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SUMMARY

Observed by Tomlins et al."(2005), detection of the shift for outlier-
distribution is a new topic useful in gene expression analysis. Alternative
to the outlier mean test, we introduce a nonparametric statistic that can
simultaneously detect the location shift and variation shift in the outlier
distribution. There is an advantage, comparing with the outlier mean, that
the test based on this statistic requires no prediction of distributional
densities. Comparisons of this test statistic with some other methods in
terms of mean square errors for estimation of their population parameters
and powers for their abilities in detection of disease genes are simulated
and displayed. Finally, a simple real data analysis is also performed and
presented.



B 9

LHad > v EAA B ATAE R0 R E Y ML |
RS E LR G

PR R R HRE KR RS L p S Rondg E o iR WG
B b AT R R PR B A ] L L FAREY 4 o
R T » EET S PR REAFIAALE S RAEZLS - 2
PG » R AN BFORER o BT RA fRF AR i kTR
%%%{ﬁ%%éﬁﬁ%ﬁ@ﬁ’%%éﬁi%*%o

},’g\\f?;f”'“r”ﬁ Hile B @ B ens ;“3#?:}7 s BN g%gfhﬁi— X 5 iniPren
fo 2 o AP FABESATIWALG RP o RADRLLE
PRIL HHRENT AN T L S A E R R

)

{
Bt eI ECE o BT PR RS o g BT f et A AU

- » 2

PRI A PT L SRE B R BERA A A A 2 B e

=

MEad o FARRS D

Bt B E ST B AL > B R BRI -

oy R
R i A BR8P 7 %7

PEAR - &£ &



L PP i
FE R B e i
B B ettt iii
B B bbb bbbt b b h bbbttt b et et et et ettt ettt et et ettt et erns iv
1. INEFOAUCTION ... 1
2. Combined Outlier QUANTILY.........c..ccoviiieiciieccee e s 2
3. The Test based on Combined Outlier, Quantity ..........ccccoveviveienieriennn. 7

4. Power Comparison by Simulation and a Simple Real Data Analysis...10
5. APPENTIX oo ik essssssssesssse et ansssss otk ess et s st es bbb s s 12

RETEIEINCES ...t e e e e et e e e e e 22



Nonparametric Test based on Combined Variation

for Gene Expression Analysis

SUMMARY
Observed by Tomlins et al. (2005), detection of the shift for outlier-distribution
is a new topic useful in gene expression analysis. Alternative to the outlier
mean test, we introduce a nonparametric statistic that can simultaneously
detect the location shift and variation shift in the outlier distribution. There
is an advantage, comparing with the outlier mean, that the test based on
this statistic requires no prediction of distributional densities. Comparisons
of this test statistic with some other methods in terms of mean square errors
for estimation of their population parameters and powers for their abilities
in detection of disease genes are simulated and displayed. Finally, a simple

real data analysis is also performed and presented.

Key words: Gene expression analysis; Outlier mean; Outlier sum; t-test.

1. Introduction

DNA microarray technelogy, which simultaneously probes thousands of
gene expression profiles, has been successfully used in medical research for
disease classification (Agrawal et al. (2002); Alizadeh et al. (2000); Ohki et
al. (2005)); Sorlie et al. (2003)). Among theexisted techniques in differen-
tial genes detection, common statistical methods for two-group comparisons
such as t-test, are not appropriate due to a large number of genes expressions
and a limited number of subjects available. Several statistical approaches
have been proposed to identify those genes where only a subset of the sam-
ple genes has high expression. Among them, Tomlins et al. (2005) observed
that there is small number of outliers in samples of differential genes and
then introduced a method called cancer outlier profile analysis that identifies
outlier profiles by a statistic based on the median and the median absolute
deviation of a gene expression profile. With this observation, a sequence of
approaches then concentrated on detecting differential genes based on out-
lier samples while Tibshirani and Hastie (2007) and Wu (2007) suggested to

Typeset by ApS-TEX



use an outlier sum, the sum of all the gene expression values in the disease
group that are greater than a specified cutoff point. The common disad-
vantage of these techniques is that the distribution theory of the proposed
methods has not been discovered so that the distribution based p value can
not been applied. Recently Chen, Chen and Chan (2010) considered the
outlier mean (average of outlier sum) and developed its large sample theory
that allows us to formulate the p value based on its asymptotic distribution.
For evaluation, they performed simulation studies in a parametric study by
specifying the normal distribution. Although the outlier sum or outlier mean
is shown interesting in detection of influential genes through statistical anal-
ysis and some real data analysis, however, these techniques can detect only
the location shift in the outlier distribution, not the distributional variation.

