國立交通大學

統計學研究所

碩士論文

R, S和S²管制圖在製程變異數需估計時 之修正管制界限 Adjusted Control Limits for R, S, and S²

Control Charts when Process Variance is Estimated

研究生:林洋德

指導教授:洪志真 教授

中華民國一百年六月

R, S和S²管制圖在製程變異數需估計時 之修正管制界限

Adjusted Control Limits for R, S, and S^2

Control Charts when Process Variance is Estimated

研 究 生:林洋德	Student : Yang-Te Lin
指導教授:洪志真	Advisor : Jyh-Jen Horng Shiau

Statistics

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年六月

R, $S n S^2$ 管制圖在製程變異數需估計時之修正管制界限

學生:林洋德

指導教授:洪志真 教授

國立交通大學統計學研究所碩士班

摘要

管制圖在統計製程管制上是非常基本而且被廣泛運用的工具。在實務上,因為鮮少 知道製程品質特性分配的真實參數,所以會將統計製程管制的執行分為階段一和階段二。 很明顯地,階段二的監控能力會深受階段一時參數估計得是否準確而影響,因而造成假 警報率和管制下的平均連串長度與設計管制圖時原先所期望的值,這在許多文獻中都有 被提到。然而,在參數為某參數估計式之條件下,將其平均連串長度視為一隨機變數, 我們可以將其期望值定義為整體平均連串長度。本研究針對R、S以及S²管制圖提供兩 種修正管制界限使得管制下的整體平均連串長度能夠符合我們預期的值;一種修正管制 界限調整了個別的假警報率,另一種修正管制界限則使得整體平均連串長度不偏。我們 計算出各種階段一管制下資料量和各種子群樣本大小之下的修正管制界限,將之列成表 格供業界查詢使用,並提供一個範例說明如何使用這些管制界限。

關鍵字:修華特管制圖,R管制圖,S管制圖,S²管制圖,修正管制界限,條件平均連 串長度,整體平均連串長度,整體警報率,平均連串長度不偏

Adjusted Control Limits for R, S, and S^2 Control Charts when Process Variance is Estimated

Student : Yang-Te Lin

Advisor: Jyh-Jen Horng Shiau

Institute of Statistics National Chiao Tung University

abstract

Control charts is a very basic and widely used tool for statistical process control. In practice, the true parameters of process quality characteristics are rarely known, so that the implementation of control charts is divided into phase I and phase II. Obviously, the estimation accuracy of parameters in phase I has a great impact on the monitoring capability in phase II, resulting in that the false-alarm rate and in-control average run length (ARL) are not the values the chart is designed for, as mentioned in the literature. By treating an ARL conditioned on the estimated parameter as a random variable, the overall ARL can be defined as its expectation. In this study, we propose adjusting the control limits for R, S and S^2 charts in order to control the overall in-control ARL at a prescribed level. Two approaches are considered, one adjusts the individual false-alarm rate, the other adjusts the control limits to make the control chart overall-ARL-unbiased. Adjusted control limits of R, S and S^2 charts for various sizes of phase I in-control data and subgroup sizes are tabulated for practitioners. An illustrative example is provided to demonstrate the usage of the proposed method in practice.

KEY WORDS: Shewhart control chart, *R* chart, *S* chart, *S*² chart, adjusted control limits, conditional ARL, overall ARL, overall alarm rate, ARL-unbiased

致謝

雨年的碩士生活很快就過去了,也為我的學生生涯畫下了一個句點。參加畢業典禮 不是第一次,但這一次的感受特別深刻....終於,人生要邁向下一個階段。鳳凰花的紅襯 著金黃的阿勃勒,這是只有在這炎熱的畢業季才看的到的美景,而這兩年來發生的一切 歷歷在目,寫著這篇致謝的同時,回憶彷彿那仲夏午後的雷雨聲,陣陣打在心坎裡。因 為交大,開始接觸健身房;因為班上的運動風氣,參加了好多體育活動一泳渡日月潭、 單車環島、統研盃籃球賽以及好多路跑活動,蒐集了好多活動紀念衫,還拿下了統研盃 籃球的亞軍。真的很意外,原以為是每天爆肝念書的研究所生活,竟然會認識這麼多有 趣的同學,過得這麼得多采多姿。雖然最後一段日子裡,趕畢業論文非常辛苦,但是有 了這些好同學一同共患難,總是可以苦中作樂。

關於論文,我要特別感謝我的指導教授洪志真老師,多虧了老師的指導,才能讓我 這個不用功的學生也能順利寫出這篇論文。也要謝謝陳志榮老師的糾正,以及另外兩位 口試委員鄭少為老師和黃榮臣老師的建議,讓這篇論文的內容可以更完整。還要特別感 謝我的女朋友兼同學楊捷文,這一路上有她的陪伴真好。最後要感謝我的母親,獨自一 人栽培我到碩士學歷,接下來就換我報答您了。多希望時間能停下來,快樂能留下來; 但時間不會等人,我們都要向前走。寫到這裡,窗外的雨也停了,兩後的天空特別的清 晰透明。

有多少的相逢就有多少了離別,儘管有諸多的不捨,但只要想到大家都在這蔚藍的 天空下共同朝著自己的目標邁進,就知道我們的故事還未完待續。最後我想說:我愛交 大!我愛統計所!我愛大家!感謝大家讓我在這裡獲得了邁向夢想的力量,期待未來再 相逢的那一天!

林洋德 謹誌於

交通大學統計學研究所

中華民國一百年七月

Ш

第一章 緒論	1
第二章 建構管制圖之準則	4
2.1 條件警報率以及條件 ARL	4
2.2 整體警報率以及整體 ARL	8
第三章 修正管制界限的方法	12
3.1 調整α的修正管制界限	12
3.2 整體 ARL 不偏的修正管制界限	15
3.3 綜合比較	19
3.4 程式操作的相關注意事項	20
第四章 範例說明	22
4.1 R 管制圖的修正管制界限範例	22
4.2 S 管制圖的修正管制界限範例	23
4.3 S^2 管制圖的修正管制界限範例	24
第五章 結論與未來研究方向	
附錄 A	
表 2.1 之 $L_{\alpha,n}$ 、 $U_{\alpha,n}$ 以及 $l(w, \alpha, n, \rho)$ 的推導	
附錄 B 1896	29
傳統 5 管制圖之 R 积土碼	2)
时就0°目的画之 R 程式码 调整 α 的修正 S 管制 圖 之 R 程式碼	30
整體 ARI 不偏的修正 S 管制圖 ⇒ R 程式碼	31
际规0 ° Ε № □ < ℝ 在式~~ 調整α的後正 S ² 签制圖 > R 积式匯	
熱止 $ C $	35
重超 R 管制圖之 matlah 程式碼	37
調整 α 的修正 R 管制 圖之 matlab 程式碼	39
整體 ARL 不偏的修正 R 管制圖之 matlab 程式碼	42
冬老文獻	49
/ /	
附圖	

表目錄

表 2.1	三種管制圖中各符號所對應的式子	50
表 2.2	校正係數 d_2 和 c_4	51
表 2.3	當 $\alpha = 0.0027$,三種傳統管制圖在不同 $n \cdot m \cdot \rho$ 之下的整體 ARL	52
表 2.4	當 $\alpha = 0.0027$,三種傳統管制圖在不同 $n \cdot m \cdot ho$ 之下的整體警報率	54
表 3.1	當α=0.0027,三種管制圖在不同n、m下的調整α修正管制界限因子	56
表 3.2	當α=0.0027,調整α的修正管制界限在各種情況下的整體 ARL	57
表 3.3	當α=0.0027,三種管制圖在不同n、m的整體ARL不偏之修正管制界限因	子.59
表 3.4	當α=0.0027,整體 ARL 不偏的修正管制界限在各種情況下的整體 ARL	60
表 4.1	前 25 筆樣本中,硬烤製程的流量寬度資料	62
表 4.2	後 20 筆樣本中,硬烤製程的流量寬度資料	63

