國立交通大學

應用化學系碩士班

碩士論文

研 究 生:盧劭儒 (Shao-Ru, Lu)

指導教授:蒙國光 博士 (Dr. Kwok-kong, Mong)

中華民國一百年七月

Abstract

A convenient pre-activation DMF-modulating glycosylation method is developed. The method employs DMF as a modulator to convert the highly reactive oxocarbenium ion to less reactive glycosyl imidate; subsequent coupling of the imidate with an acceptor leads to the formation of glycosylation product. In addition. there is а quantity-selectivity relationship between the amount of DMF modulator and the degree of α -selectivity in glycosylation. High to excellent 1,2-cis and 1,2-*trans* α -selectivities are achieved by this simple method without invoking any atypical protecting functions.

Regarding the reaction mechanism, VT-NMR study is performed, which clearly identifies the α -glycosyl imidate by detection of characteristic signals deriving from the imidate function. In addition, glycosyl formate deriving from the side reaction of the glycosyl donor is also observed on some occasions. Based on such evidence, a possible mechanism is proposed. The interception of oxocarbenium ions with DMF generates a mixture of α/β -glycosyl iminium ions. Empirically, the β -iminium intermediate is more reactive than the α one and is able to react predominantly with the alcohol acceptor through a S_N2-like pathway leading to 1,2-*cis* α -glycosidic bond formation. 此論文成功建立一套藉由預活化(pre-activation)的方式,透過二甲 基甲醯胺(dimethylformamide)的調控達到高 alpha 選擇性醣質化反應。 此方法利用二甲基甲醯胺,把高反應性的 oxocarbenium ion 轉變成相 對反應性較低的 glycosyl imidate。之後加入醣受體與上述的 glycosyl imidate 反應形成醣質化產物。另外,二甲基甲醯胺的當量與 alpha 選 擇性有正相關性。此方法不需要使用特殊的保護基,就能達到極高的 alpha 選擇性。

利用變溫核磁共振儀(VT-NMR)研究,觀察到 α -glycosyl imidate 的特徵訊號,以及分離出副反應的 glycosyl formate。根據以上的證據, 提出了此方法合理的反應機制。二甲基甲醯胺與 oxocarbenium 進行 反應產生 glycosyl iminium ions 的 alpha, beta 混和物(α / β -glycosyl iminium ions)。而 beta 的 glycosyl iminium 反應性比 alpha 的 glycosyl iminium 較佳,會先與醣受體進行 S_N2-like 的反應,產生 1,2-*cis* 的醣 苷鍵。 致謝

時間回到當初來交大報到的那一天,充滿期待的我希望能找到理想的實驗室度過這兩年的碩士生涯。在大學時有機學的不是很好,但 卻很戲劇性的加入了有機合成的實驗室。

很感謝蒙國光老師,當初願意讓我進入實驗室學習。一開始的我 甚麼都不懂,老師都很有耐心的教導我。也在我遇到挫折,陷入低潮 時,不斷地給我信心,"不要小看自己,你做得到的"我永遠記得他說 得這句話。也很感謝老師在這兩年中願意提供我出去學習的機會,例 如參加 FPLC 的操作研習、國內各大研討會,以及義大利的歐洲醣化 医 學研討會。每次的會議都讓我的能力與眼界有大幅的提升。

也很謝謝鄭偉杰老師許多經驗的分享,讓我有機會進入高級學術 殿堂-中研院。認識了在鄭老師底下研究的大家庭。大家都很願意幫 忙我這個小菜鳥。在中研院的短暫日子,卻在我碩士回憶裡留下重要 的一頁。

而晉陞學長則是我碩士生涯的另一個貴人。還記得一開始剛進實 驗室甚麼都不會,學長總是不厭其煩地跟我講解如何操作、實驗背後 的機制。也因為學長,慢慢的潛移默化讓我也養成大量閱讀文獻的習 價。那些一起最晚走的日子、一起討論實驗方向、一起抒發心情的日 子,深深的印在我腦海裡。沒有晉陞學長的教導,我的實驗技巧可能 會大打折扣。

雖然跟知岳學長相處的時間並不算很長,但學長常分享一些我生 物方面的知識,也教了我許多人生的道理。也在我遇到困難時,毫不 猶豫的幫助我,跟你一起相處的歡樂時光總是過得特別快。另外,也 很謝謝智為學長、世聖學長、振瑋學長、崑章學長、士哲學長、Shaheen、 Baswati、鈺芳、璟妤、彥勳、桔程、哲豪這兩年來的幫忙協助以及 實驗上的討論。學弟俊翰、育賢、偉晟謝謝你們的幫助,跟你們在同 一個實驗室是我的福氣。

最後,要感謝我的父母家人,在我遇到不順遂、心情低落時,仍 全力支持我,在背後當我的靠山。也謝謝乙珊默默地陪著我,陪我度 過了最煎熬的時刻。沒有你們,我想我很難撑得下去。

劭儒

Abbreviations

Ac	Acetyl
Ac ₂ O	Acetic anhydride
All	Allyl
AgOTf	Silver trifluoromethanesulfonate
Bn	Benzyl
Bu	Butyl
Bz	Benzoyl
DMF	N,N-dimethylformamide
DMA	N,N-dimethylacetamide
Et	Ethyl
Fmoc	Fluorenylmethyloxycarbonyl
Fuc	Fucose
Gal	Galactose
Glc	Glucose
HMPA	Hexamethyl phosphoramide
Man	Mannose
Me	Methyl
MS	Molecular sieve
NIS	N-iodosuccinimide
Nu	Nucleophile
Ph	Phenyl
Phth	Phthalate
Rha	Rhamnose

TMSOTf	Trimethylsilyl
	trifluoromethanesulfonate
Tf ₂ O	Trifluoromethanesulfonic
	anhydride
TsOH	<i>p</i> -toluenesulfonic acid
TEA	Triethylamine
TES	Triethylsilane
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
2-Nap	2-naphthylmethyl

Table of Contents

摘要	Ę			ii		
致謝	ŧ			iii		
Abb	revia	tions		v		
1.	. Introduction of α -stereoselective <i>O</i> -glycosylation					
	1.1	Oligo	osaccharides	1		
	1.2	Glyc	sylation strategies			
	1.2.1 Orthogonal glycosylations					
		1.2.2	Chemoselective glycosylation strategy	4		
		1.2.3 Pr	re-activated Iterative Glycosylations	5		
	1.3	The	method of 1,2-cis O-Glycosylation	9		
		1.3.1	Lemieux's in situ anomerization strategy	9		
		1.3.2	α -selective glycosylation by neighboring group participati	on10		
		1.3.3	Solvent influence in α -selective glycosylation	11		
		1.3.4	α -selective <i>O</i> -glycosylation by additives	11		
		1.3.5	α -Selective <i>O</i> -glycosylation by amide-type molecules	13		
2	Mot	ivation		17		
3	Res	ults and	discussion			
3.1 Optimize the conditions for DMF-modulating glycoslations				18		
	3.2	Test	the scope of pre-activated DMF-mediated glycoslation	23		
3.2.1 Application of DMF-modulating glycosylation to other thioglycoside donors						
						3.3 Application of DMF-modulating glycosylation to thioglycoside accept
		27				
	3.4	Mecl	hanistic investigations	31		
		3.4.1	Isolate the hydrolysis product of glycosyl imidate	31		
		Real-time variable temperature NMR study				
		3.4.3	Temperature profile using VT-NMR			
		3.4.4	DMF- d_7 substitution experiment			
	3.5	Play	usible mechanism of DMF-modulated pre-activated glycosyla	ation.39		
4	Con	clusions		40		
5	Exp	erimenta	1	41		
5.1 General experiment procedure:				41		
5.2 General pre-activated DMF-modulating glycosylation procedure						
	(pro	cedure E	3)	42		
	5.3	Procedu	res and experimental data.	43		

6	Reference:	.79
	Appendix	

Figure 1. Participation of cell surface carbohydrates in recognition events
with another cell (A), toxins (B), viruses (C), antibodies (D) and
bacteria (E)1
Figure 2. Possible linkages between two identical monosaccharides
Figure 3. Concept of orthogonal glycosylation strategy
Figure 4. Concept of chemoselective glycosylation strategy
Figure 5. Concept of pre-activation strategy
Figure 6. Factors influencing the stereoselectivity of glycosylation9
Figure 7. (a) Thioglycosyl donors: 2. (b) Acceptors: 10–17; (c)
Glycosylation products: 18–25
Figure 8. The pairs of thioglycosyl donor, acceptors and their
corresponding glycosylation product
Figure 9. (a) Thioglycosyl acceptors 30–40; (b) Glycosylation products:
41–55
Figure 10. (a) Glycosylation of 58 with 59 following procedure B. (b) 1 H
NMR spectrum taken just prior to TMSOTf addition (0 min). (c) 1 H
NMR spectrum taken at 90 min following TMSOTf addition (90 min).
(d) ¹ H NMR spectrum taken at 90 min after addition of 59 34
Figure 11. Temperature profile diagram by using VT-NMR from -50°C to
50°C
Figure 12 . DMF- d_7 substitution experiment. (a) ¹ H NMR spectrum taken
just prior to DMF- d_7 addition. (b) ¹ H NMR spectrum taken at 0 min
after addition of DMF- d_7 . (c) ¹ H NMR spectrum taken at 30 min after
addition of DMF- d_7

Table 1. The effective of additives and sulfoxides				
Table 2. α -glucosylation by using DMA (DMF) as an additive14				
Table 3. Investigation of DMF-modulating glycosylation procedures A an	ıd			
B with galactosyl acceptor 3	21			
Table 4. Results of glycosylation of acceptors 10–17 using glycosylation				
procedure B	25			
Table 5. Results of glycosylation using glycosylation procedure B	27			
Table 6. Results of glycosylation of thioglycosyl acceptors 30–40 using				
glycosylation procedure B	30			
Table 7. Experimental details for glycosylation of acceptor 3, 10–17 with				
donors 2 , 7 , 8 and 9	46			
Table 8. Experimental details for glycosylation of thioglycosyl acceptors				
30–40 using procedure B	61			

Scheme 1. Sequential One-Pot Glycosylations using 1-Hydroxyl and
1-Thiodonors7
Scheme 2 One-pot synthesis of trisaccharide. The values given in
parentheses denote the number of equivalents of each reagent
Scheme 3 Lemieux <i>in situ</i> anomerization for 1,2- <i>cis</i> -glycoside formation.10
Scheme 4 Concept of the glycosylation with C-2-S-auxiliary glycosyl donor
Scheme 5 Ether-type solvents induce α -selective glycosylation11
Scheme 6 Glycosylation of a phenyl thiosialoside donor with diphenyl
sulfoxide (Ph ₂ O) and triflic anhydride (Tf ₂ O)
Scheme 7. Boons's method the glycosylation of 2-azido-2-deoxy glucosides
using sulfonium ions13
Scheme 8 Overview of One-pot α -glycosylation Using Appel agents in
DMF
Scheme 9. (a) DMF-modulating glycosylation procedure (procedure A). (b)
DMF-modulating glycosylation procedure (procedure B)
Scheme 10. The influence of the equivalent of TMSOTf
Scheme 11 Isolate the hydrolysis product of glycosyl imidate
Scheme 12. Proposed mechanism of DMF modulating glycosylation39
Scheme 13. Preperation of 6-chlorohexyl 2,3,4-tri-O-benzyl-
-D-galactopyranoside 16
Scheme 14. Preperation of <i>p</i> -tolyl 4-O-benzyl-2,3-di-O-benzoyl-thio-
-D-glucopyranoside 34
Scheme 15. Preparation of <i>p</i> -tolyl 2,3,4-tri- <i>O</i> -benzyl-
-D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri- <i>O</i> - benzyl-thio-
-D-glucopyranoside 38
Scheme 16. Preparation of 4,6-O-benzylidene-3-O-(2-naphthyl)-thio-
-D-galactopyranoside 39
Scheme 17. Preparation of <i>p</i> -tolyl 4,6- <i>O</i> -benzylidene-2,3-di- <i>O</i> -methyl-thio-
-D-galactopyranoside 58
Scheme 18. Preparation of 6-chlorohexyl
4,6- <i>O</i> -benzylidene-2,3-di- <i>O</i> -methyl-D-galacto pyranoside 61 77

1. Introduction of α -stereoselective *O*-glycosylation

1.1 Oligosaccharides

Glycoconjugates are ubiquitous components of all living organisms. They play an important role in different biological activities, for examples, viral infection, cellular trafficking, cell proliferation, differentiation, cell apoptosis and immune response etc.¹ Most of these activities are closely associated with carbohydrate-protein interactions (**Figure 1.**).²

Figure 1. Participation of cell surface carbohydrates in recognition events with another cell (A), toxins (B), viruses (C), antibodies (D) and bacteria (E)

Some cancer diseases, one of the leading causes of mortality in many countries are closely associated with glycoconjugates. Scientists have found that particular oligosaccharide conjugates are over-expressed by cancer cell, such as Globo-H in breast cancer,³ Gb₃ in Burkitt lymphoma,⁴ GM₁ in lung cancer,⁵ etc. Accordingly, development of synthetic carbohydrate vaccines to cure the cancer disease draws particular interest of scientists. Moreover, other applications of oligosaccharide conjugates include the preparation of bioconjugated hybrid materials, which is used for neutralization of antibody to alleviate

the immune response in organ transplant rejection.⁶

In order to study the biological function of the natural oligosaccharides, researchers needs sufficient quantity of biological relevant oligosaccharide structures in high purity and homogeneity. However, extraction of glycoconjugates from natural resources is inefficient and tedious, and they are unable to fulfill the above requirements; as such, chemical synthesis of oligosaccharides provides access to meet these demands.

The chemistry in oligosaccharide synthesis involved protecting group manipulation and glycosidic bond formations. Protecting group manipulation is always time-consuming and tedious, but the regioselectivity and stereoselectivity in glycosidic bond formations remain challenging. For example, any pair of six-carbon monosaccharides can be coupling in 11 different ways (Figure 2.). Regioselective glycosylation of a particular hydroxyl functions can be achieved by one-pot regioselective protection strategy.⁷ However, selective formation of α - and β -glycosidic bonds is the main theme in glycosylation studies.

In recent decades, advances in synthetic methodologies have been achieved in construction of complex oligosaccharides. A number of synthetic strategies have emergred, which include the advances in traditional solution-phase glycosylations, and solid-phase synthesis. Among these advancements, we herein discuss three classes glycosylation chemistries that are widely used in contemporary carbohydrate chemistry. Some of them are elaborated to one-pot oligosaccharide synthesis that significantly streamlines the traditional coupling processes.

Figure 2. Possible linkages between two identical monosaccharides

1.2 Glycosylation strategies

The three classes of glycosylation chemistry to achieve the glycosylation coupling of saccharide units are the orthogonal, chemoselective and pre-activated iterative glycosylations. They have both advantages and disadvantages. Followings outline the key features of these strategies.

1.2.1 Orthogonal glycosylations

The difference in reactivity between glycosyl substrates was obtained by using various types of anomeric leaving groups. As such, by varying the promoter, a glycosyl donor e.g. bromide, trichloroacetimidate or thioglycosides, can be selectively activated by judicious use of appropriate promoters, which can then be coupled with a glycosyl acceptor and the anomeric function at the acceptor remains untouched. The advantage of an orthogonal strategy is that this strategy allows the condensation of building blocks, independent of their relative reactivity. However, the excessive synthetic work required to obtain building blocks with orthogonal anomeric functions complicates the scheme and therefore decreases the overall efficiency (**Figure 3**).

Figure 3. Concept of orthogonal glycosylation strategy

1.2.2 Chemoselective glycosylation strategy

In the chemoselective strategy, different protecting groups are employed to create a reactivity profile for glycosyl substrates. In general, the anomeric leaving groups become more nucleophilic by electron-donating protecting functions (an armed condition) and less nucleophilic by electron-withdrawing groups (a disarmed condition). Highly nucleophilic leaving group is more reactive toward electrophilic activation, while weakly nucleophilic leaving group is less reactive toward electrophilic activation (**Figure 4**). Hans Paulsen firstly documented the viability of this so-called armed-disarmed concept⁸ and later realized by Fraser-Reid *et al.*⁹ Further studies by Ley and Wong translate this qualitative concept into quantitative reactivity-based glycosylations.¹⁰Besides protective groups manipulations at the multiple hydroxyl functions, other variables such as the nature of the anomeric leaving groups or the effect of the solvent on the donors' reactivity can be also exploited to facilitate efficient oligosaccharide one-pot synthesis.

Comparison with the orthogonal glycosylations, an apparent advantage of chemoselective glycosylations is that only one type of anomeric leaving group is required. However, such an advantage is partly compromised by the requirement to creating a reactivity difference for the glycosyl substrates concerned, which, as a consequence, invokes additional synthetic steps.

Figure 4. Concept of chemoselective glycosylation strategy

1.2.3 Pre-activated Iterative Glycosylations

The most straightforward way to assemble an oligosaccharide would be to use the same set of anomeric function, and be independent of the substituent pattern of the coupling partners. The pre-activation strategy is certain to be a good choice.

This strategy combines the advantage of both reactivity-based (activation under only one set of glycosylation condition) and orthogonal strategy (independent of reactivity).

In the absence of acceptor, the glycosyl donors is pre-activated, which generates a reactive intermediate. After addition of acceptor to the pre-activated donor, a disaccharide is formed which can be activated in the same way. The process can be repeated several times in the same flask until the desired oligosaccharide is obtained (**Figure 5**).

Figure 5. Concept of pre-activation strategy

However, some requisites need to be fulfilled to have an efficient reaction¹¹ : (i) the promoter utilized should be stoichiometric in activation of a wide range of glycosyl donors in order to prevent further activation of the following building blocks; (ii) the intermediate generated after pre-activation must be sufficiently stable until the addition of acceptor but reactive enough for a high-yielding coupling; (iii) side products formed during the reaction should not interfere with the glycosylation process.

In 2003, Van der Marel and co-workers reported a new glycosylation

procedure in which the Ph₂SO/Tf₂O-mediated dehydrative condensation of 1-hydroxyl donors with thioglycosides affords in good yield the thiodisaccharides, which in turn can be activated by the same activator system to furnish trisaccharides (**Scheme 1**). The α -Gal epitope and a hyaluronan trisaccharide were efficiently assembled in a one-pot procedure.¹²

Scheme 1. Sequential One-Pot Glycosylations using 1-Hydroxyl and 1-Thiodonors

Pre-activation of thioglycosides was first reported by Crich et al.^{13 14} They try to get highly reactive α -mannosyl triflate by pre-activating thioglycosides. The α -mannosyl triflate could undergo S_N2-type substitution, leading to the formation of the challenging β -mannosidic bond. In 2004, for the first time Huang and co-workers established the concept of iterative one-pot synthesis of oligosaccharides based on the pre-activation strategy.¹⁵ *p*-TolSCI-AgOTf was used as a promoter in the iterative one-pot synthesis of trisaccharide (**Scheme 2**).

Pre-activation of disarmed galactoside using a stoichiometric amount of p-TolSOTf (formed in situ from p-TolSCl and AgOTf) was followed by addition of the more armed glucosamine. After the reaction was completed, the intermediate disaccharide was pre-activated using the same activator. Subsequent addition of the mannoside led to the formation of trisaccharide in 54% yield.

Scheme 2 One-pot synthesis of trisaccharide. The values given in parentheses denote the number of equivalents of each reagent.

Compare with the traditional reactivity-based strategy, this approach is a significantly improved strategy. This approach has also been applied to the assembly of chitotetroses¹⁶, Globo-H¹⁷ and hyaluronic acid oligosaccharides¹⁸; the results are satisfactory.

Though the above glycosylation chemistries are effective for β-glycosidic bond formation, in 1.2-trans many cases, poor glycosidic bond a-stereoselectivity of formation hampers the efficiency of the glycosylation method. In general, neighboring group participation by C-2 esters will often give 1,2-trans β -glycosides, while there is no general solution for 1,2-cis α -glycosidic bond formations. In the past, some elegant approaches address this synthetic problem. We are going to introduce some of the representation works in this regard (Figure 6).

1.3 The method of 1,2-cis O-Glycosylation

Figure 6. Factors influencing the stereoselectivity of glycosylation

1.3.1 Lemieux's in situ anomerization strategy

In 1975, Lemieux first introduced the concept of *in situ* anomerization, so-called "halide ion catalyzed glycosylation reactions" (Scheme 3). It was documented that a rapid equilibrium could be established between relatively stable α -glycosyl halides and the more reactive β -glycosyl halides by tetrabutyl ammonium bromide (Bu₄NBr). The energy barrier for the attack of glycosyl acceptor with β -glycosyl halide to give *cis*-glycoside is lower than the corresponding *trans*-formation of α -glycosyl halides into *trans*-glycosides. The formation of *cis*-glycosides is preferred. To date, this method provides by far better a α -selectivity in glycosylations for D-glucose, D-galactose, and L-fucose substrates. It has proven to be applicable for the synthesis of complex oligosaccharides especially.¹⁹

Scheme 3 Lemieux in situ anomerization for 1,2-cis-glycoside formation

1.3.2 α-selective glycosylation by neighboring group participation

The formation of 1,2-*cis*-glycosides can be also controlled by the certain participating groups. Boons and co-workers have developed a novel general method for the formation of 1,2-*cis* glycosides by utilizing the (*1S*)-phenyl-2-(phenylsulfanyl)ethyl group at the C-2 position²⁰. The participating group of the chiral auxiliary gives a quasi-stable anomeric sulfonium ion formed as a *trans*-decalin ring system due to steric and electronic factors. Thus, acceptors could only attack the sulfonium ion intermediate from the bottom face to give α -glycosides (**Scheme 4**).