We propose a statistic that can detect simultaneously the location shift
and variation shift of the outlier distribution that is generalized from the
combined control chart applied in quality control (see Cheng and Thaga
(2006) for a review). In Section 2, we present the reasons for the need for
the combined outlier quantity. In Section 3, we introduce an asymptotic dis-
tribution for the combined-outlier quantity and use this theory to introduce
a new test for gene expression analysis where a'discussion of power based
on this new test is given. In.Section 4, a comparison. between this test and a
test combined from the outlier mean and outlier variance is given. Finally,

the proofs of theorems are provided in Section 5.

2. Combined Outlier Quantity

In a general study that consists of n; subjects in the normal control
group and ny subjects in the disease group, suppose that there are m genes
to be investigated. Their gene expression can be represented as X;;,i =
1,2,...,n1,j = 1,...,m for normal control group and Y;;,i = 1,2,...,n9,j =
1,2, ...,m for the disease group. However, in our study, we restrict on one
gene with expression variable X for group of normal subject and expression
variable Y for group of disease subject where the distribution functions for
them are Fx and Fy respectively. We assume that we have observations

X;,t=1,...,n1 and Y;,2 =1, ..., ny for our study.
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An important observation by Tomlins et al. (2005) from a study of
prostate cancer, outlier genes are over-expressed only in a small number
of disease samples. With defining a cutoff point 7 determined from the
data of the variable X, Tibshirani and Hastie (2007) and Wu (2007) con-
sidered the sum of variables Y/s that are over higher cutoff point 7 given
by Y2, ViI(Y; > 7)) as a test statistic for detection if the disease group
distribution is different from the normal group distribution. Latter Chen,
Chen and Chan (2010) developed the asymptotic distribution for its aver-
age, called the outlier mean, Y,,; = (302, I(Y; > )"t Y02, YiI(Y; > )
for constructing a distribution based p value. In this paper, we choose
n = Fx'(v), the population yth quantile, and 7 = Fgl(fy), the yth empiri-
cal quantile from the sample X1, ..., X,,,. Then, the population type outlier

means for distributions of X and Y are
px,out = B(X|X > Fx'(7)) and pyoue = B(YY > Fx'(y))  (2.1)
and the population type outlier variances are
0% out = Var(X|X > Fg' (7)) and ay, g, = Var(Y|Y > Fy'(7)). (2.2)

The outlier mean based analysis is to test if 11y g, is statistically different
from px ou+ and the outlier variance based analysis is to test if a%,’out is
statistically different from o% ;-

For the following two distribution settings,

Normal : X ~ N(0,1),Y ~ N(0,0%),0 = 0.5
Mixed normal : X ~ N(0,1),Y ~ 0.9N(0,1) + 0.1N(#,0%),0 = 0.5

we choose parameter values of 6 such that either outlier means are equal,
i.e., WX out = My out, OT Outlier variances are equal, i.e., 0% ., = 0% .. In
Table 1, we display, for each distribution setting, two outlier means, two

outlier variances.

Table 1. Equal outlier means and equal outlier variances



4 KX, out Ky, out 0-%( out 0—)2’ out O—)Z’X
Normal

(I) y=10.85 1.313 1.554 1.554 0.194 0.125 0.125
v=20.9 1.465 1.754 1.754 0.169 0.112 0.112
v=10.95 1.695 2.062 2.062 0.138 0.096 0.096
(IT) v=10.85 1.799 1.554 1.866 0.194 0.194 0.292
v=10.9 1.861 1.754 1.977 0.169 0.169 0.218
v=10.95 2.012 2.062 2.210 0.138 0.138 0.159

