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摘要  

在此論文中，我們回顧分量迴歸模型的重要文獻。首先，我們介

紹在沒有變數之完整資料下，估計分量的推論技巧，藉此了解分量的

幾何結構和分析上問題的困難處。接著，我們引進變數的影響和討論

不同的估計程序，並提供幾何上的解釋意義。最後，我們加入設限的

影響並且討論幾種修正的估計方法。我們提供系統化的架構，讓讀者

透過推論方法基本的建構原則，對分量迴歸模型有初步的了解。 
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Abstract  

In the thesis, we review important literature on quantile regression 

models for survival data. First, we introduce the inference techniques for 

estimating a quantile based on complete data without covariates. This 

allows us to see the geometric structure and analytical difficulty of the 

problem. Then we include the effect of covariates and discuss different 

estimation procedures. Geometric explanations are also provided. Finally 

the effect of censoring is incorporated and we discuss several approaches 

of modification. We aim to provide a systematic framework which allows 

the readers to understand the quantile regression model from fundamental 

inference principles. 
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Chapter 1 Introduction 

1.1 Different types of regression models  

 Consider the response variable Y  and covariate vector Z . Regression analysis 

refers to the situation that one wants to model the behavior of Y  based on Z . The 

following linear model is the most popular form:  

TY Z     .        (1.1) 

The major interest is the estimation of   which measures the effect of Z  and Y . 

To interpret the meaning of   and also develop valid inference methods, we need to 

impose additional assumptions on the distribution of  . For example, if we assume 

that   are identically and independently distributed (iid) with mean zero, the   

measures ( | 0)E Y Z   and the   measures the change of ( )E Y  when the 

corresponding covariate changes one unit.  

 However in survival analysis, the mean is often not a useful descriptive measure 

since it is not robust. Therefore other types of regression model are preferred for 

analyzing survival data. The Cox proportional hazards (PH) model is the most popular 

one. Denote 0T   as the lifetime variable of interest. A natural link for applying 

model (1.1) in survival analysis is to write log( )Y T . The PH model can be written 

as  

0( ) ( )exp{ }T
Z t t Z          (1.2) 

where 
0

( ) lim Pr( [ , ) | , ) /Z t T t t T t Z


       is the hazard of |T Z  and 0 ( )t  is 

the hazard for the baseline group with 0Z  . Hence we have the accelerated failure 

time (AFT) model such that  

log( ) TY T Z     .       (1.3) 

Notice that models (1.1) and (1.3) differ in whether an intercept term is included in 

the right-hand side. The difference comes from the fact that, in survival analysis, the 



 

2 
 

assumption ( ) 0E    is dropped and distribution-free assumption is imposed on  . 

The resulting inference method will be rank-invariant which makes the intercept 

parameter to be non-identifiable.  

 The above discussions imply that the distribution form of   plays a key role in 

regression analysis based on linear models. In the thesis, we will focus on quantile 

regression models. Define the quantile of Y  as 

     ( ) inf{ : Pr( ) }YQ y Y y    ,  

where 0 1  . Figure 1.1 shows the location of ( )YQ   for a continuous random 

variable Y . Quantile regression models state that  

     ( | ) ( ) ( ).T
YQ Z Z            (1.4) 

Note that the ( )   is the quantile of Y  for the baseline group with 0Z  . It is 

important to note that model (1.4) is equivalent to the linear model in (1.1) with the 

assumption that Pr( 0)   . To see this, we have  

  Pr( ( | )) Pr( ( ) ( ) ( | )) Pr( 0)T
Y YY Q Z Z Q Z                .  

We draw a plot based on the special two-sample case such that ( | 0) ( )YQ Z     

and ( | 1) ( ) ( )YQ Z       . In Figure 1.2, we see that the two samples differ 

more in the region at larger quantile. Note that we may imagine that when the two 

curves cross, the covariate effect may be reserved.  

1.2 Examples of quantile regression models  

The first three examples are originally described in the book of Keonker. In these 

examples, quantile regression models provide better explanations to the real-world 

phenomenon. 

Example 1: Salaries and Experiences in Academia 

 The American Statistical Association conducted a salary survey in 1995 on 370 

full professors of statistics from 99 departments in U.S. colleges and universities. The 
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response is the professor’s salary and the covariate is the year of experience (years in 

rank). Simply based on the scatterplot without imposing any model assumption (not 

presented here), the plot shows that (a) salary increases with experience; (b) the 

growth rate with the experience increase is different for different quantile group of 

salary. Specifically the first quantile (25th percentile) of the salary distribution has a 

7.3% growth rate per year of tenure, whereas the median (50th percentile) and the 

third quantile (75th percentile) grow at 14% and 13% respectively. It seems to us that 

in American Academia, the full professors are treated different. A middle-paid one has 

the potential of achieving a leader position and hence gets the highest salary rate. A 

high-paid one who has been quite established has salary increase at about the same 

speed as the former. A relatively low-paid professor is probably the one who becomes 

less productive after he/she has been promoted to a full professor and hence gets the 

lowest rate of salary increase.  

Example 2: Score of Course Evaluation and Size of Class 

 A university conducted course evaluation based on 1482 courses over the period 

1980-94. The response is the mean course evaluation questionnaire (CEQ) score and 

the class size is the main covariate. The observations are classified into three 

categories (high, median and low quantile) based on their CEQ scores. It is found that 

larger classes tend to get lower CEQ score but the effect of class size is more 

significant on the lower quantile than on the upper quantile. In other words, 

high-evaluated courses may contain different sizes of classes but low-evaluated 

courses are significantly related to large classes.  

Example 3: Infant Birth Weight and Mother’s Background 

The sample contains the birth weight and other covariate information for 198,377 

infants. Comparing boys and girls, their difference is larger than 100 grams at the 

upper quantile, whereas smaller than 100 grams at the lower quantile. (Note boys tend 
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to be heavier.) Comparing married and unmarried mothers, their difference becomes 

more obvious in lower quantile. (Note the child of a married mother tend to be 

heavier.) Comparing white and black mothers, their difference is about 330 grams at 

the lower quantile, while 175 grams at the upper quantile. (Note the child of a white 

mother tends to be heavier.) The analysis implies that the difference between different 

race (white/black) or social (married/unmarried) groups is more obvious for babies in 

the lower quantile range.   

