

Data hiding with steganographic effects iz a good way for secret communication [1]. =
Due to high accesgibility on the Internet, it is convenient to use the web page as a B
conunumication channel by hiding secret megzages i the HTML file of a cover web
page. A merit here is that the secret message cannot be destructed illegally unless the
website publishing the web page is intruded and the HTML file modified.

| £

@ Dane g My Computer

(a) Cover text seen in the window of the IE.

[El Microsoft FrontPage - D:\Paper 9\cover HTML. htm Z E|E|

! File Edit “iew Insert Format Tools Table Data Frames Window Help

quver HTML.htm >

<body =

<hody> L
<prenbeprenbsp:lata hiding with steganographic effects iz a good way for secret
<p=enhspenbsp;

Ahout hiding data in the HTHML, 3hirali-Shahreza [2] protects a Java applet in ar—
<pxenhsprenbsp

In this paper, a new secrtet communhication method by embedding special space cod

< i

<presnbsp;enbsp;The proposed method carries out the communication work between Tl

CdDesign B split | Code | S Preview |{ »

Line 18, Column 16 Default | Custom

(b) Cover text seen in the window of the FrontPage editor.

I secret data - Notepad

File Edit Format Wiew Help

Cartesian coordinates (x, w) = (7468520315478032135648075213,
OR55244AR387093 215846098724 586243854)

(c) A secret message seen in the Notepad window.

Figure 10.3. The embedded secret data.

171

2 This is a new communication method. - Microsoft Internet Explorer EHE|E|
r

File Edit ‘iew Faworites Tools Help :,
] b) = F i g - A=] - 2

€ 9 [¥ [Bl G P Jeravrtes @) = i 3

address | &] http:jf140.113.67.135(v| Go

Data hiding with steganographic effects iz a good way for secret commmumication [1]. '~
Due to high accessibility on the Internet, it is convenient to use the web page as a 3
communication channel by hiding secret messages in the HTML file of a cover
web page. A merit here is that the secret message cannot be destiucted illegally unless
the website publishing the web page is mtruded and the HTML file modified.

I@ Done B Internet

(d) Stego-text seen in the window of the IE.

Microsoft FrontPage - D:\Source programs\Paper 9 data hiding in HTML\Paper 9 D... [Z”E”'s__q

! File Edt Miew Insett Formak Tools Table Data Frames Window Help

Jindeu.htm *

<bodw =

<hody>

<p>| :&nhsp.:Data hiding withs#xzZ0;steganographics#xdl;effects iss#x207as#la0

“prenbsp:snbep;

dhouts#le0;hidingse#loldatas¥3Zina#xal; the HTHL, snbep:3hirali-Shahrezac#xE0;[2]&;

<prehbspranbsp;

Ins#d2thisa#xdl paper, s#xdlas#lolnews#xi0 secreta# Al conminicationg#lo0nethod.

e

<prenbsprenbspThe proposed method carries out the communication work hetween 1w
CaDesign B Split | Code | APreview |(| >

Line 9, Column 4 Default | Cuskom

£

(e) Stego-text seen in the window of the FrontPage editor.

Figure 10.3. The embedded secret data (cont’d).

10.4 Automatic Authentication of Web Page Text Contents

To accomplish the goal of authenticating automatically the text of a web page at
the word level, an authentication signal should be created for each word in the text,
and embedded in the HTML codes of the text for periodical verification by a program
implementing the authentication process. Warning should be issued if any word in the

text is authenticated to have been modified, deleted, or inserted. An authentication

172

signal generation and embedding process utilizing the space codes discussed

previously as authentication signals is proposed as follows.

1. Map each word w in the HTML codes of the text of the web page to be protected by
a function h into a binary integer S, called the numerical authentication signal of w,
i.e., compute S = h(w).

2. Encode s by a space code c of the first eight ones listed in Table 10.1, called the
symbolic authentication signal of w.

3. Replace the original space code 20 located at the right-hand side of w by the code C.

Since each space code also appears to be a white space in a web page browser,
the resulting stego-HTML codes will appear in the browser to be a web page totally
identical to the original one, arousing no suspicion from the observer. On the other
hand, the proposed automatic authentication process:is just a process of matching the
previously-embedded authentication sighal S for €ach word W' with the one §'
computed from the current conterit of W' using the same mapping function h.

