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ABSTRACT: The proportional navigation system analysed in this paper is a complicated 

nonlinear sampled-data control system. The stability boundaries and limit cycles of the system 
are found by the stability-equation method. The results obtained are useful for analysing the 

tracking characteristics of the system, especially in the nonlinear regionfor which no analysis is 
given in the current literature. 

Nomenclature 

AA, sinusoidal input at the input of nonlinearity 
N navigation constant 

NAAA N,(A) describing functions of the nonlinearity 

PO) geometry relation 
S Laplace operator 
W operator in W-domain 
w frequency in S-domain 
V frequency in W-domain 
T sampling period 
Z operator in Z-domain 

a, B parameters 

P damping ratio 

I. Introduction 

The navigation system shown in Fig. 1 is a homing system for engaging a moving 
target in the vertical plane (1). The seeker is a microwave or an infrared device. In 
general, there are many nonlinearities in this system, but in this work only two 
evident nonlinearities, i.e. the truncated sine function in the seeker and the backlash 
in the servo, are considered. 

For analysis, the stability-equation method (2), is used. The results of the analysis 
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FIG. 1. Block diagram of a proportional navigation system. 

will show that the characteristics of the system, such as the asymptotically stable 
region, limit cycle region and unstable region can be clearly found. 

In the current literature for such a complicated system, the analysis is usually 
confined to the linear region of the seeker, i.e. to approximate the sine function by 
a linear gain (3) and then to study the effects of nonlinearities and adjustable 
parameters by use of computer simulation. However, in this paper, analytical results 
are presented which can let the engineer have a thorough understanding of the 
system considered, especially the effects due to nonlinearities. 

ZZ. Analysis of the Linear Continuous-data System 

For comparitive purposes, the linear model of the system considered with 
continuous-data is analysed in this section. Assume that the nonlinearities are 
replaced by unit gains and the samplers are closed at all times without the holding 
devices, then the transfer function of the seeker becomes 

V/,(S) N,(A)S( 1+ 0.02s) 

~ = N,N,(A) + S( 1 + 0.02s)’ 6) 
(1) 

The combined transfer function of the control system and the vehicle dynamics is 

i 
~ = -l.l2K,(l +O.OlS)(l-O.O0339S-0.00414S2)/ 
US) 

[(1+0.01S)(1+0.05S)(1.414+0.0266S+0.0234S2) 

-1.12K,K,(1+3.99S)(1+0.06S)-1.12K,T/K,,(1-0.00339S 

-0.00414s2)(1 +O.O05S)]. (2) 
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Analysis of Proportional Navigation System 

In order to ensure that the proportional navigation system has a navigation 
constant N, it is required that the steady state ratio of i and 6 be equal to (3) 

- l.l2K, 

ss = K,(1.414- 1.12&K,- l.l2K,VK,,) = N’ 

Let 

- l.l2K,K, = u. - l.l2K,VK,, = /I, (4) 

where a and j? are two parameters, then Eq. (3) gives 

-l.l2K, = NK,(1.414+~+/?). (5) 

Assume that the time variant geometry relation is replaced by p(t) (3). Then the 
characteristic equation of this continuous-data system is 

N,(A,)(1+3.998)(1 +O.O6S) 

’ +‘(l +0.05S)(1.414+0.0266S+0.0234S2)(1 +O.OlS) 

N,(A,) (1 -O.O0339S-0.00414S2) (1 + 0.005s) 

+p(l+0.05S)(l.414+0.0266S+0.0234S2)(1+0.01S) 

-NK,(l414+a+P). 
N ,(A,) (1 - 0.003398 - O.O0414S*) 

S(l +O.OSS) (1.414+0.0266S+0.0234S2) 
* p(t) 

N,(A)S( 1 + 0.02s) 

’ N,(A)K,+S(l +O.O2S) = 

o 

’ 

Equation (6) indicates that the condition for system stability is p(t) d l/N be- 
cause Eq. (6) has a singularity (S = 0) at p(t) = l/N (3). The stability boundaries for 
N,(A,) = 1, N,(A) = 1 and K, = 15 can be found by use of the stability-equation 
method. The results are shown in Fig. 2. The general procedure is given in the 

FIG. 2. Stability boundaries of a linear continuous-data control system. 
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Appendix where the detailed calculations are omitted. In Fig. 2, the regions below 
the constant p(t) curves represent stable systems. 