Example 4: Mortality risk for Dialysis Patients with Restless Legs Syndrome 

 Peng and Huang (2008) did an analysis on a cohort of 191 renal dialysis patients 

from 26 dialysis facilities serving the 23-country area surrounding Atlanta, GA. The 

restless legs syndrome (RLS) is the main covariate and is classified into two levels of 

symptoms, mild RLS symptoms and severe RLS symptoms. The interest is to see the 

effect of RLS symptoms on mortality risk. Comparing the mild and severe RLS 

symptoms groups, their difference is about 1.5 years at the first quantile (25 

percentiles of survival time), while there is no obvious difference at the third quantile 

( 75 percentiles of survival time). In other words, there is a strong association between 

the RLS symptoms and mortality risk for short-term survivors. The phenomenon can 

not be detected by the ATF model.  

Example 5: Mortality rate for medflies with different Gender 

 Koenker and Geling (2001) studied the relationship between mortality rate and 

gender on medflies, a study originally conducted by Garey, Liedo, Orozco and Vaupel 

(1992). According to the survival time, medflies are classed into three categories, the 

lower (before 20 days), middle (20-60 days) and upper (after 60 days) quantile. It 

found that males have lower mortality rate than females on the lower quantile, while 

males have higher mortality rate than females on the middle quantile and there is no 

obvious difference on the upper quantile. 
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1.3 Comparison with other regression models 

Based on the PH model in (1.2), we obtain  

    1
0( | ) ( log(1 )exp{ ( )})T

TQ Z Z        , 

which depends on the form of the baseline 0( )  . Furthermore, ( | )TQ Z  is 

monotone in log(1 )   for all Z . This property restricts the application of PH 

models because it cannot handle the heterogeneity data. Based on the AFT model 

     log ( )T
i i iT Z     . 

Usually, it is assumed that i  ( 1,..., )i n  have the same distribution which is 

independent of Z . This property can not well explain the heterogeneity data.  
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Chapter 2 Inference without Censoring 

2.1 Inference based on homogeneous data   

 We first review the simple case in which we have a random sample 

{  ( 1,..., )}iY i n  from Y  such that the quantile of Y  is of interest. That is, we 

temporarily ignore the effect of covariates. Recall that the  th quantile of Y  is 

defined as  

   
1( ) ( ) inf{ : ( ) }YQ F y F y       (0 1)  , 

where ( ) ( )F y P Y y  . Now we discuss possible inference techniques for 

estimating ( )YQ  . Intuitively we can use the empirical distribution of ( )F y  to find 

the empirical quantile. That is, we find ˆ ( )YQ   which satisfies  

     
1

ˆ( ( )) /
n

i Y
i

I Y Q n 


  .  

A more formal approach is to define the following loss function 

     ( ) ( ( 0))u u I u            (2.1) 

which is depicted in Figure 2.1. Notice that although the loss function is continuous 

and linear, it is not differentiable at 0. For 0u   the slope is   and for 0u   the 

slope is 1  . Now we aim to minimize 

   
[ ( )] [( ) { ( 0)}]E Y E Y I Y          

 

             
( 1) ( ) ( ) ( ) ( )y dF u y dF u




   




      .  

We can differentiate it with respect to   and solve 

   

( ) (1 ) ( ) ( ) ( ) 0U dF y dF y F



    




       . 

This implies that the minimum is achieved when 1( ).F   Given data 

{  ( 1,..., )}iY i n , define  

   
1

( ) ( ) ( ) / .
n

n n i
i

U F I Y n    


           (2.2) 
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Hence the solution to ( ) 0nU    or the minimum of  

    
1 1

1 1
( ) ( ) ( ) ( 0)

n n

n i i i
i i

R Y Y I Y
n n     

 

          (2.3) 

is attained at ˆ ( )YQ  .  

Now we plot ( )nU 
 
and ( )nR 

 
for ~ (0,1)iid

iY N  ( 1,...,10)i  . These data 

points are -2.002, -0.914, -0.526, -0.446, -0.052, 0.120, 0.386, 0.647, 1.379, 1.705. 

Note that 1(0.3) -0.524  , 1(0.5) 0 
 
and 1(0.7) 0.524  . In Figure 2.2, we 

present two plots: (a) 
 
versus ( )nU   and (b)   versus ( )nR   based on  

( ) ( ( 0))u u I u      with 0.3,  0.5,  0.7  . Our first purpose is to see the 

shapes of the two functions and whether the solution to ( ) 0nU    or the minimum 

of ( )nR   are closed to 1(0.3) , 1(0.5)
 
and 1(0.7)

 
respectively. In Figure 

2.2, we see that is a monotone step function and can be well approximated by a 

convex function. These nice properties are useful for numerical computations and 

large-sample analysis.  

2.2 Inference based on quantile regression analysis  

 In presence of covariates, the quantile regression model can be written as  

     
( | ) ( ) ( )T

YQ Z Z      .      (2.4) 

Give data {( , ) ( 1,..., )}i iY Z i n , the objective function can be written as  

  
1

1
( ( ), ( )) ( ( ) ( ))

n
T

n i i
i

R Y Z
n         



  
 

 
1

1
( ( ) ( )) ( ( ) ( ) 0)

n
T T

i i i i
i

Y Z I Y Z
n

        


       . (2.5) 

The major purpose is to minimize nR . For illustration, we may first review the 

problem based on minimizing the squared loss function such that  

     2

1

( , ) ( )
n

T
n i i

i

R Y Z   


   . 

By taking the derivative with respective to   and  , we obtain the following 
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estimating function  

     
(1)

(2)
1

1
( , ) ( )

n
n T

n i i
i in

U
U Y Z

ZU
   



   
          







.   (2.6) 

Notice that ( ) ( , )k
nU    ( 1,2k  ) are both smooth linear planes. In Figure 2.3, we 

plot ( , , )nR    and ( )( , , )k
nU    ( 1,2k  ) based on 10 simulated data points from a 

simple regression model. 

Now return to the quantile estimation problem. Although nR  is not 

differentiable, we can still derive the directional derivative. Specifically the 

directional derivative of nR  in direction w  with pw R  and 1w 
 
can be 

obtained as follows:  

  

 

  

0

1 0

1 0

1

( ( ), ) ( ( ) )

                   ( ( ) )

                   ( ) ( ( ) 0)

                   ( ) (

n n
t

n
T

i i
i t

n
T T T T

i i i i i i
i t

n
T
i i i

i

d
R w R tw

dt

d
Y Z tw

dt

d
Y Z Z tw I Y Z Z tw

dt

Z w I Y Z



   

  

    





 

 



  

  

      

   







 



    

  

  
1

( ) 0)

                   ( ) 1 ( ( ) 0) ,

T

n
T T
i i i

i

Z w I Y Z

 

  




     



 

 

where (1, )T
i iZ Z  and ( ) ( ( ), ( ))T      . In general, we get the estimating 

function 

  
(1)

(2)
1

11
( ( ), ( )) = ( ) ( ) 0 (1 )

n
n T

n i i
i in

U
U I Y Z

ZnU
        



   
            

 . (2.7) 

This implies that ( ) 
 
and ( )   can be estimated by either minimizing nR  or 

solving 0nU  .
 

