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A New Analytical Three-Dimensional Model for
Substrate Resistance in CMOS
Latchup Structures

MING-JER CHEN, MEMBER, IEEE, AND CHING-YUAN WU, MEMBER, IEEE

Abstract—A new analytical model based on solving the three-dimen-
sional Laplace equation has been developed to calculate the substrate-
spreading resistance of a latchup-sensitive path in internal CMOS
structures. This model also provides an analytical closed-form expres-
sion for the substrate potential as functions of the structural parame-
ters in the substrate, the dimensions of majority-carrier injector, and
the majority-carrier current density across the injector. The calculated
results based on the developed mode] have been compared with existing
experimental results, and good agreement has been obtained.

I. INTRODUCTION

N AN n-well CMOS circuit, the substrate majority-

carrier current caused by the forward-biased p™ emitter
inside the well can produce the resistive potential drop in
the latchup-sensitive path. This substrate potential drop
may trigger the CMOS circuit into the latchup state and
results in the malfunction of the circuit if the induced po-
tential drop is large enough. Therefore, it is valuable to
develop an analytical model to calculate the substrate cur-
rent required to induce a given potential drop. In addition,
it is desirable to take the three-dimensional effects into
account since the spreading of majority carriers in the
substrate is three-dimensional in nature. Terrill and Hu
[1] first published such a model and its accuracy has been
verified experimentally [1], [2]. However, this model has
been derived by using assumptions that are not applicable
for the case of an epitaxial layer or a buried layer in the
substrate. Moreover, for some other geometries of major-
ity-carrier injectors, numerical analyses are required. In
this paper, a new analytical three-dimensional model is
presented to calculate the substrate resistance or equiva-
lently the potential induced by the majority-carrier current
in the substrate. The calculated results based on the de-
veloped model are compared with existing experimental
results measured from various substrate structures and
majority-carrier injectors.

II. MopEL

A rectangular parallelepiped structure proposed to sim-
ulate the current spreading of majority carriers in the p-
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Fig. 1. The rectangular parallelepiped structure used to simulate the cur-
rent spreading of majority carriers in the p-type substrate.

type substrate is shown in Fig. 1 in which the majority-
carrier injector at the surface 7 = z; is appropriately used
to simulate the current injected into the substrate through
the forward-biased p™ emitter inside the n-well. For the
case of a heavily doped layer buried in the homogeneous
substrate, as shown in Fig. 1, the low-doped regions (0
<z =z;and g, = z = z3) and the heavily doped region
(z; = z = z) are assumed to have uniform doping in
order to simplify the analysis. The cases of epitaxial and
bulk substrates can be obtained by letting z;, — 0 and z,
— 4, Tespectively.

To find the substrate potential induced by the majority-
carrier current, the following Laplace equation is used:

VW, y,2) = 0 )
where V(x, v, z) ts the substrate potentiai distribution.
The boundary and interface conditions used are
d[ﬂ _es I, y) for the injector
dzl, ., 0 elsewhere
dV] dVI 3)
i =9
dz z=z; dz 7=z
Vix, y, z3) = Vix, y, 23) @
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dz =177 Y dz z=zi i
Vx, y, z1) = Vx, v, zi) GY
Vix,y, 00 =0 N

d

——V] =0 (8)

dx x=0&x =x1

d

—V] =0 )

dy y=0&y=y1

where j, (positive) is the injected majority-cartiet current
density, pg(ogr) is the resistivity in the low- (heavily)
doped region, and y = pgy/pg,. Note that the boundary
condition in (7) is formulated by considering the back
contact used in existing CMOS technology . The boundary
conditions in (8) and (9) result from the fact that the in-
jector is placed around the location (x{/2, y,/2, z3) and
both x; and y, are large enough. In the present case, x; =
1000 pm and y; = 1000 pm have been vsed in our work.
Using a separation of variables, the induced potential
V at the surface can be shown to be (see the Appendix)

VX, ¥, 2) = 2 Agn COS <’11ﬂ> cos (’fﬂ> (10)
n,m=0 yl X
Xy Y
Anm=ani[§ de dyd—V
, X1yy LJo I\ dz =z

(52 e ()]
s cos {—=) cos | —
Y1 X1
Wh¢1‘e Foo =121 + (22 — 21) + (23 — 22)1/4, Fo = Fl/
2F2form = 1, F,, = F1RF2forn = 1,and F,, =