Scheme 4 Concept of the glycosylation with C-2-S-auxiliary glycosyl

donor

1.3.3 Solvent influence in α-selective glycosylation

Another important factor which influences the stereoselectivity of glycosylations is the type of solvent used. If the formation of α -glycosides is desired, the ether type solvents such as diethyl ether (Et₂O), THF and 1,4-dioxane are the suitable choice (**Scheme 5**).²¹ The solvent molecules coordinate with oxocarbenium ions to preferentially occupy at the β -face. Therefore, the attack of the acceptor is restricted to the α -face, leading toward axial glycosidic bond formation. Nitroethane was also employed as a suitable solvent for 1,2-*cis* glycosylation.²²

Scheme 5 Ether-type solvents induce α -selective glycosylation

1.3.4 α-selective *O*-glycosylation by additives

Moreover, additives also significantly influence the stereoselectivity. Bogusiak *et al.* reported the selective 1,2-*cis* glycofuranoside synthesis is improved by the addition of a catalytic amount of hexamethyl phosphoramide (HMPA) as an additive.²³

Few years later, Crich and his coworker have shown that the challenging α -sialylation can be performed by using diphenyl sulfoxide (Ph₂SO) and trifluoromethanesulfonic anhydride (Tf₂O).²⁴ The excess amount of diphenyl sulfoxide is shown to play an important role in

couplings and to suppress the formation of elimination product (**Scheme 6**). They demonstrated that the diphenyl sulfoxide is not only a promoter in glycosylation but it also traps the first-formed oxocarbenium ions. They also investigated the use of a series of sulfoxides in place of diphenyl sulfoxide (**Table 1**).

Scheme 7 Glycosylation of a phenyl thiosialoside donor with diphenyl sulfoxide (Ph₂O) and triflic anhydride (Tf₂O).

Table 1. The effective of additives and sulfoxides

^{*a*} Isolated yields. ^{*b*} Determined by ¹H NMR on the crude reaction mixture.

In 2007, Boons *et al.* presented an excellent α -selective glycosylation of 2-azido-2-deoxy-glucosyl trichloroacetimidates, when performed at a relatively high reaction temperature in the presence of PhSEt or thiophene.²⁵ With NMR and computational studies, β -anomeric sulfonium intermediate formed due to steric hindrance. As a result, the acceptor will come from α -side (**Scheme 8**).

Scheme 8. Boons's method the glycosylation of 2-azido-2-deoxy glucosides using sulfonium ions.

1.3.5 α-Selective *O*-glycosylation by amide-type molecules

Koto first published the stereoselctive α -glucosylation in the

presence of a quaternary mixture of 4-nitobenzenesulfonyl chloride, silver trifluoromethanesulfonate, *N*,*N*-dimethylacetamide, and triethylamine (**Table 2**).²⁶ They proposed a plausible pathway that the alcohol may react with the hypothetical intermediate of β -iminium ion to form the corresponding α -glucoside. The intermediate α -iminium ion is more stable than intermediate β -iminium ion thermodynamically, but intermediate β -iminium ion is more reactive to form the α -glucoside. But they didn't show any physical data to support their hypothesis.

Entry	Acceptor	additives	Yield	α/β ratio
1	Ι	DMF ^a	58%	77:23
2	Ι	DMF (2.5)	92%	88:12
3	Ι	DMA (2.5)	86%	93:7
4	Ι	DMA (5.0)	73%	86:14
5	II	DMA (2.5)	85%	89:11
6	III	DMA (2.5)	87%	90:10

7	IV	DMA (2.5)	91%	47:53
8	IV	DMA (5.0)	88%	73:27
9	IV	DMA (10.0)	54%	72:28

^{*a*} As a solvent.

In 2003, Nishida and his coworker reported a practical glycosylation by one-pot method using Appel agents in *N*,*N*-dimethylformamide.²⁷ The role of DMF is demonstrated according to the evident ¹H NMR spectra. The signals indicated that the α -glycosyl bromide by using Appel agent could be transformed to α -glycosyl iminium species when the solvent is DMF. (**Scheme 9**) Though Lemieux and co-workers^{19a} reported a similar solvent effect, they didn't indicate the occurrence of such DMF-glycosyl adducts.

Scheme 9 Overview of One-pot α -glycosylation Using Appel agents in DMF

Two years later, they still speculate not only β -glycosyl bromide but also β -glycosyl imidate could be the species to induce the stereoselectivity.²⁸ Compare to α -glycosyl imidate, the β -glycosyl imidate is more reactive and it may not be accessible by NMR at the room temperature due to the rapid equilibration. Furthermore, at the lower temperature DMF will be frozen. Nowadays, there is no mean to identify the real species in this reaction.

2 Motivation

1,2-*cis*-glycosidic bonds are widely occurred in numerous natural oligosaccharides, glycosides, and glycoconjugates, which are widely distributed in living tissues. These compounds are also found in the human milk, in blood group compounds, in bacterial lipopolysaccharide antigens, and many other sources. Such as Lewis (Le) antigens, *O*-linked glycoproteins, α -Gal Ceramide (KRN7000), polysulfated glycosaminoglycans, globotriaosylceramide (Gb₃) and *N*-linked glycoproteins. But there is no general solution for 1,2-*cis* α -glycosidic bond formations by chemical preparation.

Based on the literatures described before, DMF has been used for the stereoselective glycosylation several times. But the exact role of DMF is still out there. To date, the reported examples only use glycosyl halides as donors. Could we apply it to other glycosyl donor, for example common-used thioglycoside? According to the literature survey, DMF can participate the glycosylation to form more stable intermediate, Could we apply it to pre-activation strategy and elevate it to iterative glycosylation? We herein reported the investigation and findings based on the above context and initial finding in our laboratory.

3 Results and discussion

Based on the preliminary studies of glycosyl chlorides, we observed that residual DMF in the glycosylation mixture promoted 1,2-*cis* α -glycosidic bond formation. Along this line, we hypothesize that this α -glycosylation should also be applicable to thioglycosyl donors, which as a stable glycosyl donor, open access to elucidation of the reaction mechanism. To the best of our knowledge, such investigations have not been reported.

3.1 Optimize the conditions for DMF-modulating glycoslations

In this thesis, we investigated two DMF-modulating glycosylation procedures, and they were depicted in Schemes 9a and 9b.

Scheme 10. (a) DMF-modulating glycosylation procedure (procedure A).(b) DMF-modulating glycosylation procedure (procedure B).

In procedure A, as adapted from standard glycosylation protocol, a mixture of thioglycosyl donor, glycosyl acceptor and DMF is treated with

N-iodosuccinimide (NIS) and trimethylsilyl triflate (TMSOTf) (**Scheme 10a**).²⁹ In procedure B, the thioglycosyl donor is firstly pre-activated with NIS and TMSOTf in the presence of DMF. Upon completion of activation, glycosyl acceptor is added and, it reacts with a presumably glycosyl imidate to furnish desired glycosylation product (**Scheme 10b**).

At the outset, the procedure A was applied to couple commercially available galactosyl acceptor **3** with **a** perbenzyl thiogalactoside **1**. After some experimentations, one molar equivalent of TMSOTf (with respect to glycosyl donor) was required for effective activation of the donor (**Scheme 11**). A larger amount of TMSOTf may be probably attributed due to a mild Lewis basicity nature of DMF. Nevertheless, the DMF modulator exhibits an α -directing effect in glycosylations using thioglyosyl donors, which is in line with our previous findings in glycosyl chlorides.³⁰

Scheme 11. The influence of the equivalent of TMSOTf.

In addition, we observed a quantity-selectivity dependent relationship between the stoichiometric amount of DMF addition and the degree of glycosylation selectivity. Explicitly speaking, when the amount of DMF increased from zero to 1.5 equiv, the α/β -anomer-ratio of the glycosylation product **4** increased from 1/1 to 3/1 (**Table 3**, entries 1–4). However, this moderate selectivity is still inadequate for synthetic application, but further increase in amount of DMF addition (>1.5 equiv.) aiming at selectivity improvement was prohibited due to the formation of a side-product, namely the formyl transfer product **6**.²⁶ Our rationale for this moderate α -selectivity in glycosylation is that the arming benzyl groups of donor **1** may promote the departure of DMF from glycosyl imidate; as a consequence, the α -directing effect of DMF was attenuated.^[21]

Based on such a notion, a conformational restrain benzylidene thiogalactoside 2 is used in place of 1.^[22] However, replacing the donor alone did not bring about satisfactory improvement, and a 6/1 α/β -anomer ratio of glycosylation product 5 was obtained (Table 3, entry 5). Nonetheless, adopting the pre-activation procedure B in conjunction with an increase in DMF addition (from 1.5 to 6.0 equiv) did improve the α/β -anomer ratio of 5 to 19/1 (Table 3, entries 6–8). One may question about whether the ethereal type solvent (as mentioned in the introduction section) could result in similar α -directing effect as implicated in previous cases.^{21b} Thus, glycosylation of 3 with 2 was repeated in tetrahydrofuran (THF), 1/3 CH₂Cl₂/Et₂O and 1/2toluene/dioxane mixture using procedure A. In these experiments, the procedure B is not applicable because this procedure does not work in the absence of DMF. Donor 2 was poorly soluble in pure diethyl ether so

that a 1/3 CH₂Cl₂/ether mixture was employed. The 1/2 toluene/dioxane mixture was found aggregating at -10° C so that the glycosylation in 1/2 toluene/dioxane mixture was conducted at 0°C. No significant selectivity was observed for glycosylations irrespective of the type of ethereal solvent (**Table 3**, entry 5 vs 9–12).

In the past, dimethylacetamide (DMA) was used as an additive to promote the α -selectivity of glycosylation.²⁶ We were curious to examine if DMA could substitute for DMF in our procedure. Thus, glycosylation of **3** with **2** following the procedure B, was repeated with DMA addition, but the observed selectivity was not attractive (**Table 3**, entry 13).

Glycosylation products 4, 5 and side product 6

Entry	Donor (equiv)	DMF (equiv)	<i>Т</i> (°С)	Time (h)	Product, yield%, $\alpha/\beta^{[a]}$
1	1 (1.2) ^[b]	0	-25	0.5	4 , 90, 1/1
2	1 (1.2) ^[b]	0.8	-10	1.0	4, 70, 3/2
3	1 (1.2) ^[b]	0.8	0	1.0	4, 77, 3/2
4	1 (1.2) ^[b]	1.5	0	1.0	4, 80, 3/1
5	$2(1.5)^{[b]}$	1.5	-10	2.0	5, 82, 6/1
6	$2(1.5)^{[c]}$	1.5	-10	2.0	5, 80, 8/1
7	$2(1.5)^{[c]}$	3.0	-10	2.0	5 , 87, 15/1
8	2 (1.5) ^[c]	6.0	E_ <u>10</u>	2.0	5, 87, 19/1
9	$2(1.5)^{[b]}$	0 ^[d]	-10 1 8 9 6	0.3	5, 90, 1/1
10	$2(1.5)^{[b]}$	0 ^[e]	-10	0.2	5 , 85, 1.5/1
11	$2(1.5)^{[b]}$	$0^{[f]}$	-10	0.5	5, 83, 1/1.5
12	$2(1.5)^{[b]}$	$0^{[f]}$	0	4.0	5, 40, 1/1.5
13	$2(1.5)^{[c]}$	[g]	-10	3.0	5, 80, 4/1

[a] α/β ratios were determined by HPLC (conditions given in SI). [b] Procedure A was used. [c] Procedure B was applied. [d] 1/3 CH₂Cl₂/Et₂O mixture was used as solvent. [e] THF was used as solvent. [f] 1:2 Toluene/dioxane was used as solvent. [g] 6 equiv of DMA was added.²⁶

3.2 Test the scope of pre-activated DMF-mediated glycoslation

confirming After the effectiveness of the pre-activated DMF-modulating glycosylation (procedure B), this study next investigated its scope of application. In this regard, aglycon acceptors 10–13, and *O*-glycoside acceptors 14–17 were coupled with thioglycosyl donors 2 (Figure 7, Table 4). For comparison the effectiveness of this method to conventional method as well as provision of reference data for HPLC analysis, all glycosylations were performed with and without addition of DMF.

a) Donors: 2

c) Glycosylation products: 18-29

Figure 7. (a) Thioglycosyl donors: 2. (b) Acceptors: 10–17; (c) Glycosylation products: 18–25.

Generally, reaction rates were lower in the presence of DMF than with its absence; nonetheless, the time required for completion of DMF-modulating glycosylation remained acceptable (2 to 6 h). Regarding the stereochemical control, DMF exerted a powerful α -directing effect on all glycosylations. In some cases, the selectivity was dramatically reversed (**Table 4**, entries 2, 4, 5, 11, and 12).
Table 4. Results of glycosylation of acceptors 10–17 using glycosylationprocedure B.

Pr	n D V Q			NIS, TMSOTf	R-OH	10-17 quiv)	Ph O O O	
BnO STol + OBn 2 (1.5 equiv)		DMF (6 equiv)	CH ₂ Cl ₂ , -10 °(1-1.5 h,	C -10 to 0 °C Time (h)		OBn 18-25		
Entry	D ^[a]	A ^[a]	<i>T</i> (°C)	Time (h)) Product, yield%, $\alpha/\beta^{[b]}$			
					18-25	with DMF	no DMF ^[c]	
1	2	10	-10	2 E F S	18	83, 12/1	80, 1/1	
2	2	11	-10	2	19 ⁸	76, 8/1	85, 2/5	
3	2	12	-10	6 189	20	45, 19/1	50,15/1	
4	2	13	0	21111	21	79, 8/1	73, 2/5	
5	2	14	-10	5.5	22	75, 12/1	80, 2/3	
6	2	15	0	6	23	80, 49/1	50, 2/1	
7	2	16	-10	2	24	82, 12/1	80, 3/2	
8	2	17	0	4	25	60, 25/1	63, 5/1	

[a] D referred to donor and A referred to acceptor. [b] α/β -Anomer ratios were determined by HPLC (settings were given in experimental). [c] Routine glycosylation (without DMF addition) was applied.

3.2.1 Application of DMF-modulating glycosylation to other thioglycoside donors

Encouraged by the results of DMF-modulating glycosylations, we moved on to investigate the application of our method to prepare 1,2-*cis-O*-linkage with other thioglyucoside donors. As such, we decided to choose some thiofucoside 7, thiorhamnoside 8 and thioglucopyranoside 9 to evaluate their performance in glycosylations of acceptors 14, 15 and 17 (Figure 8). For comparison, conventional glycosylations in the absence of DMF modulator were also carried out in parallel.

Figure 8. The pairs of thioglycosyl donor, acceptors and their corresponding glycosylation product.

7. 8 .9 (1.5 equiv)				NIS, F TMSOTf		⊱OH 14-17 (1 equiv)		26.20	
		+	DM⊢ (6 equiv)	CH ₂ Cl ₂ , -´ 1-1.5 I	10 °C -10-0 h, Time		0 °C e (h)	20-29	
Entry	D	А	<i>T</i> (°C)	Time (h)	Product, yield%, α/β				
					Produ	ıct	with DMF	no DMF	
1	7	14	-10	4.5	26		75, 5/1	77, 1/1	
2	8	17	-10	4	27		70, 49/1	80, 5/1	
3	9	15	0	116	28 ^[a]]	76, 49/1 ^[a]	60, 2/3	
4	9	17	0	5 E	S 29 ^{[a}		75, 9/1 ^[a]	70, 2/5	

Table 5. Results of glycosylation using glycosylation procedure B

^[a]The glycosylation was performed under ultra-sonification.

3.3 Application of DMF-modulating glycosylation to thioglycoside acceptors

1896

A unique feature of the DMF-modulating glycosylation is the entrapment of oxocarbenium ions as glycosyl imidates. This feature provides an opportunity for development of a new pre-activated glycosylation procedure. In a typical oligosaccharide synthesis, introduction of different anomeric functions to glycosyl donor and acceptor is required such that the activation of the former does not affect the later. Though the reactivities of glycosyl donor and acceptor can also be tuned to create reactivity disparity that allowing their coupling by reactivity-based glycosylation, this strategy requires a long protecting group manipulation for building block preparation.^{10b, 11a, 31} The merit of a pre-activated glycosylation is to allow coupling of glycosyl substrates with the same anomeric function rendering the use of different anomeric function or the tuning of chemical reactivity, unnecessary. Such an approach not only shortens the synthetic steps in oligosaccharide synthesis, but it also paves the way to iterative one-pot glycosylation method.^{11a} To the best of our knowledge, there is no pre-activation procedure that endows with α -directing capability.¹⁵ To demonstrate the applicability of the DMF-modulating procedure, thioglycoside acceptors **30–40** were glycosylated with thioglycoside donors **2**, **7**, **8**, and **9** following procedure B (**Figure 9**). Preparations and references of thioglycosyl acceptors **30–40** were given in experimental section. Table 6 summarizes the yields and α/β -anomer ratios of corresponding glycosylation products **41–55**.

A known side-reaction in glycosylations of thioglycosides is the transfer of the thio-acetal function from acceptor to donor.³² Gratifyingly, such transfer reaction did not occur in the DMF-modulating procedure perhaps due to masking of the reactive oxocarbenium ion by DMF molecule. The glycosylations in this study proceeded smoothly and the corresponding α -anomers were furnished in 45 to 85% yields with high to excellent α -selectivities. However, the reaction yields were on average lower than those produced from glycosylations of *O*-glycosides. We attributed this to the activation of thioglycoside product by residual NIS and/or some side reactions stemming from the imidate intermediates. To re-validate the α -directing effect of DMF, the glycosylation of **36** with **2**

was repeated by using a lesser amount of DMF (1.5 equiv) and the α/β -anomer ratio of glycosylation product **47** decreased sharply to 4/1 (data not shown).

Figure 9. (a) Thioglycosyl acceptors 30–40; (b) Glycosylation products: 41–55.

0 NIS, TMSOTf HO STol 2 , 7, 8, 9 (1.5 equiv) 30-40 (1 equiv) PGO-+ STol DMF CH₂Cl₂, -10 °C -10-0 °C (6 equiv) 1-1.5 h, Time (h) 41-55 α-anomer Entry $T(^{\circ}C)$ Time (h) Acceptor Donor (yield%),^[a] $\alpha/\beta^{[b]}$ 3 2 30 -10 1 41 (60), 36/1 2 31 6 42 (55), 6/1 2 0 43 (55), 11/1 2 32 3 0 -10 33 44 (45), 11/1 4 2 -10 34 45 (85), 49/1 5 2 1896 35 46 (65), 12/1 6 2 -10 0 7 36 47 (70), 49/1[31] 2 4 0 48 (50), 13/1 8 2 37 2 49 (75), 19/1 9 2 38 -10 3 2 0 50 (85), 49/1 10 39 4 51 (56), 49/1 11 -10 7 **40** 3 12 52 (61), 49/1 7 32 -10 6 13 -10 3 53 (55), 6/1 8 35 **54** (50), 49/1^[c] 14 5 9 36 0 **55** (55), 8/1^[c] 15 3 9 37 0

Table 6. Results of glycosylation of thioglycosyl acceptors **30–40** usingglycosylation procedure B

[a] Glycosylation procedure B was applied and the yield (%) referred to isolated α -anomer. [b] α/β Ratios of glycosylation products were determined by HPLC analysis (HPLC conditions was given in experimental). [c] The glycosylation was performed under ultrasonification.³³

3.4 Mechanistic investigations

3.4.1 Isolate the hydrolysis product of glycosyl imidate

Scheme 12 Isolate the hydrolysis product of glycosyl imidate.

Previous ¹H NMR spectroscopy was employed to detect the glycosyl imidates under different reaction context.³⁴ We reasoned that the glycosyl imidates if formed should undergo hydrolysis in work-up to give the glycosyl formates; and isolation of such formate products would indicate the existence of imidates. Thus, thiogalactosides **1** and **2** were activated in the presence of DMF, and the reaction was subsequently quenched by triethylamine (TEA) without the addition of acceptor. Upon standard workup, α -glycosyl formates (**56**, **57**) could be isolated in 5 and 10% respectively along with ca 80% of glycosyl formates. Both glycosyl formates **56** and **57** were unstable, which accounted for the poor isolated

yields (**Scheme 12**). Chemical identities of **56** and **57** were evidenced by (1) the chemical shifts of anomeric protons (6.40 ppm for **56**, 6.47 ppm for **57**); (2) ${}^{3}J$ coupling constants of anomeric protons (3.4 Hz for **56**, 3.6 Hz for **57**); and (3) the characteristic chemical shifts of formate protons at 8.14 ppm for both **56** and **57**. However, we were not able to obtain the corresponding β -glycosyl formate, which might be attributed to its poor stability for standard isolation.

Try to prove the presence of β -glycosyl imidate, we turned to real-time monitoring of the activation process by ¹H NMR spectroscopy.

