第七章 實驗結果與討論

7-1 齒形精度誤差

為進行齒形精度之量測與分析,本研究按實驗規劃準備材料及設 備進行試驗,本試驗共進行兩個重複試驗。本研究針對粉末冶金齒輪 其成形時左右齒面之齒形誤差,以及齒輪經過銅熔滲製成後左右齒面 之齒形誤差,進行實驗量測。而直交組合1,直交組合2,.....,直 交組合9之齒形精度測定結果如圖7.1至圖7.9所示。表7.1(a)、7.1(b) 為根據A、B兩次實驗所取得的樣本,經由齒形精度量測儀量測所得 各直交參數組合之左、右齒面齒形誤差數據表,表中之誤差值係以粉 末冶金齒輪經銅熔滲製成後之最後齒形誤差,扣減銅熔滲前已有之成 形誤差,亦即銅熔滲製程前後之齒形誤差值。

7-1-1 實驗結果分析

本研究為探討齒形精度之誤差量,所以希望此誤差量的值越小越 好,故依據「望小」特性來計算齒形誤差之 S/N 比值,並據以製作回 應表、主效果輔助表及變異數分析來選擇最佳參數。 1. 計算 S/N 比

利用 (6.1) 之公式計算左齒面齒形誤差之 S/N 比值,並將此比 值以符號η表示之,其計算方式如下:

$$\eta_{1} = -10 \log_{10} \left(\frac{\sum y_{i}^{2}}{n} \right)$$
$$= -10 \log_{10} \left[\frac{1}{2} \left(11.4^{2} + 8.9^{2} \right) \right] = -21.9 \ (db)$$

圖 7.1(b) 直交組合 1 之齒形精度量測圖 (銅熔滲)

圖 7.2(b) 直交組合 2 之齒形精度量測圖 (銅熔滲)

圖 7.3(b) 直交組合 3 之齒形精度量測圖 (銅熔滲)

圖 7.4(b) 直交組合 4 之齒形精度量測圖 (銅熔滲)

圖 7.5(b) 直交組合 5 之齒形精度量測圖 (銅熔滲)

圖 7.6(b) 直交組合 6 之齒形精度量測圖 (銅熔滲)

圖 7.7(b) 直交組合 7 之齒形精度量測圖 (銅熔滲)

圖 7.8(b) 直交組合 8 之齒形精度量測圖 (銅熔滲)

圖 7.9(b) 直交組合 9 之齒形精度量測圖 (銅熔滲)

直交組合	成形	銅熔滲	誤差值 Rı
1	5.9	17.3	11.4
2	5.1	16.0	10.9
3	5.6	17.6	12.0
4	4.5	8.2	3.7
5	6.8	13.9	7.1
6	5.7	14.2	8.5
7	6.4	64.5	58.1
8	6.2	67.8	61.6
9	6.7	80.2	73.5
直交組合	成形	ES 銅熔滲	誤差值 R2
1	6.3	1896 15.2	8.9
2	5.9	18.9	13.0
3	6.1	16.9	10.8
4	5.0	11.1	6.1
5	6.1	12.3	6.2
6	5.0	13.7	8.7
7	5.2	66.0	60.8
8	6.3	64.2	57.9
9	5.8	80.8	75.0

表 7.1(a) 左齒面之齒形誤差數據表 單位: µm

直交組合	成形	銅熔滲	誤差值 R ₁
1	4.4	17.4	13.0
2	6.4	16.7	10.3
3	4.3	15.5	11.2
4	5.4	8.6	3.2
5	5.6	12.7	7.1
6	5.3	14.9	9.6
7	5.0	64.8	59.8
8	5.5	68.6	63.1
9	4.8	81.2	76.4
直交組合	成形	ES銅熔滲	誤差值 R2
1	5.6	1896 15.0	9.4
2	5.8	19.5	13.7
3	6.3	18.1	11.8
4	5.6	11.9	6.3
5	5.8	13.4	7.6
6	5.5	13.7	8.2
7	4.7	66.5	61.8
8	6.6	65.5	58.9
9	5.3	81.9	76.6