 Now we generate 10 data points from the model 
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   ( | ) ( ) ( )
iY i iQ Z Z          ( 1,...,10)i   

where ( )   is the  -quantile from a standard normal distribution and ( ) 3.5   . 

We will use these points to show several 3-D plots in Figure 2.4 and 2.5. Then we set 

0.3   and plot ( ( ), ( ), )nR     and ( )( ( ), ( ), )k
nU     where 1,2k  , ( )   is 

1( )  and there are two forms of Z , namely Binomial(n, 1/2) and Uniform(0,1). 

Comparing Figures 2.4 and 2.5 with Figure 2.3, we see that the estimating 

functions for the former may not take value at 0. As a result , the numerical algorithms 

to implement the estimation need special techniques. 

2.3 Numerical algorithms  

 To simplify the notations, from now on we let Z  and ( )   include the 

intercept term. Numerical algorithms are needed to find the estimator of ( ) 
 
which 

minimizes ( ( ))nR    or solves ( ( )) 0nU    . Both problems are non-trial since the 

functions are not differentiable so that the powerful Taylor-expansion technique 

cannot be directly applied.  

2.3.1 Minimizing the objective function  

 Before introducing the algorithm, it is worthy to discuss the geometric structure 

behind the minimization problem. Consider the subspace spanned by 

1( ,..., )T T
j j jnZ ZZ  for 1,...,j p  and let 1( ,..., )T T

nY YY  denote the center. The 

mechanism of the squared loss function behaves like a ball which inflates until the 

ball touches the surface of the above subspace. Now consider the problem of 

minimizing   

 
 

1 1

1 1
( ( )) ( ( )) ( ( )) ( ( ) 0)

n n
T T T

n i i i i i i
i i

R Y Z Y Z I Y Z
n n         

 

        . 
 

The mechanism behaves like a polyhedral diamond, also centered at Y , expands 

until it touches the subspace.  
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 Now we compare the solutions based on minimizing ( )nR   and ( ( ))nR    

respectively. Since ( )nR   is differentiable, the solution is obtained by solving 

( ) / 0nR      equivalent to ( ) 0T T Z Y Z . From a geometric viewpoint, it 

implies that the columns of Z  are perpendicular to the error vector. Usually the 

estimator is obtained by solving the linear equations of   analytically. On the other 

hand, the directional derivatives of ( ( ))nR    is given by  

      
1

( ( ), ) ( ) 1 ( ( ) 0) .
n

T T
n i i i

i

R w Z w I Y Z    


        

Geometrically moving away from ˆ( )   will increase ( ( ))nR   . A solution 

which minimizes ( ( ))nR    subject to ( ( ), ) 0nR w    will only occur at vertex 

points. This implies that we only need to examine over all vertex points about which 

one satisfies the constraint. Analytically, the solution which minimizes ( ( ))nR    

denoted as ˆ( )   must satisfy ˆ( ( ), ) 0nR w    for all pw R . 

 Using the terminology of linear programming, the candidate solutions are called 

as the “basic solutions”. A nice feature of these basic solutions is that they can be 

represented by a linear combination of p -component sub-matrix of Z  and 

sub-vector of Y . Specifically let h H

 

be the set with each element containing p

-numbers from {1,2,..., }n  and hence H  consists of 
n

p

 
 
 

 members. Denote 

( ) :h p pZ  as the sub-matrix of Z  with rows 1( ,..., )i ipZ Z  for i h

 

and 

( ) : 1h p Y
 
as the sub-vector of  Y  with elements iY

 
for

 
i h . The basic 

solution denoted as ( )h   satisfies 

       1( ) ( ) ( )h h h   Z Y .  

Hence we only need to check whether  
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  
1

( ( ), ) ( ) 1 ( ( ) 0) 0
n

T T
n h i i i h

i

R w Z w I Y Z    


         

for all pw R . Recall that there are 
n

p

 
 
 

 

candidates of h  and how to examine the 

above inequality in all dimensions analytically is not straightforward.  

 The following equivalent expressions are useful for developing the numerical 

algorithm:  

     ( ( ), ) ( ( 0)) ( )T
n h i i

i h

R v I v v h v   


      

   

(2.8) 

where ( ) pv h w R Z ,  * 1 1( ) ( ), ( ) ( )T T T T
i i h i i

i h

h Y Z Z h v Z h     



   Z Z  and  

     1 1*
1 2

2 1

( 0)   if  0
( , )

( 0)   if  0

I u u
u u

I u u





  

    
.  

It suffices to check whether ( ( ), ) 0n hR v    for all ( 1,..., )kv e k p    which is 

equivalent to the following condition 

 

 

     ( ) (1 )p ph     1 1 .  

The above analysis simplifies the complicated minimization problem to the analytic 

objective of finding 1( ) ( ) ( )h h h   Z Y  which satisfies ( ) (1 )p ph     1 1 . 

This is equivalent to  

11 1
( 1) sign( ( )) ( ) .

2 2
T

p i i h i p
i h

Y Z Z h    



       
 

1 Z 1

  

(2.9) 

Thus we have 2p  inequalities in   of the form which can be viewed as  

( 1)    ( 1,..., )j ja b j p      

     

(2.10) 

where ( , )j ja b

 

can be determined given the data and the basic solution. Notice that 

the above inequalities can be used to (a) find an appropriate ( )h   from all the 

vertex points
 

given the value of 
 
or (b) given a vertex point, to find the 

corresponding value (or range) of  .  
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 Now we briefly describe the algorithm. We can start from 0 1/ n 
 
which 

corresponds to the basic solution say 
0

1
0 0( ) ( ) ( )h h h   Z Y  by checking the 2p  

inequalities from all the 
n

p

 
 
 

 

candidates of basic solutions. Then we find 1  which 

corresponds to the basic solution 
1

1
1 1( ) ( ) ( )h h h   Z Y  where 0h

 
and 1h

 
differ in 

one unit. It seems to us that the algorithm is to use the basic solutions 

1( ) ( ) ( )h h h   Z Y  to find the corresponding value 
 
satisfying  

1
  ( 1,..., ).

(1 ) (1 )
j j

j j

a a
j p

b b



  

 
 

This algorithm only needs to perform a thorough search at the first time based on 0 . 

Then only a small variation in the basic solution is involved which changes the values 

of ( , )j ja b  which are used to find the next 1 . The procedure can go on until the 

targeted largest   is found. 