3.4.2 Real-time variable temperature NMR study

Since glycosyl imidate formation is the key step in DMF-modulating glycosylation, the detection of glycosyl imidate is crucial to support the proposed mechanism. In this regard, we prepared a simpler 4,6-O-benzylidene-2,3-di-O-methyl thiogalactoside 58, which was activated with NIS and TMSOTf promoters in CDCl₃ and followed by the glycosylation of acceptor 59 using procedure B (Figure 10a). ¹H-, ¹³C-, and HSQC-NMR spectroscopy of the reaction mixture were taken at 0, 90, and 180 min time points. Figures 9b-d showed selected regions of corresponding ¹H NMR spectra. Comparing the spectra of the pre-activated reaction mixture at 0 min and the TMSOTf activated mixture at 90 min (Figure 10b and 10c), a new set of ¹H NMR signals are clearly identified, including an anomeric proton at 6.39 ppm (${}^{3}J = 3$ Hz, **60**-H^a), a benzylidene proton at 5.60 ppm (**60**-H^b), an imidoyl proton at 8.90 ppm (60-H^c), and N,N-dimethyl protons at 3.40, and 3.32 ppm

(60-H^d). These signals are generated from the presumably α -glycosyl imidate 60.^{34a} The relative downfield positions of 60-H^{a,c,d} indicate their close proximity to an electron-deficient center. Following the addition of acceptor 59, the signals stemming from imidate 60 vanished, and another two sets of signals emerged. One set includes an anomeric proton at 5.13 ppm (³J = 3 Hz, 61-H^a) and a benzylidene proton at 5.59 ppm (61-H^b) corresponding to the expected α -glycoside 61. Another set (indicated by asterisks in Figure 10d) was originated from a α -*N*-galactosyl succinimide, which is a common side-product produced in NIS promoted glycosylation.³¹

As the real-time NMR study provided evidence for the presence of the α -glycosyl imidate, it is reasonable to propose the formation of α/β -glycosyl imidates in DMF-modulating glycosylations. And the β -glycosyl imidate, due to a more reactive nature, reacts preferentially with the acceptor to give the α -glycosylating product. At this time, we are not able to detect the presence of β -imidate.

Figure 10. (a) Glycosylation of 58 with 59 following procedure B. (b) ¹H NMR spectrum taken just prior to TMSOTf addition (0 min). (c) ¹H NMR spectrum taken at 90 min following TMSOTf addition (90 min). (d) ¹H NMR spectrum taken at 90 min after addition of 59.

3.4.3 Temperature profile using VT-NMR

Due to the life time of the β -glycosyl imidate is short via NMR analysis, we try to trap it under a lower reaction temperature. In addition, a variable NMR study may also study the stability of α -glycosyl imidate intermediate. Because of the melting point and boiling point of CDCl₃ and DMF, the range of temperature allowed in these experiments is ranged from –50 to 50 °C.

From -50 to 40 °C, there is no significant signal appeared. We didn't observe the signals of β -glycosyl imidate. Furthermore, among this temperature range the signals of α -glycosyl imidate still appeared, it indicate the high stability of it. At 50 °C, it became difficult to lock the NMR signals for further analysis.

Figure 11. Temperature profile diagram by using VT-NMR from -50°C to 50° C

3.4.4 DMF-*d*₇ substitution experiment

In order to obtain more information about the reaction mechanism, we also did the DMF- d_7 exchange experiment. In the presence of DMF, the donor of thioglycoside was pre-activated in CDCl₃ at -10°C by NIS/TMSOTf promoters. After 30 minutes, we added DMF- d_7 and

examined the ¹H spectra at 0 and 30 minute.

From spectra, we observed the signals of glycosyl imidate decreased when the DMF- d_7 was added. This is estimated by comparing the ratio of anomeric proton (non-exchangeable) to the formamide proton (exchangneable), the ratios of H-1/formamide-H decreased from 1/1 to 1/0.2 (**Figure 12**). This information indicate that the α -glycosyl imidate have an equilibrium with DMF. Or β -glycosyl imidate react with DMF- d_7 first, then α -glycosyl imidate become β -glycosyl imidate by equilibrium.

It remains too early to exclude the possibility of other mechanism.³⁵ For elucidation, further experimental investigations are in progress.

Figure 12. DMF- d_7 substitution experiment. (a) ¹H NMR spectrum taken just prior to DMF- d_7 addition. (b) ¹H NMR spectrum taken at 0 min after addition of DMF- d_7 . (c) ¹H NMR spectrum taken at 30 min after addition of DMF- d_7 .

3.5 Plausible mechanism of DMF-modulated pre-activated glycosylation

Scheme 13. Proposed mechanism of DMF modulating glycosylation.

On the basis of above experiment, we hypothesized that the activation of thioglycoside generates an oxocarbenium ion pair, which after trapped by a nucleophilic DMF, gives rise to an equilibrium mixture of α -/ β -glycosyl imidates. Assuming that the β -imidate is more reactive than its α -counterpart; subsequent coupling of the β -imidate with an acceptor produces the desired α -anomer as a major product (**Scheme 13**). Since DMF plays as a modulating function in the reaction, we coined this new glycosylation strategy as a DMF-modulating glycosylation strategy.

4 Conclusions

In summary, a novel DMF-modulating glycosylation strategy is developed, which achieves excellent α -selectivity in glycosylation by simple addition of DMF. Further elaboration leads to the development of a practical pre-activated α -selective glycosylation strategy. Considering the availability of DMF, we anticipate that the synthesis concept mentioned above will find broad application in oligosaccharide synthesis. This work is accepted for publication in *Angewandte Chime* international edition 2011.

5 Experimental

5.1 General experiment procedure:

Reagent-grade chemicals were purchased from commercial vendors and used without further purification. Dichloromethane (CH₂Cl₂) was dried by Asianwong solvent purification system (AWS-1000). N,N-Dimethylformamide (DMF) was stocked with flame-dried molecular sieves (MS) under N₂ Progress of reactions was monitored by thin-layer chromatography on silica gel 60 F-254 plate and visualized under UV illumination and/or by staining with acidic ceric ammonium molybdate or *p*-anisaldehyde. HPLC analysis was performed over Mightysil column (Si-60 250-4.6) and eluted with EtOAc/hexane/CH₂Cl₂ mixture at a 0.8 mL min⁻¹ flow rate by the gradient pump (L-2130) and UV detector (L-2400) from Hitachi. Silica gel (Geduran Si-60, 0.063-0.200 mm) for chromatography was obtained from Merck. NMR spectra were recorded at 300 MHz and 75 MHz spectrometers in Brüker console or 500 MHz and 125 MHz in Varian console as specified. Sonification was provided by standard bench top ultra-sonicator (Branson 2210R-MT). Real time NMR study of glycosylation of acceptor 59 with donor 58 was performed with 500 MHz in Varian console. The chemical shifts were calibrated against the residual proton signal and ¹³C signals of deuterated chloroform. Coupling constants in Hz was calculated from chemical shifts of ¹H NMR spectra. Acceptors **3**, **10**, **11**, and **13** are commercially available, glycosyl donors 1,³⁶ 2,³⁶ 7,³⁶ 8,³⁷ 9,³⁶ and glycosyl acceptors $12^{38}_{,39}_{,15}_{,39}_{,15}_{,39}_{,17}_{,39}_{,39}_{,39}_{,39}_{,39}_{,15}_{,15}_{,32}_{,17}_{,17}_{,33}_{,40}_{,40}_{,35}_{,15}_{,15}_{,36}_{,41}_{,41}_{,37}_{,42}_{,42}_{,41}$ and $40^{36}_{,41}$ are prepared on the base of literature procedures.

5.2 General pre-activated DMF-modulating glycosylation procedure (procedure B).

Mixture of 2,3-di-O-benzyl-4,6-O-benzylidene β-thiogalactopyranoside 2^{39} (166 mg, 0.3 mmol, 1.5 equiv) and flame-dried molecular sieve (AW300) was suspended in dried CH₂Cl₂ (4.0 mL) such that the final concentration of 2 was 75 mM. Then, DMF (93 µL, 1.2 mmol, 6.0 mol equiv) was added to the mixture. The resulting mixture was stirred at RT for 10 min and at -10 °C cooling bath for an additional 10 min. Subsequently, N-iodosuccinimide (NIS) (77 mg, 0.34 mmol, 1.5 equiv) and trimethylsilyltriflate (TMSOTf) (54 µL, 0.3 mmol, 1.5 equiv) were added, and the reaction progress was monitored by TLC with either EtOAc/hexane or EtOAc/hexane/CH₂Cl₂ mixture as the developing solvent. Upon completion of activation of glycosyl donor (2, 7, 8, 9 and 58), acceptor (3, 10–17) or thioglycoside acceptor (30–40) (1.0 equiv) was added to the reaction mixture. Exact amounts of glycosyl donor (2, 7, 8, and 9), acceptor (3, 10–17, and 30–40), promoting reagents (NIS and TMSOTf), temperature for coupling reaction, time for coupling reaction and glycosylation yield were summarized in Tables S1 and S2. Ultra-sound irradiation was applied to glycosylations with perbenzyl 9 (Ultra-sonication was generated from thioglucoside Branson 2210R-MT sonicator). The progress of glycosylation was monitored by TLC (judged by disappearance of the glycosyl imidate). Upon completion of reaction, satd. NaHCO3 (ca 1 mL) and small lumps of $Na_2S_2O_{3(s)}$ (ca 0.5 g) were added to the mixture, followed by vigorous stirring until the fading away of the deep red coloration of the reaction mixture. The resulting mixture was dried (over MgSO₄), filtered, and concentrated for flash chromatography purification over silica gel to furnish the glycosylation product (5, 18–29, 41–55 and 61). A small portion of the crude reaction mixture was eluted over a short pad of silica gel to obtain crude α/β mixture for HPLC analysis of α/β -anomer ratio.

5.3 Procedures and experimental data.

2.3-di-O-benzyl-4.6-O-benzylidene-D-galactopyranosyl- $(1 \rightarrow 6)$ -1.2.3.4di-O-isopropylidene- α -D-galactopyranose 5.⁴³ Galactosyl acceptor 3 (52 mg, 0.2 mmol) was reacted with thiogalactosyl donor 2 (166.3 mg, mmol) according to general pre-activated DMF-modulating 0.3 glycosylation procedure. Compound 5 (125 mg, 87%) as a white glassy material was obtained by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 3/1/1). For α -anomer of 5, $[\alpha]^{37.9}_{D}$ = +29.1 (c= 1.2, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.24 (m, 2H, ArH), 7.51-7.23 (m, 13H, ArH), 5.50 (d, J = 6 Hz, 1H, H-1), 5.47 (s, 1H, benzylidene-CH), 5.05 (d, J = 3.3 Hz, 1H, H-1'), 4.82 (dd, J = 6, 12 Hz, 2H), 4.72 (dd, J = 6, 12 Hz, 2H), 4.58 (dd, J = 3, 7 Hz, 1H), 4.31-4.27 (m, 2H), 4.20-4.18 (m, 2H), 4.10-3.69 (m, 4H), 3.78-3.69 (m, 3H), 1.52 (s, 3H, CH₃), 1.44 (s, 3H, CH₃), 1.26 (s, 3H, CH₃), 1.24 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.6, 138.5, 137.7, 128.7, 128.1, 127.9, 127.6, 127.5. 127.40, 127.36, 126.2, 109.1 (isopropylidene-*C*), 108.4 (isopropylidene-C), 100.9 (benzylidene-C), 98.0 (C-1), 96.1 (C-1'), 75.7, 75.3, 74.5, 73.0, 71.8, 70.9, 70.4, 70.3, 69.3, 66.8, 66.4, 62.4, 25.9, 25.8,

24.8, 24.4.

6-chlorohexyl 2,3,4-tri-O-benzyl-β-D-galactopyranoside 16.

Scheme 14. Preperation of 6-chlorohexyl 2,3,4-tri-*O*-benzyl-β-D-galactopyranoside 16

Known 16a (1 g, 1.8 mml),³⁹ 6-chlorohexanol 59 (0.35 mL, 2.7 mmol) and activated molecular sieve (10 g) were suspended in 1/2/1CH₂Cl₂/CH₃CN/EtCN solvent mixture (150 mL) and stirred at 60 °C for 30 min. NIS (0.44 g, 1.95 mmol) and TMSOTf (68 µL, 0.38 mmol) were added and the mixture was stirred for additional 180 min at 60 °C under N₂ before quenched with TEA (ca 0.2 mL). Satd. NaHCO₃ (1 mL) and few pieces of solid Na₂S₂O₃ were added, followed by vigorous stirring at RT. The mixture was filtered over celite and the filtrate was concentrated for column chromatography (Elution: Hexane/CH₂Cl₂/EtOAc 3/1/1) to give target galactoside **16b** (0.52 g, 50%). The galactoside 16b (0.52 g, 50%) was then treated with 1 M BH₃.THF (3.72 mL, 3.7 mmol) and TMSOTf (25 µL, 0.14 mmol), followed by stirring at RT for 2 h. The reaction was quenched with triethylamine (TEA) and methanol (MeOH) mixture. The resulting

mixture was concentrated for column chromatography purification (Elution: Hexane/CH₂Cl₂/EtOAc 3/1/1 to 2/1/1) to give target acceptor **16** as an oily substance (0.24 g, 45%). For compound **16**, ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.23 (m, 15 H, Ar*H*), 4.97-4.91 (m, 2H), 4.82-4.71 (m, 3H), 4.65 (d, *J* = 12 Hz, 1H), 4.35 (d, *J* = 7.5 Hz, 1H, H-1), 4.00-3.92 (m, 1H), 3.89-3.75 (m, 3H), 3.72-3.47 (m, 5H), 3.36 (t, *J* = 6 Hz, 1H), 1.76-1.63 (m, 4H, C*H*₂ × 2), 1.25 (s, C*H*₂ × 2); ¹³C NMR (75 MHz, CDCl₃): δ 138.7, 138.4, 138.2, 128.6, 128.4, 128.2, 127.9, 127.88, 127.5, 127.62, 127.55, 126.50, 104.0 (C-1), 82.2, 79.6, 75.1, 74.5, 74.1, 73.3, 72.9, 69.8, 61.9 (*C*H₂O), 45.0 (*C*H₂Cl), 32.4, 29.5, 26.6, 25.4.

Table 7. Experimental details for glycosylation of acceptor 3, 10–17 with
donors 2, 7, 8 and 9.

Entr	Donor (mg,	Acceptor (mg,	Tim	<i>T</i> (°C)	Glycosylation product	
у	mmol)	mmol)	e (h)		Yield (mg,	$\alpha/\beta^{[a]}$
					%)	
1	2 (166, 0.3)	10 (26, 0.2)	2	-10	18 (92.5, 83)	12/1
2	2 (166, 0.3)	11 (38, 0.2)	2	-10	19 (95.6, 76)	8/1
3	2 (166, 0.3)	12 (74, 0.2)	6	-10	20 (71.7, 45)	19/1
4	2 (166, 0.3)	13 (81, 0.2)	2	0	21 (128, 79)	8/1
5	2 (166, 0.3)	14 (93, 0.2)	5.5	-10	22 (129, 75)	12/1

6	2 (166, 0.3)	15 (93, 0.2)	6	0	23 (141, 80)	49/1
7	2 (166, 0.3)	16 (71, 0.2)	2	-10	24 (144, 82)	12/1
8	2 (166, 0.3)	17 (43, 0.2)	4	0	25 (77, 60)	25/1
9	7 (190, 0.36)	14 (111, 0.24)	4.5	-10	26 (159, 75)	5/1
10	8 (144, 0.36)	17 (52, 0.24)	4	-10	27 (76, 70)	49/1
11	9 (194, 0.3)	15 (93, 0.2)	6	0	28 (144, 76)	49/1 ^[b]
12	9 (194, 0.3)	17 (44, 0.2)	5	0	29 (111, 75)	9/1 ^[b]

^[a]Ratios were determined by Hitachi HPLC system (Mightysil column (Si-60 250-4.6); Elution: EtOAc/hexane/CH₂Cl₂ mixture at 0.8 mL min⁻¹ flow rate; HPLC pump (L-2130) and UV detector (L-2400) were employed. ^[b]Ultra-sonification was applied.

1,2-isopropylidene-(2,3-di-O-benzyl-4,6-O-benzylidene-D-galacto-

pyranosyl)*-rac*-glycerol **18**. Preparation of **18** was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 1). Compound **18** as a white glassy material was obtained by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 5/1/1). For α-anomer of **18**, $R_{\rm f}$ 0.3 (Hexane/EtOAc/CH₂Cl₂ 2/1/1); $[\alpha]^{37.9}{}_{\rm D}$ = +18.5 (c= 0.44, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.54-7.53 (m, 2H, Ar*H*), 7.42-7.25 (m, 13H, Ar*H*), 5.48 (s, 1H, benzylidene-C*H*), 5.08 (d, *J* = 3.6 Hz, 1H, H-1), 4.88-4.71 (m, 3H), 4.66 (dd, *J* = 2.7, 12 Hz, 1H), 4.37-4.28 (m, 1H), 4.22 (d, *J* = 3Hz, 1H), 4.18 (d, *J* = 2.4 Hz, 1H), 4.09-3.95 (m, 4H), 3.78-3.62 (m, 3H), 3.59-3.43 (m, 1H), 1.39 (d, *J* = 3.9 Hz, 3H, CH₃), 1.35 (d, *J* = 1.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.8, 138.72, 138.65,

137.8, 128.8, 128.28, 128.26, 128.1, 127.9, 127.8, 127.6, 127.52, 127.48,
126.3, 109.4 (isopropylidene-*C*), 101.0 (benzylidene-*C*H), 98.7 (C-1),
75.9, 75.7, 75.6, 75.53, 74.7, 74.6, 74.4, 73.6, 73.4, 72.1, 72.0, 69.6, 69.4,
69.3, 68.7, 66.8, 66.6, 62.7, 62.6, 26.9 (*C*H₃), 26.7 (*C*H₃), 25.5 (*C*H₃),
25.4 (*C*H₃); HRMS (MALDI-TOF): calcd for C₃₃H₃₈O₈Na [M + Na]⁺
requires 585.2464, found *m/z* 585.2425.

2,3-di-O-benzyl-4,6-O-benzylidene-D-galacto-**10-chlorodecanyl** pyranoside 19. Preparation of 19 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 2). Compound 19 as a white glassy material was obtained by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/0.5/2). For α -anomer of 19, R_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 7/0.5/2); $[\alpha]^{37.9}_{D}$ = +15.4 (c= 0.9, CHCl₃) ¹H NMR (300 MHz, CDCl₃): 8 7.53-7.50 (m, 2H, ArH), 7.42-7.25 (m, 13H, ArH), 5.47 (s, 1H, benzylidene-H), 4.90 (d, J = 3.3 Hz, 1H, H-1), 4.86 (d, J = 10.2 Hz, 1H), 4.82 (d, J = 10.2 Hz, 1H), 4.75-4.64. (m, 2H), 4.20 (dd, J = 1.2, 12.3 Hz, 1H), 4.19 (d, J = 3 Hz, 1H), 4.08-3.97 (m, 3H), 3.66-3.58 (m, 2H), 3.5 (t, J = 6.6 Hz, 2H, CH_2), 3.44(m, 1H), 1.8-1.7 (m, 2H, CH₂), 1.6-1.5 (m, 2H, CH₂), 1.44-1.37 (m, 2H, CH₂), 1.28 (broad, 10H, CH₂× 5); ¹³C NMR (75 MHz, CDCl₃): ¹³C NMR (75 MHz, CDCl₃) δ 138.9, 138.8, 137.8, 128.8, 128.2, 128.0, 127.8, 127.57, 127.52, 127.4, 126.33, 101.1 (benzylidene-CH), 98.0 (C-1), 76.1, 75.8, 74.8, 73.4, 72.1, 69.4, 68.4, 62.6 (CH₂O), 45.1 (CH₂Cl), 32.6 (CH₂), 29.4 (CH₂), 29.3 (CH_2) , 28.8 (CH_2) , 26.8 (CH_2) , 26.1 (CH_2) . For β -anomer of 19, $R_f = 0.3$ (Hexane/EtOAc/CH₂Cl₂ 7/0.5/2); ¹H NMR (300 MHz, CDCl₃): δ 7.58-7.55 (m, 2H, Ar*H*), 7.40-7.25 (m, 13H, Ar*H*), 5.5 (s, 1H, benzylidene-*H*), 4.95 (d, J = 11.1 Hz, 1H), 4.82-4.77 (m, 3H), 4.38 (d, J = 9.6 Hz, 1H, H-1), 4.36 (d, J = 12.3 Hz, 1H), 4.11 (d, J = 3.6 Hz, 1H), 4.03-3.95 (m, 2H), 3.84 (dd, J = 7.8, 9.6, 1H), 3.58-3.46 (m, 4H), 3.3 (s, 1H), 1.76 (m, 2H, CH_2), 1.7-1.6 (m, 2H, CH_2), 1.47-1.35 (m, 4H, CH_2), 1.28 (m, 8H, CH_2); ¹³C NMR (75 MHz, CDCl₃): δ 138.8, 138.4, 137.8, 128.8, 128.3, 128.2, 128.04, 127.98, 127.7, 127.6, 127.45, 126.46, 103.6 (benzylidene-CH), 101.3 (C-1), 79.2, 78.4, 75.2, 74.0, 72.0, 69.9, 69.2, 66.3 (CH₂O), 45.1 (CH₂Cl), 32.6 (CH₂), 29.7 (CH₂), 29.42 (CH₂), 29.39 (CH₂), 29.36 (CH₂), 28.8 (CH₂), 26.8 (CH₂), 26.1 (CH₂); HRMS (FAB): calcd for C₃₇H₄₇ClO₆Na [M + Na]⁺ requires 645.2959, found *m*/*z* 645.2947.