圖目錄

第一章 緒論

管制圖 (control chart) 在統計製程管制 (Statistical Process Control; SPC) 上是非 常基本而且被廣泛運用的工具。例如,在品質特性 (quality characteristic) 近似於常態 分配 (normal distribution)的情況下,我們常用 \overline{X} 管制圖來監控製程平均,用R管制圖、 S管制圖或是 S^2 管制圖來監控製程變異;這些管制圖也是大部分接觸 SPC 的人最先學 習到的,在文獻上也不乏對於它們的研究。

在實務上,因為鮮少知道製程品質特性分配的真實參數(parameter),所以會將 SPC 的執行分為兩階段:

- 階段一;追溯階段 (phase I; retrospective phase): 搜集歷史資料(historical data)用以估計製程的未知參數。一般會先建構試用界限(trial limit)用以篩選出管制下(in control)的資料,再利用這些管制下的資料建構要用在 階段二的管制界限 (control limit)。
- 階段二;未來監控階段(phase II; prospective monitoring phase):
 利用階段一所建構的管制界限,逐筆監控新進資料;如果超出管制界限,則代表可 能有可歸屬原因(assignable causes)造成製程參數改變,那麼接下來可能要採取一 些校正動作(corrective action)。

很明顯地,在階段二的監控能力會深受階段一結果的影響;也就是說,參數估計得是否 準確,會嚴重影響階段二的假警報率(false-alarm rate)和檢定力(power)。如果是以平 均連串長度(Average Run Length; ARL)作為製程執行績效(performance)的衡量標 準,並將管制下的ARL 記為ARL0,製程參數偏移下的ARL 記為ARL1,則影響的分別 是 ARL0和 ARL1。而參數估計的準確性,則牽涉到階段一篩選管制下資料的方法、參 數估計量(estimator)的選擇,以及用來估計參數之歷史資料的多寡。

關於參數估計影響階段二的執行績效,在許多文獻上都有提到。Chen (1997) 認為

在參數未知的情況下,管制界限也包含了估計參數,所以它們也應該被視為隨機變數 (random variable),因此要考慮它們的隨機性(randomness)。在此情況下,連串長度 分配(run length distribution)不再是幾何分配(geometric distribution);為此他推導了 常制圖在參數估計時的連串長度分配之平均與標準差,以探討估計參數對製程執行績效 造成的影響。除此之外,Chen (1998)則更進一步推導了R、S和S²管制圖在參數估計 時的連串長度分配,並將它們繪製成圖和表格,可以由此更明確看出它們與幾何分配的 差別。Maravelakis *et al.*(2002)利用模擬來探討參數估計對S 管制圖和X 管制圖所造成 的影響,可以當作是 Chen (1998)的模擬驗證。Jensen *et al.*(2006)提供了有關這個主 題的文獻回顧,內容包含了修華特管制圖(Shewhart control chart)、指數加權移動平均 管制圖(EWMA chart)、累積和管制圖(CUSUM chart)、多變量管制圖(multivariate chart), 以及計數值管制圖(attribute chart)等。文中指出,在大多數情況下,參數估計會使得 ARLo比參數已知時還要低,同時ARL1比參數已知時還高。這篇文獻不只整理出各種常 見管制圖在參數估計之下所受到的影響,還提供了未來可能的研究方向。

一般執行統計檢定(statistical test)時,我們首先要控制住犯型一誤差(type I error) 1896 的機率 α ,此在 SPC 的範疇上稱之為假警報率;類似地,建構管制圖時則是希望能夠先 控制住 ARLo。在參數已知的情況下,因為連串長度分配是幾何分配,所以 ARLo 是假 警報率的倒數1/ α ;然而,從這些文獻中我們了解到,使用估計參數時,如果階段一的 歷史資料不夠多,會使得階段二變得非常沒有道理,因為連 ARLo都不符合期望的值1/ α 了,更不用去談 ARL1 如何了。事實上,不只是 ARLo不等於1/ α ,傳統管制界限在參 數估計下連假警報率都不等於預期的值 α ;而且因為連串長度分配在參數估計下不再是 幾何分配,所以 ARL 也不再是警報率(alarm rate,又稱 signal probability)的倒數,這 些性質在本文的第二章會有完整的說明。另外,雖然我們了解歷史資料應該是多多益善, 許多文章也都會提出對於歷史資料量的最低需求建議,但卻常常因為實作上的限制,導 致我們無法觀察更多的歷史資料;因此,一個很重要的議題是,當歷史資料有限的時候, 如何修正管制界限使得 ARLo能符合我們預期的值。例如,Champ et al. (2005)指出, 一旦使用了估計參數,那麼 T^2 管制圖的統計量就不再是 F 分配了;因此,該文獻利用

2

模擬的方式建構一個新的管制界限,使得 T^2 管制圖在參數估計時之整體(overall)ARL0, 在期望值(expectation)的意義(sense)下,也能夠符合預期的值。而本研究的重點在 於,當歷史資料有限的時候,如何修正管制界限使得 $R \cdot S \stackrel{>}{=} S \stackrel{>}{=} S \stackrel{>}{=} ARL0$ 能 符合我們預期的值 $1/\alpha$,詳見第三章。

另一方面, Pignatiello et al. (1995)提到了S管制圖會有平均連串長度偏差 (ARL-biased)的問題,即ARL0會比某些失控下的ARL1還低,這意味著當品質特性 的變異數有某種偏移時,會比不偏移時更難被偵測出來。於是他們調整了管制界限,使 其能夠在假警報率不變的情況下達到平均連串長度不偏(ARL-unbiased)。Zhang et al. (2005)指出S²管制圖也會有平均連串長度偏差的情況,並在假警報率不變的情況下, 針對S²管制圖的管制上下界做了調整,設計出平均連串長度不偏的S²管制圖。他們更 進一步建構了兩種準則:「最小面積準則(smallest area criterion; SAC)」和「兩點準則 (two points criterion; TPC)」,並利用這兩種準則建構了最佳化的上下界,稱之為最佳 設計(optimal design)。以上兩篇文獻雖然焦點並不是放在估計參數的影響,但其「設 計」與「平均連串長度不偏」的概念是本文 3.3 節的重點。在剩下的章節中,我們會在 第四章利用一個實例來說明如何使用第三章所建構的修正管制界限,並在第五章做一個 總結。

第二章 建構管制圖之準則

衡量管制圖的執行績效一般用兩種準則:警報率以及 ARL;為了考慮參數估計量的 隨機性,本章會將這兩種準則區分為「條件」以及「整體」兩種情況,分別代表參數估 計量已為觀察值(observation)以及參數估計量仍為隨機變數的情形。在 2.2 節的最後, 我們會列出一些表格以說明參數估計之下 R、 S和 S² 管制圖的警報率和 ARL,並在 2.3 節繪製出一些圖形以提供討論。

2.1 條件警報率(conditional alarm rate)以及條件 ARL(conditional ARL)

假設階段一共有*m* 個管制下的子群(subgroup),每個子群的樣本大小(sample size) 為*n*,以 X_{ij} 代表這些資料,其中下標*i*代表階段一之中第*i* 個管制下子群,*i*=1,2,...,*m*, 下標*j* 代表此子群中第*j* 個觀察值,*j*=1,2,...,*n*;另一方面,用 Y_{ij} 來代表階段二中我們 BBG 要監控的品質特性,下標*t*代表階段二第*t* 個抽出的子群,*t*=1,2,...,*i*,*j*=1,2,...,*n*。假設 階段一之管制下子群*i* 的資料 $X_{i1}, X_{i2}, ..., X_{in} \sim N(\mu_i, \sigma_0^2)$,而階段二子群*t* 的資料 $Y_{i1}, Y_{i2}, ..., Y_m \sim N(\mu_i, \sigma_i^2)$,且每個子群之間互相獨立。