表 7.1(b) 右齒面之齒形誤差數據表

單位: *µm*

以此類推,即可以求得 $\eta_2 = -21.58 \, db$, $\eta_3 = -21.15 \, db$, $\eta_4 = -14.06 \, db$, $\eta_5 = -16.48 \, db$, $\eta_6 = -18.69 \, db$, $\eta_7 = -35.49 \, db$ $\eta_8 = -35.53 \, db$, $\eta_9 = -37.41 \, db$ 。同理,亦可求得右齒面齒形精 度誤差之 S/N 比值,分別將左、右齒面之齒形精度誤差 S/N 比整 理如表 7.2(a)及 7.2(b)。在表 7.2 中,因子A表示原料粉,因子B 表示生胚密度,因子C表示銅含量,因子D表示燒結速度而因子 E則代表放銅方式。其中水準 1、2 及 3 分別表示每一因子之不同 方式或其數值之多寡程度。

2. 建立輔助表及主效果圖

由表 7.2(a)中之數據,利用(6.4)及(6.5)式,建立左齒面齒形誤 差之主效果輔助表及主效果圖,如表 7.3、表 7.4 及圖 7.10 所示。 其中,由於控制因子A、B使用了組合法,而控制因子E採用了虛 擬水準法,因此A、B、C、D、E之主效果,可由以下方式計算之。 (AB)₁ = A₁B₁ = -20.19 + (-21.58) + (-21.15) = -62.92 (AB)₂ = A₁B₂ = -14.06 + (-16.48) + (-18.69) = -49.23 (AB)₃ = A₂B₁ = -35.49 + (-35.53) + (-37.41) = -108.43 C₁ = -20.19 + (-14.06) + (-35.49) = -69.74 C₂ = -21.58 + (-16.48) + (-35.53) = -73.59 C₃ = -21.15 + (-18.69) + (-37.41) = -77.25 D₁ = -20.19 + (-18.69) + (-37.41) = -73.05 D₃ = -21.15 + (-16.48) + (-35.49) = -73.12

因子直交	(AB)	С	D	E	齒形誤差對	敗據(μm)	S/N Ratio
組合 🔪	1	2	3	4	\mathbf{R}_1	\mathbb{R}_2	(db)
1	1	1	1	1	11.4	8.9	-20.19
2	1	2	2	2	10.9	13.0	-21.58
3	1	3	3	1'	12.0	10.8	-21.15
4	2	1	2	Edin	3.7	6.1	-14.06
5	2	2	3	1806	7.1	6.2	-16.48
6	2	3	1	2	8.5	8.7	-18.69
7	3	1	3	2	58.1	60.8	-35.49
8	3	2	1	1′	61.6	57.9	-35.53
9	3	3	2	1	73.5	75.0	-37.41

表 7.2(a) 左齒面之齒形誤差 S/N 比

因子直交	(AB)	С	D	Е	齒形誤差	數據(μm)	S/N Ratio
組合	1	2	3	4	\mathbf{R}_1	R 2	(<i>db</i>)
1	1	1	1	1	13.0	9.4	-21.10
2	1	2	2	2	10.3	13.7	-21.67
3	1	3	3	1′	11.2	11.8	-21.22
4	2	1	2	ES	3.2	6.3	-13.97
5	2	2	3	1806	7.1	7.6	-17.33
6	2	3	1	2	9.6	8.2	-19.01
7	3	1	3	2	59.8	61.8	-35.68
8	3	2	1	1′	63.1	58.9	-35.71
9	3	3	2	1	76.4	76.6	-37.67

表 7.2(b) 右齒面之齒形誤差 S/N 比

	(AB)	C	D	Е	
水準1	-62.92	-69.74	-74.41	-74.08	
水準 2	-49.23	-73.59	-73.05	-75.76	
水準3	-108.43	-77.25	-73.12	-70.74	
合計	-220.58				

表 7.3 左齒面齒形誤差之主效果輔助表 (I)

	А	В	С	D	Е
主效果	45.51	13.69	7.51	1.36	3.35
排行	1	2	3	5	4

表 7.4 左齒面齒形誤差之主效果輔助表 (II)

