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Model Selection for Generalized Linear Models

Using Penalized Likelihood

Student: Pei-Yun Sung Advisor: Dr. Hsin-Cheng Huang

Institute of Statistics

National Chiao Tung University

Abstract

With higher and higher dimensional data being available, identifying important
variables among many variables has become more and more important in regres-
sion and generalized linear regression. Many approaches have been proposed in
the literature, including Akaike’s information eriterion (AIC), Bayesian information
criterion (BIC), Lasso, etc. However, both"AIC and BIC are difficult to implement
when the number of variables is large, and hence are usually done using some step-
wise procedures. In this thesis, we extend an approach of Shen et al. (2010), who
considered a penalized least squares method with a truncated L; penalty for linear
regression, to generalized linear regression. This approach enables us to well approx-
imate AIC and BIC even when the number of variables is large. A computational
efficient algorithm is introduced, which utilizes difference convex programming, it-
eratively reweighted penalized least squares, and the coordinate descent algorithm.
Some oracle property of the proposed method is established, and some numerical
examples are provided to demonstrate the superiority of the proposed method over
AIC and BIC. Finally, the proposed method is applied to analyze a low birth weight
dataset, in which we identify important variables associated with a low birth weight
baby.

Key words: Akaike information criterion, Bayesian information criterion, coordinate
descent, difference convex programming, Lasso, Lo penalty, oracle property.
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1 Introduction

Suppose that we observe data, {(z;,v;) 4 =1,...,n}, where y; and &; = (1,21, ..., )
represent the response and a (p + 1)-dimensional vector of explanatory variables, respec-
tively. If y1,...,y, are continuous variables that are roughly normally distributed, then

the linear regression model is usually applied:
yi=x,B+e, e ~N00Y) i=1,...,n,

where 8 = (Bo, f1,...,0p)" is a vector of regression parameters. In some situations,
Y1, - - -, Y are deviated from normal distributions, or take only discrete values, the usual
linear regression model is no longer valid. Generalized linear models provide a flexible
framework for these types of data.
For a generalized linear model, we assume that y; has the following probability density
function (pdf):
yibs — b(0;)
a(¢)

for some known functions a(-), b(-), and ¢(:); where ¢ is a dispersion parameter. If ¢ is

08 “eng e o)}, (1)

known, (1.1) forms an exponential family. model- with canonical parameter ;. For example,

the pdf of a normal distribution with mean ji; and variance o2 can be written as the form of
(1.1) with 6; = p;, ¢ = 02, a(9) = ¢, b(6;) = 62/2, and c(y;, ¢) = —(y?/o? +1og(2ma?)) /2.
In general, the mean and the variance of y; can be expressed as:
pi = E(y;) = V'(6:),
o} = var(y;) = b"(6;)a().
In a generalized linear model, there are two parts involved: the random component

(response), y;, and the systematic component (linear predictor), n, = .3, fori = 1,... n.

The two parts are related through a link function g(-) by the followings:
pi = E(yilz:), (1.2)
9(i) = g(V/'(6;)) = z;8. (1.3)

A link function g¢(-) is called the canonical link if it satisfies g(u;) = 0; = «;3. For
examples, the identity function is the canonical link for normal regression, the log function

is that for Poisson regression, and the logit function is that for logistic regression.

1



The log-likelihood function under the canonical link can be written as:

- [ b |
18 =3 { T et | (1.4)

with its first and second derivatives given by

0
3518) = sz yi — () /a().

5?2 ,
8686’“[3) = —Zg )z, /a(d). (1.5)

The parameter vector B is usually estimated by maximum likelihood (ML). The ML

estimate of 3, given by argmax¢(3), can be obtained by solving the score equations,
B

0l/0B = 0 with 0¢/03 being the score_function.

The rest of this thesis is organized as follows.. In Chapter 2, we introduce some
commonly used model selection - methods for generalized linear models. In Chapter 3,
we introduce a penalized likelihood method with a truncated L; (TL) penalty, which
similar to Lasso (Tibshirani 1996), allows simultaneous variable selection and parameter
estimation. But unlike Lasso, which tends to produce bias estimates, the proposed method
shrinks only small coefficients to zero 'but not large coefficients. In Chapter 4, we give two
examples showing some more details about the proposed method. The oracle property is
established In Chapter 5, and some numerical examples are provided in Chapter 6. Some
brief discussion is given in Chapter 7. Finally, the appendix contains R code used in the

numerical examples.

2 Variable Selection

Consider the log-likelihood function given in (1.4) with p variables. Then there are 2P
candidate models to choose. Basically, a large model tends to produce low bias but
high variance, and vice versa. Some commonly used methods are given in the following

subsections.

2.1 Sequential Hypothesis Testing

One approach to identify important variables is to perform a sequence of tests using

a forward selection procedure, backward selection procedure, or a stepwise procedure



that mixes between the two. Forward selection starts from the null model with only the
intercept term and adds one variable at a time until some criterion is met. At each step, the
variable with the smallest p-value is added until no p-value is smaller than a pre-specified
threshold. Backward selection performs similarly but in the opposite direction by starting
from the full model. At each step, the variable corresponding to the largest p-value is
removed until all variables have p-values smaller than a pre-specified threshold. These
procedures involve multiple tests, which make theoretical justification of this method

difficult.

2.2 Information Criteria

Another approach for variable selection is to apply an information criterion, which selects

the model by minimizing a cost function given in the form of

(@) (Y, (2.)

where J(3) is a penalty term, which is typically larger for a larger model. By choosing a
proper penalty term that suitably controls between goodness-of-fit and model parsimony,
a good estimate of 3 balancing between bias and variance can be obtained. For example,

the generalized information criterion”(GIC; Nishii 1984) has the following L, penalty:
1 p
——U(B) + A D_1(18;] #0), (22)
j=1

which penalizes the number of parameters. It includes Akaike’s information criteria (AIC;
Akaike 1974) with A = 1/n and Bayesian information criteria (BIC; Schwarz 1978) with
A =log(n)/(2n) as special cases. Although asymptotic justification of GIC can be found
in Shao (1997), it is difficult to minimize GIC directly, because GIC is nonconvex and
discontinuous, which generally requires computing GIC values for 2P candidate models
separately, and hence is computationally infeasible when p is large. Consequently, a
stepwise procedure similar to those described in Section 2.1 is often applied, resulting in

less satisfactory estimates.

2.3 Lasso

Instead of considering the penalized likelihood with an Ly penalty as in (2.2), a penalized

likelihood with an L; penalty was proposed by Tibshirani (1996), leading to a criterion,

3



called the least absolute shrinkage and selection operator (Lasso), which is very popular

in recent years. The Lasso estimate minimizes
1 p
——UB)+ A D181, (2.3)
j=1

where A is a tuning parameter controlling the shrinkage of 3 toward zeros with a large A
corresponding to a higher degree of shrinkage. Different from the ridge regression, which
substitutes an Lo penalty Zp: |8;|? for Zp: |8;] in (2.3), Lasso not only does shrinkage,
but also estimates some BJZ; exactly z]e:rlos. Consequently, it provides parameter esti-
mation and model selection simultaneously. Originally, Lasso was solved using quadratic
programming (Tibshirani 1996), which is not particularly fast. It was not until the intro-
duction of the least angle regression (LARS) algorithm (Efron et al. 2004) that the Lasso
becomes very popular, because the entire Lasso'solutions along a path of A can be solved
in the order equivalent to solving the ordinary least squares estimate based on the full
model. Interestingly, the LARS algorithm is equivalent to a homotopy algorithm intro-
duced earlier by Osborne et al.((2000) for solving Lasso: Recently, Friedman et al. (2007)
demonstrate that the simple coordinate descent algorithm can do even faster than the
LARS algorithm.

However, the Lasso is known to produce a bias estimate of 3, and hence can only
achieve selection consistency under some restricted conditions (Zhao and Yu 2006). Some
nonconvex penalties have been proposed to remedy the bias problem of Lasso in the
context of linear regression, including the SCAD penalty of Fan and Li (2001), the MCP
penalty of Zhang, and the TL penalty of Shen and Huang (2010) and Shen et al. (2010).

3 The Proposed Method

Consider the generalized linear model given by (1.4). Following the TL penalty introduced
by Shen and Huang (2010) and Shen et al. (2010), we propose to estimate 3 by minimizing

n ] T ’ '

where A > 0 is a tuning parameter controlling the degree of shrinkage with a larger A

corresponding to a higher degree of shrinkage, and 7 > 0 is a thresholding parameter.
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Figure 1: Truncated L; penalty with 7 = 1.

Since min{|5|/7,1} — I(|8] # 0) as 7 — 0, the Ly penalized log-likelihood of (2.2) can
be well approximated by S(3) if 7 is'sufficiently small. By choosing a small 7, we obtain
approximated AIC and BIC with A =1/n and log(n)/(2n), respectively. On the other
hand, when 7 is large, 5(8) can berewritten as = 1/(8) + 2 i 18,1, leading to the usual
Lasso with tuning parameter A/7. The penalty function, n]n_r:{\ Bl/T,1}, with 7 = 1 is
shown in Figure 1.

Although from (1.5), the loglikelihood function ¢(3) is concave, the objective function
S(B) of (3.1) is not convex unless 7 = oo, which in general is difficult to minimize directly.
We propose to solve the nonconvex optimization problem of (3.1) using difference convex

programming (DCP) (An and Tau 1997), iteratively reweighted penalized least squares

and the coordinate descent algorithm, which will be introduced in the next subsection.

3.1 Computation Algorithm

Since S(-) is not a convex function, we adopt the approach of Shen and Huang (2010) and
Shen et al. (2010) by finding a minimizer of (3.1) through DCP, which decomposes S(-)

into a difference of two convex functions:

S(B) = S1(B) — S2(B), (3.2)

where 5)(8) = —6(8) + A il 18,1/ and S»(8) = A zp:lmax{\ﬁﬂ/T — 1,0}
j= j=
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Figure 2: Separate the penalty term of the objective function into two convex functions
with 7 = 1.