以 R、 S 和 S² 管制圖為例:在 σ₀ 已知的情況下, R 管制圖和 S 管制圖的管制界限型 式為

$$UCL = U_{\alpha/2,n}\sigma_{0},$$

$$CL = k_{n}\sigma_{0},$$

$$LCL = L_{\alpha/2,n}\sigma_{0},$$
(2.1)

其中 $L_{\alpha/2,n}$ 和 $U_{\alpha/2,n}$ 是滿足我們設定之假警報率 α 的常數;也就是說,當階段二之某個子 群 t 為管制下時(i.e., $\sigma_t = \sigma_0$),其標準差(standard deviation)估計量 $\hat{\sigma}_t$ 必須滿足

$$\Pr\left(\hat{\sigma}_{t} < L_{\alpha/2,n}\sigma_{0} \text{ or } \hat{\sigma}_{t} > U_{\alpha/2,n}\sigma_{0}\right) = \alpha.$$
(2.2)

另外,當 $\sigma_t = \sigma_0$ 時,常數 k_n 滿足 $E(\hat{\sigma}_t) = k_n \sigma_0$ 。注意,為了方便說明,在此我們將 S^2 管制圖監控的統計量 $\hat{\sigma}_t^2$ 開根號為 $\hat{\sigma}_t$,它的管制界限也因此開根號變為式(2.1)的型式。

在 σ_0^2 未知的情況下,我們必須利用階段一的歷史資料來建構估計量 $\hat{\sigma}_0$,此時的管制界限則變為估計量

$$\widehat{\text{UCL}} = U_{\alpha/2,n} \hat{\sigma}_0,$$

$$\widehat{\text{CL}} = k_n \hat{\sigma}_0,$$

$$\widehat{\text{LCL}} = L_{\alpha/2,n} \hat{\sigma}_0.$$
(2.3)

我們套用 Chen (1998)的推導方式和符號,令 $\rho = \sigma_t / \sigma_0$ 用來表示子群 t 之標準差偏移 比例, $W = \hat{\sigma}_0 / \sigma_0$ 用來表示估計參數與真實參數的偏移比例。當 $\hat{\sigma}_0$ 已是觀察值時的警報 率為

$$\Pr(\hat{\sigma}_{t} < \widehat{LCL} \text{ or } \hat{\sigma}_{t} > \widehat{UCL} | W=w)$$

$$= \Pr(\hat{\sigma}_{t} < L_{\alpha/2,n} \hat{\sigma}_{0} | W=w) + \Pr(\hat{\sigma}_{t} > U_{\alpha/2,n} \hat{\sigma}_{0} | W=w)$$

$$= \Pr(\frac{\hat{\sigma}_{t}}{\rho \sigma_{0}} < L_{\alpha/2,n} \frac{\hat{\sigma}_{0}}{\rho \sigma_{0}} | \frac{\hat{\sigma}_{0}}{\sigma_{0}}=w) + \Pr(\frac{\hat{\sigma}_{t}}{\rho \sigma_{0}} > U_{\alpha/2,n} \frac{\hat{\sigma}_{0}}{\rho \sigma_{0}} | \frac{\hat{\sigma}_{0}}{\sigma_{0}}=w)$$

$$= \Pr(\frac{\hat{\sigma}_{t}}{\rho \sigma_{0}} < L_{\alpha/2,n} \frac{w}{\rho} | \frac{\hat{\sigma}_{0}}{\sigma_{0}}=w) + \Pr(\frac{\hat{\sigma}_{t}}{\rho \sigma_{0}} > U_{\alpha/2,n} \frac{w}{\rho} | \frac{\hat{\sigma}_{0}}{\sigma_{0}}=w).$$

因為 $\hat{\sigma}_0$ 和 $\hat{\sigma}_t$ 獨立,所以上式變為

$$\Pr\left(\frac{\hat{\sigma}_{t}}{\rho\sigma_{0}} < L_{\alpha/2,n}\frac{w}{\rho}\right) + \Pr\left(\frac{\hat{\sigma}_{t}}{\rho\sigma_{0}} > U_{\alpha/2,n}\frac{w}{\rho}\right) \equiv l(w;\alpha,n,\rho).$$
(2.4)

在不同的管制圖下, $\hat{\sigma}_t \cdot c_n \cdot L_{\alpha/2,n} \cdot U_{\alpha/2,n} \ln l(w;\alpha,n,\rho)$ 都會有所不同,詳見表 2.1; 這個表修正了 Chen (1998) 的表一之錯誤,其相關推導參見附錄 A。

表 2.1 中, \overline{R} 為階段一中m 個管制下子群的樣本全距(sample range)之平均, 即

$$\overline{R} = \frac{1}{m} \sum_{i=1}^{m} R_i = \frac{1}{m} \sum_{i=1}^{m} (X_{i(n)} - X_{i(1)}), \qquad (2.5)$$

其中 $X_{i(j)}$ 為階段一資料中子群i的第j順序統計量(order statistic); d_2 為一校正係數, 如同 Montgomery(2009,229頁)所提到,用來讓 \overline{R}/d_2 成為一個 σ_0 的不偏估計量(unbiased estimator),可視為一個樣本大小n的函數,被定義為

$$d_2 = d_2(n) = E(Z_{(n)} - Z_{(1)}), \qquad (2.6)$$

其中 $Z_{(j)}$ 為抽樣自標準常態分配N(0,1)且樣本大小為n之隨機樣本(random sample)中的第j順序統計量; R則是階段二中子群t的樣本全距

$$R_t = Y_{t(n)} - Y_{t(1)}, (2.7)$$

其中 $Y_{t(j)}$ 為階段二資料中子群t的第j順序統計量; $Q(\cdot;n)$ 為隨機抽樣自標準常態分配 N(0,1)且樣本大小為n之樣本全距 $Z_{(n)} - Z_{(1)}$ 的累積分配函數 $Q(x;n) = \Pr(Z_{(n)} - Z_{(1)} \leq x)$ ES $= n(n-1) \int_{0}^{x} \int_{-\infty}^{\infty} \{\Phi(v+z) - \Phi(z)\}^{n-2} \phi(v+z) \phi(z) dz dv, x > 0,$ (2.8) 其中 $\Phi(\cdot)$ 和 $\phi(\cdot)$ 分別是標準常態分配的累積分配函數 (cumulative distribution function; cdf) 和機率密度函數 (probability density function; pdf); 而 $q_{\alpha,n}$ 為 $Z_{(n)} - Z_{(1)}$ 之分配的 α

分位數 (quantile), 滿足 $Q(q_{\alpha n};n) = \alpha$ 。

再來看看 S 管制圖用到的符號, \overline{S} 為階段一中m 個管制下子群的樣本標準差 (sample standard deviation) $\{S_i\}_{i=1}^m$ 之平均, 即

$$\overline{S} = \frac{1}{m} \sum_{i=1}^{m} S_i = \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \frac{(X_{ij} - \overline{X}_i)^2}{n-1} \right)^{\frac{1}{2}}, \quad \not \pm \psi \quad \overline{X}_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij} ; \quad (2.9)$$

校正係數 c_4 用來讓 \overline{S}/c_4 成為一個 σ_0 的不偏估計量,如同 Montgomery (2009,252 頁) 所提到,被定義為

$$c_4 = c_4(n) = \left(\frac{2}{n-1}\right)^{\frac{1}{2}} \frac{\Gamma(n/2)}{\Gamma((n-1)/2)} ; \qquad (2.10)$$