2.3.2 Solving the estimating function by simulated annealing 

 Recall that  

  
1

1
( ( )) ( ) 0 (1 )

n
T

n i i i
i

U Z I Y Z
n

    


     . 

Since ( ( ))nU    is a step function which takes discrete values, it may happens that 

there exists no solution to ( ( )) 0nU    . Although the solution can be defined as the 

value where the estimating function changes signs, an algorithm to find its location 

based on the data is still needed. One way of finding the solution is to transfer the 

root-solving problem into another minimization problem. Define ˆ( )   such that 

ˆ( ( ))nU    is minimized where ( ( ))nU   is the sum of the absolute values of the 

p -components of ( ( ))nU   . Lin and Geyer (1992) suggested the simulated 

annealing algorithm originally developed for a similar numerical problem in 

semi-parametric AFT regression analysis. Here we briefly describe this approach 
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under the context of quantile regression models.  

 Consider there are an old candidate *( )   and a new one **( )  . The old 

solution *( )   will be replaced by **( )   “for sure” if 

** *( ( )) ( ( )) 0n nD U U      . This step is reasonable since obviously 

**( ( ))nU    is closer to zero. If 0D  , the chance of *( )   being replaced by 

**( )   is exp( / )D c . This means that the algorithm allows for an intermediate 

solution to move “farer away” from zero with the probability exp( / )D c . We guess 

that the reason is to avoid the algorithm gets stuck in a local minimum point. Now the 

next question is how to come up with a new candidate **( )  ? It is suggested that 

**( )   has a (multivariate) normal random distribution with mean *( )   and a 

diagonal covariance matrix. This step implies that the position of the new **( )   is 

related to the old one *( )  . Now we may ask what’s the principle for setting up the 

covariance matrix? It is suggested that, when the iterations continue, the variance of 

each component of **( )   and the value of 0c   should decrease. The former 

implies that **( )   gets closer to *( )  . The latter implies that if **( )   does not 

reduce ( ( ))nU   , the chance that it replaces *( )   gets smaller in the iterations.  

 The simulated annealing algorithm can be summarized below.  

a. Give the initial values of (0) ( )  , (0) 0c   and (0)  which is a diagonal matrix; 

b. Generate a new (1) ( )   which follows (0) (0)( ( ), )N    ;  

c. If (1) (0)( ( )) ( ( )) 0n nD U U      , then replace (0) ( )   by (1) ( )   and 

otherwise replace (0) ( )   by (1) ( )   with the probability  (0)exp /D c ;  

d. Change the diagonal components of (0)  and (0)c  to smaller numbers denoted 

as ( )k  and ( )kc  (say ( ) ( 1)k kc c  ) respectively;  
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e. Repeat Steps (b) ~ (d) for 1,...,k m  where m  is a fixed value.  

 As for the initial values, Lin and Geyer (1992) made the suggestion: set (0) ( )   

to zero; set the number of steps 1000m p , where p  is the dimension of ( )  ;   

set “the cooling rate”    for /2 0.0005m  ;  set initial variance as 0.1 and the 

cooling rate for the variances such that the diagonal components of ( )m  is about 

0.0005. The estimator is ( )ˆ( ) ( )m     which hopefully will get to the minimum of 

( ( ))nU   .   

Now based on the simulated example, we present the second component of 

( ( ))nU    and the movement of the algorithm. Figure 2.6 represents the cases of 

different types of Z .  

Now we present the intermediate steps of the algorithm in Figure 2.7. We see 

that the points still can jump up but finally the points come to the bottom and will not 

jump up anymore (convergence is reached). From our experience, we found that the 

choice of (0)c  is influential. When this value is too large, the probability of jumping 

up becomes bigger while if it is small, there is higher chance that it remains unmoved. 

We set (0) (0)( ( )) 0.001nc U     and also set the initial (0) 0.1  0

0   0.1

 
   

 
. 
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Chapter 3 Inference under Right Censoring 

3.1 Data structure 

Now we discuss quantile regression analysis based on survival data. Here the 

variable of interest is the time to the occurrence of an event of interest, denoted as T

which is subject to censoring by C . Let log( )Y T  and log( )C C  . The quantile 

regression model can be written as   

      ( | ) ( )T
YQ Z Z          (3.1a) 

or, based on the original failure time, such that  

      ( | ) exp{ ( )}.T
TQ Z Z        (3.1b) 

Note that here Z  and ( )   include the intercept term. Observed variables become 

( , , )X Z  where X Y C   and )I T C   （ . The main purpose is to estimate 

( ) 
 
based on data ( , , )i i iX Z  ( 1,..., )i n  which is a random sample from 

( , , )X Z . 

 Several approaches to modifying the methods under censoring have been 

proposed. Here we summarize their main ideas and comment on their properties 

including drawbacks.  

3.2 Modification based on the objective function  

The paper by Powell (1986) was motivated by economic examples. The original 

construction is based on the situation that iY  is subject to left censoring by 0, a 

common phenomenon in economic applications. The idea can be easily modified for 

the situation that iY  is subject to right censoring by a fixed value iC . He used the 

idea that minimizing a loss function based on ( )T
i iY Z    is equivalent to 

minimizing the same loss function based on { } { ( ) }T
i i i iY C Z C    . Accordingly 

the modified objective function can be written as  
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1

1
( ( )) ( min{ , ( )})

n
P T
n i i i

i

R X C Z
n     



  .     (3.2) 

The corresponding estimating function becomes  

 
1

1
( ( )) ( ( ) 0) ( ( ) ).

n
P T T
n i i i i i

i

U Z I X Z I Z C
n

      


       

An obvious drawback of this approach is that iC  may be a random variable and also 

subject to censoring. Furthermore ( ( ))P
nR  

 

in (3.2) is no longer a convex function 

and needs not be unimodal which creates numerical problems. To find the global 

minimum, excessive computation time is required.  

To handle the censoring problem of iC , Honoré, Khan and Powell (2002) 

proposed to replace the loss function by its conditional expectation given ( , , )i i iX Z  

in (3.2). That is, the objective function can be written as 

 
1

1
( ( )) min{ ( ), } ( , , )

n
HP T
n i i i i i i

i

R E X Z C X Z
n      



    . 

Accordingly  

    [ min{ ( ), } | , 0, ] (1 ) min{ ( ), }T T
i i i i i i i i i iE X Z C X Z X Z X              

and  

 
 

 

[ min{ ( ), } | , 1, ]

( min{ ( ), }) ( )

T
i i i i i i

T
i i i i

i

E X Z C X Z

X Z c I X c dG c

G X





   

   

 

  
    

where   Pr( )G t C t   can be estimated by the Kaplan-Meier estimator 

1

1

( , 1 )
ˆ ( ) {1 }

( )

n

i i
i

n
u t

i
i

I X u
G t

I X u








 
 







. 