In Fig. 2, boundaries with damping ratio p = 0.5 are also shown (4). One may 
select a set of CY and /? for the desired damping characteristics of the system. Thus, the 
method is useful for design. Since the geometric relation p(t) is time dependent, the 
stability boundaries of the system should be evaluated by considering various values 

of p(t). 

III. Analysis of the Linear Sampled-data System 

Assume that the nonlinearities are replaced by unit gains, then the characteristic 
equation of the system is 

-1.12K,K,N,(A1)(1+3.998)(1+0.06S) * 

Gho’(l +0.05S)(1.414+0.0266S+0.0234S2)(1 +O.OlS) 1 
- l.l2K,VK,,N,(A,)(l-0.003398-0.00414s~)(1 +O.O05S) 

(1 +0.05S)(1.414+0.0266S+0.0234S2)(1 +O.OlS) 1 * 

- l.l2K,N,(A,)(l -0.003398-0.00414S2) 

S( 1 + 0.05s) (1.414 + 0.02668 + 0.0234S2) 1 * * PW 

N2(A)S(1+o.02s) 

N,(A)K, + S(l + 0.02s) 1 * o 

= 
(7) 

where Gho is the zero-order holding device with transfer function Gho = (1 -e-sT)/S 
and T is the sampling period. 

Taking the Z-transformation of Eq. (7) for T = 0.05 set, and using Eqs. (4) and (5), 
the characteristic equation can be found as 

1 +aN,(A,)(1.296 x 10-6Z4+7.4668Z3-8.9719Z2+0.8598Z+0.7079) 

(Z-0.3679)(Z-6.738 x 10-3)(Z2- 1.79972+0.9448) 

+B 
N&4,)(-3.201 x 10-5Z4-0.08902Z3+0.2319Z2-0.0717Z-6.7359 x 10-3) 

(Z - 0.3679) (Z - 6.738 x lo- 3, (Z” - 1.79972 + 0.9448) 

-N,(A,)N,(A)K,Np(t)(L414+a+B) 

-3.001 x 1O-3Z4+O.OO5624Z3+O.OO27O8Z2-2.1169x 1O-3Z+1.414x 1O-5 
X 

Z2(Z - 0.3679) (Z” - 1.79972 + 0.9448) 

Z2+a4Z o 

x Z2+a2Z+a, = 
(84 

where the values of a,, a2 and a4 are dependent on those of K, and N,(A), i.e. one 
must evaluate the characteristic equation for each set of values of K, and N,(A). 

Taking the W-transformation of Eq. (8a) with Z = (1 + w)/(l -w), the charac- 
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Analysis of Proportional Navigation System 

teristic equation in the W-domain can be found as 

l+a 
N,(A,)(13.217W4-3.113W3+4.306W2+2.012W+1.249x 10-2) 

W4+1.478W3+0.5374W2+6.956x10~2W+1.766x10~2 

N,(AI)(7.49x 10-2W4+1.1626x 10-2W3-9.738x 10-2W2-l.8097W 

+P 
+ 1.256 x 10-2) 

W4+1.478W3+0.5374W2+6.956x10-2W+1.766x10-2 

-N,(A,)N2(A)K,Np(t)(1.414+cl+~). 