Fl/F2forn = 1 and m = 1. Note that F'1 and F2 in the
above equations are expressed by

an

F1 = tanh (6ox,) + 75 tanh (§gx;) + tanh (Spxp)

+ tanh (8px,) taph (dyx;) - tanh (Soxp)/n  (12)
F2 = §y[1 + tanh (§yx,) tanh (8yxg) + 7 tanh (Syx;)

« tanh (6pxz) + tanh (8yx,) * tanh (Syxr)/m] (13)
80 = mx) + (miy) (14)

where x; = z;, X, = 2, — 2, and xg = z3 — 2.
Furthermore, the substrate majority-carrier current de-
noted as [, can be written as
1 d

le yi
Wl ol |
[0 0 ypSLdezzg,

Note that an analytical model for the substrate resis-
tance can be obtained by using (10) divided by (15). If
the current density j, is assumed to be uniform, a simpli-
fied expression without the integral form can be easily
derived. Finally, for the highly symmetrical spreading of
majority carriers in the substrate, a two-dimensional

1, = (15)
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TABLE I
Tuz SUBSTRATE RESISTANCE R A% A FUNCTION OF THE DISTANCE d FROM
THE INTERIOR OF THE INJECTOR WITH THE THICKNESS T AS A PARAMETER

(The measured substrate resistances are extracted from [1] and the theo-
retical results are calculated by the developed model.)
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Fig. 2. The calculated and measured dependencies of the substrate resis-
tance (R,) on the distance d from the interior of the injector and the side
‘engrn L of the square injector.

closed-form expression can be easily developed by fol-
lowing the above procedure, which can be used 1o appro-
priatety represent the actual three-dimensional case in or-
der to greatly improve the computational efficiency.

III. REsuLTS AND DISCUSSION

" The accuracy of the developed model can be verified by

the experimental results measured from various structures
presented by Terrill and Hu [1]. These structures were
formed on the same wafer with 2, = z3, 2, — z;, = 1 pm,
73 = 325 pm (i.e., wafer thickness), pg; = 21 € - cm,
and pgy = 1.2 Q@ - cm. The substrate resistances measured
from these structures are shown in Table I and Fig. 2, in
which the injector dimensions are marked. Based on the
leveloped model, the calculated substrate resistances for
“he uniform current density across the injectors are also
shown in Table I and Fig. 2. Good agreement between
the developed model and the experimental measurements
has been obtained. Note that although Terrill and Hu [1]
have reported a different method for calculating the sub-
strate resistance, for the injector configuration shown in
""able I, however, their theoretical results must be com-’
puted by the numerical method.

More recently, Terrill ez al. [2] have reported the sub-
strate resistances measured from various structures with
nonimplanted and implanted regions in. the substrate.
These experimental results will be used to further verify
the accuracy of the developed model. Fig. 3 shows com-
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Fig. 3. The calculated and measured substrate resistances (R;) as a func-
tion of the distance d from the edge of the injector with the implantation
dose as a parameter.

parisons between the calculated substrate resistances
based on the developed model and the measured results
cited in [2]. The structural parameters used to calculate
the substrate resistances for the structures with the im-
planted layer in the substrate are z; — 2, = 1 um, 2, — 74
=1pm, 23 = 325 pm, pyg = 21 Q - cm, and pgy = 0.1
Q - cm for a dose of 2 x 10" cm™2 and 0.03 Q - cm for
a dose of 1 X 10" ¢cm™2. 1t is shown in Fig. 3 that sat-
isfactory agreement between the developed model and the
experimental measurements is obtained. Furthermore,
based on our developed model, the predicted dependen-
cies of the substrate resistance on both epitaxial-layer
thickness and buried- (implanted- ) layer depth below the
surface are shown in Fig. 4. Note that the method used in
[17 for calculating the substrate resistance is incapable of
simulating these effects.

IV. CoNcLusION

We have presented a new analytical three-dimensional
model with a closed-form expression for calculating the

substrate resistance of a latchup-sensitive path in internal

CMOS structures. This model can also be used to evalu-
ate the dependencies of the substratc potential on the
structural parameters in the substrate, the injector dimen-
sions, and the current density across the injector. The cal-
culated results based on the developed model have shown
to be in good agreement with existing experimental re-
sults. Based on the developed method [3], the substrate
resistance model developed in this paper can be used to
efficiently calculate the dc triggering currents for the ad-
vanced CMOS fabricated on the epitaxial wafer.