圖 7.10 左齒面齒形誤差之主效果圖

同理,亦可建立右齒面齒形誤差之主效果輔助表,如表7.5 和 表7.6 所示。由表7.3 及表7.5 中,可得到使齒形誤差量最小的因 子組合為A1、B2、C1、D2、E1,如表7.7 所示。並可分別求出各 控制因子的主效果 △P,其△P越大則表示對齒形誤差的影響越為 顯著。而從圖7.10 所示的左齒面齒形誤差之主效果圖,顯示出A (原料粉)、B(生胚密度)、C(銅含量)等三項為最主要的控制 因子。

	(AB)	С	D	E	
水準1	-63.99	-70.75	-75.82	-76.10	
水準 2	-50.31	-74.71	-73.31	-76.36	
水準3	-109.06	-77.90	-74.23	-70.90	
合計	-223.36				

表 7.5 右齒面齒形誤差之主效果輔助表 (I)

表 7.6 右齒面齒形誤差之主效果輔助表 (II)

	А	B	C	D	Е
主效果	58.75	13.68	7.15	2.51	2.86
排行	1	2	3	5	4

要因	要因說明	水準1	水準2	水準3
А	原料粉	A粉末	B粉末	
В	生胚密度(g/cm ³)	6.7	6.6	
С	銅含量(%)	10.0	13.5	17.0
D	燒結速度(mm/min)	80	100	120
E	放銅方式	노	۲	_

表 7.7 最佳組合之因子及其水準表

3. 變異數分析

當因子變動所產生的變異量遠大於實驗誤差所造成的變異量時,才代表因子的影響力是有意義的,否則即可視為實驗誤差的 一部份,因此,必須靠變異數分析法來測試各個因子的重要性, 並評估實驗誤差。

依據表 7.2(a)及表 7.3 所示之數據即可製作左齒面齒形誤差之 變異數分析表,其計算方式可利用(6.6)至(6.11)式求得如下:

$$CF = \frac{1}{m} \left(\sum_{i=1}^{m} \eta_i \right)^2 = \frac{1}{9} \left(-220.58 \right)^2 = 5406.17$$
$$S_T = \sum_{i=1}^{m} \left(\eta_i \right)^2 - CF = 654.50$$
$$S_{(AB)} = \frac{1}{3} \left[\left(-62.92 \right)^2 + \left(-49.23 \right)^2 + \left(-108.43 \right)^2 \right] - CF = 640.36$$

由於
$$S_{(AB)}$$
中A與B之效果不明,故將其分解為:
 $S_A = \frac{1}{6} (\Delta P_A)^2 = 345.19$; $S_B = \frac{1}{6} (\Delta P_B)^2 = 31.24$
 $S_C = \frac{1}{3} \Big[(-69.74)^2 + (-73.59)^2 + (-77.25)^2 \Big] - CF = 9.40$
 $S_D = \frac{1}{3} \Big[(-74.41)^2 + (-73.05)^2 + (-73.12)^2 \Big] - CF = 0.39$
 $S_E = \frac{1}{6} (E_1 + E_{1'})^2 + \frac{1}{3} E_2^2 - CF = 2.49$
 $S_e = S_T - \sum_{j=1}^{W} SS_j = 654.50 - (640.36 + 9.40 + 0.39 + 2.49) = 1.86$
 $V_{(AB)} = \frac{S_{(AB)}}{f_{(AB)}} = \frac{640.36}{2} = 320.18$

以此類推可求得表 7.8。由此知, D和E因子的變異量以誤差 因子e的變異量而言並不顯著,故可將其合併入誤差項中,合併 後可得變異數分析表 7.9。其中貢獻率 ρ 及變異數比 F。之計算方 式可利用(6.12)至(6.14)式求得如下:

$$\begin{aligned} \rho_{(AB)} &= \frac{S_{(AB)} - f_{(AB)} V_e}{S_T} \times 100\% = 97.48\% \\ \rho_C &= \frac{S_C - f_C V_e}{S_T} \times 100\% = 1.07\% \\ \rho_e &= \frac{S_e + (f_T - f_e) V_e}{S_T} \times 100\% = 1.45 \\ F_{(AB)} &= \frac{V_{(AB)}}{V_e} = 269.06 \\ F_C &= \frac{V_C}{V_e} = 3.95 \end{aligned}$$

