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Abstract

In the thesis, we review important literature on quantile regression
models for survival data. First, we introduce the inference techniques for
estimating a quantile based on complete data without covariates. This
allows us to see the geometric structure and analytical difficulty of the
problem. Then we include the effect of covariates and discuss different
estimation procedures. Geometric explanations are also provided. Finally
the effect of censoring is incorporated and we discuss several approaches
of modification. We aim to provide a systematic framework which allows
the readers to understand the quantile regression model from fundamental

inference principles.
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Chapter 1 Introduction
1.1 Different types of regression models

Consider the response variable Y and covariate vector Z . Regression analysis
refers to the situation that one wants to model the behavior of Y based on Z. The
following linear model is the most popular form:

Y=a+Z f+¢. (1.1)
The major interest is the estimation of £ which measures the effect of Z and Y.
To interpret the meaning of 4 and also develop valid inference methods, we need to
impose additional assumptions on the distribution of & . For example, if we assume
that ¢ are identically and independently distributed (iid) with mean zero, the «
measures E(Y |Z=0) and the 4 measures the change of E(Y) when the
corresponding covariate changes one unit.

However in survival analysis, the mean is oftennot.a useful descriptive measure
since it is not robust. Therefore other types of regression model are preferred for
analyzing survival data. The Cox proportional hazards (PH) model is the most popular
one. Denote T >0 as the lifetime variable of interest. A natural link for applying
model (1.1) in survival analysis is to write Y =log(T). The PH model can be written

as
2, (t) = A, () exp{Z" 5} (1.2)
where iz(t):IAimPr(T e[t,t+A)|T 2t,Z)/A is the hazard of T|Z and A,(t) is

the hazard for the baseline group with Z =0. Hence we have the accelerated failure
time (AFT) model such that

Y=log(T)=Z2"p+¢. (1.3)
Notice that models (1.1) and (1.3) differ in whether an intercept term is included in

the right-hand side. The difference comes from the fact that, in survival analysis, the
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assumption E(g)=0 is dropped and distribution-free assumption is imposed on & .
The resulting inference method will be rank-invariant which makes the intercept
parameter to be non-identifiable.

The above discussions imply that the distribution form of & plays a key role in
regression analysis based on linear models. In the thesis, we will focus on quantile
regression models. Define the quantile of Y as

Q, (z)=inf{y:Pr(Y <y) =1},
where 0<z<1. Figure 1.1 shows the location of Q,(z) for a continuous random

variable Y . Quantile regression models state that

Q (r1Z2)=a(2)+Z7 (7). (1.4)
Note that the «a(z) is the quantile of Y for the baseline group with Z =0. It is

important to note that model «(1.4) is-equivalent to the linear model in (1.1) with the

assumption that Pr(s <0) =z . To see this, we have
Pr(Y <Q,(z|2)) =Pr(a(r) +Z" B(z) +& <Q,(r | Z)) =Pr(¢ <0) =.

We draw a plot based on the special two-sample case such that Q, (z|Z =0) =«a(r)
and Q,(r|Z=1)=a(r)+ (). In Figure 1.2, we see that the two samples differ
more in the region at larger quantile. Note that we may imagine that when the two
curves cross, the covariate effect may be reserved.
1.2 Examples of quantile regression models

The first three examples are originally described in the book of Keonker. In these
examples, quantile regression models provide better explanations to the real-world
phenomenon.
Example 1: Salaries and Experiences in Academia

The American Statistical Association conducted a salary survey in 1995 on 370

full professors of statistics from 99 departments in U.S. colleges and universities. The
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response is the professor’s salary and the covariate is the year of experience (years in
rank). Simply based on the scatterplot without imposing any model assumption (not
presented here), the plot shows that (a) salary increases with experience; (b) the
growth rate with the experience increase is different for different quantile group of
salary. Specifically the first quantile (25" percentile) of the salary distribution has a
7.3% growth rate per year of tenure, whereas the median (50" percentile) and the
third quantile (75" percentile) grow at 14% and 13% respectively. It seems to us that
in American Academia, the full professors are treated different. A middle-paid one has
the potential of achieving a leader position and hence gets the highest salary rate. A
high-paid one who has been quite established has salary increase at about the same
speed as the former. A relatively low=paid professor is probably the one who becomes
less productive after he/she has been promoted to a full professor and hence gets the
lowest rate of salary increase.
Example 2: Score of Course Evaluation and Size of Class

A university conducted course-evaluation based on 1482 courses over the period
1980-94. The response is the mean course evaluation questionnaire (CEQ) score and
the class size is the main covariate. The observations are classified into three
categories (high, median and low quantile) based on their CEQ scores. It is found that
larger classes tend to get lower CEQ score but the effect of class size is more
significant on the lower quantile than on the upper quantile. In other words,
high-evaluated courses may contain different sizes of classes but low-evaluated
courses are significantly related to large classes.
Example 3: Infant Birth Weight and Mother’s Background

The sample contains the birth weight and other covariate information for 198,377
infants. Comparing boys and girls, their difference is larger than 100 grams at the

upper guantile, whereas smaller than 100 grams at the lower quantile. (Note boys tend
3



to be heavier.) Comparing married and unmarried mothers, their difference becomes
more obvious in lower quantile. (Note the child of a married mother tend to be
heavier.) Comparing white and black mothers, their difference is about 330 grams at
the lower quantile, while 175 grams at the upper quantile. (Note the child of a white
mother tends to be heavier.) The analysis implies that the difference between different
race (white/black) or social (married/unmarried) groups is more obvious for babies in
the lower quantile range.
Example 4: Mortality risk for Dialysis Patients with Restless Legs Syndrome