2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl *N*-(fluoren-9-ylmethoxycarbonyl)-L-serine allyl ester 20. Preparation of 20 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 3). Compound 20 as a white powder was obtained by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 6/1/2). For α -anomer of 20, *R*_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 4/1/1); [α]^{37.9}_D= +64.8 (c= 0.36, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.59 (d, *J* = 7.2 Hz, 2H, Ar*H*), 7.54-7.52 (m, 2H, Ar*H*) 7.42-7.25 (m, 19H, Ar*H*), 6.14 (d, *J* = 8.4 Hz, 1H, N*H*), 5.85 (m, 1H, =C*H*), 5.47 (s, 1H, benzylidene-C*H*), 5.29 (d, *J* = 17.4 Hz, 1H, =C*H*), 5.19 (d, *J* = 10.5 Hz, 1H, =C*H*), 4.86-4.71 (m, 4H), 4.65-4.58 (m, 2H), 4.55-4.32 (m, 4H), 4.22-4.18 (m, 4H), 4.08 (dd, *J* = 3.6, 10.2 Hz, 1H), 3.94-3.90 (m, 2H), 3.84 (dd, J = 2.7, 11.1 Hz, 1H), 3.66 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 169.9 (*C*=O), 156.0 (*C*=O), 143.7, 141.26, 141.23, 138.6, 138.5, 137.7, 131.4, 128.8, 128.3, 128.3, 128.1, 127.8, 127.7, 127.6, 127.09, 127.04, 126.2, 125.1, 125.0, 120.0 (=*C*H), 118.7 (=*C*H), 100.9 (benzylidene-*C*H), 100.3 (C-1), 75.6, 75.3, 74.3, 73.6, 72.0, 70.6, 69.2, 67.2, 66.2, 63.3, 54.7, 47.0; HRMS (MALDI-TOF): calcd for C₄₈H₄₉NO₁₀Na [M + Na]⁺ requires 820.3098, found *m/z* 820.3092.

Cholesteryl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranoside **21.** Preparation of **21** was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 4). Compound 21 as a white powder was obtained by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 16/0.3/4). For α -anomer of 21, R_f 0.5 (Hexane/EtOAc/CH₂Cl₂ 8/1/1); $[\alpha]^{37.9}_{D}$ = +75.2 (c= 0.79, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.50 (m, 2H, ArH), 7.42-7.25 (m, 13H, ArH), 5.47 (s, 1H, benzylidene-CH), 5.32 (d, J = 5.1 Hz, 1H, =CH), 5.00 (d, J = 3.3 Hz, 1H, H-1), 4.86 (d, J = 5.1 Hz, 1H), 4.82 (d, J = 5.4 Hz, 1H), 4.70-4.60 (m, 2H), 4.22-4.19 (m, 2H), 4.10-3.90 (m, 3H), 3.7 (s, 1H), 3.50 (m, 1H), 2.41 (bt, J = 12.5 Hz, 1H), 2.25 (dt, J = 4.5, 13.2 Hz, 1H), 2.0-1.8 (m, 5H), 1.56-0.85 (m, 33H), 0.68 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 140.9, 139.0, 138.7, 137.9, 128.8, 128.25, 128.22, 128.0, 127.9, 127.5, 127.4, 126.3, 121.7, 101.0 (benzylidene-CH), 95.9 (C-1), 76.9, 76.3, 75.5, 74.8, 73.4, 72.1, 69.5, 62.6, 56.7, 56.1, 50.0, 42.3, 39.9, 39.7, 39.5, 37.0, 36.8, 36.2, 35.8, 31.89, 31.85, 28.2, 27.0, 27.5 24.3, 23.8, 22.8, 22.5, 21.0, 19.4, 18.7, 11.8; HRMS (FAB): calcd for

 $C_{54}H_{72}O_6Na [M + Na]^+$ requires 839.5227, found *m/z* 839.5236.

Methyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl- $(1\rightarrow 6)$ -2,3,4-tr i-O-benzyl- α -D-glucopyranoside 22. Preparation of 22 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 5). Compound 22 was obtained as a white amorphous solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 5.5/1/1.5). For α -anomer of 22, $R_f 0.4$ (Hexane/EtOAc/CH₂Cl₂ 4/1/1); ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.48 (m, 2H, ArH), 7.36-7.17 (m, 28H, ArH), 5.43 (s, 1H, benzylidene-CH), 5.04 (d, J = 3.3 Hz, 1H), 4.97 (d, J =11.1 Hz, 1H), 4.88 (d, J = 11.4 Hz, 1H), 4.81 (d, J = 2.7 Hz, 1H), 4.77-4.73 (m, 3H), 4.68-4.65 (m, 2H), 4.59-4.50 (m, 3H), 4.1-4.0 (m, 3H), 3.97-3.90 (m, 2H), 3.85-3.67 (m, 4H), 3.57 (t, J = 9.6 Hz, 1H), 3.46-3.41 (m, 2H), 3.46-(m, 2H), 3.3 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 138.77, 138.73, 138.6, 138.5 138.1, 137.8, 128.8, 128.34, 128.28, 128.21, 128.18, 128.0, 127.9, 127.77, 127.69, 127.51, 127.46, 127.41, 127.3, 126.29, 101.0 (benzylidene-CH), 98.3 (C-1), 97.8 (C-1'), 82.0, 80.1, 77.9, 75.61, 75.57, 74.86, 74.75, 73.27, 72.78, 71.8, 70.1, 69.3, 66.4, 62.5, 54.9; HRMS (FAB): calcd for $C_{55}H_{58}O_{11}Na [M + Na]^+$ requires 917.3877, found *m/z* 917.3892.

Methyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1→4)-2,3,6-tr

i-O-benzyl- α -D-glucopyranoside 23. Preparation of 23 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 6). Compound 23 was obtained as a white amorphous solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 6/1/1.5). For α -anomer of 23, R_f 0.35 (Hexane/EtOAc/CH₂Cl₂ 4/1/1); ¹H NMR (300 MHz, CDCl₃): δ 7.50-7.47 (m, 2H, ArH), 7.38-7.20 (m, 28H, ArH), 5.80 (d, J = 3.3 Hz, 1H, H-1), 5.37 (s, 1H, benzylidene-CH), 4.96 (d, J = 11.7 Hz, 1H), 4.84-4.79 (m, 2H), 4.70-4.66 (m, 3H), 4.57 (d, J = 1.12 Hz, 1.12 Hz)3.6 Hz, 1H, 4.55-4.50 (m, 4H), 4.10-3.83 (m, 7H), 3.71 (dd, J = 3.9, 11.1 (dd, J = 3.9, 11.1Hz, 1H), 3.62 (d, J = 5.4 Hz, 1H), 3.59-3.53 (m, 2H), 3.45 (s, 1H), 3.39 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.9, 138.7, 138.3, 138.0, 137.9, 137.79, 128.75, 128.3, 128.3, 128.15, 128.11, 128.0, 127.8, 127.7, 127.49, 127.3, 127.0, 126.6, 126.2, 127.6, 127.53, 100.7 (benzylidene-CH), 97.8 (C-1), 97.6 (C-1'), 81.8, 80.3, 76.3, 74.8, 74.3, 74.2, 74.0, 73.4, 72.3, 71.7, 69.5, 69.3, 69.1, 62.9, 55.1; HRMS (FAB): calcd for $C_{55}H_{58}O_{11}Na [M + Na]^+$ requires 917.3877, found *m/z* 917.3869.

6-chlorohexyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1→6)-2,3,4-tri-*O*-benzyl-β-D-galactopyranoside 24. Preparation of 24 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 7). Compound 24 was obtained as a white glassy solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/1/2). For α-anomer of 24, *R*_f 0.35 (Hexane/EtOAc/CH₂Cl₂ 5/1/1); [α]^{37.9}_D= +73.3 (c= 1, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.50 (m, 2H, Ar*H*), 7.40-7.20 (m, 28H, Ar*H*), 5.47 (s, 1H, benzylidene-C*H*), 4.90-4.80 (m, 6H), 4.76-4.66 (m, 3H), 4.64 (d, J = 4.5 Hz, 1H), 4.60 (d, J = 4.2 Hz, 1H), 4.31 (d, J = 7.5 Hz, 1H, H-1), 4.23-4.16 (m, 2H), 4.1-3.9 (m, 3H), 3.87-3.75 (m, 4H), 3.6- 3.5 (m, 3H), 3.5-3.4 (m, 4H), 1.78-1.69 (m, 2H, C*H*₂), 1.66-1.55 (m, 2H, C*H*₂), 1.50-1.33 (m, 4, C*H*₂); ¹³C NMR (75 MHz, CDCl₃): δ 138.6, 138.46, 138.39, 138.32, 137.8, 128.8, 128.3, 128.2, 128.1, 128.0, 127.96, 127.86, 127.6, 127.5, 126.3, 103.8 (C-1), 101.0 (benzylidene-CH), 98.2 (C-1'), 82.1, 79.4, 75.9, 75.2, 75.1, 74.5, 74.2, 73.8, 73.6, 73.15, 73.14, 71.7, 69.50, 69.45 67.3, 62.5 (OCH₂), 45.0 (CH₂Cl), 32.4 (CH₂), 29.5 (CH₂), 26.6 (CH₂), 25.5 (CH₂); HRMS (ESI): calcd for C₆₀H₆₇ClO₁₁Na [M + Na]⁺ requires 1021.4270, found *m/z* 1021.4264.

Methyl

2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1→4)-2,3-*O*-i sopropylidene- α -L-rhamnopyranoside 25. Preparation of 25 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 8). Compound 25 was obtained as a white amorphous substance by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 8/1/2). For α -anomer of 25, R_f 0.25 (Hexane/EtOAc/CH₂Cl₂ 5/1/1); [α]^{37.9}_D= +62.8 (c= 0.79, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.54-7.50 (m, 2H, Ar*H*), 7.42-7.25 (m, 13H, Ar*H*), 5.48 (s, 1H, benzylidene-C*H*), 5.1 (d, *J* = 3.6 Hz, 1H, H-1'), 4.87 (d, *J* = 12 Hz, 1H), 4.85 (s, 1H, H-1), 4.76-4.69 (m, 3H), 4.23 (d, *J* = 3.3 Hz, 1H), 4.19 (dd, *J* = 1.2, 12.3 Hz, 1H), 4.14-3.99 (m, 6H), 3.7 (m, 1H), 3.4 (m, 1H), 3.3 (s,

896

3H, OC*H*₃), 1.5 (s, 3H, C*H*₃), 1.3 (m, 6H, C*H*₃ × 2); ¹³C NMR (75 MHz, CDCl₃): δ 138.7, 138.3, 137.9, 128.8, 128.3, 128.1, 127.7, 127.6, 126.3, 109.0 (isopropylidene-*C*), 101.0 (benzylidene-*C*H), 99.0 (C-1'), 97.7 (C-1), 79.5, 76.2, 75.3, 74.6, 74.4, 71.8, 69.4, 65.1, 62.5, 54.6, 28.1 (CH₃), 26.4 (*C*H₃), 17.2 (*C*H₃); HRMS (FAB): calcd for C₃₇H₄₄O₁₀Na [M + Na]⁺ requires 671.2832, found *m/z* 617.2842.

Methyl 2,3,4-tri-O-benzyl-L-fucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-glucopyranoside 26. Preparation of 26 was referred to the general pre-activated braking glycosylation and the exact amounts of reagents used were given (Table S1, entry 9). Compound 26 was obtained as a white glassy powder by column chromatography purification (Elution: Hexane/EtOAc 4.5/1). For α -anomer of 26, R_f 0.4 (Hexane/EtOAc 3/1); ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.15 (m, 30H, ArH), 4.99 (d, J = 4.5 Hz, 1H), 4.95 (d, J = 3.6 Hz, 1H), 4.89 (d, J = 3.3 Hz, 1H), 4.85-4.62 (m, 10H), 4.58 (d, J = 3.3 Hz, 1H), 4.06-3.94 (m, 3H), 3.89 (q, J = 6.6, 12.9 Hz, 1H), 3.82 (d, J = 10.8 Hz, 1H), 3.75 (dd, J = 3.9, 10.2 Hz, 1H), 3.68-3.56 (m, 3H), 3.51 (dd, J = 3.6, 9.6 Hz, 1H), 3.31 (s, 3H, OCH₃), 1.10 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 138.7, 138.65, 138.5, 138.3, 138.2, 128.35, 128.33, 128.30, 128.27, 128.10, 128.09, 127.95, 127.92, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 97.9 (C-1', C-1), 82.0, 79.9, 79.1, 77.6, 76.1, 75.7, 74.9, 74.7, 73.2, 73.1, 72.8, 70.0, 66.3, 66.2, 55.0, 16.5; HRMS (MALDI-TOF): calcd for $C_{55}H_{60}O_{10}Na$ [M + Na]⁺ requires 903.40842, found m/z 903.4140.

Methyl

2,3-O-isopropylidene-4-O-benzyl-L-rhamnopyranosyl- α -(1 \rightarrow 4)-2,3-O -isopropylidene- α -L-rhamnopyranoside 27. Preparation of 27 was referred to the general pre-activated DMF-modulating glycosylation and the exact amounts of reagents used were given (Table S1, entry 10). Compound 27 was obtained as a yellowish glassy solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 0.5/5/1). For α -anomer of 27, $R_f 0.45$ (Hexane/EtOAc/CH₂Cl₂ 7/1/2); $[\alpha]^{37.9}_{D} =$ -133.2 (c= 0.52, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.25 (m, 5H, ArH), 5.59 (s, 1H, H-1'), 4.9 (d, J = 11.7 Hz, 1H), 4.86 (s, 1H, H-1), 4.64 (d, J = 11.4 Hz, 1H), 4.25-4.14 (m, 3H), 4.08 (d, J = 5.4 Hz, 1H), 3.74-3.54 (m, 3H), 3.36 (d, J = 0.6 Hz, 3H, OCH₃), 3.24 (dd, J = 7.5, 9.9 Hz, 1H), 1.54 (s, 3H, CH₃), 1.51 (s, 3H, CH₃), 1.38 (s, 3H, CH₃), 1.32 (s, 3H, CH₃), 1.27 (m, 6H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃): δ 138.2, 128.3, 128.1, 127.7, 109.4, 109.0, 97.9 (C-1), 95.5 (C-1'), 80.8, 78.5, 78.5, 76.41, 76.35, 76.0, 73.2, 64.9, 63.8, 54.8, 28.0, 27.9, 26.3, 17.9, 17.5; HRMS (MALDI-TOF): calcd for $C_{26}H_{38}O_9Na [M + Na]^+$ requires 517.24135, found *m/z* 517.2429.

Methyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*benzyl- α -D-glucopyranoside 28.⁴⁴ Preparation of 28 was referred to the general pre-activated DMF-modulating glycosylation and the exact amounts of reagents used were given (Table S1, entry 11). Compound 28 was obtained as a yellowish amorphous solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/1/1). For α -anomer of 28, $R_{\rm f}$ 0.3 (Hexane/EtOAc/CH₂Cl₂ 5/1/1); ¹H NMR (300 MHz, CDCl₃): 7.28-7.19 (m, 33H, Ar*H*), 7.10-7.07 (m, 2H, Ar*H*), 5.72 (d, J = 3.6 Hz, 1H), 5.05 (d, J = 11.4 Hz, 1H), 4.88 (d, J = 10.8 Hz, 1H), 4.82-4.76 (m, 3H), 4.07 (d, J = 12.3 Hz, 1H), 4.62-4.48 (m, 7H), 4.40 (d, J = 10.8 Hz, 1H), 4.25 (d, J = 12.3 Hz, 1H), 4.13-4.03 (m, 2H), 3.94-3.80 (m, 3H), 3.72-3.58 (m, 4H), 3.35-3.46 (m, 2H), 3.37 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 138.8, 138.6, 138.4, 138.0, 137.8, 137.76, 128.4, 128.28, 128.24, 128.19, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.47, 127.3, 127.1, 127.06, 126.7, 97.7 (C-1'), 96.5 (C-1), 82.0, 80.1, 79.3, 75.5, 74.8, 74.4, 73.4, 73.2, 73.0, 71.9, 70.8, 69.4, 68.8, 67.9, 55.1.^{S12}

Methyl

2,3,4,6-tetra-*O***-benzyl-α-D-glucopyranosyl-(1→4)-2,3-***O***-isopropylide ne-α-L-rhamnopyranoside 29.** Preparation of **29** was referred to the general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S1, entry 12). Compound **29** was obtained as a milky white glassy substance by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 5/1/1). For α-anomer of **29**, *R*_f 0.3 (Hexane/EtOAc/CH₂Cl₂ 5/1/1); ¹H NMR (300 MHz, CDCl₃): δ 7.36-7.23 (m, 18H, Ar*H*), 7.18-7.15 (m, 2H, Ar*H*), 4.98-4.95 (m, 2H), 4.88-4.78 (m, 4H), 4.73-4.60 (m, 2H), 4.52 (d, *J* = 7.5 Hz, 1H), 4.48 (d, *J* = 9 Hz, 1H), 4.12-4.04 (m, 3H), 3.98 (t, *J* = 9.3 Hz, 1H), 3.82-3.70 (m, 3H), 3.65-3.58 (m, 2H), 3.34 (q, *J* = 10.8, 17.1 Hz, 1H), 3.33 (s, 3H, OCH₃), 1.43 (s, 3H, CH₃), 1.31 (d, *J* = 6.3 Hz, 3H, CH₃), 1.25 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.7, 138.3, 137.9, 137.8, 128.39, 128.38, 128.34, 128.30, 128.24, 127.92, 127.89, 127.8, 127.65, 127.63, 127.5, 108.9 (isopropylidene-*C*), 98.3 (*J*_{CH} = 168 Hz, C-1'), 97.7 ($J_{CH} = 166$ Hz, C-1), 82.2, 80.7, 79.7, 77.74, 77.75, 75.8, 75.5, 75.1, 74.2, 73.5, 70.2 67.9, 64.7, 54.6, 28.1, 26.3, 17.4; HRMS (MALDI-TOF): calcd for C₄₄H₅₂O₁₀Na [M + Na]⁺ requires 763.34527, found *m/z* 763.3478.

p-tolyl 4-*O*-benzyl-2,3-di-*O*-benzoyl-thio-β-D-glucopyranoside 34.

Scheme 15. Preperation of *p*-tolyl 4-*O*-benzyl-2,3-di-*O*-benzoyl-thio-β-D-glucopyranoside 34.⁴⁵

Thioglucopyranoside **34a**¹⁷ (2 g, 3.43 mmol) was then treated with BH₃ (1 M in THF) (17 mL) and Cu(OTf)₂ (186 mg, 0.51 mmol) at RT under N₂. Upon completion of reductive ring opening, the reaction mixture was cooled to 0 °C and neutralized with NEt₃, excess BH₃ was quenched with MeOH at 0 °C. The resulting mixture was concentrated and purified by column chromatography (Elution: hexane/EtOAc/CH₂Cl₂ 6/1/1 to 2/1/1) to afford thioglucopyranoside **34** as a white amorphous solid (1.72 g, 86% from **34a**). For **34**, $[\alpha]^{37.9}_{D}$ = +56.5 (c= 0.48, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 8.00-7.93 (m, 4H, Ar*H*), 7.57-7.50 (m, 2H, Ar*H*), 7.43-7.36 (m, 6H, Ar*H*), 7.21-7.16 (m, 7H, Ar*H*), 5.78 (t, *J* = 10 Hz, 1H), 5.38 (t, *J* = 10 Hz, 1H), 4.94 (d, *J* = 10 Hz, 1H, H-1), 4.62 (s, 2H, CH₂), 4.02 (d, *J* = 18 Hz, 1H), 3.94 (t, *J* = 10 Hz, 1H), 3.86-3.82 (m, 2H), 3.65 (m, 1H), 2.36 (s, 3H, CH₃), 2.19 (bs, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 165.6 (*C*=O), 165.3 (*C*=O), 138.5, 137.0, 133.3, 133.2, 133.1, 129.8, 129.7, 129.6, 129.3, 129.2, 128.3, 128.15, 128.11, 127.9, 86.3

(C-1), 79.5, 75,2, 74.8, 70.8, 61.6, 21.1 (*C*H₃); HRMS (ESI): calcd for $C_{66}H_{70}NaO_{12}S [M + Na]^+ 1109.4480$, found *m/z* 1109.4454.

p-tolyl 2,3,4-tri-*O*-benzyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-thio- β -D-glucopyranoside 38.

Scheme 16. Preparation of *p*-tolyl 2,3,4-tri-*O*-benzyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-thio-β-D-glucopyranoside 38.

