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摘 要 

 
本博士論文冀能領先全球研究，發展出將資料隱藏於影像及本文文字檔的

技術及其應用。本論文總共提出了 10 種新方法，分別適用於黑白，灰階及彩色

影像，以及電子郵件，CP

++
P軟體程式，PDF和網頁等檔案類型。首先，本論文提

出二種新方法分別針對黑白及灰階影像，基於人眼視覺模型及動態規劃技術去降

低影像扭曲程度並增加資料被隱藏的容量。接著，本論文提出一種新方法可將大

量資料藏於BMP彩色影像中，本方法係利用色彩立體方塊及色彩叢集的觀念來

隱藏資料。然後，本論文提出一種利用特殊的ASCII控制碼將秘密訊息隱藏於電

子郵件中的新方法，這些特殊的ASCII碼顯示在Outlook Express與IE 網路郵件

的瀏覽視窗中是使用者看不見的。接著本論文提出二種將資料隱藏於原始程式的



 

 ix

新方法。其中一種方法係利用資訊分享與驗證的技巧及人眼看不見的ASCII控制

碼來保護軟體程式的安全。另一種技術是應用於秘密通訊，同時可驗證隱藏訊息

真偽的新方法。更進一步，本論文提出二種利用特殊的ASCII碼將資訊隱藏於通

用的PDF檔中的新方法。其中之ㄧ應用於秘密通訊，另一個應用於驗證PDF檔的

真偽。最後，本論文提出二種新方法將資訊隱藏於大家常瀏覽的網頁中。其中之

ㄧ應用於秘密通訊，另一個應用於驗證網頁的真偽。二種方法皆是利用HTML檔

中各種不同的編碼系統的特殊空白碼。以上本論文提出之 10 種方法,皆為創新之

作, 且已投稿於國內外重要期刊。實驗結果顯示本論文提出的方法皆具有可行性

及實用性。 
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Abstract 

In this study, data hiding techniques for image files and text documents and their 

applications are investigated, and totally ten methods are proposed for binary, 

grayscale, and color images, as well as email, software CP

++
P program, PDF, and 

webpage files. First, two methods are proposed respectively for binary and grayscale 

images based on human vision modeling and dynamic programming to reduce the 

image distortion and increasing data hiding capacities. Also, a method is proposed for 

hiding large-volume data in BMP color images, based on the use of color cubes and 

the idea of color clustering. Then, a method is proposed for hiding secret messages in 

emails using some special ASCII codes which are invisible in the window of Outlook 

Express and IE Webmail browsers. Also proposed are two methods for data hiding in 

software programs. One is used for security protection of software programs by 

information sharing and authentication techniques using invisible ASCII control 
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codes. And the other is applicable to covert communication with the additional 

capability of authenticating the hidden secret message. Furthermore, two methods are 

proposed for data hiding in PDF files which are popular nowadays. One is useful for 

covert communication and the other for PDF file authentication, both using certain 

special ASCII codes. Finally, two methods are proposed for data hiding in web pages 

which are browsed by lots of people in the world. One method is proposed for covert 

communication and the other for authentication of web pages, both utilizing certain 

space codes of various coding systems applicable in HTML files. Experimental results 

show the feasibility and practicality of all the proposed methods. 
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Chapter 1                    

Introduction 

1.1 Scope of Data Hiding Research 

Data hiding is a type of information hiding, emphasizing the purpose of 

embedding digital data behind multimedia of various forms. The multimedia into 

which data are hidden are called cover media, like cover image, cover text, etc., and 

the results are called stego-media, like stego-image, stego-text, etc. Applications of 

data hiding include at least the following. 

(1) Copyright protection --- the data hidden are of the forms of watermarks like 

logos of companies, series numbers of products, etc. 

(2) Covert communication --- the data hidden are secret messages sent from one 

site to another. Data hiding for the purpose of covert communication is 

sometimes called steganography. The goal of steganography is to arouse as 

little notice from observers of the stego-media as possible. 

(3) Multimedia authentication --- the hidden data are authentication signals in 

various forms, created for the purposes of checking cover media’s fidelity, 

integrity, utilization rights, etc. 

(4) Secret sharing --- the hidden data are parts of certain multimedia forms like 

text or image documents, and are taken as secret messages which are 

embedded into several shares in other forms of multimedia. Only a sufficient 

number of shares are collected can the secret message be recovered for 

inspection. 

(5) Data association --- the hidden data are various information, like metadata, 

history, identification, etc., about the cover media. Data hiding in this way 
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facilitates close association of the data with the cover image for convenient 

preservation or transmission of the cover media. 

(6) Digital rights management --- the hidden data need not always be invisible; on 

the contrary, we may embed a visible watermark on a video (like a movie) to 

prevent it form being watched by a customer paying no fee. More generally, 

data hiding may be used in applications of digital rights management, like pay 

movie control, video distribution management, limitation of watch times, etc. 

A classification of the techniques of data hiding which are related to this 

dissertation study is illustrated in Figure 1.1. 

In the following sections, the motivation of study is given in Section 1.2. The 

contributions of this study and the organization of this dissertation are reported in 

Sections 1.3 and 1.4, respectively. 

1.2 Motivation of Study 

Many data hiding techniques with images as cover media have been proposed. 

Most of the techniques were proposed for color and grayscale images because pixels 

in such images take a wide range of values and so are more proper for data hiding. 

Only a few techniques were proposed for binary images. In this study, we will 

investigate more efficient methods for hiding more data in binary images. 

On the other hand, the cover media need not always be images. On the Internet, 

so many documents of formats other than images are being transmitted or displayed, 

like e-mails, web pages, freeware, etc. If we can hide data behind e-mails, for 

example, covert communication will be easily implemented. Authentication of 

e-mails is also possible to prevent receiving false or illegally altered messages. 

Furthermore, it is also desired to protect software from being stolen or illegal 

distributed. If we can hide data into the source programs, then possibly protection of 
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software copyrights is achievable. It is noted by the way that studies of data hiding in 

text contents are very few so far. 

 

 
 

Data Hiding 

Copyright 

Protection 

Covert 

communication

Multimedia

authentication

Secret 

sharing 

Data 

association 

Digital rights 

management

Figure 1.1. Classification of data hiding techniques. 

 

Most researches about data hiding in images lack serious considerations of image 

distortion reduction in stego-images. It is desired in this study to design new 

techniques of data hiding emphasizing optimality in image distortion reduction. In 

doing so, it is also hoped that human vision modeling may be considered, so that 

changes in the resulting stego-image can be less noticeable. It is noted here that most 

existing data hiding methods are conducted in the frequency domain and thus are 

useful for images compressed in the frequency domain like JPEG. For images of other 

types like BMP, appropriate data hiding methods need be developed. And this is also 

part of the goal of our study on data hiding in images. 

On the other hand, it is also a goal of this study to devise new techniques for data 

hiding in text documents, which are still few so far. Such techniques will be very 

useful for daily uses because text documents like e-mails are popular and used or 

watched every day by humans worldwide, especially for the purpose of 
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steganography. 

1.3 Contributions of This Study 

In this study, we propose ten data hiding techniques for various applications of 

copyright protection, covert communication, authentication, and secret sharing. The 

processed file types include two major categories, namely, image and document. The 

former category includes binary, grayscale, and color images, and the latter type 

includes email, software program, PDF, and HTML (web page). The contribution of 

each of the ten techniques is described in the following. 

(1) Data hiding in binary images --- the proposed technique has distortion-minimizing 

capabilities by optimal block pattern coding and dynamic programming 

techniques. Accordingly, not only more data bits can be embedded in an image 

block on the average, but the resulting image distortion is also reduced in an 

optimal way. 

(2) Data hiding in grayscale images --- the proposed technique is based on dynamic 

programming and a human visual model with distortion-minimizing capabilities. 

The proposed method can predict the PSNR value of the resulting image 

according to the size of the data to be embedded before the embedding process 

starts. 

(3) Data hiding in color images --- the proposed technique is based on color 

replacements with capabilities of reducing image distortion and change 

noticeability. Color cubes and the idea of color clustering are used for 

large-volume data hiding. 

(4) Data hiding in emails and applications --- the proposed technique embeds data in 

emails via Outlook Express and IE by some unused and invisible ASCII control 

codes. Also described are two applications of the proposed data hiding technique, 
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covert communication via emails and authentication of emails. 

(5) Security protection of software programs --- the proposed technique is based on 

information sharing and authentication using invisible ASCII control codes. These 

invisible codes are hidden in the camouflage program, resulting in a 

stego-program for a participant to keep. To enhance security, three security 

measures via the use of a secret random key are also proposed to prevent the 

secret program from being recovered illegally, authenticate the stego-program and 

check the stego-program whether it has been tampered with or not. 

(6) Covert communication with authentication via software programs --- the proposed 

technique is also based on the use of invisible ASCII codes. Each binary message, 

after being encoded by certain ASCII codes and inserted at specific C++ program 

locations, becomes invisible in the source code editors. A scheme for tamper-proof 

authentication of the embedded message has also been proposed. 

(7) Covert communication via PDF files --- the proposed technique is based on the 

use of special ASCII codes. A secret message, after being encoded by a special 

ASCII code and embedded at between-word and between character locations in 

the text of a PDF file, becomes invisible in the window of a common PDF reader, 

creating a steganographic effect for secret transmission through the PDF file. 

(8) Authentication of PDF files --- the proposed technique is based on the use of 

invisible ASCII codes. To authenticate each word in a PDF file, a authentication 

signal composed of multiple non-breaking space codes is generated from the 

characters in the word and a random number. The authentication signal is invisible 

for common PDF readers, thus reducing the probability for the authentication signal 

to be tampered with. 

(9) Secret communication via web pages --- the proposed technique is based on the 

use of some special space codes in HTML. These codes, like the ASCII code 20, 
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appear to be white spaces as well. Message hiding and recovery with security 

enhancement are also proposed. 

(10) Automatic authentication of web pages --- the proposed technique is based on 

the use of multiple special space codes in HTML. The propose method is useful 

for checking automatically the integrity of the text content of a web page at the 

word level. Special space codes are used again as authentication signals with 

steganographic effects. Security enhancement techniques using secret keys and 

multiple word encoding are also proposed. 

1.4 Dissertation Organization 

In the remainder of this dissertation, a survey of related studies and a more 

detailed description of the ten proposed methods are given in Chapter 2. The proposed 

methods are described one by one in the subsequent chapters. In Chapter 3, the 

proposed method for data hiding in binary images is described. In Chapter 4, the 

proposed method for data hiding in grayscale images is presented. In Chapter 5, the 

proposed method for data hiding in color images is described. In Chapter 6, the 

proposed method data hiding in emails and some applications are described. In 

Chapter 7, the proposed method for security protection of software programs is 

presented. In Chapter 8, the proposed method for covert communication with 

authentication via software programs is described. In Chapter 9, the proposed 

methods for covert communication via PDF files and authentication of PDF files are 

described. In Chapter 10, the proposed methods for secret communication via web 

pages and automatic authentication of web pages are described. Finally, in the last 

chapter, conclusions of this study and some suggestions for future research are 

included. 
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Chapter 2                       

Surveys of Related Studies and Brief 

Descriptions of Proposed Methods 

2.1 Survey of Related Studies 

Many data hiding techniques have been proposed while this dissertation study is 

dedicated to develop new data hiding techniques for various applications. Surveys of 

related studies on data hiding are described first in the following, followed by brief 

descriptions of the proposed methods. 

2.1.1. Survey of Data Hiding in Binary Images 

Many data hiding techniques have been proposed for a variety of applications of 

digital images in recent years [1-22]. Most of the techniques were proposed for color 

and grayscale images because pixels in such images take a wide range of values and 

so are more proper for data hiding. One simple method to data hiding in grayscale 

images is to use the LSB replacement technique to hide secret data or authentication 

signals. However, data hiding in binary images is a more challenging work. Because 

binary image pixels have drastic contrast, it is easier for humans’ eyes to find out 

pixel value changes in binary images. Therefore, it is more difficult to hide data into 

binary images than into color or grayscale images. Wu et al. [12] embedded secret 

data in specific image blocks that are selected with higher “flippability” scores by 

pattern matching. Manipulated flippable pixels on the image region boundary are then 

used to embed a significant amount of data without causing noticeable artifacts. Pan et 

al. [6] changed pixel values in image blocks, mapped block contents into the secret 

data, and used a secret key and a weight matrix to protect the hidden data. Given an 
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image block of size m×n, the scheme can conceal up to ⎣logB2 B(m×n + 1)⎦ bits of data in 

the image by changing, at most, two bits in an image block. Tseng and Pan [8] 

proposed a technique to alter an image bit into a new value identical to a neighboring 

one. It can yield better hiding effect within a binary image. Koch and Zhao [2] 

embedded a bit 0 or 1 in a block by changing the number of black pixels in the block 

to be larger or smaller than that of white ones, respectively. In [5, 11], secret data are 

concealed into dithered images by maneuvering dithering patterns. Tzeng and Tsai [9] 

encoded the edge features of binary images into 4×4 block patterns, and authenticated 

the images by pattern matching. Tzeng and Tsai [10] also proposed a new feature, 

called surrounding edge count, for measuring the structural randomness in a 3×3 

image block, and defined “pixel embeddability” from the viewpoint of minimizing 

image distortion. Accordingly, embeddable image pixels suitable for hiding secret 

data can be selected. Wu et al. [14] used even-odd relationships of lengths of run pairs 

to embed information in binary images, and adjusted the length of each run to an even 

or odd value to represent the embedded bit value. 

2.1.2. Survey of Data Hiding in Grayscale Images 

Wang et al. [15] embedded an image in the fifth LSB bit plane of a cover 

grayscale image, and employed an optimal substitution process based on a genetic 

algorithm and a local pixel adjustment method to lower the distortion in the 

stego-image. Chang et al. [16] used dynamic programming to obtain an optimal 

solution for the LSB substitution method. Chan and Cheng [17, 18] presented an 

optimal pixel adjustment process to improve the image quality of the stego-image 

acquired by Wang’s schemes. Thien and Lin [19] proposed a method for hiding data 

in images digit by digit using a modulus function. The method is better than simple 

LSB substitution not only in eliminating false contours but also in reducing image 
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distortion. Lee and Chen [20] applied variable-sized LSB insertion to estimate the 

maximum embedding capacity by a human visual system (HVS) property, and to 

maintain image fidelity by removing false contours in smooth image regions. Liu et al. 

[21] presented a novel bit plane-wise data hiding scheme using variable-depth LSB 

substitution and employed post-processing to eliminate the resulting noticeable 

artifacts. 

Most of the above methods lack consideration of using precise human visual 

models in improving the data hiding effect. Instead, Wu and Tsai [13] presented a 

method based on the HVS by modifying quantization scales according to variation 

insensitivity from smooth to contrastive to improve stego-image quality. And Lie and 

Chang [22] presented an adjusted LSB technique with the number of LSBs adapting 

to the pixels of different grayscales. 

On the other hand, some steganalysis techniques were developed to detect secret 

messages among stego-images. TLyu and Farid [23]T developed a universal blind 

detection scheme to detect hidden messages in stego-images, which uses wavelet-like 

decomposition to build higher-order statistical models of natural images and adopts 

the support vector machine as an optimal classifier to separate stego-images from 

cover images. TThe method Tdemonstrates good performance on JPEG images and the 

selected statistics is rich enough to detect hidden data in the results yielded by a very 

wide range of steganographic methods. In addition, to detect data hidden in LSBs in 

the spatial domain, it is observed that the basic LSB substitution method changes 

pixel values only between 2i and 2i + 1 in the i-th bit plane of the pixel value. This 

leads to an effective steganalytic technique, the RS method proposed by Fridrich, et al. 

[24], which not only can expose the presence of secret data but also can estimate the 

length of the embedded data. 
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2.1.3. Survey of Data Hiding in Color Images 

Many techniques for data hiding in color images have been proposed in the past 

decade [1, 7, 27] which may be categorized into two major methods: the 

spatial-domain method and the frequency-domain method. In the former, secret data 

are directly embedded in the characteristics of the pixels of the cover image, and in 

the latter, the cover image is transformed first into frequency-domain coefficients, into 

which secret data are embedded. In general, the frequency-domain method is more 

robust against attacks while the spatial-domain method can hide more data. The 

previously-surveyed methods for data hiding in binary and grayscale images are 

conducted in the spatial domain. For the other method, related papers are very few 

unless the previously-surveyed methods are adapted to be applicable to color images, 

for example, by considering each color channel as a grayscale image. Tsai and Wang 

[28] proposed a data hiding technique for color images using a binary space 

partitioning tree, which partitions the RGB color space into voxels and embeds three 

message bits into each voxel. 

2.1.4. Survey of Data Hiding in Text Documents 

In contrast with other multimedia, digital texts contain less redundant 

information for embedding data. Most data hiding methods for digital text documents 

try to encode information directly into the text itself or into the text format. One way 

of into-text hiding is to exploit the natural redundancy of languages, and one way of 

into-format hiding is to adjust inter-word or inter-line space [29]. On the other hand, 

from the steganographic point of view, digital text documents can be classified into 

two types: hard-copy and soft-copy [27]. A hard-copy text may be treated as a binary 

image resulting from scanning a text document, while a soft-copy text may be 

regarded as an American Standard Code for Information Interchange (ASCII) text that 
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can be edited by a text editing software like Notepad. 

For a hard-copy text, which is interpreted as a highly-structured image, 

information can be embedded into the layout or format of the image. Low et al. and 

Brassil et al. [30-31] presented text-based steganographic methods which use the 

distances between consecutive lines of texts or between consecutive words to hide 

information. If the space between two lines is smaller than a threshold, a “0” is 

represented; otherwise, a “1.” 

In contrast with hard-copy texts and other digital media, soft-copy texts are more 

difficult to hide data due to the lack of redundant information. Even a slight 

modification, like rewriting a letter, may be noticed by a reader. However, huge 

amounts of text documents that people deal with daily on the Internet are essentially 

soft-copy texts in nature. Thus, the protection of digital rights of this type of text 

document becomes more and more important. 

Bender et al. [27] proposed the use of infrequent additional spaces to form secret 

data and transmit them in soft-copy texts, including inter-sentence spacing, 

end-of-line spacing, and inter-word spacing in texts. For example, one space between 

words is taken to represent a “0” and two spaces a “1.” Wayner [32] proposed a 

method to use the context-free grammar to create secret text messages in cover files 

for covert communication; the secret message is not embedded in the cover file 

directly. And a receiver extracts the hidden message by parsing. A constraint is that 

the cover text should be a meaningful message; otherwise, a reader will doubt it. 

Cantrell and Dampier [33] proposed to embed data into unused spaces in file 

headers. These spaces are invisible to usual users because they are disregarded when 

the files are opened. The spaces can be seen when examined at the byte level, but few 

users would do so. Johnson et al. [34] proposed another way to embed information in 

unused spaces that are imperceptible to an observer, which is based on the fact that 
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usually operating systems allocate more space than the need of a file and the result 

leaves some unused space to hide information. A third method is to create a hidden 

partition in a file system to embed information. The partition is not viewed normally. 

This concept has been expanded in a steganographic file system [35]. If a user knows 

the file name and the password, access to the file will be granted; otherwise, no 

evidence of the file will be revealed in the system of the hidden files. 

Characteristics inherent in network protocols may also be taken advantage of to 

hide information [36]. For example, TCP/IP packets can be used to transmit secret 

messages across the Internet by embedding unused spaces in the packet header. 

Finally, Chang and Tsai [37] proposed a special space encoding to embed copyright 

information into the HTML text content. The bit “1” is encoded by inserting a 

so-called pseudo-space string “&nbsp;” before a real space, while the bit “0” is 

represented by a normal space between two words or sentences. 

2.1.5. Survey of Data Hiding and Sharing in Software Programs 

A survey about watermarking in programs can be found in Zhu, et al. [54]. Two 

methods have been identified: static and dynamic. The former inserts and extracts 

watermarks in program codes without running the program while the latter does the 

same in the execution state of a software object. Two respective examples are 

Venkatesan, et al. [55] and Collberg and Thomborson [56]. There exist other methods 

with digital text, sentence syntax, text typos, e-mails [1, 27, 53, 57-59] as cover 

media. 

The concept of secret sharing was proposed first by Shamir [46]. By a so-called 

(k, n)-threshold scheme, the idea is to encode a secret data item into n shares for n 

participants to keep, and any k or more of the shares can be collected to recover the 

original secret, but any (k − 1) or fewer of them will gain no information about it. A 
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similar scheme, called visual cryptography, was proposed by Naor and Shamir [46] 

for sharing an image. The scheme provides an easy and fast decryption process 

consisting of xeroxing the shares onto transparencies and stacking them to reveal the 

original image for visual inspection. This technique has been investigated further in 

[48-50], though it is suitable for binary images only. Verheul and van Tilborg [51] 

extended the visual cryptography technique for processing images with small numbers 

of gray levels or colors. Lin and Tsai [52] proposed a digital version of the visual 

cryptography scheme for color images with no limit on the number of colors. The n 

shares obtained from a color image are hidden in n camouflage images which may be 

selected to have well-known contents, like famous characters or paintings, to create 

additional steganographic effects for security protection of the shares. 

2.1.6. Survey of Data Hiding in PDF Documents 

Portable Document Format (PDF) files [63] are popular nowadays, and so using 

them as carriers of secret messages for covert communication is convenient. Though 

there are some techniques of embedding data in text files [57-58], studies of using 

PDF files as cover media are very few, except Zhong et al. [64] in which integer 

numerals specifying the positions of the text characters in a PDF file are used to 

embed secret data. 

For security, it is necessary to verify the authenticity of a file received from 

another party or kept for a long time in a certain environment, before the file is used 

for various purposes. This is the authentication problem of the file, which should be 

solved for protection of the file against unintentional changes and malicious 

manipulations. In the past, the information hiding method [1] has been adopted to 

solve this problem but most studies were about images [10, 66-71]. There is yet no 

investigation on the authentication of PDF files, though a related study about data 
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hiding in PDF files can be found in Zhong et al. [64]. Hiding data in documents other 

than PDF files have also been investigated [61-62]. 

2.1.7. Survey of Data Hiding in HTML Documents 

About hiding data in the HTML, Shirali-Shahreza [72] protects a Java applet in 

an HTML file from being copied by hiding a special 8-character string with a key 

within the Java applet. Wu and Lai [60] hide binary data in HTML files using various 

properties of tags, like attributes. Wu, et al. [73] use hash functions to compute digests 

of web page contents as watermarks. Chang and Tsai [37] insert extra white spaces in 

HTML text to encode bits for watermarking, as done by some commercial software 

[74]. 

There are very few studies on web page authentication using data hiding 

techniques so far. Zhao and Lu [75] generated watermarks of web pages based on 

principal component analysis and embed them by upper and lower cases of letters in 

HTML tags. The watermark was used to check the integrity of the entire web page. 

Wu et al. [73] designed fast fragile watermarks for web pages based on hash functions 

which generate digests of web pages quickly with case insensitivity. Two related 

studies can be found in [37, 60] which utilize properties of spaces, tabs, tags, 

attributes, etc., to encode and hide data bits into the HTML for purposes other than 

web page authentication. And some more general studies about data hiding can be 

found in [1, 76]. 

2.2 Brief Descriptions of Proposed Methods 

In this dissertation study, we have developed totally ten methods, three for data 

hiding in various images with distortion reduction capability, one for data hiding in 

emails with capabilities of authenticating the hidden data, two for data hiding in 

source programs, two for data hiding in PDF files, and finally two for data hiding in 
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web pages. They are briefly described in the remainder of this section 

2.2.1. Data Hiding in Binary Images with Distortion-Minimizing 

Capabilities by Optimal Block Pattern Coding and Dynamic 

Programming Techniques 

The first method we propose is a new technique which embeds data into a binary 

image and minimizes the resulting image distortion in an optimal way. In a binary 

image, there are two distinct pixel values, 0 and 1, corresponding to black and white 

pixels, respectively. When data are embedded into a binary image, some image pixels 

used for data hiding will be changed from black to white or reversely. The pixel value 

changes will be called bit flippings in the sequel. To embed more data, more bit 

flippings may be conducted; however, the quality of the resulting image will also get 

worse. The bit flipping rates of most data hiding methods for binary images are about 

50%. We propose a new data hiding method which has the capability to conceal up to 

three data bits in a 2×2 block, resulting in bit flipping rates lower than 50%. The 

method can thus be used to embed more data. This is achieved by a block pattern 

coding technique. On the other hand, while it is desirable to embed more data, the 

resulting image quality should be maintained in the mean time. For this purpose, two 

optimization techniques are proposed. The first is to use multiple block pattern 

encoding tables, from which an optimal one is selected for each input image. The 

second technique is to use a dynamic programming algorithm to divide the message 

data stream into appropriate bit segments for optimal data embedding in the image 

blocks in the sense of minimizing the number of bit flippings. As a result, the 

proposed method can achieve the goals of both increasing the embedded data volume 

and reducing the resulting image distortion. Furthermore, the method can be used to 

extract embedded data without referencing the original image. 
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2.2.2. Data Hiding in Grayscale Images by Dynamic Programming 

Based on A Human Visual Model 

The second method we propose is a new technique which embeds data into a 

grayscale image, based on the use of a new HVS model, to estimate the number of 

usable bits of each pixel in the cover image. Furthermore, a block pattern encoding 

method is proposed to embed up to three data bits in a 2×2 block of the bit planes 

without visible degrading of the stego-image quality. This is achieved by using two 

optimization techniques. The first technique utilizes multiple block pattern encoding 

tables, from which an optimal one is chosen for each input image; and the second 

technique uses dynamic programming to divide the message data stream into 

appropriate bit segments for optimal data bit embedding in the image blocks to 

minimize a cost function. Especially, the proposed method can predict the PSNR 

value of the stego-image according to the embedded data size before the embedding 

process is started. Moreover, the proposed method can extract embedded data without 

referencing the original image, and does not require post-processing to refine the 

stego-image quality. 

2.2.3. Data Hiding in Color Images by Color Replacements with 

Reduction of Image Distortion and Change Noticeability 

The third proposed method is a new one for hiding data in RGB color images 

using color space partitioning and color encoding. The RGB color space is 

partitioned into non-overlapping, equal-sized color clusters, each being cubic in shape, 

called a color cube. The colors in each cube are used to represent fixed-length codes. 

Message data hiding is accomplished by replacing selected image pixels’ colors with 

closest ones in color cubes to embed corresponding codes representing the message 

bits. And data extraction is a reverse process of data embedding. To reduce image 

distortion, each color cube is designed to include a number of color groups, with all 
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colors in each group representing an identical code. The colors in each group are 

distributed as separately as possible in the cube, and color replacement at an image 

pixel is conducted by choosing as the replacing color the one in a group, which is 

closest to the pixel’s color in the sense of Euclidean color distance. And to reduce the 

noticeability of the resulting color changes, we select adaptively for use in data 

embedding those cubes whose colors are more scattered in the cover image (that is, 

the pixels whose colors are in these cubes are more separated mutually in the cover 

image), so that the color changes on these pixels will arouse less notice from the 

observer. 

2.2.4. Data Hiding in Emails and Applications by Unused ASCII 

Control Codes 

The fourth proposed method is a new technique for data hiding in emails via 

Outlook Express and IE under the operating system of the tTraditionalT TChineseT version 

of Microsoft Windows XP, service pack 2, 2002. The idea is based on the use of 

unused ASCII codes. Secret data are encoded by special ASCII control codes and 

embedded into cover emails by inserting the data into the text line ends in the body of 

a given email. These ASCII control codes, when displayed both by Outlook Express 

and IE, are invisible to the user, achieving the effect of steganography. Such invisible 

ASCII control codes were found out in this study by a systematic test of all the ASCII 

codes on various email server software systems and standards. The proposed data 

encoding technique is a combination of five coding rules found in this study, which 

insert special ASCII control codes into different places in email texts. The inserted 

codes will not change the meanings of the sentences in the cover email, neither 

causing any noticeable difference to the reader. Furthermore, hidden data can be 

extracted from a stego-email completely to recover the original email text content. 
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Also described in this study are two applications of the proposed data hiding 

technique, namely, covert communication via emails and authentication of emails. In 

the former application, security is enhanced by the use of a secret key, and in the latter, 

an authentication signal is generated from the cover email for email fidelity checking. 

2.2.5. Security Protection of Software Programs by Information 

Sharing and Authentication Techniques Using Invisible ASCII 

Control Codes 

The fifth proposed method is a new technique based on the use of some specific 

ASCII control codes invisible in certain software editors. By the use of the logic 

operation of “exclusive-OR,” each source program to be shared is transformed into a 

number of shares, say N ones, which are then hidden respectively into N pre-selected 

camouflage source programs, resulting in N stego-programs. Each stego-program still 

can be compiled and executed to perform the function of the original camouflage 

program, and each camouflage program may be selected arbitrarily, thus enhancing 

the steganographic effect. 