Figure 2 shows the decomposition_of min{|3|/7, 1} into the difference of two convex
functions, |3|/7 —max(|5| — 7,0) /7. The main idea of DCP is to approximate a minimum
of S(B) iteratively by the minimizers from a sequence.convex functions. Specifically, we

successively replace Sy(3) at the m-th step iteration with its first order approximation:
S5 (B) = S(|B R (BE=]8 ) VS, (|8 Y)),
p
=3 (PEe ) > 0,
j=1

evaluated at the solution Bm~1) = (ﬂm_l), o A}(,m_l))/ obtained in the previous step,

where VS3(8) = A f:l L1(|18j| > 7)sign(6;), 18] = (|1, ---,16,])’, and |B§7’Tl)} is defined
iz

similarly. Thus we obtain a sequence of upper approximation functions given by:

SM(B) = Si(B)— S (B)

= @)+ 2D IBI(A T < 1) A (A 5 ), (39)

J=1

where the last term of (3.3), involving no 3, can be removed when solving for B™ . Note
that S(™)(-) is a convex function and has a form similar to Lasso in (2.3), except that \ is
replaced by A\/7 and the L; penalty is only on those (;’s for which ‘B](-m_l)‘ < 1. Clearly,
sign( B§m)|—7) = sign( B(-m_l) ‘ —’7') forall y =1,...,p, implies that B(m“) = B(m), which

j
happens when the components of B(

m+1) show no crossing over 7 from 8. Since there are

@m)! —T), o ,sign( BAI(;m)‘ —7’))/,

the DCP algorithm has a quite unique feature that it converges in a finite number of

only a finite number of possible combinations for (Sign(

6



steps. We denote the solution after convergence based on tuning parameters A and 7 by
BN, 7).

The penalized likelihood S™)(-) of (3.3) can be minimized efficiently using the iterated
reweighted penalized least squares (IRPLS) method. First, we consider a second order

approximation £o(8) to the log-likelihood ¢(3) at B:

UB) = lo(B) = UB)+(B—PB)VIUB)+ %(5 — B)'VU(B)(B - B)
. —_1 & o2 z Nz(/@) _ ? 3
= %) 2; (ﬁ){ B+ —0} B 26} +C(B), (34)

where C(3) is some constant independent of 3. Then (3.3) can be solved by iteratively

minimizing
ZFF_/?éZp V71 A
: MZ(ﬂ>(Zz(ﬂ) wz/B) + T |BJ|](|ﬁ] | <7), (3.5)

with 3 being the current estimate of @ in IRPLS, where w;(3) = 02(8)/a(¢) and z(8) =
wiﬁ + (yi — (B ))/%( )

As in Friedman et al. (2007) and Friedman et al. (2010), we apply the coordinate
decent algorithm to solve the Lasso problem-of (3.5), which iteratively minimizes one
parameter at a time while holding the others fixed until convergence. The coordinate

descent algorithm iteratively update Sy, 51, ..., 8, by:

B Z Uh(/é) <Zl(lé) - Z xijéj(.dd))
TR - S o
> wi(B)
=1
and
]_ i ~ ~ = o ~ o )\ ~ (m—
(A (0 - @R ), 215 <)
B](new) N = 1 < 5 7(3-7)
ﬁ : wi(ﬁ)xlj

for j =1,...,p, where S(z,a) = sign(x)(|z| — ), is the soft-thresholding operator.
Note that the solution B(m) of (3.3) is continuous and piecewise linear in A\. Therefore,

for each 7, we can obtain 8™ by starting from a large value of A\, and successively



solve for B(m) along a decreasing sequence of A\ values with each solution being used as a
warm start for the next. Given A and 7, the proposed algorithm in solving (3.1) can be

summarized below:

e Outer loop : Solve the DCP solution 8™ (\,7) of (3.3) until sign(|B](-m)| —7) =
sign(|5’j(»m_1)| —7)forj=1,...,p.

e Middle loop : Update the quadratic approximation expressed in (3.5).

e Inner loop : Apply the coordinate descent algorithm with the updating formulae
given by (3.6) and (3.7).

In practice, we compute the penalized ML (PML) estimate B8 (\,7) of 3 at some
evaluation points: (A, 7) € {Ay,..., A} X {m,...,7v}, where A\; > Ay > .-+ > Ay and
7 > T > -+ > 7y. Since the solution 37 (), 7) of (3.3) is continuous in A for each
m and 7, to ensure fast convergence, the proposed algorithm is applied in the following

order:

1. Start by computing B8C)(Ay, 71 ) with initial B\, 1) = 0.

2. Successively compute BN Ay, r,) with initial 8O (A, 7,) = B (A1, 7_1), for v =
2. ...V

3. For each v = 1,...,V, successively compute B(“)(Au, T,) with initial B(O)(Au, Tp) =
BNy, 1), foru=2,...,U.

3.2 Selection of tuning parameters

In the previous subsection, we focus on how to obtain the PML solution of (3.1) for a
fixed pair of (A, 7). In this subsection, we introduce two methods, K-fold cross-validation
(CV) and BIC, to select the tuning parameters A and 7. Let Y = (y1,...,y,) denote the
response and X = (x;,...,x,)" denote the design matrix. For K-fold CV, the index set
{1,...,n} and the data (Y, X) are randomly divided into K sections of roughly the same
size. Denote the k-th section of data by (Y, Xy); k =1,..., K. For each k, we obtain the
PML estimate of B(_Olf)()\, 7) based on data (Y_g, X_j) of all the other K — 1 sections. To
assess the prediction performance of ;l(_oz)()\, 7) on Yy, we consider the following deviance

criterion:

Lk (/l(_olj) (/\7 7—)7 Y;c)

- (00)
Dev (B (\, 7)) Li(Ye,Yy)

(3.8)

—2log




where 1°7 (X, 7) is the estimate of g based on B%(\, 7), and Ly, (;l(jj)()\,T), Y,) is the
likelihood function of Y, with mean u(fz)(/\, 7). Then our CV criterion is defined by the

total deviance:

= " Dev(B5 (A, 7). (3.9)

The K-fold CV then selects the pair (A, 7) with the smallest CV value.
The second criterion we consider for tuning parameter selection is similar to the usual

BIC criterion for model selection:

iS]

A

BIC(\,7) = —2((B°)(\, 7)) + log(n Z[ BN, T) #£0).

~

The BIC criterion selects the tuning parameters, (A, 7) = arg min BIC(\, 7). The re-
(A7)

sulting estimate of 3 is given by+3% (\;7#)«We shall apply this criterion for all of our
numerical examples, because from our limited experience, it appears to perform better is

computationally more efficient than CV.

4 Examples

To understand how the proposed PML method works, we provide two examples: Poisson

regression and logistic regression, with detailed computation steps in this section.

4.1 Poisson Regression

For Poisson regression with the canonical link function: g¢(u;) = logu; = .3, the log-

likelihood can be expressed as:

=Y _ep(@iB) + Y yi(@iB) — Y logyi!. (4.1)
i=1 i=1 i=1

The first and second derivatives of the log-likelihood functions are:

Vﬂ(ﬁ) = - Z exp(m;,ﬁ)wz + Z YiLq = Z m’b Yi 2
=1 =1

i=1 i=1



Thus from (3.4), the quadratic approximation of the log-likelihood function expanded at
ﬁ is:

—iZum){ ﬂ+#§ﬁ)—wﬂ} C(B). (4.2)

Consequently, the m-th step DCP solution B(m) of (3.3) can be obtained by iteratively

solving

2 n
arg min Z,ul { yTMﬂz()ﬁ) —x ,3} + é Z |5j|](|5§m_1)| <T)yp,
) i=1

using the coordinate decent algorithm given in (3.6) and (3.7). From (3.9), the tuning

parameters selected by CV satisfies

o >—ar(g;r)nn22{yz loggi =dog 2. 7)) — (i — (A7)} (43)

and the tuning parameters selected by BIC satisfies

0.7) = ang min {533 (el @B ) - il 0. 7)

(A7) A

P
+ log(n ZI BN, 7) #0)}
7=1

4.2 Logistic Regression

The canonical link function for logistic regression is the logit function: g(p;) = log 1 =
b
@3, where p; is the Bernoulli probability of y;, which is equal to exp(x;3)/(1 + exp(x.3))

for i = 1...n. With the canonical link function, the log-likelihood can be represented by
= {vi(@}B) — log(1 + exp(z;B))} (4.4)
i=1
The first and second derivatives of the log-likelihood functions are:
- " exp{xiB}x;
Vf - g — — = = [ z
B) ; Yi ; 1+ exp{x;8} Z Li

C Ceol@fled [ eo(zp)
VipB) = _; 1+ exp{z,8} {1 N 1+exp{fvéﬁ}} sz P

10



Thus from (3.4), the quadratic approximation of the log-likelihood function expanded at

ﬁ is:

n ]3 2 N

—-- ) bill— {w,@—l-—z—a:;ﬁ} + C(B), 4.5
I ) (45

where p; = exp{@/8}/(1 + exp{x!3}). Consequently, the m-th step DCP solution 8™

of (3.3) can be obtained by iteratively solving

R S
argmin{ szl—pz {wﬂ+ X pz)—wﬁﬂ} +FZ|5j|1(|ﬁ§m I)IST)}
i=1

B ]-_pz

using the coordinate decent algorithm given in (3.6) and (3.7). From (3.9), the tuning

parameters selected by CV satisfies

(A, 7) = arg m1n22{yzlog

1 -y,
&1 — i) log —y} (4.6)
(A7)

Yi
PiAs7) 1 —pi(\,T)

and the tuning parameters selected by BIC satisfies

S

(A7)

(A7) = arg min{2Z{log(1 +exp(x;B)) = vi(x;B)} + log(n ZI )\ T) # O)}

5 Oracle Property

Let Bo = (Boo, B1o, - - -5 Bpo)’ be the true regression coefficients and let A = {j : |Bj0| #
0, 7 =1,...,p} be the index set of the true model. For notational simplicity, the proposed
estimate B(OO)()\,T) is written as B(O"). Let A= {j =1,...,p: ‘BJ(OO)’ > O} be the index
set selected by the proposed PML method, and let Bm) = (Béml),ﬁfml), e A,(,ml))/ be
the maximum likelihood (ML) estimate of 3 based on the true model, where B;ml) =0if
j ¢ A. We would like to establish P(,é(w) = ,é(ml)) — 1 as n — oo under some regularity
conditions.