Known **38a**³⁹ (1.5 g, **1**.52 mmol) was treated with 1 M BH₃.THF (6.1 mL, 6.1 mmol) under N₂, followed by the addition of TMSOTf (41 µL, 0.23 mmol). The mixture was stirred at RT for 2 h before quenching with triethylamine (TEA) (0.1 mL) and MeOH (2 mL) at 0 °C. The reaction crude was then concentrated for column chromatography (Elution: Hexane/EtOAc/CH₂Cl₂ 1/3/1) to furnish **38** as a glassy material (0.94 g, 63%). For **38**, R_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 2/1/1); $[\alpha]^{37.9}_{D}$ = -0.85 (c= 3.32, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.47 (d, J = 8.1 Hz, 2H, Ar*H*), 7.41-7.25 (m, 27H, Ar*H*), 7.19-7.12 (m, 4H, Ar*H*), 7.00 (d, J = 7.8 Hz, 2H, Ar*H*), 5.08 (d, J = 10.5 Hz, 1H, Ar*H*), 4.95 (d, J = 11.7 Hz, 1H), 4.84-4.68 (m, 7H), 4.61-4.50 (m, 3H), 4.42-4.38 (m, 2H), 3.92 (t, J = 9.6Hz, 1H), 3.84-3.75 (m, 3H), 3.61 (t, J = 8.7 Hz, 1H), 3.56-3.50 (m,

1H), 3.44-3.31 (m, 4H), 3.17 (dd, J = 5.4, 6.6Hz, 1H), 2.26 (s, 3H, CH_3); ¹³C NMR (75 MHz, CDCl₃): δ 138.98, 138.96, 138.9, 138.8, 138.6, 138.0, 133.0, 130.1, 130.0, 129.3, 128.8, 128.72, 128.66, 128.64, 128.61, 128.59, 128.51, 128.48, 128.4, 128.2, 128.1, 128.00, 127.98, 127.9, 127.83, 127.78, 103.2 (C-1'), 88.1 (C-1), 85.3, 82.9, 80.6, 80.3, 79.7, 77.0, 76.2, 75.9, 75.6, 75.4, 74.8, 74.1, 73.5, 73.3, 68.6, 62.1, 21.5 (*C*H₃); ESI: calcd for C₆₁H₆₄NaO₁₀S [M + Na]⁺ 1011.4, found *m/z* 1011.6.

4,6-*O*-benzylidene-3-*O*-(2-naphthyl)-thio-β-D-galactopyranoside 39.

A suspension of known **39a**⁴⁶ (1 g, 2.67 mmol) and dibutyl tin oxide (Bu₂SnO) (1 g, 4.0 mmol) in toluene (25 mL) was heated to reflux (ca 135 °C) under Dean-Stark condensation for 15 h. After then, the mixture was concentrated by removal of toluene (to 15 mL), followed by stirring at RT. Subsequently, 2-naphthalene bromide (2-NapBr) (0.89 g, 4 mmol) and CH₃CN (10 mL) were added to the residue. The mixture was stirred at 70 °C for 6 h, followed by addition of 2 N NaOH_(aq) (1 mL) and CH₂Cl₂ (20 mL). The resulting emulsion was filtered through celite and the filtrate was concentrated for column chromatography purification (Elution: Hexane/CH₂Cl₂/EtOAc 4/3/1) to give **39** as a white amorphous

powder (0.95 g, 71% from re-precipitation in hexane/EtOAc). For acceptor **39**, R_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 2/1/1); $[\alpha]^{37.9}_{D}$ = +6.7 (c= 1.73, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.73 (m, 4H, Ar*H*), 7.58 (d, *J* = 8.1 Hz, 1H, Ar*H*), 7.50-7.44 (m, 3H, Ar*H*), 7.42-7.33 (m, 5H, Ar*H*), 7.06 (d, *J* = 8.1 Hz, 1H, Ar*H*), 5.39 (s, 1H, benzylidene-C*H*), 4.88 (s, 2H), 4.45 (d, *J* = 9.6 Hz, 1H, H-1), 4.32 (bt, *J* = 12.3 Hz, 1H), 4.12 (d, *J* = 3Hz, 1H), 3.95-3.87 (m, 2H), 3.54 (dd, *J* = 3.3, 9.3 Hz, 1H), 3.39 (s, 1H), 2.49 (d, *J* = 1.8 Hz, 1H, O*H*), 2.34 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.4, 137.8, 135.5, 134.4, 133.1, 133.0, 129.7, 129.0, 128.2, 128.0, 127.8, 127.7, 126.7, 126.6, 126.4, 126.1, 126.0, 125.7, 101.1 (benzylidene-CH), 87.0 (C-1), 80.0, 73.4, 71.8, 70.0, 69.3, 67.1, 21.2 (CH₃); ESI: calcd for C₃₁H₃₀NaO₅S [M + Na]⁺ 537.2, found *m*/z 537.1.

Table 8. Experimental details for glycosylation of thioglycosyl acceptors**30–40** using procedure B

Entr y	Donor (mg, mmol)	Acceptor (mg, mmol)	Time (h)	<i>T</i> (°C) -	Glycosylation product	
					Yield (mg, %),	$\alpha/\beta^{[a]}$
1	2 (166.3,	30 (111.2, 0.2)	3	-10	41 (118.3, 60)	36/1
	0.3)					
2	2 (166.3,	31 (111.2, 0.2)	6	0	42 (108.5, 55)	6/1
	0.3)					
3	2 (166.3,	32 (111.2, 0.2)	3	0	43 (108.5, 55)	11/1

	0.3)					
4	2 (166.3,	33 (108.6, 0.2)	3	10	44 (87.1, 45)	11/1
	0.3)			-10		
5	2 (166.3,	34 (116.8, 0.2)	3	10	45 (172.2, 85)	49/1
	0.3)			-10		
6	2 (166.3,	35 (111.2, 0.2)	2	-10	46 (127.9, 65)	12/1
	0.3)		2	10		
7	2 (166.3,	36 (111.2, 0.2)	4	0	47 (138.1, 70)	49/1
	0.3)			-		
8	2 (166.3,	37 (62, 0.2)	2	0	48 (73.6, 50)	13/1
	0.3)					
9	2 (166.3,	38 (197.7, 0.2)	5 S	F10	49 (212.8, 75)	19/1
	0.3)					
10	2 (166.3,	39 (102.8, 0.2)	418	96 0	50 (160.2, 85)	49/1
	0.3)	111				
11	7 (100, 0.2)	40 (70, 0.15)	3	-10	51 (64, 56)	49/1
12	7 (700, 1.3)	32 (560, 1.0)	6	-10	52 (518, 61)	49/1
13	8 (96, 0.24)	35 (55.6, 0.2)	3	-10	53 (91.5, 55)	6/1
14	9 (155,	36 (91, 0.2)	5	0	54 (107 8 50)	49/1 ^[b]
	0.24)		5		54 (107.0, 50)	17/1
15	9 (155,	37 (62, 0.2)	3	0	55 (91.5, 55)	8/1 ^[b]
	0.24)		2	2		

^[a]α/β Ratios were determined by Hitachi HPLC system (Mightysil column (Si-60 250-4.6); Elution: EtOAc/hexane/CH₂Cl₂ mixture at 0.8 mL min⁻¹ flow rate; HPLC pump (L-2130) and UV detector (L-2400) were employed. ^[b]Ultra-sonification was applied (Branson 2210R-MT).

p-tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl- $(1\rightarrow 6)$ -**2,3,4-tri-O-benzyl-thio-β-D-galactopyranoside 41**. Preparation of **41** was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 1). Compound 41 was obtained as a white glassy material by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/1/2). For α -anomer of 41, R_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 5/1/2); $[\alpha]^{37.9}_{D} = +42.6$ (c= 1.04, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.47 (m, 2H, ArH), 7.42-7.22 (m, 30H, ArH), 7.57-7.50 (m, 2H, ArH), 6.98 (d, J = 7.8 Hz, 2H, ArH), 5.42 (s, 1H, benzylidene-CH), 4.93 (d, J = 12.0 Hz, 1H), 4.84 (d, J = 12 Hz, 1H), 4.80-4.68 (m, 8H),4.64-4.56 (m, 2H), 4.15 (dd, J = 1.2, 12.5 Hz, 1H), 4.08-4.01 (m, 2H), 3.95 (d, J = 3.3 Hz, 1H), 3.92 (d, J = 2.7 Hz, 1H), 3.89-3.76 (m, 3H),3.68(s, 1H), 3.64(t, J = 3.9 Hz, 1H), 3.59(dd, J = 2.7, 9.3 Hz, 1H), 3.33 $(dd, J = 3.9, 10.2 Hz, 1H), 2.25 (s, 3H, CH_3); {}^{13}C NMR (75 MHz, CDCl_3):$ δ 139.2, 139.0, 138.9, 138.7, 138.6, 138.4, 137.2, 131.3, 131.1, 130.1, 129.3, 128.96, 128.84, 128.80, 128.78, 128.74, 128.54, 128.49, 128.3, 128.2, 128.1, 128.0, 127.9, 126.78, 101.4 (benzylidene-CH), 98.5 (C-1'), 87.4 (C-1), 84.6, 77.8, 77.6, 76.8, 76.2, 75.8, 74.8, 74.7, 74.42, 74.38, 73.5, 72.2, 70.0, 68.2, 62.9, 21.6 (CH₃); HRMS (FAB): calcd for $C_{61}H_{62}O_{10}SNa [M + Na]^+$ requires 1009.3961, found m/z 1009.3956.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl-thio- β -D-galactopyranoside 42. Preparation of 42 was referred to general pre-activated DMF-modulating glycosylation

procedure and the exact amounts of reagents used were given (Table S2, entry 2). Compound 42 was obtained as a white glassy solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/1/2). For α -anomer of 42, $R_{\rm f} 0.5$ (Hexane/EtOAc/CH₂Cl₂ 5/1/2); $[\alpha]_{\rm D}^{37.9} = +50.7$ $(c=1.32, CHCl_3)$ ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, J = 8.1 Hz, 2H, ArH), 7.50-7.17 (m, 30H, ArH), 7.06 (d, J = 8.1 Hz, 2H, ArH), 5.34 (s, 1H, benzylidene-CH), 5.18 (d, J = 3.3 Hz, 1H, H-1'), 5.05 (d, J = 11.7 Hz, 1H), 4.76-4.72 (m, 5H), 4.65 (d, J = 5.7 Hz, 1H), 4.54 (d, J = 9.6 Hz, 1H, H-1), 4.35-4.25 (m, 3H), 4.21-4.15 (m, 2H), 4.10-3.98 (m, 4H), 3.80 (t, J) = 9.3 Hz, 1H), 3.66-3.49 (m, 5H), 3.40 (dd, J = 1.2, 12.6 Hz, 1H), 2.17 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.4, 139.3, 138.7, 138.54, 138.46, 138.3, 137.4, 132.5, 130.5, 130.1, 129.3, 128.9, 128.80, 128.77, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.4, 126.8, 101.2 (benzylidene-CH), 100.6 (C-1'), 87.5 (C-1), 83.3, 76.4, 76.1, 75.7, 74.9, 74.5, 73.7, 73.3, 72.5, 71.3, 69.8, 67.6, 63.0, 21.5 (CH₃); HRMS (FAB): calcd for $C_{61}H_{62}O_{10}SNa [M + Na]^+$ requires 1009.3961, found m/z1009.3981.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzyl-thio- β -D-galactopyranoside 43. Preparation of 43 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 3). Compound 43 was obtained as a white amorphous solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 6/1/2). For α -anomer of 43, R_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 5/1/2); [α]^{37.9}_D= +61.9 (c= 0.43, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.19 (m, 30H, Ar*H*), 7.06-7.03 (m, 2H, Ar*H*), 6.96 (d, *J* = 7.8 Hz, 2H, Ar*H*), 5.89 (d, *J* = 3.6 Hz, 1H, H-1'), 5.19 (s, 1H, benzylidene-C*H*), 4.90 (dd, *J* = 1.5, 11.4 Hz, 1H), 4.83-4.77 (m, 3H), 4.73-4.62 (m, 3H), 4.51-4.41 (m, 2H), 4.30 (t, *J* = 9.3 Hz, 1H), 4.24 (d, *J* = 10.2, 1H), 4.11-4.06 (m, 2H), 3.97 (s, 1H), 3.88 (dd, *J* = 3.6, 10.2, 1H), 3.80 (dd, *J* = 0.9, 12.3, 1H), 3.70-3.63 (m, 5H), 3.01 (dd, *J* = 1.2, 12.3 Hz, 1H), 2.28 (s, 1H, *CH*₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.5, 139.2, 138.8, 138.4, 138.2, 137.9, 137.6, 132.0, 130.3, 130.1, 129.2, 129.0, 128.9, 128.8, 128.7, 128.6, 128.54, 128.50, 128.46, 128.4, 128.2, 128.02, 127.96, 126.8, 101.3 (benzylidene-CH), 97.2 (C-1'), 88.3 (C-1), 84.2, 77.9, 77.5, 77.3, 77.1, 76.1, 76.0, 75.2, 75.1, 74.2, 73.9, 73.4, 72.8, 72.5, 71.4, 69.5, 69.0, 62.5, 21.6 (*C*H₃); HRMS (FAB): calcd for C₆₁H₆₂O₁₀SNa [M + Na]⁺ requires 1009.3961, found *m/z* 1009.3961.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1→6)-3,4-di-*O*-acetyl-2-deoxy-2-trichloroethoxycarbamyl-thio-β-D-glucopy ranoside 44. Preparation of 44 was referred to pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 4). Compound 44 was obtained as a white glassy material by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 3/1/1). For α-anomer of 44, R_f 0.3 (Hexane/EtOAc/CH₂Cl₂ 3/1/1); $[\alpha]^{37.9}_{D}$ = +44.4 (c= 0.76, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.46 (m, 2H, Ar*H*), 7.42-7.25 (m, 15H, Ar*H*), 7.11 (d, *J* = 8.1 Hz, 2H, Ar*H*), 5.77 (d, *J* = 9.3 Hz, 1H, N*H*), 5.44 (s, 1H, benzylidene-C*H*), 5.18 (t, *J* = 7.8 Hz, 1H), 4.92-4.88 (m, 2H),

4.78-4.55 (m, 7H), 4.15-3.94 (m, 5H), 3.89-3.67 (m, 4H), 3.58 (s, 1H), 2.35 (s, 1H, CH₃), 2.04 (s, 3H, CH₃), 1.93 (s, 3H, CH₃); ¹³C NMR (75) MHz, CDCl₃) δ 170.92 (C=O), 170.85 (C=O), 154.6 (C=O), 138.9, 138.7, 138.6, 138.1, 133.6, 130.1, 129.4, 129.3, 128.9, 128.8, 128.6, 128.4, 128.1, 126.7, 101.4 (benzylidene-CH), 100.3 (C-1'), 95.9 (CCl₃), 87.2 (C-1), 76.0, 75.1, 74.9, 74.7, 74.5, 74.0, 72.4, 69.7, 64.3, 63.8, 55.2, 21.6 (CH_3) , 21.4 $(CH_{3}),$ 21.3 $(CH_{3});$ HRMS (FAB): calcd for $C_{47}H_{50}Cl_3NO_{13}SNa [M + Na]^+$ requires 996.1966, found *m/z* 996.1953.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl- $(1\rightarrow 6)$ -4-*O*-benzyl-2,3-di-*O*-benzoyl-thio-**B**-D-glucopyranoside 45.

Preparation of 45 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 5). Compound 45 was obtained as a white glassy column chromatography purification material by (Elution: 6/1/3). For α -anomer of 45, Hexane/EtOAc/CH₂Cl₂ $R_{\rm f} = 0.4$ (Hexane/EtOAc/CH₂Cl₂ 6/1/3); $[\alpha]^{37.9}_{D} = +78.7$ (c= 0.85, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.96 (d, J = 7.2 Hz, 2H, ArH), 7.79 (d, J =7.5, 2H, ArH), 7.57-7.53 (m, 2H, ArH), 7.51-7.45 (m, 2H, ArH), 7.43-7.21 (m, 19H, ArH), 7.10-7.04 (m, 7H, ArH), 5.69 (t, J = 9.3, 1H), 5.48 (s, 1H, benzylidene-CH), 5.33 (t, J = 9.6 Hz, 2H), 5.17 (d, J = 3.3Hz, 1H, H-1), 4.87-4.73 (m, 4H), 4.65 (d, J = 11.7 Hz, 1H), 4.49 (s, 2H), 4.22 (d, J = 12.3, 1H), 4.11-4.07 (m, 2H), 4.01-3.83 (m, 5H), 3.79-3.74 (m, 1H), 3.65 (s, 1H), 2.23 (s, 1H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 166.1 (C=O), 165.7 (C=O), 139.2, 139.0, 138.7, 138.4, 137.8, 133.6, 133.5, 130.32, 130.25, 129.84, 129.76, 129.4, 128.93, 128.78, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.04, 128.00, 126.8, 101.5 (benzylidene-*C*H), 98.5 (C-1'), 86.2 (C-1), 80.0, 77.9, 77.5, 77.1, 76.8, 76.5, 76.4, 76.0, 75.1, 74.0, 72.4, 71.3, 69.9, 66.1, 63.1, 21.6 (*C*H₃); HRMS (FAB): calcd for $C_{61}H_{58}O_{12}SNa [M + Na]^+$ requires 1037.3547, found, *m/z* 1037.3541.

p-tolyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl- $(1\rightarrow 6)$ -2,3,4-tr i-O-benzyl-thio-β-D-glucopyranoside 46. Preparation of 46 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 6). Compound 46 was obtained as a white amorphous solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 6/1/3) and both α/β -anomers were isolated for NMR characterization. For α -anomer of 46, $R_f 0.5$ (Hexane/EtOAc/CH₂Cl₂ 6/1/3; $[\alpha]^{37.9}_{D}$ = +63.1 (c= 0.85, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.53 (dd, J = 2.4, 7.8, 2H, ArH), 7.42-7.20 (m, 30H, ArH), 7.07 (d, J = 7.8 Hz, 2H, ArH), 5.43 (s, 1H, benzlidene-CH), 5.04 (d, J = 3.3, 1H, H-1'), 4.91-4.72 (m, 8H), 4.65 (dd, J = 2.1, 9.9 Hz, 2H), 4.56 (d, J = 11.4, 1H), 4.15 (d, J = 12.6, 1H), 4.07 (dd, J = 3.3, 9.9 Hz, 1H), 4.03 (d, J = 3.3, 1H), 3.96 (dd, J = 3.3, 10.2)1H), 3.85-3.77 (m, 2H), 3.74-3.70 (m, 1H), 3.67 (d, J = 9, 1H), 3.63 (s, 1H), 3.60-3.55 (m, 2H), 3.32 (t, J = 9 Hz, 1H), 2.26 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.2, 138.9, 138.6, 138.4, 138.3, 137.8, 131.9, 130.8, 130.2, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 128.14, 128.11, 128.08, 128.03, 127.95, 127.88, 126.8, 101.4 (benzylidene-CH), 98.6 (C-1'), 87.7 (C-1), 87.1, 81.3, 79.0, 78.4, 77.9,

77.5, 77.1, 76.2, 76.1, 75.9, 75.3, 75.1, 73.5, 72.5, 69.9, 67.1, 62.9, 21.5 (CH₃). For β -anomer of 46, R_f 0.3 (Hexane/EtOAc/CH₂Cl₂ 6/1/3); ¹H NMR (300 MHz, CDCl₃): & 7.58-7.55 (m, 2H, ArH), 7.46-7.15 (m, 30H, ArH), 7.00 (d, J = 7.8 Hz, 2H, ArH), 5.49 (s, 1H, benzylidene-CH), 4.95-4.86 (m, 3H), 4.82-4.69 (m, 6H), 4.65-4.57 (m, 2H), 4.41 (d, J = 7.8Hz, 1H, H-1'), 4.29-4.20 (m, 2H), 4.08 (d, J = 3.3 Hz, 1H), 3.97 (d, J =11.1, 1H), 3.90-3.76 (m, 2H), 3.69 (t, J = 8.4 Hz, 1H), 3.62-3.48 (m, 3H), 3.42 (t, J = 9.3 Hz, 1H), 3.20 (s, 1H), 2.20 (s, 3H, CH_3); ¹³C NMR (75 MHz, CDCl₃): δ 139.3, 138.88, 138.86, 138.7, 138.5, 138.3, 137.9, 132.5, 130.4, 130.2, 129.4, 128.9, 128.84, 128.80, 128.64, 128.60, 128.5, 128.3, 128.09, 127.8, 127.0, 128.14. 104.1 128.2. (C-1'). 101.8 (benzylidene-CH), 88.0 (C-1), 87.1, 81.1, 79.7, 79.3, 78.8, 78.4, 76.1, 75.8, 75.7, 75.3, 74.4, 72.5, 69.6, 68.6, 66.9, 21.5 (CH₃); HRMS (FAB): calcd for $C_{61}H_{62}O_{10}S$ Na $[M + Na]^+$ requires 1009.3961, found m/z1009.3964.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-thio-β-D-glucopyranoside 47. Preparation of 47 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 7). Compound 47 was obtained as a milk white glassy material by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/1/2). For α-anomer of 47, R_f 0.3 (Hexane/EtOAc/CH₂Cl₂ 7/1/2); ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.47 (m, 4H, Ar*H*), 7.33-7.14 (m, 28H, Ar*H*), 7.03 (d, *J* = 7.8 Hz, 2H, Ar*H*), 5.77 (d, *J* = 3.3 Hz, 1H, H-1'), 5.38 (s, 1H, benzylidene-C*H*), 4.92-4.81 (m, 3H), 4.78-4.74 (m, 1H), 4.68 (s, 2H), 4.63-4.48 (m, 5H), 4.09 (d, J = 5.4 Hz, 1H), 4.04 (d, J = 8.1, 2H), 3.97-3.93 (m, 2H), 3.81-3.67 (m, 4H), 3.58-3.48 (m, 3H), 2.29 (s, 3H, CH_3); ¹³C NMR (75 MHz, CDCl₃): δ 139.0, 138.7, 138.6, 138.27, 138.25, 133.2, 130.1, 129.9, 129.2, 128.82, 128.78, 128.71, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 126.9, 126.7, 101.2 (benzylidene-*C*H), 98.4 (C-1'), 87.9 (C-1), 87.2, 81.4, 79.2, 77.9, 77.5, 77.1, 76.8, 75.7, 75.0, 74.7, 74.6, 74.0, 72.5, 72.0, 69.8, 69.6, 63.4, 21.6 (*C*H₃); HRMS (FAB): calcd for C₆₁H₆₂O₁₀SNa [M + Na]⁺ requires 1009.3961, found *m/z* 1009.4016.