As a simple example, let the word w to be protected be “no” whose two
characters have the decimal ASCII codes 110 and 111, respectively. Assume that the
mapping function h takes the modulo-8 value of the sum of the decimal ASCII code
values of the characters in the word. Then, the computed numerical authentication
signal s for wis s = h(w) = (110 + 111) mod 8 = 5 whose 3-bit equivalent binary
number is 101. According to Table 10.1, the space code encoding 101 is
which is then taken to replace the hexadecimal code 20 to the right of the word. Now,
suppose that the word “no” has been modified to be “ok” with an opposite meaning.
The decimal ASCII code values for the two characters in it are 111 and 107. So the
numerical authentication signal for this word w' is s' = h(w") = (111 + 107) mod 8 =2

whose 3-bit equivalent is 010 and is encoded by the space code . This space

173

code is different from the embedded one . So it is decided that the word “ok”

is a result of tampering.

10.5 Security Consideration and Experimental Results

The above-mentioned simple processes, however, have several weaknesses in
security from the viewpoint of automatic authentication without human involvement,
as discussed in the following, in which solutions for removing these weaknesses are
also proposed.

(1) Word position disordering and replacement of entire web page contents --- A
hacker, who knows the above processes (including the used function h) as is usually
assumed in information hiding studies, may destroy the web page content by just
exchanging the orders of the words:(each word assumed to include the embedded
space code next to it). It can be figured out that'this false web page can pass the
authentication process. Even worse 1s the case that the hacker replaces the entire text
content of a web page with all authentication signals for the new words recomputed
and embedded. Such a fake web page obviously will also pass the above
authentication. We propose to solve these problems by first putting the words into a
certain order and then generating a series of corresponding random numbers, one for a
word, to compute the authentication signals by the mapping S; = h(w;, ki) where k; is
the random number generated for wi. The random numbers are generated by a
function controlled by a secret key as the seed. In this way, a web page with changed
word orders cannot pass the authentication process, as can be figured out, because a
word W with its position changed will now be given a different random number so that
the computed numerical authentication signal becomes different from the
previously-embedded one. Also, it is easy to see that a hacker’s replacement of the

entire text content of a web page with embedded authentication signals computed

174

without a key will not pass the authentication process now.

(2) Guessing of authentication signals without a key --- The above modified
process of authentication signal generation still has a weakness, i.e., the generated
authentication signal for each word is a 3-bit number, which is encoded into one of
the eight space codes so that the probability to guess it correctly is 1/8. That is, after
inserting a replacing word, the hacker only has to guess the authentication signal for
the word eight times before he/she can pass the authentication of the word. This is not
secure enough. As a remedy, we propose to allow the mapping function h(w, k) to
yield a numerical authentication signal which, when transformed into binary, has
more bits than three. For example, if we allow h to yield 12 bits which may be
encoded, three by three, into four space codes, then we may use four words to provide
the four white spaces at their right-hand sides to.embed the four space codes. This
way of multiple word encoding-is.equivalent.to regard four words as a single one by
concatenating them together. Morelgenerallys,if we want to yield 3n bits as the
numerical authentication signal, we régard every.n words as a single one in computing
the authentication signal s = h(w, k). The signal s is encoded into n space codes which
are then embedded at the right-hand sides of the n words. Additionally, the mapping h
may be taken to be any reasonable function, such as one of the various existing
hashing algorithms. We may even adopt the famous secure SHA-1 algorithm as h with
54 words as input, and use a secret key as the seed to generate random numbers as its
initial values. The algorithm yields 160 bits as output, to which we may affix two bits
of 0’s. We then encode the resulting 162 bits into 54 space codes (54 = 162/3) and
embed the codes at the right-hand sides of the 54 words. The security of the protected
54 words will then be very high.

For a clearer illustration, we report a simple one of the experiments we have

conducted, without using random numbers in computing the authentication signals.

175

The text in an HTML file to be protected includes three text lines: “Personal Data:”
“Name: [-Shi Lee, Mr.” and “Tel: (09)8672555.” The corresponding web page seen in
the IE window is shown in Figure 10.4(a). We regard a punctuation following a word
as part of the word, and adopted a simple mapping function h which considers two
words as a single one, adds up the decimal values of the ASCII codes of all the
characters in them to obtain a sum S, takes the modulo-64 value M of S as a 6-bit
numerical authentication signal S, and encodes M as two 3-bit numbers into two space
codes by Table 10.1 as the symbolic authentication signal. These two space codes are
finally taken to replace the two normal space codes 20 located to the right of the two
words. That is, if the two words are W; = C;iCy2...Cin, and W, = C31C...Con, With Cjj’s
being their ASCII codes and djj the corresponding decimal values, then we compute S
as S = h(w;, wp) = (dj;+dj2 +...+dyg+0a, 0ot #da,,) mod 64 = byb,...be, with b;b,bs
encoded into a space code =and.'bsbsbe into . another. After all the symbolic
authentication signals for the word pairs-wete.computed in this way and embedded
appropriately, the resulting web page;-as viewed in the IE window, appears to be as
Figure 10.4(b), which looks no different from that shown in Figure 10.4(a). Figure
10.4(c) shows the corresponding stego-HTML codes in the FrontPage window, which
can be seen to include all the space codes. To simulate web page intrusion and
modification, the last name “Lee” in the second line was replaced by another, “Lin.”
After the authentication process was performed, the word pair “Lin, Mr.” was
authenticated to have been tampered with, and so was marked as bold italic, as shown
in Figure 10.4(d). More of our experimental results show the feasibility of the
proposed method.