-7.392x 10-3W4-5.377x 10-3W3-4.556x 10-3W2+6.680x 10-4W 

+ 6.303 x 1O-4 
X 

(l-a4)W2+2W+a4+1 

’ (l-a2+a,)W2-(2a,-2)W+a,+a,+l =O’ 
(8’4 

Applying the stability-equation method for N,(A,) = 1, N,(A) = 1 and K, = 15, the 
stability boundaries are found for each constant value of p(t). The results are shown 
in Fig. 3. 

For testing, a disturbance at the input of the seeker is assumed. The amplitude of 
the disturbance is equal to 0.3 and it is held for one sampling period (T = 0.05 set), 
and the geometric relation p(t) is set at 0.6/N. In Fig. 3, four points (Qi-Q4) are 
selected. After the corresponding values of CL and p are substituted into the block 
diagram of the system shown in Fig. 1, the response of the system to the testing signal 
specified above can be obtained by computer simulation. The results are shown in 
Fig. 4, where A is the amplitude of the signal in front of the nonlinearity in the seeker. 
If p(t) is set to be 0.6 cos 25 t/N (for illustration only), the response due to the same 

FIG. 3. Stability boundaries of a linear sampled-data control system. 
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A ” 

FIG. 4. Responses of a linear sampled-data control system to a testing signal. 

distance can die out quickly as shown in Fig. 5. In other words, the system can 
engage the target quickly if the operating points are selected at any one of the four 
points in the stable region in Fig. 3. By use of computer simulation, it has been 
checked that any point outside the stability boundary will give an unstable system. 

IV. Analysis of the Nonlinear Sampled-data System 

For the nonlinearity in the seeker, the approximated sine function y(x) = 2M 
sin (rcx/2M)/71 is used, for which the describing function can be found as 

I 

b 
s 

R sin (a sin 0) sin 8 d0 A<2M 

N,(A) = ‘, 

s 

Pa) 
2b sin (a sin 0) sin 8 de A B 2M 

0 

where a = (xA)/(2M), b = (4M)/(dA), r = sin- ’ [(2M/A], and A is the amplitude of 
the sinusoidal input to the nonlinearity. The describing function of the backlash in 

N,(AJ = gl(A1l+jbl(A1l, where 

A, ad VW 

and A, is the amplitude of the sinusoidal input to the backlash. 
If the nonlinearities are in a single loop or in a continuous-data system, the 

relationship between A and A, can be derived easily. But the nonlinearities of 
the system analysed are separated by samplers, and in two independent loops; 
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p(t)=06cos25t/N 
a=02 

FIG. 5. Responses of a linear sampled-data control system to a testing signal. 

therefore, further manipulations are required. It will be shown that the combination 
of an equivalent system and the characteristic equation will provide an effective way 
to analyse this nonlinear sampled-data system. 

A symbolic block diagram of the system considered can be drawn as shown in Fig. 
6(a), which gives 

‘(S)* = 1 + [G,(S)N,(A,)G,(S)G,(S)]*[Gl(S)N,(A,)G,(S)G7(S)]* R*(S) 
(104 

I I 

FIG. 6(a). Symbolic blocks of Fig. 1. 

_----- 

(b) y-Y&%f+%2$&wt 

FIG. 6(b). Equivalent system of Fig. 1 in W-domain. 
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and 

N,(A,) CGl(S)G,(S)G,(S)G,(S)I* 
‘(‘)* = 1 +N,(A,) [G,(S)G,(S)G,(S)]* +N,(A,) [G,(S)G,(S)G,(S)]*’ R*(S) (lob) 

The equivalent system represented by Eq. (10) can be converted to the W-domain as 
shown in Fig. 6(b), where 

aH,(W) lz=o +w),(r -w) = CG,(S)G,(S)G,(S)I*I,=,,, I,,= 

PfWVlz=~~+w,,~~-w, = CGI(W,WG(S)I* Is=I,T,,,~ 

~~VWK~P(~) (1.414+ a + 8) lz=(~ +w)/(l -w) = CGl(S)G,(S)G,(S)G,(S)l* Is= ~/~lnz. 