Notice that the above derivation requires that  G t  does not depend on Z . The 

corresponding estimating function becomes  
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1

( ( ))

ˆ1 (1 ) ( ( ) 0) ( ( ))
( ( ) 0) ˆ ( )

HP
n

T Tn
T i i i i

i i i
i i

U

I X Z G Z
Z I X Z

n G X

 

       


     
      

 


 

3.3 Modification based on the estimating function  

Ying et al. (1995) proposed to directly modify the estimating function 

     
1

1
( ( )) ( ) 0 (1 )

n
T

n i i i
i

U Z I Y Z
n

    


     . 

In presence of censoring, ( ( ) 0)T
i iI Y Z   

 
is not observable. Instead we observe 

( ( ) 0)T
i iI X Z    . Under the assumption that iT

 
and iC  are independent, it 

follows that  

      0 0( ) 0 (1 ) ( ( ))T T
i i iE I X Z G Z            

where 0( )   is the true value of ( )   and ( ) Pr( )G t C t   which can be 

estimated by the Kaplan-Meier estimator. Applying the technique of 

“inverse-probability-of-censoring-weighting”, they proposed the modified estimating 

function  

 
1

1 ( ( ) 0)
( ( )) (1 )ˆ ( ( ))

Tn
YJW i i
n i T

i i

I X Z
U Z

n G Z

   
 

  
   

 


 

    (3.2) 

where ˆ( ( ) 0) ( ( ))T T
i i iI X Z G Z      is zero if ˆ ( ( ))T

iG Z    is zero. The 

unconditional independence between  iT
 
and iC  may be too restrictive and also 

the weighting approach becomes invalid if the censoring support is shorter than the 

support of the failure variable.  

3.4 A new approach based on counting process 

 The framework of counting process is useful for analyzing survival data in 

presence of censoring. Peng and Huang (2008) proposed a novel approach based on 

counting process to estimate the quantile regression parameter. We try to find a 
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motivation for their idea. Define ( ) Pr( )TF t T t   and the corresponding cumulative 

hazard function can be written as ( ) log{1 ( )}T Tt F t    . Consider the counting 

process ( ) ( )N t I T t  . Under the standard setting, one often use the property that   

    
0

( ) ( ) ( ) ( )
t

TM t N t I T s d s          (3.3) 

is a mean-zero martingale when (.)T  is the true function. One major advantage of 

the above decomposition is that ( )N t  and ( )I T s  can easily be modified under 

right censoring. 

Notice that (3.3) holds when ( )Tt Q  . That is, 
 

( )

0
( ( )) ( ( )) ( ) ( )

TQ

T T TM Q N Q I T s d s


    
 

which has a mean-zero property. The key result of Peng and Huang (2008) is the 

re-expression of the cumulative hazard function by substituting the range of 

integration from the scale of time to the scale of probability. Notice that  

1( ) ( ) 1

0 0 0
( ( )) ( ) ( ) ( )

T TQ F

T T T T T TQ d t d t d F u
  




          .  

Furthermore define  

  1 1( ) ( ) log(1 ( )) log(1 )T T T TH u F u F F u u          .  

Thus 

 
1( ) ( )

0 0 0
( ( )) ( ) ( ) ( ).

T TQ F

T T T TQ d t d t dH u
  




       

 In the paper, the original model assumption based on logi iY T  with  

      ( | ) ( )
i

T
Y i iQ Z Z    

which is re-expressed based on iT  such that  

    ( | ) exp{ ( )}
i

T
T i iQ Z Z    for (0,1)  . 

Another “trick” they used is to re-express ( )iI X s
 
for 0exp{ ( )}T

is Z  
 
as 

0( exp{ ( )})T
i iI X Z u

 
for u  . Accordingly they recognized that  
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   0 00
exp{ ( )} exp{ ( )} ( ),T T

i i i iN Z I X Z u dH u


       (3.4) 

where 0( )   is the true value of ( )   and ( )iN t  is sample analogs of ( )N t  for 

1,...,i n . Note that (3.4) has a mean-zero property. Their proposed estimating 

function can be written as 

   1 2

0
1

( ( )) exp{ ( )} exp{ ( )} ( )
n

PH T T
n i i i i i

i

U n Z N Z I X Z u dH u


    



       . 

                (3.5) 

To solve the equation ( ( )) 0PH
nU     is not an easy task since to estimate 

( )   one needs to know the (estimated) value of ( )u  for all u  . Consider the 

set of grid points: 0 1{0 ... 1}L L US           , where U  is a constant 

representing the upper bound of the identifiable region due to censoring. The authors 

suggested a grid-based estimation procedure for 0( )  . Denote ( ) 


 as an 

estimator of 0( )  , which is a right-continuous piecewise-constant function that 

jumps only on the grid 0 1{0 ... 1}L L US            Note that the attention of 

this approach is (0, ]U  , not (0,1)  . It is suggested that the equation is solved 

successively for 1,...,j L  such that  

   
1

1 2
1

1 0

exp{ ( )} exp{ ( )} ( ) ( ) 0,
jn

T T
i i i j i i k k k

i k

n Z N Z I X Z H H     
 




 

          
   

(3.6) 

where ( )j 


 is the solution to the equation. Notice that since the equation is not 

continuous, there may not exist an exact root. The algorithm of simulated annealing 

can be applied. A nice feature of the above estimating function is that it is a monotone 

function. This property is useful to develop a more efficient algorithm for numerical 

computation. Specifically, Peng and Huang (2008) found that solving (3.6) is 

equivalent to minimize the following objective function 
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 

*

1 1

1
*

1
1 0

( ) log

        2 exp{ ( )} ( ) ( )

n n
T T

j i i i i l l
i l

jn
T T

r r r k k k
r k

l h X h Z R h Z

R h Z I X Z H H

  

   

 

 


 

    

         

 

 
 

where *R  is a very large number and 1,..,j m . Peng and Huang (2008) mentioned 

that one advantage of the latter formulation is that the Barrodale-Roberts algorithm 

(Barrodale and Roberts 1974) can be directly applied. We do not investigate further in 

this direction. 

3.5 A new approach based on self-consistency algorithm 

Portnoy (2003) proposed a method which utilizes the idea of self-consistency 

based on the Kaplan-Meier estimator. Specifically the Kaplan-Meier based on data 

{( , ) ( 1,..., )}i iX i n   can be written as  

    1

1

( , 1)
ˆ ( ) {1 }

( )

n

i i
i

Y n
u y

i
i

I X u
S y

I X u








 
 







. 