A problem mentioned previously which need be solved is that the two space
codes and , after being inserted, should not be followed by digits;

otherwise, they will be regarded as codes with more digits instead of 32 and 160. One

176

way out is to append to either of and one additional space code other
than these two to stop this ambiguity, and decode the resulting code pair as just the

first one only, which may still be done uniquely.

N Anexperimental result without space codes embedded ... : : X

File Edit \Miew Faworites Tools Help -#
- - I & kg
L} J @ @ \-_ﬂ pSearch ‘i’j‘\'{' Favaorites @
Address |] http://140.113.87.135/ v| B ik ?
~
Personal Drata:

Matne: I-Shi Lee, hir.

Tel: (05)8672555
&] Done 0 nternet

| £

(a) Original web page seen in IE.

a

3 An experimental result with space codes embedded - M... |

File Edit “iew Favorites Tools Help -&'
. M i) »
J (=] @ @ \;lj pSearch ‘\3_1'\'{ Favorites @
tiddress |@ http://140.113.87.135/ v| B ks *
~
Personal Data:

Marne: I-3hi Lee, Iir.

Tel: (0938672555
&] Dons B nternet

3

(b) Web page with embedded authentication signals (space codes) seen in IE.

Figure 10.4 An experimental result of authentication of a modified web page.

I File Edit Wew Insert Format Took Table Data Frames MWindow Help
J 02-An experimental ...des embedded).htm x
| '
| ~
kl <meta http-equiv="Content-Type™ content="text/html; charset=ascii™>

titler=&n experimental result with space codes embedded</title>

Sheads

hody>

prPersonalsnbsp:Pata: </p>

prlame: ¢#32;I-3hic#160; Lee, s#160;Mr. #1600

prTel:a#20; (09)5672555enbap 1< /p

Shodys -
) Jhtul> v
CdDesign B split | Cade | S Preview |
For Help, press F1 Default | Custom

177

(c) Content of (b) with embedded space codes seen in FrontPage.

Ril pe [11E1La = Mo 0 £ () LS MarKe o Vi EEE
n
. . A =, a, . ?
<) X _) \ﬂ IELI .'\J P Search ‘:\(Favarites @)
Address] htep:{140.113.87.135] v BYso ks »
-~
Personal Drata: T

Wame: I-3tn Lin, Mr

Tel: (0NBET2555
@‘I Done 0 Internet

%

(d) Web page with detected modified word pair “Lee, Mr.” marked as bold italic.

Figure 10.4 An experimental result of authentication of a modified web page

(continued).

10.6 Concluding Remarks

A new secret communication me'éh‘od via-web' pages using special space codes in
HTML files has been proposed. Thesé ‘codes appéar as white spaces in the web page,
and so may be used to encode secret message bits with steganographic effects. The
codes are the result of a thorough investigation of all possible coding systems which
can be applied in the HTML file. The character string of each message, before being
embedded, is randomized with a secret key to enhance the security against illegal
intercept and extraction. The original message embedded in the HTML text is
non-destructible unless the web page server is intruded. Our experimental results
show that the proposed method is feasible.

Also, an automatic authentication method for verifying a web page against illegal
modifications of the words in the text of the web page has been proposed. The special

space codes are used to encode binary mapping results from the word contents as

178

authentication signals, and are embedded at between-word spaces in the HTML codes.
Security enhancement techniques to prevent illicit word tampering and guessing of
authentication signals have also been proposed, including the use of secret keys and
the scheme of multiple word encoding. Experimental results show the feasibility of
the proposed method.

Future researches may be directed to utilizing the space codes in other data
hiding applications, further promotion of the security of the proposed method, and

applying the space codes to other purposes, like copy protection.

