第六章 球面透鏡檢測

完成玻璃球面透鏡的壓印之後,本章將依照表 5-9 的參數條件下,所製 作出的球面透鏡成品進行檢測,檢測項目包含幾何外形檢測、表面品質檢 測、殘留應力檢測,所使用的檢測設備皆為國科會精密儀器發展中心的設 備,包含輪廓儀、雷射干涉儀、光彈儀等,檢測設備與檢測結果在本章將 有完整的敘述。

6.1 幾何外形量測

曲率半徑的量測是使用輪廓儀進行量測,曲率半徑的容許誤差是參照 JIS B 7433 規範,常用曲率半徑的如表 6-1 所示;本實驗以模仁曲率半徑 15.1752mm 為目標 R 值,再以成品平均外徑 9.4914mm 為外徑 D 值,經由 計算的知,本實驗曲率半徑的容許誤差值為±0.008mm,量測結果如表 6-2 所示;整理結果以圖形表示,如圖 6-1 所示。經由量測結果得知,本實驗所 壓印出的球面透鏡,曲率半徑均符合 JIS B 7433 的容差規範。

曲率半徑 (R)	容差 (△R)
16以下	±0.005R/D 與±0.003 之中,取絕對值較大之數值
16以上~32以下	±0.007R/D與±2×10 ⁻⁴ R之中,取絕對值較大之數值
32 以上~130 以下	±0.015R/D與±2×10 ⁻⁴ R之中,取絕對值較大之數值
130以上~300以下	±0.025R/D與±2×10 ⁻⁴ R之中,取絕對值較大之數值
300以上~750以下	±0.05R/D與±3×10 ⁻⁴ R之中,取絕對值較大之數值
750 以上	±6×10 ⁻⁵ R ² /D與±4×10 ⁻⁷ R ² 之中,取絕對值較大之數值

表 6-1 JIS B 7433 曲率半徑容差規範

	量測項目	曲率半徑	誤差值
量測條件		(mm)	(mm)
模仁	品質	15.1752	—
	600	15.1775	+0.0023
计原计明	500	15.1799	+0.0047
苻壓时间	400	15.1748	-0.0004
(Sec)	300	15.1807	+0.0053
	200	15.1804	+0.0052
	100	15.1766	+0.0043
	50	15.1764	+0.0012

表 6-2 曲率半徑量測結果

6.2 表面品質量測

6.2.1 表面品質量測設備

表面品質檢測是使用雷射干涉儀,其重要性質如表 6-3 所示;干涉儀是 利用雷射干涉理論為基礎來進行表面輪廓量測,其設備外觀如圖 6-2 所示; 運用干涉儀可以量測待測波前(Test Wavefront)與參考波前(Reference Wavefront)之間的相位差。

干涉儀中的參考波前是由標準鏡(Transmission Spheres)反射所產生的,而待側波前則是由具有高低起伏的待測面反射所產生的。待測波前與 參考波前間的相位差可以反映此待測物的表面輪廓,形成干涉條紋如圖 6-3 所示。

由於系統的光路中含有相移技術(Phase-Shifting Technique),可以求得 上述的相位差,再利用相位重建技術(Phase Unwrapping Technique)來恢復重 建後連續分布的相位,進而推算出三維的表面輪廓結構,如圖 6-4 所示,藉 由軟體的運算可以將三維的表面輪廓結構轉換成二維的色差圖,並于以量 化,如圖 6-5 所示,同時可以在二維的色差圖選取任一截面,觀察該截面的 輪廓圖,如圖 6-6 所示。

表 6-3 干涉儀重要性質表

設備廠牌	Zygo	型號	OMP-0351J
光源	He-Ne	標準鏡	F/15 4"

圖 6-2 Zygo 干涉儀外觀圖

圖 6-3 干涉條紋

圖 6-4 三維的表面輪廓結構

圖 6-5 二維色差圖

圖 6-6 高度差截面圖

6.2.2 表面品質量測結果

在使用雷射干涉儀量測之後發現,所量測出的結果無法完整描述表面 品質,其主要原因是由於玻璃表面品質不佳所造成,以下將以實際量測的 結果進行敘述,其中所引用的圖例,均以持壓時間為400秒的參數條件下 所得到的成品,經由量測後所得到之結果。

使用干涉儀對玻璃成品進行表面品質量測,檢測結果如圖 6-7 所示,由 於玻璃表面品質不佳,使得所呈現出的干涉條紋並不明顯;在干涉條紋並 不明顯的情況下,於重建後連續分布的相位,其所推算出三維的表面輪廓 結構也僅有局部區域。

為了可以觀測局部較明顯的表面品質,將欲重建的區域範圍選取在干 涉條紋較為明顯的區域,如圖 6-8 所示,則在該區域重建連續分布的相位, 其所推算出三維的表面輪廓結構也僅該選取局部區域的輪廓結構,如圖 6-9 所示;其所計算出的表面粗糙度的均方根值與曲光力(Power)也是局部的品 質,如圖 6-10 所示;縱使已將重建範圍縮減至干涉條紋較為明顯的區域, 其局部高度差的截面曲線仍是斷斷續續,如圖 6-11 所示,其表面品質仍然 低於干涉儀所能解析的範圍,故無法完整描述表面狀況。