Peng and Huang (2008) did an analysis on a cohort of 191 renal dialysis patients
from 26 dialysis facilities serving the 23-country area surrounding Atlanta, GA. The
restless legs syndrome (RLS) is the.main covariate and is classified into two levels of
symptoms, mild RLS symptoms and severe RLS symptoms. The interest is to see the
effect of RLS symptoms on mortality risk. Comparing the mild and severe RLS
symptoms groups, their difference is ‘about 1.5 years at the first quantile (25
percentiles of survival time), while there is no obvious difference at the third quantile
( 75 percentiles of survival time). In other words, there is a strong association between
the RLS symptoms and mortality risk for short-term survivors. The phenomenon can
not be detected by the ATF model.
Example 5: Mortality rate for medflies with different Gender

Koenker and Geling (2001) studied the relationship between mortality rate and
gender on medflies, a study originally conducted by Garey, Liedo, Orozco and Vaupel
(1992). According to the survival time, medflies are classed into three categories, the
lower (before 20 days), middle (20-60 days) and upper (after 60 days) quantile. It
found that males have lower mortality rate than females on the lower quantile, while
males have higher mortality rate than females on the middle quantile and there is no

obvious difference on the upper quantile.



1.3 Comparison with other regression models

Based on the PH model in (1.2), we obtain

Qr(z12) = Ay (-log(l-7)exp{-Z" B()}),
which depends on the form of the baseline A,(-). Furthermore, Q,(z|Z) is
monotone in —log(1—7) forall Z . This property restricts the application of PH
models because it cannot handle the heterogeneity data. Based on the AFT model
logT, =Z B(z) +¢,.
Usually, it is assumed that ¢ (i =1,...,n) have the same distribution which is

independent of Z . This property can not well explain the heterogeneity data.



Chapter 2 Inference without Censoring
2.1 Inference based on homogeneous data
We first review the simple case in which we have a random sample

{¥. (i1=1..,n)} from Y such that the quantile of Y is of interest. That is, we
temporarily ignore the effect of covariates. Recall that the zth quantile of Y is

defined as

Q (r)=F(r)=inf{y:F(y)>7} (0<r<1l),
where F(y)=P(Y <y) . Now we discuss possible inference techniques for

estimating Q, (7). Intuitively we can use the empirical distribution of F(y) to find

the empirical quantile. That is, we find QY (r) which satisfies

S, <Q, (7)) xzs

i=1
A more formal approach is to define the following loss function

p.(W)=ux(z=1(u<0)) (2.1)
which is depicted in Figure 2.1. Notice that although the loss function is continuous
and linear, it is not differentiable at 0. For u>0 theslopeis r andfor u<0 the

slope is z—1. Now we aim to minimize
Elp.(Y -OI=EIY -&)-{r-1(Y -5 <0)}]
14 0
=(@-D[ (y-9dF(u)+z], (y-&)dF(u).
We can differentiate it with respectto & and solve
U (&) =00 dF(y)-7] dF(y)=F(&)-7=0.
This implies that the minimum is achieved when 7 =F(&). Given data

{Y, (i=1,...,n)}, define

U, (&) =F (&) -r=31(, <&)/n-r. 22)



Hence the solution to U, (£)=0 or the minimum of
RE) =02 .00 -6 =12 0,8 (e 1 £ <0) (23)
is attained at £=Q, (7).
Now we plot U (¢) and R (&) for Y, ~" N(0,1) (i=1..,10). These data

points are -2.002, -0.914, -0.526, -0.446, -0.052, 0.120, 0.386, 0.647, 1.379, 1.705.
Note that ®*(0.3) =-0.524, ®*(0.5)=0 and ®*(0.7)=0.524. In Figure 2.2, we
present two plots: (a) & wversus U (&) and (b) & wversus R (&) based on
p.(U)=ux(r—1(u<0)) with 7=0.3, 0.5 0.7. Our first purpose is to see the

shapes of the two functions and whether the solution to U, (£)=0 or the minimum
of R (&) are closed to ®7*(0.3),« @*(0.5) ‘and. ®*(0.7) respectively. In Figure

2.2, we see that is a monotone step-function and can be well approximated by a
convex function. These nice properties are useful for -numerical computations and

large-sample analysis.
2.2 Inference based on quantile-regression analysis

In presence of covariates, the quantile regression model can be written as
Q (z12)=a(r)+ 27 B(z). (2.4)
Give data {(Y;,Z;) (i=1,...,n)}, the objective function can be written as
R (@(0). A(E) =53 0.0 - a(0) - 2] B(e)
- %Z(Y —a(r) =27 @) (2= 1Y, — a(2) - 2] B(2) < 0)) . (25)
The major purpose is to minimize R.. For illustration, we may first review the

problem based on minimizing the squared loss function such that
R, B)=2 (Y —a-Z]p)*.
i=1

By taking the derivative with respective to « and £, we obtain the following



estimating function

. u®) a1
SO ey B PR VAR M

i=1
Notice that U™ (a,8) (k=1,2) are both smooth linear planes. In Figure 2.3, we

plot (a,4,R,) and (a,5,U™) (k=1,2) based on 10 simulated data points from a

simple regression model.

Now return to the quantile estimation problem. Although R, is not

differentiable, we can still derive the directional derivative. Specifically the

directional derivative of R in direction w with weRP and |w|=1 can be

obtained as follows:

VR, (B()w) = <R (B(E)+ )

- %Zp (Y, 2] (B(e)-+tw)

_4d5
dt i

= Y Ziw) (e 1Y, - 2] Br) < 0))

t=0

(Y, - ZFBlr)= ZTtw) {z=1(Y, - Z] p(z) - Z] tw < 0)

t=0

=Yz (e (110 -2 B 2 0)),

where Z, =(1,Z)" and S(r) = (a(z), B(z))" . In general, we get the estimating

function
Uy |_1g(1 -
U, (a(2), B(z)) =(U§Z)]:H;(Zi](l (Y, - a(2)-Z] B(z) 2 0) - (1-7)). (27)
This implies that «(z) and S(z) can be estimated by either minimizing R, or
solving U, =0.