利用F表進行F檢定,以表 7.9 之變異數分析結果而言,F分 布之參考值分別為 21.20 (信賴區間 99%,1d.f.)及 6.94 (信賴區 間 95%,2d.f.),故因子A和B在信賴度 99% 下為顯著,而因子 C在信賴度 95% 下不為顯著,故此再將因子C合併入誤差中。由 於合併誤差項後,誤差的變異數Ve之值改變,使得貢獻率ρ及變 異數比Fo之值也隨之改變,因此必須以合併後之Ve值,再次利用 (6.12)至(6.14)式計算以求得變異分析結果如表 7.10 所示。表中加 上*記號者,表示其在信賴度 95% 下為顯著,而在信賴度 99% 下 為顯著時,則加上 ** 符號。以合併過後之誤差變異數來做F檢定, 得因子A在信賴度 99%,因子B在信賴度 95% 下為顯著。

要因	f	1896 S	V				
(AB)	2	640.36	320.18				
А	(1)	(345.19)	(345.19)				
В	(1)	(31.24)	(31.24)				
С	2	9.40	4.70				
D	2	0.39	0.20				
Е	1	2.49	2.49				
е	1	1.86	1.86				
Т	8	654.50	_				

表 7.8 左齒面齒形誤差之變異數分析表 (I)

and the

要因	f	S	V	F_{\circ}	ho(%)
(AB)	2	640.36	320.18	269.06	97.48
А	(1)	(345.19)	(345.19)	290.08**	_
В	(1)	(31.24)	(31.24)	26.25**	
С	2	9.40	4.70	3.95	1.07
е	4	4.74	1.19	_	1.45
Т	8	654.50			100

表 7.9 左齒面齒形誤差之變異數分析表 (II)

表 7.10 左齒面齒形誤差之變異數分析表 (III)

要因	f	S	1896	F_{\circ}	ho(%)
(AB)	2	640.36	320.18	135.67	97.12
А	(1)	(345.19)	(345.19)	146.27**	
В	(1)	(31.24)	(31.24)	13.24*	
е	6	14.14	2.36		2.88
Т	8	654.50	_		100

依據表 7.2(b)及表 7.5 所示之數據,以上述相同之計算方式製 作右齒面齒形誤差之變異數分析表,如表 7.11 及表 7.12 所示。由 變異分析結果可得因子 C、D、E 不為顯著。另外對表 7.12 之結果 進行 F 檢定,可得因子 A 在信賴度 99%,因子 B 在信賴度 95% 下 為顯著。此結果與左齒面齒形誤差之變異分析結果完全一致。

要因	f	S	V
(AB)	2	630.00	315.00
А	(1)	(575.26)	(575.26)
В	(1)	(31.19)	(31.19)
С	2	8.55	4.28
D	2	1.07	0.54
Е	1	1.82	1.82
е	1	4.51	4.51
Т	8	645.95	_

表 7.11 右齒面齒形誤差之變異數分析表 (I)

表 7.12 右齒面齒形誤差之變異數分析表 (II)

要因	f	S	V	F_{\circ}	ho(%)
(AB)	2	630.00	315.00	118.42	96.71
А	(1)	(575.26)	(575.26)	216.26**	_
В	(1)	(31.19)	(31.19)	11.73*	
е	6	15.95	2.66	_	3.29
Т	8	645.95	_		100

7-1-2 確認實驗

透過前一節變異數分析之結果,可以得到銅熔滲製程對齒形影響 最大的參數為A(原料粉)及B(生胚密度),為了驗證前一節分析 所獲得結果之正確性,必須將最佳之參數組合以加法模式作估計,並 進行最後的確認實驗,當所得之實驗結果與預測值相似時,才代表所 設定之最佳的因子及水準組合得到了確認。茲以各因子之效果作估 計,可分別求得下列結果:

 $\overline{T} = T/9 = -220.58/9 = -24.51 (db)$

$$(AB) \begin{cases} \overline{A_1 B_1} = A_1 B_1 / 3 = -20.97 \ (db) \\ \overline{A_1 B_2} = A_1 B_2 / 3 = -16.41 \ (db) \\ \overline{A_2 B_1} = A_2 B_1 / 3 = -36.14 \ (db) \end{cases}$$
$$C \begin{cases} \overline{C_1} = C_1 / 3 = -23.25 \ (db) \\ \overline{C_2} = C_2 / 3 = -24.53 \ (db) \\ \overline{C_3} = C_3 / 3 = -25.75 \ (db) \end{cases}$$
$$D \begin{cases} \overline{D_1} = D_1 / 3 = -24.80 \ (db) \\ \overline{D_2} = D_2 / 3 = -24.35 \ (db) \end{cases}$$

$$\overline{D_3} = D_3/3 = -24.37 \ (db)$$

$$E\begin{cases} \overline{E_1} = E_1/3 = -24.13 \ (db)\\ \overline{E_2} = E_2/3 = -25.25 \ (db) \end{cases}$$

最佳因子組合的 S/N 比預測值為:

 $\hat{\eta} = \overline{A_1B_2} + \overline{C_1} + \overline{D_2} + \overline{E_1} - 3\overline{T} = -14.61 \ (db)$

若將此值換算成齒形誤差量為 5.4(μm)。

根據前節之齒形誤差最佳參數組合 $A_1B_2C_1D_2E_1$,以 6-5-2 節之 實驗方式再進行確認實驗,經確認實驗之齒形精度量測結果如圖 7.11 所示。若將其齒形誤差量換算成 S/N 比,可得 $\eta = -14.96(db)$,如 表 7.13 顯示之預測與確認實驗結果。由確認實驗結果中,顯示確認 實驗之 S/N 比的數據與預測值甚為接近,根據確認實驗所得結果,即 可確定影響齒形變異最小的最佳製程條件組合為 $A_1B_2C_1D_2E_1$ 。

圖 7.11(a) 確認實驗之齒形精度量測圖 (成形)

圖 7.11(b) 確認實驗之齒形精度量測圖 (銅熔滲)

表 7.13 預測與確認實驗

	誤差量(μm)	S/N 比值(db)
預測值	5.4	-14.61
確認值	5.6	-14.96

7-2 歯輪之機械性質

熔滲製程的最大優點,就是可以提高產品的機械性質。因此,經 過熔滲之齒輪不僅在精度上需要控制,在機械性質上也必須達到一定 的要求,才不失熔滲之目的。

7-2-1 彎曲強度

歯輪在嚙合時,由於彎曲力矩及接觸應力之影響,會造成齒輪之 損壞,因此提高齒輪之彎曲強度是必要的。而為了瞭解粉末冶金齒輪 在經過銅熔滲處理後,會對其彎曲強度造成多大的影響,因此,特別 以A、B兩種不同成分的粉末所製造之生胚密度為 6.7 g/cm³之粉末冶 金齒輪,在沒有滲銅以及滲銅含量分別為 10.0%、13.5% 和 17.0% 下, 利用萬能試驗機來量測其彎曲強度,所得數據整理如表 7.14 所示。 而圖 7.12 則表示A、B兩種粉末所製成之粉末冶金齒輪之彎曲強度與 銅含量之關係圖。

由圖中顯示出銅含量增加時,粉末冶金齒輪之彎曲強度也會隨之 增強,而從原料粉方面來必較,可以看出由A粉末所製造之齒輪, 經滲銅後其彎曲強度明顯的優於以B粉末所製成之齒輪。以同樣是 13.5% 之滲銅量為例,A粉末製成之實驗齒輪其彎曲強度由未滲銅前 的 646.91 kg/mm²提高到 1258.76 kg/mm²,共增加了 94.6%;然而以 B粉末所製成之實驗齒輪,其彎曲強度在滲銅前後僅增加了 16.8%。 另外,由齒形精度實驗結果中顯示,A粉末所製造出來的齒輪在精度 上也遠優於以B粉末所製成之齒輪,因此可以確定在銅熔滲製程中, 使用A粉末來製造齒輪是比較恰當的。