為了使表面品質能予以量化,故改用輪廓儀進行中心線平均值、均方 根值、波峰波谷值等表面粗糙度值的檢測,其檢測結果如表 6-2 所示,在完 成表面粗糙度的量化之後,將其所得的值製成趨勢圖,如圖 6-12 所示,由 圖形中可以得知,在壓印前玻璃平面透鏡的表面粗糙度 PRq 值已經達到 0.02~0.03μm 範圍,當持溫時間增加時,所壓印出的球面透鏡表面粗糙度 會與模仁的表面粗糙度更接近。

當模仁表面品質不佳時,會使成品的表面品質降低,其解決之道在於 鍍膜後之模仁表面品質;由於鍍膜層之研究牽扯到鍍膜層的材質與鍍膜技 術,並非本研究之主軸,故本研究並未更進一步的對鍍膜層進行探討。

圖 6-7 干涉條紋不明顯

圖 6-9 局部的三維表面輪廓結構圖

圖 6-11 局部高度差截面圖

表 6-4 表面粗糙度量測結果

量測條	量測項目件	壓印前 PRq (µm)	PRa (µm)	PRq (µm)	PRt (µm)
	莫仁品質		0.2833	0.4594	3.7844
	600	0.0249	0.2670	0.3795	2.1948
持壓	500	0.0255	0.2480	0.3428	2.2317
時間	400	0.0238	0.2259	0.3408	2.2850
(Sec)	300	0.0245	0.2254	0.3119	1.9756
	200	0.0263	0.2523	0.3359	1.9347
	100	0.0234	0.2397	0.3083	1.7678
	50	0.0243	0.2111	0.2624	1.5369

圖 6-12 表面粗糙度比較圖

玻璃成品的殘留應力檢測設備為光彈性實驗儀(Polariscope),本實驗所 使用的光彈性實驗儀為 SHARPLES 公司所出品的一般型實驗儀,所使用的 光源為鈉單色光源(Sodium Monochromatic Illumination),可視範圍為 260mm×260mm,其外觀如圖 6-13 所示,其運用的原理與檢測結果在本節 將會有詳細的介紹。

圖 6-13 本實驗所使用之光彈性實驗儀外觀圖

光彈性實驗儀是量測應力變化之實驗儀器,其主要設備包括偏光 板、四分之一波板及光源,其示意圖如圖 6-14 所示,圖中為穿透式光彈性 實驗儀,將可透光之待測物置於光彈性實驗儀中,可用來檢驗待測物的應 力情況。

光彈性實驗儀可形成平面偏光系統或圓偏光系統,在光源後方加入一 面偏光板使之為極化器,即產生平面偏光之濾光器,使光偏極化後,再用 另一面偏光板為分析器,即傳送或接收平面偏極光之濾光器,檢查偏極光, 此第二面偏光板又稱為分析面,在兩面起偏光板中就是平面偏極光,此系 統稱為平面偏光系統。在上述兩面起偏振鏡中央加入兩片四分之一波片即 成為圓偏光系統。該兩四分之一波片的快軸與慢軸交叉排置且均與起偏振 鏡之偏振軸夾45度角。

圖 6-14 穿透式光彈性實驗儀配置示意圖

在光彈性材料中,由於材料平面上的兩個主應力,會使得此材料具有 兩種不同的折射率,因此當光要通過待測物時,因為沿二個主應力方向振 動的光波彼此有不同的速率,當光要穿出材料時,會有相對的相位差產生, 而此相位差正比於平面上的兩個主應力值之差值。

6.3.2 殘留應力檢測結果

由於該設備無法將殘留應利予以量化,故本檢測僅能以實際觀測到的 進行討論,檢測結果如圖 6-15 所示,從圖上觀測得知,依照此壓印參數所 壓印出的球面透鏡,在球面透鏡邊緣變形量較大之處,其色層變化較為明 顯,具有較大的殘留應力,其中更以持壓時間 600 秒最為明顯,在透鏡中 心處沒有明顯的殘留應力。

圖 6-15 殘留應力檢測結果 (圖中所標示為持壓時間)

為了確認所觀察之現象,以下將再設定一變形量較大的壓印參數,然 後進行實驗,再將實驗所得到的成品進行檢測,其實驗參數設定如表 6-5 所示,所壓印出的球面透鏡成品中心厚度為 1.98mm、外徑為 11.85mm,其 殘留應力檢測結果如圖 6-16 所示。經由檢測結果得知,不僅只有邊緣處有 中心區域亦有明顯的殘留應力,故可確認依照表 5-9 的球面透鏡熱壓參數 設定所壓印出的球面透鏡,其中心處沒有明顯的殘留應力。

預壓力(N)	壓印溫度(℃)	壓印力(N)	壓印力速度(N/min)
19.6	490	490	49
持溫時間(Sec)	持壓時間(Sec)	保壓力(N)	脫模溫度(℃)
1200	600	0	490

表 6-5 變形量較大的壓印參數設定表

圖 6-16 變形量較大之殘留應力檢測結果