Alternatively it also satisfies:  

   
1

( )1
( ) ( , 0) ( )

( )

n
Y

Y i i i
i Y i

S y
S y I X y I X y

n S X




 
     

 
 .  

That is, the “weight” contributed to estimate ( )YS y  for an observation iX  with 

iX y  and 0i   is 
( )

( )
Y

Y i

S y

S X
. Now we return to the quantile problem. Setting 

( ) 1YS y    and ( ) 1Y i iS X    where i  , we have  

  
1

1 1
1 ( ( ), 0) ( ( ))

1

n

i Y i i Y
i i

I X Q I X Q
n

   


 
       

 .  

This is equivalent to  

  
1

1
( ( ), 1) ( ( ), 0)

1

n
i

i Y i i Y i
i i

I X Q I X Q
n

     


 
       
 .  (3.7) 
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Figure 3.1 shows the idea of (3.7). For example, there is a single sample with 10 

observations at 1,2,...,10X   with 5,7,8X   be censored points.  

y  1 2 3 4 5 6 7 8 9 10 

( )YS y  0.9 0.8 0.7 0.6 0.6 0.48 0.48 0.48 0.24 0 

  0.1 0.2 0.3 0.4 0.4 0.52 0.52 0.52 0.67 1 

In Figure 3.2, we can see that ( )YS y  and the empirical quantile   are both step 

functions but the former is decreasing, while the latter is increasing. Notice that the 

value of empirical quantile   is equivalent to 1 minus the corresponding value of 

( )YS y . Now we select (0.52) 6YQ  . It is clear that  

   
1

0.521
0.52 ( 6, 1) ( 6, 0)

1

n
i

i i i i
i i

I X I X
n

 


 
       
 , 

which results in  

    
1 0.52 0.4

0.52 (5 )
10 1 0.4


 


.  

This implies that a censored observation with 0i   will contribute the weight 

( )
1

i
i

i

w
 







. Note that the proposed algorithm is based on minimizing 

 
1

( ) ( )
n

T
i i i

i

w X Z   


  

where 

0,  

( ) ,   and 0
1

1,   and 1

i

i
i i i

i

i i

w

 
    


  

 


   
  

. 

The idea proposed by Portnoy (2003) is novel, but it is hard to understand the details. 

Later work by Neocleous, Branden and Portnoy (2006) and Portnoy and Lin (2010) 

provide more explanations on the self-consistency algorithm. 
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Chapter 4 Conclusion  

In this thesis, we review literature on quantile regression models. Comparing 

with other regression models, the quantile regression model is more flexible without 

imposing strong assumption on the error distribution and can well explain the 

heterogeneity data. Unlike the squared loss function in the least squared regression 

method, the loss function for estimating the quantile is not differentiable. Accordingly 

many nice analytic approaches such as the Newton-Raphson method are no longer 

applicable. Nevertheless, without censoring, some nice analytic properties such as 

monotonicity and convexity for the estimating and objective functions still exist. They 

are also helpful for developing numerical algorithms to implement the estimation. 

When censoring is present, how to modify the estimation procedures and how the 

modifications affect the analytical properties are the main issues. The thesis is just an 

initial review for these useful but complicated methods. Thorough investigation to 

understand these methods better deserve future study. 
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Figure 1.1: Definition of  th quantile. 

 

 

Figure 1.2: Quantiles for two samples. 

 

 

Figure 2.1: The loss function. 
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Figure 2.2: Plots of ( )nU   and ( )nR  . 
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Figure 2.3: Objective and estimating functions based on LSE with 

~ (1 2)iZ Bernoulli . 
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Figure 2.4: Plots of ( ( ), ( ), )nR     and ( )( ( ), ( ), )k
nU     ( 1,2k  ) based on 

quantile loss function with 0.3  . Here ~ (1 2)iZ Bernoulli . 
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Figure 2.5: Plots of ( ( ), ( ), )nR     and ( )( ( ), ( ), )k
nU     ( 1,2k  ) based on 

quantile loss function with 0.3  . Here ~ (0,1)iZ Uniform . 
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~ (1 2)iZ Bernoulli  : 

 

~ (0,1)iZ Uniform  : 

 

Figure 2.6: Plots of (2) ( ( ))nU    based on ~ (1 2)iZ Bernoulli  and 

~ (0,1)iZ Uniform . 
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Step 1: initial point       Step 2: 

 

 

Step 3:          Step 4: 
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Step 5:         Stpr 6: 

 

 

Final step:  

 

Figure 2.7: Intermediate steps for the simulated annealing algorithm.  
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Figure 3.1: Idea of equation (3.7) 

 

 

 

Figure 3.2: The survival function ( )YS y  and the empirical quantile  . 

 



 

32 
 

References: 

[1] Barrodale, I., and Roberts, F. D. K. (1974), “Solution of an Overdetermined 

System of Equations in the 1  Norm,” Communications of the ACM, 17, 

319-320. 

[2] Honoré, B., Khan, S., and Powell J. L. (2002), “Quantile Regression Under 

Random Censoring,” Journal of Econometrics, 109, 67-105. 

[3] Lin, D.Y., and Geyer, C. J. (1992), “Computational Methods for Semiparametric 

Linear Regression with Censored Data,” Journal of Computational and 

graphical Statistics, 1, 77-90. 

[4] Necleous, T., Branden, K. V., and Portnoy, S. (2006), “Correction to Censored 

Regression Quantiles by S. Portnoy, 98 (2003), 1001-1012,” Journal of the 

American Statistical Association, 101, 869-861. 

[5] Peng, L., and Huang, Y. (2008), “Survival Analysis with Quantile Regression 

Models,” Journal of the American Statistical Association, 103, 637-649. 

[6] Portnoy, S. (2003), “Censored Regression Quantiles,” Journal of the American 

Statistical Association, 98, 1001-1012; Corr, 101, 860-861. 

[7] Portnoy, S., and Lin, G. (2010), “Asymptotics for censored regression quantiles,” 

Journal of Nonparametric Statistics, 22, 115-130. 

[8] Powell, J. L. (1986), “Censored Regression Quantiles,” Journal of Econometrics, 

32, 143-155. 

[9] Ying, Z., Jung, S. H., and Wei, L. J. (1995), “Survival Analysis with Median 

Regression Models,” Journal of the American Statistical Association, 90, 

178-184. 

[10] Koenker, R., and Geling O. (2001), “Reappraising Medfly Longevity: A Quantile 

Regression Survival Analysis,” Journal of the American Statistiical Association, 

96, 458-468. 



 

33 
 

[11] Koenker, R., and V. D’Orey (1987), “Computing Regression Quantiles,” Journal 

of the Royal Statistical Society, 36, 383-393. 