S_t則是階段二中子群t的樣本標準差

$$S_{t} = \left(\sum_{j=1}^{n} \frac{(Y_{tj} - \overline{Y}_{t})^{2}}{n-1}\right)^{\frac{1}{2}}, \quad \not \pm \psi \quad \overline{Y}_{t} = \frac{1}{n} \sum_{j=1}^{n} Y_{tj} ; \qquad (2.11)$$

 $K(\cdot; n)$ 則代表自由度n的卡方分配之 cdf,而 $\chi^2_{\alpha,n}$ 為其 α 分位數,滿足 $K(\chi^2_{\alpha,n}; n) = \alpha$ 。 在表 2.2 我們提供了各種n所對應的校正係數 d_2 與 c_4 。

最後來看 S^2 管制圖的符號, $S_p \gtrsim S_p^2$ 的平方根, 而 S_p^2 為階段一中m 個管制下子群的 彙總樣本變異數 (pooled sample variance), 即

$$S_p^2 = \frac{1}{m} \sum_{i=1}^m S_i^2 = \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^n \frac{(X_{ij} - \bar{X}_i)^2}{n-1} .$$
(2.12)

舉例來說, 在 S^2 管制圖下, 取n = 5, $\alpha = 0.0027$, 若W = 0.9, 當品質特性的變異 數沒有偏移, 即 $\sigma_t = \sigma_0$ ($\rho = 1$)時, 根據式(2.4)計算假警報率為 $\Pr\left(\frac{\hat{\sigma}_t}{\rho\sigma_0} < L_{\alpha/2,n}\frac{w}{\rho}\right) + \Pr\left(\frac{\hat{\sigma}_t}{\rho\sigma_0 \log} > U_{\alpha/2,n}\frac{w}{\rho}\right)$ $= \Pr\left(\frac{(n-1)\hat{\sigma}_t^2}{\sigma_t^2} < (n-1)L_{\alpha/2,n}^2\frac{w^2}{\rho^2}\right) + \Pr\left(\frac{(n-1)\hat{\sigma}_t^2}{\sigma_t^2} > (n-1)U_{\alpha/2,n}^2\frac{w^2}{\rho^2}\right)$ $= \Pr\left(T < \chi^2_{0.00135,4} \cdot 0.9^2\right) + \Pr\left(T > \chi^2_{0.99865,4} \cdot 0.9^2\right)$ $\approx 0.0009 + 0.0061 = 0.007$ $\neq 0.0027,$

其中 $T \sim \chi_4^2$, $\chi_{q,n}^2$ 為自由度n之卡方分配的q分位數。若是在W = 1.1時,假警報率變為

$$\Pr(T < \chi^2_{0.00135,4} \cdot 1.1^2) + \Pr(T > \chi^2_{0.99865,4} \cdot 1.1^2)$$

≈ 0.00196 + 0.00025 = 0.00221
≠ 0.0027.

由此可知,除非W=1 (i.e., $\hat{\sigma}_0 = \sigma_0$),否則假警報率大多和預期不同。

事實上,我們在上面所計算的警報率應該被稱做條件警報率(conditional false-alarm rate),在 $\rho=1$ 時又可稱為條件假警報率, $\rho\neq1$ 時又可稱為條件檢定力。更一般性地,

為了討論各種 ρ 之下的條件警報率,我們可以將式(2.4)定義為條件警報率函數 (conditional alarm-rate function)

$$\gamma_w(\rho) = l(w, \alpha, n, \rho), \quad \rho > 0, \tag{2.13}$$

用來代表當 $\hat{\sigma}_0 / \sigma_0 = w \square \sigma_t / \sigma_0 = \rho$ 時的條件警報率。當品質特性的變異數沒有偏移時, $\rho = 1$,所以 $\gamma_w(1)$ 即代表W = w時的條件假警報率。

另一方面,在W = w的條件下, $\hat{\sigma}_0$ 已是觀察值,這表示管制界限也沒有了隨機性, 所以連串長度分配為幾何分配,則ARL 為警報率的倒數。因此我們可以定義條件ARL 函數 (conditional ARL function)為

$$ARL_{w}(\rho) = \frac{1}{l(w, \alpha, n, \rho)}, \quad \rho > 0.$$
 (2.14)

2.2 整體警報率 (overall alarm rate) 以及整體 ARL (overall ARL)

一般在建構管制圖時,我們首先應該要求 ARL0 能符合我們的期望。實作上,因為 $\hat{\sigma}_0$ 的隨機性,我們每次都會得到不一樣的條件假警報率,這是無法避免的狀況,因此不可能去要求每次得到的條件 ARL0 能夠符合預期;在這邊我們應該要求的是整體 ARL0 (overall ARL function)為

$$ARL(\rho) = \int_{0}^{\infty} ARL_{w}(\rho)h(w;m,n)dw = \int_{0}^{\infty} \frac{1}{l(w;\alpha,n,\rho)}h(w;m,n)dw, \quad \rho > 0, \qquad (2.15)$$

其中h(w,m,n)為W的pdf。式(2.15)在Chen(1998)之中被稱為非條件ARL函數(unconditional ARL function)。

對於 S^2 管制圖,隨機變數 $m(n-1)W^2 = m(n-1)S_p^2 / \sigma_0^2$ 之分配為自由度m(n-1)的卡方

分配 $\chi^2_{m(n-1)}$,所以W的 cdf 為

$$\Pr(W \le w) = \Pr(W^{2} \le w^{2}) = \Pr(\chi^{2}_{m(n-1)} \le m(n-1)w^{2})$$
$$= \int_{0}^{m(n-1)w^{2}} 2^{-\frac{m(n-1)}{2}} x^{\frac{m(n-1)}{2}-1} e^{-\frac{x}{2}} dx / \Gamma(m(n-1)/2), \quad w > 0; \quad (2.16)$$

則W的pdf為

$$h(w; m, n) = \frac{d}{dw} \Pr(W \le w)$$

= $2^{-\frac{m(n-1)}{2}} \left((m(n-1))w^2 \right)^{\frac{m(n-1)}{2}-1} e^{-\frac{m(n-1)w^2}{2}} \cdot \frac{d}{dw} \left(m(n-1)w^2 \right) / \Gamma(m(n-1)/2)$
= $2(\tau/2)^{\tau/2} w^{\tau-1} e^{-\tau w^2/2} / \Gamma(\tau/2), \quad \ddagger \psi \quad \tau = m(n-1) .$ (2.17)

而對於 $R \to S$ 管制圖, W 分別為 $\overline{R}/(d_2\sigma_0)$ 和 $\overline{S}/(c_4\sigma_0)$,其分配為已知機率分配的 m摺卷積 (*m*-fold convolution)。不幸的是,它們的式子過於複雜,難以利用數值積分去做 運算。對此,Patnaik (1950) 提供了一個利用型式為 $c\chi_v/\sqrt{v}$ 的隨機變數去近似 $\overline{R}/(d_2\sigma_0)$ 和 $\overline{S}/(c_4\sigma_0)$ 之分配的方法,其中 χ_v 為自由度 v之卡方分配隨機變數的平方根,而 c 和 v 的 計算方式如下:

對於 R 和 S 管制圖 , 分別取 M = Var
$$\left(\frac{\overline{R}}{d_2\sigma_0}\right) = \frac{v_2}{md_2^2}$$
 和 M = Var $\left(\frac{\overline{S}}{c_4\sigma_0}\right) = \frac{1-c_4^2}{mc_4^2}$, 其
中 $v_2 = Var(Z_{(n)} - Z_{(1)})$, 然後各自計算
 $r = (-2 + 2\sqrt{1 + 2M})^{-1}$,
 $t = M + \frac{1}{16r^3}$,
 $v = (-2 + 2\sqrt{1 + 2t})^{-1}$,
 $c = 1 + \frac{1}{4v} + \frac{1}{32v^2} - \frac{5}{128v^3}$.
(2.18)