To improve the security protection effect further, we propose additionally an 

authentication scheme for verifying the correctness of the contents of the 

stego-programs brought by the participants to join the process of secret program 

recovery. This is advantageous to prevent any of the participants from accidental or 

intentional provision of a false or destructed stego-program. The verified contents 

include the share data and the camouflage program contained in each stego-program. 

2.2.6. Covert Communication with Authentication via Software 

Programs Using Invisible ASCII Codes 

The sixth proposed method is a new one for covert communication by 

embedding messages in source programs. A binary message, after being encoded into 
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some ASCII codes and embedded into certain C++ program locations, becomes 

invisible in the source code editors of Visual C++ and C++ Builder under some 

Windows OS environments, creating a steganographic effect. A tamper-proof 

authentication scheme for the embedded message is also proposed. 

2.2.7. Covert Communication via PDF Files and PDF File 

Authentication by Invisible Codes 

The seventh proposed method is a new technique for covert communication, 

which embeds secret messages in PDF files. A message is regarded as a string of bits 

or characters, which are then encoded with a special ASCII code by binary or unitary 

coding. The results, after being embedded at the between-word or between-character 

locations in the text of a PDF file, are found in this study to be invisible in the 

windows of common PDF readers, creating a steganographic effect and achieving the 

purpose of secret communication. 

The eighth method is proposed for authenticating PDF files using a special 

ASCII code A0. For each word in the text of a PDF file to be protected, an 

authentication signal composed of repeating A0’s is generated from the 8-bit ASCII 

codes of the characters composing the word as well as a random number. The signal is 

then embedded to the right of the word. These A0’s are invisible in the window of 

common PDF readers, enhancing the security of the embedded authentication signals. 

Without the key for use in generating the random numbers, malicious creation of a 

fake file is nearly impossible. 

2.2.8. Secret Communication through Web Pages and Automatic 

Authentication of Web Pages Using Special Space Codes in 

HTML Files 

The ninth proposed method is a new technique for secret communication by 
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embedding special space codes in the HTML files of web pages. These codes appear 

as white spaces in the web page, and so may be used to encode secret message bits 

with steganographic effects. The codes are the result of a thorough investigation of all 

possible coding systems which can be applied in the HTML file. There are many of 

such codes, and each of them may be used to encode at least three message bits, 

increasing the data hiding capability. 

The last proposed method is a new automatic authentication technique for 

checking the integrity of web page text contents. The method, aiming to check the 

authenticity of each single word, is based on a data hiding technique which uses some 

special space codes as authentication signals. Such codes, which are found in this 

study to be multiple and appear identical to normal white spaces in web pages, are 

used to encode certain binary mapping results from the word contents. These codes 

are then taken to replace the between-word spaces in the HTML codes, resulting in 

good steganographic effects. Security enhancement has also been considered, and 

related problems are solved by the use of secret keys and a multiple word encoding 

scheme. 
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Chapter 3                          

Data Hiding in Binary Images with 

Distortion-Minimizing Capabilities by 

Optimal Block Pattern Coding and 

Dynamic Programming Techniques 

3.1 Idea of Proposed Method 

In a binary image, there are only two pixel values, 0 and 1, and the 

corresponding pixels may be called black and white ones, respectively. When data are 

embedded in a binary image, the image pixels will be changed from black to white or 

from white to black. The distortion rate is 50% in general data hiding methods for 

binary images. The method which we propose in this study for data hiding in binary 

images is based on a block pattern coding technique and a dynamic programming 

algorithm. The method can be used to embed more data in a block of a binary image, 

and minimize the resulting stego-image distortion simultaneously. 

In order to embed more data in a binary image, more pixels need be changed; 

however, the quality of the resulting stego-image will get worse. On the contrary, in 

order to maintain the quality of the resulting image, the amount of the embedded data 

should be limited. The proposed method is designed to be a compromise between the 

embedded data volume and the resulting image distortion. The method can extract 

embedded data without referencing the original image. It also has the merit of 

concealing up to three data bits in a 2×2 block by changing the smallest number of 

bits in a block. Contrastively, most existing methods for hiding data in binary images 

can embed only one or two data bits in a 2×2 image block [7, 10, 12]. 
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In the remainder of this chapter, the proposed method for dealing with 2×2 image 

blocks is first described in Section 3.2. Some experimental results are shown in 

Section 3.3, followed by some cluding remarks in Section 3.4. 

3.2 Proposed Data Embedding Process 

The proposed method is designed to hide secret data behind binary images in 

random fashions controlled by secret keys. The method consists of a data embedding 

process and a data extraction process. In this section, the principles behind the 

proposed method are presented first, followed by the details of the proposed data 

embedding and extraction processes. 

A. Encoding Block Patterns for Secret Data Embedding 

In order to embed secret data into a binary cover image, every 2×2 block of the 

cover image is regarded as a pattern with a corresponding 4-bit binary value in this 

study, with each black pixel representing a bit 0 and each white one representing 1. 

An illustration is shown in Figure 3.1. Therefore, in a 2×2 block, possible binary 

values of the block pattern are 0000B2 B through 1111 B2B, where “0000B2 B” means an entirely 

black block while “1111B2 B” means an entirely white one. 

The main idea of the proposed data hiding method is based on the use of a block 

pattern encoding table which maps each block pattern into a certain code for use as 

hidden data with the code being up to three bits in length. And data embedding is 

accomplished by changing the block patterns so that the codes of the resulting blocks 

become just the input secret data to be embedded. A block pattern encoding table 

designed for use in this study is shown in Table 3.1. The idea behind the design of this 

table is described as follows. It is emphasized, by the way, that such a table is just one 

of the many possible ones usable for data hiding, and the proposed data embedding 
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process will choose from them an optimal one for each specific input image, as 

described later. 

 

2×2 block pattern Corresponding binary value 

 bB1 BbB2BbB3 BbB4 B 

 
0101 

Figure 3.1 Illustration of block patterns and corresponding binary values. 

 

The number of possible patterns in a 2×2 block are 16. This number is much 

larger than the need to represent the two secret bits ‘0’ and ‘1’, so we may use 

multiple block patterns to represent a single secret value, allowing the possibility of 

choosing among the patterns an optimal one to replace the original image block in the 

data embedding process, thus reducing the resulting image distortion in the replaced 

block. Furthermore, we wish to embed more data in a block, and for this goal we may 

use a block pattern to represent more than one bit of secret data. 

For example, we may use both the block pattern t B1B = 1101B2 B and the pattern tB2 B = 

1110 B2 B to represent the two-bit secret value s = 00 B2 B. In this way, when we want to 

embed, for example, the secret value s = 00 B2B into a block B with pattern v = 0110B2 B, we 

have the two choices of block patterns tB1 B = 1101B2 B and tB2 B = 1110B2 B instead of the 

conventional case of just one, from which we can choose t B2B = 1110B2 B to replace the 

pattern v = 0110B2 Bof the block B, resulting in the smaller distortion of just a 1-bit error. 

Note that if only the choice of tB1 B = 1101B2B is allowed, then the error will be 3 bits 

which mean a larger distortion in the replaced block. It is such allowance of multiple 

bB1 B bB2 B 

bB3 B bB4 B 
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choices for block pattern replacement that achieves distortion reduction in the 

proposed method. 

More generally, we group in this study the 16 possible block patterns in a 2×2 

block B into distinct sets according to the entropy values E of the block patterns, 

where an entropy value E of a block pattern P is defined as follows: 

E = − k
k

k pp∑ 2log  = −pB0 B logB2 B pB0 B − pB1 BlogB2 B pB1 B 

with pB0 B and pB1B being the occurrence probability values of black and white pixels 

appearing in P computed as 

p B0 B = (number of black pixels in P)/4; pB1 B = (number white pixels in P)/4. 

A pattern P in a set with a higher entropy value E is presumably more random in 

its black and white arrangement, and so is more suitable for hiding more secret data 

without causing a noticeable change. There are three possible entropy values 0, 0.811, 

and 1 in a 2×2 block by the above definition, so we divide the 16 possible block 

patterns into three sets. The first set with the entropy value 0 has two distinct block 

patterns, one being the entirely white block, the other the entirely black. They are 

denoted as A and F in Table 3.1 and are used to represent the secret data of 1 and 0, 

respectively. That is, they encode the secret data of 0 and 1, respectively. 

The second set with the entropy value 0.811 includes eight distinct block patterns, 

which can be classified into two classes, one class with each pattern including one 

black pixel and three white ones and the other class with each pattern including three 

black pixels and one white one. The first class, denoted as B in Table 3.1, includes 

four block patterns, and we use two block patterns of them to encode the secret value 

00 B2 B, and the other two to encode the secret value 01B2 B. When deciding which two 

patterns should be selected to encode an identical secret value, we adopted the 
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“mismatch reduction criterion” of making the two selected patterns less different in 

the number of mismatching pixel values when one of the two selected patterns is 

superimposed on the other. We use the four block patterns of the other class, denoted 

as E in Table 3.1, to encode the secret values 10B2 B and 11B2 B in a similar way. 

 

Table 3.1 Proposed block pattern encoding table. 

Type 
Block 

pattern 

Entropy 

value

Corresponding 

binary value 

Encoded 

secret 

data 

A 
 

0 1111 1 

B1 
 

0.811 1110 00 

B2 
 

0.811 1101 00 

B3 
 

0.811 1011 01 

B4 
 

0.811 0111 01 

C1 
 

1 0011 011 

C2 
 

1 0101 011 

C3 
 

1 1010 010 

C4 
 

1 1100 010 
 

Type

Block 

pattern
Entropy 

value

Corresponding 

binary value 

Encoded 

secret 

data 

F 0 0000 0 

E1 0.811 0001 11 

E2 0.811 0010 11 

E3 0.811 0100 10 

E4 0.811 1000 10 

D1 1 0110 100 

D2 1 1001 101 
 

 

The last set with the entropy value 1 has six distinct block patterns. So far we 

have completed the encoding of all possible one-bit and two-bit secret values with ten 

patterns. So the remaining six patterns in the 16 ones may be used to encode three-bit 

secret values. But six patterns are not enough to encode all the eight three-bit secret 
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values, so we can only take care of some of them, following the aforementioned 

mismatch reduction criterion. In particular, we use two block patterns to encode each 

of the two 3-bit secret values 011B2 B and 010B2 B, and finally, the last two patterns to 

encode the secret values 100B2 B and 101 B2 B, respectively. The six patterns are denoted as 

C1 through C4 and D1 and D2 in Table 3.1. 

B. Sketch of proposed idea of data hiding 

In the proposed data embedding process, the more data we embed in a 2×2 block, 

the worse the resulting image quality becomes. Therefore, we must control the 

number of destructed pixels in a block to reduce the resulting image distortion. The 

idea of the proposed data embedding process is sketched as four major steps in the 

following, which includes two folds of distortion minimization. 

(1) Dividing the input image into blocks: We divide the input image into 2×2 blocks 

with every two neighboring blocks being separated by a 1-pixel-wide line, as 

shown in Figure 3.2. The 1-pixel-wide band around each 2×2 block is said to be 

the neighborhood of the block. 

(2) Selecting a random list of embeddable blocks for data embedding: We then use a 

secret key K as well as a random number generator f to select randomly a 

sequential list of embeddable blocks. A block B is said to be embeddable in this 

study if the following two conditions are satisfied: (a) the neighborhood of B is 

not entirely black or white, (b) B has not been selected for data embedding yet. 

The way we adopt to generate the random list of embeddable blocks is as follows: 

(a) concatenate all blocks obtained in Step (1) above in sequence; (b) use K and f 

to generate sequentially a random number f(K), divide it by the total number of 

blocks, and take the remainder as a block number, denoted by N; (c) check block 

N to see if it is an embeddable block; if not, then perform the same process until 
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an embeddable block is obtained; (d) append the obtained embeddable block to 

the end of the desired random list; (e) stop the process when a sufficient number 

of embeddable blocks for data embedding are obtained. 

(3) Using multiple block pattern encoding tables for the first-fold distortion reduction: 

We generate all possible block pattern encoding tables and select an optimal one 

for use in the data embedding process, in the sense of introducing the least 

distortion. 

(4) Applying optimal search techniques for the second-fold distortion reduction: 

Finally we apply the dynamic programming technique to segment the input 

message data stream optimally into a series of codes and embed them in the input 

image, according to a cost function designed in advance for measuring the degree 

of the pattern change in each image block. This reduces the resulting distortion 

further in a global sense. 

 

 

Figure 3.2. Division of input image into 2×2 blocks with separating linesP

 
P(grids with 

bold boundaries are 2×2 blocks for data embedding). 

C. Use of Multiple Block Pattern Encoding Tables 

The first distortion-reduction technique using multiple block pattern encoding 
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tables, as mentioned previously in the third major step of the proposed data; 

embedding process, is based on the idea that a single encoding table will not be 

suitable for every binary image in the embedding process. If a binary image is 

destroyed very seriously in the data embedding process using Table 3.1, it will be 

necessary to use another table with other combinations of block patterns and encoded 

hidden data. For example, assume that a binary secret value v = 101B2 B is to be 

embedded into a sequence of three randomly selected image blockswith patterns 

0000,0100, and 1111 by Table 3.1. The data embedding process using Table 3.1, as 

illustrated in Figure 3.3(a), will select optimally the block pattern type D2 = 1001, 

which encodes the three-bit secret value v = 101B2 B, to replace the first selected block 

with pattern 0000, resulting in reversing two bits. However, if we replace the encoded 

secret data of type A in Table 3.1 with those of type F, and replace those of all of 

types B1 through B4 with those of all of types E1 through E4, respectively, then we 

will get a new block pattern encoding table and the use of it to hide the secret value v 

= 101B2 B will result in no bit reversing because here we can, as illustrated in Figure 

3.3(b), select in sequence optimally the new pattern type F = 0000 (encoding the 

secret data of 1B2 B) and the new pattern type E3 = 0100 (encoding the secret data of 01B2B) 

to encode together the secret data v = 101B2 B. This means that adaptive table generations 

and selections for use in data embedding help distortion reduction indeed. More 

generally, by enumerating all possible ways for exchanging the encoded secret data of 

certain types in Table 3.1 with those of the other types, we can get 128 distinct block 

pattern encoding tables for selection in the data embedding process to minimize the 

distortion. 
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D. Proposed Distortion-Minimizing Cost Function and Search Techniques for 

Optimal Solutions 

The cost function proposed in this study for use in the proposed data embedding 

process to minimize image distortion is the total number of reversed bits in the 

resulting stego-image. In Table 3.1, block patterns can be used to encode one, two, or 

three secret bits. Correspondingly, we hide a binary secret value v by embedding the 

first one, two, or three bits in the prefix of v into a block. 

 

Figure 3.3. An example of proposed data embedding process 
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To determine how many bits should be embedded, we may calculate first the cost 

function value for each of the three cases, and then replace the currently selected 

block with the block pattern which corresponds to the case with the minimum cost 

function value. This method provides a quick way for data embedding. However, it is 

actually a greedy search and not an optimal solution. 

To see this, for example, for the previously-mentioned example in which the 

secret value v of 101B2B is embedded in three selected blocks with patterns 0000, 0100, 

and 1111 by Table 3.1, by the above-mentioned greedy algorithm we first replace the 

block with pattern 0000 by the block pattern E3 = 0100 to embed two bits 10. The 

computed cost function value is 1 because a bit is reversed here. This cost is a local 

minimal one. Next, we replace the block with pattern 0100 by the block pattern A= 

1111 to embed the last bit 1of v, and get a local minimal cost value 3. The total cost 

value is 4. Now, if we do not use the greedy algorithm from the beginning, and 

replace instead the first block with pattern 0000 by the block pattern D2 = 1001 to 

embed three bits 101 directly, then the total cost value will be reduced to 2 which is 

smaller than the previous total cost 4. This shows that there indeed exist at least one 

solution better than that found by the greedy method. Figure 3.4 illustrates the data 

embedding process for this example. This is also true for many other examples, as 

found by this study. And so the search of an optimal solution is meaningful, for which 

the proposed method is dynamic programming. 

In the proposed dynamic programming algorithm (abbreviated as DP in the 

sequel), certain edit distances are defined to minimize the cost function, as described 

in the following. Assume that the input secret data value to be hidden is in the form of 

an n-bit string S B1B with SB1B[i] denoting its ith bit. Also, let the randomly selected blocks 

for embedding the secret value be expressed as a list in the form of another string SB2 B 

with S B2 B[i] denoting its ith block. Only one type of edit operation, namely, replacement, 
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is needed for use in the proposed algorithm to represent the image block replacement 

operations involving SB1B and SB2 B in the proposed secret data embedding process. The 

edit distance of SB1 B and S B2B is defined, according to the previous discussions, as the 

minimum cost to transform SB2 B into SB1 B by edit operations according to an optimal block 

pattern encoding table used in the data embedding process. Let C be a 

two-dimensional cost matrix with its element C[i, j] denoting the minimum cost to 

transform a substring of SB2B with bits SB2 B[j] through S B2B[n]B Binto a substring of SB1 B with bits 

S B1 B[i] through SB1 B[n]. Then C[1, 1] is the value of the minimum cost to transform SB2 B into 

S B1 B. Also, let RC be a three-dimensional replacement cost matrix with its element RC(L, 

i, j) denoting the cost for replacing the (j+1)th block in SB2 B, denoted by SB2 B[j], with the 

block patterns encoding the initial L bits of a substring of SB1 B with bits S B1 B[i] through 

S B1 B[n−1], where L may be 1, 2, or 3. By the above definitions, the value C[i, j] is 

recursively just the value of the minimum of all possible values of RC(L, i, j)+C[i+L, 

j+1], where L = 0, 1, and 3. And because of this, the size of C must be expanded to 

n+2 × n. Furthermore, those elements of C with indices larger than n−1 should be 

given certain values (0 or ∞) to specify their correspondences to “boundary 

conditions”. Then, according to the dynamic programming technique, the minimum 

edit distance may be computed by the following recursive formulas: 

set initial values 

C[n, j] = 0,   j = 0, 1, 2,…n,  

C[n+1, j] = 0,   j = 0, 1, 2,…n, 

C[n+2, j] = 0,   j = 0, 1, 2,…n, 

C[i, n] = ∞,   i = 0, 1, 2,…n−1, 
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C[i, j] = ∞,   i, j = 0, 1, 2,…n−1; 

and then for all i = 0, 1, …n−1, j = 0, 1,…n−1, compute 

C[i, j] = min{RC(1, i, j)+C[i+1, j+1], RC(2, i, j)+C[i+2, j+1], RC(3, i, j)+C[i+3, 

j+1]}. 

 

Message value v = "101"

Selected block list 

Replacing blocks 
(by greedy search) 

Hidden bit(s) 10 1

Cost 1 3 (total cost = 4) 

Replacing block 
 (by optimum search)

Hidden bits 101

Cost 2 (total cost = 2) 

1 2 3

Figure 3.4. An example of proposed data embedding process. 

 

Algorithm 3.1 Computing minimum cost for minimizing distortion in data 

embedding process by DP. 

Input: an n-bit secret code string SB1B, a string of n randomly selected blocks SB2 B, a block 

pattern encoding table, a two-dimensional cost matrix C[i, j], for i = 0, 1, …, 

n+2, j = 0, 1, …, n with the initial values specified in the above recursive 
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formulas, a two-dimensional index matrix I[i, j], for i = 0, 1, … n−1, j = 0, 

1, … n–1, for recording the relative indices in the block pattern encoding table 

after calculating C[i, j], and a two-dimensional matrix N[i, j], for i = 0, 1, … 

n-1, j = 0, 1, … n–1, for recording the relative next step after calculating C[i, j] 

with each element given an initial value of minus one. 

Output: C[i, j], the minimum cost to change the substring SB2B[j] through SB2B[n] into 

S B1 B[i … n], I[i, j], and N[i, j]. 

Steps: 

1. If C[i, j] is equal to an infinitive value ∞, continue the next step; else go to Step 4. 

2. Calculate three temporary cost functions T[1], T[2], and T[3], record every next 

step and the corresponding value as the indices index1, index2, and index3 of the 

block pattern encoding table which is used in calculating the minimal cost in RC(1, 

i, j), RC(2, i, j), and RC(3, i, j), respectively, in the following way:  

2.1 T[1] = RC(1, i, j) + C(i+1, j+1), next_step[1] = i+1, and acquire index1. 

2.2 T[2] = RC(2, i, j) + C(i+2, j+1), next_step[2] = i+2, and acquire index2. 

2.3 T[3] = RC(3, i, j) + C(i+3, j+1), next_step[3] = i+3. and acquire index3. 

3. Take C(i, j) to be the minimum of the three temporary cost functions, record the 

corresponding relative next step in N[i, j], and record the relative index in the 

block pattern encoding table in I[i, j] 

4. Return C[i, j]. 

 

Because every next step and the used indices of the block pattern encoding table 

have been recorded, we can reconstruct the embedding process easily. The space 

complexity and time complexity are both O(nP

2
P) for the DP. Now, the proposed data 

embedding process is described in detail as an algorithm in the following. Figure 3.5 

illustrates a flowchart of the data embedding process. 
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Figure 3.5 Flowchart of the proposed data embedding process. 

 

Algorithm 3.2 Data embedding process using block pattern encoding tables and 

DP. 

Input: a binary image I, a secret data string SB1 B with n bits, a secret key K as well as a 

random number generator f, and 128 block pattern encoding tables. 

Output: a stego-image S, an optimal block pattern encoding table B, a length of block 
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list L, and a minimal total cost CBmin B. 

Steps: 

1. Get a list of embeddable 2×2 blocks from the input image I in a way as described 

previously. 

2. Set the value of the desired minimal total cost CBmin B to be infinitive. 

3. For each block pattern encoding table BBi B among the 128 possible ones, perform the 

following operations. 

3.0 Calculate a total cost CBi B using BBi B and the DP. 

3.1 If CBmin B is larger than CBi B, perform the following operations. 

a. Take CBi B as the minimal total cost CBmin B. 

b. Set the optimal block pattern encoding table B as BBi B. 

c. Sequentially, record every index obtained from Step 3.1 according to the 

next-step matrix N and index matrix I, until an element of N is equal to 

−1. Meanwhile, calculate L, the length of the block list. 

4. Replace the minimal-cost block list with the selected block list of binary image I 

by the recorded index sequence of block pattern encoding table B and the length 

of the block list L. 

5. Take the final result as the desired stego-image S. 

 

E. Data recovery process 

The goal of the proposed data recovery process is to extract the embedded bit 

stream from a stego-image. In the proposed data extraction process, Table 3.1 is first 

simplified as an extraction table as shown in Table 3.2. It is easier to use this table to 

finish the extraction process, as follows. Figure 3.6 illustrates a flowchart of the data 

recovery process. 
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Algorithm3.3 Secret data recovery process. 

Input: a stego-image I’ presumably including a secret bit stream S; and the secret key 

K as well as the random number generator f used in the data embedding 

process; the index table B that points outs which table is used in the 

embedding process, and the length of the block list L. 

Output: the secret bit stream S or a report of failure to recover the secret. 

Steps: 

1. Extract a list of 2×2 embeddable blocks from the stego-image I’ by the secret 

key K , the random number generator f, and the length L. 

2. For each 2×2 embeddable block in I’, compute the corresponding block 

pattern P, and look P up in the table B to decode the data bits embedded in 

the block. 

3. Take all the extracted data bits in sequence as the desired secret bit stream S. 

 

Table 3.2 An extraction table (table index B=0). 

Corresponding 
binary value of 
block pattern 

Encoded secret data

1111 1 
1110 00 
1101 00 
1100 010 
1011 01 
1010 010 
1001 101 
1000 10  

Corresponding 
binary value of 
block pattern 

Encoded secret 
data 

0111 01 
0110 100 
0101 011 
0100 10 
0011 011 
0010 11 
0001 11 
0000 0  
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3.3 Experimental Results 

Some experimental results of applying the proposed method are shown in 

Figures 3.7, 3.8, and 3.9. Figures 3.7(a), 3.8(a) and 3.9(a) show three binary cover 

images of the sizes 687×534, 512×512, and 2320×3408, respectively. Two streams of 

message data were generated by a random fashion. One is a stream of 2432 bits, 

which was embedded into each of the binary images shown in Figures 3.7(a), and 

3.9(a). The other is 992-bit long, which was embedded into the binary image shown in 

Figure 3.8(a). The stego-images obtained by embedding the message data using the 

greedy search algorithm and the optimal encoding table among the 128 ones are 

shown in Figures 3.7(b), 3.8(b) and 3.9(b), respectively. And the stego-images after 

embedding the message using the DPA and the optimal encoding table among the 128 

ones are shown in Figures 3.7(c), 3.8(c) and 3.9(c), respectively. Figure 3.8(d) shows 

the difference between Figures 3.8(a) and 3.8(c) in terms of white pixels. And Figure 

3.9(d) show similarly enlarged version of parts of the differences between Figures 

3.9(a) and 3.9(c), for better inspection effects. 

Note that the original input images are included in Figures 3.7(d), 3.8(d) and 

3.9(d) in gray values as the backgrounds to show more clearly the difference spots. 

Tables 3.3 shows the statistical data of the stego-images of Figures 3.7(a), 3.8(a), and 

3.9(a) for the proposed algorithms, in which we list the numbers of the selected table 

index, the used blocks, the minimum cost values and the length of secret data. The 

minimum cost values show that the DP is the best, the greedy algorithm using an 

optimal encoding table among the 128 possible ones is the next, and the greedy 

algorithm using just an encoding table is the worst. For other images, similar results 

can be observed. For the images shown here, the average number of secret data 

embedded in a block, using the DP algorithm, is about 1.7 bits. And the distortion rate 

computed as the ratio of the number of reversed bits to the length of the secret data, 
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using the DP algorithm, is about in the range from 0.37 to 0.39, which is smaller than 

0.5 yielded by most existing data hiding methods for binary images. 

 

 

Figure 3.6 Flowchart of the proposed extraction process. 

 

Furthermore, we tested 17 images that are obtained from an image database of 

the USC, and the results are listed in Table 3.4. As shown there, the average number 

of message data embedded in a block, using the DPA, is about 1.9388 bits. And the 

average distortion rate using the DPA is 35.53%, which is smaller than 50% yielded 

by most existing data hiding methods for binary images. 
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(a) 

 

(b) 

Figure 3.7 Input binary images, output stego-images with secret data, and the 
differences. (a) Binary image “NCTU”. (b) Stego-images after embedding 
secret data using greedy algorithm. (c) Stego-images after embedding secret 
data using DP algorithm. (d) The difference image after embedding secret data. 
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(c) 

 

(d) 

Figure 3.7 Input binary images, output stego-images with secret data, and the 
differences. (a) Binary image “NCTU”. (b) Stego-images after embedding 
secret data using greedy algorithm. (c) Stego-images after embedding secret 
data using DP algorithm. (d) The difference image after embedding secret data 
(continued). 
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(a) 

 

(b) 
Figure 3.8 Input binary images, stego-images with secret data, and differences. (a) 

Binary image “Lena”. (b) Stego-images after embedding secret data using 
greedy algorithm. (c) Stego-images after embedding secret data using DP 
algorithm. (d) Difference image after embedding secret data. 
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(c) 

 

(d) 
Figure 3.8 Input binary images, stego-images with secret data, and differences. (a) 

Binary image “Lena”. (b) Stego-images after embedding secret data using 
greedy algorithm. (c) Stego-images after embedding secret data using DP 
algorithm. (d) Difference image after embedding secret data (continued). 
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(a) 

Figure 3.9 Input binary images, output stego-images with secret data, and the 
differences. (a) Binary image “Patent”. (b) Stego-images after embedding 
secret data using greedy algorithm. (c) Stego-images after embedding secret 
data using DP algorithm. (d) An enlarged part of difference image between 
(a) and (c) in which the white spots are difference pixels. 
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(b) 

Figure 3.9 Input binary images, output stego-images with secret data, and the 
differences. (a) Binary image “Patent”. (b) Stego-images after embedding 
secret data using greedy algorithm. (c) Stego-images after embedding secret 
data using DP algorithm. (d) An enlarged part of difference image between 
(a) and (c) in which the white spots are difference pixels (continued). 
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(c) 

Figure 3.9 Input binary images, output stego-images with secret data, and the 
differences. (a) Binary image “Patent”. (b) Stego-images after embedding 
secret data using greedy algorithm. (c) Stego-images after embedding secret 
data using DP algorithm. (d) An enlarged part of difference image between 
(a) and (c) in which the white spots are difference pixels (continued). 
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(d) 

Figure 3.9 Input binary images, output stego-images with secret data, and the 
differences. (a) Binary image “Patent”. (b) Stego-images after embedding 
secret data using greedy algorithm. (c) Stego-images after embedding secret 
data using DP algorithm. (d) An enlarged part of difference image between 
(a) and (c) in which the white spots are difference pixels (continued). 