[12] Koenker, R. (2005), Quantile Regression, Cambridge: Cambridge University 

Press. 



 

34 
 

Appendix 

A.1 Data generation from a quantile regression model   

 Usually to generate Y  which has the distributional function (.)YF , we can 

generate ~ (0,1)U U  and set 1( )YY F U . Consider the objective that, given iZ , we 

want to generate iY  which follows  

    Pr( ( ))T
i iY Z      ( 1,...,i n ).      

Generate ~ (0,1)
iid

iU U . Setting ( )T
i i iY Z U  and suppose that ( )TZ t  is a 

monotone increasing function of t , it follows that  

  Pr( ( ) | ) Pr( ( ) ( )) Pr( )T T T
i i i i i i iY Z Z Z U Z U            .  

The next question is how to set the distribution of iY  as a target one. Consider a 

simple two-sample case with ~ ( )iZ Bernoulli p . Notice that  

    0Pr( ( ) | 0) ( ( ))i iY Z F         

which means that the intercept 1
0( ) ( )F    is the quantile of the baseline group. 

Suppose we let | 0i iY Z   be the standard normal distribution, we should set  

      1( ) ( )     

which is the quantile of (0,1)N . It follows that | 1 ~ ( ( ),1)i iY Z N    . The algorithm 

is summarized below:  

Step1: Generate ~ ( )iZ Bernoulli p  and ~ (0,1)iU Uniform . 

Step2: Let 1( ) ( )i iU U    and 0( )i iU c U   where   is the cumulative 

distribution function for (0,1)N  and 0c  is a constant. 

Step3: Set ( ) ( )i i i iY U Z U    . 

Step4: Repeat Steps (1) ~ (3) for 1,...,i n .  
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Now let 500n  , 1 2p   and 0 1.5c  . Then we generate data from a 

quantile regression model by the following codes of R:  

n=500; b=1.5; Z=sample(c(0,1), size=n, replace=TRUE); 

u=runif(n,0,1); btau=b*u; Y=array(0,n); 

Y=qnorm(u)+Z*btau 

windows(); plot(Z, Y);  

Figure A.1 shows that the two groups of generated data ( , )i iZ Y  ( 1,...,i n ) with the 

control group ( 0iZ  ) and the treatment group ( 1iZ  ). To check the normality for 

the control group, we can examine Figure A.2 which provides a histogram plot and 

the Q-Q plot which show that | 0i iY Z   is exactly generated from a standard normal 

distribution. Notice that 

    1Pr( ( ) ( ) | 1) ( ( ) ( ))i iY Z F                 

which means that the slope 1 1
1 0( ) ( ) ( )F F       is the quantile treatment effect, 

illustrated in Figure A.3. To check the accuracy of generated data, we plot the 

empirical quantile functions and the corresponding theory functions of 0F  and 1F  

in Figure A.4. Note that the empirical functions of 0F  and 1F  are 

1
0

1

( , 0)
ˆ ( )

( 0)

n

i i
i

n

i
i

I Y y Z
F y

I Z





 











 and 1

1

1

( , 1)
ˆ ( )

( 1)

n

i i
i

n

i
i

I Y y Z
F y

I Z





 











. 

From Figure A.4, we see that both empirical quantile functions match the 

corresponding theory functions very well. That is, our data generation from a quantile 

regression model is correct.  

Because the objective function is not differentiable, to evaluate the estimation 

procedures, we make 2-D plots of  ( ), ( ( ))nR     and  ( ), ( ( ))nR      for given 

0.3,0.5,0.7   by minimizing the objective function 
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 
1

1

( ( ), ( )) ( ( ) ( ))

                       ( ( ) ( )) ( ( ) ( ) 0) .

n
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i

n

i i i i
i

R Y Z

Y Z I Y Z

        
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

  

      





 

  
  

Note that, to get the plots of  ( ), ( ( ))nR    , we set 0( ) c    which is known, 

whereas 1( ) ( )     as known for getting the plots of  ( ), ( ( ))nR     . In 

Figure A.5, we see that there is a minimum for the parabolic curve in each panel and 

these are the estimators of ( )   and ( )   which are marked by blue points. It 

shows that the estimators of ( )   and ( )   are close to the true values 0( )   and 

0 ( )   which are marked red dash lines. Figure A.5 is made by the following codes of 

R: 

alpha=seq(-5, 5, by=0.1); beta=seq(-5, 8, by=0.1); 

for(k in 2:4) { 

    tau=0.1*(2*k-1); windows(); par(mfrow=c(1,2));  

 Ra=array(0, length(alpha)); Rb=array(0, length(beta)) 

 amax=-2^31; amin=2^31; bmax=amax; bmin=amin;  

  for(i in 1:length(alpha)) { 

  for(j in 1:n) { 

         if(Y[j]<alpha[i]+Z[j]*b*tau) 

Ra[i]=Ra[i]+(Y[j]-alpha[i]-Z[j]*b*tau)*(tau-1) 

   else Ra[i]=Ra[i]+(Y[j]-alpha[i]-Z[j]*b*tau)*tau } 

  if(Ra[i]> amax) amax=Ra[i] 

  if(Ra[i]< amin) { 

   amin=Ra[i]; ax=alpha[i] } } 

 plot(alpha, Ra, type='l', xlab=expression(alpha(tau)), 

ylab=expression(paste('R(',alpha(tau),')'))) 

 title(main=substitute(list(tau)==list(a), list(a=tau)))  

 abline(v=qnorm(tau), col='red', lty=2) 

 text(qnorm(tau)+0.3, amax-200, substitute(list(alpha[0](tau))==list(a), 
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list(a=round(qnorm(tau),3))), col='red') 

 points(ax, amin, col='blue') 

 text(ax, amin+350, substitute(list(hat(alpha)(tau))==list(a), 

list(a=round(ax,3))), col='blue') 

 for(i in 1:length(beta)) { 

  for(j in 1:n) { 

      if(Y[j]<qnorm(tau)+Z[j]*beta[i]) 

Rb[i]=Rb[i]+(Y[j]-qnorm(tau)-Z[j]*beta[i])*(tau-1) 

   else Rb[i]=Rb[i]+(Y[j]-qnorm(tau)-Z[j]*beta[i])*tau } 

  if(Rb[i]> bmax) bmax=Rb[i] 

  if(Rb[i]< bmin) { 

   bmin=Rb[i]; bx=beta[i]; } } 

 plot(beta, Rb, type='l', xlab=expression(beta(tau)), 

ylab=expression(paste('R(',beta(tau),')'))) 

 title(main=substitute(list(tau)==list(a), list(a=tau)))  

 abline(v=b*tau, col='red', lty=2) 

 text(b*tau+0.2, bmax-100, substitute(list(beta[0](tau))==list(a), 

list(a=round(b*tau,3))),col='red') 

 points(bx, bmin,col='blue') 

 text(bx, bmin+250, substitute(list(hat(beta)(tau))==list(a), 

list(a=round(bx,3))), col='blue') } 

Now we do the data generation from a quantile regression model 100 times. The 

mean, variance and biased for the estimators of ( )   and ( )   are presented in the 

following: 