由於v不一定是整數,所以這邊的 χ_v^2 實際上是被廣義的看成 $gamma(\frac{v}{2},2)$ 分配,而 $c\chi_v/\sqrt{v}$ 的pdf為

$$g(w;v,c) = \frac{2}{c} \frac{(v/2)^{v/2}}{\Gamma(v/2)} \left(\frac{w}{c}\right)^{v-1} \exp\left\{-\frac{v}{2} \left(\frac{w}{c}\right)^2\right\}, \qquad 0 < w < \infty.$$
(2.19)

類似地,我們定義整體警報率函數(overall alarm-rate function)為

$$\gamma(\rho) = \Pr\left(\hat{\sigma}_t < \widehat{\text{LCL}} \text{ or } \hat{\sigma}_t > \widehat{\text{UCL}}\right) = \int_0^\infty \gamma_w(\rho) h(w; m, n) dw, \quad \rho > 0.$$
(2.20)

取α=0.0027 (i.e., 1/α≈370.37), 對式(2.15)做數值積分我們可以計算出傳統管制

界限在各種 n、m、 ρ 的整體 ARL,如表 2.3。從表 2.3 可以發現到參數估計造成了整體 ARL0 比預期的 370.37 還要小,而且歷史資料量 m 越是小,整體 ARL0 就越小,與 370.37 的差距也就越大;另一方面,當階段二的變異數 σ_i^2 偏移到一定程度時,整體 ARL1 則比 參數已知的狀況還要大。所以,儘管參數估計使得整體 ARL0 比期望的值 370.37 小,但 整體 ARL1 卻沒有因此而比參數已知時還要小,這意味者參數估計時會比參數已知時更 容易發生假警報,但是檢定力卻沒有因此提升,這一點在 Jensen *et al.*(2006)也有提到。 除此之外,在 σ_i^2 只有小幅度的降低時,例如說 $\rho = 0.9$,整體 ARL1 反而比沒有偏移的 時候還要大,這代表著 σ_i^2 在小幅度降低時反而比管制下更不容易產生失控 (out of control) 警訊,這種狀況稱之為 ARL 偏差。

接著,為了討論整體警報率,對式(2.20)數值積分可以獲得表 2.4。不過在討論表 2.4 之前,我們要先強調,在參數估計的狀況下,討論 ARL 會比討論警報率更加合理。就 如同前言所提到的,Chen (1998)認為參數估計時管制界限應該被視為估計量,因此任 兩個子群的警報率並非獨立。以R、S和S²管制圖為例,任意子群的整體警報率為

$$\Pr(\hat{\sigma}_{t} < \widehat{LCL}) + \Pr(\hat{\sigma}_{t} > \widehat{UCL})$$

=
$$\Pr(\hat{\sigma}_{t} - L_{\alpha/2,n}\hat{\sigma}_{0} < 0) + \Pr(\hat{\sigma}_{t} - U_{\alpha/2,n}\hat{\sigma}_{0} > 0) ; \qquad (2.21)$$

然而當 $t_1 \neq t_2$, $\hat{\sigma}_{t_1}$ 、 $\hat{\sigma}_{t_2}$ 和 $\hat{\sigma}_0$ 相互獨立,所以

$$\operatorname{Cov}(\hat{\sigma}_{t_1} - L_{\alpha/2,n}\hat{\sigma}_0, \hat{\sigma}_{t_2} - L_{\alpha/2,n}\hat{\sigma}_0) = L^2_{\alpha/2,n} \cdot \operatorname{Var}(\hat{\sigma}_0) \neq 0.$$
(2.22)

所以在ρ固定的情況下,每個子群的整體警報率雖然一樣,但彼此間並不獨立,因此連 串長度分配不再是幾何分配,也因此整體 ARL 不再是整體警報率的倒數,故此二準則 並不相同,那麼我們必須在這兩種衡量管制圖績效的準則之中擇一使用。然而,在階段 二用管制圖依序監控一組組的子群時,就如同執行重複性統計檢定,此時整體警報率代 表的只是針對其中某個階段二子群做單一檢定時的警報率;當這些檢定不獨立時,控制 住整體假警報率並無法控制住整體 ARL0,所以我們的焦點應該放在整體 ARL 上。回來 看表 2.4,可以發現整體警報率確實不再是整體 ARL 的倒數,也可以發現到參數估計使 得整體假警報率上升但是整體檢定力卻下降,以及類似 ARL 偏差的情況。

另外,我們可以發現在使用估計參數的情況下,三種管制圖的整體 ARLo的差別不 大;當偏移到一定程度時,R管制圖的整體 ARLı較 $S n S^2$ 管制圖大,這種情況在n越 大的時候越明顯;而 $S n S^2$ 管制圖的表現非常接近,其中S管制圖的整體 ARLı在 σ_i^2 變 小時會比 S^2 管制圖略小一點,但在 σ_i^2 變大時會比 S^2 管制圖略大一點。另一方面,在參 數已知($m = \infty$)的情況下, $S n S^2$ 管制圖的整體表現會優於R管制圖,而 $S n S^2$ 管制 圖的表現在此時則是一模一樣,這是因為這兩種管制圖的差別只來自於參數估計方法的 不同。

為了更有概念,我們以 S^2 管制圖為例,取 $\alpha = 0.0027$ (i.e., $1/\alpha \approx 370.37$),繪製出 固定m改變n,以及固定n改變m之 ARL 函數圖形,以作為比較。圖 2.1 為參數已知時, 傳統 S^2 管制圖對應不同n的條件 ARL 函數 $ARL_{n=1}(\rho)$ 之圖形,由本圖可以了解到n越大 則檢定力越強,ARL 偏差的情況越小,這也是廣為人知的事情。圖 2.2 為m = 25時,傳 統 S^2 管制圖對應不同n的整體 ARL 函數 $ARL(\rho)$ 之圖形;由圖 2.2 可以發現,在參數估 計的情況下,也是n越大則整體檢定力越強,且參數估計時的整體 ARL0 並不是 370.37, 當 n越大則整體 ARL0和 370.37 的差距就越小,同時整體 ARL0 偏差的情況也越不明顯。 圖 2.3 則是將 n 固定為 5,傳統 S^2 管制圖對應不同 m 的整體 ARL 函數 $ARL(\rho)$ 之圖形, 我們可以從中發現到 m 越大則整體 ARL0越大,也越接近 370.37,而且整體 ARL 函數 的最大值也越大;另一方面,當 σ 偏移到一定程度之後,m越大則整體 ARL1越小。

第三章 修正管制界限的方法

為了使整體 ARL₀ 能夠符合我們所期望的值 $1/\alpha$,在本章我們提供兩種修正管制界限,分別是調整 α (adjusted α)以及整體 ARL 不偏 (overall ARL-unbiased)的修正管制界限。

3.1 調整 α 的修正管制界限

從表 2.3 的結果可以發現到傳統管制界限的整體 ARLo 比預期的1/α 還要低,所以 我們應該將管制界限調整得更寬以提高其整體 ARLo。調整的方法很多,最直覺簡單的 方式大概是將管制上下界與中心線 (center line)的間距等比例拉寬,也就是找出一個大 於1的常數c 使得管制界限變為

當然,這個常數 c 必須要使得整體 ARLo 為1/α。不過這樣的做法太過於粗糙,沒什麼利用到統計的性質。

另一種也很直覺的想法是,既然對應於 α 之傳統管制界限無法符合我們的需求,我 們可以重新尋找一個新的常數 α_{l} ,以 $\alpha_{l}/2$ 分位數和 $1-\alpha_{l}/2$ 分位數取代原本的 $\alpha/2$ 分 位數和 $1-\alpha/2$ 分位數,使其整體 ARL $_0$ 為 $1/\alpha$ 。也就是說, α_{l} 满足

$$\int_{0}^{\infty} \frac{1}{l(w;\alpha_{1},n,1)} h(w;m,n) dw = \frac{1}{\alpha}.$$
(3.1)