We first show that B](-OO) #rforj=1,...,p.

Lemma 5.1. Let h(-) be any differentiable function in RP and B* = (B},...,53;) be a
P

local minimizer of f(B) = h(B) + A >_ min{|B;|/7,1}. Then 35 # 7 for j=1,...,p.
j=1

Proof. Prove by contradiction. Suppose §; = 7 for some k € {1,...,p} and define

11



with 8; = B; for j # k. Then fi(Br) = he(Be) + A D J;(157]) + AJi([Be]). The right
J#k
derivative of J(|8x|) at B; is 0 and the left derivative of Ji(|8k|) at B is 1. Let D denote
the derivative of ) J;(|3;]). Since f; is a local minimizer of fi.(8), the right and left
J7#k

derivatives of fi(Bx) at Bi are larger than 0 and smaller than 0. Then the right and
left derivatives of hy(S)) at fj are larger than —AD and smaller than —A(D + 1), which
contradicts to the fact that h(:) is a differentiable function in R?. Thus we obtain the
conclusion that 87 # 7 for j =1,...,p. n

Differentiating the object function S(-) in (3.1) with respect to 8 through the concept

of subdifferentials, we obtain the local optimality condition:

\ = sign(p;) if 0 < |6, <,
——0(B) + bj; =0, whereb;{ =0 if |B;] > T, (5.1)
&l-1,1 if 3] =0.

for j = 1,...,p. This local optimality condition is known as the Karush-Kuhn-Tucker

(KKT) condition (see Lange 2004). Note that when'/3; = 0, the local optimality condition

0
a—ﬂjf(ﬁ)‘ < /7

We shall establish the oracle property. of B(m) in the theorem below by showing first
that both 8 and B™) satisfy the KKT condition of (5.1), and then by showing that

can be represented by )

the solution of (3.1) is unique with probability tending to one under some conditions.

Theorem 5.2. Consider the generalized linear model of (1.4) with 3 € © C RPTL where
© is compact. Let B be the PML estimate of (3.1). Suppose that (i) max{|A[,|A|} <

q for some constant 0 < q < oo, (ii) in£|5j0| > 27, (i) n'?\/T = oo, and (i)
je

1
T2Cmin — 4X\/q > 0, where cyin denotes the minimum eigenvalue of —— glig V2€(ﬁ). Then
n Be

P(,C;'(OO) = A(Aml)) — 1 asn — oo.

Proof. Let F'= F| () Fy, where

D SR ICHIRGE: _ 1L 0, ami A
Fl—{?é1£1|ﬁj ‘>§T} anng—{rﬁZaX’—Ea—@f(lg( ))‘S; _

First, we show that both 80 and B satisfy the KKT condition of (5.1) on F. Since

. 1 \ & _ .

B minimizes ST(8) = ——£(8) + = > |B|1(18" V| < 7). it follows that B> is a
n T

=1

12



1 ) — - .
minimizer of S (8) = —=((B) + = E \ﬂj\f(\ﬂj( )| < 7). This implies 3¢ satisfies the
n T
=1

KKT condition. Regarding ,[;'gml), clearly it satisfies the KKT condition for j € A under

1
Fi. In addition, it satisfies ‘ - —iﬂ(ﬁ (ml))
n 0B;

j ¢ A under Fy. Therefore, B(ml also satisfies the KK'T condition under F.
Next, we show B(W) = B(ml) on F'. We prove by contradiction. Suppose that B(OO) #+

< é, and hence the KKT condition, for
-

B on F. Consider two cases below, where we use || - || to denote the Ly norm.

i) HB("O) - B“””H < 7/2: For j € A, since ‘B](ml)| > 37/2, it implies ’Bj(oo)| > 7. For

j ¢ A, since BAJ(-ml) = 0, it implies }BJ(OO)‘ < 7. Therefore, both estimates are solutions

1 A
of a strictly convex function, ——¢(8) + — Z |B;], on F, and hence has the unique
n T

JgA
minimum on F. Thus 8> = 3(™) on, F.

(ii) HB("O) — ,é(ml)“ > 7/2: We have

9 <4 | Ol Aty 7 (B X BD) -
'<am (8*) =g, 30687) 5o gon]| 2 f

where

B 1 N | - (i) )T (32 — mb))
ho- |<nw<ﬁ )= VA ) 5

I

T (B(oo) _ gf(ml))

~

3(0) — B(ml)H '

fr = 2 (sign (8 1(18)| < ) — sign(8") 1(18"] < 7))

For Fj, by the mean value theorem, there exists B* on the line segment between

B(OO) and B(ml) such that

= B — B >

n

2 Cmin

R R R 2(c0) 2(ml)
(vr(6r) (5 ) B0

For f5, by Cauchy-Schwartz inequality,

7 (Be) — Bmd)

A\ A R R .
f = 2 (Sign(ﬁ(w))[(lﬁ(m)’ < 7_) _ Sign(ﬁ(ml))1(|5(ml)| <T HB(OO) . B(ml)”
\ ) A(c0) _ A(ml)
< 2 |sign(8°)1(18%)] < 1) — sign(8) 1(]8"| < 7) | ”? g‘é‘nin”
< 2V/gN/T.

13



A

S\ (B = B
S(ﬂ(l)> ‘(‘ﬁ(oo G H‘ ConinT /2—2,/GN/T >

0, Whi(jh contrAadicts to that 0 € (%S(B(m)) 9 ( ml))) (B — B )
Thus B(®) = B™) on F.

A 0
<aﬁ,4 (8™ - 38,

Consequently,

Finally, it is straightforward to show that P(F) — 1 as n — oo. This completes the
proof.

Note that under some regularity conditions,

nl/Z(B(ml) — o) LA N(o,17Y), (5.2)

where I is the Fisher information. It follows that

n'2(8°) — By) & N(0,17),

under (5.2) and the conditions given by the abeve theorem. O

6 Numerical Examples

In this chapter, we consider two simulation experiments with one for Poisson regression
and the other for logistic regression ‘cases. We are interested in knowing the performance
of the proposed PML method in comparison with AIC, BIC, and their stepwise versions in
terms of the Kullback-Leibler (KL) risk and the probability of identifying the true model.

6.1 Poisson Regression

We generate data yq, . . ., y, independently from Poisson distributions with means p1, .. ., t,

according to the model:
log i = Bo + Prway + - -+ + By = wifB; i=1,...,n,

where x;’s are generated independently from N(0,X) with pl“~7| being the (i, j)th entry
of ¥, and B3 =(0,2,—1,0,...,0). We apply the proposed PML method for 7 = 7, ..., 75
and A = Ay, ..., Ao, which are equally spaced in the log scale. Throughout the simula-
tion, we choose 7 = 5 and 75 = 0.1. In addition, we choose A\; to be the smallest value
such that A°(X,5) = -+ = (), 5) = 0, which can be obtained from the R package
“olmnet” developed by Friedman et al. (2010) only for the Lasso penalty, and choose
A100 = 0.001.

14



Table 1: Performance of various methods for Poisson regression with p =

6 and n = 50, where values given in parentheses are the corresponding
standard errors.
Method p=20 p=0.5
KL risk Error rate KL risk Error rate
Full model MLE | 3.822 (0.273) 1.00 | 3.582(0.319) 1.00
True model MLE | 1.610 (0.173) 0.00 1.603 (0.191) 0.00
AIC 2.978 (0.298) 0.53 | 2.717 (0.325) 0.42
BIC 2.135 (0.244) 0.17 | 2.042 (0.258) 0.14
B>(X,0.1) 2.045 (0.245) 0.13 1.983 (0.258) 0.12
B>(X,0.27) 1.728 (0.181) 0.08 1.771 (0.212) 0.09
B>(X,0.71) 1.909 (0.216)  0.14 | 2428 (0.338)  0.23
B><(), 1.88) 3.393 (0.282) 0.65 | 3.386 (0.347) 0.70
B>=(\,5) 3.396 (0.278) 0.74 | 3.439 (0.342) 0.73
B (), 0) 3.396 (0.278) 0.74 | 3.439 (0.342) 0.73
B>(\,7) 2.030 (0.243) 0.12 1.975 (0.258) 0.11

For different methods, we estimate the Kullback-Leibler risk (KL risk) which take
expectation of the KL loss function. KL loss measures the difference between the estimates
and the true parameters. The KL loss for Poisson cases is defined by

n

> {ui(logui =logi;) — (i — /iz-)}-

i=1
From the KL risk, we can see whether our method overcomes the other competitors.
Table 1 and 2 present the results of repeating 100 times simulations and show the KL
risk together with its standard error. The error rate is estimated by the proportion of
how many times the methods chose the wrong model during the 100 simulations. When
determining the tuning parameters, we utilize the BIC score method, which choose the
estimates corresponding to the smallest BIC score.