(11) 

Equation 11 is derived from the relationship of Eqs. (3) and (4). For a specified 
amplitude A or (A,) and a specified frequency w = ju, one has 

A, = Ig,(~,)+“+,(~,)I ‘A, 

A, = K,.N.p(t)(1.4.4+a+P).IG,,(~~)l.Ig,(A,)+jb,(A,)l.A, 

X, = N,(A).IG,,(~~)I.K,.N.P(~)(~.~~~+~+B).IG~~(~~)I.I~~(~~)+~~,(A,)I.~,. 

Since 

-41 = X,-b IHIWI +BlH,Wl)~ Ig,(A,)+A(NI *AI 

X4 = AI +A,(alH,(j~)l+~IH2(ju)l)Isl(~l)+j~,(~1)I 

one has 

AI +A, Ida, +_&(&)I .{m IHlWl +B IHG)l -N2GQm&N~(t) 

x (1.414+a+/3)~IG,,(ju)l~IGz,(ju)l} = 0. (12) 

Equation (12) shows that the value of A (or A,) depends on the frequency w = ju and 
the parameters TV and /I. 

The characteristic equation of the system can be found as 

(W4+1.478W3+0.5374W2+6.956x10-2W+1.766x10-2) 

x[(l-a2+a,)W2+(2a,-2)W+a2+a,+1]+crN,(A,) 

x(-3.127W4-3.113W3+4.306W2+2.012W+1.249x 10-2) 

x [(l-a,+a,)W2+(2a,-2)W+a,+a,+l]+~N,(A,) 

x (7.49 x 10-2W4+ 1.1626 x lo-‘W3-9.738 x 10-2W2 

-1.8097x 10-2W+l.256x 10-2)[(1-a2+a,)W2+(2a,-2)W 

+a2+al + l]-N,(A,)N2(A)K,Np(t)(1.414+a+B) 

x(-7.392x 10-3W5-9.014x 10-3W4-1.574x 10-3W2 

+9.589x 10-4W+3.101 x 10-4)[(a4-1)W+a4+1] = 0. (13a) 
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Equation (13a) can be rewritten as 

5 Aq,iWi+aNI(Alf i A,,iW’+j?N,(A,) 5 
i=O i=O i=O 

X A,,iWi-NN,(A,)N,(A)*K,Np(t)(1-414+a+P) 5 A,,iW’ = 0. (13b) 
i=O 

The real part and imaginary part of Eq. (13) can be found as 

F*(I/) = aB,(v)+pc,(v)+o,(v) = 0 (14a) 

F,(V) = “B,(V) + BC,( V) + Dz( V) = 0. (14b) 

Where B, Ci and Di are functions of A, A, and V, Eqs. (14a) and (14b) represent the 
stability equations of Eq. (13) (5). Now, the problem is to find a, /? and A (or A,) to 
satisfy Eqs. (12) and (14) for a specified set of values of A (or A,) and W. The 
simultaneous solution of Eqs. (12) and (14), i.e. a, j3 and A (or A,), shows that a limit 
cycle may exist. 

In the following subsections, the system with one nonlinearity is analysed first, 
then the system with two nonlinearities is analysed. 

IV-l. One nonlinearity in the seeker 

After the backlash is replaced by a unit gain, the stability-equation method is 
applied (6). The results for K, = 15 and M = 0.2 are shown in Fig. 7, where the 
geometry relation p(t) is set at 0.6/N. In Fig. 7, it can be seen that between the stable 
region and the unstable region there is a limit cycle region where each point 

I Unstable / 

FIG. 7. Limit cycle loci of a nonlinear sampled-data control system with one nonlinearity. 
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Im 

Re 

A=02 

FIG. 8. Roots loci for testing limit cycle stability [p(t) = 0.6/N, a = 0.334, fl = 7.7051. 

represents a set of c1 and p which will make the system have a limit cycle with a certain 
amplitude and frequency. 