Mixed Normal
(I) y=10.85 1.313 1.554 1.554 0.194 0.170 0.170
v=10.9 1.465 1.754 1.754 0.169 0.145 0.145
v=0.95 1.695 2.062 2.062 0.138 0.115 0.115
(IT) v=0.85 1.638 1.554 1.630 0.194 0.194 0.200
v=10.9 1.768 1.754 1.833 0.169 0.169 0.175
v =0.95 1.971 2.062 2.140 0.138 0.138 0.144

We have several comments for the results in Table 1:
We see that the outlier means px oyt and fiy,gy: for two three 4’s in (I)
and the outlier variances ag(’out and a?,,out for two three 4’s in (II) are
all identical. This indicates that for any underlying distribution, there is
chance that using outlier mean or outlier variance to test equality of two
distributions may not be appropriate.

We then consider a test that can simultaneously interpret the combined
change in both outlier mean py 4+ and outlier variance a%,,out. The com-

bined outlier quantity is defined as
0-}2/,X = E{(Y - /j’X,out)2|Y 2 F)?l(’)/)}

This combined outlier quantity when Y and X have the same distribution
is

0% out = B{UX = ix,ou)’|X 2 Fi'(7)}-
The aim of combined outlier quantity is to verify if 012,’ x and a%out are
identical. In Table 1, the values of combined outlier quantity 012/’ x in all
two distributions and different ’s are displayed. With a comparison of 012/’ X

and ag(,out in all situations, these two quantities are basically not identical.




This allows us to propose a combined outlier quantity based test for gene

expression analysis.

We further consider the following three types of distribution setting,

Type 1: X ~ N(0,1),Y ~ (x(10) + 6),
Type 2: X ~ t(10),Y ~ 0.9¢(10) + 0.1N (0, 0?),0 = 1,
Type 3: X ~ t(10),Y ~ 0.9t(10) + 0.1(x*(10) + 0).

and present the differnces ofoutlier means, outlier variances and combined

outlier quantity as

— _ 2 2 _ 2 2
Dfm = KUY ,out — KX, outs va = O0y,out — 0X,out> chomb =0y, x — 0X out

in Table 2.

Table 2. Comparison of outlier means and outlier variances



Dfm va chom
Type 1
0=0,v=0.85 3.594 25.86 38.78
v=10.9 4.340 27.38 46.22
v =0.95 5.480 27.16 57.20
0=2
v =0.85 4.444 35.10 54.85
v=10.9 5.392 36.60 65.67
v =0.95 6.853 34.83 81.80
=4
v =0.85 5.296 46.29 74.33
v=10.9 6.444 47.81 89.35
v =0.95 8.232 44.19 111.9
Type 2
0=2~v=0.85 0.222 0.167 0.216
v=10.9 0.205 0.122 0.164
v =0.95 0.153 0.044 0.067
=4
v =0.85 0.965 1.519 2.451
v=10.9 1.062 1.337 2.467
v =0.95 1118 0.953 2.203
Type 3
0=0,v=0.85 3.517 25.05 37.42
v=0.9 4.218 26.33 44.12
v =0.95 5.245 25.85 53.37
=2
v =0.85 4.368 3411 53.19
v=0.9 2.268 35.31 63.08
v =0.95 6.614 33.23 76.99
0=4
v =0.85 5.219 45.12 72.36
v=10.9 6.321 46.29 86.26
v =0.95 7.994 42.30 106.2

It is seen that the differences of combined outlier quantities are much more
larger than the other two differences. This probably indicates that the
combined outlier quantity may be more efficient in detecting the influential
genes.

The sample estimator of combined outlier quantity is defined as

SYX - Z[ ))] ' Z(Yz o ﬂX,out)zI(Yi 2 F)?l(’}/))v

=1
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where the sample outlier mean is fix our = [Yorty T(Xi > Fx'(7)]7' 00, X, I(X; >

Fx'(7)). Tt is also interesting to evaluate the efficiencies in estimating the
parameters of outlier mean, outlier variance and combined outlier quan-
tity. We denote the mean square errors for jix out, by,out; a?am, ‘712/,01“5 and
MSE,, ... MSEgg( p MSE -

0%  are, respectively, as MSE, o2
and M'S Eq2 . Under the following distribution setting, with n = 30,

X,out?