p-tolyl

2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl-(1→4)-2,

3-isopropylidene-thio- α **-1-rhamnopyranoside 48.** Preparation of **48** was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 8). Compound **48** was obtained as a pale yellowish glassy material by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 7/1/2) and both α/β -anomers were isolated for NMR characterization. For α -anomer of **48**, R_f 0.4 (Hexane/EtOAc/CH₂Cl₂ 6/1/2); $[\alpha]^{37.9}_{D}$ = -34.1 (c= 0.34, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.54-7.52 (m, 2H, Ar*H*), 7.43-7.24 (m, 15H, Ar*H*), 7.12 (d, *J* = 7.8 Hz, 2H, Ar*H*), 5.67 (s, 1H, H-1), 5.48 (s, 1H, benzylidene-C*H*), 5.08 (d, *J* = 3 Hz, 1H, H-1'), 4.91 (d, *J* = 11.4 Hz, 1H), 4.82-4.70 (m, 3H), 4.31-4.00 (m, 9H), 3.51 (dd, *J* = 7.8, 9.9 Hz, 1H), 2.33 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 1.32 (s, 1H, CH₃), 1.25 (d, *J* = 6.3, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.2, 138.6, 138.4, 138.3, 132.9, 130.3, 129.94, 129.3, 128.8, 128.6, 128.2, 128.0, 126.8,

109.6 (isopropylidene-*C*), 101.5 (benzylidene-*C*H), 99.6 (C-1'), 84.4 (C-1), 80.4, 77.9, 77.5, 77.3, 77.2, 77.1, 75.6, 75.2, 74.9, 72.3, 69.9, 67.2, 63.0, 28.6, 27.1, 21.6 (CH₃), 17.6. For β-anomer of **48**, R_f 0.3 (Hexane/EtOAc/CH₂Cl₂ 6/1/2); ¹H NMR (300 MHz, CDCl₃): δ 7.54 (m, 2H, Ar*H*), 7.46-7.29 (m, 15H, Ar*H*), 7.13 (d, *J* = 7.8 Hz, 2H, Ar*H*), 5.64 (s, 1H, H-1), 5.48 (s, 1H, benzylidene-*CH*), 4.95-4.86 (m, 2H), 4.81-4.71 (m, 3H), 4.31-4.21 (m, 3H), 4.18-4.08 (m, 2H), 4.01-3.97 (m, 1H), 3.82-3.73 (m, 2H), 3.59 (dd, *J* = 3.6, 9.6 Hz, 1H), 3.28 (s, 1H), 2.33 (s, 3H, *CH*₃), 1.48 (s, 3H, *CH*₃), 1.33-1.30 (m, 6H, *CH*₃ × 2); ¹³C NMR (75 MHz, CDCl₃): δ 139.5, 139.0, 138.5, 138.4, 133.1, 130.3, 130.1, 129.5, 128.80, 128.75, 128.7, 128.6, 128.2, 128.1, 128.0, 127.0, 109.8 (isopropylidene-*C*), 101.9 (benzylidene-*C*), 101.8 (C-1'), 84.6 (C-1), 79.7, 79.4, 79.0, 78.3, 77.0, 75.8, 74.6, 72.7, 69.7, 66.8, 66.7, 28.4 (*C*H₃), 26.9 (*C*H₃), 21.6 (*C*H₃), 18.2 (*C*H₃); HRMS (FAB): calcd for C₄₃H₄₈O₉SNa [M + Na]⁺ requires 763.2917, found *m*/z 763.291.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1→6)-2,3,4-tri-*O*-benzyl-D-galactopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-thioβ-D-glucopyranoside 49. Preparation of 49 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 9). Compound 49 was obtained as a white glassy solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 9/1/3). For α-anomer of 49, $R_{\rm f}$ 0.4 (Hexane/EtOAc/CH₂Cl₂ 8/1/3); [α]^{37.9}_D= +33.6 (c= 0.54, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.11 (m, 47H, Ar*H*), 7.00 (d, *J* = 7.8Hz, 2H, Ar*H*), 5.35 (s, 1H, benzylidene-C*H*), 5.04 (d, *J* = 9.9 Hz, 1H), 4.95 (d, J = 11.4 Hz, 1H), 4.87-4.43 (m, 18H), 4.12-3.73 (m, 12H), 3.60 (t, J = 9.0 Hz, 1H), 3.53-3.34 (m, 6H), 2.27 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.3, 139.2, 139.1, 138.93, 138.90, 138.7, 138.3, 138.2, 133.2, 130.1, 130.1, 129.3, 129.2, 128.9, 128.8, 128.76, 128.70, 128.64, 128.55, 128.53, 128.4, 128.3, 128.1, 128.04, 127.99, 127.9, 127.8, 126.8, 102.9 (C-1'), 101.4 (benzylidene-CH), 98.9 (C-1''), 88.2 (C-1), 85.5, 83.0, 80.9, 80.5, 79.8, 76.9, 76.6, 76.2, 76.0, 75.8, 75.7, 75.0, 74.8, 74.3, 74.2, 73.7, 73.5, 73.2, 72.2, 69.8, 68.8, 67.0, 62.9, 21.6 (CH₃); HRMS (FAB): calcd for C₈₈H₉₀O₁₅SNa [M + Na]⁺ requires 1441.5898, found *m/z* 1441.5893.

p-tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-D-galactopyranosyl-(1→2) -4,6-*O*-benzylidene-3-*O*-(2-naphthyl)-thio-β-D-galactopyranoside 50. Preparation of 50 was referred to general pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 10). Compound 50 was obtained as white amorphous solid by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 5/1/1 to 2/1/1). For α-anomer of 50, *R*_f 0.5 (Hexane/EtOAc/CH₂Cl₂ 2/1/1); [α]^{37.9}_D= +69.5 (c= 0.38, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.67 (m, 4H, Ar*H*), 7.51-7.25 (m, 25H, Ar*H*), 6.99 (d, *J* = 7.8 Hz, 2H, Ar*H*), 5.92 (d, *J* = 3.6 Hz, 1H, H-1), 5.48 (s, 1H, benzylidene-C*H*), 5.07 (s, 1H), 4.94 (d, *J* = 11.1 Hz, 1H), 4.81-4.73 (m, 4H), 4.65 (d, *J* = 12.3 Hz, 1H), 4.49 (d, *J* = 11.1 Hz, 1H), 4.36-4.29 (m, 2H), 4.23 (t, *J* = 9.0 Hz, 1H), 4.08 (dd, *J* = 3.3, 9.5 Hz, 1H), 4.00-3.91 (m, 3H), 3.81-3.73 (m, 3H), 3.43 (s, 1H), 2.99 (dd, *J* = 1.2, 12.3 Hz, 1H), 2.30 (s, 1H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.5, 138.9, 138.40, 138.35, 138.0, 135.6, 133.6, 133.4, 133.3, 130.2, 129.6, 129.2, 128.9, 128.8, 128.69, 128.66, 128.5, 128.2, 128.1, 128.0, 127.5, 127.1, 127.0, 126.8, 126.7, 126.6, 101.7 (benzylidene-*C*H), 101.1(benzylidene-*C*H), 97.2 (C-1'), 87.0 (C-1), 81.2, 77.9, 77.7, 77.1, 76.22, 76.17, 75.1, 74.2, 72.9, 72.4, 71.5, 70.4, 69.9, 69.7, 62.8, 21.7 (*C*H₃); HRMS (FAB): calcd for $C_{58}H_{56}SO_{10}Na$ [M + Na]⁺ requires 967.3486, found *m/z* 967.3478.

p-tolyl

2,3,4-tri-O-benzyl-L-fucopyranosyl- α -(1 \rightarrow 3)-2-O-benzyl-4,6-O-benzyl idene-thio-β-D-galactopyranoside 51. Preparation of 51 was referred to pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 11). Compound 51 was obtained as a glassy material by column chromatography purification Hexane/EtOAc 4/1). For α -anomer (Elution: of 51, $R_{\rm f}$ 0.2 (Hexane/EtOAc/CH₂Cl₂ 3/1); $[\alpha]^{37.9}_{D}$ = -56.7 (c = 0.08, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, J = 8.1 Hz, 2H, ArH), 7.47-7.16 (m, 26H, ArH), 7.01 (d, J = 8.1 Hz, 1H), 5.47 (s, 1H, benzylidene-CH), 5.09 (d, J =10.2 Hz, 3H), 4.95-4.92 (m, 2H), 4.84 (d, J = 12.3 Hz, 1H), 4.74-4.57 (m, 5H), 4.45 (d, J = 10.2 Hz, 1H), 4.39-4.34 (m, 2H), 4.10-3.96 (m, 4H), 3.77 (t, J = 9.3 Hz, 3H), 3.66 (dd, J = 3.0, 9.0 Hz, 1H), 3.56 (s, 1H), 3.48(s, 1H), 2.33 (s, 3H, CH_3), 0.98 (d, J = 6.6Hz, 3H, CH_3); ¹³C NMR (75 MHz, CDCl₃): δ 139.40, 139.38, 139.1, 139.0, 138.5, 138.0, 134.0, 130.0, 129.5, 129.1, 128.8, 128.72, 128.66, 128.61, 128.60, 128.58, 128.5, 128.41, 128.36, 128.0, 127.9, 127.8, 127.75, 127.7, 127.0, 101.7 (benzylidene-CH), 101.4 (C-1'), 87.0 (C-1), 85.3, 79.4, 78.2, 76.6, 76.4, 75.8, 75.3, 74.7, 73.5, 73.3, 70.0, 69.9, 67.5, 21.7 (CH₃), 17.3 (CH₃); HRMS (ESI): calcd for $C_{54}H_{56}O_9SNa$ [M + Na]⁺ requires 903.3543, found 903.3527.

p-tolyl

2,3,4-tri-O-benzyl-L-fucopyranosyl- α -(1 \rightarrow 2)-3,4,6-tri-O-benzyl-thio- β -D-galactopyranoside 52. Preparation of 52 was referred to pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 12). Compound 52 was obtained as a white solid material by column chromatography purification Hexane/EtOAc 5/1). For α -anomer of 52, $R_{\rm f}$ (Elution: 0.4 (Hexane/EtOAc 4/1); $[\alpha]^{37.9}_{D}$ = -114.5 (c= 0.71, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.32 (m, 28H, ArH), 7.17-7.08 (m, 3H, ArH), 7.06-6.99 (m, 4H, Ar*H*), 5.85 (d, *J* = 3.3 Hz, 1H, H-1'), 4.92 (d, *J* = 11.7 Hz, 1H), 4.81-4.70 (m, 5H), 4.65-4.59 (m, 2H), 4.55-4.44 (m, 4H), 4.40-4.32 (m, 3H), 4.07-3.97 (m, 3H), 3.76 (dd, J = 2.4, 9.0 Hz, 1H), 3.71(s, 1H), 3.62-3.59 (m, 3H), 2.28 (s, 3H, CH_3), 1.13 (d, J = 6.6 Hz, 3H, CH_3 ; ¹³C NMR (75 MHz, CDCl₃): δ 139.3, 139.1, 138.9, 138.8, 138.2, 137.4, 131.9, 131.1, 130.0, 128.8, 128.8, 128.7, 128.6, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 126.7, 98.2 (C-1'), 87.8 (C-1), 86.3, 80.0, 78.2, 75.9, 75.1, 74.8, 74.0, 73.4, 73.2, 72.3, 72.1, 71.1, 69.3, 67.8, 21.5 (CH₃), 17.0 (CH₃).; HRMS (ESI): calcd for $C_{61}H_{64}O_9SNa [M + Na]^+$ requires 995.4169, found *m/z* 995.4163.

p-tolyl

4-O-benzyl-2,3-O-isopropylidene-L-rhamnopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri -O-benzyl-thio-β-D-glucopyranoside 53. Preparation of 53 was referred to pre-activated DMF-modulating glycosylation procedure and the exact amounts of reagents used were given (Table S2, entry 13). Compound 53 was obtained as a white amorphous material by column chromatography purification (Elution: Hexane/EtOAc/CH₂Cl₂ 5/0.5/1). For α -anomer of **53**, $R_{\rm f}0.4$ (Hexane/EtOAc/CH₂Cl₂ 7/1/2); $[\alpha]^{37.9}_{\rm D}$ = -18.4 (c= 0.35, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.46-7.24 (m, 22H, ArH), 7.09-7.07 (d, J = 7.8 Hz, 2H, ArH), 4.94-4.82 (m, 6H), 4.74-4.63 (m, 2H), 4.60-4.56 (m, 1H), 4.27 (t, J = 6.6 Hz, 1H), 4.09 (d, J = 5.7 Hz, 1H), 3.94 (d, J = 10.5Hz, 1H), 3.78-3.67 (m, 2H), 3.56-3.42 (m, 4H), 3.22 (dd, J = 7.2, 9.6 Hz, 1H), 2.26 (s, 3H, CH₃), 1.52 (s, 3H, CH₃), 1.38 (s, 3H, CH₃), 1.26 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.9, 138.8, 138.5, 138.3, 133.2, 130.1, 130.0, 129.98, 128.95, 128.9, 128.7, 128.5, 128.40, 128.36, 128.2, 128.0, 109.7 (isopropylidene-*C*), 97.6 (C-1'), 87.9 (C-1), 87.3, 81.5, 81.3, 79.2, 78.7, 78.1, 76.4, 76.3, 75.9, 75.5, 73.4, 66.7, 65.0, 28.5 (CH₃), 26.9 (CH₃), 21.5 (CH₃), 18.3 (CH₃); HRMS (MALDI-TOF): calcd for $C_{50}H_{56}O_9SNa [M + Na]^+$ requires 855.3543, found *m/z* 855.3577.

p-tolyl 2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*benzyl-thio- β -D-glucopyranoside 54. Preparation of 54 was referred to pre-activated DMF-modulating glycosylation procedure (B) and the exact amounts of reagents used were given (Table S2, entry 14). Compound 54 was obtained as a white glassy material by column chromatography purification (Elution: Hexane/Et₂O/CH₂Cl₂ 7/1/2). For α -anomer of 54, $R_{\rm f}$ 0.4 (Hexane/Et₂O/CH₂Cl₂ 7/1/2); ¹H NMR (300 MHz, CDCl₃): δ 7.50 (d, J = 8.1 Hz, 2H, Ar*H*), 7.30-7.23 (m, 27H, Ar*H*), 7.19-7.08 (m, 8H), 7.04 (d, J = 7.8 Hz, 2H), 5.64 (d, J = 3.6 Hz, 1H, H-1'), 4.89-4.76 (m, 5H), 4.63-4.51 (m, 6H), 4.47-4.40 (m, 1H), 4.29 (d, J = 12.0 Hz, 1H), 4.09 (t, J = 9.0 Hz, 1H), 3.94-3.83 (m, 2H), 3.81-3.75 (m, 2H), 3.66 (d, J = 9.0 Hz, 1H), 3.61-3.47 (m, 4H), 3.41 (dd, J = 1.2, 10.4 Hz, 1H), 2.31 (s, 1H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.1, 139.0, 138.9, 138.8, 138.33, 138.30, 138.21, 133.27, 130.2, 129.9, 128.84, 128.79, 128.77, 128.75, 128.7, 128.5, 128.3, 128.23, 128.15, 128.1, 128.0, 127.91, 127.86, 127.6, 126.9, 97.5 (C-1'), 87.8 (C-1), 87.3, 82.5, 81.3, 79.7, 79.1, 78.1, 76.0, 75.7, 75.4, 74.8, 73.92, 73.85, 73.7, 72.9, 71.4, 69.5, 68.6, 21.6 (*C*H₃); HRMS (ESI): calcd for C₆₈H₇₀O₁₀SNa [M + Na]⁺ requires 1101.4587, found *m*/*z* 1101.4582.

p-tolyl

2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3-*O*-isopropylide ne-thio- α -L-rhamnopyranoside 55. Preparation of 55 was referred to pre-activated DMF-modulating glycosylation procedure (B) and the exact amounts of reagents used were given (Table S2, entry 15). Compound 55 was obtained as a white glassy material by column chromatography purification (Elution: Hexane/Et₂O/CH₂Cl₂ 6/1/1). For α -anomer of 55, $R_{\rm f}$ 0.3 (Hexane/EtOAc/CH₂Cl₂ 6/1/1); $[\alpha]^{37.9}_{\rm D}$ = -56.2 (c= 0.23, CHCl₃)¹H NMR (300 MHz, CDCl₃): δ 7.35-7.24 (m, 21H, Ar*H*), 7.19-7.10 (m, 4H, Ar*H*), 5.64 (s, 1H, H-1'), 5.00-4.69 (m, 6H), 4.64-4.47 (m, 3H), 4.28-4.14 (m, 3H), 4.10-3.98 (m, 2H), 3.83-3.76 (m, 2H), 3.66-3.58 (m, 2H), 3.43-3.37 (m, 1H), 2.33 (s, 3H, C*H*₃), 1.43 (s, 3H), 1.24 (d, *J* = 6.6 Hz,

6H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 139.2, 138.8, 138.4, 138.3, 132.9, 130.3, 130.1, 128.91, 128.88, 128.86, 128.8, 128.7, 128.43, 128.41, 128.3, 128.1, 128.0, 109.6 (isopropylidene-*C*), 98.9 (C-1'), 84.5 (C-1), 82.7, 81.7, 80.3, 78.3, 76.1, 75.6, 74.7, 74.0, 70.8, 68.4, 66.9, 28.6 (CH₃), 27.0 (CH₃), 21.6 (CH₃), 17.8 (CH₃); HRMS (MALDI-TOF): calcd for C₅₀H₅₆O₉SNa [M + Na]⁺ requires 855.3543, found *m/z* 855.3570.

p-tolyl

Known **58a**⁴³ (1.5 g, 4 mmol) was dissolved in DMF (13 mL), and stirred at ice bath under N₂. To the DMF solution was added iodomethane (0.65 mL, 10.4 mml) and 60% NaH in oil mist (0.5 g, 20 mmol). The mixture was stirred from 0 °C to RT for 3 h, followed by quenching with satd. NH₄Cl (20 mL). Product in the mixture was extracted with CH₂Cl₂ (20 mL × 2), and the CH₂Cl₂ solution was then washed with 1 N HCl_(aq), brine, dried (MgSO₄) and concentrated for chromatography purification to obtain **58** as a glassy material (1.1 g, 65%). For compound **58**, $[\alpha]^{37.9}_{D}$ = -15.2 (c= 0.94, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, *J* = 8.1

Hz, 2H, Ar*H*), 7.49-7.46 (m, 2H, Ar*H*), 7.37-7.35 (m, 3H, Ar*H*), 7.05 (d, J = 8.1 Hz, 2H, Ar*H*), 5.12 (s, 1H, benzylidene-C*H*), 4.45 (d, J = 9.3 Hz, 1H, H-1), 4.38 (dd, J = 1.5, 11 Hz, 1H), 4.29 (d, J = 3 Hz, 1H), 4.02 (d, J = 1.5, 11 Hz, 1H), 3.55 (s, 3H, C*H*₃), 3.53(s, 3H, C*H*₃), 3.46-3.42 (m, 2H), 3.31 (dd, J = 3.3, 6 Hz, 1H), 2.32 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ 138.75, 138.72, 133.7, 129.5, 129.1, 128.4, 128.2, 126.7, 101.5 (benzylidene-CH), 86.4 (C-1), 83.5, 76.8, 73.0, 69.7, 69.5, 60.9 (OCH₃), 57.7 (OCH₃), 21.2 (CH₃). ESI: calcd for C₂₂H₂₆NaO₅S [M + Na]⁺ 425.1, found *m/z* 425.0.

61 (54 mg, 65%, $\alpha/\beta = 10/1$) was prepared from coupling of 6-chlorohexanol **59** (26 µL mg) and thiogalactopyranoside **61** (121 mg, 0.3 mmol) according to general pre-activated DMF-modulating glycosylation procedure. Purification of **61** was achieved by column chromatography (Elution: Hexane/EtOAc 2/1/1). For α -anomer of **61**, $[\alpha]^{37.9}_{D} = +124.1$ (c= 0.26, CHCl₃) ¹H NMR (300 MHz, CDCl₃):

δ 7.54-7.51 (m, 2H, Ar*H*), 7.38-7.31 (m, 3H, Ar*H*), 5.56 (s, 1H, benzylidene-C*H*), 5.10 (d, *J* = 3.3 Hz, 1H, H-1), 4.36 (dd, *J* = 0.9, 3.6 Hz, 1H), 4.26 (dd, *J* = 1.5, 12.6 Hz, 5H), 4.09 (dd, *J* = 1.8, 12.6Hz, 3H), 3.80 (dd, *J* = 3.3, 10.2Hz, 2H), 3.74-3.66 (m, 3H), 3.56-3.52 (m, 9H), 1.79 (quintet, *J* = 6.6 Hz, 2H, C*H*₂), 1.72-1.62 (m, 2H, C*H*₂), 1.53-1.33 (m, 4H, C*H*₂ × 2); ¹³C NMR (75 MHz, CDCl₃): δ ¹³C NMR (75 MHz, CDCl₃): δ 138.2, 129.4, 128.6, 126.9, 101.7 (benzylidene-CH), 97.7 (C-1), 77.8, 77.6, 74.1, 70.0, 68.6, 63.1, 59.3, 58.1, 45.5, 32.9, 29.7 (*C*H₂), 27.1 (*C*H₂), 25.9 (*C*H₂); HRMS (MALDI-TOF): calcd for C₂₁H₃₁ClO₆Na [M + Na]⁺ requires 437.1701, found *m/z* 437.1704.