 

3.4 Concluding Remarks 

A novel optimal method for hiding secret data into binary images with a 

distortion minimization effect and a larger data embedding capability has been 

proposed. An optimal block pattern encoding table is chosen from 128 alternative 

ones for use in the proposed data embedding process to minimize distortion in the 

stego-image. The method can minimize further the distortion using the dynamic 

programming technique and can embed up to three bits in a 2×2 image block. 

Therefore, by our method, not only more data can be embedded in a binary image, but 

also the distortion rate of the stego-image can be effectively reduced. 

The proposed method is based on the use of 2×2 blocks in data embedding 

process. It may be extended by processing larger-sized blocks, because when the 

block size is larger, the number of the block patterns which can be selected to encode 

a certain secret value becomes larger as well, resulting possibly in a greater reduction 
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of image distortion. 

 

Table 3.3 Statistics of three stego-images for proposed algorithms. 

stego-image Algorithm 
Table 
index

Used 
blocks

Cost 
value 

Length of 
secret data

Greedy Algorithm 
(using just a fixed encoding 

table) 
0 1528 1153 

Greedy Algorithm 
(using the optimal one among 

128 encoding tables) 
16 1526 1115 

NCTU 

DP 26 1418 954 

2432 

Greedy Algorithm 
(using just a fixed encoding 

table) 
0 621 431 

Greedy Algorithm 
(using the optimal one among 

128 encoding tables) 
30 637 401 

Lena 

DP 41 582 369 

992 

Greedy Algorithm 
(using just a fixed encoding 

table) 
0 1439 1037 

Greedy Algorithm 
(using the optimal one among 

128 encoding tables) 
70 1530 1007 

Patent 

DP 24 1433 924 

2432 

 

Other future works may be directed to designing a better cost function for the 

human visual system, constraining certain conditions for the cost function to find a 

better image quality, and finding a better encoding table for replacing selected blocks 

to reduce stego-image distortion further. 
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Table 3.4 Statistics of 19 stego-images processed by proposed DPA. 

Image No. 

of USC 

Table 

number 

No. of used 

blocks 
Cost value 

Message 

data length 

Distortion 

rate 

Embedding 

density 

4.2.03 22 482 369 992 0.37 2.06 

4.2.06 66 516 351 992 0.35 1.92 

5.2.08 57 500 356 992 0.36 1.98 

5.2.09 41 527 352 992 0.35 1.88 

5.2.10 6 523 336 992 0.34 1.90 

7.1.01 24 508 361 992 0.36 1.95 

7.1.03 70 521 346 992 0.35 1.90 

7.1.04 70 507 362 992 0.36 1.96 

7.1.05 6 530 343 992 0.35 1.87 

7.1.06 8 525 349 992 0.35 1.89 

7.1.07 18 533 345 992 0.35 1.86 

7.1.08 66 508 353 992 0.36 1.95 

7.1.09 57 507 353 992 0.36 1.96 

7.1.10 18 514 352 992 0.35 1.93 

boat.512 57 507 360 992 0.36 1.96 

elain.512 6 499 358 992 0.36 1.99 

house  6 495 355 992 0.36 2.00 

average     0.3553 1.9388 
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Chapter 4                          

Data Hiding in Grayscale Images by 

Dynamic Programming Based on A Human 

Visual Model 

4.1 Idea of Proposed Method 

Eight bits represent a pixel’s intensity in a grayscale image. The bit plane formed 

by the same bit of each pixel in the grayscale image is a binary image. Figure 4.1 

shows the eight bit planes of each of three given 128×128 grayscale images. The 

image of each bit plane is zoomed out for comparison. It is observed that the LSB 

plane bpB0 B is almost fully randomized. If the message is embedded in bpB0 B, the result 

will appear almost unaltered to human eyes. On the contrary, random noise areas are 

less in a more significant bit plane. The most-significant-bit plane bp B7B contains almost 

no noise, and data cannot be embedded easily in it without causing significant visual 

changes. We may embed message data into bit planes in the order of bpB0B, bpB1 B, …, bpB7B. 

This scheme is termed horizontal data hiding, to be contrastive with traditional 

vertical data hiding methods which embed data into the bits bB7 B, bB6 B, …, b B0 B of each 

pixel in the order of bB0 B through bB7 B, where bB0 B is the LSB of the pixel. Compared with 

the vertical data hiding method, horizontal data hiding can reduce more distortion in 

the stego-image, as revealed in the results of this study. 

On the other hand, embedding data directly in bit planes will cause visible 

damages to the edges in the bit planes. To overcome this difficulty, in this study we 

design a new cost function which considers certain perception characteristics of the 

HVS, and adopt a method proposed in Lee and Tsai [25] for data embedding. Each bit 
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plane is regarded to have a different weight in its capability for data hiding, and the 

new cost function is designed accordingly to measure the degree of distortion 

resulting from pixel value changes. The details are discussed in the following. 

 

    

    

    

Figure 4.1 Three grayscale images and their 8 corresponding bit planes (from left to 
right, original images, bpB0 B, bpB1B, bpB2 B, …, and bpB7B, respectively). 

 

In the following sections, the proposed cost function for distortion measurement 

is given first in Section 4.2. The proposed horizontal data hiding and recovery 

processes are described in Section 4.3 and Section 4.4, respectively. The experimental 

results are shown in Section 4.5, followed by concluding remarks in Section 4.6. 

4.2 Cost Function for Distortion Measurement 

Since stego-images are viewed by human vision, the characteristics of the HVS 

must be exploited in designing a data embedding process. Two of such characteristics 

are useful here. First, human perception is more sensitive to grayscale changes in 

smooth areas than in texture areas in a grayscale image. Second, human perception is 

sensitive to relative luminance rather than absolute one. Designing the cost function 

for distortion measurement for data embedding must take these two characteristics 

into consideration, as elaborated in the following. 
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A.  Computing Number of Data-Embeddable Bits with Consideration of 

Neighborhood Grayscale Value Change 

For the first consideration, assume that a pixel P with grayscale value g is to be 

used to embed message data. Let MAX denote the maximum grayscale value, and 

MIN the minimum, in the 3×3 block with P as the center, which we call the 

neighborhood of P. Then, the maximum between-pixel grayscale range in this block 

is Δ = MAX − MIN. According to the previous discussions, to avoid a significant 

change of the smoothness degree with respect to the neighborhood of P, the new 

grayscale value g′ resulting from the data embedding is restricted in this study to 

remain in the range of g ± Δ/2. Then, we define a maximum number D of 

data-embeddable bits at P as 

D = ⎣logB2B(Δ/2)⎦ = ⎣(logB2 BΔ − 1⎦ = ⎣logB2 B(MAX − MIN) − 1⎦. (1) 

B.  Computing Number of Data-Embeddable Bits with Consideration of Pixel’s 

Luminance Change 

For the second consideration mentioned above, let f denote the luminance of a 

pixel P with grayscale value g where 1 ≤ f ≤ 100. According to the Fechner law [26], 

the relative luminance property perceived by the HVS may be expressed as a contrast 

value c computed by 

c = 50×logB10Bf 

where 0 ≤ c ≤ 100. Moreover, according to the Weber law [26], the maximum 

allowable change Δc of the contrast value c according to the principle of “just 

noticeable difference (JND)” about the pixel’s luminance change is about 2. That is, if 

the luminance of a pixel is changed too much so that Δc is larger than 2, the change 
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will be noticeable to the HVS. Accordingly, we can compute in another way a 

maximum number of data-embeddable bits in the 8 bits of a pixel’s grayscale value, 

as described next. 

First, we want to compute the maximum luminance change (Δf) BmaxB in accordance 

with the maximum allowable contrast change (Δc) BmaxB = 2. With c being the contrast of 

pixel P, let cBmaxB denote the maximum possible contrast value. Then, we have 

2 = (Δc)BmaxB = c BmaxB − c = 50×logB10Bf BmaxB − 50×logB10Bf = 50×logB10B

maxf
f

, 

which can be reduced to be 

maxf
f

 = 10P

(2/50)
P = 10 P

0.04
P. 

So, the maximum allowable luminance change can be expressed as 

(Δf)BmaxB = f BmaxB − f = ( maxf
f

 − 1) × f = (10P

0.04
P − 1) × f ≈ 0.0965 × f. 

And so we may impose the following constraint to the value of f: 

(Δf)Bmax B/ f ≤ 0.0965. (2) 

On the other hand, in a monochrome image the luminance f in the range of [1 

100] is represented by the grayscale value g in the range [0 255], such that g may be 

computed by the mapping g = (f − 1) × (255/99) ≈ 2.576(f − 1), or equivalently, the 

mapping f ≈ 0.3882g + 1, which specifies a linear relation between f and g. Hence, 

from Constraint (2), we can, after some derivations, get the following new constraint 

for grayscale changes according to the principle of JND: 

0.0965 ≥ (Δf) Bmax B/ f = (Δg)Bmax B/(g + 2.576) (3) 

where (Δg)BmaxB, corresponding to (Δf) BmaxB, denotes the maximum grayscale change in 
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the pixel’s neighborhood. That is, if the above constraint (3) is set for data embedding, 

the changes of grayscales in the stego-image will not be detectable by human eyes 

according to the principle of JND. 

Now, we discuss how many bits can be utilized for data embedding for each 

possible grayscale value g. If 5 bits of the pixel’s grayscale are used for embedding 

message data, the maximum grayscale change at the pixel will be (Δg)BmaxB = 2P

5 
P− 1 = 

31. And according to Constraint (3), g must be larger than 319, which, however, is out 

of the grayscale range [0, 255]. This means that embedding 5 or more bits of message 

data into a pixel is impractical according to the principle of JND. As a result, bpB4 B, bp B5 B, 

bp B6 B, and bpB7 B are not used for data embedding in this study. If 4 LSBs of g are changed, 

then (Δg)BmaxB = 2P

4 
P− 1 = 15, and by Constraint (3) we get g >153. That is, when the 

constraint g > 153 is satisfied, we can embed data into the 4 LSBs of g without 

causing a noticeable luminance change according to the principle of JND. 

However, the binary value of 153 is 10011001B2 B. After the 4 LSBs of g are 

changed, the new value of g might become a value in the range of 10010000B2 B through 

10011000 B2B, which is smaller than 153, causing a violation of Constraint (3). Therefore, 

we must change the above constraint g > 153 to be g > 160 where 160 = 10100000B2 B 

such that after any 4-bit data are embedded into the 4 LSBs of g, the resulting new 

value g' of g will always be larger than 160, thus satisfying Constraint (3). In other 

words, to meet Constraint (3), only when a given pixel’s grayscale g satisfies g ≥ 160 

can the 4 LSBs of g be replaced by 4-bit message data. And in short, 4 bits are the 

upper limit to be embedded in a pixel’s grayscale according to the principle of JND. 

Similarly, if 3 bits are changed, then (Δg) BmaxB = 2P

3
P − 1 = 7, and by Constraint (3) 

as well as a similar reasoning process, the constraint g ≥ 72 should be satisfied, where 

72 = 01001000B2 B. If 2 bits are changed, the constraint g ≥ 32 is required, where 32 = 

00100000B2 B. Finally, if 1 bit is changed, g ≥ 10 is necessary, where 10 = 00001010B2 B. In 
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summary, we embed an appropriate number B of message bits in a pixel’s grayscale g 

according to the following rule to satisfy the principle of JND: 

if g ≥ 160, then B = 4; 

if g ≥ 72, then B = 3; 

if g ≥ 32, then B = 2; 

if g ≥ 10, then B = 1; 

otherwise, B = 0. (4) 

C.  Combining Results of Two Considerations 

To combine the results of the above two considerations, it is not difficult to 

figure out that the maximum number of data-embeddable bits at a pixel should be 

taken to be E = min(D, B) where D and B are as specified in (1) and (4), respectively. 

Let the grayscale value g of a pixel P in binary form be denoted as g = (g B7B gB6 B gB5 B 

g B4 B gB3 B gB2 B gB1B gB0 B)B2 B, and the replacement cost of gBi B in the i-th bit plane be denoted as CBi B 

where 0 ≤ i ≤ 3. According to the previous discussions, CBi B is defined in this study as: 

if i ≤ (E − 1), then CBi B = 8/2 P

(Ε−1)−i
P; otherwise, CBi B = ∞. 

The above definition of cost function gives more penalties to replacements of more 

significant bits. In more detail, we have the following results: 

if E = 4, then CB0 B = 1, CB1 B = 2, CB2 B = 4, CB3 B = 8, and CB4 B through CB7 B = ∞; 

if E = 3, then CB0 B = 2, CB1 B = 4, CB2 B = 8, and CB3 B through CB7 B = ∞; 

if E = 2, then CB0 B = 4, CB1 B = 8, and CB2 B through CB7 B = ∞; 

if E =1, then CB0 B = 8, and CB1 B through CB7 B = ∞; 

if E = 0, then CB0 B through CB7 B = ∞. 
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4.3 Proposed Horizontal Data Hiding Process 

The proposed method is implemented as an algorithm which can be divided into 

two stages: (1) embedding of some control data, followed by (2) embedding of 

message data. The control data include the necessary information for use in the data 

recovery process. All data are embedded in the bit planes by the block pattern 

encoding method. As mentioned previously, each of the bit planes bpB0B through bpB3 B can 

be viewed as a binary image and they together can be regarded as concatenated into a 

sequence for data embedding. In this section, the idea to deal with the binary image is 

presented first, followed by the proposed process. 

A.  Block Pattern Encoding for Data Embedding 

In order to embed a message into a binary image, every 2×2 image block is 

regarded as a pattern with a 4-bit binary value in which each bit of 0 corresponds to a 

black pixel and each 1 a white one. The proposed data embedding process is based on 

the use of a block pattern encoding table which maps each block pattern into a certain 

code with each code being one, two, or three bits of the message data to be hidden. 

And data embedding is accomplished by changing the block bit values so that the 

corresponding code of the resulting block pattern become just some bits of the input 

message data to be embedded. A possible block pattern encoding table designed for 

use in this study is shown in Table 4.1. It is emphasized, by the way, that such a table 

is just one of the many possible tables which may be used for data hiding, and the 

proposed data embedding process will choose from them an optimal one for each 

specific input binary image, as described later. 

Suppose that we want to embed one bit in a 2×2 block. The number of possible 

patterns in a 2×2 block are 16. This number is much larger than the required number 

of 2 to represent the two different message bits ‘0’ and ‘1’ in a block, so we may use 
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more than one block pattern to represent a single message bit (0 or 1), allowing the 

possibility of choosing among the block patterns an optimal one to replace the 

original block in the data embedding process and thus reducing more distortion in the 

resulting block. On the other hand, we wish to embed more data in a block, not just a 

bit as just mentioned; and for this we may use a block pattern to represent more than 

one bit, as is done in this study. In short, we want to achieve both minimum-cost bit 

replacement and maximum-volume data embedding. 

As an illustration, we may use either the block pattern tB1 B = 1011B2B or the pattern tB2 B 

= 0111B2 B to represent the two-bit message value s = 01B2 B. In this way, when we want to 

embed, for example, the message value s = 01B2 B into a block B with value v = 1010B2 B, 

we have the two alternative block patterns tB1B = 1011B2 B and t B2B = 0111B2 B to choose to 

replace v =1010B2 B, instead of the conventional case of just one. And if we choose tB1 B = 

1011 B2B to replace v =1010 B2 B, then less distortion of just a 1-bit error (occurring at the 

LSB position) will result. Contrastively, if only one block pattern, say, tB2 B = 0111B2 B is 

available, then an error of 3 bits will result, causing more distortion in the resulting 

block. It is such an allowance of multiple choices for block pattern replacement that 

achieves more distortion reduction in the proposed method. By the way, the 

previously-mentioned bit errors are used just for convenience of illustrating the 

advantage of multiple choices of replacing blocks; they in fact should be the 

replacement costs defined previously. 

B.  Data Embedding in Binary Images 

The proposed data embedding process in binary bit-plane images consists of four 

major steps and includes two folds of distortion minimization, as described in the 

following. 

(I) Computing bit costs for data embedding: We calculate the replacement cost value 
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for each bit in the image according to the cost function defined in Section 4.2. 

(II) Dividing the input image into blocks: We first divide each of the bit planes bpB0 B 

through bpB3 B into non-overlap 2×2 blocks with every two neighboring blocks 

separated by a 1-pixel-wide line of pixels in between, as shown in Figure 4.2. 

And next, we select the first n “embeddable” blocks and concatenate them 

sequentially, where n is the length of the message data string to be embedded. A 

block is said to be embeddable in this study if the replacement cost value of any 

bit of the block is not infinite. 

(III) Using multiple block pattern encoding tables for the first-fold distortion 

reduction: We generate all possible block pattern encoding tables and select an 

optimal one for use in the data embedding process, in the sense of introducing the 

least distortion. The reason is that a single block pattern encoding table will not 

be suitable for every input binary image; if an image is destroyed seriously after 

data embedding using a specific table like Table 4.1, it will be appropriate to use 

another table with other combinations of block patterns to encode the message 

data. Specifically, we exchange the encoded message data of certain types in 

Table 4.1 with those of the other types in the following way: 

exchange the message data “0” with the message data “1”;  

exchange the message data “00” with the message data “01”;  

exchange the message data “10” with the message data “11”; 

exchange the message data “010” with the message data “011”; 

exchange the message data “100” with the message data “101”; 

exchange the message data “00” and “01” with the message data “10” and 

“11,” respectively; 

exchange the message data “010” and “011” with the message data “100” 
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and “101,” respectively. 

By enumerating all possible cases in the above way, we can get the 128 distinct 

tables (numbered from 0 to 127) for selection to minimize the distortion. 

(IV) Applying search techniques for the second-fold distortion reduction: Finally, we 

apply the dynamic programming technique to segment the input message data 

stream optimally into a series of codes and embed them in the input image, 

according to the cost function proposed previously. This reduces the resulting 

distortion further in a global sense. 

 

 

Figure 4.2 Division of input image into 2×2 blocks with separating 
linesP

 
P(grids with bold boundaries are 2×2 blocks for data 

embedding). 

 

C.  Search for Optimal Solutions 

The search cost proposed in this study for use in the adopted search technique is 

the total replacement cost in the resulting stego-image, computed from the summation 

of the replacement costs of all the bit changes in the replaced blocks. In Table 4.1, 

block patterns can be used to encode one, two, or three message bits. Accordingly, 

when we embed a binary message value v, we have the three choices of embedding 

one, two, and three initial bits of v into a block. To determine how many bits should 
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be embedded in a selected block, we may calculate first the cost for each of the three 

cases, and replace the selected block with the block pattern corresponding to the 

minimum cost. This method provides a quick way for data embedding; however, it is 

just a greedy search algorithm and in general does not yield an optimal solution. 

Table 4.1 A block pattern encoding table proposed in this study. 

 

Type 
Block 

pattern 

Corresponding 

binary value  

Encoded 

message 

data 

0 
 

1111 1 

2 
 

1110 00 

4 
 

1101 00 

6 
 

1011 01 

8 
 

0111 01 

10 
 

0011 011 

12 
 

0101 011 

14 
 

1010 010 
 

Type

Block 

pattern
Corresponding 

binary value

Encoded 

message 

data 

1 0000 0 

3 0001 11 

5 0010 11 

7 0100 10 

9 1000 10 

11 0110 100 

13 1001 101 

15 1100 010 
 

 

To see this, for example, suppose that the message value v of 011B2B is to be 

embedded in three selected blocks with patterns BB1 B = 0100, BB2 B = 0100, and BB3 B = 1100 

according to Table 4.1. And as illustrated in Figure 4.3, suppose also that the costs of 

replacing the four bits are computed to be 2, 1, 1, and 2 for BB1 B; to be 1, 4, 4, and 1 for 

BB2 B; and to be 4, 4, 1, and 1 for BB3 B. By the above-mentioned greedy search algorithm, 
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we replace BB1 B = 0100 with the block pattern 0000 of type 1 to embed the initial bit 0 

of v. The replacement cost for this block is 2×0 + 1×1 + 1×0 + 2×0 = 1 because a bit 

(the second bit) is flipped here with its corresponding cost being 1 and the other bits 

in the original block are not changed. This cost is a local minimum. Next, we replace 

BB2 B = 0100 with the block pattern 0001 of type 3 to embed the last two bits 11B2 B of v, 

and the replacement cost is 1×0 + 4×1 + 4×0 + 1×1 = 5. Therefore the total 

replacement cost for embedding v is 1 + 5 = 6. 

Now, if we do not use the greedy search algorithm at the beginning, and replace 

instead BB1 B = 0100 by the block pattern 0101 of type 12 in Table 4.1 to embed the three 

bits 011B2 B of v directly, then the total replacement cost value will be reduced to be 2×0 

+ 1×0 + 1×0 + 2×1 = 2 which is smaller than the previously-computed total 

replacement cost of 6. This shows that there indeed exists at least one solution better 

than that found by the greedy search algorithm. Figure 4.3 illustrates the data 

embedding process for this example. This is also true for many other examples, as 

found by this study. And so the search of an optimal solution is meaningful, for which 

the proposed method is dynamic programming. 

D.  Dynamic Programming for Data Embedding 

In the proposed dynamic programming algorithm (abbreviated as DPA hereafter), 

edit distances are defined for cost minimization in the search. Assume that the input 

message data to be embedded are in the form of an n-bit string SB1 B with SB1 B[i] denoting 

its i-th bit. Also, let n 2×2 embeddable blocks be selected as a list in advance for data 

embedding and expressed as another string S B2B with SB2 B[i] denoting its i-th block. For 

convenience, let SBkB[i～j] denote a substring of SBkB with bits or blocks SBkB[i] through SBkB[j], 

where k =1, 2 and i, j = 1, 2, …, n. 

Only one type of edit operation, namely, replacement, is used in the proposed 
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DPA to specify the image block replacement operations involving SB1 B and S B2 B in the 

proposed data embedding process. The edit distance between SB1 B and SB2 B is defined, 

according to the previous discussions, as the minimum total replacement cost to 

transform SB2 B into SB1 B by editing operations according to a certain block pattern 

encoding table. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 An example of proposed data embedding process. 

 

Let C be an n×n cost matrix with its element C[j, i] denoting the minimum total 

replacement cost to transform a substring SB2 B[j～m] of SB2 B into a substring SB1 B[i～n] of SB1 B, 

where m ≤ n. Then C[1, 1] is the minimum total replacement cost to transform S B2 B[1～

m] into SB1 B[1～n] (i. e., to transform the substring of SB2 B into the entire string of SB1 B), 

where 1 ≤ m ≤ n. Also, let RC be a cost function with each of its element RC(j, i, L) 

Message value v = “011”

Selected block list

Replacing blocks
( by greedy search ) 

Hidden bit( s) 0 11

Cost 1 5 (total replaced cost = 6)

Replacing block 
(by optimum search) 

Hidden bits 011

Cost 2 (total replaced cost = 2)

1 2 3 

2 1
21

Cost function of
corresponding

bit
1 4

14
4 4 

1 1 
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denoting the minimum replacement cost for replacing the j-th block SB2B[j] of SB2 B with 

the block pattern which encodes the initial L  bits of the substring SB1 B[i～n] of S B1 B with 

　 = 1, 2, or 3. We define RC(j, i, L) = ∞ if i + L > n + 1. 

By the above definitions, the value C[j, i] is recursively just the minimum of all 

the possible values of RC(j, i, L) + C[j+1, i+ L], where L = 1, 2 or 3. Also, we define 

C[j, i] = 0 if i > n or j > n. Then, according to dynamic programming, the minimum 

search cost and its corresponding solution may be computed by the following 

algorithm. 

Algorithm 4.1 Computing minimum search cost for minimizing distortion by the 

DPA. 

Input: (1) an n-bit message data string SB1B; (2) a string SB2 B of n selected blocks; (3) a 

block pattern encoding table T; (4) an n×n cost matrix C[j, i], for i, j = 1, 2, …, 

n; (5) an n×n type matrix I with its element I[j, i] used for recording the block 

pattern in T used for replacing SB2 B[j] in calculating C[j, i]; and (6) an n×n 

segmentation matrix N with its element N[j, i] used for recording the number 

of initial bits of SB1 B[i～n] used in calculating C[j, i]. 

Output: C[j, i], I[j, i], and N[j, i] for all i, j = 1, 2, …, n. 

Steps: 

3. Set all C[j, i] initially to be ∞ for all i, j = 1, 2, …, n. 

4. Starting from i = n and j = n, for each pair of (j, i) with i, j = 1, 2, …, n, perform 

the following steps. 

2.1 If C[j, i] is equal to ∞, continue the next step (Step 2.2); else increment i and j 

to calculate the next C[j, i]. 

2.2 Take C[j, i] to be the minimum of the three replacement costs, RC(j, i, 1) + 

C[j+1, i+1], RC(j, i, 2) + C[j+1, i+2], and RC(j, i, 3) + C[j+1, i+3]; and record 

the corresponding number of the processed initial bits (1, 2, or 3) of S B1 B[i～n] 
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in N[j, i], and the corresponding type of the used block pattern of T in I[j, i]. 

 

In the above algorithm, the number of initial bits of S B1 B[i～n] and the used block 

pattern type in each recursive step are recorded in matrices N and I, respectively, 

which are used in the data embedding process, as described in the next algorithm. 

 

Algorithm 4.2 Data embedding using block pattern encoding tables and the DPA. 

Input: (1) a grayscale image G; (2) a secret message data string SB1 B with n bits; (3) a 

control message data string SBc Bwith m bits, including a table number TBoptB 

(specifying the block pattern encoding table used) with seven bits, followed by 

a value LBoptB (specifying the number of selected blocks used) with m − 7 bits; 

and (4) 128 block pattern encoding tables. 

Output: a stego-image G'. 

Steps: 

1. Compute the cost of each bit of G as mentioned previously. 

2. Get a list BBmB of m 2×2 embeddable blocks sequentially from the bit planes bp B0 B 

through bpB3 B of G in order for embedding the m bits of SBcB. Following BBmB, get also 

a list BBnB of n 2×2 embeddable blocks sequentially for the n bits of SB1B. Let BBmB and 

BBn B also include the position information of each selected block. 

3. For each block pattern encoding table T among the input 128 ones, with SB1B, BBn B, 

and T as input, apply Algorithm 4.1 to calculate the cost matrix C[j, i], the type 

matrix I[j, i], and the segmentation matrix N[j, i] for all i, j = 1, 2, …, n. 

4. Find the minimum CBmin B of the 128 values of C[1, 1] computed in the last step, 

and set TBopt B to be the table number of the corresponding block pattern encoding 

table used in computing CBmin B. 

5. Use the block pattern encoding table TBoptB, the type matrix IBmin B, and the 
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segmentation matrix NBmin B corresponding to CBmin B, and the position information of 

each block in BBn, Bto embed the string SB1B into bpB0 B through bpB3 B of G to get an initial 

stego-image GBi B. 

6. Set the value LBoptB to be the number of the blocks used for embedding SB1 B in the 

last step. 

7. Using S BcB (including TBopt B and LBoptB), BBmB, and T= 1 as input, apply Algorithm 4.1 to 

calculate the cost matrix C[j, i], the type matrix I[j, i], and the segmentation 

matrix N[j, i] for all i, j = 1, 2, …, m. 

8. Use the block pattern encoding table Table 4.1, the type matrix I and the 

segmentation matrix N in the last step, and the position information of each 

block in BBm, Bto embed the substring SBcB into bpB0 B through bpB3 B of GBi B to get the final 

stego-image G'. 

Simply speaking, the above algorithm embeds the control message and the secret 

message data sequentially into the first m and n embeddable blocks in Steps 8 and 5, 

respectively. 

4.4 Proposed Data Recovery Process 

The goal of data recovery is to extract the embedded message data from a 

stego-image. Before the proposed data recovery process is started, Table 4.1 is 

simplified in advance as an extraction table as shown in Table 4.2. The other 127 

encoding tables are converted similarly. It is easier to use this type of table to carry 

out the recovery process described in the following. 

Algorithm 4.3 Message data recovery. 

Input: a stego-image G' including a message bit stream S. 

Output: the message bit stream S. 
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Steps: 

1. Calculate the cost of every bit of G' as mentioned previously. 

2. Get m 2×2 embeddable blocks sequentially from bp B0 B through bpB3 B of G' as a list 

LBmB. 

3. For each 2×2 block P of LBmB, compute the binary value v corresponding to the 

block pattern, and decode v by looking v up in the block pattern encoding table 

Table 1 to get the corresponding encoded message data bits as the data recovery 

result of P. 

4. Concatenate the initial m data bits extracted in the last step into a sequence as a 

desired control message data SBcB. 

5. Get the initial 7 data bits of S BcB as TBopt B, and the remaining m − 7 data bits of S BcB as 

LBopt,B which specify respectively (1) the optimal block pattern encoding table TBopt B 

used in data embedding; and (2) the number of 2×2 blocks of G' used in 

embedding SBcB in the bpB0 B through bpB3 B of G'. 