X1, ..., X, iid N(0,1), Y1, ..., Yy, iid 0.9N(0,1) 4+ 0.1N (g, 1)

we display these results in Table 3.

Table 3. MSE’s comparison for parameters’ estimations (ny = ngo = n =
30)

MSE, ... MSE,, .. MSEU%,(M MSEU%,,M MSEJ;X
p=1
v =0.85 0.0977 0.0996 0.0288 0.0426 0.1007
v=20.9 0.1235 0.1283 0.0283 0.0382 0.1269
v =0.95 0.2191 0.1788 0.0263 0.0335 0.1580
=3
v =0.85 0.0981 0.2419 0.0276 0.3354 1.2345
v=10.9 0.1240 0.2895 0.0306 0.3415 1.3698
v =0.95 0.2137 0.3587 0.0265 0.3270 1.8171

It is seen that the MSE’s for combined outlier quantity are relatively
larger than the other outlier mean and outlier variance quantity. This is due
to that a quantity that can simultaneously predict the difference in outlier
mean and outlier variance should be more difficult. The appropriateness of
the test based on combined outlier quantity needs to be justified through

the power comparisons.

3. The Test based on Combined Outlier Quantity

We here introduce some asymptotic properties of the combined outlier

quantity and then provide a test based on its asymptotic distribution.
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Theorem 3.1. (a)

1/2(51/)( — CTYX) = ”1_1/2 Zl:[M(’Y - I(X; < F)?l(’}’))) + Ao (X — p1x 0ut)
I(X0 2 B 0]+ 853 S (00— i) - 0310V 2 FE () + 0y (1)

where we let

— By (Fx ' (7) = pix.out)* fyr (Fx " (V) fx (Fx ' (7)) + 285 Fx ' () (yout —

>\2 = - 2ﬁ)_(1 (,U/Y,out - MX,out)
with By =P(Y > F5'(y)),Bx =1 —1.

(b) We have n2 (SYX 0% out) converges in distribution to N (0, v,) where

vy =y(1 = MA? + A2E[(X — px,out)PHX S Fx (7)) — 22X 221 — )

E[(X — px ou) [(X 2 EgH) HBFELYZ px 0ut) TV 2 F5' (1)} — ot

where A7 E{(Y — pix.out) *I(Y = g ()} <0% 5 =V arl(¥ — jix.ou)2Y >
Fe ()

From the above theorem, then under Hy : Fz = F,, we have the following,

Py (i (Srx — Tex r <z}%/¢

for z € R where ¢ represents the probability density function of N(0,1). If
we further have 6% y and 9y, respectively, estimates of 0% y and vy, we

may define an outlier combined test as

S2 . — 62
VALY XXy s (3.1)

~ iy

rejecting Hy if n
Vy

Having this outlier combined test, it is desired to verify the power perfor-

mance of this test when there exists distributional shift for the disease group

(X out)]



distribution. An approximate power with significant level a may be derived

as bellows
SYx — 0% .x
Ty :PFY{\/TLQ(T)
S2 o — o2 2oV Oy + /12(6% « — 02
ZPFY{\/H_z( Y, X — Y,X) > Y 2iyx,X Y,X)}
2

~P{Z > 20+ m—z(%» (3.2)

The test defined in (3.1) requires that estimator 9y is consistent for pa-

> 20}

rameter vy. There is difficulty in providing efficient density estimates in-
volved in A;. There is one way to get rid of this difficulty since a level «

test is restricted on size o when two distributions Fy and F'x are identical.

Corollary 3.2. When Y and X have the same distribution, we have, by
the fact that aX x = aX ok

1 2
/ (SYX O-g(,out)

B (FE() — px il /z X < F5* ()

n2

T B0 Y (X ixout)? = P L Fx' () + 0,(1).