Now we generate 10 data points from the model



Q (lZ)=a(@)+p(r)Z,  (i=1..10)
where «a(r) isthe 7 -quantile from a standard normal distribution and f(7) =3.57.

We will use these points to show several 3-D plots in Figure 2.4 and 2.5. Then we set
=03 and plot (a(7),B(z),R) and (a(r),B(r),U¥) where k=12, a(z) is

®'(r) and there are two forms of Z, namely Binomial(n, 1/2) and Uniform(0,1).

Comparing Figures 2.4 and 2.5 with Figure 2.3, we see that the estimating
functions for the former may not take value at 0. As a result , the numerical algorithms
to implement the estimation need special techniques.
2.3 Numerical algorithms

To simplify the notations, from now on we let Z and A(r) include the
intercept term. Numerical algorithms are needed to find the estimator of A(z) which
minimizes R (£(z)) or solves U_(£(r))=0. Both problems are non-trial since the
functions are not differentiable so that the powerful" Taylor-expansion technique
cannot be directly applied.
2.3.1 Minimizing the objective function

Before introducing the algorithm, it is worthy to discuss the geometric structure

behind the minimization problem. Consider the subspace spanned by

Z' =(Z

J z,)' for j=1..,p and let Y' =(Y,,..,Y,)" denote the center. The

e
mechanism of the squared loss function behaves like a ball which inflates until the
ball touches the surface of the above subspace. Now consider the problem of
minimizing

R, (A(1)) = %Zp(v ~Z] () - %zw 2] B@) (e - 1(Y, - 2] B(£) < 0)).
The mechanism behaves like a polyhedral diamond, also centered at Y, expands

until it touches the subspace.



Now we compare the solutions based on minimizing R (£) and R (8(z))
respectively. Since R () is differentiable, the solution is obtained by solving

eR (B)/0B =0 equivalent to Z'(Y-Z"B)=0. From a geometric viewpoint, it

implies that the columns of Z are perpendicular to the error vector. Usually the
estimator is obtained by solving the linear equations of £ analytically. On the other

hand, the directional derivatives of R.(f(r)) is given by
VR,(B()W) = 32 w) (= (1-10%,~ 2] () 2 ).

Geometrically moving away from ﬁ(r) will increase R.(A(z)). A solution

which minimizes R (f(zr)) subject to VR (fA(r),w) >0 will only occur at vertex

points. This implies that we only need to examine over all vertex points about which

one satisfies the constraint. “Analytically, the solution-which minimizes R (£(z))
denoted as ﬁ(r) must satisfy VRn(,B(r),w)zo for all- we R".

Using the terminology of linear programming, the candidate solutions are called
as the “basic solutions”. A nice feature of these basic solutions is that they can be
represented by a linear combination of p -component sub-matrix of Z and

sub-vector of Y . Specifically let he H be the set with each element containing p
n

-numbers from {1,2,..,n} and hence H consists of (p} members. Denote

Z(h):pxp as the sub-matrix of Z with rows (Z,,..,Z,) for ieh and

Y(h): px1 as the sub-vector of Y with elements Y, for ieh. The basic

solution denoted as f, (r) satisfies

Bu(z)=2Z(h)"Y(h).

Hence we only need to check whether

10



VR,(B,()w) = X (-ZTw) (- (1= 10%, = 2] ()2 0))) 20

n
for all we R". Recall that there are (p

above inequality in all dimensions analytically is not straightforward.

j candidates of h and how to examine the

The following equivalent expressions are useful for developing the numerical

algorithm:

VR, (5,(2),V) ==X (s = 1 (~v, <O)V, —5" (h)v (2.8)

ieh

where v=Z(hweRP, ¢"(h) =Y v (Y,-Z B,(z),-Z] Z(h)*v)Z]Z(h)™ and

igh
7—1(u <0) if u =0

“(u,u,) = _ :
V(U t) {r—l(u2<0) if u =0

It suffices to check whether VR (£,(z),v) >0 forall v==xe (k=1,...,p) whichis
equivalent to the following condition
-7l <g(h) <@-7)1,.

The above analysis simplifies the complicated minimization problem to the analytic
objective of finding g, () = Z(h) ™Y (h) which satisfies —71,<¢g(h)<@1-7)1,.
This is equivalent to

(r-D1,< 2 (%—%Sign(Yi -2 B.(1)) —Z'j Z,Z(h)y*< 7l (2.9)
Thus we have 2p inequalitiesin z of the form which can be viewed as

(r-D<a;+br<z (j=1..p) (2.10)

where (a;,b;) can be determined given the data and the basic solution. Notice that

the above inequalities can be used to (a) find an appropriate g, (z) from all the
vertex points given the value of r or (b) given a vertex point, to find the

corresponding value (or range) of r .