From the results of Table 1 and 2, we notice that when there are more zero coeffi-
cients than non-zero coefficients, our method performs better than the others. We can
see that the ML estimate of B based on the full model are more unstable. The method
PML chooses a suitable tuning parameters pair (A, 7) can do the model selection and
estimation as good as AIC/BIC does even sometimes overcomes them. When the number
of interested variables increases, AIC and BIC tend to consume much of time on compu-
tation. Therefore, PML offers an efficient way to select a suitable model and estimates

the coefficient simultaneously, which not only saves the energy on examine each possible

15



Table 2: Performance of various methods for Poisson regression with p =
10 and n = 50, where values given in parentheses are the corresponding
standard errors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 5.731 (0.320) 1.00 | 5.830 (0.370) 1.00
True model MLE | 1.610 (0.173)  0.00 | 1.603 (0.191)  0.00
AIC 3.931 (0.346)  0.75 | 3.955 (0.373)  0.73
BIC 2.529 (0.286)  0.27 | 2522 (0.311)  0.26
B>(X,0.1) 2.050 (0.243) 0.14 | 2.317 (0.306) 0.20
B>(),0.27) 1.689 (0.174) 0.08 1.915 (0.251) 0.15
B(X,0.71) 1.957 (0.235)  0.19 | 2.812(0.390)  0.36
B><(), 1.88) 4.012 (0.327) 0.80 | 4.421 (0.366) 0.86
B>=(\,5) 3.902 (0.299) 0.89 | 4.405 (0.361) 0.90
B (), 0) 3.902 (0.299) 0.89 | 4.405 (0.361) 0.90
B>(\,7) 2.045 (0.242) 014 | 2.309 (0.306) 0.19

models but also provides better estimates with smalletr risk and standard error.

Figure 3 and 4 show the how the KL loss and BIC scores behave with the path of A\*
under log scale. Each curve denotes one candidate value of 7. It is easy to see that these
curves for each 7 has a minimum value. Obviously, the two figures present almost the
same patterns. It is intuitive to use BIC scores as a criterion of determining the tuning
parameters. Even though we have different values of 7, their BIC scores can help us find
a good \* for each 7 and give not bad estimates. Note that in the two tuning parameters,
A plays a more important role in model selection than 7 does.

From small p cases, we can see that the PML method can provide better estimates
which are more precise and accurate than the others. However, high dimension problems
become more and more important recently. We are interested in whether PML is available
when p increases. We try larger p = 20 and p = 40 for Poisson regression. Note that
p is to large to use AIC/BIC method since there are 27 models to compare. We utilize
stepwise AIC/BIC instead. The results are shown in Table 3 to Table 5.

Under high dimensional conditions, the benefits of PML method are easier to see.
Compared to the other methods, our method provides little risk and smaller standard

error. The proportion of selecting the wrong model is smaller than its competitors.
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Figure 3: KL losses (left) and the corresponding BIC scores based on PML (right) for
poisson regression with p = 6 and n-= 50.
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Figure 4: KL losses (left) and the corresponding BIC scores based on PML (right) for
poisson regression with p = 10 and n = 50.
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Table 3: Performance of various methods for Poisson regression with p = 20
and n = 50, where values given in parentheses are the corresponding standard

€ITrors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 12.016 (0.610) 1.00 | 12.216 (0.528) 1.00
True model MLE | 1.610 (0.173)  0.00 1.603 (0.191) 0.0
Stepwise AIC 8.223 (0.571)  0.94 8.306 (0.537)  0.97
Stepwise BIC 4.628 (0.502)  0.52 4.500 (0.505)  0.54
B>(X,0.1) 2.367 (0.300) 0.20 2.928 (0.430) 0.29
B>(X,0.27) 1.746 (0.181) 0.10 1.846 (0.256) 0.15
B>(X,0.71) 2.107 (0.251)  0.25 3.324 (0.425)  0.54
B> (), 1.88) 5.104 (0.340) 0.93 6.203 (0.456) 0.98
B>(),5) 4.963 (0.325)—0.95 6.234 (0.455) 1.00
B°(\, o) 4.9634(0.325) 0:95 6.234 (0.455) 1.00
B>=(\,7) 2.310 (0.295) 0.18 2.858 (0.429) 0.26

Table 4: Performance of various methods for Poisson regression with p = 20
and n = 100, where values given in parentheses are the corresponding standard

erTrors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 10.555 (0.317) 1.00 | 10.786 (0.310) 1.00
True model MLE | 1.652 (0.145) 0.0 1.725 (0.145)  0.00
Stepwise AIC 7.057 (0.354)  0.92 7.185 (0.332)  0.94
Stepwise BIC 3.411 (0.268)  0.39 3.076 (0.257)  0.31
B>(X,0.1) 1.927 (0.162) 0.11 1.954 (0.163) 0.08
B>(X,0.27) 1.758 (0.151) 0.09 1.766 (0.145) 0.04
B>(X,0.71) 1.760 (0.151)  0.11 2.310 (0.281)  0.08
B> (), 1.88) 5.278 (0.399) 0.89 6.222 (0.396) 0.88
B>()\,5) 5.378 (0.389) 0.87 6.442 (0.390) 0.90
B>(X, 00) 5.378 (0.389)  0.97 6.442 (0.390)  0.90
B>, 7) 1.927 (0.162) 0.11 1.954 (0.163) 0.08
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Table 5: Performance of various methods for Poisson regression with p = 40
and n = 100, where values given in parentheses are the corresponding standard

EITors.
Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 22.497 (0.554) 1.00 | 22585 (0.519) 1.00
True model MLE | 1.652 (0.145) 0.0 1.725 (0.145)  0.00
Stepwise AIC 14.538 (0.585) 1.00 | 14.246 (0.501) 1.00
Stepwise BIC 5.364 (0.435)  0.58 5.011 (0.400)  0.55
B>(X,0.1) 1.968 (0.184) 0.13 2.001 (0.157) 0.11
B(X,0.27) 1.864 (0.166) 0.12 1.750 (0.145) 0.03
B(X,0.71) 1.938 (0.187) 0.15 2.905 (0.375) 0.22
B>(),1.88) 6.430 (0.409) 0.92 8.435 (0.451) 0.98
B>=()\,5) 7.098 (0.399) 1.00 8.481 (0.444) 1.00
B>(X, 00) 7.098 (0.399) 1.00 8.481 (0.444) 1.00
B> (N, 7) 1.968 (0.184) 0.13 1.982 (0.158) 0.10

Note that our objective funetion (3.1) ean approximate AIC/BIC when 7 is close

to zero. We are interested whether our Lg approach. works for the approximation of

exhausted AIC and BIC. We want to know whether AIC/BIC and our approach select
the same model and whether their AIC/BIC score ‘are close under small p cases. Table
6 and Table 7 shows the proportion that our approach well approximates the results of
AIC and BIC.

From the results, we can see that larger sample size leads to larger well-approximation

proportion.

6.2 Logistic Regression

For logistic regression simulation settings, the observation yq, s, . . . , ¥, are generated from

bernoulli distribution with probability p; satisfying the model
Pi
1 —p;
/ _
. axip) and 13 - (BOaﬁlv ce

The predictors x; are generated form ii.d. normal N(0,%,y,) distribution where ¥,

= Bo+ Bz + -+ Bpxig = w;ﬁ,

where x; = (z0, 71, - - ,3) are (p + 1)—dimension vectors.

denotes the correlation matrix of time series AR(1) model with each component expressed

by pl"=7l. We assign 3 = (0,3, —2,0,...,0) We do the same procedure as we do in Poisson
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Table 6: Approximations to AIC and BIC for Poisson regression with p = 6.

proportion of selecting | proportion of having | proportion of both
the same model the same estimates the events occur
AIC BIC AlIC BIC AIC BIC
n=50 7=0.5 0.02 0 0 0 0 0
7=0.1 0.26 0.63 0.10 0.55 0.10 0.55
7=0.01 | 0.41 0.46 0.41 0.46 0.41 0.46
7=0.001 | 0.05 0.04 0.05 0.04 0.05 0.04
n=100 7=0.5 0 0 0 0 0 0
7=0.1 0.05 0.27 0 0.26 0 0.26
7=0.01 | 0.45 0.78 0.44 0.78 0.44 0.78
7=0.001 | 0.14 0.05 0.14 0.05 0.14 0.05
n=200 7=0.5 0 0 0 0 0 0
7=0.1 0.03 0.10 0 0.08 0 0.08
7=0.01 | 0.67 0.85 0.64 0.85 0.64 0.85
7=0.001 | 0.43 0.26 043 0.26 0.43 0.26
n=500 7=0.5 0 0 0 0 0 0
7=0.1 0.02 0 0 0 0 0
7=0.01 | 0.76 0.91 0.59 0.91 0.59 0.91
7=0.001 | 0.55 0.89 0.55 0.89 0.55 0.89
Table 7: Approximations to AIC and BIC for Poisson regression with p = 10.
proportion of selecting | proportion of having | proportion of both
the same model the same estimates the events occur
AIC BIC AIC BIC AIC BIC
n=50 7=0.5 0 0 0 0 0 0
T=0.1 0.08 0.40 0.04 0.34 0.04 0.34
7=0.01 | 0.16 0.38 0.16 0.38 0.16 0.38
7=0.001 | 0.04 0.01 0.03 0 0.03 0
n=100 7=0.5 0 0 0 0 0 0
7=0.1 0 0.10 0 0.05 0 0.05
7=0.01 | 0.21 0.62 0.21 0.62 0.21 0.62
7=0.001 | 0.09 0.05 0.09 0.05 0.09 0.05
n=200 7=0.5 0 0 0 0 0 0
7=0.1 0 0.02 0 0.01 0 0.01
7=0.01 | 0.27 0.71 0.26 0.71 0.26 0.71
7=10.001 | 0.30 0.14 0.30 0.14 0.30 0.14
n=500 7 =0.5 0 0 0 0 0 0
7=0.1 0 0 0 0 0 0
7=0.01 | 0.52 0.81 0.31 0.81 0.31 0.81
7=0.001 | 0.24 0.71 0.24 0.71 0.24 0.71
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Table 8: Performance of various methods for logistic regression with p =
6 and n = 100, where values given in parentheses are the corresponding
standard errors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 4.906 (0.399) 1.00 | 4.133 (0.242) 1.00
True model MLE | 2.004 (0.204)  0.00 | 1.591 (0.128)  0.00
AIC 3.727 (0.352) 047 | 3.074 (0.234)  0.47
BIC 2.558 (0.255)  0.12 | 2.017 (0.187)  0.10
B>(X,0.1) 2.558 (0.255) 0.12 | 2.017 (0.187) 0.10
B>(),0.27) 2,561 (0.200)  0.11 | 2.017 (0.187)  0.10
B>(),0.71) 2.317 (0.236) 0.09 1.875 (0.188) 0.09
B><(), 1.88) 3.693 (0.256) 0.56 | 3.045 (0.183) 0.74
B=(\,5) 4.095 (0.312)  0.60 | 3.154 (0.166)  0.74
B(), 00) 4.108 (0.313) 0.60 | 3.154 (0.166) 0.74
B>(\,7) 2.558 (0.255) 012 | 2.017 (0.187) 0.10

regression. The KL loss for logistic regression is defined by

n

Di L—pi
Z{pilogT"”(l_pi)log A}-
Di I—p;

i=1

First we consider smaller dimension cases with'p = 6, p = 10 and p = 0, p = 0.5,
respectively. Table 8 and 9 presents the results of repeating 100 times of simulations and
show the KL risk together with its standard error. The error rate is estimated by the
proportion of how many times during the 100 simulations the methods chose the wrong
model. When determining the tuning parameters, we utilize the BIC score method and

choose the estimates with the smallest BIC score.