=1

We have n2/ (5% x — 0% out) converges in distribution to N(0,vx) where

Ux :B)_(Z’Y(l - 7)(F);1(’Y) V) NX,out)4
+ BYEX = ix.0u) ' T(X > FZ' ()] = 0% ous-

Suppose that we have estimators &%7 y and 0x, respectively, for estima-

tion of 0% y and vx. We then can define the following test

2
1/2 SYX 0x,x

Combined test : rejecting Hy if n, > Zy- (3.3)

~

Ux
The interest by applying this test of (3.3) is that vx itself involves no density
point so that estimation of it is much easier. We can similarly derive the

approximate power for the above test as
2

S%,X —O0x x
mx = P{yimn(E ) 2 ), (3.4)
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Power representations (3.2) and (3.4) provide approximate powers based
on tests in (3.1) and (3.3). We display the powers of this test (3.1) in Table

4 when the underlying distributions for control group and disease group as

X ~ N(0,1) and ¥ ~ (1 — §)N(0, 1) + 6N (8, 1).

Table 4.Asymptotic power 7y for mixed normal distribution (n = 30)

=1 =3 =05 6 =10
0=0.1
v=0.8 0.078 0.281 0.281 0.541
v =0.85 0.074 0.247 0.414 0.534
0=0.2
v=0.8 0.098 0.422 0.682 0.825
v =0.85 0.090 0.345 0.618 0.810

Without simulation study, it is not known if (3.2) and (3.4) present ap-
propriate powers for these two tests. If they are actually in-appropriate,
the critical points z, require an adjustment. We will answer this in next

section.

4. Power Comparison by Simulation and a Simple Real Data Anal-
ysis

Two tasks will be done in this section. First, we will show by simulation
that the setting of critical peint z,-of (3.4) by approximation theory is too
conservative and we will study present the appropriate level « critical point.
Second, we will compare this outlier combined test with a combination of
t-test and F-test in terms of power. The classical t-test is designed to detect
a change in distributional mean and F-test is to detect a change in distribu-
tional variation. Hence, a combination of t-test and F-test is to detect the
shift in mean and variation simultaneously. It is then desired to compare
powers of these two combined tests.

A t and F combined test is
Yy - X
1

rejecting Hy if > lo/2(n1 4+ ng — 2)

N
2|
+

3|

53 !

> F(ng — 1,19 — 1) or <
or S2 /2(n1 ng — 1) or Fopa(na — Lng — 1)
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where S2 = Z?:ll(Xi—i)j;Z_:gﬁl(Yi—?f 8% = Ly (X — X)? and
SY = g it (Vi = Y)2

We consider a simulation with sample size n = ny = ns and replications
m = 100,000 to evaluate the power when X and Y are from the following

setting of distribution:
X ~N(0,1) and Y ~ 0.9N(0,1) + 0.1N(6,1).

In Tables 5 and 6, we display the simulated results for n = 50 and n = 100
when level of significance is 0.05 and in Table 7, we display the simulated
results for n = 50 when a = 0.1.

We have comments for the results in Tables 5, 6 and 7:
(a) Although the contamination percentage of outlier in mixed normal dis-
tribution is small as 0.1 the combined outlier quantity of cutoff with small
~’s are more powerful than it with larger v’s.
(b) The tests based on the combined outlier quantity of cutoff with small v’s
are relatively more powerful than the t and # combined test. This indicates
that simultaneously detect the shift-in outlier mean-and outlier variance is
appropriate when we choose v appropriately for the cutoff.
(¢) The power for the test based on the combined outlier quantity is increas-
ing when the contaminated location shift € is increasing.

We next consider that alternative-distribution has a constant shift as

Setting I : X ~ N(0,1) and Y ~ (1 —§)N(0,1) + 6{6}
Setting IT : X ~ N(0,1) and Y ~ (1 — §)¢(10) + 6{6}

We list the simulated results in Tables 8-11.