11



Now we briefly describe the algorithm. We can start from z,=1/n which

corresponds to the basic solution say g, (r) =Z(h,)'Y(h,) by checking the 2p
n
inequalities from all the (p] candidates of basic solutions. Then we find 7z, which

corresponds to the basic solution ,Bhl(r)=Z(hl)*1Y(h1) where h, and h, differ in

one unit. It seems to us that the algorithm is to use the basic solutions

B.(z) =2Z(h)™Y(h) to find the corresponding value 7 satisfying

a; 1+a.
<7 J

<7<
(@-b) (@b

(j=1,...,p).
This algorithm only needs to perform a thorough search at the first time based on z,.
Then only a small variation in the basic solution is involved which changes the values

of (a;,b;) which are used to.find the next.z;. The.procedure can go on until the

targeted largest z is found.
2.3.2 Solving the estimating function by simulated annealing

Recall that
U, (A7) :%iznl:zi(l (Y, -2 p()20)--7)).
Since U (A(r)) is a step function which takes discrete values, it may happens that
there exists no solution to U, (£(zr)) =0. Although the solution can be defined as the
value where the estimating function changes signs, an algorithm to find its location

based on the data is still needed. One way of finding the solution is to transfer the

root-solving problem into another minimization problem. Define ﬁ(r) such that

Un(ﬂA(r))H is minimized where |U,(3(z))| is the sum of the absolute values of the

p -components of U (A(r)). Lin and Geyer (1992) suggested the simulated
annealing algorithm originally developed for a similar numerical problem in

semi-parametric AFT regression analysis. Here we briefly describe this approach
12



under the context of quantile regression models.
Consider there are an old candidate B (r) and a new one £ (r). The old

solution  g°(zr) will be replaced by B7(r) “for sure” if

o

U, (8" (@)~

Un(ﬂ*(r))uso. This step is reasonable since obviously

U.(B7(z)) is closer to zero. If D >0, the chance of S"(r) being replaced by

L7 (r) is exp(=D/c). This means that the algorithm allows for an intermediate
solution to move “farer away” from zero with the probability exp(—D/c). We guess
that the reason is to avoid the algorithm gets stuck in a local minimum point. Now the
next question is how to come up with a new candidate £~ (z)? It is suggested that
£7(r) has a (multivariate) normal random distribution with mean g°(r) and a
diagonal covariance matrix. This step implies that the position of the new £~ (z) is
related to the old one S (z):"Now we may ask what’s the principle for setting up the
covariance matrix? It is suggested that, when the iterations continue, the variance of
each component of A7 (r) and.the value of ‘¢ >0 should decrease. The former

implies that 87 (r) gets closer to “ B (r). The latter implies that if B () does not

reduce |U,(B())|. the chance that it replaces S"(z) gets smaller in the iterations.
The simulated annealing algorithm can be summarized below.

a. Give the initial values of S@(z), ¢ >0 and = which is a diagonal matrix;

b. Generate anew £%(r) which follows N(5?(7),2?);

c. If D=\

U,(8° ()|

U,(8°(2))| <0, then replace 8 (z) by B®(z) and
otherwise replace S (z) by B®(r) with the probability exp(—D/c(O));

d. Change the diagonal components of =@ and ¢ to smaller numbers denoted

as =® and c¢® (say c® = pc?) respectively;

13



e. Repeat Steps (b) ~ (d) for k=1,....m where m is a fixed value.

As for the initial values, Lin and Geyer (1992) made the suggestion: set 3 (z)
to zero; set the number of steps m=1000p, where p is the dimension of f(7);
set “the cooling rate” p for p™*~0.0005; set initial variance as 0.1 and the

cooling rate for the variances such that the diagonal components of =™ is about

0.0005. The estimator is A3(z) = 8™ () which hopefully will get to the minimum of

V. (B -
Now based on the simulated example, we present the second component of

lU,(B(z))| and the movement of the algorithm. Figure 2.6 represents the cases of

different types of Z.

Now we present the intermediate steps of the algorithm in Figure 2.7. We see
that the points still can jump.up but finally the points come to the bottom and will not
jump up anymore (convergence is reached). From our experience, we found that the
choice of ¢ is influential. When this value is too large, the probability of jumping

up becomes bigger while if it is small, there is higher chance that it remains unmoved.

We set ¢ = ‘

010
Un(ﬂ(o) (T))H —0.001 and also set the initial =@ = {O 0 J'

14



Chapter 3 Inference under Right Censoring
3.1 Data structure
Now we discuss quantile regression analysis based on survival data. Here the

variable of interest is the time to the occurrence of an event of interest, denoted as T
which is subject to censoring by C. Let Y =log(T) and C =log(C). The quantile
regression model can be written as

Q(z12)=Z"p(2) (3.1a)
or, based on the original failure time, such that

Q (71Z) =exp{Z' B(2)}. (3.1b)
Note that here Z and S(z) include the intercept term. Observed variables become
(X,5,Z) where X =Y AC .and S=I(T'=C). The. main purpose is to estimate
B(z) based on data (X;,8,Z;) (i=1..,n) which'is a random sample from
(X,0,2).

Several approaches to modifying the methods under censoring have been
proposed. Here we summarize their main ideas and comment on their properties
including drawbacks.

3.2 Modification based on the objective function
The paper by Powell (1986) was motivated by economic examples. The original
construction is based on the situation that Y, is subject to left censoring by 0O, a

common phenomenon in economic applications. The idea can be easily modified for

the situation that Y, is subject to right censoring by a fixed value C.. He used the

idea that minimizing a loss function based on Y,-Z'A(r) is equivalent to

minimizing the same loss function based on {Y, AC.}-{Z' B(zr) AC,}. Accordingly

the modified objective function can be written as

15



Ry (B(r)) = %ZPT(Xi -min{C,,Z{ B(7)})- 3.2)
The corresponding estimating function becomes