179

Chapter 11
Conclusions and Suggestions for

Future Research

11.1 Conclusions

In this dissertation, we have proposed ten techniques for data hiding in various
types of images and text documents. Discussions and concluding remarks for each
method have been given at the end of each chapter before. A brief summary of them
are as follows:

(1) data hiding in binary images with,distortion-minimizing capabilities by optimal
block pattern coding and dynamie programming techniques;

(2) data hiding in grayscale images by dynamic programming based on a human
visual model;

(3) data hiding in emails and applications by unused ASCII control codes;

(4) data hiding in color images by color replacements with reduction of image
distortion and change noticeability;

(5) security protection of software programs by information sharing and
authentication techniques using invisible ASCII control codes;

(6) covert communication with authentication via software programs using invisible
ASCII codes;

(7) covert communication via PDF files by a data hiding technique;

(8) authentication of PDF files by invisible ASCII codes;

(9) secret communication via web pages using special space codes in HTML files;

(10) automatic authentication of web pages by data hiding using multiple space codes

180

in HTML files.
Experimental results have also been shown to prove the feasibility and

practicality of the proposed methods.

11.2 Suggestions for Future Research

In the subsequent study, the following topics will be investigated.
(1) Data hiding in binary images ---
The proposed method is based on the use of 2x2 blocks. It may be extended by
processing larger blocks because then, the number of block patterns which can be
selected to encode messages will become larger as well, resulting in greater
reductions of image distortions. However, there is a tradeoff here, i.e., the
resulting data embedding capacity will decrease. Other future works may be
directed to designing a better cost function. from the perspective of the human
visual system, imposing more consttaints on the cost function to yield better
image quality, and finding a’ better way to.design encoding tables to reduce
stego-image distortion further.
(2) Data hiding in grayscale images ---

The methods proposed previously are for data hiding in binary images. But binary
images are few in real applications. Therefore, it is desired to extend the methods
for data hiding in grayscale images. One possible way is to extent to embed
multiple message data in a grayscale image for protecting the intellectual property
right and authenticating multimedia data. It is also hoped that the human vision
model be considered in the extension so that the resulting stego-image will cause
less noticeability from observers. Other future works may be directed to design
better encoding tables to reduce image distortion further.

(3) Data hiding in color images ---

181

Needless to say, data hiding in color images is even more useful for real
applications. Although the methods for grayscale images may be extended directly
to color images by considering each color channel as a grayscale image, we want
to design a more genuine method by dealing the color image itself. Future
researches may be directed to minimizing image distortion by uses of
variable-sized color cubes, uses of a perspective HVS, random distributions of
groups’ colors in color cubes, etc. It is also hoped that the proposed method can be
extended for various applications.

(4) Data hiding in text documents ---
It is desired to design data hiding methods for embedding data in e-mails in the
future study. Possible applications of such methods include covert communication
through e-mails and authentication of e-mail fidelity and integrity. It is also hoped
that data hiding in software programs can be developed in this study, so that
intellectual properties of wvarious'-programs / can be protected. Any illegal
duplication or stealing of protceted.programs with embedded owner information
can be disclosed. Finally, more investigations on hiding data in PDF and HTML

documents utilize the rich data structures in such document formats.

182

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

S. Katzenbeisser and F. A. P. Petitolas, Information Hiding Techniques for
Steganography and Digital Watermarking, Artech House, Boston, U. S. A., 2000.
E. Koch and J. Zhao, "Embedding robust labels into images for copyright
protection," Proceedings of the International Congress on Intellectual Property
Rights for Specialized Information, Knowledge and New Techniques, pp.
242-251, Munich, Germany, 1995.

D. Kundur, “Energy allocation principles for high capacity data hiding,”
Proceedings of the IEEE International Conference on Image Processing,
Vancouver, Canada, Vol. 1, pp. 423-426, September 2000.

L. M. Marvel, J. C. G. Bongelet, and C. T. Retter, “Spread spectrum image
steganography,” IEEE Transactions on-~Image-Processing, Vol. 8, No. 8, pp.
1075-1083, August 1999.

K. Matsui and K. Tanaka, "Video-steganography: how to secretly embed a
signature in a picture,” Proceedings of the IMA Intellectual Property Project,
Vol.1, No. 1, 1994.

H. K. Pan, Y. Y. Chen, and Y. C. Tseng, A secure data hiding scheme for
two-color images,” Proceedings of the IEEE Fifth Symposium on Computers and
Communications(ISCC2000), pp. 750-755, Antibes, France, July 2000.

M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia data-embedding and
watermarking technologies,” Proceedings of the IEEE, Vol. 86, pp. 1064-1088,
1998.

Y. C. Tseng and H. K. Pan, "Secure and invisible data hiding in 2-color images,"
Proceedings of the IEEE INFOCOM 2001 The Conference on Computer

Communications, No. 1, pp. 887-896, Anchorage, Alaska, U. S. A. 2001.

183

[9] C. H. Tzeng and W. H. Tsai, “A new technique for authentication of image/video
for multimedia applications,” Proceedings of the ACM Multimedia 2001
Workshops --- Multimedia and Security: New Challenges, pp. 23-26, Ottawa,
Ontario, Canada, Oct. 2001.