6. Also, get LBopt B 2×2 selected blocks sequentially from bpB0 B through bp B3 B of G' as a 

list L. 

7. For each 2×2 block P of L, compute the binary value v corresponding to the 

block pattern, and decode v by looking v up in the block pattern encoding table 

TBopt B to get the corresponding encoded message data bits as the data recovery 

result of P. 

8. Concatenate all the data bits extracted in the last step into a sequence as the 

desired message bit stream S and exit. 

 

For security consideration, we encrypt further the control message by a secret 

key before the data embedding process, and embed the result into bpB0 B through bpB3 Bat 

bit positions randomly generated with a distinct secret key as well as a random 



 

 66

number generator. The reverse process can be easily performed to get the original 

control message. The same method is also applied to the message data to get a higher 

degree of data protection. 

4.5 Experimental Results 

Figures 4.4 and 4.5 illustrate some experimental results of applying the proposed 

method. The bit streams of message data in Figures 4.4 and 4.5 were generated 

randomly. The stego-image “House” of size 256×256 with a high PSNR value of 

56.88 dB obtained by embedding 16440 bits (about 2KB) message data using the DPA 

and the optimal block pattern encoding table among the 128 ones is shown at the right 

side of Figure 4.4. The cover image is depicted in the left side of Figure 4.4 for 

comparison. The result shows that the proposed method can be applied to embed 

message data in a grayscale image and obtain a good-quality stego-image without 

noticeable artifacts in the smooth regions. 

 

Table 4.2 An extraction table (table number T=0). 

Corresponding 
binary value of 
block pattern 

Encoded message 
data 

1111 1 
1110 00 
1101 00 
1100 010 
1011 01 
1010 010 
1001 101 
1000 10  

Corresponding 
binary value of 
block pattern 

Encoded message 
data 

0111 01 
0110 100 
0101 011 
0100 10 
0011 011 
0010 11 
0001 11 
0000 0  

 

Figure 4.5(b) illustrates three grayscale stego-images “House”, “Lena” and “Jet,” 
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and their 8 corresponding bit planes. For comparison, Figure 4.1 is repeated as Figure 

4.5(a) here. The three stego-images of size 128×128 were obtained by embedding 

1000 bytes of message data using the proposed DPA and the optimal encoding table. 

The PSNR values are 46.90 dB, 49.33dB and 48.80 dB, respectively. Compared with 

the cover images in Figure 4.1 and their 8 corresponding bit planes, it can be seen that 

the stego-images retain most significant textures. 

 

 

(a) 

 

(b) 
Figure 4.4 A cover image “House” with the size of 256×256 and its stego-image with 

16440-bit message data embedded. (a) The cover image. (b) The stego-image. 

 

Table 4.3 summarizes the statistical data of the stego-image “Lena” using the 

DPA and the optimal encoding table, including the message data length, the PSNR 

value, the selected block pattern encoding table, the numbers of used blocks, the 

minimum replacement cost values, and the average of the numbers of embedded bits 
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per block. The message data bit stream in Tables 3 was generated randomly. 

In more detail, the result from Table 4.3 is transformed into Figs. 6. When the 

amount of the embedded data is smaller than 1000B, the PSNR values in Table 4.3 are 

all larger than 49dB. And the differences in the stego-images cannot be noticed by 

human eyes. 

 

    

    

    
(a) 

(b) 
Figure 4.5 Experimental results of three images. (a) The original images and their 

corresponding bit planes (repeated from Figure 4.1). (b) The resulting 
three stego-images and their corresponding bit planes (from left, bpB0B, bp B1 B, 
bp B2 B, …, bpB7B). 

 

Figure 4.6 also reveals that the relation between the PSNR value yielded by the 

proposed method and the embedded data amount is approximately linear. The PSNR 

value of the DPA decreases about 3.3225 dB when the embedded data size increases 

200 bytes. Thus, the proposed DPA method can predict the PSNR value before the 

data embedding process starts according to the message data size. From Table 4.3, the 

PSNR value of the DPA can be estimated by a simple line fitting method to be 
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PSNR = 62.5870 − (m − 1) × 3.3225 (dB), 1 ≤ m ≤ 5, 

where m denotes the size of message data in the unit of 200 bytes for 128×128 

grayscale images. Similar results can be observed for the other images. Moreover, the 

equation of the PSNR value can be extended and used for grayscale images of any 

sizes by applying the proposed DPA. For a grayscale image of size H×W, if the above 

value of m denotes the size of the message data in the unit of (200×H×W)/(128×128) 

bytes, then the resulting PSNR value still can be estimated using the above equation. 

Note that this merit of predictable PSNR values enables a user of the proposed 

method to determine how large a cover image should be selected for a certain given 

amount of message data. 

Furthermore, we may compute a distortion rate for each stego-image. This rate is 

computed in this study as the ratio of the number of bit flippings (changing bit 0 to 1 

or 1 to 0 in data embedding) to the length of the message data. Most existing vertical 

data hiding methods yield distortion rates of about 50% for grayscale images because 

of the characteristic of randomness in bit flippings. In most existing vertical data 

hiding methods, when 200-byte secret message data are embedded into a 128×128 

grayscale image, these data will be divided into pieces of 4 bits and each piece is 

embedded into the bits b B3 B, b B2 B, bB1 B, and bB0 B of a pixel. Then the average grayscale change 

of the pixel, measured in terms of the number of flipped bits, may be computed to be 

1×50% + 2×50% + 4×50% + 8×50% = 7.5. Consequently, the corresponding mean 

square-error value MSE of the stego-image may be computed to be MSE = 

[(200×8)/4]×(7.5×7.5)]/(128×128) where (200×8)/4 is the number pixels required for 

embedding the 200-byte message data, 7.5×7.5 is the square error incurred at each 

pixel, and 128×128 is the image size. Finally, the PSNR value of the stego-image may 

be computed to be 10×log(255P

2
P/MSE) = 46.75 dB. If the secret data is embedded by a 
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horizontal data hiding method without distortion optimization, the corresponding 

average grayscale change of the pixel may be computed to be 1×50% + 1×50% + 

1×50% + 1×50% = 2. And the corresponding MSE of the stego-image may be 

computed to be MSE = [(200×8)/4]×(2×2)]/(128×128). Finally, the corresponding 

PSNR value of the stego-image may be computed to be 10×log(255P

2
P/MSE) = 58.23 

dB, which is larger than that of the vertical method. However, as seen in Table 4.3 the 

PSNR value of our method is an even larger value of 62.48 dB, which means the 

proposed method is superior to the conventional vertical data hiding method in 

distortion reduction. 

The proposed DPA method takes long computation time to obtain the optimal 

solution when the volume of the message data is large. If time is a major concern, 

then the greedy search method mentioned previously may be used. As a comparison, 

we list in Table 4.4 the run times spent by the proposed methods (DPA and greedy 

search) and two others on a PC with a 3.4G Pentium 4 CPU for some grayscale 

images with two typical image sizes and three input message lengths. One of the two 

other methods is the simplest “1-LSB” which embeds message data in the LSB of 

each pixel. The other is “Hide4PGP” whose program was downloaded from the 

website H72HTUhttp://www.heinz-repp.onlinehome.de/Hide4PGP.htmUTH. As can been see from 

the table, the DPA takes about a minute to embed a message of 200 bytes and more 

than 35 minutes to embed 1200-byte data, while all the other three methods takes little 

times to accomplish the works. Therefore, the DPA can only be used for non-real-time 

applications with the need of distortion reduction, though the greedy search method 

may be used as a suboptimal substitute of it. 

We also conduct an additional comparison of image distortion caused by the 

above-mentioned four methods for the same set of images of Table 4.4. The result is 

shown in Table 4.5 from which we see clearly that the proposed DPA method yields 
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the largest PSNR values for all the tested images, indicating its effectiveness for 

reducing image distortion. 

Table 4.3 Statistics of stego-images yielded by DPA using optimal encoding table. 

Stego-image 
Message data 
length (bytes) 

PSNR
(dB) 

Table 
number

No. of used 
blocks 

Cost 
value

Embedded bit 
number per block

200 62.48 8 779 1774 2.054 

400 59.37 57 1636 3243 1.956 

600 55.57 57 2297 5680 2.09 

800 52.96 57 3101 8355 2.064 

1000 49.33 8 3826 11699 2.091 

Lena 

(128×128) 

1200 46.74 57 4295 16248 2.235 

 

Table 4.4 Comparison of run times for four methods for grayscale images (in unit of 
sec.). 

Size Stego- image DPA 
Greedy 
search 

1-LSB Hide4PGP 

Lena256+200B 60 0.079 0.00016 0.0068 

Lena256+1200B 2112 0.437 0.00097 0.0072 

House256+200B 60 0.079 0.00016 0.0068 

House256+1000B 1473 0.366 0.00081 0.0071 

Jet256+200B 59 0.079 0.00016 0.0068 

256×256 

Jet256+1200B 1082 0.439 0.00097 0.0072 
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Figure 4.6 PSNR values of stego-image “Lena” using DPA. 

 

Table 4.5 Comparison of PSNR values of the four methods for grayscale images (in 
unit of dB). 

Size Stego- image DPA 
Greedy 
search 

1-LSB Hide4PGP 

Lena256+200B 68.45 67.51 67.23 67.28 

Lena256+1200B 60.70 59.73 59.49 59.46 

House256+200B 68.64 67.60 67.07 67.29 

House256+1000B 61.53 60.60 60.21 60.21 

Jet256+200B 68.34 67.52 67.15 67.16 

256×256 

Jet256+1200B 60.74 59.72 59.44 59.58 

 

Finally, we applied steganalysis to the four the methods using a software tool 

available at H73HTUhttp://diit.sourceforge.netUTTH, which is an Topen-source implementation of RS 

analysis developed by TFridrich, et al.T [24]. We made a comparison of the analysis 

results shown in Table 4.6. Because the tool was designed for 24-bit color images 

with three color channels, we apply the proposed DPA and the greedy search method 

by embedding the message data evenly into image blocks of the three channels of R, 

G, and B alternatively, with the first block selected from R, the second from G, the 

third from B, the fourth from R again, and so on. For the 1-LSB method, we embed 

PSNR  vs  Embedded data

0

20 

40 

60 

80 

 

1 2 3 4 5 6

PSNR 

Unit: 200 bytes 
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the data similarly except that bits instead of blocks are selected from the three 

channels alternatively. The third column in Table 4.6 specifies the detected message 

length of the cover image. This length value may be regarded as a “bias” of the RS 

detector, which supposedly should be zero because no message is hidden in the cover 

image. The last four columns specify the detected message lengths of the four 

methods, from whose contents we see that the DPA method is more robust against 

steganalysis than the greedy search method, and is not obviously so than the other two 

methods. 

 

Table 4.6 Comparison of RS analysis results of the four methods for color images. 

Size Cover 
image C 

Detected 
message 

length of C 
Stego-image S 

Detected 
message 

length of S 
yielded by 

DPA 

Detected 
message 

length of S 
yielded by 

greedy 
search 

Detected 
message 

length of S 
yielded by 

1-LSB 

Detected 
message 

length of S 
yielded by 
Hide4PGP 

Lena256 379.58B Lena256+200B 458.42B 497.65B 529.13B 510.38B
Lena256 379.58B Lena256+1200B 1174.06B 1378.88B 1737.28B 999.68B

House256 508.05B House256+200B 596.93B 626.86B 561.83B 552.40B
House256 508.05B House256+1000B 1330.27B 1646.94B 1607.94B 1310.35B

Jet256 731.17B Jet256+200B 751.60B 839.44B 819.19B 772.44B

256×
256 

Jet256 731.17B Jet256+1200B 1341.43B 1403.21B 1244.48B 1406.40B

 

4.6 Concluding Remarks 

A data hiding method for hiding message data into grayscale images with 

distortion reduction effects have been proposed. Two novel techniques for reducing 

distortions in resulting stego-images have been adopted, one being an optimal 

dynamic programming algorithm, and the other the use of multiple block pattern 

encoding tables. First, a cost function has been proposed to estimate the weight of 

each bit in each pixel to be replaced according to an HVS model. Next, a horizontal 

data hiding scheme in which message data are embedded in a sequence of bit planes 

has also been proposed to decrease possible distortions in stego-images. Also, an 
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optimal block pattern encoding table is chosen from 128 alternative ones for use in 

data embedding to minimize image distortion. The encoding tables are designed in 

such a way that up to three bits in a 2×2 image block can be embedded. Finally, the 

proposed method minimizes further the distortion using dynamic programming based 

on the proposed cost function. The proposed method can predict the PSNR value of a 

sego-image before the embedding process starts according to the size of the data to be 

embedded. 

The space and time complexities of the proposed dynamic programming 

algorithm are both quadratic. The algorithm costs more time to embed a long secret 

message. But in certain applications there is no need of real-time processing, and 

optimality in data embedding volumes or Tminimization in image distortionT is the main 

concern. In such cases, the proposed method is good to use. On the other hand, if time 

is really concerned, then one can alternatively use the proposed greedy search 

algorithm, that takes only linear computation time and still minimize distortion in the 

stego-image in a suboptimal way. If high-speed processing is necessary, our method 

can be adapted to run on a parallel computer. In particular, each of the 128 block 

pattern encoding tables may be processed separately, and the dynamic programming 

process may be parallelized, too. 

At least two methods may be adopted to make the proposed method more robust. 

First, multiple copies of a secret message may be embedded in the input image 

randomly with control by a key, so that an attack will not entirely destroy the secret 

information. And after the data are extracted by the proposed method, we may apply a 

voting scheme to recover the secret. The second method is to try to place secret data 

in the more significant bits of the cover image, for example, in bpB2 B and bpB3 B in the 

proposed method, assuming that most attacks to BMP images are conducted to the 

LSBs. Because the information encoded in these bit-planes cannot be removed in 
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most applications (otherwise, the image will be seriously distorted or destructed), 

hopefully this method will work in real applications. 

The proposed method processes 2×2 blocks in the data embedding process. It 

may be extended to process larger-sized blocks because when the block size is larger, 

the number of the block patterns which can be selected to encode a certain message 

value becomes larger as well, resulting possibly in greater reduction of image 

distortion. Other future works may be directed to embed multiple message data in a 

grayscale image for protecting the intellectual property right and authenticating 

multimedia data, to define more general cost functions for other HVS models, and to 

design better encoding tables to reduce image distortion further. 
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Chapter 5                          

Data Hiding in Color Images by Color 

Replacements with Reduction of Image 

Distortion and Change Noticeability 

5.1 Idea of Proposed Method 

The basic idea of the proposed method for data hiding in RGB color images is to 

encode certain colors in the color space, and embed given message bits into selected 

scattered image pixels by replacing these pixels’ colors by the encoded colors. And 

extraction of the message is a reverse process, consisting of finding image pixels with 

encoded colors and decoding these colors to get the embedded message bits. 

Appropriate techniques must be devised for the above simple idea of data 

embedding and extraction to be carried out effectively. The concern of reducing image 

content distortion and color change noticeability should be taken into consideration in 

these techniques. Also, the common requirement of data recoverability in data 

extraction need be met.  

The techniques proposed in this study satisfy these aims and are described in the 

following. 

In the remainder of this chapter, the detailed algorithms of the proposed data 

embedding and extraction are given in Section 5.2. In Section 5.3, some experiment 

results and discussions are described, followed by concluding remarks in Section 5.4. 

A. Proposed technique for reduction of color change noticeability 

It is unnecessary to use all of the huge number of colors in the color space for 

data embedding by color replacements. Instead, we partition them into 
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non-overlapping cubic-shaped clusters, called color cubes, and find out those cubes 

better for use in data embedding. More specifically, we find out image pixels with 

their colors “falling” in each color cube, and check the scattering degree of these 

pixels. Presumably, image pixels located more separately in the cover image are more 

suitable for data embedding because the changes of their colors, appearing to be 

farther way from one another, will attract less notice from observers. On the contrary, 

color changes at less scattered pixels tend to create visual artifacts and arouse more 

suspicion. Based on this idea, we propose in this study the following scheme of 

reducing the noticeability caused by image pixels’ color changes. 

1. Partition the RGB color space into color cubes. 

2. Collect the set of pixels in the cover image with their colors “falling” in each 

color cube, called the range set of the color cube. 

3. Define the degree of pixel scattering of each color cube by a certain scatter 

measure of the pixels in the range set of the color cube. 

4. Sort into a list the color cubes with nonempty range sets by their pixel scattering 

degrees, with the color cube with the largest scattering degree on the top of the 

list. 

5. Sort further those color cubes with equal pixel scattering degrees by their range 

set sizes, meaning that color cubes with larger range sets will be used first for 

data embedding. 

6. According to the length of the message to be hidden, select from the top of the 

color cube list a sufficient number of color cubes for use in data embedding. 

7. Use the pixels of the range sets of the selected color cubes as the locations for 

data embedding by color replacements. 



 

 78

Let S = {PB1 B, PB2B, …, PBnB} denote the range set of a color cube C with n pixels. The 

scatter measure mentioned in Step 3 above for C, denoted as M, is defined as the 

mean of the Euclidean distances of all the pixel pairs in P, i.e., is defined as 

,
| |i j

i j
P P

M
n

−
=

∑
 (1) 

where the Euclidean distance |PBi B − PBj B| between any two pixels PBi B and PBj B at image 

coordinates (uBi B, v Bi B) and (uBj B, v Bj B), respectively, is computed as |PBi B − PBj B| = [(u Bi B − u Bj B) P

2
P + (v Bi B − 

v Bj B)P

2
P]P

1/2
P. A larger value of M means higher pixel separateness of S in the cover image. 

As an illustration of the range sets of color cubes, Figure 5.1(a) shows a cover 

image and Figure 5.1(b) is the range set of a color cube found in (a), shown as a 

binary image with each white dot indicating a pixel in the set. The range set may be 

seen to include pixels with some dark green colors. 

 

(a) Cover image. (b) Range set of a color cube. 

Figure 5.1. An illustration of range sets of color cubes. 

 

B. Proposed technique for reduction of image content distortion 
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For convenience of data processing, the number of colors included in each color 

cube is taken to be a power of 2 in this study. If all the colors in a color cube, say with 

2 P

m
P ones, are used for data embedding, each color may be used to represent m message 

bits. The embedding work of an m-bit message segment then is to replace the color of 

an image pixel in the range set of a color cube by the color of the 2P

m
P ones in the color 

cube, which corresponds to the value of the m message bits. 

However, to reduce the image distortion resulting from such color replacements, 

we propose in this study to allow multiple colors, instead of just a single one, to 

represent an identical message segment. For example, if we allow, say, 2P

n
P colors as a 

group to represent a message segment, then whenever an image pixel’s color is to be 

replaced by one in the color cube, there will be 2P

n
P choices, and the one closest to the 

pixel’s color may be taken as the replacing color, thus achieving the purpose of 

reducing image distortion due to the color replacement. 

Consequently, each color cube as discussed above should be expanded to have 

2P

n
P×2P

m
P = 2P

m+n
P colors, instead of just 2P

m
P ones, if embedding of m-bit message segments 

is still desired. And because of the property of having three color channels in an RGB 

image, m+n must be a multiple of 3 for 2P

m+n
P to be the cube of an integer M (i.e., MP

3
P), 

meaning that each color cube has the side length of M. That is, it must be true that m + 

n = 3k for some positive integer k such that 2P

m+n
P = 2P

3k
P = (2 P

k
P) P

3
P = (2 P

k
P) × (2 P

k
P) × (2P

k
P) = M P

3
P 

with M = 2P

k
P. If not, then the color cluster will not form a cube; instead, it becomes a 

rectangular parallelepiped (also called a cuboid), which is less convenient to handle 

due to side asymmetry. 

For example, if we take m = 2 and n = 1, then each color cube has 2P

2+1
P = 8 colors, 

divided into 4 groups with each group including two colors. One of such color cubes 

is shown in Figure 5.2, in which the four color groups are GB1 B = {(0, 0, 0), (1, 1, 1)}, 

GB2 B = {(1, 0, 0), (0, 1, 1)}, GB3 B = {(1, 1, 0), (0, 1, 1)}, GB4 B = {(0, 1, 0), (1, 0, 1)} and the 
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two colors in each group are located diagonally in opposite directions, where each 

color is expressed as a 3-tuple (r, g, b) with r, g, and b being the values of the R, G, 

and B channels, respectively. Such color cubes are too small to be useful. The color 

cube adopted for use in the experiment of this study is taken to include 2 P

m+n
P = 2P

3+3
P = 

64 colors with m = 3 and n = 3, i.e., with 8 groups of 8 colors. Therefore, for 8-bit R, 

G, and B color channels, there are totally (256/4) × (256/4) × (256/4) = 64 P

3
P color 

cubes. 

For convenience of discussions, we define a base color for each color cube as the 

one in the cube with the smallest of the summation of the r, g, and b values. By 

identifying color cubes with three indexes i, j, k for the three dimensions of R, G, and 

B, respectively, it is not difficult to figure out that the base color ( b
ir , b

jg , b
kb ) for the 

(i, j, k)-th color cube for m = 3 and n = 3 may be computed by 

b
ir  = 4i, b

jg  = 4j, b
kb  = 4k, (2) 

where i, j, k = 0, 1, …, 63, and the values of the 64 colors in the cube may be 

computed by 

r = b
ir , b

ir +1, b
ir +2, b

ir +3; 

g = b
jg , b

jg +1, b
jg +2, b

jg +3; 

b = b
kb , b

kb +1, b
kb +2, b

kb +3. (3) 

For example, the (0, 0, 0)-th color cube with base color (0, 0, 0) is shown in 

Table 5.1. Simply adding the base color values ( b
ir , b

jg , b
kb ) respectively to the color 

channel values in the table, we can get the table for the (i, j, k)-th color cube. 

According to the above idea, we propose the following scheme for reduction of 
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image distortion. 

Table 5.1 The colors in the (0, 0, 0)-th color cube with base color (r, g, b) = (0, 0, 0). 

No. Color No. Color No. Color No. Color 
1  (0, 0, 0) 17  (1, 0, 0) 33  (2, 0, 0) 49  (3, 0, 0) 
2  (0, 0, 1) 18  (1, 0, 1) 34  (2, 0, 1) 50  (3, 0, 1) 
3  (0, 0, 2) 19  (1, 0, 2) 35  (2, 0, 2) 51  (3, 0, 2) 
4  (0, 0, 3) 20  (1, 0, 3) 36  (2, 0, 3) 52  (3, 0, 3) 
5  (0, 1, 0) 21  (1, 1, 0) 37  (2, 1, 0) 53  (3, 1, 0) 
6  (0, 1, 1) 22  (1, 1, 1) 38  (2, 1, 1) 54  (3, 1, 1) 
7  (0, 1, 2) 23  (1, 1, 2) 39  (2, 1, 2) 55  (3, 1, 2) 
8  (0, 1, 3) 24  (1, 1, 3) 40  (2, 1, 3) 56  (3, 1, 3) 
9  (0, 2, 0) 25  (1, 2, 0) 41  (2, 2, 0) 57  (3, 2, 0) 
10  (0, 2, 1) 26  (1, 2, 1) 42  (2, 2, 1) 58  (3, 2, 1) 
11  (0, 2, 2) 27  (1, 2, 2) 43  (2, 2, 2) 59  (3, 2, 2) 
12  (0, 2, 3) 28  (1, 2, 3) 44  (2, 2, 3) 60  (3, 2, 3) 
13  (0, 3, 0) 29  (1, 3, 0) 45  (2, 3, 0) 61  (3, 3, 0) 
14  (0, 3, 1) 30  (1, 3, 1) 46  (2, 3, 1) 62  (3, 3, 1) 
15  (0, 3, 2) 31  (1, 3, 2) 47  (2, 3, 2) 63  (3, 3, 2) 
16  (0, 3, 3) 32  (1, 3, 3) 48  (2, 3, 3) 64  (3, 3, 3) 

1. Define each color cube to have 2P

m+n
P colors, divided into 2P

m
P groups with each 

group including 2P

n
P colors, where m + n = 3k for some positive integer k. 

2. Assign the colors in the color cube into groups such that the colors in each group 

are distributed evenly, for the purpose of achieving more effectively the goal of 

reducing image distortion due to color replacements as discussed above. 

3. Encode identically all the 2P

n
P colors in each group into an m-bit message segment, 

i.e., represent the m message bits identically by any color in the group. 

4. When an image pixel P in the range set of a color cube C is to be used for 

embedding an m-bit message segment H, find the group G in C whose colors 

represent the value of H. 

5. Find the color c' in G which is closest to c in the sense of Euclidean color 

distance. 

6. Replace c by c' to complete the data embedding work at pixel P. 

 

In Step 5 above, the Euclidean color distance between the two colors c = (r, g, b) 

and c' = (r', g', b') are defined to be |c − c'| = [(r − r')P

2
P + (g − g')P

2
P + (b − b') P

2
P]P

1/2
P. 
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C. Proposed technique for extraction of embedded data 

A merit of the previously-proposed technique of data hiding (including 

partitioning the color space into non-overlapping color cubes as well as replacing a 

pixel’s color with another one, both in an identical color cube) is the resulting 

assurance of data recoverability in the data extraction stage. There are two reasons 

which guarantee this merit, as described in the following. 

(1) Although some original colors in the cover image have been replaced, each of the 

replacing colors is in the same color cube as that of the replaced one at an image 

pixel. This ensures that if we use the pixels’ colors in the stego-image to find the 

range set of each color cube, as is done in the data extraction process, the result 

will be the same as that found in the data hiding process. This means that the 

pixels where data were hidden will not be missed in the data extraction process. 

(2) Only color cubes with more-scattered range sets are utilized for data embedding, 

R 

B 

G 

cB11B = (0, 0, 0) 

cB12B = (1, 1, 1) 

cB21B = (1, 0, 0) 

cB22B = (0, 1, 1) 

cB31B = (1, 1, 0) 

cB32B = (0, 0, 1) 

cB41 B = (0, 1, 0) 

cB42B = (1, 0, 1) 

Figure 5.2 A color cube with 8 colors divided into four groups with base color (0, 0, 0). 
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and so if we select similarly color cubes with more-scattered range sets in the data 

extraction process, then the same set of color cubes will be found, from whose 

range sets we can extract exactly the previously-embedded message bits. 

The proposed scheme for data extraction is described in the following. 

1. Partition the color space in the same way as done in the data embedding process. 

2. Collect the range set of each color cube from the pixels in the given stego-image. 

3. Compute the scattering degree of the range set of each color cube. 

4. Sort the color cubes into a list in the same way as done in the data embedding 

process described previously. 

5. Select a sufficient number of color cubes from the top of the list according to the 

length of the embedded message. 

6. Follow the color encoding rule used in data embedding to decode as a message 

segment the color of each pixel in the range set of each color cube selected in the 

last step. 

7. Concatenate all the decoded message segments in order into a message as the 

extraction result. 

 

In Step 5 above, to decide how many color cubes should be selected, the length 

of the message (in the unit of bit) should be known in advance. For this, we take the 

message length as part of the data to be hidden and append it to the message data as 

the prefix, in the form of a fixed number of bytes. If the value of the message length, 

expressed as a bit sequence, is shorter than the length of all the bytes allocated for it, 

then we pad sufficient leading 0’s to it to fill up the bytes. In this way, the message 

length will be embedded first as a fixed number of bytes into the image, and in the 

data extraction process it can be extracted first as well from a fixed number of bytes 

hidden in the stego-image, from which the total number of remaining data bits can be 
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decided, and the message bits extracted properly. 

D. Even distribution of cube colors into groups for image distortion reduction 

As mentioned previously, we assign the colors in the color cube into groups such 

that the colors in each group are distributed evenly. Consequently, a color in the group 

closest to an image pixel’s color can be selected for color replacement, in order to 

reduce the resulting image distortion. Here we describe the technique we use for 

achieving such a goal of even distribution of colors in groups. First, it is not difficult 

to see that the desired distributions in the groups should be symmetric to each other. 

To accomplish this, we adopt the following steps, using the first color cube with base 

color (0, 0, 0) as an example for explanation of the detail. For other color cubes, the 

corresponding steps are the same except the base color. Table 2 shows the details of 

the involved computation results in the steps. 

1. Take the 64 color values of the color cube as Euclidean coordinates, and 

compute its centroid, which is (1.5, 1.5, 1.5). 

2. Transform the Euclidean coordinates into new ones through a translation of (1.5, 

1.5, 1.5). 