We consider a real data of control group and disease group that includes
22,283 genes. Considering the significance level o = 0.05, the constants z*’s
in table are the critical points designed to ensure that the sizes of the tests
and v’s are appropriately 0.05. Then, we evaluate the percentages of gene
numbers to be rejected for all the respective tests in all v’s. The computed

results are displayed in Table 12.
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Table 12. Percentages of genes larger than critical values (a = 0.05)

Outlier mean Outlier variance Combined q t-test
v=10.6 0(z* = 2.68) 0.1247(z* = 2.85) 0.1195(z* = 3.07) 0.0325
v = 0.65 0(z* = 2.46) 0.1263(z* = 2.97) 0.1168(z* = 3.28)
v =0.7 0(z* =2.21) 0.1286(z* = 3.11) 0.1165(z* = 3.51)
v =0.75 0(z* = 1.86) 0.1256(z* = 3.42) 0.1157(z* = 3.85)
v=0.8 0(z* = 1.54) 0.1242(z* = 3.74) 0.1092(z* = 4.35)
v =0.85 0(z* = 1.23) 0.1230(z* = 4.45) 0.1102(z* = 5.28)
v=10.9 0.00004(z* = 1.01) 0.1247(2* = 5.54) 0.1049(z* = 7.25)
v =0.95 0.0004(z* = 0.77) 0.1267(2* = 9.15) 0.1154(z* = 15.5)

We have several comments on the results in this table:

(a) It is seen that the outlier mean test performed poorly with very low
percentages of genes to be rejected. This shows that it can not detect any

gene as influentials.

(b) The tests based on outlier variance and outlier combined quantity are
with relatively moderate percentages of genes been claimed influential. Since
the genes are measured simultaneously from the same subjects, there is need
a simultaneous test that would remarkedly reduce the percentages of genes
to be claimed influetial. We'will not further pursuit this study. However, we
see that only outlier variance‘and.outlier combined quantity are with hope

to be able to find genes been influential.

5. Appendix
Three assumptions for the two sample outlier variance test are as follows.
ASSUMPTION 1: The limit v = limm,m_)oonl_lnz erists.

ASSUMPTION 2: Pobability density function fx of distribution Fx is
bounded away from zero in neighborhoods of F)}l(a) for o € (0,1) and the
population cutoff point 7.

ASSUMPTION 3: Probability density function fy is bounded away from
zero in a neighborhood of the population cutoff point 7.
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Proof of Theorem 3.1: First, we consider the following expansion

S (Vi = fixont) 1Y > P () = 3 (¥ = pxond) 210V = B (7))
=1 i=1
N9 R na
+ (ﬂX,out - /1')(,out)2 I(Yz Z F);l(’}/)) - 2(ﬂX,out - /j’X,Out) Z[(Y;
=1 1=1
- ,U/Y,out) + n2(/1'Y,out - MX,out)]I(Yi Z F);l(’}/)) (51)

From the theory for the outlier mean by Chen, Chen and Chan (2010), we
may see that n;/z(ﬂY,out - 'U/Y,out) = Op(1)7 ni/z(ﬂX,out - 'U/X,out) = Op(l)
and ng "% 312 (V; = py,ou) I(Yi > Fi' (7)) = Op(1). We then, from (5.1),

may re-write the combined quantity as

1/2
”2/ (Sizf,X - Uiz/,X)
n2

=ny? (> 1(Vi > Fil(v)»‘l{fj(m — tixou) Y[ > FH(y) + ny /°T)

=1

—1(Yi > Fx ()] + Z[(Yi = 1x0ut) =Gy x(Y; > Fx' (7))}

- 2(/1'Y,out - ,U/X,out)né/z (/A/'X,out 1 ///X,out) 2> Op(1)7 (52)

A

where we let T' = ni/z(FXl(fy) — FxX#))-
With Assumptions 2 and 3,,and techniques from Ruppert & Carroll
(1980) and Chen & Chiang (1996), we may see that

n2

ny 12D (Vi ixou)[1(Yi 2 F' () + ny /°T7) = 1Y > F* ()]
=1

= —(F5'(7) = px,ou) 2 fy (Fx (7)) T (5.3)

for any sequence T = O,(1).
We may also see from Chen, Chen and Chang (2010) that the outlier
mean fix oy+ has the following representation

12 (ixout — 1x0ut) = B Fx (1)ng 2 (v = I(X; < Fx'(v)))
=1
n1
+ A% 2 (X = pix o) I(Xs > () + 0p(1). (5.4)