UL (A(E) =3 3.2, (= 1(X, =2 B(£) <0))- (2] A(7) <C).
An obvious drawback of this approach is that C, may be a random variable and also
subject to censoring. Furthermore RP(A(z)) in (3.2) is no longer a convex function

and needs not be unimodal which creates numerical problems. To find the global
minimum, excessive computation time is required.
To handle the censoring problem of C,, Honoré, Khan and Powell (2002)

proposed to replace the loss function by its conditional expectation given (X.,o;,Z;)

in (3.2). That is, the objective function'can'be written as
R (B(2)) :%ZE[/), (Xe=mingZi B().CH)|(X,.6.2)]
Accordingly
Elp, (X, —min{Z B(z),C}) 1X,,6, =0,Z,]= (1-8) o, (X, —min{Z/ B(z), X })
and

Elp, (X; —-min{Z B(r),.C})| X6, =1,Z]

& [ (X, —min{Z] A(z),c})- 1 (X; <¢)dG(c)
o G(X)

where G(t)=Pr(C >t) can be estimated by the Kaplan-Meier estimator

A Zn:I(Xi:u,5:1i)
Gt =] [ 3.
ust Z|(xi > )

Notice that the above derivation requires that G(t) does not depend on Z. The

corresponding estimating function becomes
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U:" (B(z))
=%Zn:zi (z‘- I(X;-Z B(z)=0) -

S,-(-17)-1(X,—Z[ B(r) <0O)G(Z] B(2)) |
G(X;)

3.3 Modification based on the estimating function

Ying et al. (1995) proposed to directly modify the estimating function
1 n
Un(B@) =22 (1 (i =Z! A() 2 0) - (1-7)).
i=1
In presence of censoring, I(Y,—ZB(z)>0) is not observable. Instead we observe

I(X,-Z'B(r)>0). Under the assumption that T. and C, are independent, it

follows that

E[1(X, -2 8,(1) 20) | (1-1)G(Z] ()
where f,(r) is the true value of pA(z) and G(t)=Pr(C >t) which can be
estimated by the Kaplan-Meier estimator. ~Applying the technique of

“inverse-probability-of-censaring-weighting”, they proposed the modified estimating

function

Yaw I(X; Z B(z)20)
U, " (B(z ))—nizzl: .( S () -(1- )j (3.2)

where 1(X,-Z'B(r)>0)/G(Z] B(z)) is zero if G(Z'B(r)) is zero. The
unconditional independence between T. and C. may be too restrictive and also
the weighting approach becomes invalid if the censoring support is shorter than the
support of the failure variable.
3.4 A new approach based on counting process

The framework of counting process is useful for analyzing survival data in
presence of censoring. Peng and Huang (2008) proposed a novel approach based on

counting process to estimate the quantile regression parameter. We try to find a

17



motivation for their idea. Define F; (t) =Pr(T <t) and the corresponding cumulative
hazard function can be written as A, (t)=-log{l-F, (t)}. Consider the counting

process N(t) = I(T <t). Under the standard setting, one often use the property that
M (t) = N (t) —jo‘ 1(T = 5)dA, (s) (3.3)
IS @ mean-zero martingale when A (.) is the true function. One major advantage of

the above decomposition is that N(t) and I(T >s) can easily be modified under

right censoring.

Notice that (3.3) holds when t=0Q, (7). Thatis,

M@ () =N@Q ()~ [ 1T 28)dA, (5)

0
which has a mean-zero property. The key result of Peng and Huang (2008) is the
re-expression of the cumulative ‘hazard function® by substituting the range of

integration from the scale of time to the scale of probability. Notice that

A Q@)= "dA, ()= j:l”’omT ()= [FdA, o F(v).

0
Furthermore define

H(u) = Ago FT_l(u) =—log(1- FT ° FT_l(u)) =—log(1-u).
Thus

A Q@)= dA ()= jfl(”ol/\T ()= dH(u).

0

In the paper, the original model assumption based on Y, =logT, with

Q. (r12))=Z] B(r)

which is re-expressed based on T, such that
Q. (r1Z,) =exp{Z] A(z)} for re(0,1).
Another “trick” they used is to re-express I(X,>s) for s<exp{Z/p,(r)} as

(X, >exp{Z/ B,(u)}) for u<r.Accordingly they recognized that
18



N, (expdZ! By()3)— [ 1(X, 2 expfZ] 4, (u)})dH (u), (3.4)
where fS,(z) is the true value of S(r) and N,(t) is sample analogs of N(t) for
i=1..,n. Note that (3.4) has a mean-zero property. Their proposed estimating

function can be written as
U () = n-ﬂzgzi N (exp2] B(©) - [[ 1 (X, 2 exp{Z] A)AH(W) .
(3.5)
To solve the equation U™ (B(z))=0 is not an easy task since to estimate
S(r) one needs to know the (estimated) value of A(u) for all u<z. Consider the
set of grid points: S, ={0=7,<7,<..<7 <7,<1}, where 7, is a constant

representing the upper bound of the identifiable region due to censoring. The authors

suggested a grid-based estimation—procedure for. j,(z) . Denote /§(r) as an
estimator of f,(r), which-is a right-continuous piecewise-constant function that
jumps only on the grid S, ={0=17,<7, <...<7 <7, <1} Note that the attention of
this approach is 7 <(0,7,], not ‘z(0,1) . It.is'suggested that the equation is solved

successively for j=1,...,L such that
7Y 2, [N, (expZ] A(r 1) -3 [xi > expiZ] &(a)}](H (r)—H (rk))} ~o,
(3.6)

where ﬁ(rj) Is the solution to the equation. Notice that since the equation is not

continuous, there may not exist an exact root. The algorithm of simulated annealing
can be applied. A nice feature of the above estimating function is that it is a monotone
function. This property is useful to develop a more efficient algorithm for numerical
computation. Specifically, Peng and Huang (2008) found that solving (3.6) is

equivalent to minimize the following objective function
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1,(h) = i\@ log X, - 5h"Z,|+
i=1