 
Estimator of ( )   Estimator of ( )   

Mean Variance Bias Mean Variance Bias 

0.1   -1.269 0.0076 0.0125 0.164 0.019 0.014 

0.3   -0.524 0.0052 44 10 0.46 0.01777 0.01 

0.5   162 10  0.0056 162 10 0.747 0.01625 -0.003 

0.7   0.511 0.0056 -0.0134 1.038 0.01874 -0.012 

0.9   1.273 0.0066 -0.0085 1.331 0.01953 -0.019 
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From the table, we see that the values of bias are very small for all  .That is, the 

average values of the estimators are closed to the true value 0( )   and 0 ( )  . 

A.2 How to generate the 3-D plots 

To show how to generate the 3-D plots in R, we take Figure 2.4, Figure 2.5 and 

Figure 2.6 as examples. Note that the functions for 3-D plots are in package 

scatterplot3d and rgl for R. If you are the first time to make a 3-D plot, you must 

install them and load them into R. The code of 3-D plot for R is as follow:  

###Loading these packages 

library(scatterplot3d) ; library(rgl);  

 

### Data generate 

n=10; b=3.5; tau=0.3;  

Z=sample(c(0,1),size=n,replace=TRUE); u=runif(n,0,1); btau=b*u;  

Y=array(0,n); Y=qnorm(u)+Z*btau; 

 

### Range of alpha and beta 

alpha=seq(-4, 4, by=0.5); beta=seq(-4, 4, by=0.5) 

a=array(rep(c(alpha), each=length(beta)), length(alpha)*length(beta)) 

b=array(rep(c(beta), times=length(alpha)), length(alpha)*length(beta)) 

 

### 3-D plot for R(.) 

R=array(0, length(alpha)*length(beta)) ; NR=array(0, length(alpha)*length(beta));  

for(k in 1: length(alpha)) { 

 for(s in 1: length(beta)) { 

  for(j in 1: n) { 

   if(Y[j]< alpha[k]+beta[s]*Z[j]) 

R[s+(k-1)*length(beta)]= 

R[s+(k-1)*length(beta)]+(Y[j]-alpha[k]-beta[s]*Z[j])*(tau-1)/n

   else  

R[s+(k-1)*length(beta)]= 

R[s+(k-1)*length(beta)]+(Y[j]-alpha[k]-beta[s]*Z[j])*tau/n } 
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  NR[k+(s-1)*length(alpha)]=R[s+(k-1)*length(beta)] } } 

col=rainbow(length(alpha)*length(beta)) 

open3d() 

plot3d(a, b, R,  pch=176, col=col, type='p', xlab="alpha", ylab="beta",  

zlab=" R(tau)", smooth=FALSE)

surface3d(alpha, beta, NR, col=col, alpha=0.65) 

 

### 3-D plot for U1(.) 

U1=array(0, length(alpha)*length(beta)); NU1=array(0, length(alpha)*length(beta)) 

for(k in 1: length(alpha)) { 

 for(s in 1: length(beta)) { 

  for(j in 1: n) { 

   if(Y[j]< alpha[k]+beta[s]*Z[j])  

U1[s+(k-1)*length(beta)]=U1[s+(k-1)*length(beta)]+(tau-1)/n 

   else  

U1[s+(k-1)*length(beta)]=U1[s+(k-1)*length(beta)]+tau/n } 

  NU1[k+(s-1)*length(alpha)]=U1[s+(k-1)*length(beta)] }} 

col=rainbow(length(alpha)*length(beta)) 

open3d() 

plot3d(a, b, U1,  pch=176, col=col, type= 'p',xlab="alpha", ylab="beta", 

zlab=" U1(tau)") 

surface3d(alpha, beta, NU1, col=col, alpha=0.65) 

 

### 3-D plot for U2(.) 

U2=array(0, length(alpha)*length(beta)); NU2=array(0, length(alpha)*length(beta)) 

for(k in 1: length(alpha)) { 

 for(s in 1: length(beta)) { 

  for(j in 1: n) { 

    if(Y[j]< alpha[k]+beta[s]*Z[j])  

U2[s+(k-1)*length(beta)]=U2[s+(k-1)*length(beta)]+Z[j]*(tau-1)/n 

    else  

U2[s+(k-1)*length(beta)]=U2[s+(k-1)*length(beta)]+Z[j]*tau/n }

  NU2[k+(s-1)*length(alpha)]=U2[s+(k-1)*length(beta)] } } 
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col=rainbow(length(alpha)*length(beta)) 

open3d() 

plot3d(a, b, U2,  pch=176, col=col, type= 'p',xlab="alpha", ylab="beta",  

zlab=" U2(tau)")

surface3d(alpha, beta, NU2, col=col, alpha=0.65) 

 

### 3-D plot for ||U(.)|| 

U=array(0, length(alpha)*length(beta)); NU=array(0, length(alpha)*length(beta)) 

for(k in 1: length(alpha)) { 

 for(s in 1: length(beta))  { 

  for(j in 1: n) { 

     if(Y[j]< alpha[k]+beta[s]*Z[j])  

U[s+(k-1)*length(beta)]=U[s+(k-1)*length(beta)]+Z[j]*(tau-1)/n 

     else  

U[s+(k-1)*length(beta)]=U[s+(k-1)*length(beta)]+Z[j]*tau/n } 

  U[s+(k-1)*length(beta)]=abs(U[s+(k-1)*length(beta)]) 

  NU[k+(s-1)*length(alpha)]=U[s+(k-1)*length(beta)] } } 

col=rainbow(length(alpha)*length(beta)) 

open3d() 

plot3d(a, b, U, col=col, type= 'p',xlab="alpha", ylab="beta", zlab=" U(tau)") 

surface3d(alpha, beta, NU, col=col, alpha=0.65) 
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Figure A.1: Scatterplot of generated data from a quantile regression model.  

 

 

Figure A.2: Histogram plot and Q-Q plot of | 0i iY Z  . 

 

 

Figure A.3: Plot of the quantile treatment effect ( )  . 
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Figure A.4: Plots of the empirical quantile functions and the corresponding 
theory functions of 0F  and 1F . 

 

 

 

Figure A.5: Plots of  ( ), ( ( ))nR     and  ( ), ( ( ))nR     . 