如此一來,新的管制界限保留了雙尾機率界限(two-sided probability limit)的分位數概 念在裡面,同時又能滿足我們所期望的整體 ARL0。也就是說,修正後的管制界限型式 如下:

$$\widehat{\text{UCL}} = U_{\alpha_1/2,n} \hat{\sigma}_0,$$

$$\widehat{\text{CL}} = k_n \hat{\sigma}_0,$$

$$\widehat{\text{LCL}} = L_{\alpha_1/2,n} \hat{\sigma}_0.$$
(3.2)

值得一提的是,如果我們看的是某個子群的整體警報率,可將其處理為以下的型式

$$\Pr\left(\hat{\sigma}_{t} < \widehat{LCL}\right) + \Pr\left(\hat{\sigma}_{t} > \widehat{UCL}\right)$$

$$= \Pr\left(\hat{\sigma}_{t} < L_{\alpha/2,n}\hat{\sigma}_{0}\right) + \Pr\left(\hat{\sigma}_{t} > U_{\alpha/2,n}\hat{\sigma}_{0}\right)$$

$$= \Pr\left(\frac{\hat{\sigma}_{t}^{2}}{\hat{\sigma}_{0}^{2}} < L_{\alpha/2,n}^{2}\right) + \Pr\left(\frac{\hat{\sigma}_{t}^{2}}{\hat{\sigma}_{0}^{2}} > U_{\alpha/2,n}^{2}\right).$$
(3.3)

對於 S^2 管制圖來說,假設子群 t 在管制下,則隨機變數 $\hat{\sigma}_t^2/\hat{\sigma}_0^2$ 是自由度n-1和m(n-1)的 F分配,所以若是要把整體假警報率控制在 α 的話,只需要把管制界限因子 $L_{\alpha/2,n}$ 和 $U_{\alpha/2,n}$ 的內容改為

$$\left(F_{\alpha/2,n-1,m(n-1)}\right)^{\frac{1}{2}} \neq \sigma \left(F_{1-\alpha/2,n-1,m(n-1)}\right)^{\frac{1}{2}},$$
 (3.4)

其中 $F_{\alpha,n-1,m(n-1)}$ 為自由度n-1和m(n-1)之F分配的 α 分位數;而對於S管制圖來說,隨機變數 $\overline{S}/(c_4\sigma_0)$ 的分配近似於隨機變數 $c\chi_v/\sqrt{v}$ 的分配(詳見 2.2 節),當子群t在管制下,則隨機變數

$$\frac{\hat{\sigma}_{t}^{2}}{\hat{\sigma}_{0}^{2}} = \frac{S_{t}^{2}}{\left(\overline{S} / c_{4}\right)^{2}} = \frac{S_{t}^{2} / \sigma_{0}^{2}}{\left(\overline{S} / (c_{4} \sigma_{0})\right)^{2}} \approx \frac{\chi_{n-1}^{2} / (n-1)}{c^{2} \chi_{v}^{2} / v} = \frac{1}{c^{2}} F_{n-1,v} , \qquad (3.5)$$

所以若是要把整體假警報率控制在 α 的話,只需要把管制界限因子 $L_{\alpha/2,n}$ 和 $U_{\alpha/2,n}$ 的內容 改為

$$\frac{1}{c} \left(F_{\alpha/2, n-1, m(n-1)} \right)^{\frac{1}{2}} \quad \text{fo} \quad \frac{1}{c} \left(F_{1-\alpha/2, n-1, m(n-1)} \right)^{\frac{1}{2}} \quad \circ \tag{3.6}$$

有鑑於此,雖然我們的準則是整體 ARLo而不是整體假警報率,但對於使用估計參數的 $S 和 S^2$ 管制圖來說,我們認為將管制界限因子的卡方分位數換成 F 分配的分位數還是比 較合理的。所以此小節中,我們對於 $S 和 S^2$ 管制圖的調整 α 修正管制界限因子選擇改用 F 分配的分位數來調整;而對於 R 管制圖來說,因為隨機變數 $\hat{\sigma}_t / \hat{\sigma}_0$ 沒有廣為人知的分 配,所以對於 R 管制圖的修正管制界限因子我們仍使用原先的分位數 q_{an}來調整。

根據式(3.1),利用以下演算法可以由二分法(bisection)找出 α_1 : 步驟一:設定 α 、常數n、m以及允差(tolerance) ε ,並根據表 2.1 定義函數h(w;m,n)。 步驟二:設定初始值 α_L 和 α_U ,它們分別代表著之後用二分法搜尋 α_1 的下界和上界。 步驟三:取 $\alpha_1 \leftarrow (\alpha_L + \alpha_U)/2$,按照表 2.1 計算 $L_{\alpha_1/2,n}$ 和 $U_{\alpha_1/2,n}$,並定義函數 $l(w;\alpha_1,n,\rho)$ 。

步驟四:利用數值積分計算 $ARL(1) = \int_0^\infty \frac{1}{l(w,\alpha_1,n,1)} h(w,m,n) dw$ 。

始值設為0和α。

步驟五:如果 $|ARL(1)-1/\alpha| < \varepsilon$,則此 α_1 即為所求;否則,執行步驟六。

步驟六:當 $ARL(1) > 1/\alpha$,表示這個 α_l 決定的管制界限太寬,則 α_l 必須大一點,所以重 設 $\alpha_L \leftarrow \alpha_l$,然後重複步驟三到五;反之,當 $ARL(1) < 1/\alpha$,表示這個 α_l 決定 的管制界限太窄,則 α_l 必須小一點,所以重設 $\alpha_U \leftarrow \alpha_l$,然後重複步驟三到五。 使用二分法搜尋時,欲求之 α_l 要落在 α_L 和 α_U 之間;也就是說, α_L 和 α_U 必須满足 $\int_0^{\infty} \frac{1}{l(w;\alpha_L,n,1)} h(w;m,n) dw > \frac{1}{\alpha}$ 和 $\int_0^{\infty} \frac{1}{l(w;\alpha_U,n,1)} h(w;m,n) dw < \frac{1}{\alpha}$ 。(3.7) 對於 S 和 S²管制圖, α_l 會大於 α ,所以建議將 α_L 的初始值設為 α ,而 α_U 初始值設定 為1.5 α 一般來說就已經足夠大;對於 R 管制圖來說, $0 < \alpha_1 < \alpha$,所以可將 α_L 和 α_U 的初

表 3.1 提供了三種管制圖在不同的n、m之下, α_{f} 所對應之修正管制界限因子;其 中 $m = \infty$ 代表參數已知的情況,此時管制界限不需調整即可滿足 ARLo 等於 $1/\alpha$,所以 $m = \infty$ 所對應到的管制界限因子就相當於傳統管制界限因子。當固定n時,m越大則 α_{f} 就越接近 α ,代表m越大則調整的幅度就越小,這很符合我們的直覺。另外,表 3.2 列 出對不同的n和m之下,此修正管制界限在不同的偏移 ρ 時所對應的整體 ARL,我們可 以從中發現,在利用此修正管制界限控制住整體 ARL0之後, $S n S^2$ 管制圖在大部分情況下的整體 ARL1都勝過 R 管制圖;只有在n n m較小(例如說n = 5, m = 25)且 σ_t^2 小幅度變大時, R 管制圖的整體 ARL1才能夠比 $S n S^2$ 管制圖略小一點,所以建議使用這種修正管制界限時,選擇S或 S^2 管制圖。另一方面,如果是 $S n S^2$ 管制圖兩者做比較, 那麼S 管制圖在 σ_t^2 變小時整體 ARL1較小, 而 S^2 管制圖在 σ_t^2 變大時整體 ARL1較小。