R*—hTZ—b]ZI‘
1=1

+

R -h' Z{zzjz ! [x, >exp{Z/ ﬁ’(rk)}}(H (7)) —H (fk))}‘

r=1 k=0

where R isavery large number and j=1,..,m. Peng and Huang (2008) mentioned
that one advantage of the latter formulation is that the Barrodale-Roberts algorithm
(Barrodale and Roberts 1974) can be directly applied. We do not investigate further in
this direction.
3.5 A new approach based on self-consistency algorithm

Portnoy (2003) proposed a method which utilizes the idea of self-consistency
based on the Kaplan-Meier estimator. Specifically the Kaplan-Meier based on data
{(X,,8) (1=1,...,n)} can be written-as

il(xi =u,8 =1)

S, (v) =[J-=— }.
usy Z (X, >u)

Alternatively it also satisfies:

SY<y)=%§{|<xi <y.5 =0)Si¥(—(>f?)+l(xi > y)}.

That is, the “weight” contributed to estimate S, (y) for an observation X, with
X, <y and &,=0 is SY—(y) Now we return to the quantile problem. Setting

Y i

Sy(y)=1-7 and S,(X;,)=1-r, where 7, <7, we have

1-7¢

1—r=%2{l(xis<9¥<r),@:0)l

+ (X >Q (T))}-

T

This is equivalent to

T =

S| e

1-7

n
i=1 i

{l(xi <Q,(2),8 =1+ (X, <Q,(z), 5, :0)"“}. (3.7)
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Figure 3.1 shows the idea of (3.7). For example, there is a single sample with 10

observationsat X =1,2,...,10 with X =5,7,8 be censored points.

Yy | 1| 2 | 3| 4 | ®| 6 | @O|l®]| 9 |10

S,(y)| 09 | 08 | 07 | 06 | 0.6 | 0.48 | 0.48 | 048 | 0.24 0

T 0.1 0.2 0.3 0.4 04 | 052 | 052 | 0.52 | 0.67 1

In Figure 3.2, we can see that S,(y) and the empirical quantile z are both step

functions but the former is decreasing, while the latter is increasing. Notice that the
value of empirical quantile z is equivalent to 1 minus the corresponding value of

S, (y). Now we select Q,(0.52) =6. It is clear that

0-52=£Z{I(Xi <6,6,=1)+1(X, <6,6,=0) O'fz‘fi},

i1 -1

which results in

052 = (5 222=04y
10 1-04

This implies that a censored observation with & =0 will contribute the weight

Wi(T)Z%. Note that the * proposed- algorithm is based on minimizing

Sw(e)p, (%, -2 A0)

0, 5;,>r1

where w,(z) = i_ri, r,<rand 8 =0.

1, r;<rand g, =1

The idea proposed by Portnoy (2003) is novel, but it is hard to understand the details.
Later work by Neocleous, Branden and Portnoy (2006) and Portnoy and Lin (2010)

provide more explanations on the self-consistency algorithm.
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Chapter 4 Conclusion

In this thesis, we review literature on quantile regression models. Comparing
with other regression models, the quantile regression model is more flexible without
imposing strong assumption on the error distribution and can well explain the
heterogeneity data. Unlike the squared loss function in the least squared regression
method, the loss function for estimating the quantile is not differentiable. Accordingly
many nice analytic approaches such as the Newton-Raphson method are no longer
applicable. Nevertheless, without censoring, some nice analytic properties such as
monotonicity and convexity for the estimating and objective functions still exist. They
are also helpful for developing numerical algorithms to implement the estimation.
When censoring is present, how to modify the estimation procedures and how the
modifications affect the analytical properties are the main issues. The thesis is just an
initial review for these useful but complicated methods. Thorough investigation to

understand these methods better deserve future study.
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Figure 2.2: Plots of U, (&) and R, (¢).
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Figure 2.3: Objective and estimating functions based on LSE with

Z, ~ Bernoulli(1/2) .
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Figure 2.4: Plots of (a(7),f(r),R,) and

guantile loss function with 7 =0.3. Here

(a(z), B(r),U™) (k=1,2) based on

Z, ~ Bernoulli(1/2).
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a(r)

Figure 2.5: Plots of (a(z), B(z),R) and (a(z),B(r),U¥) (k=12) based on

quantile loss function with 7 =0.3. Here Z, ~Uniform(0,1).
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Z, ~ Bernoulli(1/2) :

Figure 2.6: Plots of ‘

Z, ~Uniform(0,1) .

U,fz)(ﬂ(r))H based on Z, ~ Bernoulli(1/2) and
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Step 1: initial point
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Figure 2.7: Intermediate steps for the simulated annealing algorithm.
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Appendix
A.1 Data generation from a quantile regression model

Usually to generate Y which has the distributional function F (), we can
generate U ~U(0,1) andset Y =F,*(U). Consider the objective that, given Z,, we
want to generate Y, which follows

Pr(Y, <Z'B(z))=7 (i=1..,n).
Generate U, iijU(O,l) . Setting Y, =Z'pBU,) and suppose that Z'A(t) is a
monotone increasing function of t, it follows that
Pr(Y, <Z' B(z)| Z,) =Pr(Z] BU,) < Z B(z)) =Pr(U, < 1) =.
The next question is how to set the distribution of Y. as a target one. Consider a

simple two-sample case with Z, ~ Bernoulli{p). Notice that
Pr(Y, < alr) | Z,=0)=Fy(a(0)) = 7
which means that the intercept “e(z).= F,*(r) _is the quantile of the baseline group.

Suppose we let ;| Z =0 be the standard normal distribution, we should set

a(r) =0 (1)
which is the quantile of N(0,1). It follows that Y, |Z, =1~ N(/(z),1) . The algorithm
is summarized below:

Stepl: Generate Z, ~ Bernoulli(p) and U, ~Uniform(0,1).