[10] C. H. Tzeng and W. H. Tsai, “A new approach to authentication of binary images
for multimedia communication with distortion reduction and security
enhancement,” IEEE Commun. Lett., Vol. 7, No. 9, pp. 443—445, Sep. 2003.

[11] H. C. Wang, "Data hiding techniques for printed binary images," Proceedings of
the IEEE International Conference on Information Technology: Coding and
Computing, pp. 55-59, Las Vegas, NV, U. S. A., April 2001.

[12] M. Wu, E. Tang, and B. Liu, “Data hiding in digital binary image,” Proceedings
of the IEEE International Conference:. on Multimedia & Exposition
2000(ICME’00), Vol. 1, pp= 393-396, New York; New York, 2000.

[13] D. C. Wu and W. H. Tsai, “Spatial-domain® image hiding using an image
differencing,” Processings of the IEE Proceedings-Vision, Image, and Signal, Vol.
147, No. 1, pp. 29-37, Feb. 2000.

[14] D. C. Wu, M. K. Hsu, and J. H. Jheng, “Data hiding and authentication
techniques for 2-color digital documents based on adjusting lengths of runs,”
Proceedings of the 16th IPPR Conference on Computer Vision, Graphics and
Image Processing (CVGIP 2003), pp. 818-822, Kinmen, Taiwan, R. O. C., Aug.
2003.

[I5] R. Z. Wang, C. F. Lin, and J. C. Lin, “Hiding data in Images by optimal
moderately-significant-bit replacement,” IEEE Electronics Letters, Vol. 36, No.
25, pp. 2069-2070, December 2000.

[16] C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding optimal least-significant-bit

substitution in image hiding by dynamic programming strategy,” Pattern

184

Recognition, Vol. 36, pp. 1583-1595, 2003.

[17] C. K. Chan, and L. M. Cheng, “Improved hiding data in images by optimal
moderately-significant-bit replacement,” IEEE Electronics Letters, Vol. 37, No.
16, pp. 1017-1018, August 2001.

[18] C. K. Chan, and L. M. Cheng, “Hiding data in images by simple LSB
substitution,” Pattern Recognition, Vol. 37, pp. 469-474, 2004.

[19] C. C. Thien and J. C. Lin, “A simple and high-hiding capacity method for hiding
digit-by-digit data in images based on modulus function,” Pattern Recognition,
Vol. 36, pp. 2875-2881, 2003.

[20] Y. K. Lee and L. H. Chen, “High capacity image steganographic model,” IEE
Proceedings on Vision, Image Signal Process, Vol. 147 No. 3, June 2000.

[21] S. H. Liu, T. H. Chen, H. X& Yao, and W:.Gao, “A variable depth LSB data
hiding technique in images;” Proceedings of the-3rd International Conference on
Machine Learning and CyberneticS;—pp-+3990-3994, Shanghai, P. R. China,
August 2004.

[22] W. N. Lie and L. C. Chang, “Data hiding in images with adaptive numbers of
least significant bits based on the human visual system,” Proceedings of the
IEEE International Conference on Image Processing, Vol. 1, pp. 286-290, Taipei,
Taiwan, R. O. C., October 1999.

[23] S. Lyu and H. Farid, “ Detecting hidden messages using higher-order statistics
and support vector machines,” Lecture Notes in Computer Science, Vol. 2578, pp.
340-354, 2003.

[24] J. Fridrich, M. Goljan, and R. Du, “Detecting LSB steganography in color and
gray-scale images,” IEEE Multimedia, Vol. 8, No. 4, pp. 22-28, 2001.

[25] 1. S. Lee and W. H. Tsai, “Data hiding in binary images with
distortion-minimizing capabilities by optimal block pattern coding and dynamic

185

programming techniques,” IEICE Transactions on Information and Systems, Vol.
E90-D, No. 8, pp. 1142-1150, 2007.

[26] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Singapore,
1989.

[27] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,”
IBM System Journal, Vol. 35, No. 3 & 4, Feb. 1996.

[28] Y. Y. Tsai and C. M. Wang, “A novel data hiding scheme for color images using a
BSP tree,” Journal of Systems and Software, Vol. 80, pp. 429—437, 2007.

[29] D. C. Lou and J. L. Liu, “Steganographic Method for Secure Communications,”
Computers and Security, Vol. 21, No. 5, pp. 449-460, Oct. 2002.

[30] Low, S. H., N. F. Maxemchuk, and A. M. Lapone, “Document Identification for
Copyright Protection Using: Centroid “Detection,” IEEE Transactions on
Communication, Vol. 46, No, 3, pp. 372-383,.1998.