Compare to the results of Poisson simulations, the results of logistic regression are very
unstable. The reason can be seen from Figure 5 and Figure 6. We can see the patterns in
KL loss and BIC scores do not match. We choose our estimates with smallest BIC value,
but the estimates we choose does not achieve the point with the smallest loss. The most
possible reason might be the sample size is too small to estimate the coefficient precisely
and accurately. The response we have is binary data and it tells little information. Al-
though we can not choose the optimize solution, PML method still competes the other

methods. We can see the KL risk of PML is smaller than the others and the proportion
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Table 9: Performance of various methods for logistic regression with p =
10 and n = 100, where values given in parentheses are the corresponding

standard errors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate
Full model MLE | 9.528 (0.741) 1.00 | 8.442 (0.674) 1.00
True model MLE | 1.804 (0.210)  0.00 | 2.001 (0.310)  0.00
AIC 6.405 (0.505)  0.85 | 5.899 (0.574)  0.89
BIC 2.949 (0.288)  0.26 | 3.133 (0.388)  0.24
B>(X,0.1) 2.955 (0.307)  0.25  |3.092 (0.393)  0.22
B>(X,0.27) 2.680 (0.289)  0.18 | 2.849 (0.390)  0.14
B>(X,0.71) 2.139 (0.237)  0.12 | 2.359 (0.340)  0.18
B(),1.88) 4.449 (0.267) 0.82 | 4.706 (0.309) 0.82
B>(A,5) 4.408 (0.210) 075, | 4.831 (0.254)  0.80
B(), 00) 4.408.(0.210) 075 . | 4.985 (0.299) 0.80
B>(\, 7) 2.898 (0.286) 0.25. " £.3.092 (0.393) 0.22
< O
m ~

T
-5

log(A/7) log(A /1)

Figure 5: KL losses (left) and the corresponding BIC scores based on PML (right) for
logistic regression with p = 6 and n = 50.
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Figure 6: KL losses (left) and the corresponding BIC scores based on PML (right) for
logistic regression with p = 10 and n =_50.

of selecting the wrong model is smaller than its competitors. So we can still conclude our
method does better.

We are also interested in high dimensional logistic regression, then we try p = 20 and
p = 40. The method of exact AIC and BIC are replaced by stepwise AIC/BIC procedure.
Table 10 to 12 shows the simulation results:

We can see that the results in Table 10 to 12 our method can still give not bad
estimates with smaller risk and error rate than the others. Then we say our method is
effective.

Similarly, we are interested whether our Ly approach works for approximating the
exact AIC and BIC methods. Table 13 and Table 14 shows the proportion that our
approach well approximates the results of AIC and BIC.

6.3 Data Analysis : Low Birth Weight Data

We apply our method to a low birth weight dataset of Hosmer and Lemeshow (1989).
The data on 189 new born babies were collected at Baystate Medical Center, Springfield,
MA during 1986. The data contains a binary response that indicates whether a new born
baby has a low birth weight. The dataset also includes several risk factors associated

with low birth weights, which are used as explanatory variables. We apply the following
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Table 10: Performance of various methods for logistic regression with p = 20
and n = 100, where values given in parentheses are the corresponding standard

eITors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 83.310 (8.767)  1.00 | 42.549 (6.512) 1.00
True model MLE | 1.839 (0.209) 0.0 2.001 (0.309)  0.00
Stepwise AIC 75.063 (9.184)  0.98 | 33.391 (6.673)  0.98
Stepwise BIC 67.630 (9.637)  0.70 | 24.598 (6.801)  0.55
B>(X,0.1) 8.111 (1.527) 0.52 5.304 (0.595) 0.38
B>(X,0.27) 6.947 (1.757)  0.27 4.033 (0.519)  0.22
B>(X,0.71) 4777 (1.390)  0.25 2.690 (0.389)  0.34
B>(X,1.88) 10.523 (1.966)  0.73 6.690 (0.403)  0.88
B>(X,5) 11.642 (2.470)——0.65 8.335 (1.611)  0.84
B>(), 00) 6.624+(0.400) 0:64 6.733 (0.305) 0.84
B>\, 7) 9.297 (1.976) | = - 0.52 5.341 (0.594)  0.39

Table 11: Performance of various methods for logistic regression with p = 20
and n = 200, where values given in parentheses are the corresponding standard

errors.

Method p=20 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 15.659 (0.801) 1.00 | 13.712 (0.334) 1.00
True model MLE | 1.767 (0.127) 0.0 1.576 (0.090)  0.00
Stepwise AIC 9.683 (0.591)  0.93 8.632 (0.316)  0.96
Stepwise BIC 3.618 (0.243)  0.36 3.556 (0.217)  0.38
B>(X,0.1) 3.456 (0.239) 0.32 3.286 (0.202) 0.35
B>(X,0.27) 2.111 (0.164)  0.05 2.231 (0.169)  0.10
B>(X,0.71) 1.852 (0.128)  0.05 1.739 (0.093) 0.1
B>(X,1.88) 4.835 (0.224)  0.75 6.290 (0.319)  0.81
B>()\,5) 6.759 (0.182) 0.63 7.904 (0.275) 0.81
B>(X, 00) 6.759 (0.182) 0.63 7.904 (0.275) 0.81
B>, 7) 3.456 (0.239)  0.32 3.286 (0.202)  0.35
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Table 12: Performance of various methods for logistic regression with p = 40 and
n = 200, where values given in parentheses are the corresponding standard errors.

Method p=0 p=0.5
KL risk Error rate KL risk Error rate

Full model MLE | 124.839  (9.943) 1.00 | 48.942 (2.483) 1.00
True model MLE | 1.767  (0.127)  0.00 1.576  (0.090) 0.00
Stepwise AIC 93.931  (10.402) 1.00 | 26.552 (1.370) 1.00
Stepwise BIC 67.207 (10.908)  0.61 6.841 (0.472) 0.63
B(\,0.1) 6.228  (0.695) 0.43 5472 (0.402) 0.51
B>=(),0.27) 3.266  (0.600)  0.08 2.042  (0.157) 0.07
B=(X,0.71) 1.819  (0.127)  0.06 1.696  (0.094) 0.13
B>(),1.88) 7179 (0.298) 0.77 8.579 (0.382) 0.87
B=()\,5) 9.340  (0.198) 0.55 10.947  (0.291) 0.78
B(\, 0) 9.340  (0.198) 0.55 10.947  (0.291) 0.78
B>(\,7) 6.228 .(0.695) 0.43 5472 (0.402) 0.51

Table 13: Approximations to AlC-and-BIC for logistic regression with p = 6

proportion of selecting | proportion of having | proportion of both
the same model the same estimates the events occur
AIC BIC AIC BIC AIC BIC
n=10 T7=0.5 0.23 0.67 0.11 0.58 0.11 0.58
7=0.1 0.50 0.17 0.50 0.09 0.50 0.09
7=0.01 0 0 0 0 0 0
T =10.001 0 0 0 0 0 0
n=200 7=0.5 0.09 0.43 0.02 0.37 0.02 0.37
7=0.1 0.53 0.87 0.53 0.87 0.53 0.87
7=0.01 0 0 0 0 0 0
7 =10.001 0 0 0 0 0 0
n=500 7=0.5 0.01 0.14 0 0.12 0 0.12
7=0.1 0.93 0.99 0.56 0.99 0.56 0.99
7=0.01 0.26 0 0.24 0 0.24 0
7 =10.001 0 0 0 0 0 0
n=1000 7=0.5 0.01 0.09 0 0.09 0 0.09
7=0.1 0.54 0.97 0.29 0.97 0.29 0.97
7 =0.01 0.44 0 0.44 0 0.44 0
7 =10.001 0 0 0 0 0 0
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Table 14: Approximations to AIC and BIC for logistic regression with p = 10

proportion of selecting | proportion of having | proportion of both
the same model the same estimates the events occur
AIC BIC AlC BIC AIC BIC
n=10 7=0.5 0.09 0.43 0 0.33 0 0.33
7=0.1 0.27 0.18 0.27 0.09 0.17 0.09
7=0.01 0 0 0 0 0 0
7 =0.001 0 0 0 0 0 0
n=200 7=0.5 0.01 0.17 0 0.16 0 0.16
7=0.1 0.25 0.86 0.25 0.86 0.25 0.86
7=0.01 0 0 0 0 0 0
7 =0.001 0 0 0 0 0 0
n=500 7=0.5 0 0 0 0 0 0
7=0.1 0.82 0.91 0.33 0.91 0.33 0.91
7 =10.01 0.13 0 0.12 0 0.12 0
7 =0.001 0 0 0 0 0 0
n=1000 7=0.5 0 0.01 0 0.01 0 0.01
7=0.1 0.32 0.93 0.12 0.93 0.12 0.93
7=0.01 | 0.26 0 0.26 0 0.26 0
7 =0.001 0 0 0 0 0 0

model:

low = Py + B1 X age + Pz x 1wt + P53 xrace : white + B4 X race : black

+ B5 x smoke + Bg X ht + 57 X ui + Pg X ftv + By X ptl,

where age and [wt are standardized to have mean 0 and variance 1. The details of these
predictors are shown in Table 15 and the results of the selected model and the estimates
are presented in Table 16. The standard deviations of the estimated coefficients are
shown as “boot.std” in Table 16 using a parametric bootstrap method. We also show the

standard deviations “glm.std” obtained based on the selected model using the R function

13 7

glm”.