81

A粉末	滲銅含量			
實驗次數	0%	10.0%	13.5%	17.0%
1	647.91	1108.40	1251.50	1340.89
2	643.78	1062.57	1279.67	1391.97
3	649.04	1057.70	1245.11	1336.76
平均	646.91	1076.22	1258.76	1356.54
B粉末	ELS 滲銅含量			
實驗次數	0% 🏹	10.0%	13.5%	17.0%
1	882.66	896.18	998.34	1098.25
2	852.61	931.86	1051.68	1091.12
3	829.33	938.62	945.39	1059.94
平均	854.87	922.22	998.47	1083.10

表 7.14 A、B粉末製成齒輪之彎曲強度 單位:kg/mm²

圖 7.12 A、B 粉末製成齒輪之彎曲強度與銅含量之關係圖

7-2-2 密度测定

在銅熔滲製程中,完成品之密度一般會要求達到 7.2~7.5g/cm³,以避免在機械強度上的不足。因此,對於粉末冶金實驗齒輪經過熔滲 後進行密度量測,以確認是否達到齒輪密度要求。

由於變異數分析結果顯示,原料粉為影響齒形精度最顯著的因 子,且其最佳水準為A粉末,因此,針對A原料粉製成之齒輪,在 不同生胚密度及滲銅含量下,量測其經過銅熔滲製程後所得之密度 值,測定結果如表 7.15 所示。而其齒輪密度變化如圖 7.13 所示。

生胚密度 6.6 g/cm ³	滲銅含量			
樣本編號	10.0%	13.5%	17.0%	
1	7.207	7.383	7.667	
2	7.200	7.384	7.658	
3	7.196	7.381	7.666	
平均	7.201	7.383	7.664	
生胚密度 6.7 g/cm ³	Summer Bar	渗銅含量		
樣本編號	10.0%	13.5%	17.0%	
1	7.322	7.505	7.776	
2	7.300	7.510	7.773	
3	7.296	7.506	7.774	
平均	7.306	7.507	7.774	

表 7.15 A粉末製成齒輪之密度(單位:g/cm³)

圖 7.13 A 粉末製成齒輪在不同生胚密度下之密度變化圖

由表 7.15 及圖 7.13 可以看出,當生胚密度或滲銅含量越大,經 熔滲後之齒輪密度也越大。而不論是改變生胚密度或滲銅含量,A粉 末所製成之齒輪在經銅熔滲後,其密度皆可達到 7.2 g/cm³以上。由 於在齒形精度實驗之結果中顯示,粉末冶金齒輪之滲銅含量對齒形變 異的影響並不大,因此,在銅熔滲製程中,為了提高齒形之精度可以 降低齒輪之生胚密度,而靠提高銅含量來達到最後的密度要求。

7-2-3 金相分析

熔滲製程最大的優點之一,是可以靠滲銅的方式填滿成形品內部 之空孔,藉此達到提高密度及機械強度之效果。而藉由金相分析之結 果,可以觀察到齒輪內部有無滲銅的差異。圖 7.14 至 7.17 為 A、B 兩種粉末所燒結之齒輪與經過滲銅之齒輪,利用光學顯微鏡以放大倍 率 300 倍所拍出之金相圖。

圖 7.14(a) A 粉末製成齒輪經燒結後之金相圖 (齒輪芯部)

圖 7.14(b) A 粉末製成齒輪經銅熔滲後之金相圖(齒輪芯部)

圖 7.15(a) A 粉末製成齒輪經燒結後之金相圖 (齒部)

圖 7.15(b) A 粉末製成齒輪經銅熔滲後之金相圖 (齒部)

圖 7.16(a) B 粉末製成齒輪經燒結後之金相圖 (齒輪芯部)

圖 7.16(b) B 粉末製成齒輪經銅熔滲後之金相圖(齒輪芯部)

圖 7.17(a) B 粉末製成齒輪經燒結後之金相圖 (齒部)

圖 7.17(b) B 粉末製成齒輪經銅熔滲後之金相圖 (齒部)

從圖 7.14 至 7.17 之金相圖中可以發現, 齒輪在歷經單純的燒結 過程後,內部將會留有許多空孔。而經銅熔滲之齒輪,其內部的空孔 絕大部分都會被銅所填滿,也因此將會大幅的提高經銅熔滲齒輪之機 械強度,包括彎曲強度、硬度及抗腐蝕能力等性質都會獲得改良。