3. Transform the new Euclidean coordinates (r, g, b) into 3D spherical coordinates 

(ρ, θ, φ) by the following formula: 

ρ = (rP

2
P + gP

2
P + bP

2
P) P

1/2
P,   φ = tanP

-1
P(g/b),   θ =tanP

-1
P[b/(rP

2
P+gP

2
P) P

1/2
P] 

where ρ is the distance from the origin to a point in the Euclidean space, θ is 

the zenith angle with respect to the R-axis, φ is the azimuth angle with respect 

to the B-axis, as shown in Figure 5.3, and the function tan P

-1
P has values in the 

range from −90 P

o
P to +90 P

o
P. 

4. To facilitate the purpose of even distribution of group colors, modify the range 
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of tanP

−1
P such that the computed values of θ lie in the range 0P

o
P ≤ θ < 360P

o
P with 0P

o
P 

indicating the direction of the R-axis. 

5. Use in order the values of ρ, φ, and θ to sort the 64 colors into a list. 

6. Assign the 64 colors of the color cube evenly into the 8 groups using the list 

according to the following criteria to achieve the goal of even distribution of 

group colors: 

(1) each group has an equal number of colors which have a certain value of ρ; 

(2) the colors of each group have as many angles of θ as possible; 

(3) the 8 color groups, when seen as grid points, are symmetric to one another. 

7. Regard all the 8 colors in each color group to be identical, and encode each 

group to represent one of the eight 3-bit segments 000 through 111, as 

mentioned previously. 

 

In Step 6 above, to satisfy Criteria (2) and (3) we normalize the angle values of θ 

of all the grid points with respect to each of the angles of “8 selected symmetric 

points” and listed them for easier selection of appropriate colors into the groups. For 

the 64-color cubes, these 8 symmetric points may be selected to be the 8 corners of 

the cube, as done in our experiment. The result of color distribution for the first color 

cube with base color (0, 0, 0) is shown in Table 2. And an example of the color 

distribution result for group 3, which includes the corner of (0, 0, 0), is shown in . The 

assigned 8 colors in the group are (1, 2, 2), (3, 2, 2), (1, 0, 2), (2, 2, 3), (2, 3, 0), (0, 1, 

0), (3, 0, 1), (0, 0, 0). 

The above process is designed for color cubes with 64 colors. It is not difficult to 

modify the process to fit more general cases of color cubes with 2P

m+n
P colors 

mentioned before. 

Furthermore, as an example of data embedding at image pixels, let P be a pixel 
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with color c = (r, g, b) = (1, 3, 2) and assume that the 3-bit message segment we want 

to embed is 010. The color cube used is that described in Table 2 and the group of 

colors involved is the third shown in Figure 5.4. The color in the group closest to c is 

c' = (1, 2, 2) with a distance of 1 to c. Therefore, the color c = (1, 3, 2) of P is replaced 

by c' = (1, 2, 2) in the data embedding process. 

As a deeper investigation of the effect of the above even distribution of group 

colors in a color cube, we tried to compute the value of the peak of the signal-to-noise 

ratio (PSNR) for the worst case of color replacements, which occurs when the colors 

of all image pixels are replaced with the most dissimilar colors in color cubes. For this, 

we have two cases. One is when the colors of each group in a color cube are not 

evenly distributed. Then, the largest Euclidean color distance resulting from a color 

replacement obviously will be |(3, 3, 3) − (0, 0, 0)| = (3×3P

2
P) P

1/2
P = 27 . The other case 

R

G 

B 

φ

ρ

θ

Figure 5.3 Illustration of a 3D spherical coordinate system for use in even color distribution. 
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is when the even distribution is done as shown in Table 5.2. Then, according to a 

computer program written in this study which computes exhaustively the Euclidean 

color distances between every pair of colors in the color cube based on the groups of 

Table 3, the largest Euclidean color distance is d = 4 . 

Accordingly, for the 2P

nd
P case the maximum mean-square error (MSE) for the 

stego-image may be computed to be MSEBmax B = dP

2
P/3 = 4/3, and the corresponding 

worst PSNR value is PSNRBmin B = 10 × log[255P

2
P/MSEBmax B] = 10×log[65025/(4/3)] ≈ 46.88 

dB which is quite high. In contrast, the former case has PSNRBmin B = 

10×log[65025/(27/3)] ≈ 38.59 dB which is lower. In short, the 2P

nd
P case, which is what 

we have implemented in this study, has less image distortion. 

 

Table 5.2 Color encoding table for the (0, 0, 0)-th color cube with base color (0, 0, 0). 

r g b ρ 
φ 

(degree)

θ 

(degree)
group code 

R 

B 

G 

Figure 5.4 An example of color distribution in a color cube --- the 8 colors in group 3. 
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2 1 2 0.9 35 315 
2 3 2 1.7 18 72 
0 1 2 1.7 18 198 
1 1 3 1.7 65 225 
3 2 0 2.2 -43 18 
1 0 0 2.2 -43 252 
0 3 1 2.2 -13 135 
3 3 0 2.6 -35 45 

1 000 

2 2 2 0.9 35 45 
0 2 2 1.7 18 162 
2 0 2 1.7 18 288 
2 1 3 1.7 65 315 
1 3 0 2.2 -43 108 
3 1 0 2.2 -43 342 
0 0 1 2.2 -13 225 
0 3 0 2.6 -35 135 

2 001 

1 2 2 0.9 35 135 
3 2 2 1.7 18 18 
1 0 2 1.7 18 252 
2 2 3 1.7 65 45 
2 3 0 2.2 -43 72 
0 1 0 2.2 -43 198 
3 0 1 2.2 -13 315 
0 0 0 2.6 -35 225 

3 010 

1 1 2 0.9 35 225 
1 3 2 1.7 18 108 
3 1 2 1.7 18 342 
1 2 3 1.7 65 135 
0 2 0 2.2 -43 162 
2 0 0 2.2 -43 288 
3 3 1 2.2 -13 45 
3 0 0 2.6 -35 315 

4 011 

2 1 1 0.9 -35 315 
1 1 0 1.7 -65 225 
2 3 1 1.7 -18 72 
0 1 1 1.7 -18 198 
0 3 2 2.2 13 135 
3 2 3 2.2 43 18 
1 0 3 2.2 43 252 
3 3 3 2.6 35 45 

5 100 

2 2 1 0.9 -35 45 
2 1 0 1.7 -65 315 
0 2 1 1.7 -18 162 
2 0 1 1.7 -18 288 
0 0 2 2.2 13 225 
1 3 3 2.2 43 108 
3 1 3 2.2 43 342 
0 3 3 2.6 35 135 

6 101 

1 2 1 0.9 -35 135 
2 2 0 1.7 -65 45 
3 2 1 1.7 -18 18 
1 0 1 1.7 -18 252 
3 0 2 2.2 13 315 
2 3 3 2.2 43 72 
0 1 3 2.2 43 198 
0 0 3 2.6 35 225 

7 110 

1 1 1 0.9 -35 225 
1 2 0 1.7 -65 135 
1 3 1 1.7 -18 108 
3 1 1 1.7 -18 342 

8 111 
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3 3 2 2.2 13 45 
0 2 3 2.2 43 162 
2 0 3 2.2 43 288 
3 0 3 2.6 35 315 

 

5.2 Detailed Algorithms of Proposed Data Embedding and 

Extraction 

We now describe the detailed algorithms for data embedding and extraction. We 

assume that the maximum length of given messages to be embedded is B bytes (8B 

bits) long. 

 

Algorithm 5.1 Data embedding process. 

Input: a cover image I, a message G in the form of a bit string, and the color 

encoding tables (like Table 2) for color cubes with 64 colors defined by Eqs. 

(2) and (3). 

Output: a stego-image I' with G embedded. 

Steps: 

A. Finding the range sets of the color cubes --- 

1. Find the range set SBi B from the cover image I for each color cube CBi B. 

2. Compute the scattering degree MBi B of each CBi B by Eq. (1). 

3. Sort all non-empty SBi B into a list L according to their values of MBi B with the top 

of the list corresponding to the largest MBi B. 

B. Creating extended message data --- 

4. Pad 0’s, if necessary, to the front of the bit string representing the length of 

message G so that the resulting bit string, T, occupies B bytes. 

5. Concatenate T and G in order, to form a third string T'. 

6. Count the number of bits in T', append 0’s to the end of T', if necessary, to 
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make the total number N of bits a multiple of 3, call the resulting bit string an 

extended message, and denote it by G'. 

C. Embedding of message data --- 

7. Regard all the pixels in each range set SBj B in L in the raster-scan order as a 

sequence QBj B, and concatenate all sequences of QBj B in order into a longer one Q. 

8. Embed sequentially every 3-bit segment H of G' into pixels in Q in order in 

the following way, until all bits of G' are exhausted: 

(1) take sequentially an unprocessed pixel P in Q with color c; 

(2) find out the color cube C whose range set includes P; 

(3) find out the color group p of C, whose corresponding code is equal to H; 

(4) find out the color c' in p which is closest to c in the sense of Euclidean 

color distance; 

(5) replace c of P by c' in the cover image. 

 

The data extraction process is described as an algorithm in the following. We 

assume the embedded data in the given stego-image is the extended message G' 

mentioned in the previous algorithm, which includes the original message G preceded 

by the value of the length of G in the form of B bytes. 

Algorithm 5.2 Data extraction process. 

Input: a stego-image I', and the color encoding tables (like Table 2) for color cubes 

with 64 colors defined by Eqs. (2) and (3). 

Output: the message G. 

Steps: 

A. Finding the range sets of the color cubes --- 

1. Find the range set SBi B from the stego image I' for each color cube CBi B. 

2. Compute the scattering degree MBi B of each CBi B by Eq. (1). 
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3. Sort all non-empty SBi B into a list L according to their values of MBi B with the top 

of the list corresponding to the largest MBi B. 

B. Extracting the length of the message 

4. Regard all the pixels in each range set SBj B in L in the raster-scan order as a 

sequence QBj B, and concatenate all sequences of QBj B in order into a longer one 

Q. 

5. Extract B bytes of data from Q first to obtain the length N of the message G 

in the following way: 

(1) take sequentially an unprocessed pixel P in Q with color c'; 

(2) find out the color cube C whose range set includes P; 

(3) find out the color group p of C, which includes c'; 

(4) find out the 3-bit code corresponding to p; 

(5) repeat the above steps until the concatenation of all the found 3-bit codes 

in order, denoted as K, is just more than B bytes long; 

(6) take the first B bytes of K and convert it into an integer as the message 

length N, and the tail portion R in K as the leading bits of the message G. 

C. Extracting the message data 

6. Compute N' = ⎡N/3⎤ where ⎡⋅⎤ means the ceiling function. 

7. Repeating the following steps N' times: 

(1) take sequentially an unprocessed pixel P in Q with color c'; 

(2) find out the color cube C whose range set includes P; 

(3) find out the color group p of C, which includes c'; 

(4) find out the 3-bit code of p; 

8. Concatenate R extracted in Step 5 and all the codes extracted in Step 7 in 

order as a bit string, and take the first N bits of it as the desired message G. 



 

 92

5.3 Experiment Results and Discussions 

A series of experiments have been conducted in this study on BMP images. 

Some experimental results are shown in Figs. 5 through 8. Figure 5.5 is a continuation 

of Figure 5.1. Figure 5.5(a) shows the stego-image resulting from embedding 22900 

bytes of message data into the cover image shown in Figure 5.1(a) which is of the size 

256×256. And Figure 5.5(b) shows the difference between Figure 5.1(a) and Figure 

5.5(a) as a color image I'' (called a difference image), which is produced in the 

following way, assuming that (r, g, b) is a color in the cover image I, (r', g', b') the 

corresponding color in the stego-image I', and (r'', g'', b'') the computed difference 

color: 

x'' = |x − x'| + 128  if |x − x'| ≠ 0; 

  = 255    if |x − x'| = 0, 

where x = r, g, or b. The concept behind the above computation is to set a difference 

value of 0 to be 255 and a non-zero one to be around 128. Consequently, an 

unprocessed pixel with three zero difference values will become a white pixel in the 

difference image I'', while a processed pixel will have a color (r'', g'', b'') with all the 

three color channel values around 128. As can be seen from Figure 5.5(b), most of the 

pixels in the cover image have been utilized for data embedding, but the stego-image 

looks almost identical to the cover image of Figure 5.1(a) due to the effectiveness of 

image distortion and change noticeability reduction. It can also be observed from 

Figure 5.5(b) that the processed pixels are quite random in their locations, and more 

uniform regions, like those on the clothes, yield range sets with smaller scatter 

measures, as expected, which are not used for data embedding (seen as white-pixel 

clusters in the figure). The rate of processed pixels (called processed pixel rate in the 
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sequel) is (22900×8) ÷ 3 ÷ (256×256) ≈ 0.932 and the PSNR value was computed to 

be 48.59 dB which is better than the worse-case value 46.88 dB, as it should be. 

Totally, 1628 color cubes have been utilized. 

Figure 5.6 shows another experimental result with a 256×256 cover image. The 

processed pixel rate is again 0.932, the computed PSNR value is 48.23 dB, and the 

number color cubes used is 5242. A similar phenomenon of leaving uniform regions 

unused for data embedding is observed (most on the flowers at the lower part of the 

cover image). For illustrations, we also include the range set of a color cube as Figure 

5.6(b). Two more examples of experimental results with 512×512 cover images are 

shown in Figs. 7 and 8. The message data embedded are 88200 bytes long, and the 

processed pixel rates are (88200×8) ÷ 3 ÷ (512×512) ≈ 0.897, for both cases. The 

PSNR values are 48.70 dB and 48.27 dB, respectively. 

More statistics data about our experiments are shown in Table 5.3, in which 

images 4.1.03, 4.1.01, 4.2.04, 4.2.07 are those in Figs. 5.5 through 5.8, respectively. 

All the images come from the USC image database. From the table, we see that the 

PSNR values of all the stego-images are over 48 dB. 

The experiments were conducted for color cubes with 64 colors and color groups 

of 8 colors. Color cubes and color groups of sizes other than those used in the 

experiments of this study may also be applied for various application needs. In 

general, larger-sized color cubes will lead to larger embedding capacity of each color 

replacement (that is, more bits are encoded by each replacing color) if the size of each 

color group is fixed. 
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Table 5.3 Statistics of experimental results. 

No. Image 
Size of 
image 

(pixels) 

Size of 
message 

data (bytes)

Processed 
pixel rate

No. of used 
color cubes 

PSNR 

(dB) 

1  4.1.01 256×256 22900 0.932 5242 48.23 
2  4.1.02 256×256 22900 0.932 3329 48.49 
3  4.1.03 256×256 22900 0.932 1628 48.59 
4  4.1.05 256×256 22900 0.932 3840 48.68 
5  4.2.01 512×512 88200 0.879 5514 48.36 
6  4.2.02 512×512 88200 0.879 5446 49.19 
7  4.2.04 512×512 88200 0.879 9908 48.70 
8  4.2.05 512×512 88200 0.879 6626 48.61 
9  4.2.06 512×512 88200 0.879 17093 48.60 
10  4.2.07 512×512 88200 0.879 17110 48.27 
11  House 512×512 88200 0.879 16048 48.68 

 

On the other hand, with the size of the color cube being fixed, larger-sized color 

groups, though reducing more distortion caused by color replacements, will lead to 

less embedding capability (that is, less bits are encoded by each color group). The 

original cover image is not needed in data recovery, so the proposed method is a blind 

scheme. The PSNR values of the stego-images constructed in the experiments are 

high, showing that the aim of image distortion reduction carried out by the use of 

color groups is accomplished. The stego-images look almost identical to the cover 

images, showing that another aim of reducing color change noticeability is also 

reached. Furthermore, secret keys may be used to randomize the message data before 

they are embedded into the cover image or/and randomize the sequence of pixels 

(sequence Q in Algorithms 5.1 and 5.2) into which the data are embedded, in order to 

enhance data security. Illegal recovery of the embedded data will so obtain just a 

sequence of noise. The proposed method is thus appropriate for uses in 

steganographic applications. 
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(a) Stego-image. (b) Difference image. 

Figure 5.5 An experimental result of message data embedding applied to Figure 
5.1(a) with a 256×256 cover image and a 22900-byte message data. 

 

  
(a) Cover image. (b) Range set of a color cube. 

  
(c) Stego-image. (d) Difference image. 

Figure 5.6 A second experimental result with a 256×256 cover image and a 
22900-byte message. 
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(a) Cover image. (b) Stego-image. (c) Difference image. 

Figure 5.7 A third experimental result of data embedding with a 512×512 cover image 
and an 88200-byte message. 

 

(a) Cover image. (b) Stego-image. (c) Difference image. 

Figure 5.8 A fourth experimental result of data embedding with a 512×512 cover 
image and an 88200-byte message. 

 

5.4 Concluding Remarks 

A novel method for hiding large-volume message data in RGB images has been 

proposed. The method is based on the idea of changing selected image pixels’ colors 

by similar ones which encode the message bits. The replacing colors come from some 

selected color cubes in the color space, and the image pixels come from the range sets 

of the color cubes. Data recoverability is ensured by the use of color cubes and range 

sets. The color cubes are selected in such a way that the pixels in their range sets are 
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as separated as possible. This reduces the noticeability caused by the color changes. 

Each replacing color comes from the choice of an optimal one from a group of evenly 

distributed colors in a color cube. This reduces the resulting image distortion due to 

the color replacements.  

Experimental results show the feasibility of the proposed method for 

large-volume data hiding as well as the effectiveness of reducing image distortion and 

change noticeability. The method is a blind data hiding technique; the original cover 

image is not required in the data extraction process. Future researches may be directed 

to dynamic uses of variable-sized color cubes, random distributions of groups’ colors 

in color cubes, uses of the proposed method for various applications, etc. 
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Chapter 6                          

Data Hiding in Emails and Applications by 

Unused ASCII Control Codes 

6.1 Idea of Proposed Method 

ASCII codes, usually expressed as hexadecimal numbers, are used very 

commonly to represent text for information interchange on computers. Parts of the 

ASCII codes, namely, from 00 through 1F, are used as control codes which are listed 

in Table 1. They were originally designed to control computer peripheral devices like 

printers, tape drivers, teletypes, etc. But now they are rarely used for their original 

purpose because of the rapid development of new peripheral hardware technologies, 

except those codes for text display control, such as 0A with the meaning of line feed 

and 08 with the meaning of backspace. Besides, some of the control codes, when 

displayed by a text editing program or a browser on monitors, are invisible; and some 

others are shown as spaces under certain software environments, just like the function 

of the original ASCII space code 20. These two types of ASCII codes may be utilized 

to increase secret data encoding variability in the data hiding process. For 

convenience of reference, we say that the former type displays a null space, in 

contrast with the white space displayed by the latter type. 

On the other hand, as computer technology spreads throughout the world, many 

coding standards have been developed to facilitate the expression of non-English 

alphabets. But these alphabet coding standards, such as the Unicode and the Big 5, all 

include the ASCII codes as the kernel set. For example, the popular Unicode standard, 

UTF-8, equates exactly to the ASCII codes for code values below 128. Therefore, the 

good property of the ASCII control codes for embedding secret data in text documents 
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is still preserved in various coding standards. 

In this study, it is desired to use the white-space and null-space codes to embed 

data in text documents of the Unicode UTF-8 format without causing noticeable 

artifacts under the popular software environments of Outlook Express, IE, and the 

operating system of the tTraditionalT TChineseT version of Microsoft Windows XP, service 

pack 2, 2002. 

In the remainder of this chapter, some properties of email systems and 

embedding ASCII control codes into emails are described in Sections 6.2, and 6.3, 

respectively. The proposed methods for data hiding and recovery processes for emails 

are introduced in Sections 6.4 and 6.5 respectively. Some experimental results are 

shown in Section 6.7, followed by some concluding remarks in Section 6.8. 

6.2 Properties of Email Systems 

In this study, it is assume that all emails are transmitted through the popular 

Simple Mail Transfer Protocol (SMTP) [38-40] and that users retrieve their emails 

from remote server systems of the Post Office Protocol version 3 (POP3) standard 

[41]. In addition, most emails nowadays are of the Multipurpose Internet Mail 

Extensions (MIME) format [42-44] which is compatible with the SMTP standard. 

However, some mail server systems do not follow the SMTP standard precisely 

[44]. Therefore, before we make use of an email document for data embedding, we 

must find out servers which do not change the content of an email body, or must set 

up a new SMTP server. Otherwise, data embedded in the email might be destroyed 

before being read and retrieved on the server of the receiver end. 

According to the SMTP standard [40], According to the SMTP standard The 

codes 0D for carriage return (CR) and 0A for line feed (LF) must appear together as 

0D0A (denoted as CRLF in the sequel) for use at the end of each line. A text line, if 
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folded, should be limited to be 78 characters in length, excluding CRLF. Here, by 

folding we mean to split a long text line into multiple shorter ones. A folding will 

occur when a CRLF is inserted in a line to replace a space, separating the line into two 

parts. 

Table 6.1 ASCII control codes and description. 

Dec Hex Char Description Dec Hex Char Description 

0 0 NUL null character 16 10 DLE data link escape 

1 1 SOH start of header 17 11 DC1 device control 1 

2 2 STX start of text 18 12 DC2 device control 2 

3 3 ETX end of text 19 13 DC3 device control 3 

4 4 EOT end of transmission 20 14 DC4 device control 4 

5 5 ENQ enquiry 21 15 NAK negative acknowledge 

6 6 ACK acknowledge 22 16 SYN synchronize 

7 7 BEL bell (ring) 23 17 ETB end transmission block 

8 8 BS backspace 24 18 CAN cancel 

9 9 HT horizontal tab 25 19 EM end of medium 

10 A LF line feed 26 1A SUB substitute 

11 B VT vertical tab 27 1B ESC escape 

12 C FF form feed 28 1C FS file separator 

13 D CR carriage return 29 1D GS group separator 

14 E SO shift out 30 1E RS record separator 

15 F SI shift in 31 1F US unit separator 

 

Outlook Express, after being opened, often has a smaller window for viewing the 

mail content. The window width is about 70 characters. In this study, we propose to 

hide secret data in an email by adding ASCII control codes at the end of each text line 

with the resulting line being of this width, such that when the resulting stego-email is 

opened by Outlook Express, the mail body can fit the window width, thus increasing 

the steganographic effect. For this aim, we fold the original email lines into shorter 

ones, each being 65 characters in length, leaving 5 characters at each line end as a 
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data embedding slot. 

Another popular protocol by which emails are accessed on a server is the Internet 

Message Access Protocol version 4 (IMAP4) [45]. The IMAP4 supports single 

web-mail servers and permits manipulations of mailboxes as remote message folders 

in a way that is functionally equivalent to local folders. Web mails enjoy its popularity 

because people can use the same client software to both surf the Internet and 

transmit/receive emails. And IE is probably the most popular browser for 

manipulating web mails. In this study, we assume that Outlook Express 6.0 and IE 6.0 

are used as the client software to manipulate emails. 

6.3 Embedding ASCII Control Codes into Emails 

In this study, we identify five possible ways for secret data embedding in emails 

by use of ASCII control codes. They are listed as follows. 

(1) White-space coding --- As mentioned previously, there are many different 

white-space codes, each of which, when displayed, appears to be a white space, 

yielding the same effect as the original ASCII space code 20. For example, under 

the environment of the Big 5 standard using Outlook Express, each of the three 

ASCII codes, 07, 09, and 0C, will be displayed as a white space, as found in this 

study. Therefore, we can use each of them to replace a white space in an email 

text in a data hiding process, with the resulting stego-email bringing no reader’s 

notice. 

(2) Inserting multiple white-space codes at text line ends --- We may place multiple 

white-space codes before the CRLF at the end of a text line. Since no character 

but background white spaces are shown after the CRLF, these additionally 

inserted white-space codes, though displayed as visible white spaces, will be 

connected to the background white spaces and thus bring no noticeable effect to 
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the reader. 

(3) Null-space coding --- As mentioned previously, there are many null-space codes, 

which are displayed as nothing. We can thus insert them at any position in a line 

for any repetitions in a data hiding process without causing the reader’s notice. 

For example, under the environment of the UTF-8 standard using IE, the four 

null-space codes 1C, 1D, 1E, and 1F, as found in this study, are invisible. 

(4) Inserting multiple null-space codes at text line ends --- We may place null-space 

codes repetitively at the end of a text line without causing noticeable effect 

because they are invisible when displayed, as in the case of (2) above. 

(5) Combining techniques of the above --- We may combine the above techniques in 

arbitrary ways if both white-space and null-space coding are applicable in the 

environment. 

In the above discussions, we see that the ASCII control codes usable for 

embedding secret data are variant for different kinds of servers, browsers, and 

character sets. In order to have a systematic investigation in this aspect, in this study 

we created an email file which includes all ASCII control codes shown in Table 1 to 

find out SMTP server software suitable for data embedding, as well as the 

corresponding appearances of the ASCII control codes after they are processed and 

displayed in the environment of such server software. The investigation results are 

described as follows. 

First, we have found four SMTP email servers which do not change the text 

contents of emails, and so can be used as standard SMTP servers for the purpose of 

data embedding in this study. Their uniform resource locators (URLs) are 

H74HTUhttp://cis.nctu.edu.twUTH, H75HTUhttp://mis.tsint.edu.twUTH, H76HTUhttp://tw.yahoo.comUTH and 

H77HTUhttp://www.hotmail.comUTH. The first is located in the Department of Computer Science 
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at National Chiao Tung University in Taiwan, with an SMTP software of Twig 2.7.7. 

The department has additionally another SMTP server system, Horde, for web mails. 

The second server is located at the Department of Management Information at 

Technology and Science Institute of Northern Taiwan. The SMTP software is 

SendMail 8.12. The third server is located in Taiwan and deals with web mails with 

the name Yahoo! Mail. The last server is Hotmail, a web mail server of Microsoft 

Corporation. After registering at any of these four servers, a user may read, transmit, 

or receive emails by Outlook Express or IE. 

In this study, the email format we use is MIME 1.0, the content-type is 

text/plain, and the character set is UTF-8. These formats are very commonly used 

and so are adopted in this study for data hiding applications. 

After a systematic test of the ASCII character set on the above-mentioned four 

servers, we found that the hexadecimal ASCII control codes appropriate for data 

embedding under both the Outlook Express and the IE environments are 1C, 1D, 1E, 

and 1F. These four codes all appear to be invisible on the IE browser, and all are 

shown as white spaces in the Outlook Express window. They can so be used for data 

embedding respectively according to the techniques of (2) and (4) mentioned above. 

However, our goal is to take into account simultaneously, instead of respectively, the 

techniques of (2) and (4), resulting in a method of repeatedly placing these four 

ASCII control codes at the ends of email text lines. The displayed result of the 

stego-email will be of no difference from the appearance of the original cover email, 

thus achieving the steganographic effect. 

More specifically, we use the following encoding rules to embed secret data 

into the text line ends of a cover email. 

1. Encode 2-bit binary secret data “00,” “01,” “10,” and “11” with the four ASCII 

codes 1C, 1D, 1E, and 1F, respectively. 
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2. Put the unique combined ASCII codes 201E in front of a sequence of secret data 

as its start signal, and append another copy of it at the sequence tail as the end 

signal. 

3. Use the unique combined ASCII codes 201C to encode the 1-bit data ‘0,’ and the 

combined codes 201D to encode ‘1.’ 

4. Use the unique combined ASCII codes 201F as a separator to stop the underline 

display that starts from a special lexical token of the network protocol, like http, 

ftp, email, …, etc. 

Rule 4 above is necessary because otherwise the extra white-space codes we 

insert at the end of a text line, when happening to be connected to the end of a 

network protocol text line, will appear to be underlined white spaces, like in 

Uhttp://cis.nctu.edu.tw          U, which obviously are against the purpose of 

steganography. 

Based on the above rules, we describe the proposed data hiding algorithm for 

the purpose of covert communication and authentication in the next section. 

6.4 Proposed Data Hiding Process for Emails 

We first describe the technique we propose to embed secret data into an email as 

Algorithm 6.1 below, and then describe how to transmit the stego-email by Outlook 

Express or IE. In the following, when we refer to an email, we mean its text body, 

excluding the header. 

Algorithm 6.1 Data embedding in an email. 

Input: a secret data file S and a cover email E long enough to hide S. 

Output: a stego-email E'. 

Steps: 
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5. Set the format of the cover email E to MIME 1.0, the content-type to text/plain, 

and the character set to UTF-8. 

6. Fold sequentially each long text line in E with over 65 characters into a 

65-character line by inserting a CRLF to replace the first space code 20 found 

backward from the 65th character breakpoint in the line. 

7. Check every line in the resulting E to see if there exists in it any special lexical 

token of the network protocol right before the CRLF; if so, insert a separator code 

201F before the CRLF so that we can insert secret data in between the separator 

code and the CRLF, as described next. 

8. Get a text line from E, starting from the first, and perform the following 

operations. 

4.1 Insert the start signal 201E before the CRLF which appears at the line end. 

4.2 Compute the embedding capacity EC between the start signal and the CRLF 

in the following way: 

EC = 70 − position of CRLF in the text line, 

which means the number of secret data bits we can insert before the CRLF 

until the line becomes 70 characters long and should not be made longer, as 

discussed previously. 