[31] J., Brassil, N. F. Maxemchukj. and. L--O’Gorman, “Electronic Marking and
Identification Techniques to Discourage Document Copying,” Proceedings of the
13th Annual IEEE Conference on Computer Communications(INFOCOM’94),
pp.-1278-1287, Toronto, Ontario, Canada,1994.

[32] P. Wayner, “Strong Theoretical Steganography,” Cryptologia, Vol. XIX/3, pp.
285-299, 1995.

[33] G. Cantrell and D. D. Dampier, “Experiments in Hiding Data Inside the File
Structure of Common Office Documents: A Stegonography Application,”
Proceedings of the 2004 International Symposium on Information and
Communication Technologies, pp. 146-151, Las Vegas, Nevada, U. S. A., 2004.

[34] N. F. Johnson, Z. Duric, and S. Jajodia, Information Hiding: Steganography and
Watermarking-Attacks and Countermeasures, Kluwer Academic Publishers,

Boston, MA, U. S. A., 2001.

186

[35] R., Anderson, R. Needham, and A. Shamir, “The Steganographic file System,”
Proceedings of the Second International Workshop on Information Hiding,
Lecture Notes in Computer Science, Vol. 1525, pp. 73-82, Springer, Berlin,
Germany, 1998.

[36] T. G, Handel, and M. T. Stanford, “Hiding Data in the OSI Network Model,”
Proceedings of the First International Workshop on Information Hiding, pp.
23-38, Cambridge, UK, 1996.

[37] Y. H. Chang and W. H. Tsai, “A steganographic method for copyright protection
of HTML documents,” Proceedings of the 2003 National Computer Symposium,
Taichung, Taiwan, R. O. C., Dec. 2003.

[38] J. B. Postel, "Simple Mail Transfer Protocol,” STD 10, RFC 821, IETF, August
1982.

[39] D. Crocker, "Standard for the Format of ARPA! Internet Text Messages," STD 11,
RFC 822, IETF, August 1982.

[40] P. Resnick, "Internet Message Format," RFC-2822, IETF, April 2001.

[41] J. G. Myers and M. T. Rose, “Standard Post Office Protocol - Version 3,” STD
53, RFC 1939, IETF, May 1996.

[42] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies," RFC 2045, IETF, Nov. 1996.

[43] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types," RFC 2046, IETF, Nov. 1996.

[44] N, Freed. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part Five: Conformance Criteria and Examples," RFC 2049, IETF, Nov. 1996.

[45] M. Crispin, " Internet Message Access Protocol - Version 4revl," RFC 3501,
IETF, March 2003

[46] A. Shamir, “How to share a secret,” Communications of the Association for

187

Computing Machinery, Vol. 22, No. 11, pp. 612-613, 1979.

[47] M. Naor and A. Shamir, “Visual cryptography,” Advances in Cryptology ---
EUROCRYPT’94, Lecture Notes in Computer Science, Vol. 950, pp. 1-12, 1995.

[48] G. Ateniese, C. Blundo, A. De Santis, and D. R. Stinson, “Visual cryptography
for general access structures,” Information and Computation, Vol. 129, pp.
86-106, 1996.

[49] M. Naor and B. Pinkas, “Visual authentication and identification,” Advances in
Cryptology --- CRYPTO’97, Lecture Notes in Computer Science, Vol. 1294, pp.
322-336, 1997.

[50] C. Blundo and A. De Santis, “Visual cryptography schemes with perfect
reconstruction of black pixels,” Computers & Graphics, Vol. 22, No. 4, pp.
449-455, 1998.

[51] E. R. Verheul and H. C. Axvan Tilborg, “Construction and properties of k out of
n visual secret sharing schemes,” Designs,-Codes, and Cryptography, Vol. 11, pp.
179-196, 1997.

[52] C. C. Lin and W. H. Tsai, “Secret image sharing with steganography and
authentication,” Journal of Systems & Software, Vol. 73, No. 3, pp. 405-414,
2004.

[53] 1. S. Lee and W. H. Tsai “Data hiding in emails and applications by unused
ASCII control codes,” Proceedings of the 2007 National Computer Symposium,
Vol. 4, pp. 414-422, Taichung, Taiwan, R. O. C., Dec. 2007.

[54] W. Zhu, C. Thomborson, and F. Y. Wang, “A survey of software watermarking,”
Proceedings of the IEEE International Conference on Intelligence and Security
Informatics, Lecture Notes in Computer Science, Vol. 3495, pp. 454-458, May
2005.

[55] R. Venkatesan, V. Vazirani, and S. Sinha. “A graph theoretic approach to

188

software watermarking,” Proceedings of the 4th International Information
Hiding Workshop, Lecture Notes in Computer Science, Vol. 2137, pp. 157-168,
Apr. 2001.