=1
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The result of this theorem is induced by plugging (5.3) and (5.4) into (5.2)
and applying a representation for empirical quantile F )}l(fy) in Chen, Chen
and Chang (2010). O

v

\ Teo6




Table 5. Power comparison between t and F combined test and outlier

combined test (n = 50, « = 0.05)

by}

F

pt.’t}ﬂ'l

v=0.6.60=10
4 =0.65,0=10
v=07.60=10
v =0.75,0=10
v=08,0=10
v=0.8560=10
v =0.90=10
v =0.6
=1
=5
fl =10
= 0.65
fl =
=3
=5
i =10
¥=0.7
fl=1
g =
=5
fl =10
7= 0.7H
=1
fl=23
=5
fl =10
¥ =108
fl=1
f=:
=5
fl =10
v = 0.85
=1
A=
=5
fl =10
¥=10.9
=1
=5
fl =10

0.049(n" = 0.034)

0.092
0.539
0.921
0.994

0.049(z,- — 4.02)
0.049(z,- = 1.47)
0.049(z,- = 4.89)
0.049(z,- = 5.74)
0.0473(z0- = 6.83)
0.0493(z4- = 9.55)
0.0492(z,- = 14.53)

0.101
0.755
0.978
0.995

0.097
0.733
0.978
0.995

0.095
0.717
0.975
0.995

0.080
0.683
0.972
0.995

0.085
0.639
0.966
0.994

0.078
0.562
0.949
0.995

0.075
0.478
0.912
0.995
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Table 6. Power comparison between t and F combined test and outlier
combined test (n = 100, « = 0.05)

PiF Peom
v =0.6.0=10 0.049( " = 0.034) 0.049(z,- = 3.07)
v=0.65,0=10 0.049(z,- = 3.28)
v=07.60=0 0.049(z,- = 3.51)
v=0750=10 0.049(z,- = 3.85)
v=0.86=10 0.0484(z4s = 4.35)
v=10.8560=0 0.0494(z4- = 5.28)
v=10.9=10 0.0497(z4- = 7.25)
¥ = 0.6
=1 0.123 0.136
=3 (.821 0.949
=5 0.994 0.999
il =10 (.999 0.999
v = 0.65
=1 0.128
f=3 0.943
il =5 0.999
il =10 0.999
v=0.7
=1 0.121
f=3 0.933
=5 0,999
fl =10 0.999
¥ = 0.7
=1 0.116
=3 0.920
=5 0.999
il =10 0.999
v=10.8
=1 0.108
f=3 0.898
il =5 0.999
fl =10 0.999
¥ = (L.8)
=1 0.098
A =3 0.854
=5 0.998
fl =10 0.999
¥=0.9
=1 0.089
=3 0.763
=5 0.997
il =10 0.999
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Table 7. Power comparison between t and F combined test and outlier

combined test (n = 50, o = 0.1)

hF Peom
v =10.6,0=10 0.099{ * = 0.067) 0.099(z,. = 2.18)
= 0.65,8=10 0.099(z,. = 2.30)
v =0.7.0=10 0.099(z,- = 2.440)
v =0.75,8=10 0.099(z,- = 2.620)
v =0.8.0=10 0.0983(z,- = 2.93)
v=0.850=10 0.0993(z4- = 3.41)
v =0.90=10 0.1001({z4- = 4.41)
= 0.6
=1 (0.205 0.229
#=3 (0.887 0.975
=5 0.997 0.999
fl =10 (.999 0.999
v = 0.65
=1 0.217
=3 0.973
=15 0.999
fl =10 0.999
v=0.7
=1 0.212
f =3 0.968
=5 0.999
fl =10 0.999
v =075
=1 0.202
#=3 0.962
=5 0.999
fl =10 0.999
=08
=1 0.189
=3 0.950
=15 0.999
fl =10 0.999
v = (.85
= 0.180
B=3 0.931
=5 0.999
fl =10 0.999
¥=109
B = 0.166
#=3 .883
=5 0.999
fl =10 0.999
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Table 8. Power comparison between t and F combined test and outlier

combined test (n =50, = 0.05,6 = 0.1)