3.2 整體 ARL 不偏的修正管制界限

Pignatiello et al. (1995)和 Zhang et al. (2005)分別提到了S 管制圖和S² 管制圖會 有 ARL 偏差的問題。在做統計檢定的時候,我們往往也希望檢定力能夠大於犯型一誤 差之機率,並稱滿足此條件之檢定為不偏檢定 (unbiased test);所以在建構管制圖的時 候,要求整體 ARL 不偏也是很合理的。對於R、S和S² 管制圖來說,要建構這樣的管 制界限,一定不再可能維持相等尾端 (equal-tail)機率,所以這種情況下的管制界限之 型式為

$$\widehat{\text{UCL}} = U_{\alpha_3,n} \hat{\sigma}_0,$$

$$\widehat{\text{CL}} = k_n \hat{\sigma}_0,$$

$$\widehat{\text{LCL}} = L_{\alpha_3,n} \hat{\sigma}_0,$$
(3.8)

由於整體 ARL 不偏的修正管制界限是唯一的,所以對於 S 和 S² 管制圖來說,此時不管 是調整 F 分配的分位數或卡方分配的分位數得到的管制界限都是一樣的,只差在兩種分 位數所對應到的 α₂和 α₃ 會不一樣;因此,為了方便跟傳統方法做比較,在此我們仍使 用原本的卡方分位數作為管制界限因子。此時整體 ARL 函數變為

$$ARL(\rho) = \int_0^\infty \frac{1}{l_2(w;\alpha_2,n,\rho) + l_3(w;\alpha_3,n,\rho)} h(w;m,n) dw .$$
(3.9)

其中 $l_2(w,\alpha_2,n,\rho)$ 和 $l_3(w,\alpha_3,n,\rho)$ 分別為對應管制界限因子 $L_{\alpha_2,n}$ 和 $U_{\alpha_3,n}$ 的單邊(one-sided) 條件警報率,滿足

$$l_2(w;\alpha_2,n,\rho) = \Pr(\frac{\hat{\sigma}_t}{\rho\sigma_0} < L_{\alpha_2,n}\frac{w}{\rho}) \quad \text{fo} \quad l_3(w;\alpha_3,n,\rho) = \Pr(\frac{\hat{\sigma}_t}{\rho\sigma_0} > U_{\alpha_3,n}\frac{w}{\rho}) \quad ,$$

它們對應於R, $S \to S^2$ 管制圖的式子列於表 2.1。然而,要求整體 ARL 不偏,相當於要求 $ARL(\rho)$ 的極大值發生在 $\rho=1$ 。觀察圖 2.2 和圖 2.3 之後我們可以發現 S^2 管制圖的 $ARL(\rho)$ 只有一個區域極大值 (local maximum),且該點斜率為 0,而這種情況在 R 管制 圖和 S 管制圖也是一樣;換句話說,若 $ARL'(\rho^*)=0$,則極大值發生在 ρ^* ,因此要求整 體 ARL 不偏相當於要求 ARL'(1)=0。而

$$ARL'(\rho) = \frac{d}{d\rho} \int_0^\infty \frac{1}{l_2(w; \alpha_2, n, \rho) + l_3(w; \alpha_3, n, \rho)} h(w; m, n) dw$$

=
$$\int_0^\infty \frac{d}{d\rho} \left(\frac{1}{l_2(w; \alpha_2, n, \rho) + l_3(w; \alpha_3, n, \rho)} \right) h(w; m, n) dw, \qquad (3.10)$$

其中

$$\frac{d}{d\rho} \left(\frac{1}{l_2(w;\alpha_2,n,\rho) + l_3(w;\alpha_3,n,\rho)} \right)^{E} S = \frac{-1}{\left(l_2(w;\alpha_2,n,\rho) + l_3(w;\alpha_3,n,\rho)\right)^2} \cdot \left(\frac{d}{d\rho} l_2(w;\alpha_2,n,\rho) + \frac{d}{d\rho} l_3(w;\alpha_3,n,\rho) \right). \quad (3.11)$$
對於 S 和 S² 管制圖 ,

$$\frac{d}{d\rho}l_{2}(w;\alpha_{2},n,\rho) = \frac{d}{d\rho}K((n-1)(\frac{L_{\alpha_{2},n}w}{\rho})^{2};n-1)$$

$$= K'((n-1)(\frac{L_{\alpha_{2},n}w}{\rho})^{2};n-1)\cdot\frac{d}{d\rho}\left((n-1)(\frac{L_{\alpha_{2},n}w}{\rho})^{2}\right)$$

$$= K'(\chi^{2}_{\alpha_{2},n-1}(\frac{w}{\rho})^{2};n-1)\cdot\chi^{2}_{\alpha_{2},n-1}\cdot w^{2}\left(-\frac{2}{\rho^{3}}\right), \qquad (3.12)$$

其中 $K'(\cdot; n-1)$ 為自由度n-1的卡方分配之 pdf,相當於 gamma 分配 gamma($\frac{n-1}{2}, 2$)的 pdf;同理,

$$\frac{d}{d\rho}l_{3}(w;\alpha_{3},n,\rho) = K'(\chi^{2}_{1-\alpha_{3},n-1}(\frac{w}{\rho})^{2};n-1)\cdot\chi^{2}_{1-\alpha_{3},n-1}\cdot w^{2}\left(\frac{2}{\rho^{3}}\right).$$
(3.13)

對於R管制圖,

$$\frac{d}{d\rho}l_{2}(w;\alpha_{2},n,\rho) = \frac{d}{d\rho}Q(q_{\alpha_{2},n}w/\rho;n)$$

$$= Q'(q_{\alpha_{2},n}w/\rho;n)\cdot\frac{d}{d\rho}(q_{\alpha_{2},n}w/\rho)$$

$$= Q'(q_{\alpha_{2},n}w/\rho;n)\cdot\left(-\frac{q_{\alpha_{2},n}w}{\rho^{2}}\right), \qquad (3.14)$$

其中Q'(·; n)為抽樣自標準常態分配,樣本大小為n的樣本全距之pdf,即

$$Q'(x;n) = n(n-1) \int_{-\infty}^{\infty} \{\Phi(x+z) - \Phi(z)\}^{n-2} \phi(x+z) \phi(z) dz, \quad x > 0; \qquad (3.15)$$

同理,

$$\frac{d}{d\rho}l_3(w;\alpha_3,n,\rho) = Q'(q_{1-\alpha_3,n}w/\rho;n) \cdot \frac{q_{1-\alpha_3,n}w}{\rho^2} .$$
(3.16)

不幸的是,不管是這三種管制圖中的哪一個,式(3.10)都難以積分出解析式 (closed form),所以 $ARL'(\rho) = 0$ 的解也難以推導。為此,我們運用以下的演算法來找出整體 ARL 不偏的修正管制界限因子: 步驟一:設定 α 、常數n、m以及允差 ε_1 、 ε_2 。 步驟二:設定初始值 $\alpha_{2L} \leftarrow \alpha/2$ 和 $\alpha_{2U} \leftarrow \alpha$,以及 $\alpha_{3L} \leftarrow 0$ 和 $\alpha_{3U} \leftarrow \alpha/2$ 。 步驟三:取 $\alpha_2 \leftarrow (\alpha_{2L} + \alpha_{2U})/2$, $\alpha_3 \leftarrow (\alpha_{3L} + \alpha_{3U})/2$ 。 步驟四:根據式(3.9)計算 ARL(1), $若 |ARL(1) - 1/\alpha| < \varepsilon_1$,则跳至步驟六;否則,執行步

驟五。

步驟五: $\exists ARL(1) > 1/\alpha$,重設 $\alpha_{3L} \leftarrow \alpha_3$, $\alpha_3 \leftarrow (\alpha_{3L} + \alpha_{3U})/2$, 接著回到步驟四; 若