[56] C. Collberg and C. Thomborson. “Watermarking, tamper-proofing, and
obfuscation — tools for software protection,” IEEE Transactions on Software
Engineering, Vol. 28, pp. 735-746, 2002.

[57] H. M. Meral, E. Sevinc, E. Unkar, B. Sankur, A. S. Ozsoy, and T. Gungor,
“Syntactic tools for text watermarking,” Proceedings of the SPIE International
Conference on Security, Steganography, and Watermarking of Multimedia
Contents, San Jose, CA, Jan.-Feb. 2007.

[58] M. Topkara, U. Topkara, and M. J. Atallah, “Information hiding through errors: a
confusing approach,” Proceedings of the SPIE International Conference on
Security, Steganography, and.Watermarking.of-Multimedia Contents, San Jose,
CA, Jan.-Feb. 2007.

[59] F. A. P. Petitcolas, R. J. Anderson and-M: G. Kuhn, “Information hiding - A
survey,” Proceedings of the IEEE, Special Issue on Protection of Multimedia
Content, Vol. 87, No. 7, pp. 1062-1078, July 1999.

[60] D. C. Wu and P. H. Lai, “Novel Techniques of Data Hiding in HTML
Documents,” Proceedings of the 2005 Conference on Digital Contents
Managements & Applications, pp. 21-30, Kaohsiung, Taiwan, R. O. C., June,
2005.

[61] T. Y. Liu and W. H. Tsai, “A New Steganographic Method for Data Hiding in
Microsoft Word Documents by A Change Tracking Technique,” IEEE
Transactions on Information Forensics and Security, Vol. 2, No. 1, pp. 24-30,
March 2007.

[62] T. Y. Liu and W. H. Tsai, “Robust Watermarking in Slides of Presentations by

189

Blank Space Coloring: A New Approach,” accepted and to appear in
Transactions on Data Hiding and Multimedia Security, Lecture Notes in
Computer Science.

[63] Adobe Systems Incorporated, Portable document format reference manual,
Version 1.7, http://www.adobe.com, November, 2006.

[64] S. Zhong, X. Cheng and T. Chen, “Data hiding in a kind of PDF texts for secret
communication,” Int’l Journal of Network Security, Vol.4, No.1, pp.17-26, Jan.
2007.

[65] ASCII Code - The extended ASCII table. Retrieved April 30, 2008, from
http://www.ascii-code.com/

[66] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekal, “Hierarchical watermarking
for secure image authentication with “localization,” IEEE Trans. Image
Processing, Vol. 11, pp. 585-505, June 2002.

[67] D. Coppersmith, F. Mintzet, C.iTresset-C: W. Wu, and M. M. Yeung, “Fragile
imperceptible digital watermark with privacy control,” Proceedings of the SPIE,
Security and Watermarking of Multimedia Contents, pp. 79—84, San Jose, CA,
Jan. 2000.

[68] E. Izquierdo and V. Guerra, “An Ill-Posed Operator for Secure Image
Authentication,” IEEE Trans. Circuits & Systems for Video Technology, Vol. 13,
No. &, pp. 842-852, August 2003.

[69] S. Walton, “Information authentication for a slippery new age,” Dr. Dobbs
Journal, Vol. 20, No. 4, pp. 18-26, Apr. 1995.

[70] P. W. Wong, “A public key watermark for image verification and
authentication,” Proceedings of the International Conference on Image
Processing (ICIP), Vol. 1, pp. 425-429, Chicago, Illinois, October. 1998.

[71] M. M. Yeung and F. Mintzer, “An invisible watermarking technique for image

190

verification,” Proceedings of the International Conference on Image Processing
(ICIP), Vol. 2, pp.680-683, Santa Barbara, CA., 1997.

[72] M. Shirali-Shahreza, “Java applets copy protection by steganography,”
Proceedings of the 2006 Int’l Conference on Intelligent Information Hiding &
Multimedia Signal Processing, pp. 388-391, Pasadena, California, U. S. A., Dec.
2006.

[73] C. C. Wu, C. C. Chang and S. R. Yang, “An efficient fragile watermarking for
web pages tamper-proof,” Advances in Web and Network Technologies, and
Information Management, Lecture Notes in Computer Science, Vol. 4537, pp.
654-663, Springer, Berlin, Germany, 2007.

[74] Invisible Secrets. Retrieved May 15, 2008, from

http://www.invisiblesecrets.com.

[75] Q. Zhao and H. Lu, “PCA=based web page watermarking,” Pattern Recognition,
Vol. 40, pp. 1334 — 1341, 2007.