In order to check the characteristics of a limit cycle, a point Qs (0.334,7.705) on the 
curve for A = 0.20 in Fig. 7 is selected. Substituting the corresponding values of M 
and p of Qs into Eq. @a), the characteristic roots near the unit circle in the Z-plane 
can be found for each value of A. By changing the value of A from A < 0.2 to A > 0.2, 
the root loci are given in Fig. 8. It can be seen that Qs represents a stable limit cycle 

I I I 
0 I 2 3 

T(sec) 

FIG. 9. Limit cycle of a nonlinear sampled-data control system. 

212 
Journal of the Frankhn Institute 

Pergamon Press Ltd. 



Analysis of Proportional Navigation System 

with amplitude A = 0.20 and W = 40.488 (6). By computer simulation the limit cycle 
represented by QS can be found as shown in Fig. 9. 

Tn Fig. 7, since each point in the limit cycle region will give a limit cycle, several 
points in this region have been tested, the results are given in Table I. It can be seen 
that the simulated results are quite close to those found by calculation. For any point 
above this region, i.e. A = a, the system is unstable; this implies that the system 
cannot track the target, because the swing of the seeker diverges to infinity. The 
regions below the curve for w = j0 and above the curve for A = cxx are unstable 
regions. Note that the stable region of the nonlinear system is smaller than that of the 
linear system. Note also that a point in the shaded region will be given an 
asymptotically stable system. This characteristic has also been checked by computer 
simulation. 

IV-2. Two nonlinearities in the system 

By applying the same method, the results of the analysis are shown in Figs. 10 and 
11 for K, = 15, A4 = 0.2, and d - 0.05. Figure 10 shows the results that the reference 
point (A,) is selected at the input of the backlash, and Fig. 11 shows those of the 
reference point (A) selected at the input of the nonlinearity in the seeker. 

Figure 10 shows that the shaded area is an asympototically stable region, and the 
limit cycle region is below the curve for A, = IX, and above the shaded area. A limit 
cycle represented by Qs (0.318, 5.678) can be found as shown in Fig. 12. Several 
p.oints have also been tested, the results are given in Table II. 

The regions outside the shaded area and the limit cycle region are unstable. Note 
that the stable region of the system with two nonlinearities is smaller than that of the 

TABLE I 
Theoretical and simulated results oflimit cycles 

______ 

Parameters Calculated Simulated 

CI P A o @ad/see) A w (rad/sec) 

0.288 7.033 0.100 38.022 0.197 33.003 
0.316 7.079 0.100 40.488 0.066 35.565 
0.270 7.451 0.200 35.042 0.278 31.098 
0.306 7.652 0.200 38.022 0.243 33.637 
0.338 7.705 0.200 40.488 0.197 36.914 Qs 
0.236 7.381 0.250 31.416 0.296 28.210 
0.283 7.879 0.250 35.042 0.229 31.416 
0.319 8.094 0.250 38.0219 0.208 34.33 
0.250 ’ 7.838 0.300 31.416 0.319 28.734 
0.297 8.372 0.300 35.042 0.229 32.571 
0.359 8.639 0.300 40.488 0.2605 36.545 
0.204 7.227 0.350 31.416 0.351 29.613 
0.312 8.895 0.350 35.042 0.307 33.339 
0.326 9.407 0.400 35.042 0.360 33.408 
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Unstable , 4 

Fig. 10. Limit cycle loci of a nonlinear sampled-data control system with two nonlinearities. 

system with one nonlinearity. For the same values of 01 and 8, the limit cycles are 
greater for the system with two nonlinearities; Figs. 7 and 10 show the differences. 

Similarly, three points Ql, Q2 and Q3 in the asymptotically stable region are 
selected. The simulated results are given in Figs. 13 and 14, where the magnitude of 

IO- 

FIG. 11. Limit cycle loci of a nonlinear sampled-data control system with two nonlinearities. 
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Isec) 

FIG. 12. Limit cycle of a nonlinear sampled-data control system. 

the initial disturbance is 0.3, and p(t) set at 0.6/N and 0.6 cos 2%/N, respectively. 
Since the signal A dies out quickly, the target is tracked. 