From the results shown in Table 16, we can see that AIC selected more variables
than the others. Obviously, the variables lwt and ptl are important risk factors of this
research. It is intuitive to see that the weight of the mothers and whether the mothers
were in premature labors directly influence the results of having a low birth weight baby.
One worth mentioning thing is that both AIC and BIC select the variable ht but PML
does not. Note that there are only 12 people over the 189 observations having history of
hypertension, so it is not easy to tell whether this variable is important. Another reason

we can see from the “glm.std” and “boot.std”. In contrast to the standard deviations
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Table 15: Variables in the low birth weight dataset.

Name Description

low indicator of birth weight less than 2.5kg

age mother’s age in years

lwt mother’s weight in pounds at last menstrual period
race  mothers race ("white”, "black”, ”other”)

smoke smoking status during pregnancy

ht history of hypertension

ui presence of uterine irritability

ftv number of physician visits during the first trimester
ptl number of previous premature labors

Table 16: Estimated parameters obtained from various methods.

Variable PML AIC BIC
A 0.0355
T 0.01

coeff  (boot.std) | coeff (glm.std) (boot.std) | coeff (glm.std) (boot.std
intercept 1116 (0.260) | -1.211  (0.279)  (0.399) | -1.225  (0.200)  (0.257)
age 0322 (0.274) | 0.000  (0.000)  (0.189) | 0.000  (0.000)  (0.083)
Twt 0.321  (0.278) | -0.431  (0.201)  (0.294) | -0.523  (0.207)  (0.341)
race:white 0.000  (0.069) |-1.011  (0.396)  (0.562) | 0.000  (0.000)  (0.089)
race:black 0.000 (0.171) 0.000  (0.000) (0.478) 0.000  (0.000) (0.223)
smoke 0.000 (0.127) 0.931  (0.399) (0.530) 0.000  (0.000) (0.122)
ht 0.000 (0.254) 1.848  (0.705) (1.123) 1.888  (0.720) (2.200)
ui 0.000  (0.274) | 0.739  (0.461)  (0.691) | 0.000  (0.000)  (0.250)
ftv 0.000  (0.110) | 0.000  (0.000)  (0.332) | 0.000  (0.000)  (0.192)
ptl 1.523 (0.733) 1.119  (0.451) (0.607) 1.407  (0.428) (0.679)
Size of model 3 6 3
Log-likelihood -107.181 -99.309 -105.131
BIC score 230.087 230.068 225.987
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obtained from parametric bootstrap, the standard deviations obtain by “glm” are much
smaller, which are somewhat expected, since they do not take model selection into account

and are expected to be underestimated.

7 Discussion

In the context of model selection under generalized linear models, we propose a PML
method that enables simultaneous model selection and parameter estimation. Despite
using a nonconvex penalty, the proposed estimates can be efficiently computed for high
dimensional data thanks to difference convex programming and the coordinate descent al-
gorithm. In addition, some numerical and theoretical results are provided to demonstrate

the effectiveness of the proposed method.
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Appendices

A Data analysis code

Description

Fit a generalized linear model with truncated L; penalty.

Usage

glmTLP(y,x,Jambda.min,maxtau,mintau,tol)

TLP-logistic(y,x,Jambda.min,maxtau,mintau,tol)

Arguments
y Response with binary output 0 and 1.
X Input matrix with dimension n x p for n observations and p predictors.

#

lambda.min Smallest value for Jambda path.

maxtau Largest thresholding parameter.
mintau Smallest thresholding parameter.
tol Convergence tolerance for the coordinate decent and iterated reweighted

penalized least square.

TLP-logistic <- function(y,x,lambda.min,maxtau,mintau,tol,return=False)

{

}

#

n <- nrow(x); p <- ncol(x)

up <- glmnet(x,y,family="binomial",thresh=1e-06,standardize=F,maxit=1e+6)$lambdal[1]

lambda <- 107 (c(0:100)*((log(up,10)-log(lambda.min,10))/100)+log(lambda.min,10))

lambda <- sort(c(0,lambda),decreasing=T); nlambda <- length(lambda)

lasso <- glmnet(x,y,family="binomial",lambda=lambda,thresh=1e-06,standardize=F ,maxit=1e+6)
est.lasso <- cbind(as.vector(lasso$a0),t(as.matrix(lasso$beta)))

tau <- c(107(c(0:4)*((log(maxtau,10)-log(mintau,10))/4)+ log(mintau,10)),100); q <- length(tau)
est.table <- array(0,c(nlambda, (p+1),q)); est.ch <- array(0,c(q, (p+1)))

case.lambda <- BIC.lambda <- rep(0,q); score <- array(0,c(nlambda,q))

for(j in 1:q)

{
est.table[,,j] <- lambda_path(y,x,est.lasso,lambda,taulj],tol)
CH <- lambda_choose_BIC(y,x,est.tablel,,j])
case <- CH$case; case.lambda[j] <- case; score[,j] <- CH$BIC
est.ch[j,] <- est.tablelcase,,j]; BIC.lambda[j] <- CH$min.BIC
}
case.tau <- which.min(BIC.lambda)
est.tau <- est.ch[case.tau,]; BIC.tau <- BIC.lambda[case.tau]

z <- list(est.tau=est.tau,BIC.tau=BIC.tau,est.lambda=est.ch,BIC.lambda=BIC.lambda,
lambda=lambda[case.lambda[case.taul],tau=taulcase.taul)

# Estimate the standard deviation of the coefficients using parametric bootstrap resampling

glmTLP <- function(y,x,lambda.min,maxtau,mintau,tol)

{
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p <- ncol(x); n <- nrow(x); k <- 100; table <- array(0,c(k,p+1))

temp <- TLP-logistic(y,x,lambda.min,maxtau,mintau,tol); est <- temp$est.tau
for(i in 1:k)
{

xx <- cbind(1,x)
prob <- exp(xx %*% est)/(1+exp(xx %*) est))
new.y <- rbinom(n,1,prob)
table[i,] <- TLP-logistic(new.y,x,lambda.min,maxtau,mintau,tol)$est.tau
}
std <- apply(table,2,sd)
list(estimates=est,std=std,BIC.score=temp$BIC.tau)
}

#

# Computing the estimates along lambda path for a fixed tau (logistic)

lambda_path <- function(Y,X,lasso,lambda.star,tau,tol)

{
nlambda <- length(lambda.star); p <- ncol(X); table <- rep(0, (p+1)); initial <- lassol[1,]
for(i in 1:nlambda)
{
est <- DiffConvProg(lasso[i,],initial,Y,X,lambda.star[i],tau,tol)$estimates
table <- rbind(table,est); initial <- est
}
table[(-1),]
}
#

# Choosing a suitable tuning parameter lambda with minimun BIC score (logistic)

lambda_choose_BIC <- function(Y,X,table)

{
nlambda <- nrow(table); n <- length(Y); total <- rep(0,nlambda)
for(i in 1:nlambda)
{
total[i] <- -2*Lfun(tablel[i,],Y,X) + log(n)*sum(table[i,-1]!=0)
}
case <- which.min(total)
list(estimates=table[case,],case=case,min.BIC=total[case] ,BIC=total)
}
#

# Difference convex programing (logistic)

DiffConvProg <- function(estD,estQ,Y,X,lambda,tau,tol)

{
p <- ncol(X); ans <- estD; check <- (-1); k <- 0
N.old <- (abs(ans[-1]) <= tau)
while(check != p)
{
est <- Quapprox(ans,estQ,Y,X,lambda,tau,tol)$estimates
N.new <- (abs(est[-1]) <= tau); check <- sum(N.old == N.new)
N.old <- N.new; ans <- est; k <- k+1
}
list(estimates=ans,times=k)
}
#

# Quadratic approximation of the log-likelihood function (logistic)

Quapprox <- function(estD,estQ,Y,X,lambda,tau,tol)

{
check <- T; k <- 0; ans <- estQ
while(check==T && k<250)
{

est <- CoorDecent(estD,ans,Y,X,lambda,tau,tol)$estimates
check <- max(abs(ans-est))> tol ; ans <- est; k <- k+1
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list(estimates=ans,times=k)

}

#
# Coordinate decent algorithm (logistic)

CoorDecent <- function(estD,estQ,Y,X,lambda,tau,tol)

{
A <- ¢cbind(1,X); Xans <- XestQ <- AYx*%estQ; ph <- exp(XestQ)/(1+exp(XestQ))
ph[XestQ >=100] <- 1; phlph <= (le-6)] <- 1le-6; phlph>=(1-(1e-6))] <- 1-(le-6)
w <- as.vector(ph*(1-ph)); Z <- XestQ + (Y-ph)/w; temp <- wx(A"2)
check <- T; k <- 0; ans <- est <- estQ
while(check==T && k<250)
{
Z0 <- Xans-ans[1]; est[1] <- sum(w*(Z-Z0))/sum(w)
for(j in 2:(p+1))
{
Xans <- Xans-A[,j-1]*(ans[j-1]-est[j-11); Zj <- Xans-A[,jl*ans[j]
est[j] <- soft((1/n)*sum(w*A[,jl*(Z-Zj)) ,lambda*(abs(estD[j])<=tau))/((1/n)*sum(temp[,jl))
¥
Xans <- Xans-A[,p+1]*(ans[p+1]-est[p+1])
check <- max(abs(ans-est))> tol; k <- k+1; ans <- est
}
list(estimates=ans,times=k)
}
#

# Soft-thresholding operator

soft <- function(z,r)