Step2: Let a(U,)=®'(U,) and B(U,)=cU, where ® isthe cumulative
distribution function for N(0,1) and c, is a constant.
Step3: Set Y, = a(U,) +Z,A(U,) -

Step4: Repeat Steps (1) ~ (3) for i=1,...,n.
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Now let n=500, p=1/2 and c,=1.5. Then we generate data from a

quantile regression model by the following codes of R:

n=500; b=1.5; Z=sample(c(0,1), size=n, replace=TRUE);
u=runif(n,0,1); btau=b*u; Y=array(0,n);
Y=gnorm(u)+Z*btau

windows(); plot(Z, Y);

Figure A.1 shows that the two groups of generated data (Z,,Y,) (i=1,...,n) with the

control group (Z, =0) and the treatment group (Z, =1). To check the normality for
the control group, we can examine Figure A.2 which provides a histogram plot and
the Q-Q plot which show that Y, |Z~i =0 is exactly generated from a standard normal

distribution. Notice that
Pr(Y; < a(@)+ ()| Z, =1) = K (a(z) + B(r)) =7
which means that the slope ~8(z) = F, ()< F, '(r)" is the quantile treatment effect,

illustrated in Figure A.3. To.check the accuracy of generated data, we plot the
empirical quantile functions and the corresponding theory functions of F, and F
in Figure A.4. Note that the empirical functions of F, and F, are
DY, <y,Z,=0) DY, <y, Z =)
i=1

Fo(y) =25 and Fy(y)=-1F—
Z|(zi=0) Zl(zi=1)

From Figure A.4, we see that both empirical quantile functions match the
corresponding theory functions very well. That is, our data generation from a quantile
regression model is correct.

Because the objective function is not differentiable, to evaluate the estimation
procedures, we make 2-D plots of (a(r),R, (a(r))) and (,B(r),Rn(ﬁ(r))) for given

7=0.3,0.5,0.7 by minimizing the objective function
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R (al0) A0 = 2.0, ~a(e) - Z,(2)
_ iznl:(vi ~a(r)-ZB@) (-1 (Y, - a(e) - ZB(z) < 0)).
Note that, to get the plots of (a(z),R,(a(z))), we set B(z) =c,z which is known,
whereas a(r)=®*(r) as known for getting the plots of (,B(r), R, (,5’(1))) . In
Figure A.5, we see that there is a minimum for the parabolic curve in each panel and

these are the estimators of «(r) and B(r) which are marked by blue points. It
shows that the estimators of «(z) and ﬁ(r) are close to the true values «,(r) and

B,(r) which are marked red dash lines. Figure A.5 is made by the following codes of

R:

alpha=seq(-5, 5, by=0.1); beta=seq(-5, 8, by=0.1);
for(k in 2:4) {
tau=0.1*(2*k-1); windows(); par(mfrow=c(1,2));
Ra=array(0, length(alpha)); Rb=array(0; length(beta))
amax=-2"31; amin=2"31; bmax=amax; bmin=amin;
for(i in 1:length(alpha)) {
for(j in 1:n) {
if(Y[j]<alpha[i]+Z[j]*b*tau)
Ra[i]=Ra[i]+(Y[j]-alpha[i]-Z[j]*b*tau)*(tau-1)
else Ra[i]=Ra[i]+(Y[j]-alpha[i]-Z[j]*b*tau)*tau }
if(Ra[i]> amax) amax=Ra[i]
if(Ra[i]< amin) {
amin=Ra[i]; ax=alphal[i] } }
plot(alpha, Ra, type='"l', xlab=expression(alpha(tau)),
ylab=expression(paste('R(',alpha(tau),")")))
title(main=substitute(list(tau)==list(a), list(a=tau)))
abline(v=gnorm(tau), col="red', Ity=2)
text(gnorm(tau)+0.3, amax-200, substitute(list(alpha[0](tau))==list(a),
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list(a=round(gqnorm(tau),3))), col="red")
points(ax, amin, col="blue’)
text(ax, amin+350, substitute(list(hat(alpha)(tau))==list(a),
list(a=round(ax,3))), col="blue")
for(i in 1:length(beta)) {
for(j in 1:n) {
iIf(Y[j]l<gnorm(tau)+Z[j]*beta[i])
Rb[i]=Rb[i]+(Y[j]-gnorm(tau)-Z[j]*beta[i])*(tau-1)
else Rb[i]=Rb[i]+(Y[j]-gnorm(tau)-Z[j]*beta[i])*tau }
if(Rb[i]> bmax) bmax=Rb[i]
if(Rb[i]< bmin) {
bmin=RDb[i]; bx=beta[i]; } }
plot(beta, Rb, type='"l', xlab=expression(beta(tau)),
ylab=expression(paste('R(',beta(tau),")")))
title(main=substitute(list(tau)==list(a), list(a=tau)))
abline(v=b*tau, col="red", Ity=2)
text(b*tau+0.2, bmax-100, substitute(list(beta[O0](tau))==list(a),
list(a=round(b*tau,3))),col="red’)
points(bx, bmin,col="blue’)
text(bx, bmin+250, substitute(list(hat(beta)(tau))==list(a),

list(a=round(bx,3))), col="blue") }

Now we do the data generation from a quantile regression model 100 times. The

mean, variance and biased for the estimators of «(z) and ,5’(1) are presented in the

following:

Estimator of «a(7) Estimator of ﬁ’(z-)

Mean | Variance Bias Mean | Variance Bias

=01 |]-1.269 0.0076 | 0.0125 ]0.164 0.019 0.014

7=03 |-0524 |0.0052 | 4x10* ]0.46 0.01777 | 0.01

r=05 | 2x10" |0.0056 | 2x107'° |0.747 0.01625 | -0.003

r=0.7 ]0511 0.0056 |-0.0134 | 1.038 0.01874 | -0.012

=09 |1.273 0.0066 |-0.0085 |1.331 0.01953 | -0.019
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From the table, we see that the values of bias are very small for all z .That is, the
average values of the estimators are closed to the true value a,(z) and f,(z).