4.3 Perform one of the following three cases (assuming that |S| means the length 

of S): 

(1) if EC ≠ 0 and |S| > 1, then get a pair of bits from the prefix of S, encode 

it with the corresponding code (one of 1C, 1D, 1E, 1F), insert the result 

before the CRLF, decrement EC by 1, decrement |S| by 2, and perform 

Step 4.3 again; 

(2) if EC = 0 and |S| > 1, then get the next text line in E and perform Step 

4.2; 
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(3) if |S| ≤ 1, then continue. 

9. Check S to see if there still remains a single bit B in S. If so, then: 

(1) if EC ≠ 0, insert the code 201C before the CRLF if B is ‘0’ or the code 201D 

if B is ‘1’; 

(2) if EC = 0, then get a text line in E with nonzero embedding capacity EC and 

conduct the insertion as in Step 5(1) above. 

10. Append the end signal 201E at the end of all the codes inserted in the previous 

steps. 

11. Output the result as the desired stego-email E'. 

 

After a stego-mail E' is obtained, we want to send it to the receiver site through 

Outlook Express or IE as a traditional email or a web mail, respectively. For the 

former way using Outlook Express, we open a new email, denoted as EBnB, set the 

character set of EBn B to UTF-8, expand the window size of EBn B to the maximum, copy the 

text body of E' into EBnB, and finally send the result to the receiver without encrypting it. 

For the latter way using IE, we use IE to log in the selected web mail server, and do 

all the same to complete the mail transmission. 

6.5 Proposed Data Recovery Process for Emails 

At the receiver end, after a stego-mail is received by the use of Outlook Express or 

IE, its content of ASCII codes is checked for secret data extraction. The algorithm for 

this purpose is described as follows. 

Algorithm 6.2 Data Recovery from a stego-email text body. 

Input: a stego-email text E', presumably including a secret data file S. 

Output: the file S. 

Steps: 
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1. Scan separator signals 201F in E' and remove all of them, if there exists any. 

2. Scan the resulting E' to find the start signal 201E in E' and remove it 

3. Perform the following steps. 

3.1 Get a pair of ASCII codes in order from E. 

3.2 If the code pair P is the end signal of 201E, then perform Step 4; otherwise: 

(1) if P is either 201C or 201D, then decode P to be the bit 0 or 1, 

respectively; 

(2) if P is neither 201C nor 201D, then check each code Q in P and if Q is 

one of 1C, 1D, 1E, and 1F, then decode Q to get the corresponding 

secret bit pair (one of 00, 01, 10, and 11) and remove Q. 

3.3 Go to Step 3.1. 

4. Remove the end signal. 

5. Concatenate all the decoded secret data bits extracted in the previous steps into a 

sequence as the desired secret data file S and exit. 

6.6 Proposed Authentication Process for Email Documents 

The data embedding and extraction techniques proposed previously, in addition 

to being useful for the purpose of covert communication, may be used for the purpose 

of email authentication. More specifically, by embedding appropriately-designed 

codes as an authentication signal, the signal, when extracted, can be used to check the 

fidelity of a received email, proving that it was transmitted by a specified server and 

not tampered with before received. In this study, we achieve this goal by embedding 

an authentication signal into an email by Algorithm 6.1 to generate an authenticable 

stego-email. The signal is generated by the use of the content of an email by a 

division operation. The fidelity verification work is accomplished by matching the 

authentication signal extracted from a given authenticable stego-email with that 
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computed directly from the original text content of the email. The details are 

described as two algorithms below. 

Algorithm 6.3 Generation of an authenticable email. 

Input: a cover email E and a secret key K. 

Output: an authenticable email E'. 

Steps: 

1. Fold each long text line in E with over 65 characters into a 65-character line by 

inserting a CRLF code to replace the first space code found backward from the 

65th character breakpoint. 

2. Compute a value M by summing up all the ASCII code values in the resulting E 

after excluding all the special codes of 1C, 1D, 1E, 1F, 201C, 201D, 201E, and 

201F. 

3. Compute an authentication signal A as the remainder of dividing M by the secret 

key K. 

4. Use Algorithm 1 to embed A into E to obtain an authenticable email as the desired 

output E'. 

In Step 2 above, the reason of excluding the special codes is that these codes are 

to be used for embedding the authentication signal A in Step 4. 

Algorithm 6.4 Authentication of an email. 

Input: a stego-email E', presumably including an authentication signal; and a secret 

key K. 

Output: an authentication message about the fidelity of the displayed text content of 

E'. 

Steps: 
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1. Compute a value M by summing up all the ASCII code values in E' after 

excluding all the special codes of 1C, 1D, 1E, 1F, 201C, 201D, 201E, and 201F. 

2. Compute an authentication signal A as the remainder of dividing M by the secret 

key K. 

3. Extract the hidden authentication signal A' from E' by Algorithm 2. 

4. Compare A' with A, and if they are identical, then output the authentication 

message “pass,” meaning the displayed text content of E' is genuine; else, the 

message “fail,” meaning the reverse. 

6.7 Experimental Results 

Figures 6.1 through 6.4 illustrate some experimental results of applying 

Algorithms 6.1 and 6.2 for covert communication using Outlook Express. Figure 6.1 

shows part of the content of a 9.3KB cover email. Figure 6.2 shows part of the content 

of the stego-email (12.7KB) obtained by applying Algorithm 6.1 with the cover email 

as the input. This content was displayed with Outlook Express by a receiver with 

email address tmp168@mis.tsint.edu.tw, to whom the stego-email was sent. From 

Figure 6.2, we see that no difference can be seen in the stego-email, when it is 

compared with the cover email. Figure 6.3 shows the content of the 1.07KB secret 

data file embedded in the stego-email. And Figure 6.4 shows the content of the 

1.07KB secret data file extracted from the stego-email shown in Figure 6.2 by 

applying Algorithm 6.2. The two file contents can be seen to be the same. These 

results show that the proposed method of data hiding and recovery is feasible. 

Figures 6.5 through 6.9 illustrate some additional experimental results of 

applying the proposed algorithms using IE. All password portions in the emails in 

these figures were blackened for protecting the privacy of the mail owners. Figure 6.5 

shows the content of a 2.42KB cover email. Figure 6.6 shows the content of the 
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corresponding stego-email (2.54KB) generated by Algorithm 1. Figure 6.7 shows part 

of the content of the stego-email seen as a web mail in IE at a receiver site with 

address H78HTUgis87809@cis.nctu.edu.twUTH. Figure 6.8 shows the content of the original secret 

data file with 27 bytes. Figure 6.9 shows the content of the secret data file that was 

extracted from the stego-email shown in Figure 6.7. Again, the original and the 

extracted secret data are seen identical. 

The experiments presented above were conducted under the condition that the 

transmitter’s and the receiver’s operations were performed on the same server. 

Actually, we also conducted experiments in which the transmitter’s and receiver’s 

operations were performed on difference servers. For example, one server we used 

was the mail server at Yahoo! in Taiwan, and the other a mail server in the 

Department of Computer Science at National Chiao Tung University in Taiwan. The 

results remained unchanged. 

 

 
Figure 6.1 Partial content of a cover email. 
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Figure 6.2 Partial content of the stego-email generated from Figure 6.1. 

 

Figure 6.3 Partial content of an embedded secret data file. 
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Figure 6.4 Partial content of the extracted secret data file. 

 

 

Figure 6.5 Partial content of a cover email. 
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Figure 6.6 Partial content of the stego-email generated from Figure 6.5 before being 

transmitted. 

 
Figure 6.7 Partial content of the stego-email received and displayed in IE. 
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Figure 6.8 Content of the original secret file. 

 

 

Figure 6.9 Content of the extracted secret file. 

 

Figures 6.10 to 6.13 illustrate some experimental results of applying the 

proposed email authentication method. Figure 6.10 shows the content of a stego-email 

which was generated by Algorithm 6.3. The password portion in the stego-email was 

also blackened for protecting privacy. The embedded secret data are invisible to a 

casual reader. Figure 6.11 shows part of the content of the stego-email file after being 

received by Outlook Express, and the authentication result of “pass”.  
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Figure 6.10 Content of a stego-email for authentication before transmission. 

 

 
Figure 6.11 Authentication result of “pass” after receiving a stego-email by Outlook 

Express. 
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Figure 6.12. Authentication result of “pass” after receiving a stego-email by IE. 

 

 

Figure 6.13. Authentication result of “fail” after receiving the stego-email by IE. The 

word “Lee” in the content has been modified to be “lee.” 

 

Figure 6.12 shows part of the content of the stego-email after being received by 
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IE, and the authentication result of “pass”, too. Figure 6.13 shows part of the content 

of the stego-email file after being received by IE, and the authentication result of 

“fail,” since the content has been tampered with (the word “Lee” has been changed to 

“lee”). These results show that the proposed email authentication method is effective. 

 

6.8 Concluding Remarks 

In this study, we propose a method to embed secret data into emails via the use 

of the ASCII codes under the operating system of the t TraditionalT TChinese T version of 

Microsoft Windows XP, service pack 2, 2002. After a systematic test of all the ASCII 

codes on various email server software systems and standards, four special ASCII 

control codes 1C, 1D, 1E, and 1F have been found to be invisible at the line ends of 

email texts on the SMTP email server in the environment of Outlook Express or IE. A 

technique has been proposed to utilize these special codes to encode secret data, 

which is a combination of five coding rules found in this study. Each stego-email can 

be transmitted to a receiver, and read as a normal email. Extra long lines of emails are 

folded to be of a proper length for normal displays on email servers to increase 

steganographic effects. The experiment results prove the feasibility of the proposed 

method. 

In this study, 2-bit secret data are embedded into a white space of a text email. 

Comparing to other methods proposed by Bender et al. [27] and Chang and Tsai [37] 

in which on average each secret bit needs 1.5 white spaces to encode (one white space 

representing a “0,” and two white spaces representing a “1,” leading to the average of 

1×0.5+2×0.5 = 1.5 spaces for a secret bit), the proposed method needs only 0.5 white 

space for each secret bit (one ASCII code representing 2 secret bits), which is an 

increase of the embedding capacity for three times. 
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The proposed methods may put into practice in the four servers as listed 

previously. However, not all mail servers fully follow the SMTP standard. Instead, 

some mail servers have their own ways of management, like Gmail and Yahoo! Mail, 

which delete redundant spaces and undefined characters. So, the proposed method is 

inapplicable to these two servers. Other applicable techniques should be investigated, 

and are left for further study. Another topic worth future investigation is to apply the 

proposed data hiding technique to check the integrity of an email, in addition to the 

fidelity check scheme proposed in this study. Finally, we may extend both the 

convert communication and authentication works of this study to dealing with web 

pages. 
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Chapter 7                       

Security Protection of Software Programs 

by Information Sharing and Authentication 

Techniques Using Invisible ASCII Control 

Codes 

7.1 Idea of Proposed Method 

ASCII codes, usually expressed as hexadecimal numbers, are used very 

commonly to represent texts for information interchanges on computers. Some of the 

ASCII codes of 00 through 1F were used as control codes to control computer 

peripheral devices like printers, tape drivers, teletypes, etc. (see Table 7. 1). But now 

they are rarely used for their original purposes because of the rapid development of 

new peripheral hardware technologies, except those codes for text display controls, 

such as 0A and 08 with the meanings of “line feed” and “backspace,” respectively. It 

is found in this study that some of the ASCII control codes, when displayed by certain 

text editors under some OS environments, are invisible. Such ASCII codes may be 

utilized for various secret data hiding purposes [53]. 

The finding of such invisible codes resulted from a systematic test of all the 

ASCII control codes in the environment of the VCP

++
P editor of Microsoft Visual 

Studio .NET 2003, Service Pack 1. Four of such codes so found are 1C, 1D, 1E, and 

1F, which are invisible in the comments or character strings of VCP

++
P programs (see 

Table 7. 2). Such codes will simply be said invisible in subsequent discussions. 

As an illustrative example, in Figure 7.1 we show a simple source program in 

Figure 7.1(a) with a short comment “test a file.” In the comment, we inserted 
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consecutively the four codes 1C, 1D, 1E, and 1F between the letters “s” and “t” in the 

word “test.” Their existences can be checked with the text editor UltraEdit 32, as can 

be seen from Figure 7.1(b). But the four codes are invisible in the VCP

++
P editor, as can 

be seen from Figure 7.1(a). Such invisibility usually will arouse no suspicion and so 

achieve a steganographic effect, since, unless necessary, people will always use the 

VCP

++
P editor for program inspection and development. We utilize such an “invisibility 

phenomenon” for hiding both share data and authentication signals in source 

programs in this study, as described in the following. 

Table 7.1. ASCII control codes and descriptions. 

Dec Hex Char Description Dec Hex Char Description 

0 0 NUL null character 16 10 DLE data link escape 

1 1 SOH start of header 17 11 DC1 device control 1 

2 2 STX start of text 18 12 DC2 device control 2 

3 3 ETX end of text 19 13 DC3 device control 3 

4 4 EOT end of transmission 20 14 DC4 device control 4 

5 5 ENQ enquiry 21 15 NAK negative acknowledge 

6 6 ACK acknowledge 22 16 SYN synchronize 

7 7 BEL bell (ring) 23 17 ETB end transmission block 

8 8 BS backspace 24 18 CAN cancel 

9 9 HT horizontal tab 25 19 EM end of medium 

10 A LF line feed 26 1A SUB substitute 

11 B VT vertical tab 27 1B ESC escape 

12 C FF form feed 28 1C FS file separator 

13 D CR carriage return 29 1D GS group separator 

14 E SO shift out 30 1E RS record separator 

15 F SI shift in 31 1F US unit separator 

 

For the purpose of program sharing among several participants, after a given 

secret source program is transformed into shares, each share is transformed further 

into a string of the above-mentioned invisible ASCII control codes, which is then 
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embedded into a corresponding camouflage source program held by a participant. And 

for the purpose of security protection, authentication signals, after generated, are 

transformed as well into invisible ASCII control codes before embedded. These two 

data transformations are based on a binary-to-ASCII mapping proposed in this study, 

which is described as a table as shown in Table 7. 2, called invisible character coding 

table by regarding each ASCII code as a character. 

Table 7. 2 Invisible character coding table. 

Bit pair Corresponding invisible ASCII code  

00 1C 
01 1D 
10 1E 
11 1F 

 

Specifically, after the share and the authentication signal data are transformed 

into binary strings, the bit pairs 00, 01, 10, and 11 in the strings are encoded into the 

hexadecimal ASCII control codes 1C, 1D, 1E, and 1F, respectively. To promote 

security, a secret random key is also used in generating the authentication signal. The 

details are described in the next section. 

In the remainder of this chapter, the secret program sharing and recovery 

schemes are introduced in Sections 7.2 and 7.3, respectively. The security protection 

problem is discussed in Section 7.4. Some experimental results are shown in Section 

7.5, followed by concluding remarks in Section 7.6. 

7.2 Proposed Program Sharing Scheme 

In the sequel, by a program we always mean a source program. A sketch of the 

proposed process for sharing a secret program is described as follows. 
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(1) Creating shares --- Apply exclusive-OR operations to the contents of the secret 

program and all the camouflage programs, and divide the resulting string into N 

segments as shares, with the one for the k-th participant to keep being denoted as 

EBkB. 

(2) Generating authentication signals --- For each camouflage program PBkB, use the 

random key value Y to compute two modulo-Y values from the binary values of 

the contents of PBkB and EBkB, respectively; and concatenate them as the authentication 

signal ABkB for PBkB. 

(3) Encoding and hiding shares and authentication signals --- Encode EBkB and A Bk B 

respectively into invisible ASCII control codes by the invisible character coding 

table (Table 7. 2) and hide them evenly at the right sides of all the characters of 

the comments of camouflage program PBkB, resulting in a stego-program for the k-th 

participant to keep. 

 

A detailed algorithm for the above scheme is given in the following. We assume 

that the length of a program is measured as the number of the ASCII characters in it. 

Also, given two ASCII characters C and D, each with 8 bits, denoted as C = cB0 BcB1 B...cB7 B 

and D = dB0 BdB1 B...dB7B, we define the result of “exclusive-ORing” the two characters as E = 

C⊕D = eB0 BeB1 B...eB7 B with eBi B = cBi B⊕dBi B for i = 0, 1, ..., 7 where ⊕ denotes the bitwise 

exclusive-OR operation. Note that E has eight bits, too. And given two equal-lengthed 

character strings S and T, we define the result of exclusive-ORing them, U = S⊕T, as 

that resulting from exclusive-ORing the corresponding characters in the two strings. 
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(a) A source program with four invisible ASCII control codes inserted in the comment 
“test a file.” 

 

 
(b) The program seen in the window of the text editor UltraEdit with the four ASCII 

control codes visible between the letters “s” and “t” of the word “test” in the 
comment. 

Figure 7.1 Illustration of invisible ASCII control codes in a comment of a source 
program. 

 

Algorithm 7.1 Program sharing and authentication. 

Input: (1) a secret program PBs B of length  λ BsB; (2) N pre-selected camouflage programs 

PB1 B, PB2 B, ..., PBN B of lengths λ B1B, λ B2 B, ..., λ BN B, respectively; and (3) a secret key which 
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is a random binary number Y with length  λBY B (in the unit of bit). 

Output: N stego-programs, PB1 B', PB2 B', ..., PBN B', in each of which a share and an 

authentication signal are hidden. 

Steps: 

Stage 1. Creating shares from the secret program. 

1. Create N + 1 character strings, all of the length λ Bs B of PBs B, from the secret program 

and the camouflage programs in the following way. 

1.1 Scan the characters (including letters, spaces, and ASCII codes) in the secret 

program PBs B line by line, and concatenate them into a character string SBs B. 

1.2 Do the same to each camouflage program PBkB, k = 1, 2, ..., N, to create a 

character string SBkB of length λ Bs B (not λBkB) either by discarding the extra characters 

in PBkB if λ BkB > λBs B or by repeating the characters of PBkB at the end of SBkB if λ BkB < λBs B, 

when λ BkB ≠ λ Bs B. 

2. Compute the new string E = SBs B⊕SB1 B⊕SB2 B⊕...⊕SBN B. 

3. Divide E into N segments EB1 B, EB2B, ..., EBN B as shares. 

Stage 2. Generating authentication signals from the contents of the shares and 

the camouflage programs. 

4. Generate an authentication signal ABkB for each camouflage program PBkB, k = 1, 2, ..., 

N, using the data of SBkB and EBkB as follows. 

4.1 Regarding SBkB as a sequence of 8-bit integers with each character in SBkB 

composed of 8 bits, compute the sum of the integers, take the modulo-Y value 

of the sum as ABSkB

, transform ABSkB

 into a binary number, and adjust its length to 

be λ BY B, the length of the key Y, by padding leading 0’s if necessary. 

4.2 Do the same to EBkB to obtain a binary number ABEkB

 with length λ BY B, too. 

4.3 Concatenate ABSkB

 and ABEkB

 to form a new binary number ABkB with length 2λ BY B as 

the authentication signal of PBkB. 
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Stage 3. Encoding and hiding the share data and authentication signals. 

5. For each camouflage program PBkB, k = 1, 2, ..., N, perform the following tasks. 

5.1 Concatenate the share EBkB and the authentication signal ABkB as a binary string FBkB. 

5.2 Encode every bit pair of FBkB into an invisible ASCII control code according to 

the invisible coding table (Table 7. 2), resulting in a code string FBkB'. 

5.3 Count the number m of characters in all the comments of PBkB. 

5.4 Divide FBkB' evenly into m segments, and hide them in order into PBkB, with each 

segment hidden to the right of a character in the comments of PBkB. 

6. Take the final camouflage programs PB1 B', PB2B', ..., PBN B' as the output stego-programs. 

In Step 3, we assume that the number of characters in the secret program is a 

multiple of N, the number of participants, for simplicity of algorithm description; if 

not, it can be made so by appending a sufficient number of blank spaces at the end of 

the original secret program. In Steps 4.1 and 4.2, the purpose we compute the signals 

ABSkB

 and ABEkB

 from the contents of the camouflage program PBkB and the share EBk B, 

respectively, for use in generating the authentication signal ABkB is to prevent any 

participant from intentionally or accidentally changing the contents of the original 

camouflage program or the hidden share; illegal tampering with them will be found 

out in the process of secret program recovery described in the next section. It is also 

noted that each stego-program yielded by the algorithm still can be compiled and 

executed to perform the function of the original camouflage program. 

7.3 Secret Program Recovery Scheme 

A sketch of the proposed process for recovering the secret source program is 

described as follows, for which it is assumed that the stego-program brought to the 

recovery activity by participant k is denoted as PBkB'. Also, the original key with value Y 
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used in Algorithm 7.1 is provided. 

(1) Extracting hidden shares and authentication signals --- Scan the comments of 

each stego-program PBkB' to collect the invisible ASCII control codes hidden in 

them and concatenate the codes as a character string; decode the string into a 

binary one by the invisible character coding table (Table 7. 2); and divide the 

string into two parts, the share data EBkB and the authentication signal ABkB. Also, 

remove the hidden codes from PBkB' to get the original camouflage program PBkB. 

(2) Authenticating the shares and the camouflage programs --- Use the authentication 

signal ABkB as well as the key Y to check the correctness of the contents of the 

extracted share data EBkB and the camouflage program PBkB by decomposing ABkB into 

two signals and matching them with the modulo-Y values of the binary values of 

PBkB and EBkB, respectively. Issue warning messages if either or both authentications 

fail. 

(3) Recovering the secret program --- Apply exclusive-OR operations to the extracted 

share data EB1 B through EBN B and the camouflage programs PB1 B through PBN B to 

reconstruct the secret program PBs B. 

The secret program recovery process is described as a detailed algorithm in the 

following. 

Algorithm 7.2 Authentication of the stego-programs and recovery of the secret 

program. 

Input: N stego-programs PB1 B', PB2 B', ..., PBN B' provided by the N participants and the secret 

key Y with length 　BY B used in secret program sharing (Algorithm 7.1). 

Output: the secret program PBs B hidden in the N stego-programs if the shares and the 

camouflage programs in the stego-programs are authenticated to be correct. 

Steps: 
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Stage I. extracting hidden shares and authentication signals. 

1. For each stego-program PBkB', k = 1, 2, ..., N, perform the following tasks to get the 

contents of the camouflage programs and the authentication signals. 

1.1 Scan the comments in PBkB' line by line, and collect the invisible ASCII codes 

located to the right of the comment characters as a character string FBkB'. 

1.2 Remove all the collected characters of FBkB' from PBkB', resulting in a program P Bk B 

with length 　 BkB, which presumably is the original camouflage program. 

1.3 Decode the characters in FBkB' using the invisible character coding table (Table 7. 

2) into a sequence of bit pairs, denoted as FBkB. 

1.4 Regarding FBkB as a binary string, divide it into two segments EBkB and ABkB with the 

length of the latter being fixed to be 2λBY B, which presumably are the hidden 

share and the authentication signal, respectively. 

1.5 Divide ABkB into two equal-lengthed binary numbers ABSkB

 and ABEkB

. 

Stage II. Authenticating share data and camouflage programs. 

2. Concatenate all EBkB, k =1, 2, ..., N, in order, resulting in a string E with length λ BE B 

which presumably equals λ BsB, the length of the secret program to be recovered. 

3. For each k = 1, 2, ..., N, perform the following authentication operations. 

3.1 Create a character string SBkB of length λ BEB from the characters in PBkB either by 

discarding extra characters in PBkB if λ BkB > λBEB or by repeating the characters of 

PBkB at the end of SBkB if λ BkB < λ BEB, when λ BkB ≠ λ BEB. 

3.2 Regarding SBkB as a sequence of 8-bit integers with each character in SBkB 

composed of 8 bits, compute the sum of the integers, take the modulo-Y 

value of the sum as ABSkB

', transform ABSkB

' into a binary number, and adjust its 

length to be λ BY B, the length of the key Y, by padding leading 0’s if necessary. 

3.3 Do the same to EBkB, resulting in a binary number ABEkB

'. 

3.4 Compare ABSkB

' with the previously extracted ABSkB

; if mismatching, issue the 
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message “the camouflage program is not genuine,” and stop the algorithm. 

3.5 Compare ABEkB

' with the previously extracted ABEkB

; if mismatching, issue the 

message “the share data have been changed,” and stop the algorithm. 

Stage III. Recovering the secret program. 

4. Compute SBs B = E⊕SB1B⊕SB2B⊕...⊕SBN B, and regard it as a character string. 

5. Use the ASCII codes 0D and 0A (“carriage return” and “line feed”) in SBs B as 

separators, break SBs B into program lines to reconstruct the original secret program 

PBs B as output. 

Note that in Step 4 above, we conduct the exclusive-OR operations of 

E⊕SB1B⊕SB2 B⊕...⊕SBN B. This will indeed result in the desired SBs B because E was computed as 

E = SBs B⊕SB1 B⊕SB2 B⊕...⊕SBN B in Step 2 of Algorithm 7.1, and so 

E⊕SB1B⊕SB2 B⊕...⊕SBN B = (SBs B⊕SB1 B⊕SB2 B⊕...⊕SBN B)⊕SB1 B⊕SB2 B⊕...⊕SBN B 

= SBs B⊕(SB1 B⊕SB1 B)⊕...⊕(SBN B⊕SBN B) 

= SBs B⊕0⊕0⊕...⊕0 = SBs B 

by the commutative and associative laws of the exclusive-OR operation and the facts 

that X⊕X = 0 and X⊕0 = X for any bit X, where the bold character 0 is used to 

represent 8 consecutive bits of zero, i.e., 0 = 00000000. 

7.4 Discussions on Security Protection 

In the previous discussions, we assume that the proposed algorithms of secret 

sharing and recovery (Algorithms 7.1 and 7.2) are known to the public, and that the 

key Y is held by a supervisor other than any of the N participants. The key is provided 

by the supervisor as an input to the secret program sharing and recovery processes 

described by Algorithms 7.1 and 7.2; it is not available to any participant. Under these 

assumptions and by Algorithm 7.2 above, if any participant changes the content of the 
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camouflage program or that of the share contained in the stego-program which he/she 

holds before the secret program recovery process, such illegal tampering will be 

found out and warnings issued during the recovery process. 

However, there still exists in the two algorithms another kind of weakness in 

security protection of the secret program. That is, the secret program may be 

recovered illegally if all the stego-programs are stolen by a person who knows the 

algorithms, because then he/she may run Algorithm 7.2 to extract the secret program 

without performing Step 3, as can be figured out!  

One way to remove this weakness is to use the secret key to randomize the 

result of E = SBs B⊕SB1B⊕SB2B⊕...⊕SBN B computed in Step 2 in Algorithm 7.1 before E is 

divided into shares in the next step. We implement this by letting the secret key Y join 

the exclusive-OR operation of Step 2 after expanding Y repeatedly to have a length 

equal to that of the secret program SBs B. That is, in Step 2 of Algorithm 7.1 we repeat the 

key Y’s and concatenate them until the length of the expanded key Y' in the unit of 

character (8 bits for a character) is equal to λBs B, the length of SBs B, and then compute E 

instead as E = SBs B⊕SB1B⊕SB2B⊕...⊕SBN B⊕Y'. Correspondingly, in Step 4 of Algorithm 7.2 we 

expand Y similarly to get Y', and then compute SBs B instead as SBs B = E⊕SB1 B⊕SB2 B⊕...⊕SBN B⊕Y'. 

The properties of the exclusive-OR operation assure that the SBs B so computed is the 

desired secret program in its string form. In this way, without the key Y, SBs B obviously 

cannot be recovered, and so the previously-mentioned weakness is removed. 

7.5 Experimental Results 

In one of our experiments, we applied the proposed schemes described 

previously to share a secret program among three participants. The main part of the 

secret program seen in the window of the Microsoft VCP

++
P editor is shown in Figure 

7.2(a), which has the function of generating a secret key from an input seed. And part 
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of one of the three camouflage programs is shown in Figure 7.2(b). After hiding the 

shares and the authentication signals in the comments of each camouflage programs, 

the stego-program resulting from Figure 7.2(b) appears to be the upper part of Figure 

7.2(c) which is not different from that of Figure 7.2(b). The real content of the 

stego-program seen in the window of the UltraEdit 32 editor is shown in the lower 

part of Figure 7.2(c) which includes the ASCII codes representing the program on the 

left and the appearance of the codes as characters on the right. The recovered secret 

program is shown in Figure 7.2(d), which is identical to that shown in Figure 7.2(a). 

We also tested the case of recovery with one of the stego-images (the second one) 

being damaged, as shown in Figure 7.3(a). The proposed scheme issued a warning 

message, as shown in Figure 7.3(b). 