[76] S. Voloshynovskiy, T. Pun, J. Frideich, F.Perez-Gonzalez, and N. Memon (Guest
Editors), Special Issue on Security Of Data Hiding Technologies, Signal

Processing, Vol. 82, Iss. 10, pp. 1511-1512, Oct. 2002.

191

Publication List

Journal Papers:

(1) I. S. Lee and W. H. Tsai, "Data Hiding in Binary Images with Distortion-
Minimizing Capabilities by Optimal Block Pattern Coding and Dynamic
Programming Techniques," IEICE Transactions on Information and Systems, Vol.
E90-D, No. 8, pp. 1142-1150, August 2007 (SCI) .

(2) I. S. Lee and W. H. Tsai, "Data Hiding in Grayscale Images by Dynamic
Programming Based on A Human Visual Model," Pattern Recognition. (to be
published after minor revision) (SCI)

(3) I. S. Lee and W. H. Tsai, "Security Protection of Software Programs by
Information Sharing and Authentication Techniques Using Invisible ASCII
Control Codes," accepted for International Journal of Network Security.

(4) I. S. Lee and W. H. Tsai, "'Data Hiding.in Emails and Applications by Unused
ASCII Control Codes," accepted for Journal of Information Technology and
Applications.

(5) 1. S. Lee and W. H. Tsai, "Data Hiding in Color Images by Color Replacements
with Reduction of Image Distortion and Change Noticeability," submitted to IET
Image Processing.

(6) I. S. Lee and W. H. Tsai, "Covert Communication with Authentication via
Software Programs Using Invisible ASCII Codes --- A New Approach,"
submitted to IEEE Signal Processing Letters.

(7) I. S. Lee and W. H. Tsai, "A New Method for Covert Communication via PDF
Files by A Data Hiding Technique," submitted to Signal Processing.

(8) I. S. Lee and W. H. Tsai, "PDF File Authentication by Invisible Codes,"

submitted to Tamkang Journal of Science and Engineering(EI).

192

(9) I. S. Lee and W. H. Tsai, "Secret Communication via Web Pages Using Special
Space Codes in HTML Files," submitted to International Journal of Applied
Science and Engineering.

(10) I. S. Lee and W. H. Tsai, "Automatic Authentication of Web Pages by Data
Hiding Using Multiple Space Codes in HTML Files," submitted to Signal

Processing.

Conference Papers

[1]1I. S. Lee and W. H. Tsai, "A Dynamic-Programming Approach to Data Hiding in
Binary Image Using Block Pattern Coding with Distortion Minimization,"
Proceedings of 2003 National Computer Symposium (NCS 2003), Taichung,,

Taiwan, pp. 1406-1413, Decembet 18-19, 2003.

[2] I. S. Lee and W. H. Tsai, "Data Hiding in -Grayscale Images by Dynamic
Programming Based on A Human-Visual,"—. 20th Compuer Vision, Graphics, and
Image Processing (CVGIP) 2007 .conference proceeding, Miaoli, Taiwan, pp.

204-209, August 19-21, 2007. (Excellent paper award of CVGIP 2007)

[3] I. S. Lee and W. H. Tsai, "Data Hiding in Emails and Applications by Unused
ASCII Control Codes," in Proceedings of 2007 National Computer Symposium,
Taichung, Taiwan, Taichung, R. O. C, pp. 414-422, December 20-21, 2007. (Best

paper award of Information Security and Networks Workshop of NCS 2007)

[4] I. S. Lee and W. H. Tsai, " Security Protection of Software Programs by
Information Sharing and Authentication Techniques Using Invisible ASCII
Control Codes," accepted for 21th Compuer Vision, Graphics, and Image
Processing (CVGIP) 2008 conference proceeding, Ilan, Taiwan, August 24-26,

2008.

193

Vita

I-Shi Lee was born in Taipei, Taiwan, R.O.C., in 1961. He received the B. S.
degree in electronic engineering from National Taiwan University of Science and
Technology, Taipei, Taiwan, Republic of China in 1987, the M. S. degree in the
Department of Computer Science and Information Science at National Chiao Tung
University in 1989, and the Ph.D. degree in the Institute of Computer Science and
Engineering, College of Computer Science from National Chiao Tung University in
2008.

In 1992, he joined the Department of Management Information at Northern
Taiwan Institute of Science and Technology and-acted as a lecturer from 1992 to now.
His recent research interests include pattern recognition, watermarking, and image

hiding.

194

	A Study on New Techniques of Data Hiding in Images and Text Documents and Their Applications
	A. Encoding Block Patterns for Secret Data Embedding
	B. Sketch of proposed idea of data hiding
	C. Use of Multiple Block Pattern Encoding Tables
	D. Proposed Distortion-Minimizing Cost Function and Search Techniques for Optimal Solutions
	E. Data recovery process