PiF

p(_' L

v=10.6.0=10
v =0.65.0=10
y=07.0=10
v =0.75.0=10
y=08.0=10
v=0.85,0=0
=096 =10
¥ =0.6
=3
=5
i =10
7 = 0.65
=3
=5
i =10
¥ =07
=3
=15
fl =10
7= 0.75
=3
=5
fl =10
¥ =08
=3
=5
fl =10
v = 0.85
=3
=15
i =10
v =109
=3
=5
i =10

0.049(a* = 0.031)

0.482
0.925
0.995

0.049(z,- — 4.02)
0.049 (20~ = 4.47)
0.049(z0- = 4.89)
0.049 (20~ = 5.74)
0.0473(20- = 6.83)
0.0493(24- = 9.55)
0.0492(z,- = 14.53)

0.717
0.984
0.996

0.685
0.984
0.995

0.658
0.982
0.995

0.608
0.978
().995

().554
0.974
().995

0.451
0.956
0.995

0.361
0.917
0.995



Table 9. Power comparison between t and F combined test and outlier

combined test (n = 50, = 0.05,6 = 0.2)

E

6 = 10

0=5
0 =10
v =0.75
0=3
f =

0 =10
v = 0.8
0=3
f =

=10
v = 0.85
g —
0=15
0 =10
=109
0=3
8 =

0 =10

0.049(a™ = 0.034)

0.883
0.999
0.999

I)C(}m
0.049 (2 - = 4.02)
0.049( 20~ = 4.47)
0.049(2,- = 4.89)

0.049(z,» = 5.74)

0.0473(24- = 6.83)
0.0493( 20+ = 9.55)
0.0492(z,- = 14.53)

0.939
0.999
0.999

0.913
0.999
0.999

0.887
0.999
1

0.824
0.999
0.999

0.753
0.999
1

0.605
0.995
0.999

0.467
0.975
0.999
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Table 10. Power comparison between t and F combined test and outlier

combined test (n =50, = 0.05,6 = 0.1)

Pt Peom
¥=0.6,0=0 0.049(c™ = 0.034) 0.049(z- = 4.02)
7 =10.65.0=0 0.049(z+ = 4.47)
¥=0.7,0=0 0.049(zn+ = 4.89)
v=0.75.0=0 0.049(z,+ = 5.74)
¥=0.8,0=0 0.0473(z4+ = 6.83)
7=10.85.0=0 0.0493(z4+ = 9.55)
v=0.90 =0 0.0492(z,~ = 14.53)
v = 0.6
0=3 0.620 0.772
0=5 0.951 0.987
0 =10 0.995 0.996
v = 0.65
0=3 0.739
0=5 0.986
=10 0.996
v =0.7
0=3 0.709
0=>5 0.986
0 =10 0.996
v =0.75
0=3 0.658
0=5 0.982
0 =10 0.996
v = 0.8
0=3 0.596
0=5 0.976
=10 0.996
v = 0.85
0=3 0.484
0=5 0.956
0= 10 0.996
=109
0=3 0.384
0=15 0.912
0 =10 0.995
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Table 11. Power comparison between t and F combined test and outlier

combined test (n =50, = 0.05,0 = 0.2)

DtF Peom
v =0.6,0=0 0.049(a™ = 0.034) 0.049(z,+ = 4.02)
v =10.65,0=10 0.049( 2+ = 4.47)
¥y=0.7,=0 0.049(z,+ = 4.89)
v=0.75,0=0 0.049(zn+ = 5.74)
¥=0.8,0=0 0.0473(z4+ = 6.83)
7= 0.85,0=0 0.0493(z4+ = 9.55)
v=0.90 =0 0.0492(z4+ = 14.53)
v = 0.6
0=3 0.923 0.950
0=5 0.999 0.999
0 =10 0.999 0.999
v = 0.65
0=3 0.925
0=15 0.999
=10 1
v =0.7
0 =: 0.900
0=15 0.999
=10 0.999
v =0.75
0 =: 0.842
0 = 0.999
=10 0.999
v =028
0=3 0.768
0= 0.999
=10 0.999
v = 0.85
0=3 0.617
0 = 0.995
0 =10 0.999
v =0.9
0 =: 0.473
0 = 0.973
0 = 10 0.999
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