7.6 Concluding Remarks 

For the purpose of protecting software programs, new techniques for sharing 

secret source programs and authentication of resulting stego-programs using four 

special ASCII control codes invisible in the window of the Microsoft VCP

++
P editor 

have been proposed. The proposed sharing scheme divides the result of 

exclusive-ORing the contents of the secret program and a group of camouflage 

programs into shares, each of which is then encoded into a sequence of invisible 

ASCII control codes before being embedded into the comments of the corresponding 

camouflage program. The resulting stego-programs are kept by the participants of the 

sharing process. The original function of each camouflage program is not destroyed in 

the corresponding stego-program. The sharing of the secret program and the 

invisibility of the special ASCII codes as share data provides two-fold security 

protection of the secret program. 
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(a) Main part of the secret source program seen in the window of the Microsoft VCP

++
P 

editor. 

 

(b) Part of one camouflage program seen in the window of Microsoft Visual CP

++
P 

editor. 

Figure 7.2 Experimental results of sharing a secret program. 
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(c) The stego-program resulting from (b) seen in the window of Microsoft Visual CP

++
P 

editor (upper part) and UltraEditor 32 editor (lower part). 

Figure 7.2 Experimental results of sharing a secret program (continued). 
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(d) Recovered secret program seen in the window of Microsoft Visual CP

++
P editor. 

Figure 7.2 Experimental results of sharing a secret program (continued). 

 

In the secret program recovery process, the reversibility property of the 

exclusive-OR operation is adopted to recover the secret program using the share data 

extracted from the stego-programs. To enhance security of keeping the camouflage 

programs, a secret random key is adopted to verify, during the recovery process, 

possible incidental or intentional tampering with the hidden share and the camouflage 

program content in each stego-program. The key is also utilized to prevent 

unauthorized recovery of the secret program by illegal collection of all the 

stego-programs and unauthorized execution of part of the proposed algorithms. 

Experimental results have shown the feasibility of the proposed method. Future 

research may be directed to applying the invisible ASCII control codes to other 

applications, such as watermarking of software programs for copyright protection, 

secret hiding in software programs for covert communication, authentication of 

software program correctness, and so on. 
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(a) Destructed stego-program of Figure 7.2(b) seen in the window of Microsoft Visual 
CP

++
P editor (the changed characters are highlighted). 

 

 

(b) A message showing the content of the original camouflage program has been 
changed. 

Figure 7.3 An experimental result of authenticating a destructed stego-program. 
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Chapter 8                     
Covert Communication with Authentication 

via Software Programs Using Invisible 

ASCII Codes 

8.1 Idea of Proposed Method 

ASCII codes, expressed as hexadecimal numbers, were designed to represent 

8-bit characters for information interchange. It is found in this study that some ASCII 

codes, when embedded in certain locations in CP

++
P programs, become invisible in the 

source code editors of Visual C++ and C++ Builder under certain Windows OS 

environments. This phenomenon may be utilized for data hiding. 

In Chapter 7, we have proposed a method for security protection of software 

programs by information sharing and authentication techniques using some invisible 

ASCII control codes. The principle of data hiding in source programs is still suitable 

for covert communication here. But more invisible codes have been found in this 

study, which are categorized into two types, one appearing as nothing like being 

non-existing, and the other as spaces just like the ASCII space code 20. We call the 

former null code and the latter spacing code. Inserting invisible codes into a program 

do not change its function. 

Such invisibility was found in fours environments formed by Microsoft Visual 

Studio (MVS) .NET 2003 and Borland CP

++
P Builder (BCB), version 6, in Windows XP 

Service Pack 2 and its Chinese version, which will be called the English and Chinese 

OS, respectively, subsequently. The details are summarized in Table 8.1. 

In type-1 environment with the MVS in the English OS, four null codes, 1C, 1D, 
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1E, 1F, were found, which are invisible when inserted between two characters in a 

comment in a program. One spacing code, A0, has been found, which appears as a 

space when inserted between two words in a comment. Also found as a spacing code 

is the tab-control code 09, which in default appears as four spaces when inserted 

before the end of a program line, i.e., before the code pair, 0D0A, for carriage return 

and line feed. The codes, A0 and 09, will be called between-word and line-end spacing 

codes, respectively. 

For the other three environment types, invisible codes also exist and are listed in 

Table 8.1 except that type-2 environment has no null code. Also, 09 appears to be 

eight spaces in BCB instead of four as in MVS. 

Table 8.1. Invisible codes under various environments. 

Environment Null codes 
Between-word 

spacing codes 

Line-end 

spacing codes 

Type 1: MVS under 
English OS 

1C-1F A0 09 

Type 2: BCB under 
English OS 

None A0 09 

Type 3: MVS under 
Chinese OS 

1C-1F 01-08, 0B-0F, 80 09, 0B, 0C 

Type 4: BCB under 
Chinese OS 

1C-1F, 80 01-08, 0B-19, 1B 09, 0B, 0C 

 

In the remainder of this chapter, the principle of data hiding for use in covert 

communication is introduced in Section 8.2. The secret hiding, recovery and 

authentication processes are described in Section 8.3. The experimental results are 

shown in Section 8.4. Finally, some concluding remarks are given in Section 8.5. 



 

 137

8.2 Data Hiding Using Invisible Codes 

We conduct data hiding using invisible codes in three ways as follows. 

1. Alternative space coding 

Whenever a space represented by 20 appears between two words in a comment, 

it may be replaced by a between-word spacing code, like A0 for type-1 environment, 

without causing visual difference in a source code editor. When there are 2P

n
P−1 

between-word spacing codes CB1 B, ..., CB2n−1 B, by regarding 20 as CB0 B we may embed n bits 

bB1 B, bB2B, ..., bBn B as follows: 

if bB1 BbB2B....bBn B = m, replace 20 by CBmB 

which we call alternative space coding. 

For the first two environments in Table 8.1, 1-bit alternative space coding is 

applicable. And for the latter two, there are 14 and 23 spacing codes, respectively and 

so 3-bit and 4-bit alternative space coding are applicable, respectively. 

2. Line-end space coding 

We may place multiple line-end spacing codes before each program line end 

without causing visual difference in a source code editor because such codes appear 

just like background spaces in the window of the editor. Since the code 20 may be 

used as well to create spaces, when there are 2P

n
P−1 line-end spacing codes CB1B, ..., CB2n−1 B, 

by regarding 20 as CB0 B we may embed n bits bB1 B, bB2B, ..., bBn B as follows: 

if bB0 BbB1B...bBn B = m, embed CBmB before the line end 

which we will call line-end space coding. 

For the first two environments, there is only one line-end spacing code 09, so 

1-bit line-end coding is applicable. For the latter two, since there are three such codes 
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09, 0B, and 0C, 2-bit coding can be implemented. 

Line-end space coding may be repeated unlimited times before the each line end 

to increase the data hiding rate. But to avoid creating long lines which reduce the 

steganographic effect, we require that each processed program line should not appear 

to be longer than the longest original program line. 

3. Null space coding 

Except for type-2 environment, there are four null codes, 1C, 1D, 1E, 1F. Let 

them be represented by CB0 B through CB3 B, respectively. We can embed a bit pair bB0 BbB1B as 

follows: 

if bB0 BbB1B = m, insert CBmB between two characters in a comment 

which we call null space coding  

Null space coding may be applied repetitively unlimited times as well. In practice, 

we embed message bits evenly into all between-character spaces among the comments 

so that the times will be limited. 

8.3 Secret Hiding, Recovery and Authentication 

The proposed data hiding process essentially is to apply alternative, line-end, and 

null space coding in order. Since the three schemes are applied to distinct locations in 

a program, the data may be recovered without ambiguity. As an example, we describe 

in the following an algorithm for type-1 environment. To facilitate data recovery, we 

prefix to the beginning of the input binary string of the message a binary number 

specifying the length of the input, resulting in an extended bit string S. 

1. At each between-word space coded by 20, remove the leading bit b from S, and 

replace 20 by A0 if b =1. 

2. Find the maximum LBmax B of all program line lengths. 
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3. For each program line, repeat the operations of removing the leading bit b from S 

and inserting before the line end the code 0D0A if b = 1; or 20 if b = 0, until the 

length of the line, as it appears in the source code editor, reaches LBmax B. 

4. Count the number M of all between-character positions in the comments, as well 

as the number L of the remaining bits in S; compute the ceiling value ⎡L/M⎤; add 1 

to it to make it even if it is not; and denote the final value as q. 

5. For each between-character position in the comments, take q leading bits from S, 

and for every two bits bB0 BbB1B of them, insert CBmB into the position if bB0 BbB1 B = m, where 

CBmB is one of CB0 B through CB3 B representing 1C, 1D, 1E, and 1F, respectively. 

The proposed data recovery process, after extracting from the input string the 

leading bits which specify the length of the original message, performs essentially the 

reverse versions of the three coding schemes involved in the data hiding process. The 

details are omitted due to the page limit. 

In the proposed authentication scheme, we use a 16-bit key K and the input 

message string to generate an authentication signal A which is then embedded in the 

stego-program as well using null space coding. The signal is computed as the 

modulo-K value of the sum of the key value and the 16 bits of every two characters in 

the input message string. Then, in the data recovery process, the embedded 

authentication signal A is extracted to match with an authentication signal A' 

computed similarly from the extracted message content and the key. If the embedded 

message content has not been tampered with, then A and A' will match. If not, then the 

message must have been modified. In such a way, even when the data hiding 

algorithm is known to the public as is usually assumed, without the secret key it is 

impossible to pass such an authentication process with a modified stego-program. 
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8.4 Experimental Results 

One of the experiments we conducted for type-1 environment is reported here. A 

message “This is a new covert communication method” is embedded into a cover 

program, part of which is shown in Figure 8.1(a). The binary form of the message is 

obtained from the ASCII characters representing the message. It is U00000001U 

U01100000U U01010100U U01101000U... in which the first 16 bits specify the length of the 

message string, and the remaining ones represents T, h, and so on. And the encoding 

result of it is 20 20 20 20 20 20 20 A0 20 A0 A0 20 20 20 20 20 ... The stego-program 

seen in the source code editor is shown in Figure 8.1(b), which looks no difference 

from Figure 8.1(a). And the real content of the program seen in the UltraEdit editor is 

shown in Figure 8.1(c), in which the hidden invisible codes can be seen with those for 

the first 16 bits being enclosed by rectangles. The recovered message is shown in 

Figure 8.1(d). As a demonstration of authentication, we show in Figure 8.2(a) a 

modified version of the stego-program of Figure 8.1(b) in the UltraEdit editor, in 

which the codes fro the 8th and 9th bits of the message have been modified. The 

authentication result is shown in Figure 8.2(b) in which a warning message issued by 

the data recovery process is seen. 

8.5 Concluding Remarks 

A new method to covert communication via CP

++
P source programs using invisible 

ASCII codes has proposed. A secret message is encoded by some special ASCII codes, 

which are embedded in a cover program. Such codes are invisible in the source code 

editors of Visual C++ and C++ Builder under Windows environments, creating a good 

steganographic effect without changing the original function of the cover program. 

To enhance security, tamper-proof authentication of the stego-program content 

using a secret key has also been proposed. Without the key, false messages cannot 
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pass the authentication process. Experimental results show the feasibility of the 

proposed method. Future works may be directed to applying the proposed data hiding 

technique to other applications. 

 

 

(a) Cover program seen in source code editor. 

 

 

(b) Stego-program seen in source code editor. 

Figure 8.1 An experimental result. 
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(c) Stego-program seen in UltraEdit. 

 

(d) Recovered message. 

Figure 8.1 An experimental result (continued). 



 

 143

 

(a) A modified stego-program of Figure 8. 1(b).  

 

(b) A warning message issued by authentication process. 

Figure 8. 2 An example of authentication results. 
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Chapter 9                        

Covert Communication via PDF 

Files and PDF File Authentication by 

Invisible Codes 

9.1 Idea of Proposed Methods 
Portable Document Format (PDF) files, created by Adobe Systems for document 

exchange [63], are very popular for document exchange nowadays. The format was 

created by Adobe Systems and is a type of fixed layout for representing documents in 

a manner independent of the application software, hardware, and operating system. 

Each PDF file contains a complete description of a 2-D document which includes 

texts, fonts, images, and vector graphics. Many PDF readers and writers are available 

for reading and creating PDF files. 

Additionally, ASCII codes were designed to represent 8-bit characters for 

information interchange [65]. There are totally 256 of them among which 95 ones are 

printable, numbered 32 to 7E (hexadecimal). These 95 codes together with the control 

code 0A (for line feeding) are used for representing secret messages in this study. 

They are listed in Table 9.1. The width of a text character represented by an ASCII 

code as seen in a PDF reader may be specified by a value in an array called “widths” 

in the type-1 font dictionary in a PDF file [63]. 

It is found in this study that the ASCII code A0 (for non-breaking space), when 

embedded in a string of text characters, become invisible in the PDF reader, Adobe 

Reader 8.1.2, under the Windows OS environment. This phenomenon may be utilized 

for data hiding, as done in this study. 
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On the other hand, for security it is necessary to verify the authenticity of a file 

received from another party or kept for a long time in a certain environment, before 

the file is used for various purposes. This is the authentication problem of the file, 

which should be solved for protection of the PDF file against unintentional changes 

and malicious manipulations. 

As mentioned previously, we have proposed a method using a data hiding 

technique for covert communication via PDF files and a method for authentication of 

PDF files by the invisible codes mentioned above. The principle for the former 

method will be described in Section 9.2. The detail of it will be described in Section 

9.3, and the detail of the latter method will be described in Section 9.4. Some 

concluding remarks are given in Section 9.5. 

 

Table 9.1 ASCII codes selected for message representations in this study. 
Index Chara-

cter 
Hexadeci-
mal code Index Chara-

cter
Hexadeci-
mal code Index Chara-

cter 
Hexadeci-
mal code Index Chara-

cter 
Hexadeci-
mal code 

1 LF 0A 25 7 37 49 O 4F 73 g 67 
2  20 26 8 38 50 P 50 74 h 68 
3 ! 21 27 9 39 51 Q 51 75 i 69 
4 " 22 28 : 3A 52 R 52 76 j 6ª 
5 # 23 29 ; 3B 53 S 53 77 k 6B 
6 $ 24 30 < 3C 54 T 54 78 l 6C 
7 % 25 31 = 3D 55 U 55 79 m 6D 
8 & 26 32 > 3E 56 V 56 80 n 6E 
9 ' 27 33 ? 3F 57 W 57 81 o 6F 

10 ( 28 34 @ 40 58 X 58 82 p 70 
11 ) 29 35 A 41 59 Y 59 83 q 71 
12 * 2A 36 B 42 60 Z 5ª 84 r 72 
13 + 2B 37 C 43 61 [ 5B 85 s 73 
14 , 2C 38 D 44 62 \ 5C 86 t 74 
15 - 2D 39 E 45 63 ] 5D 87 u 75 
16 . 2E 40 F 46 64 ^ 5E 88 v 76 
17 / 2F 41 G 47 65 _ 5F 89 w 77 
18 0 30 42 H 48 66 ` 60 90 x 78 
19 1 31 43 I 49 67 a 61 91 y 79 
20 2 32 44 J 4A 68 b 62 92 z 7A 
21 3 33 45 K 4B 69 c 63 93 { 7B 
22 4 34 46 L 4C 70 d 64 94 | 7C 
23 5 35 47 M 4D 71 e 65 95 } 7D 
24 6 36 48 N 4E 72 f 66 96 ~ 7E 
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9.2 Principle of Encoding Message Data 

Two types of invisibility may be created from A0. One type is created by 

specifying the width of A0 appearing in the PDF reader to be the same as that of the 

original white space represented by the ASCII code 20. Then, after being inserted 

between two words in the text of a PDF file, A0 appears to be exactly the same as a 

white space exhibited by the code 20. Figure 9.1 illustrates this phenomenon. So A0 

and 20 may be used alternatively as between-word spaces so that we may encode a bit 

b of the secret message and embed it at a between-word location according to the 

following binary coding technique:  

if b = 1, then replace 20 at the between-word location by A0; else, make no change

 (1) 

which we will call alternative space coding. 

 

 

Figure 9.1 Display of all ASCII codes in Adobe Reader 8.1.2, in which only 20 and A0 
appear to be white spaces (the first spaces in the 3rd and the 11th lines) 

The other type of invisibility is created by setting the width of A0 to be zero in 

the PDF file. Then after being inserted between two characters, A0 appears to be 
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nothing just like nonexistent in a PDF reader, as found in this study. Figure 9.2 

illustrates this phenomenon. This invisibility is still true even when multiple A0’s are 

all embedded at a single between-character location. Figure 9.3 illustrates this 

phenomenon. We say that A0 is used as a null code in this way, and contrastively, as a 

spacing code in alternative space coding described by (1) above. 

 

 

Figure 9.2 Display of all ASCII codes in the window of Adobe Reader 8.1.2, in which 
the width of A0 was set to be zero so that A0 becomes nonexistent (i.e., there is 
no space before the first comma in the 11th row, as compared with Figure 9.1). 

 

Note that the width of the original space code 20 cannot be changed to be zero 

because it is used as a normal space between every two words in a PDF file. So, A0, 

when used as a null code, has no symmetrical code for use to implement binary 

coding like (1). But we may still hide a character C of the message by unitary coding 

at a between-character location in the following way: 

if the index of C = m, embed m consecutive A0’s at the between-character location

 (2) 

which will be called null space coding. 
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Note that A0 can only be used in one of the two ways of coding and not in both 

in each page of a PDF file because its width can only be specified once for each PDF 

page. 

 

(a) Appearance in Adobe Reader 8.1.2 of a sentence “I am a boy” with one, two, and three 
A0’s inserted at locations between the characters a and m, b and o, and o and y. 

 

(b) Appearances of the A0’s in the window of UltraEdit (in the highlighted portion). 

Figure 9.3 Invisibility of multiple A0’s at between-character locations. 

 

Alternative space coding has the advantage of incurring no increase of the PDF 

file size because it just replaces the space exhibited by 20 by another exhibited by A0. 
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However, if the between-word locations in a PDF file are few, then only a small 

number of bits may be embedded. On the contrary, since theoretically an unlimited 

number of A0’s as null codes may be inserted at a between-character location, and 

since there are much more between-character locations than between-word locations, 

encoding efficiency of null space coding is much higher. But an obvious disadvantage 

is that the resulting PDF file size will be increased. 

Therefore, three ways of coding for use in different application conditions, 

namely, pure alternative space coding, pure null space coding, and a mixture of them. 

In the third way, we may use alternative space coding first to embed as many bits in 

the secret message as possible, and then apply null space coding to embed the 

remaining portion of the message (in unit of character) using the last pages of the PDF 

files. 

9.3 Message Hiding and Recovery for Covert Communication and 

Experimental Results 

Normal text messages may be represented by the 96 characters with their 

corresponding ASCII codes listed in Table 9.1. For alternative space coding, each 

secret message should be transformed first into a bit string. For this, we concatenate 

the binary ASCII codes (each consisting of 8 bits) of the characters in the message as 

the desired string. The bit string then is embedded, bit by bit sequentially, into the 

between-word locations in the cover PDF file according to Rule (1) above. 

To implement null space coding, the secret message is regarded as a string of 

characters represented by the 96 ASCII codes listed in Table 9.1. However, to reduce 

the total number of inserted A0’s and so the resulting stego-file size, instead of 

applying Rule (2) above directly in which the number of A0’s used to encode a 

character C is the index value m of C, we use less A0’s to encode characters with 
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higher occurrence frequencies in the secret message, following the principle of 

Huffman coding. That is, we assign a single A0 to encode the character with the 

largest frequency, two A0’s to encode the character with the second largest frequency, 

and so on. And those characters among the 96 ones which do not appear in the secret 

message are encoded by zero A0 (because these characters will not be processed in 

the message decoding procedure). The encoding result is summarized as a table, 

called the null space coding table, with 96 entries filled with the corresponding 

numbers of A0’s so obtained. For example, given the secret message “This is a covert 

communication method,” after counting the frequencies of the 16 distinct characters 

in it, we have the corresponding null space coding table as shown in Table 9.2, in 

which all 0’s in the entries have been removed to make the table more readable. 

Every message will have a distinct null space coding table. For the purpose of 

message decoding using this table, it should be embedded as well in the cover PDF 

file as part of the hidden data. In practice, we do not embed all the content of the table 

but the numbers of A0’s only into the first 96 consecutive between-character locations 

in the text of the cover PDF. 

Finally, it is mentioned that the data recovery process is essentially a reverse of 

the data hiding process, with retrieval of the null space coding table conducted first, 

followed by extraction and decoding of the hidden message. 

We report one of the experiments we conducted for null space coding here. The 

input secret message is “This is a covert communication method” to which the 

corresponding null space coding table has been shown in Table 9.2. After the table 

followed by the message was embedded into the cover PDF file shown in Figure 

9.4(a), the initial part of the stego-file appearing in the UltraEdit window is shown in 

Figure 9.4(b), from which we can see the repeating A0’s encoding each of the 96 

commonly-used characters. 
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Table 9.2 Null space coding table for message “This is a covert communication 
method.” 

Index 
Chara- 

cter 

#A0’s 

embe- 

dded 

Frequ-

ency 
Index 

Chara- 

cter 

#A0’s 

embe-

dded 

Frequ-

ency
Index

Chara-

cter 

#A0’s 

embe-

dded 

Frequ-

ency
Index 

Chara- 

cter 

#A0’s 

embe- 

dded 

Frequ

ency 

1 LF 12 1 25 7   49 O   73 g   

2  1 5 26 8   50 P   74 h 9 2 

3 !   27 9   51 Q   75 i 2 4 

4 "   28 :   52 R   76 j   

5 #   29 ;   53 S   77 k   

6 $   30 <   54 T 13 1 78 l   

7 %   31 =   55 U   79 m 5 3 

8 &   32 >   56 V   80 n 10 2 

9 '   33 ?   57 W   81 o 3 4 

10 (   34 @   58 X   82 p   

11 )   35 A   59 Y   83 q   

12 *   36 B   60 Z   84 r 15 1 

13 +   37 C   61 [   85 s 11 2 

14 ,   38 D   62 \   86 t 6 3 

15 -   39 E   63 ]   87 u 16 1 

16 .   40 F   64 ^   88 v 17 1 

17 /   41 G   65 _   89 w 77  

18 0   42 H   66 `   90 x 78  

19 1   43 I   67 a 7 2 91 y 79  

20 2   44 J   68 b   92 z 7A  

21 3   45 K   69 c 4 3 93 { 7B  

22 4   46 L   70 d 14 1 94 | 7C  

23 5   47 M   71 e 8 2 95 } 7D  

24 6   48 N   72 f   96 ~ 7E  

 

In our experiments, to generate a stego-file, the process goes in the following 

way. First, we embed the text of the secret message into the PDF text in the “.txt.” 

format. We then tranform the result into a PDF file by a special PDF writer, which 

was implemented in this study, as the desired stego-file. 

In particular, we can see in the highlight portion the 12 A0’s representing the 
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ASCII code 0A (line feed), the single A0 representing the space code 20, the 13 A0’s 

representing the character T (the first character in the secret message), and so on. The 

stego-file appears as Figure 9.4(c) which is identical to Figure 9.4(a). The recovered 

message is shown in Figure 9.4(d). 

 

 

(a) Cover file seen in Adobe Reader 8.1.2 window. 

 

(b) Stego-file seen in UltraEdit window. 

Figure 9.4 An experimental result of null space coding. 
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(c) Stego-file seen in Adobe Reader 8.1.2 window. 

 
(d) Extracted message. 

Figure 9.4 An experimental result of null space coding (continued). 

 

9.4 PDF Authentication Process and Experimental Results 

As mentioned previously, the ASCII code A0, when embedded between two 

characters in PDF texts with its width set to zero (i.e., with no width), appears to be 

nothing like nonexistent in the PDF reader, Adobe Reader 8.1.2, under the Windows 

OS environment. This invisibility is still true when multiple A0’s are embedded at a 

single between-character location. Embedding of such invisible codes in PDF files as 

authentication signals will enhance the security of the signals. Note that A0 is not 

used in common text contents. 

The proposed PDF file authentication method generates an 8-bit number for each 

word in the text of the PDF file to be protected, with the help of a secret key in order 
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to enhance security of the generated value. The value for each word then is 

transformed into a number of repeating A0’s as the desired authentication signal, 

which is then embedded to the right of the word for use in future authentication. 

Before describing the details of the proposed authentication signal generating 

and embedding process, we define some notations. We know that 1-bit 

exclusive-ORing of two bits a and b, a⊕b, results in 0 if a = b and 1 if a ≠ b. We 

define 8-bit exclusive-OR operation on two ASCII codes A = aB1 BaB2 B...aB8 B and B = 

bB1 BbB2B...bB8 B as A⊕B = cB1 BcB2 B...cB8B where each cBi B = aBi B⊕bBi B for i = 1, 2, ..., 8. 

Let a word W in the text T of a PDF file F be expressed as a string of characters 

represented by their corresponding 8-bit ASCII codes AB, BAB　B, ..., ABn B, that is, let W = 

AB1 BAB2 B...ABnB. And let k be a secret key used as the seed for an 8-bit random number 

generating function f. The proposed authentication signal generating and embedding 

process is as follows. 
 

1. Scan the text T in the input PDF file F, and for each word W = AB1 BAB2B...ABn B in T, use 

the key k and the function f to generate in order a random number K. 

2. Compute an 8-bit number S for W as S = AB1 B⊕AB2 B⊕...⊕ABnB⊕K. 

3. Map S to an integer N which is the modulo-8 value of S, i.e., compute N = S mod 

8. 

4. Embed N repeating A0’s as the authentication signal for W to the right of W, i.e., 

embed them at the location between the character ABn B and the white space next to 

ABn B. 

5. Repeat the above steps until all words in T are processed. 
 

For example, let the word being processed is W = “an” whose hexadecimal 

ASCII codes are 61 and 6E, and binary codes are 01100001 and 01101110, 

respectively. Suppose that the random number generated by f is K = 01010101. The 
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8-bit value S then is [(01100001) ⊕ (01101110)] ⊕ (01010101) = (00001111) ⊕ 

(01010101) = 01011010, which is 90 in decimal form. And so N is 90 mod 8 = 2. 

Consequently, we embed two A0’s to the right of W.  

The detail of the authentication process with input PDF file F' is as follows, 

where the key k and the random number generator f are the same as those used in the 

authentication signal generation scheme. The purpose of the process is to check the 

integrity of the text T' in F'. 
 

1. Scan the text T' in the input file F'; and for each word W' = AB1 B'AB2 B'... ABmB' in T', 

count the number N of A0’s embedded to the right of W', and use the key k and the 

function f to generate in order a random number K. 

2. Compute an 8-bit value S' for W' as S' = AB1 B' ⊕AB2 B' ⊕...⊕ABn B' ⊕K. 

3. Map S' to an integer N' which is the modulo-8 value of S', i.e., compute N' = S' 

mod 8. 

4. Compare N' and N, and if N' ≠ N, regard W' as having been modified and mark it 

by changing all its characters into squares. 

5. Repeat the above process until all words in T' are processed. 
 

Continuing the last example, suppose that the word “an” has been modified to be 

simply “a” because of the noun after it has been changed. Then, W' = “a” has a single 

binary code 01100001. Also, assume that no word in the file has been deleted so that 

the random number K generated for it is the same as that used before, i.e., K = 

01010101. So S' = 01100001⊕01010101 = 00110100 which is 52 in decimal form. 

And thus N' = 52 mod 8 = 4. But we know from the last example that the number N of 

embedded A0’s for the current word is N = 2 which is not equal to 4. So we can 

decide that the word “a” is a result of tampering. 

We take the modulo-8 value of the generated 8-bit number S or S' as the number 
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of the invisible code A0 to be embedded. So, there are 8 possible cases, 0 through 7 

A0’s being embedded. This means that the probability for an attacker to guess the 

number of embedded A0’s correctly to create a fake word is 1/8. To increase the 

security, we may, for example, take the modulo-12 value or even the modulo-16 value 

instead. Then, the probability will be decreased to 1/12 or 1/16 at the expense of 

inserting more A0’s for each word. If this is still not satisfiable to the application need, 

one further enhancement is to compute the authentication signal using not just the 

data of the current word and the generated random number, but also the computed 

8-bit number for the previous word, so that the formula S = AB1 B⊕AB2B⊕...⊕ABn B⊕K used in 

Step 2 of the authentication signal generating and embedding process described above 

is changed to S = AB1 B⊕AB2 B⊕...⊕ABn B⊕K⊕S' with S' being the 8-bit number computed for 

the previous word. In this way, even if the number of A0’s is guessed correctly for the 

current word (with a probability of 1/8), that for each of all the subsequent words 

must also be guessed, in contrast to the original case of independent guessing for each 

single word. The probability for correct guessing for the current word and all the 

subsequent ones will decrease exponentially because if there are k words after the 

current one, this probability is (1/8) P

k+1
P = 1/8P

k+1
P. 