From Figs. 2, 3 and 10, it can be seen that for any set of values of c( and fi, the 
characteristics of the system are quite different due to the effects of samplers and 

TABLE II 
Theoretical and simulated results of limit cycles 

Parameters Calculated Simulated 

a B AI w (rad/sec) A1 w (rad/sec) 

0.292 - .1.145 0.100 35.042 0.106 31.416 
0.179 5.399 0.200 21.617 0.415 22.671 
0.295 6.452 0.200 31.416 0.472 31.419 
0.318 5.678 0.200 35.042 0.254 31.835 
0.121 4.352 0.300 18.546 0.414 18.558 
0.188 6.042 0.300 23.055 0.470 23.562 
0.242 7.034 0.300 26.990 0.526 27.26 
0.323 7.173 0.300 35.042 0.591 34.190 
0.139 5.039 0.400 20.114 0.651 19.568 
0.183 6.159 0.400 23.055 0.597 22.907 
0.238 7.286 0.400 26.989 0.625 27.150 
0.327 7.866 0.400 35.042 0.628 34.272 
0.366 5.434 0.400 44.286 0.440 39.984 
0.236 7.439 0.500 36.604 0.763 35.263 
0.330 8.547 0.600 35.042 0.886 34.689 

Q6 
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FIG. 13. Responses of a nonlinear sampled-data control system to a testing signal. 

nonlinearities. It can be seen also that the method used in this paper can provide a 
thorough analysis of this rather complicated system. 

V. Conclusions 

In this paper, the stability-equation method is used to analyse a nonlinear 
sampled-data proportional navigation system. The stability boundaries, and the 
limit cycle regions have been found, and checked by computer simulations. in a 
comparison with the results given in the current literature (3), the results in this 

p(t)=06cos 25t/N 

02 

A 01 

-01 

t 

FIG. 14. Responses of a nonlinear sampled-data control system to a testing signal. 
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paper provide a more thorough understanding of the effects of nonlinearities and 

their adjustable parameters. 
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Appendix. Stability Equation Parameter-plane Method (2) 

Consider the characteristic equation with complex coefficients 

F(s) = i (a,+jb,)SK 
K=O 

which can be partitioned into real and imaginary parts 

F,+F, = 0 

(‘4.1) 

64.2) 

where 

F, = a,+jb,S+a,S2+kb,S3+... 

F, = jb,+a,S+jb,Sz+a3S3+... 64.3) 

The necessary and sufficient condition for the system to be stable is that all the roots of the real 
part (Zi) and the imaginary part (pi) of Eq. (A.3) are on the imaginary axis of the S-plane, and 
their value is related as 

. ..Z_.<P_,<Z_,<P,<Z,<P,<Z,<... 64.4) 

where P, is the origin of the S-plane. 
Now consider the coefficients of Eq. (A.l) as a linear combination of variable system 

parameters c1 and /3 as follows : 

aK = crc,+pd,+e, 

b, = @II + L&K + h,. (A.5) 

The complex variable S is replaced by jw, then Eq. (A.2) can be rewritten as the following 
expressions : 
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Equation (A.6) can be solved for unknown u and p 

u = c,(~)~,(~)--c,(~)~,(~) 
~l(W,W - WW,(~) 

P= 
B,(w)D,(w)-_B,(w)D,(w) 
&(~G(4 - &(W,W’ 

(A.7) 

In the IF/~ plane Eq. (A.7) may represent the locus of points corresponding to the roots with 
frequency W. Equation (A.7) represents at least one root of real part and one root of 
imaginary part equal to jo. If the roots, except one root of real part and one root of imaginary 
part, are equal to j,, and satisfy Eq. (A.3), then a limit cycle may exist. 
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