6 Reference:

(a) Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology. *Science* 2001, *291* (5512), 2357-64; (b) Seeberger, P. H.; Werz, D. B., Synthesis and medical applications of oligosaccharides. *Nature* 2007, *446* (7139), 1046-51; (c) Dwek, R. A., Glycobiology: Toward Understanding the Function of Sugars. *Chem Rev* 1996, *96* (2), 683-720.

2. Pashkuleva, I.; Reis, R. L., Sugars: burden or biomaterials of the future? *J Mater Chem* **2010**, *20* (40), 8803-8818.

3. (a) Bilodeau, M. T.; Park, T. K.; Hu, S. H.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S. L., Total Synthesis of a Human Breast-Tumor Associated Antigen. *J Am Chem Soc* **1995**, *117* (29), 7840-7841; (b) Zhu, T.; Boons, G. J., A Two-Directional and Highly Convergent Approach for the Synthesis of the Tumor-Associated Antigen Globo-H. *Angew Chem Int Ed Engl* **1999**, *38* (23), 3495-3497.

4. Stoffyn, P.; Stoffyn, A.; Hauser, G., Structure of trihexosylceramide isolated from rat spleen. *Biochim Biophys Acta* **1973**, *306* (2), 283-6.

5. Mong, T. K.; Lee, H. K.; Duron, S. G.; Wong, C. H., Reactivity-based one-pot total synthesis of fucose GM1 oligosaccharide: a sialylated antigenic epitope of small-cell lung cancer. *Proc Natl Acad Sci U S A* **2003**, *100* (3), 797-802.

6. Tirelli, N., Glyco-materials: using saccharides and their interactions for designing new biomaterials. *Macromolecular Bioscience* **2006**, *6* (8), 575-8.

7. Wang, C. C.; Lee, J. C.; Luo, S. Y.; Kulkarni, S. S.; Huang, Y. W.; Lee, C. C.; Chang, K. L.; Hung, S. C., Regioselective one-pot protection of carbohydrates. *Nature* **2007**, *446* (7138), 896-9.

 Paulsen, H., Advances in Selective Chemical Syntheses of Complex Oligosaccharides. *Angewandte Chemie-International Edition in English* 1982, *21* (3), 155-173.

9. Fraser-Reid, B.; Burgey, C. S.; Vollerthun, R., Carbohydrates to densely functionalized carbocycles: 'Armed and disarmed' effects in an approach to tetrodotoxin. *Pure Appl Chem* **1998**, *70* (2), 285-288.

10. (a) Boons, G. J.; Entwistle, D. A.; Ley, S. V.; Woods, M., Dispiroketals in Synthesis .4. Enantioselective Desymmetrization of Glycerol Using a C2-Symmetrical Disubstituted Bis-Dihydropyran. *Tetrahedron Lett* **1993**, *34* (35), 5649-5652; (b) Zhang, Z. Y.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H., Programmable one-pot oligosaccharide synthesis. *J Am Chem Soc* **1999**, *121* (4), 734-753.

11. (a) Wang, Y.; Ye, X. S.; Zhang, L. H., Oligosaccharide assembly by one-pot multi-step strategy. *Org Biomol Chem* **2007**, *5* (14), 2189-200; (b) Boltje, T. J.;

Buskas, T.; Boons, G. J., Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. *Nat Chem* **2009**, *1* (8), 611-22.

12. Codee, J. D.; van den Bos, L. J.; Litjens, R. E.; Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A., Sequential one-pot glycosylations using 1-hydroxyl and 1-thiodonors. *Org Lett* 2003, *5* (11), 1947-50.

13. (a) Crich, D.; Sun, S. X., Direct formation of beta-mannopyranosides and other hindered glycosides from thioglycosides. *J Am Chem Soc* **1998**, *120* (2), 435-436; (b) Crich, D., Chemistry of glycosyl triflates: Synthesis of beta-mannopyranosides (Reprinted from Glycochemistry: Principles, Synthesis, and Applications, pg 53-75, 2001). *J Carbohyd Chem* **2002**, *21* (7-9), 667-690.

14. Crich, D.; Sun, S., Formation of beta-Mannopyranosides of Primary Alcohols Using the Sulfoxide Method. *J Org Chem* **1996**, *61* (14), 4506-4507.

15. Huang, X.; Huang, L.; Wang, H.; Ye, X. S., Iterative one-pot synthesis of oligosaccharides. *Angew Chem Int Ed Engl* **2004**, *43* (39), 5221-4.

16. Huang, L.; Wang, Z.; Li, X.; Ye, X. S.; Huang, X., Iterative one-pot syntheses of chitotetroses. *Carbohydr Res* **2006**, *341* (10), 1669-79.

17. Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X. S.; Huang, X., Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors. *J Org Chem* **2007**, *72* (17), 6409-20.

18. Huang, X. F.; Huang, L. J., Highly efficient syntheses of hyaluronic acid oligosaccharides. *Chem-Eur J* **2007**, *13* (2), 529-540.

2-O-(alpha-L-fucopyranosyl)-3-O-(alpha-D-galactopyranosyl)-D-galactose. The terminal structure of the blood-group B antigenic determinant. *J Am Chem Soc* **1975**, *97* (14), 4069-75; (b) Lemieux, R. U.; Bundle, D. R.; Baker, D. A., The properties of a "synthetic" antigen related to the human blood-group Lewis a. *J Am Chem Soc* **1975**, *97* (14), 4076-83; (c) Shingu, Y.; Nishida, Y.; Dohi, H.; Matsuda, K.; Kobayashi, K., Convenient access to halide ion-catalyzed alpha-glycosylation free from noxious fumes at the donor synthesis. *J Carbohyd Chem* **2002**, *21* (6), 605-611.

20. Kim, J. H.; Yang, H.; Khot, V.; Whitfield, D.; Boons, G. J., Stereoselective glycosylations using (R)- or (S)-(ethoxycarbonyl)benzyl chiral auxiliaries at C-2 of glycopyranosyl donors. *Eur J Org Chem* **2006**, (22), 5007-5028.

21. (a) Ishiwata, A.; Munemura, Y.; Ito, Y., Synergistic solvent effect in 1,2-cis-glycoside formation. *Tetrahedron* **2008**, *64* (1), 92-102; (b) Demchenko, A.;

Stauch, T.; Boons, G. J., Solvent and other effects on the stereoselectivity of thioglycoside glycosidations. *Synlett* **1997**, (7), 818-&.

22. Uchiro, H.; Mukaiyama, T., A significant effect of a lithium salt in the stereocontrolled synthesis of alpha-D-ribofuranosides. *Chem Lett* **1996**, (4),

^{19. (}a) Lemieux, R. U.; Driguez, H., The chemical synthesis of

271-272.

23. (a) Bogusiak, J.; Szeja, W., Polar additives as cocatalyst in glycosidation. *Synlett* **1997,** (6), 661-662; (b) Bogusiak, J.; Szeja, W., Studies on the synthesis of 1,2-cis pentofuranosides from S-glycofuranosyl dithiocarbamates, dithiocarbonates and phosphorodithioates. *Carbohyd Res* **2001,** *330* (1), 141-144.

24. (a) Crich, D.; Li, W., Efficient glycosidation of a phenyl thiosialoside donor with diphenyl sulfoxide and triflic anhydride in dichloromethane. *Org Lett* **2006**, *8* (5), 959-62; (b) Haberman, J. M.; Gin, D. Y., Dehydrative sialylation with C2-hemiketal sialyl donors. *Organic Letters* **2003**, *5* (14), 2539-2541.

25. Park, J.; Kawatkar, S.; Kim, J. H.; Boons, G. J., Stereoselective glycosylations of 2-azido-2-deoxy-glucosides using intermediate sulfonium ions. *Organic Letters* **2007**, *9* (10), 1959-1962.

26. Koto, S.; Morishima, N.; Owa, M.; Zen, S., A Stereoselective

Alpha-Glucosylation by Use of a Mixture of 4-Nitrobenzenesulfonyl Chloride, Silver Trifluoromethanesulfonate, N,N-Dimethylacetamide, and Triethylamine. *Carbohyd Res* **1984**, *130* (Jul), 73-83.

27. Nishida, Y.; Shingu, Y.; Dohi, H.; Kobayashi, K., One-pot alpha-glycosylation method using Appel agents in N,N-dimethylformamide. *Org Lett* **2003**, *5* (14), 2377-80.

28. Shingu, Y.; Miyachi, A.; Miura, Y.; Kobayashi, K.; Nishida, Y., One-pot alpha-glycosylation pathway via the generation in situ of alpha-glycopyranosyl imidates in N,N-dimethylformamide. *Carbohyd Res* **2005**, *340* (14), 2236-2244.

29. Veeneman, G. H.; Vanleeuwen, S. H.; Vanboom, J. H., Iodonium Ion Promoted Reactions at the Anomeric Center .2. An Efficient Thioglycoside Mediated Approach toward the Formation of 1,2-Trans Linked Glycosides and Glycosidic Esters. *Tetrahedron Lett* **1990**, *31* (9), 1331-1334.

30. Chang, S. S.; Lin, C. C.; Li, Y. K.; Mong, K. K., A straightforward alpha-selective aromatic glycosylation and its application for stereospecific synthesis of 4-methylumbelliferyl alpha-T-antigen. *Carbohydr Res* **2009**, *344* (4), 432-8.

31. Mong, K. K.; Wong, C. H., Reactivity-based one-pot synthesis of a Lewis Y carbohydrate hapten: a colon-rectal cancer antigen determinant. *Angew Chem Int Ed Engl* **2002**, *41* (21), 4087-90.

32. Li, Z.; Gildersleeve, J. C., Mechanistic studies and methods to prevent aglycon transfer of thioglycosides. *J Am Chem Soc* **2006**, *128* (35), 11612-9.

33. Deng, S.; Gangadharmath, U.; Chang, C. W., Sonochemistry: a powerful way of enhancing the efficiency of carbohydrate synthesis. *J Org Chem* **2006**, *71* (14), 5179-85.

34. (a) Nishida, Y.; Shingu, Y.; Dohi, H.; Kobayashi, K., One-pot

alpha-glycosylation method using appel agents in N,N-dimethylformamide. *Org Lett* **2003,** *5* (14), 2377-2380; (b) Shingu, Y.; Miyachi, A.; Miura, Y.; Kobayashi, K.; Nishida, Y., One-pot alpha-glycosylation pathway via the generation in situ of alpha-glycopyranosyl imidates in N,N-dimethylformamide. *Carbohydr Res* **2005,** *340* (14), 2236-44.

35. (a) Barresi, F.; Hindsgaul, O., Synthesis of Beta-Mannopyranosides by Intramolecular Aglycon Delivery. *J Am Chem Soc* **1991**, *113* (24), 9376-9377; (b) Ishiwata, A.; Munemura, Y.; Ito, Y., NAP ether mediated intramolecular aglycon delivery: A unified strategy for 1,2-cis-glycosylation. *Eur J Org Chem* **2008**, (25), 4250-4263.

36. Wong, C. H.; Zhang, Z. Y.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T., Programmable one-pot oligosaccharide synthesis. *J Am Chem Soc* **1999**, *121* (4), 734-753.

37. Verma, P. R.; Mukhopadhyay, B., Synthesis of a tetrasaccharide related to the O-antigen from Azospirillum lipoferum SR65. *Carbohydr Res* 2010, *345* (3), 432-6.
38. Valencia, M. E.; Gil, A.; Lavilla, P.; Pintado, V.; Lopez Dupla, J. M., [Drug surveillance for adverse reactions in patients with human immunodeficiency virus infection]. *An Med Interna* 1990, *7* (11), 591-8.

39. Chao, C. S.; Li, C. W.; Chen, M. C.; Chang, S. S.; Mong, K. K.,

Low-concentration 1,2-trans beta-selective glycosylation strategy and its applications in oligosaccharide synthesis. *Chemistry* **2009**, *15* (41), 10972-82.

40. Lin, P. C.; Adak, A. K.; Ueng, S. H.; Huang, L. D.; Huang, K. T.; Ho, J. A.; Lin, C. C., DAST-mediated regioselective anomeric group migration in saccharides. *J Org Chem* **2009**, *74* (11), 4041-8.

41. Ye, X. S.; Fan, Q. H.; Li, Q.; Zhang, L. H., Regioselective benzylation of azido-containing monosaccharides. *Synlett* **2006**, (8), 1217-1220.

42. Mukhopadhyay, B.; Field, R. A., Convergent synthesis of a trisaccharide as its 2-(trimethylsilyl)ethyl glycoside related to the flavonoid triglycoside from Gymnema sylvestre. *Carbohydr Res* **2006**, *341* (10), 1697-701.

43. Mong, K. K. T.; Chang, C. W.; Chang, S. S.; Chao, C. S., A mild and general method for preparation of alpha-glycosyl chlorides. *Tetrahedron Lett* **2009**, *50* (31), 4536-4540.

44. Omura, S.; Shirahata, T.; Matsuo, J.; Teruya, S.; Hirata, N.; Kurimoto, T.; Akimoto, N.; Sunazuka, T.; Kaji, E., Improved catalytic and stereoselective glycosylation with glycosyl N-trichloroacetylcarbamate: application to various 1-hydroxy sugars. *Carbohyd Res* **2010**, *345* (6), 740-749.

45. Mong, K. K. T.; Chao, C. S.; Yen, Y. F.; Hung, W. C., Solvent Participation in a One-Pot Glycosylation Strategy (SPOG). *Adv Synth Catal* **2011**, *353* (6), 879-884.

46. Ye, X. S.; Wang, C. N.; Li, Q.; Wang, H. S.; Zhang, L. H., A new one-pot synthesis of Gb(3) and isoGb(3) trisaccharide analogues. *Tetrahedron* **2006**, *62* (50), 11657-11662.

. 170 fl (ppm) . 60

¹³C NMR taken at 90 min

(refer to Fig.9c in the main context)

-0.00 -0.01 -0.01

¹H NMR taken at 50°C (refer to Figure. 10a)

-0.5 -1.0 10.5 10.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 fl (ppm) 4.0 2.5 2.0 0.5 0.0 9.5 3.5 3.0 1.5 1.0

 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5
 -1.0

 fl (ppm)
 fl
 fl

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5
 -1.0

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5
 -1.0

5.0 4.5 fl (ppm) -0.5 -1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 3.0 2.5 2.0 0.5 0.0 4.0 3.5 1.5 1.0

10.0 5.0 4.5 fl (ppm) 0.0 -0.5 7.5 6.5 6.0 5.5 2.5 2.0 1.0 0.5 9.5 9.0 8.5 8.0 7.0 3.0 4.0 3.5 1.5

10.0 5.0 4.5 fl (ppm) 0.0 -0.5 9.5 8.5 7.5 7.0 6.5 6.0 5.5 4.0 3.0 2.5 2.0 1.0 0.5 9.0 8.0 3.5 1.5

10.0 -0.5 7.5 6.5 6.0 5.5 5.0 4.5 fl (ppm) 2.5 2.0 1.0 0.0 9.5 8.5 7.0 0.5 9.0 8.0 4.0 3.5 3.0 1.5

Dimethylformamide: An Unusual Glycosylation Modulator**

Shao-Ru Lu, Yen-Hsun Lai, Jiun-Han Chen, Chih-Yueh Liu, and Kwok-Kong Tony Mong*

Dedicated to Professor Chi-Huey Wong

The key steps in oligosaccharide synthesis are protectinggroup manipulation and stereoselective glycosylation.^[1] Various strategies have emerged to expedite glycosylation, and some of these strategies have been elaborated for automated solid-phase synthesis^[2] and one-pot cascade glycosylation.^[3] Most glycosylation strategies rely on traditional methods for stereochemical control over glycosidic-bond formation. Although such tactics work well for the formation of 1,2*trans* β-glycosidic bonds,^[4] there is no straightforward solution for the formation of a 1.2-cis α -glycosidic bond.^[1a,5] Existing methods often require extensive optimization of the reaction conditions, including the selection of an ethereal solvent,^[6] a transition-metal-complex promoting system,^[7] a remote participating group,^[8] a silylidene protecting group,^[9] and a chiral or achiral accessory group at the C2 position,^[10-13] or the installation of a fluoride substituent at the C2 position.^[14] However, most of these methods require additional steps for the installation of a specific functionality and are therefore less convenient for routine synthesis. Herein, we report a simple and general α -glycosylation method in which N,Ndimethylformamide (DMF) is used as a modulating molecule to direct the stereochemical course of glycosylation. Further elaboration of this approach led to a practical α -selective procedure based on preactivation that is useful for the glycosylaton of both O-glycoside and thioglycoside acceptors.

In a previous study of the chlorination of glycosyl hemiacetals, we observed that residual DMF in the glycosylation mixture promoted the formation of 1,2-*cis* α -glycosidic bonds.^[15] A search of the literature revealed that DMF has been utilized as a glycosylation solvent^[16] and as a component in the Vilsmeier–Haack reaction for glycosylations.^[17] Koto et al. reported the use of DMF as an additive to effect α -glycosylation; however, this protocol suffered from undesired glycosyl formate formation.^[17d] Lemieux and Driguez employed DMF (20–30 vol%) as one component of a mixed solvent system in particular glycosylations; however, such reactions required 4 days to reach completion, and the role of DMF was not stated.^[18] We hypothesized that

the activation of a thioglycoside generates an oxocarbenium ion pair, which upon trapping by nucleophilic DMF gives rise to an equilibrium mixture of α -/ β -glycosyl imidates. Assuming that the β imidate is more reactive than its α counterpart; subsequent coupling of the β imidate with an acceptor produces the desired α anomer as the major product (Scheme 1). Since DMF has a modulating function in the reaction, we coined the term DMF-modulated glycosylation strategy for this approach.

Scheme 1. Proposed mechanism of the DMF-modulated glycosylation.

Initially, we examined two DMF-modulated procedures (Scheme 2 a,b). In procedure A, adapted from a standard glycosylation protocol, a mixture of a thioglycosyl donor, a glycosyl acceptor, and DMF is treated with *N*-iodosuccinimide (NIS) and trimethylsilyl triflate (TMSOTf) (Scheme 2 a).^[19] In procedure B, the thioglycosyl donor is first preactivated with NIS and TMSOTf in the presence of DMF. Following activation, the glycosyl acceptor is added and reacts with the glycosyl imidate to furnish the desired glycosylation product (Scheme 2 b).

At the outset, we followed procedure A to couple the commercially available galactosyl acceptor **3** with the perbenzyl thiogalactoside **1**.^[20] After some experimentation, we found that one molar equivalent of TMSOTf (with respect to the glycosyl donor) was required for effective activation of the donor, probably owing to the mild Lewis basicity of DMF. DMF exhibited an α -directing effect in glycosylation reactions: a result which is in line with our previous findings.^[15] We observed a quantity–selectivity dependence between the stoichiometric amount of DMF added and the degree of glycosylation selectivity. Explicitly, when the amount of DMF was increased from 0 to 1.5 equivalents, the α/β -anomer ratio of the glycosylation product **4** increased from 1:1 to 3:1

^[*] S.-R. Lu, Y.-H. Lai, J.-H. Chen, C.-Y. Liu, Prof. K.-K. T. Mong Applied Chemistry Department, National Chiao Tung University 1001, Ta Hsueh Road, Hsinchu, Taiwan, 300 (R.O.C.) Fax: (+ 886) 3-513-1204 E-mail: tmong@mail.nctu.edu.tw

^[**] We thank the National Science Council of Taiwan for support (grant no. NSC 99-2113M-009-009), Dr. C.-W. Chang (Academia Sinica) and Dr. C.-S. Chao (NCTU) for initial studies. We are indebted to Prof. W.-C. Cheng (Academia Sinica), Prof. C.-H. Lin (Academia Sinica), and Prof. Y.-C. Chen (NCTU) for HRMS analysis.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201100076.

Communications

Scheme 2. a) First DMF-modulated glycosylation procedure (procedure A). b) Second DMF-modulated glycosylation procedure (procedure B). Bn = benzyl, Tol = p-tolyl.

(Table 1, entries 1–4). However, such moderate selectivity remains inadequate for synthetic utility; a further increase in the amount of DMF added (>1.5 equiv) did not improve the selectivity owing to the formation of a formyl-transfer product $6^{[17d]}$ We reasoned that the arming benzyl groups of donor 1 may promote the departure of DMF from the glycosyl imidate; consequently, the α -directing effect of DMF was attenuated.^[21] Therefore, a conformationally restrained benzylidene thiogalactoside 2 was used in place of $1^{[20]}$ However, the replacement of the donor alone did not bring

Table 1: Investigation of DMF-modulated glycosylation procedures A and B with galactosyl acceptor **3**.