{
ans <- 0
if(z>0 && abs(z)>r) ans <- z-r
if (z<0 && abs(z)>r) ans <- z+r
ans

¥

#

# Log-likelihood function (logsitic)

Lfun <- function(beta,Y,X)

{
X <- cbind(1,X); Xbeta <- X %x*% beta
sum(Y* (Xbeta)-log(1+exp(Xbeta)))

}

#

# Exac AIC & BIC : Exausted computation (logistic)

verify=function(Y,X)

{
n <- length(Y); p <- ncol(X); index <- rep(c(T,F),each=2"(p-1))
for(k in 1 :(p-1))

{
temp <- rep(rep(c(T,F),each=2"(p-1-k)),2°k)
index <- rbind(index,temp)
}
index <- t(index); total <- 27p; score.aic <- score.bic <- rep(0,total)
for(i in 1:total)
{

subdata <- data.frame(Y)
for(j in 1:p)
{
if (index[i, j]1==T) subdata <- data.frame(subdata,X[,j])
}
para <- glm(Y~.,subdata,family=binomial)$coeff
subdata <- as.matrix(subdata)
L <- Lfun(para,subdatal,1],subdatal,-1]); check <- sum(para[-1]!=0)
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score.aic[i] <- -2%L+2*check; score.bic[i] <- -2xL+log(n)*check
}
case.aic <- which.min(score.aic); case.bic <- which.min(score.bic)
subdata <- data.frame(Y)
for(j in 1:p)

{
if (index[case.aic,j]==T) subdata <- data.frame(subdata,X[,j])
}
tempA <- glm(Y~.,subdata,family=binomial); temp.aic <- tempA$coeff; est.aic <- temp.aic[1]
i<-1
for(j in 1:p)
{
if (index[case.aic, j]==F) {est.aic <- c(est.aic,0)}
if (index[case.aic,j]==T) {i=i+1; est.aic <- c(est.aic,temp.aic[i])}
}

subdata <- data.frame(Y)
for(j in 1:p)

{
if (index[case.bic,j]1==T) subdata <- data.frame(subdata,X[,j])
}
tempB <- glm(Y~.,subdata,family=binomial); temp.bic <- tempB$coeff; est.bic <- temp.bic[1]
i<-1
for(j in 1:p)
{
if (index[case.bic, j]1==F) {est.bic <-ic(est.bic,0)}
if (index[case.bic,j]1==T) {i <- i+l; est.bic <-/c(est.bic,temp.bic[i])}
}

list(aic.model=index[case.aic,],estuAIC=est.aic,bic.model=index[case.bic,],est.BIC=est.bic,
coefficientA=(summary(tempA))$coeff,coefficientB=(summary(tempB))$coeff)

B Poisson simulation code

m <- 100; n <- 50; beta <- ¢(0,2,-1,rep(0,4))

tau.max <- 5; tau.min <- 0.1; tol <- le-6

tau <- c(107(c(0:4)*((log(tau.max,10)-log(tau.min,10))/4)-1),100)
p <- length(beta)-1; q <- length(tau); nlambda <- 1022

timel <- Sys.time()
num <- 1
est.mle <- est.true <- estchtau <- est.aic <- est.bic <- array(0,c(m,p+1))
estimate <- array(0,c(nlambda, (p+1),q,m))
estch <- array(0,c(q,p+1,m))
KL <- BIC.value <- array(0,c(nlambda,q,m))
KL.ch <- array(0,c(m,q))
KL.mle <- KL.true <- KL.aic <- KL.bic <- rep(0,m)
KL.chtau <- KL.aic <- KL.bic <- est.model <- rep(O,m)
case.tau <- value.tau <- rep(0,q)
while(num <= m)
{
x <- matrix(rnorm(p#*n,0,1),ncol=p); mean <- y <- rep(0,n)
xx <- cbind(1,x); mean <- exp(xx %*% beta); y <- rpois(n,mean)

# MLE of the full model :

data <- data.frame(y,x)

fit <- glm(y~.,data,family=poisson); est.mle[num,] <- fit$coeff

trueMLE <- glm(y~X1+X2,data,family=poisson)$coeff; est.truel[num,] <- c(trueMLE,rep(0,p-2))
KL.mle[num] <- KLloss(beta,est.mle[num,],y,x); KL.true[num] <- KLloss(beta,est.true[num,],y,x)

up <- glmnet(x,y,family="poisson",thresh=1e-06,standardize=F ,maxit=1e+6)$lambdal1]

lambda.star <- 107 (c(0:100)*((log(up,10)+3)/100)-3); lambda.star <- sort(c(0,lambda.star),decreasing=T)
lasso <- glmnet(x,y,family="poisson",lambda=lambda.star,thresh=1e-06,standardize=F,maxit=1e+6)

est.lasso <- cbind(as.vector(lasso$a0),t(as.matrix(lasso$beta)))

for(k in 1:q)
{
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# Construct estimates and KL loss tables :
estimatel[, ,k,num] <- lambda_path(y,x,est.lasso,lambda.star,taulk],tol)
KL[,k,num] <- loss(beta,estimate[,,k,num],y,x)

# Choose lambda :
CH <- lambda_choose_BIC(y,x,estimate[,,k,num])
case <- CH$case; case.taul[k] <- case
BIC.valuel[,k,num] <- CH$BIC; estch[k, ,num] <- estimate[case,,k,num]
value.tau[k] <- CH$min.BIC; KL.ch[num,k] <- KL[case,k,num]
}

# Choose lambda and tau simultaneously

h <- which.min(value.tau)

estchtau[num,] <- estimate[case.tau[h],,h,num]
KL.chtau[num] <- KL[case.tau[h],h,num]

# Exact AIC and BIC :

check <- verify(y,x)

est.aic[num,] <- check$est.AIC; KL.aic[num] <- KLloss(beta,check$est.AIC,y,x)
est.bic[num,] <- check$est.BIC; KL.bic[num] <- KLloss(beta,check$est.BIC,y,x)
num <- num + 1

}
mle <- apply(est.mle,2,mean); std.mle <- apply(est.mle,2,sd)
loss.mle <- mean(KL.mle); sdloss.mle <- sd(KL.mle)

true.mle <- apply(est.mle,2,mean); std.true <-vapply(est.mle,2,sd)
loss.true <- mean(KL.true); sdloss.true <- sd(KL.true)

est <- apply(estimate,c(1,2,3),mean); std.est <- apply(estimate,c(1,2,3),sd)
loss.est <- apply(KL,c(1,2),mean); sdloss.est <= apply(KL,c(1,2),sd)
bic.value <- apply(BIC.value,c(1,2),mean)

est.ch <- apply(estch,c(1,2),mean); std.estch <- apply(estch,c(1,2),sd)
loss.estch <- apply(KL.ch,2,mean); sdloss.estch <- apply(KL.ch,2,sd)
est.chtau <- apply(estchtau,2,mean); std.chtau <- apply(estchtau,2,sd)
loss.chtau <- mean(KL.chtau) ;sdloss.chtau <= sd(KL.chtau)

aic <- apply(est.aic,2,mean); std.aic <= apply(est.aic,2,sd)

loss.aic <- mean(KL.aic); sdloss.aic <= sd(KL.aic)

bic <- apply(est.bic,2,mean); std.bic <= apply(est.bic,2;sd)

loss.bic <- mean(KL.bic); sdloss.bic <- sd(KL.bic)

time2 <- Sys.time()

difftime(time2,timel,units="mins")

#

KL loss for a vector of estimates (poissomn)

KLloss <- function(beta,est,Y,X)

{
X <- ¢cbind(1,X); Xbeta <- X %*% beta; Xest <- X Yx% est
mu <- exp(Xbeta); muhat <- exp(Xest)
sum (mu* (Xbeta-Xest) - (mu-muhat) )

}

#

# KL loss for a matrix of estimates (poisson)

loss <- function(beta,table,Y,X)

{
X <- cbind(1,X); Xbeta <- XYx*¥%beta; Xtable <- X%x*%t(table)
mu <- exp(Xbeta); muhat <- exp(Xtable); D <- nrow(table); loss <- rep(0,D)
for(i in 1:D)
{
loss[i] <- sum(mu*(Xbeta-Xtable[,i])-(mu-muhat[,i]))
}
loss
}
#

# Computing the estimates along lambda path for a fixed tau (poisson)

lambda_path <- function(Y,X,lasso,lambda.star,tau,tol)
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nlambda <- length(lambda.star); p <- length(beta)-1; table <- rep(0, (p+1)); initial <- lassol[1,]
for(i in 1:nlambda)

{
est <- DiffConvProg(lasso[i,],initial,Y,X,lambda.star[i],tau,tol)$estimates
table <- rbind(table,est); initial <- est
}
table[(-1),]
}
#

# Choosing a suitable tuning parameter lambda with minimun BIC score (poisson)

lambda_choose_BIC <- function(Y,X,table)

{

nlambda <- nrow(table); n <- length(Y); total <- rep(0,nlambda)

for(i in 1:nlambda)

{

total[i] <- -2*Lfun(table[i,],Y,X) + log(n)*sum(table[i,-1]!=0)

}

case <- which.min(total)

list(estimates=table[case,],case=case,lambda.star=lambda.star[case] ,min.BIC=total [case] ,BIC=total)
}
#

# Difference convex programing (poisson)

DiffConvProg <- function(estD,estQ,Y,X,lambda;tau;tol)

{
p <- ncol(X); ans <- estD; check <- (-1); k <- 0
N.old <- (abs(ans[-1]) <= tau)
while(check != p)
{
est <- Quapprox(ans,estQ,Y,X,lambda,tau,tol)$estimates
N.new <- (abs(est[-1]) <= tau); check <- sum(N.old == N.new)
N.old <- N.new; ans <- est; k <= k+1
}
list(estimates=ans,times=k)
}
#

# Quadratic approximation of the log-likelihood function (poisson)

Quapprox <- function(estD,estQ,Y,X,lambda,tau,tol)