A.2 How to generate the 3-D plots

To show how to generate the 3-D plots in R, we take Figure 2.4, Figure 2.5 and
Figure 2.6 as examples. Note that the functions for 3-D plots are in package
scatterplot3d and rgl for R. If you are the first time to make a 3-D plot, you must

install them and load them into R. The code of 3-D plot for R is as follow:

###l_oading these packages
library(scatterplot3d) ; library(rgl);

### Data generate

n=10; b=3.5; tau=0.3;

Z=sample(c(0,1),size=n,replace=TRUE); u=runif(n,0,1); btau=b*u;
Y=array(0,n); Y=qnorm(u)+Z*btau;

### Range of alpha and beta

alpha=seq(-4, 4, by=0.5); beta=seq(-4, 4, by=0.5)
a=array(rep(c(alpha), each=length(beta)), length(alpha)*length(beta))
b=array(rep(c(beta), times=length(alpha)), length(alpha)*length(beta))

### 3-D plot for R(.)
R=array(0, length(alpha)*length(beta)) ; NR=array(0, length(alpha)*length(beta));
for(k in 1: length(alpha)) {
for(s in 1: length(beta)) {
for(jin 1: n) {
if(Y[j]< alpha[k]+beta[s]*Z[j])
R[s+(k-1)*length(beta)]=
R[s+(k-1)*length(beta)]+(Y[j]-alpha[k]-beta[s]*Z[j])*(tau-1)/n
else
R[s+(k-1)*length(beta)]=
R[s+(k-1)*length(beta)]+(Y[j]-alpha[Kk]-beta[s]*Z[j])*tau/n }
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NR[k+(s-1)*length(alpha)]=R[s+(k-1)*length(beta)] } }
col=rainbow(length(alpha)*length(beta))
open3d()
plot3d(a, b, R, pch=176, col=col, type="p', xlab="alpha", ylab="beta",
zlab=" R(tau)", smooth=FALSE)
surface3d(alpha, beta, NR, col=col, alpha=0.65)

### 3-D plot for U1()
Ul=array(0, length(alpha)*length(beta)); NU1l=array(0, length(alpha)*length(beta))
for(k in 1: length(alpha)) {
for(s in 1: length(beta)) {
for(jin1:n) {
if(Y[j]< alpha[k]+beta[s]*Z][j])
U1[s+(k-1)*length(beta)]=U1[s+(k-1)*length(beta)]+(tau-1)/n
else
U1[s+(k-1)*length(beta)]=U1][s+(k-1)*length(beta)]+tau/n }
NU1[k+(s-1)*length(alpha)]=U1[s+(k-1)*length(beta)] }}
col=rainbow(length(alpha)*length(beta))
open3d()
plot3d(a, b, U1, pch=176, col=col, type=-p'xlab="alpha", ylab="beta",
zlab=" Ul(tau)")
surface3d(alpha, beta, NU1, col=col, alpha=0.65)

### 3-D plot for U2()
U2=array(0, length(alpha)*length(beta)); NU2=array(0, length(alpha)*length(beta))
for(k in 1: length(alpha)) {
for(s in 1: length(beta)) {
for(jin1:n) {
if(Y[j]< alpha[k]+beta[s]*Z[j])
U2[s+(k-1)*length(beta)]=U2[s+(k-1)*length(beta)]+Z[j]*(tau-1)/n
else
U2[s+(k-1)*length(beta)]=U2[s+(k-1)*length(beta)]+Z[j]*tau/n }
NUZ2[k+(s-1)*length(alpha)]=U2[s+(k-1)*length(beta)] } }
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col=rainbow(length(alpha)*length(beta))
open3d()
plot3d(a, b, U2, pch=176, col=col, type="p',xlab="alpha", ylab="beta",

zlab=" U2(tau)")

surface3d(alpha, beta, NU2, col=col, alpha=0.65)

### 3-D plot for ||UQ)||
U=array(0, length(alpha)*length(beta)); NU=array(0, length(alpha)*length(beta))
for(k in 1: length(alpha)) {
for(s in 1: length(beta)) {
for(jin 1: n) {
if(Y[j]< alpha[k]+beta[s]*Z][j])
U[s+(k-1)*length(beta)]=U[s+(k-1)*length(beta)]+Z[j]*(tau-1)/n
else
U[s+(k-1)*length(beta)|=U[s+(k-1)*length(beta)]+Z[j]*tau/n }
U[s+(k-1)*length(beta)]=abs(U[s+(k-1)*length(beta)])
NUJ[k+(s-1)*length(alpha)]=U[s+(k-1)*length(beta)] } }
col=rainbow(length(alpha)*length(beta))
open3d()
plot3d(a, b, U, col=col, type="p'xlab="alpha", ylab="beta", zlab=" U(tau)")
surface3d(alpha, beta, NU, col=col, alpha=0.65)
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Density

Figure A.1: Scatterplot of generated data from a quantile regression model.
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Figure A.2: Histogram plot and Q-Q plot of Y, |Z~i =0.
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Figure A.3: Plot of the quantile treatment effect /3(r) .



Empirical and theory c.d.f. of Fy

1.0

&

06 08

04

0.0
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Figure A5: Plots of (a(r),R,(a(r))) and (B(z),R,((r))).
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