We report a simple one of the experiments we have conducted. The text in a PDF 

file to be protected includes three lines of words: “Name: Lee, I-Shi,” “Birthday: May 

25, 1961,” and “Sex: male.” To have a complete authentication of all the characters in 

the text, the punctuation next to a word is also considered as part of the word in the 

authentication signal generation. So, totally there are nine words in the above three 

text lines. The appearance of these lines in the window of Adobe Reader 8.1.2 is 

shown in Figure 9.5(a). After the corresponding numbers of A0’s for the nine words 

are computed and embedded to the right of the words, the resulting PDF file looks 

like Figure 9.5(b) which is identical to Figure 9.5(a), meaning that the inserted A0’s 
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are invisible indeed. The appearance of the resulting file in the UltraEdit window is 

shown in Figure 9.5(c), in which we can see the embedded A0’s to the right of the 

words. We then simulated the case that the text in the file was tampered with 

intentionally, so that the last name “Lee” and the year “1961” were changed to be 

“Lin” and “1951,” respectively. After the proposed authentication process was applied 

to the modified PDF file, the resulting PDF file is shown in Figure 9.5(d) in which the 

modified words have been marked as squares. Note that in the above results, for 

simpler demonstration using the figures, we did not adopt random numbers in the 

computations of the authentication signals. 

 

 

(a) Appearance of three text lines of original PDF file in window of Adobe Reader 8.1.2. 

 

(b) Appearance of resulting PDF file with authentication signals (A0’s) embedded. 

Figure 9.5 An experimental result for authenticating a PDF file. 
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(c) Appearance of resulting PDF file in window of UltraEdit (the A0’s can be seen). 

 

(d) Appearances of authentication result with squares indicating detected changes. 

Figure 9.5 An experimental result for authenticating a PDF file (continued). 

9.5 Concluding Remarks 

A new covert communication method via PDF files is proposed. A secret 

message may be hidden steganographically into PDF files by alternative space coding 

and null space coding using the special ASCII code A0 which is invisible between 

words and between characters in the windows of common PDF readers if its width is 

set to be the same as that of the space code 20 and to be zero, respectively. 

Experimental results show the feasibility of the proposed method. 

Also, a method for authenticating PDF files using a special ASCII code A0 has 

been proposed. For each word in the text of a PDF file to be protected, an 

authentication signal composed of repeating A0’s is generated from the 8-bit ASCII 
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codes of the characters composing the word as well as a random number. The signal is 

then embedded to the right of the word. These A0’s are invisible in the window of 

common PDF readers, enhancing the security of the embedded authentication signals. 

A corresponding authentication process to check the integrity of a processed PDF 

file has also been proposed. Each modified word in the file will be detected. Without 

the original secret key for use in generating the random numbers, malicious creation 

of a fake file is nearly impossible. Experimental results show the feasibility of the 

proposed authentication method. 

Future researches may be directed to applying the proposed methods to other 

applications like watermarking of PDF files for copyright protection, enhancing the 

security of the proposed method, etc. 
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Chapter 10                       

Secret Communication through Web Pages 

and Automatic Authentication of Web Pages 

Using Special Space Codes in HTML Files 

10.1 Idea of Proposed Method 

Due to high accessibility on the Internet, it is convenient to use the web page as a 

communication channel by hiding secret messages in the HTML file of a cover web 

page. A merit here is that the secret message cannot be destructed illegally unless the 

website publishing the web page is intruded and the HTML file modified. 

The proposed new secret communication method by embedding special space 

codes in the HTML files of web pages is described here. These codes appear as white 

spaces in the web page, and so may be used to encode secret message bits with 

steganographic effects. The codes are the result of a thorough investigation of all 

possible coding systems which can be applied in the HTML file. There are many of 

such codes, and each of them may be used to encode at least three message bits, 

increasing the data hiding capability and eliminating the weakness of certain methods 

[37] of using more than two space codes to encode one bit and creating undesirable 

double spacing at originally single-spaced between-word locations. 

The proposed method carries out the communication work between two sites, a 

sender and a receiver, through the Internet via web page publishing and downloading 

in the following way. 

 

1. At the sender site: 
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1.1 Create a web page containing mainly a piece of text. 

1.2 Hide the secret message to be transmitted in the HTML file of the page by the 

proposed method. 

1.3 Publish the web page on the Internet to make it accessible. 

2. At the receiver site: 

2.1 Browse the web page on the Internet. 

2.2 Download its HTML codes by a code editor like UltraEdit or by a special 

program (not directly by the web browser using the “save as new file” 

command). 

2.3 Extract the secret message hidden in the codes by the proposed method. 

 

On the other hand, with rapid network technology developments, web pages 

published on the Internet often suffer from attacks. It is desired to have an automatic 

authentication scheme to check the fidelity and integrity of concerned web pages 

periodically without invoking human visual inspection. Specifically, it is wished to 

verify the text content of each web page more precisely at the word level. A new 

method based on the data hiding method for this purpose is proposed in this study. 

A new automatic authentication method for checking the integrity of web page 

text contents is proposed. The method, aiming to check the authenticity of each single 

word, is based on a data hiding technique which uses some special space codes as 

authentication signals. Such codes, which are found in this study to be multiple and 

appear identical to normal white spaces in web pages, are used to encode certain 

binary mapping results from the word contents. These codes are then taken to replace 

the between-word spaces in the HTML codes, resulting in good steganographic effects. 

Security enhancement has also been considered, and related problems are solved by 

the use of secret keys and a multiple word encoding scheme. 
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In the sequel, in Section 10.2 we describe how secret messages are encoded. In 

Section 10.3, we describe the detail of the proposed covert communication method 

and some experimental result. In Section 10.4, we describe the proposed scheme to 

generate authentication signals using the special space codes, followed by the 

authentication signal embedding as well as authentication processes. The techniques 

proposed for security enhancement are described in Section 10.5, followed by some 

experimental results. Finally, some concluding remarks in Section 10.6. 

10.2 Secret Message Coding Using Space Characters in 

HTML 

The HTML, Hypertext Markup Language, was created for describing the 

structure of a web page, including its appearance and semantics. Many coding 

systems are applicable in the HTML to specify characters used in the web pages. It is 

found in this study that there exist many codes in the HTML, all of which appear to be 

a white space in the window of the web page browser of the Internet Explore (IE). 

These codes come from two distinct types of space characters, named (normal) space 

and non-breaking space, and are specified in the following ways. 

1. Direct character entry of the (normal) space ---  

A white space will appear in a line of HTML if the space bar on the keyboard 

is pushed during character typing, and the hexadecimal ASCII code 20 will be 

inserted in the program codes of the HTML file. 

2. Numeric character reference of the (normal) space --- 

We can also represent a (normal) space character in the HTML using a 

so-called numeric character reference, by the form &#xhhhh;, where hhhh = 

0020 is the hexadecimal value representing the character's Unicode scalar value; 
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or by the form &#dddd;, where dddd = 0032 is the decimal value equivalent to 

the hexadecimal value. That is, we may represent the white space as &#x20; or 

&#32;. It is found in this study that the code &#32 with the semicolon “;” missing 

is displayed as a space as well in the IE browser, while the code &#x20 without 

the semicolon will not but as the code &#x20 itself, a peculiar phenomenon! A 

constraint to use &#32 is that the character following it should not be a digit 

number; otherwise, it will become another code. We assume this constraint is 

satisfied in the HTML text in which this code is embedded. 

3. Numeric character reference of the non-breaking space --- 

The non-breaking space with the hexadecimal ASCII code A0 is displayed in 

a web page browser like IE as a white space, too. Therefore, we may similarly 

represent it in the HTML using a numeric character reference, by one of the three 

forms &#xA0;, &#160;, and &#160 (without a semicolon). 

4. Character entity reference of the non-breaking space --- 

The HTML accepts a third way of character specification, called character 

entity reference, which is a short-length text name used to identify a character. For 

the non-breaking space, it is &nbsp;. It is found that without the semicolon, the 

code &nbsp still appears to be a white space, so two codes are available for 

representing the white space. 

Totally, nine distinct codes may be used to specify a character which appears to 

be a white space in the web page browser of the IE, as summarized in Table 10.1. 

They are called space codes subsequently. An illustration of the appearances of all the 

space codes is shown in Figure 10.1. The first eight space codes of the nine ones are 

used to encode three message bits in this study as shown in the last table column, 

although all nine of them may be used to encode a digit of a novenary number as well. 
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Table 10.1 Character representations in HTML. 

No. name Reference type Code 
type 

Code inserted in 
HTML 

Bits 
encoded

1 (normal) space 
direct character 

entry 
ASCII 

typed space (with 
20h inserted) 

000 

2 (normal) space 
numeric character 

reference 
Unicode &#x20;  001 

3 (normal) space 
numeric character 

reference 
Unicode &#32; 010 

4 (normal) space 
numeric character 

reference 
Unicode &#32 011 

5 
non-breaking 

space 
numeric character 

reference 
Unicode &#xA0; 100 

6 
non-breaking 

space 
numeric character 

reference 
Unicode &#160; 101 

7 
non-breaking 

space 
numeric character 

reference 
Unicode &#160 110 

8 
non-breaking 

space 
character entity 

reference 
HTML 
name 

&nbsp; 111 

9 
non-breaking 

space 
character entity 

reference 
HTML 
name 

&nbsp unused

 

 

(a) The space codes seen in the window of the IE. 

Figure 10.1 Appearances of nine space codes as white spaces in the window of the IE. 
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(b) The codes inserted at between-word locations seen in the window of the 
FrontPage. 

Figure 10.1 Appearances of nine space codes as white spaces in the window of the IE 
(continued). 

 

10.3 Message Hiding and Experimental Results 

During message hiding, we regard a given message as a sequence of characters, 

including letters, punctuations, white spaces, symbols, etc. Each character is 

represented as an 8-bit ASCII code, resulting in a string of bits which we encode three 

by three into the first eight space codes shown in Table 10.1. Each space code is then 

embedded at a between-word location in the cover text in the HTML file, replacing 

the original code 20h there, resulting in a stego-text. The embedded codes, after being 

extracted during message recovery, can be decoded uniquely by table lookup using 

Table 10.1. 

To increase the security of the embedded message, we use a random number 

generator to randomize the order of the characters in the message string before they 

are encoded sequentially. A secret key is provided as the seed for the generator. The 

key is used again in message recovery to re-arrange the order of the extracted 

characters. Without the key, if the hidden characters cannot be properly re-ordered to 

get the correct message.  

The detailed algorithms for embedding a gven message is as follows. 
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Algorithm 10.1 Embedding of a secret message. 

Input: a secret message S in the form of a character string, a cover HTML text T, a 

secret key K, and a random number generator f. 

Output: a stego-HTML text T' with S embedded. 

Steps: 

1. Create a randomized version S' = CB1 B'CB2 B'...CBn B' of S = CB1 BCB2 B...CBn B in the following way, 

where CBi B and CBi B' represent characters of S and S', respectively, and n is the number 

of characters in S. 

1.1 Generate n distinct random numbers kB1 B, kB2 B, ..., kBnB, within the range of 1 

through n using the generator f with the secret key K as the seed. 

1.2 For i = 1, 2, .., n, take CBi B' in S' to be CBkiB

 in S. 

2. Convert the length n of S in the unit of character into a binary number and add 

leading 0’s to it to form a 3m-bit binary string B, where m is a pre-selected integer 

such that 3m is no smaller than the length of any possible message to be hidden. 

3. Transform each character in S' into its 8-bit binary ASCII code and concatenate 

them to form a binary string SB1B. 

4. Concatenate B and SB1 B to form a binary string S''. 

5. Embed S'' in T in the following way. 

5.1 Append zero, one, or two 0’s to SB1 B to form another binary string SB2 B with its 

length nB2 B being a multiple of 3. 

5.2 Encode every three bits of SB2B into a space code D according to the last 

column of Table 10.1. 

5.3 Embed D in T by replacing the (normal) space code 20h at a between-word 

location, starting from the top leftmost one in T in a raster scanning order. 

6. Take the resulting HTML text T' as the output. 
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In the above algorithm we assume that the text T is long enough to embed the 

message S. Also, the length of the message is also embedded in the leading 

between-word locations in T. This is necessary for the later work of message recovery 

to extract a correct numbers of characters from the stego-text. The detailed algorithm 

for extracting the embedded message is as follows. 

Algorithm 10.2. Extraction of a secret message. 

Input: a stego-HTML text T' with a message S embedded, and a secret key K and a 

random number generator f as those used in Algorithm 10.1. 

Output: the embedded message S. 

Steps: 

1. Extract the length n of the embedded message S in T' in the following way. 

1.1 For each of the m leading between-word locations in T' where m is a 

pre-selected integer mentioned in Algorithm 10.1, acquire the space code 

embedded there and decode it into three bits according to the last column of 

Table 10.1, resulting in a 3m-bit binary string B. 

1.2 While ignoring the leading 0’s in B, convert it into an integer n which 

presumably is the length of the embedded message S. 

2. Compute the value nB1B = ⎡n×8/3⎤ which is the number of between-word locations 

in T' where S is embedded. 

3. For each of the nB1 B between-word locations after the m leading ones in T', acquire 

the space code there and decode it into three bits according to the last column of 

Table 10.1, resulting in 3nB1 B-bit binary string SB2B. 

4. Take the leading n×8 bits of SB2 B to form a string S' and transform every 8 bits of S' 

into an ASCII character. 

5. Create a randomized version S = CB1 BCB2 B...CBn B of S' = CB1 B'CB2 B'...CBn B' in the following way, 
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where CBi B and CBi B' represent characters of S and S', respectively, and n is the number 

of characters in S'. 

5.1 Generate n distinct random numbers kB1 B, kB2 B, ..., kBnB, within the range of 1 

through n using the generator f with the same secret key K as the seed. 

5.2 For i = 1, 2, .., n, take CBi B in S to be CBkiB

' in S', resulting in a string of characters 

S = CB1 BCB2 B...CBn B as the desired output. 

For security consideration, the length of secret data should be long enough, e. g., 

more than 256 characters, to reduce the probability for a hacker to guess the message 

correctly. Otherwise, another way of security protection may be adopted, that is, to 

conduct the reordering operation in Step 1 of Algorithm 10.1 and Step 5 of Algorithm 

10.2 in unit of bits instead of in unit of characters. Since there are normally so many 

bits, it is almost impossible to get a correct guess. If these measures of security 

enhancement are taken, it can be figured out from the above algorithm that without a 

correct key, the embedded message, even when the stego-text is intercepted, is almost 

impossible to be recovered by a hacker. 

In order to have a clear illustration of the proposed method and to see clearly the 

embedded codes in web page and HTML editor windows, we report first a simple 

example of the experiments we conducted without embedding the length of the 

message and without using a secret key. Let the message to be embedded be “sky” 

whose three characters “s,” “k,” and “y” have 8-bit ASCII codes 01110011, 01101011, 

and 01111001, respectively. So the message in binary string form is 011 100 110 110 

101 101 111 001 which includes eight 3-bit segments, and can be encoded into eight 

space codes &#32 &#xA0; &#160 &#160 &#160; &#160; &nbsp; &#x20;. We 

embedded these codes at eight consecutive between-word locations in the following 

HTML text: 
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This is a secret communication method through HTML files. 

Then the result is: 

This&#32is&#xA0;a&#160new&#160communication&#160;method&#160;through&nbsp;HTML&#

x20;files. 

This stego-text, when observed in the web page browser of the IE, appears to be 

identical to that of the cover text, as shown in Figure 10.2. 

Another example of our experimental results is shown in Figure 10.3, in which 

we show a cover text in the IE and the Frontpage windows in Figures 10.3(a) and 

10.3(b), respectively; and a secret message in the Notepad window in Figure 10.3(c). 

The length of the message is 96 characters which are embedded first into the cover 

text as a 15-bit number. The stego-text appearing in the IE and the Frontpage 

windows is shown in Figures 10.3(d) and 10.3(e), repsectively. From the identicalness 

of Figures 10.3(a) and 10.3(d), the steganographic effect of the space codes is 

confirmed. 

 

 

(a) Cover text seen in the window of the IE. 

Figure 10.2. Invisibility of space codes for the message “sky” in an HTML text. 
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(b) Cover text seen in the window of the FrontPage editor. 

 

(c) Stego-text seen in the window of the IE. 

 

(d) Stego-text seen in the window of the FrontPage editor. 

Figure 10.2. Invisibility of space codes for the message “sky” in an HTML text 
(continued). 
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(a) Cover text seen in the window of the IE. 
 
 

 

(b) Cover text seen in the window of the FrontPage editor. 
 
 

 

(c) A secret message seen in the Notepad window. 

Figure 10.3. The embedded secret data. 
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(d) Stego-text seen in the window of the IE. 

 

(e) Stego-text seen in the window of the FrontPage editor. 

Figure 10.3. The embedded secret data (cont’d). 

 

10.4 Automatic Authentication of Web Page Text Contents 

To accomplish the goal of authenticating automatically the text of a web page at 

the word level, an authentication signal should be created for each word in the text, 

and embedded in the HTML codes of the text for periodical verification by a program 

implementing the authentication process. Warning should be issued if any word in the 

text is authenticated to have been modified, deleted, or inserted. An authentication 
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signal generation and embedding process utilizing the space codes discussed 

previously as authentication signals is proposed as follows. 

1. Map each word w in the HTML codes of the text of the web page to be protected by 

a function h into a binary integer s, called the numerical authentication signal of w, 

i.e., compute s = h(w). 

2. Encode s by a space code c of the first eight ones listed in Table 10.1, called the 

symbolic authentication signal of w. 

3. Replace the original space code 20 located at the right-hand side of w by the code c. 

Since each space code also appears to be a white space in a web page browser, 

the resulting stego-HTML codes will appear in the browser to be a web page totally 

identical to the original one, arousing no suspicion from the observer. On the other 

hand, the proposed automatic authentication process is just a process of matching the 

previously-embedded authentication signal s for each word w' with the one s' 

computed from the current content of w' using the same mapping function h. 

As a simple example, let the word w to be protected be “no” whose two 

characters have the decimal ASCII codes 110 and 111, respectively. Assume that the 

mapping function h takes the modulo-8 value of the sum of the decimal ASCII code 

values of the characters in the word. Then, the computed numerical authentication 

signal s for w is s = h(w) = (110 + 111) mod 8 = 5 whose 3-bit equivalent binary 

number is 101. According to Table 10.1, the space code encoding 101 is &#160; 

which is then taken to replace the hexadecimal code 20 to the right of the word. Now, 

suppose that the word “no” has been modified to be “ok” with an opposite meaning. 

The decimal ASCII code values for the two characters in it are 111 and 107. So the 

numerical authentication signal for this word w' is s' = h(w') = (111 + 107) mod 8 = 2 

whose 3-bit equivalent is 010 and is encoded by the space code &#32;. This space 
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code is different from the embedded one &#160;. So it is decided that the word “ok” 

is a result of tampering. 

10.5 Security Consideration and Experimental Results 

The above-mentioned simple processes, however, have several weaknesses in 

security from the viewpoint of automatic authentication without human involvement, 

as discussed in the following, in which solutions for removing these weaknesses are 

also proposed. 

(1) Word position disordering and replacement of entire web page contents --- A 

hacker, who knows the above processes (including the used function h) as is usually 

assumed in information hiding studies, may destroy the web page content by just 

exchanging the orders of the words (each word assumed to include the embedded 

space code next to it). It can be figured out that this false web page can pass the 

authentication process. Even worse is the case that the hacker replaces the entire text 

content of a web page with all authentication signals for the new words recomputed 

and embedded. Such a fake web page obviously will also pass the above 

authentication. We propose to solve these problems by first putting the words into a 

certain order and then generating a series of corresponding random numbers, one for a 

word, to compute the authentication signals by the mapping sBi B = h(wBi B, kBi B) where kBi B is 

the random number generated for wBi B. The random numbers are generated by a 

function controlled by a secret key as the seed. In this way, a web page with changed 

word orders cannot pass the authentication process, as can be figured out, because a 

word w with its position changed will now be given a different random number so that 

the computed numerical authentication signal becomes different from the 

previously-embedded one. Also, it is easy to see that a hacker’s replacement of the 

entire text content of a web page with embedded authentication signals computed 



 

 175

without a key will not pass the authentication process now. 

(2) Guessing of authentication signals without a key --- The above modified 

process of authentication signal generation still has a weakness, i.e., the generated 

authentication signal for each word is a 3-bit number, which is encoded into one of 

the eight space codes so that the probability to guess it correctly is 1/8. That is, after 

inserting a replacing word, the hacker only has to guess the authentication signal for 

the word eight times before he/she can pass the authentication of the word. This is not 

secure enough. As a remedy, we propose to allow the mapping function h(w, k) to 

yield a numerical authentication signal which, when transformed into binary, has 

more bits than three. For example, if we allow h to yield 12 bits which may be 

encoded, three by three, into four space codes, then we may use four words to provide 

the four white spaces at their right-hand sides to embed the four space codes. This 

way of multiple word encoding is equivalent to regard four words as a single one by 

concatenating them together. More generally, if we want to yield 3n bits as the 

numerical authentication signal, we regard every n words as a single one in computing 

the authentication signal s = h(w, k). The signal s is encoded into n space codes which 

are then embedded at the right-hand sides of the n words. Additionally, the mapping h 

may be taken to be any reasonable function, such as one of the various existing 

hashing algorithms. We may even adopt the famous secure SHA-1 algorithm as h with 

54 words as input, and use a secret key as the seed to generate random numbers as its 

initial values. The algorithm yields 160 bits as output, to which we may affix two bits 

of 0’s. We then encode the resulting 162 bits into 54 space codes (54 = 162/3) and 

embed the codes at the right-hand sides of the 54 words. The security of the protected 

54 words will then be very high. 

For a clearer illustration, we report a simple one of the experiments we have 

conducted, without using random numbers in computing the authentication signals. 
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The text in an HTML file to be protected includes three text lines: “Personal Data:” 

“Name: I-Shi Lee, Mr.” and “Tel: (09)8672555.” The corresponding web page seen in 

the IE window is shown in Figure 10.4(a). We regard a punctuation following a word 

as part of the word, and adopted a simple mapping function h which considers two 

words as a single one, adds up the decimal values of the ASCII codes of all the 

characters in them to obtain a sum S, takes the modulo-64 value M of S as a 6-bit 

numerical authentication signal s, and encodes M as two 3-bit numbers into two space 

codes by Table 10.1 as the symbolic authentication signal. These two space codes are 

finally taken to replace the two normal space codes 20 located to the right of the two 

words. That is, if the two words are wB1 B = cB11BcB12B...cB1n1B

 and wB2 B = cB21BcB22 B...cB2n2B

 with cBijB’s 

being their ASCII codes and dBijB the corresponding decimal values, then we compute s 

as s = h(wB1B, wB2 B) = (dB11B+dB12B +...+dB1n1B

+dB21B+dB22B+...+dB2n2B

) mod 64 = bB1BbB2 B...bB6 B, with bB1 BbB2 BbB3B 

encoded into a space code and bB4 BbB5 BbB6B into another. After all the symbolic 

authentication signals for the word pairs were computed in this way and embedded 

appropriately, the resulting web page, as viewed in the IE window, appears to be as 

Figure 10.4(b), which looks no different from that shown in Figure 10.4(a). Figure 

10.4(c) shows the corresponding stego-HTML codes in the FrontPage window, which 

can be seen to include all the space codes. To simulate web page intrusion and 

modification, the last name “Lee” in the second line was replaced by another, “Lin.” 

After the authentication process was performed, the word pair “Lin, Mr.” was 

authenticated to have been tampered with, and so was marked as bold italic, as shown 

in Figure 10.4(d). More of our experimental results show the feasibility of the 

proposed method. 

A problem mentioned previously which need be solved is that the two space 

codes &#32 and &#160, after being inserted, should not be followed by digits; 

otherwise, they will be regarded as codes with more digits instead of 32 and 160. One 
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way out is to append to either of &#32 and &#160 one additional space code other 

than these two to stop this ambiguity, and decode the resulting code pair as just the 

first one only, which may still be done uniquely. 

 

 

(a) Original web page seen in IE. 

 

(b) Web page with embedded authentication signals (space codes) seen in IE. 

Figure 10.4 An experimental result of authentication of a modified web page. 
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(c) Content of (b) with embedded space codes seen in FrontPage. 

 

(d) Web page with detected modified word pair “Lee, Mr.” marked as bold italic. 

Figure 10.4 An experimental result of authentication of a modified web page 

(continued). 

 

10.6 Concluding Remarks 

A new secret communication method via web pages using special space codes in 

HTML files has been proposed. These codes appear as white spaces in the web page, 

and so may be used to encode secret message bits with steganographic effects. The 

codes are the result of a thorough investigation of all possible coding systems which 

can be applied in the HTML file. The character string of each message, before being 

embedded, is randomized with a secret key to enhance the security against illegal 

intercept and extraction. The original message embedded in the HTML text is 

non-destructible unless the web page server is intruded. Our experimental results 

show that the proposed method is feasible. 

Also, an automatic authentication method for verifying a web page against illegal 

modifications of the words in the text of the web page has been proposed. The special 

space codes are used to encode binary mapping results from the word contents as 
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authentication signals, and are embedded at between-word spaces in the HTML codes. 

Security enhancement techniques to prevent illicit word tampering and guessing of 

authentication signals have also been proposed, including the use of secret keys and 

the scheme of multiple word encoding. Experimental results show the feasibility of 

the proposed method. 

Future researches may be directed to utilizing the space codes in other data 

hiding applications, further promotion of the security of the proposed method, and 

applying the space codes to other purposes, like copy protection.  
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Chapter 11                    

Conclusions and Suggestions for 

Future Research 

11.1 Conclusions 

In this dissertation, we have proposed ten techniques for data hiding in various 

types of images and text documents. Discussions and concluding remarks for each 

method have been given at the end of each chapter before. A brief summary of them 

are as follows: 

(1) data hiding in binary images with distortion-minimizing capabilities by optimal 

block pattern coding and dynamic programming techniques; 

(2) data hiding in grayscale images by dynamic programming based on a human 

visual model; 

(3) data hiding in emails and applications by unused ASCII control codes; 

(4) data hiding in color images by color replacements with reduction of image 

distortion and change noticeability; 

(5) security protection of software programs by information sharing and 

authentication techniques using invisible ASCII control codes; 

(6) covert communication with authentication via software programs using invisible 

ASCII codes; 

(7) covert communication via PDF files by a data hiding technique; 

(8) authentication of PDF files by invisible ASCII codes; 

(9) secret communication via web pages using special space codes in HTML files; 

(10) automatic authentication of web pages by data hiding using multiple space codes 
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in HTML files. 

Experimental results have also been shown to prove the feasibility and 

practicality of the proposed methods. 

11.2 Suggestions for Future Research 

In the subsequent study, the following topics will be investigated. 

(1) Data hiding in binary images ---  

The proposed method is based on the use of 2×2 blocks. It may be extended by 

processing larger blocks because then, the number of block patterns which can be 

selected to encode messages will become larger as well, resulting in greater 

reductions of image distortions. However, there is a tradeoff here, i.e., the 

resulting data embedding capacity will decrease. Other future works may be 

directed to designing a better cost function from the perspective of the human 

visual system, imposing more constraints on the cost function to yield better 

image quality, and finding a better way to design encoding tables to reduce 

stego-image distortion further. 

(2) Data hiding in grayscale images ---  

The methods proposed previously are for data hiding in binary images. But binary 

images are few in real applications. Therefore, it is desired to extend the methods 

for data hiding in grayscale images. One possible way is to extent to embed 

multiple message data in a grayscale image for protecting the intellectual property 

right and authenticating multimedia data. It is also hoped that the human vision 

model be considered in the extension so that the resulting stego-image will cause 

less noticeability from observers. Other future works may be directed to design 

better encoding tables to reduce image distortion further. 

(3) Data hiding in color images ---  
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Needless to say, data hiding in color images is even more useful for real 

applications. Although the methods for grayscale images may be extended directly 

to color images by considering each color channel as a grayscale image, we want 

to design a more genuine method by dealing the color image itself. Future 

researches may be directed to minimizing image distortion by uses of 

variable-sized color cubes, uses of a perspective HVS, random distributions of 

groups’ colors in color cubes, etc. It is also hoped that the proposed method can be 

extended for various applications. 

(4) Data hiding in text documents ---  

It is desired to design data hiding methods for embedding data in e-mails in the 

future study. Possible applications of such methods include covert communication 

through e-mails and authentication of e-mail fidelity and integrity. It is also hoped 

that data hiding in software programs can be developed in this study, so that 

intellectual properties of various programs can be protected. Any illegal 

duplication or stealing of protected programs with embedded owner information 

can be disclosed. Finally, more investigations on hiding data in PDF and HTML 

documents utilize the rich data structures in such document formats. 
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