{
check <- T; k <- 0; ans <- estQ
while(check==T)
{
est <- CoorDecent(estD,ans,Y,X,lambda,tau,tol)$estimates
check <- max(abs(ans-est))> tol; ans <- est; k <- k+1
}
list(estimates=ans,times=k)
}
#

# Coordinate decent algorithm (poisson)

CoorDecent <- function(estD,estQ,Y,X,lambda,tau,tol)

{
A <- cbind(1,X); Xans <- XestQ <- AYx*%estQ
w <- muQ <- exp(XestQ); w <- as.vector(w); Z <- XestQ + (Y-muQ)/muQ; temp <- wkx(A"2)
check <- T; k <- 0; ans <- est <- estQ
while (check==T)
{

70 <- Xans-ans[1]; est[1] <- sum(w*(Z-Z0))/sum(w)
for(j in 2:(p+1))
{
Xans <- Xans-A[,j-1]*(ans[j-1]-est[j-1]1); 2Zj <- Xans-A[,jl*ans[j]
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est[j] <- soft((1/n)*sum(w*A[,jl*(Z-Zj)),lambdax(abs(estD[j])<=tau))/((1/n)*sum(templ,jl))

}
Xans <- Xans-A[,p+1]*(ans([p+1]-est[p+1])
check <- max(abs(ans-est))> tol; k <- k+1; ans <- est
}
list(estimates=ans,times=k)
}
#

# Log-likelihood function (poisson)

Lfun <- function(beta,Y,X)

{
X <- ¢cbind(1,X); Xbeta <- X %*% beta
sum(-exp(Xbeta) +Y* (Xbeta))

}

#

# Exac AIC & BIC : Exausted computation (poisson)

verify=function(Y,X)

{
n <- length(Y); p <- ncol(X); index <- rep(c(T,F),each=2"(p-1))
for(k in 1 :(p-1))
{
temp <- rep(rep(c(T,F),each=2"(p-1-k)),27k)
index <- rbind(index,temp)
}
index <- t(index); total <- 27p; score.aic <- .score.bic <- rep(0,total)
for(i in 1:total)
{
subdata <- data.frame(Y)
for(j in 1:p)
{
if (index[i, j1==T) subdata <- data.frame(subdata,X[;j])
¥
para <- glm(Y~.,subdata,family=poisson)$coeff
subdata <- as.matrix(subdata)
L <- Lfun(para,subdatal,1],subdatal,-1]); check <- sum(para[-1]!=0)
score.aic[i] <- -2*L+2*check; score.bic[i] <- -2xL+log(n)*check
}
case.aic <- which.min(score.aic); case.bic <- which.min(score.bic)
subdata <- data.frame(Y)
for(j in 1:p)
{
if (index[case.aic,j]==T) subdata <- data.frame(subdata,X[,j])
}
temp.aic <- glm(Y~.,subdata,family=poisson)$coeff; est.aic <- temp.aic[1]
i<-1
for(j in 1:p)
{
if (index[case.aic, j]1==F) {est.aic <- c(est.aic,0)}
if (index[case.aic,j]==T) {i=i+1; est.aic <- c(est.aic,temp.aic[i])}
}
subdata <- data.frame(Y)
for(j in 1:p)
{
if (index[case.bic,j]1==T) subdata <- data.frame(subdata,X[,j])
}
temp.bic <- glm(Y~.,subdata,family=poisson)$coeff; est.bic <- temp.bic[1]
i<-1
for(j in 1:p)
{
if (index [case.bic, j]1==F) {est.bic <- c(est.bic,0)}
if (index[case.bic,j]1==T) {i <- i+1; est.bic <- c(est.bic,temp.bic[i])}
}
list(aic.model=index[case.aic,],est.AIC=est.aic,bic.model=index[case.bic,],est.BIC=est.bic)
}
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C Logistic simulation code

m <- 100; n <- 100; beta <- ¢(0,3,-2,rep(0,4))

tau.max <- 5; tau.min <- 0.1; tol <- le-6

tau <- c(107(c(0:4)*((log(tau.max,10)-log(tau.min,10))/4)-1),100)
p <- length(beta)-1; g <- length(tau); nlambda <- 102

timel <- Sys.time()

num <- 1

est.mle <- est.true <- estchtau <- est.aic <- est.bic <- array(0,c(m,p+1))
estimate <- array(0,c(nlambda, (p+1),q,m))

estch <- array(0,c(q,p+1,m))

KL <- BIC.value <- array(0,c(nlambda,q,m))

KL.ch <- array(0,c(m,q))

KL.mle <- KL.true <- KL.aic <- KL.bic <- rep(0,m)
KL.chtau <- KL.aic <- KL.bic <- est.model <- rep(O,m)
case.tau <- value.tau <- rep(0,q)

while(num <= m)

{
x <- matrix(rnorm(p#*n,0,1),ncol=p); prob <- y <- rep(0,n)
xx <- cbind(1,x); prob <- exp(xx %*% beta)/(l+exp(xx %*% beta))
y <- rbinom(n,1,prob)
# MLE of the full model :
data <- data.frame(y,x)
fit <- glm(y~.,data,family=binomial); est.mle[num,] <= fit$coeff
trueMLE <- glm(y~X1+X2,data,family=binomial)$coeff; est.true[num,] <- c(trueMLE,rep(0,p-2))
KL.mle[num] <- KLloss(beta,est.mle[num,],y,x); KL.true [num] <- KLloss(beta,est.true[num,],y,x)
up <- glmnet(x,y,family="binomial",thresh=1e-06,standardize=F,maxit=1e+6)$lambdal[1]
lambda.star <- 10~ (c(0:100)*((logfup,10)+3)/100)-3); lambda.star <- sort(c(0,lambda.star),decreasing=T)
lasso <- glmnet(x,y,family="binomial',lambda=lambda.star,thresh=1e-06,standardize=F,maxit=1e+6)
est.lasso <- cbind(as.vector(lasso$a0),t(as.matrix(lasso$beta)))
for(k in 1:q)
{
# Construct estimates and KL loss tables :
estimatel[, ,k,num] <- lambda_path(y,x,est.lasso,lambda.star,taulk],tol)
KL[,k,num] <- loss(beta,estimatel[,,k,num],y,x)
# Choose lambda :
CH <- lambda_choose_BIC(y,x,estimatel[,,k,num])
case <- CH$case; case.taul[k] <- case
BIC.valuel,k,num] <- CH$BIC; estchlk, ,num] <- estimatel[case, ,k,num]
value.tau[k] <- CH$min.BIC; KL.ch[num,k] <- KL[case,k,num]
}
# Choose lambda and tau simultaneously
h <- which.min(value.tau)
estchtau[num,] <- estimate[case.tau[h],,h,num]
KL.chtau[num] <- KL[case.tau[h],h,num]
est.model [num] <- sum((estchtau[num,-1]!=0)==(betal[-1]!=0))==
# Exact AIC and BIC :
check <- verify(y,x)
est.aic[num,] <- check$est.AIC; KL.aic[num] <- KLloss(beta,check$est.AIC,y,x)
est.bic[num,] <- check$est.BIC; KL.bic[num] <- KLloss(beta,check$est.BIC,y,x)
num <- num + 1
}
mle <- apply(est.mle,2,mean); std.mle <- apply(est.mle,2,sd)
loss.mle <- mean(KL.mle); sdloss.mle <- sd(KL.mle)

true.mle <- apply(est.mle,2,mean); std.true <- apply(est.mle,2,sd)

loss.true <- mean(KL.true); sdloss.true <- sd(KL.true)

est <- apply(estimate,c(1,2,3),mean); std.est <- apply(estimate,c(1,2,3),sd)
loss.est <- apply(KL,c(1,2),mean); sdloss.est <- apply(KL,c(1,2),sd)
bic.value <- apply(BIC.value,c(1,2),mean)

est.ch <- apply(estch,c(1,2),mean); std.estch <- apply(estch,c(1,2),sd)
loss.estch <- apply(KL.ch,2,mean); sdloss.estch <- apply(KL.ch,2,sd)
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est.chtau <- apply(estchtau,2,mean) ; std.chtau <- apply(estchtau,2,sd)

loss.chtau <- mean(KL.chtau) ;sdloss.chtau <- sd(KL.chtau)
aic <- apply(est.aic,2,mean); std.aic <- apply(est.aic,2,sd)
loss.aic <- mean(KL.aic); sdloss.aic <- sd(KL.aic)

bic <- apply(est.bic,2,mean); std.bic <- apply(est.bic,2,sd)
loss.bic <- mean(KL.bic); sdloss.bic <- sd(KL.bic)

time2 <- Sys.time()

difftime(time2,timel,units="mins")

#

# KL loss for a vector of estimates (logistic)

KLloss <- function(beta,est,Y,X)

{
X <- cbind(1,X); Xbeta <- X %*J beta; Xest <- X %x*% est
P <- exp(Xbeta)/(1+exp(Xbeta)); Ph <- exp(Xest)/(1l+exp(Xest))
Ph[Xest >=100] <- 1; Ph[Ph <= (1le-6)] <- le-6; Ph[Ph>=(1-(1e-6))] <- 1-(le-6)
sum(P*log(P/Ph)+(1-P)*1log((1-P)/(1-Ph)))
}
#

# KL loss for a matrix of estimates (logistic)

loss <- function(beta,table,Y,X)

{
nlambda <- nrow(table); loss <- rep(Os;nlambda)
X <- ¢cbind(1,X); Xbeta <- X %*% beta; Xest <- table %*% t(X)
P <- exp(Xbeta)/(1+exp(Xbeta))
for(i in 1:nlambda)
{
Ph <- exp(Xest[i,])/(1+exp(Xest[i,]))
Ph[Xest >=100] <- 1; Ph[Ph <= (1le-6)] <- 1e-6; Ph[Ph>=(1-(1e-6))] <- 1-(1le-6)
loss[i] <- sum(P*log(P/Ph)+(1-P)*log((1-P)7/(1-Ph)))
}
loss
}
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