APPENDIX
DerivaTioN ofF EqQuaTionN (10)

The expression

&, = cos <@> cos <"—7rf> sinh 32) (A1)
Y1 X1
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Fig. 4. The calculated dependencies of the sybstrate resistance (R,) on the
high-low junction depth below the surface for the cases of epitaxial layer
and implanted layer in the substrate. The effects of different implanted-
layer thicknesses are also shown.

can satisfy the Laplace equation (1) and the boundary
condition (7), (8), and (9), in Wthh

2 \2 2.
S ORC]
X1 Y1

(A2)

Thus the solution of the problem for 0 < z < z, can be
expanded in terms of these @, i.e. '
Vix, y, 2) = 2 B, cos <w>
. n,m=0 . N
- Cos (ﬁff> sinh (8,y7). (A3)
1
In a similar way, the potential for z; = z = z, can be
expressed as :
Vix,y, 2) = Z Bnm cos (TEX) cos <@>
nom= yI X[
. [sihh (621) cosh (8p(z — z7))
+ 5 cosh (§yzy) sinh (6y(z — z,))].- (A4)

Note that both (A4) and (A3) simultaneously satisfy the
common boundary conditions (5) and (6).

Furthermore, the potential for z, < z =
pressed as

Vix, y,2) = Z Bnm COS < Ty) cos <£L_E> - Fo.
» i X1

(A5)

z3 can be ex-
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where
F,. = [sinh (8¢z;) cosh (8p(z; — z1)) + 7 cosh (8yz()

* sinh (8p(z2 — z))] cosh (Sp(z — 22))

1
+ & sinh (8y2;) sinh (6¢(z, — z;)) + cosh (642)
- cosh (50(Z2 - Z]))] Sil’lh\(éo(z - Zz)). (A6)

Also, note that both (A5) and (A4) simultaneously satisfy
the common boundary conditions (3) and (4).
There remains only the boundary condition at z = z,

dVix, v, 2) <m7ry>
Y1

dz
nax\ dF,,
g (o) Zac
X1 dz
This is just a double Fourier series for the function dV/
dz|, -, Consequently, the coefficients B,,, are given by

o]
= 2 B, cos

nm=0

=23

(A7)

=123

dF,
C ac
dz

Z=123

where

for n and m =0

for n and m = 0

(A9)

for n and m =

-

r—ﬂl\-)“l\)-lk

* H#
o o <@ <

, for n and m # 0

and
dFy
dz

= [sinh (8yz1) cosh (8y(z, — z1))

=23
+ 75 cosh (6gz;) sinh (8y(z»
* 8¢ sinh (6p(z3 — 22))

~ z))]

+ [;17‘ sinh (6021) sinh (50(22 - Z[))

+ cosh (8yz;) cosh (6(z; — zl))}
- 50 cosh (60(23 - Zg)).
Substituting (A8) into (AS5) we have
Vix, y,2) = Z—QA"’” cos <m> cos <EE>,

b Xy

(A10)

=7 =2Z (All)

Xy Y1
a0t e (52)e ()]
_xyy LYo 0 dzl; - Y1 Xy
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where

Fo
o () ()] e
dz
=23
Note that as §; — 0, it can be shown that
Fac
aF =z + 0@ —z) + @) (Al3)
dz
=23

since the corresponding sinh (8pz) — 8¢z and cosh (8y2)
— 1. Also, it can be shown that with z = z3 (All) is
equivalent to (10) in the text. '

Special Case

For the case of uniform current density of majority car-
riers across a square injector (a; = x £ a,andg; =y <
a,) with side-length L(=a, — a;), the surface potential
drop due to the majority-carrier current (/) can be cal-
culated using (A11), in which the coeflicient A4, can be
written as

Apn # 0, m # 0)

4IppsL {ln mwd; .n mmuay |
et : — S1
nmw’L? s 1 yi /.
. [nTa, . (hmay Fa6|z=z3
- |sin {——=} — sin . (Al4)
[ <x1> <x1 >} dF g
dz
=23
205 |
Apm # 0) = ;Jﬁ 7 [Sin (m;rla2> — sin <m)7]r1a1>}
FaC|Z=Z3 :
Lo laclz=m Al5
dF,, (A1)
dz Z2=23
' 2Lp
A # 0) = — o {sin <n1ra2> — sin (mra,)]
nwy, L Xy X
FaCIZ:Z3
. o aclz=n Al6
dF,, (A10)
dZ =23
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IppsL

X101

Agy = [z1 + n(z — z0) + (3 — 22} (A1D)
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