Entry	Donor (equiv)	DMF [equiv]	<i>т</i> [°С]	<i>Т</i> [h]	Product, yield [%], $lpha/eta^{[a]}$
1	1 (1.2) ^[b]	0	-25	0.5	4, 90, 1:1
2	1 (1.2) ^[b]	0.8	-10	1.0	4, 70, 3:2
3	1 (1.2) ^[b]	0.8	0	1.0	4 , 77, 3:2
4	1 (1.2) ^[b]	1.5	0	1.0	4 , 80, 3:1
5	2 (1.5) ^[b]	1.5	-10	2.0	5 , 82, 6:1
6	2 (1.5) ^[c]	1.5	-10	2.0	5 , 80, 8:1
7	2 (1.5) ^[c]	3.0	-10	2.0	5 , 87, 15:1
8	2 (1.5) ^[c]	6.0	-10	2.0	5 , 87, 19:1
9	2 (1.5) ^[b]	O ^[d]	-10	0.3	5 , 90, 1:1
10	2 (1.5) ^[b]	0 ^[e]	-10	0.2	5 , 85, 1.5:1
11	2 (1.5) ^[b]	O ^[f]	-10	0.5	5 , 83, 1:1.5
12	2 (1.5) ^[b]	O ^[f]	0	4.0	5 , 40, 1:1.5
13	2 (1.5) ^[c]	_[g]	-10	3.0	5 , 80, 4:1

[a] The α/β ratio was determined by HPLC (conditions given in the Supporting Information). [b] Procedure A was used. [c] Procedure B was applied. [d] A 1:3 CH₂Cl₂/Et₂O mixture was used as the solvent. [e] THF was used as the solvent. [f] A 1:2 toluene/dioxane mixture was used as the solvent. [g] DMA (6 equiv) was added.^[17d]

about significant improvement: glycosylation product 5 was obtained with a 6:1 α/β -anomer ratio (Table 1, entry 5). Nevertheless, when the preactivation procedure B was adopted in conjunction with an increase in the amount of DMF added (from 1.5 to 6.0 equivalents), the α/β -anomer ratio of 5 was increased to 19:1 (Table 1, entries 6-8). To investigate whether an ethereal solvent could reproduce the α -directing effect, as implicated in previous studies,^[6a] we repeated the glycosylation of 3 with 2 in pure THF, CH₂Cl₂/ Et_2O (1:3), and toluene/dioxane (1:2) by procedure A, as procedure B does not work in the absence of DMF.^[22] No significant selectivity was observed in these glycosylation reactions, irrespective of the type of ethereal solvent used (Table 1, entries 9-12). In the past, dimethylacetamide (DMA) has been used as an additive to promote α selectivity in glycosylation reactions.^[17d] We were curious whether DMA could replace DMF in our procedure and repeated the glycosylation of 3 with 2 according to procedure B with the addition of DMA; however, the observed selectivity was not attractive (Table 1, entry 13).

After confirming the effectiveness of the preactivation glycosylation procedure B, we next investigated its scope of application. Thus, aglycone acceptors **10–13** and O-glycoside acceptors **14–17** were coupled with thioglycosyl donors **2**, **7**, **8**, and **9** (Scheme 3, Table 2).^[23] For comparison, these glycosylation reactions were performed with and without the addition of DMF. Generally, reaction rates were lower in the presence of DMF than in its absence; nonetheless, the time required for the completion of DMF-modulated glycosylation remained acceptable (2–6 h). Regarding stereochemical control, DMF exerted a powerful α -directing effect on all glycosylations. In some cases, the selectivity was reversed dramatically by the addition of DMF (Table 2, entries 2, 4, 5,

Table 2:	Glycosy	lation of ac	ceptors 10-17	by glycosylation	procedure B.

PGO + DMF 2, 7, 8, 9 (6 equiv) (1.5 equiv)			NIS, TMSOT CH ₂ Cl ₂ 1–1.5	R−C f (1 g, -10 °C −′	p; 10–17 equiv) ► F 10–0 °C [h]	PGOO MOR 18-29	
Entry	$D^{[a]}$	$A^{[a]}$	Т	t	Product	Yield [%], α/β ^[b]
-			[°C]	[h]		with	without
						DMF	DMF ^[c]
1	2	10	-10	2	18	83, 12:1	80, 1:1
2	2	11	-10	2	19	76, 8:1	85, 2:5
3	2	12	-10	6	20	45, 19:1	50, 15:1
4	2	13	0	2	21	79, 8:1	73, 2:5
5	2	14	-10	5.5	22	75, 12:1	80, 2:3
6	2	15	0	6	23	80, 49:1	50, 2:1
7	2	16	-10	2	24	82, 12:1	80, 3:2
8	2	17	0	4	25	60, 25:1	63, 5:1
9	7	14	-10	4.5	26	75, 5:1	77, 1:1
10	8	17	-10	4	27	70, 49:1	80, 5:1
11	9	15	0	6	28 ^[d]	76, 49:1	60, 2:3
12	9	17	0	5	29 ^[d]	75, 9:1	70, 2:5

[a] D is the donor; A is the acceptor. [b] The α/β -anomer ratio was determined by HPLC (settings are given in the Supporting Information). [c] A routine glycosylation (without the addition of DMF) was carried out. [d] The glycosylation was performed with ultrasonification.^[24] PG = protecting group.

896

Angewandte

nal Edition

Chemie

A known side reaction in glycosylations of thioglycosides is the transfer of the thioacetal functionality from the acceptor to the donor.^[28] Gratifyingly, such a transfer reaction did not occur in the DMF-modulated procedure, perhaps as a result of masking of the reactive oxocarbenium ion by a DMF molecule. The glycosylations in this study proceeded smoothly, and the corresponding α anomers were furnished in 45–85 % yield with high to excellent α selectivity. However, the reaction yields were on average lower than those observed for the glycosylation of O-glycosides. We attributed the lower

BnO ,OBn

STOL BOC

NAPO

39

STol

STol

STol

он 32

,OBr

-0

36

юн

OBn

OH

0

33

37

STol

STol

OBn

40

STo

NHTroc

corresponding glycosylation products 41-55.

OBr

31

35

OBn

-O STol

ÒBn

0

O⊦

-0

ÒBn

ÒBn

STol

HO

BnO

BnO⁻

a) Thioglycosyl acceptors 30-40

STol

- STol

BnO BnC

b) Glycosylation products 41-55

38

,OH

30

34

-0

OH

-0

OBz

BnO

ÒBn

BnO

BnO

BnO BzO

11, and 12). More importantly, this effect was not restricted to galactosyl donors, but also occurred with L-thiofucoside **7**, L-thiorhamnoside **8**, and D-thioglucoside **9** (Table 2, entries 9–12). However, the stereoelectronic features of a particular donor does affect the reaction efficiency. Therefore, some optimization of the reaction conditions is required. For example, the glycosylations of **15** and **17** with thioglucoside donor **9** were conducted with ultrasound irradiation to shorten the reaction time (Table 2, entries 11 and 12).^[24]

A unique feature of the DMF-modulated glycosylation is the entrapment of oxocarbenium ions as glycosyl imidates. This feature provides an opportunity for the development of a new glycosylation procedure with preactivation. In a typical oligosaccharide synthesis, the introduction of different anomeric functional groups in the glycosyl donor and acceptor is required so that the activation of the former does not affect the later. Although the reactivities of the glycosyl donor and acceptor can also be tuned to create reactivity disparity that enables their coupling by reactivitybased glycosylation, this strategy requires extensive protecting-group manipulation for building-block preparation.^[3,21a,25] The merit of a glycosylation involving preactivation is that it enables the coupling of glycosyl substrates with the same anomeric functionality and thus renders the use of different anomeric functionalities or the tuning of chemical reactivity unnecessary. Such an approach not only shortens the synthetic

Scheme 4. Structures of a) thioglycosyl acceptors **30–40**; b) glycosylation products **41–55**. Bz = benzoyl, NAP = 2-naphthylmethyl, Troc = trichloroethoxycarbonyl.

Communications

Table 3: Glycosylation of thioglycosyl acceptors 30-40 by glycosylation procedure B.

2 , 7 , (1.5 e + DM (6 equ	8 , 9 quiv) F µiv)	NIS, TMSC CH ₂ 1–1.	OTf HO [™] Cl ₂ , −10 °C 5 h,	30–4 -10–(<i>t</i> [h]	STol 0 (1 equ) °C	PGO
Entry	Don	ior A	cceptor	T [°C]	<i>t</i> [h]	$lpha$ anomer (yield [%]),[a] $lpha/eta^{[b]}$
1	2	3	0	-10	3	41 (60), 36:1
2	2	3	1	0	6	42 (55), 6:1
3	2	3	2	0	3	43 (55), 11:1
4	2	3	3	-10	3	44 (45), 11:1
5	2	3	4	-10	3	45 (85), 49:1
6	2	3	5	-10	2	46 (65), 12:1
7	2	3	6	0	4	47 (70), 49:1 ^[29]
8	2	3	7	0	2	48 (50), 13:1
9	2	3	8	-10	3	49 (75), 19:1
10	2	3	9	0	4	50 (85), 49:1
11	7	4	0	-10	3	51 (56), 49:1
12	7	3	2	-10	6	52 (61), 49:1
13	8	3	5	-10	3	53 (55), 6:1
14	9	3	6	0	5	54 (50), 49:1 ^[c]
15	9	3	7	0	3	55 (55), 8:1 ^[c]

[a] The yield of the isolated α anomer is given. [b] The α/β ratio of the glycosylation product was determined by HPLC analysis (HPLC conditions are given in the Supporting Information). [c] The glycosylation was performed with ultrasonification.^[24]

yields to the activation of the thioglycoside product by residual NIS and/or side reactions stemming from the imidate intermediates. To revalidate the α -directing effect of DMF, the glycosylation of **36** with **2** was repeated with a smaller amount of DMF (1.5 equiv); under these conditions, the α/β -anomer ratio of glycosylation product **47** decreased sharply to 4:1 (results not shown).^[29]

Encouraged by the aforementioned results, we extended the applicability of the DMF-modulated glycosylation to 2amino-2-deoxyglycosyl donors. Thus, 2-azido-2-deoxythiogalactosides **56** and **57** were coupled with acceptors **3**, **58**, and **59** by glycosylation procedure B (Scheme 5).^[30] The α directing effect of DMF was observed in all reactions examined, but the reaction time was generally longer than that required for non-amino glycosyl donors. The glycosylation of serine acceptor **59** with **57** was repeated in the absence of DMF, under which conditions **62** was produced with a 1:1 α / β -anomer ratio (results not shown). This comparison distinguishes the intrinsic selectivity of the serine acceptor from the α -directing effect of DMF. However, glycosylation with 2azido-2-deoxythioglucosides has not met with success so far; further optimization of the reaction conditions is required.

Since the formation of a glycosyl imidate is the key step in DMF-modulated glycosylation, the detection of the glycosyl imidate is crucial for validation of the proposed mechanism (see Scheme 1). In this regard, we prepared a simpler 4,6-O-benzylidene-2,3-di-O-methylthiogalactoside **63**, which was activated with NIS and TMSOTf in CDCl₃ and then used for the glycosylation of acceptor **58** by procedure B (Figure 1 a).^[31] ¹H, ¹³C, and HSQC NMR spectroscopy of the reaction mixture was carried out at 0, 90, and 180 min time points. Figure 1 b–d shows selected regions of the correspond-

Scheme 5. Glycosylation of acceptors **3**, **58**, and **59** with 2-azido-2-deoxythiogalactosides **56** and **57** by glycosylation procedure B.

ing ¹H NMR spectra. Comparison of the spectra of the preactivated reaction mixture at 0 min and the TMSOTfactivated mixture at 90 min (Figure 1 b,c) showed the appearance of a new set of clearly identifiable ¹H NMR signals, including those for an anomeric proton at $\delta = 6.39$ ppm (³J =3 Hz, 64-H^a), a benzylidene proton at $\delta = 5.60$ ppm (64-H^b), an imidoyl proton at $\delta = 8.90$ ppm (64-H^c), and *N*,*N*-dimethyl protons at $\delta = 3.40$ and 3.32 ppm (64-H^d). These signals are presumably generated from the α -glycosyl imidate 64.^[16a,b,31,32] The relative downfield positions of 64-H^{a,c,d} indicate the close proximity of these hydrogen atoms to an electron-deficient center. Following the addition of acceptor 58, the signals stemming from imidate 64 vanished, and another two sets of signals emerged. One set includes the signals for an anomeric proton at $\delta = 5.13$ ppm (${}^{3}J = 3$ Hz, 65-H^a) and a benzylidene proton at $\delta = 5.59$ ppm (65-H^b); these signals correspond to the expected α -glycoside 65. Another set (indicated by asterisks in Figure 1 d) originated from an α -N-galactosyl succinimide: a common side product in NISpromoted glycosylation reactions.^[25]

As the real-time NMR spectroscopic study provided evidence for the presence of the α -glycosyl imidate, it is reasonable to propose the formation of α -/ β -glycosyl imidates in DMF-modulated glycosylations. The β -glycosyl imidate, owing to its more reactive nature, reacts preferentially with the acceptor to give the α -glycosylation product. Until now, we have not been able to detect the presence of the β imidate; therefore, it is too early to exclude the possibility of the other mechanism outlined in Scheme 1.^[33,34] Further experimental investigations toward the elucidation of the reaction mechanism are in progress.

In summary, we have described a new DMF-modulated glycosylation strategy which enables excellent α selectivity in glycosylation reactions through the simple addition of DMF. Further elaboration led to the development of a useful α -selective glcyosylation procedure involving preactivation. Considering the availability of DMF, we anticipate that the

Figure 1. a) Glycosylation of **63** with **58** by procedure B. b) ¹H NMR spectrum recorded just prior to the addition of TMSOTf (0 min). c) ¹H NMR spectrum recorded 90 min after the addition of TMSOTf (90 min). d) ¹H NMR spectrum recorded 90 min after the addition of **58**.

synthetic concept described herein will find broad application in oligosaccharide synthesis.

Received: January 5, 2011 Revised: May 18, 2011 Published online: June 17, 2011

Keywords: dimethylformamide · glycosylation · preactivation · stereoselectivity · thioglycosides

- [1] a) K. L. Mydock, A. V. Demchenko, Org. Biomol. Chem. 2010, 8, 497-510; <lit b > X. Zhu, R. R. Schmidt, Angew. Chem. 2009, 121, 1932-1967; Angew. Chem. Int. Ed. 2009, 48, 1900-1934.
- [2] P. H. Seeberger, Chem. Soc. Rev. 2008, 37, 19-28.
- [3] Y. Wang, X.-S. Ye, L.-H. Zhang, Org. Biomol. Chem. 2007, 5, 2189–2200.

J. W. Larsen, Chem. Rev. 1972, 72, 357-438; b) L. Goodman, Adv. Carbohydr. Chem. Biochem. 1967, 22, 109.
[5] A.-V. Demchenko, Synlett 2003,

[4] a) C.-U. Pittman, S.-P. McManus,

- 1225-1239.
 [6] a) A.-V. Demchenko, G.-J. Boons, Synlett 1997, 818-820; b) A. Ishiwata, Y. Munemura, Y. Ito, Tetrahedron 2008, 64, 92-102; c) M. Koshiba, N. Suzuki, R. Arihara, T. Tsuda, H. Namba, S. Kakamura, S. Hashimoto, Chem. Asian J. 2008, 3, 1664-1677.
- [7] P. Pornsuriyasak, C. Vetter, S. Kaeothip, M. Kovermann, J. Balbach, D. Steinborn, A. V. Demchenko, *Chem. Commun.* 2009, 6379–6381.
- [8] a) Y. P. Cheng, H.-T. Chen, C.-C. Lin, *Tetrahedron Lett.* 2002, 43, 7721-7723; b) A. V. Demchenko, G. J. Boons, *Tetrahedron Lett.* 1999, 40, 6523-6526.
- [9] A. Imamura, A. Hiromune, S. Korogi, G. Tanabe, O. Muraoka, H. Ishida, M. Kiso, *Tetrahedron Lett.* 2003, 44, 6725-6728.
- [10] M. A. Fascione, S. J. Adshead, S. A. Stalford, C. A. Kilner, A. G. Leach, W. B. Turnbull, *Chem. Commun.* 2009, 5841–5843.
- [11] J.-H. Kim, H. Yang, V. Khot, D. Whitfield, G.-J. Boons, *Eur. J. Org. Chem.* 2006, 5007–5028.
- [12] J.-H. Kim, H. Yang, G.-J. Boons, Angew. Chem. 2005, 117, 969–971; Angew. Chem. Int. Ed. 2005, 44, 947–949.
- [13] D. J. Cox, A. J. Fairbanks, *Tetrahedron: Asymmetry* **2009**, 20, 773– 780.
- [14] C. Bucher, R. Gilmour, Angew. Chem. 2010, 122, 8906-8910; Angew. Chem. Int. Ed. 2010, 49, 8724-8728.

[15] C.-W. Chang, S.-S. Chang, C.-S.

Chao, K. K. T. Mong, *Tetrahedron Lett.* 2009, 50, 4536-4540.

- [16] a) Y. Nishida, Y. Shingu, H. Dohi, K. Kobayashi, Org. Lett. 2003, 5, 2377–2380; b) Y. Shingu, A. Miyachi, Y. Miura, K. Kobayashi, Y. Nishida, Carbohydr. Res. 2005, 340, 2236–2244; c) C. Satgé, J. Le Bras, F. Henin, J. Muzart, Tetrahedron 2005, 61, 8405–8409.
- [17] a) V. Dourtoglou, B. Gross, J. Carbohydr. Chem. 1983, 2, 57–73;
 b) J. Bogusiak, W. Szeja, Synlett 1997, 661–662; c) Y. Kobashi, T. Mukaiyama, Bull. Chem. Soc. Jpn. 2005, 78, 910–916; d) S. Koto, N. Morishima, M. Owa, S. Zen, Carbohydr. Res. 1984, 130, 73–83; e) J. Park, S. Kawatkar, J.-H. Kim, G.-J. Boons, Org. Lett. 2007, 9, 1959–1962; f) T. Nokami, A. Shibuya, S. Manabe, Y. Ito, J. Yoshida, Chem. Eur. J. 2009, 15, 2252–2255.
- [18] R. U. Lemieux, H. Driguez, J. Am. Chem. Soc. 1975, 97, 4056–4062; R. U. Lemieux, H. Driguez, J. Am. Chem. Soc. 1975, 97, 4063–4068; R. U. Lemieux, H. Driguez, J. Am. Chem. Soc. 1975, 97, 4069–4075.
- [19] G.-H. Veeneman, S.-H. van Leeuwen, J. H. van Boom, *Tetrahedron Lett.* **1990**, *31*, 1331–1334.

Angew. Chem. Int. Ed. 2011, 50, 7315-7320

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Communications

- [20] For the preparation of thiogalactosides 1 and 2, see: Z. Zhang, I.
 R. Ollmann, X.-S. Ye, R. Wischnat, T. Baasov, C.-H. Wong, J. Am. Chem. Soc. 1999, 121, 734–753.
- [21] a) Z. Zhang, I. R. Ollmann, X.-S. Ye, R. Wischnat, T. Baasov, C.-H. Wong, J. Am. Chem. Soc. 1999, 121, 734–753; b) D. R. Mootoo, P. Konradsson, U. E. Udodong, B. Fraser-Raid, J. Am. Chem. Soc. 1988, 110, 5583–5584.
- [22] Donor **2** was poorly soluble in pure diethyl ether, so a 1:3 CH₂Cl₂/ether mixture was employed. The 1:2 toluene/dioxane mixture was found to aggregate at -10° C, so the glycosylation in toluene/dioxane (1:2) was conducted at 0° C.
- [23] The preparation of and/or references to aglycone acceptors 10–13, O-glycoside acceptors 14–17, and thioglycosyl donors 7–9 are given in the Supporting Information.
- [24] a) S. Deng, U. Gangadharmath, C.-W. Chang, J. Org. Chem.
 2006, 71, 5179-5185; b) D. V. Jarikote, C. O'Reilly, P. V. Murphy, *Tetrahedron Lett.* 2010, 51, 6776-6778.
- [25] K.-K. T. Mong, C.-H. Wong, Angew. Chem. 2002, 114, 4261– 4264; Angew. Chem. Int. Ed. 2002, 41, 4087–4090.
- [26] X. Huang, L. Huang, H. Wang, X.-S. Ye, Angew. Chem. 2004, 116, 5333-5336; Angew. Chem. Int. Ed. 2004, 43, 5221-5224.

- [27] The preparation of and/or references to thioglycosyl acceptors **30–40** are given in the Supporting Information.
- [28] Z. Li, J. C. Gildersleeve, J. Am. Chem. Soc. 2006, 128, 11612– 11619.
- [29] One of the referees suggested that we compare the α -directing ability of DMF with that of an ethereal solvent. However, procedure B as used for the reactions in Table 3 does not work in the absence of DMF. We decreased the amount of DMF from the optimal 6 equivalents to suboptimal 1.5 equivalents in the glycosylation of **36** with **2** to demonstrate the quantity–selectivity relationship mentioned earlier.
- [30] The preparation of and/or references to 2-azido-2-deoxythiogalactosides 56 and 57 and the protected serine acceptor 59 are given in the Supporting Information.
- [31] For the preparation of thiogalactoside **63**, see the Supporting Information.
- [32] The corresponding anomeric and imidoyl carbon signals of **64** were identified at $\delta = 105.8$ and 165 ppm in an HSQC study.
- [33] F. Barresi, O. Hindsgaul, J. Am. Chem. Soc. 1991, 113, 9376– 9377.
- [34] A. Ishiwata, Y. Munemura, Y. Ito, Eur. J. Org. Chem. 2008, 4250–4263.