 $ARL(1) < 1/\alpha$, 重設 $\alpha_{3U} \leftarrow \alpha_3$, $\alpha_3 \leftarrow (\alpha_{3L} + \alpha_{3U})/2$,接著回到步驟四。 步驟六:根據式(3.10)計算ARL'(1)。如果 $|ARL'(1)| < \varepsilon_2$,則此管制界限即為所求;否則,

執行步驟七。

步驟七:如果 ARL'(1) < 0,重設 $\alpha_{2L} \leftarrow \alpha_2$, $\alpha_{3L} \leftarrow 0$, $\alpha_{3U} \leftarrow \alpha_3$, 然後回到步驟三;如

上面的演算法中, α_{2L} 和 α_{2U} 分別代表著之後用二分法搜尋 α_2 的下界和上界;同理, α_{3L} 和 α_{3U} 分別代表著用二分法搜尋 α_3 的下界和上界。在整體 ARL 偏差的傳統管制界限 下, $\alpha_2 = \alpha_3 = \alpha/2$,而且整體 ARL 函數 $ARL(\rho)$ 的最大值發生在 $\rho < 1$;這代表著如果 我們要找出一個整體 ARL 不偏的管制界限,就應該要調高 LCL 因子 $L_{\alpha_2,n}$ 使得 σ_i 的降低 能夠更容易被偵測出來,因此對於整體 ARL 不偏的管制界限, α_2 應該大於 $\alpha/2$,所以 設初始值 $\alpha_{2L} \leftarrow \alpha/2$; 另一方面,根據筆者的經驗, $\alpha_2 < \alpha \pm 0 < \alpha_3 < \alpha/2$,所以設定 初始值 $\alpha_{2U} \leftarrow \alpha$, $\alpha_{3L} \leftarrow 0$ 和 $\alpha_{3U} \leftarrow \alpha/2$ 。 ε_1 和 ε_2 則 是 分別 對應 $|ARL(1)-1/\alpha|$ 和 |ARL'(1)|的允差,將 ε_1 和 ε_2 設為 0.1 就會有不錯的結果。

果 ARL'(1) > 0, 重設 $\alpha_{2U} \leftarrow \alpha_2$, $\alpha_{3L} \leftarrow \alpha_3$, $\alpha_{3U} \leftarrow \alpha/2$, 然後回到步驟三。

步驟三到五的目的是為了找出一組 α_2 和 α_3 使得整體 ARLo 為1/ α ,在這邊我們先固定 α_2 調整 α_3 。步驟三先取了一組 α_2 和 α_3 ,接著利用步驟四確認這組 α_2 和 α_3 是否整體 ARLo 為1/ α ,若不是,則進入步驟五調整 α_3 。因此在步驟五, $ARL(1) > \alpha$ 表示整體 ARLo 太大,在 α_2 固定的情況下,我們可以藉由調高 α_3 使得 $U_{\alpha_3,n}$ 變小,進而降低 ARL(1),因此取 $\alpha_{3L} \leftarrow \alpha_3$, $\alpha_3 \leftarrow (\alpha_{3L} + \alpha_{3U})/2$;反之,如果 $ARL(1) < \alpha$,則調低 α_3 使得 $U_{\alpha_3,n}$ 變大,進而提高 ARL(1),因此取 $\alpha_{3U} \leftarrow \alpha_3$, $\alpha_3 \leftarrow (\alpha_{3L} + \alpha_{3U})/2$ 。然後再次回到步驟四確認這 組 α_2 和 α_3 是否整體 ARLo 為1/ α ,若不是,再進入步驟五調整,重複這個迴圈直到整體 ARLo 為1/ α 。

步驟六用來確認步驟三到五所建構的管制界限是否為整體 ARL 不偏,如果不是, 則利用步驟七調整。在步驟七,如果 *ARL*(1)<0,代表整體 ARL 函數 *ARL*(ρ)在ρ=1是 遞減的,根據 *ARL*(ρ)的圖形(見圖 2.2 和圖 2.3)可以判斷極大值發生在ρ<1,那麼我 們應該要調高 LCL 因子 L_{α2,n}讓σ₁ 的降低可以更容易被偵測出來,再找出對應的U_{α3,n}使 得整體 ARLo為1/α。在此情況下,具體的做法是,調高α2 然後利用步驟三到五找出對 應的α3,接著重新進入步驟六檢驗,重複這個迴圈直到整體 ARL 不偏;反之,如果 ARL'(1)>0,代表整體 ARL 函數 ARL(ρ) 在 ρ=1 為遞增,則極大值發生在 ρ>1,那麼 直覺上我們應該要先調低 UCL 因子 U_{α3,n}讓σ₁ 的增加可以更容易被偵測出來,再找出對 應的 L_{α2,n}使得整體 ARLo為1/α。然而,調低 UCL 的同時,為了滿足整體 ARLo為1/α, LCL 也會跟著降低,所以我們可以改變我們的做法:先調低 LCL,再找出對應的 UCL。 在此情況下,具體的做法是,調低α2 然後利用步驟三到五找出對應的α3,接著重新進入 步驟六檢驗,重複這個迴圈直到整體 ARL 不偏。

表 3.3 提供了三種管制圖在不同的 $n, m \ge r, 整體 ARL 不偏的修正管制界限因子,$ $其中<math>m = \infty$ 代表參數已知的情況,此時的管制界限因子同時满足假警報率不偏以及 ARL 不偏;另外,表 3.4 為不同的n, m以及 $p \ge r, 整體 ARL 不偏的修正管制界限所對應$ $到的整體 ARL。從表 3.4 可以發現,要達到整體 ARL 不偏,<math>S^2$ 管制圖要調整最多,其 次是 S 管制圖,而 R 管制圖調整最少;令人感到意外的是,固定 n 的時候,m 越大需要 做越大的調整才能達到整體 ARL 不偏,可能的原因是m 的提升對於 σ ,變大時之偵測能 力的提升較 σ ,變小時還顯著。另外,從表 3.4 可以看出,在整體 ARL 不偏的修正管制 界限之下, S^2 管制圖的整體 ARL1最小,S 管制圖次之,但與 S^2 管制圖指有些微差距, 而 R 管制圖顯著地劣於 S 和 S^2 管制圖。

3.3 綜合比較

我們將前兩節提到的修正管制界限與傳統管制界限的整體 ARL 函數繪製成圖 3.1, 這幾種管制界限都各有優缺點,沒有誰的偵測力特別強;不過我們打從一開始的重點就 不是要提供一個偵測力特別強的新方法,而是為了修正傳統管制界限因為估計參數的隨 機性所造成的問題。從圖 3.1 我們可以觀察到兩種修正管制界限真的都能把整體 ARLo 控制在我們想要的 370.37,這是傳統管制界限所做不到的;其中調整α的修正管制界限 在圖形上很接近傳統管制界限,而整體 ARL 不偏的管制界限雖然校正了警報率偏差, 不過相對的它在ρ>1時整體 ARL1 也較大。然而,在製程監控上,許多人對於ρ>1的 影響比較在意,所以儘管整體 ARL 不偏的管制界限满足了很好的檢定性質,但是對於 比較在意ρ>1時之整體 ARL1的人來說,第一種方法可能是比較好的選擇。不過,若是 在不知道σ,偏移方向的時候,第二種方法所具備的整體 ARL 不偏之性質就顯得重要了。 另外,計算整體 ARL 不偏的修正管制界限因子所需要消耗的程式時間較久,所以如果 在意程式執行時間的話,調整α的修正管制界限較為快速。

3.4 程式操作的相關注意事項

許多程式或是套裝軟體都沒有內建R 管制圖所需要用到的分位數 $q_{\alpha,n}$,不過我們可以根據下面的演算法,利用二分法來找出它: 1896 步驟一:輸入常數n、 α 和允差 ε ,設定二分法搜尋的下界和上界, q_L 和 q_U 。 步驟二:取 $q \leftarrow (q_L + q_U)/2$,根據式(2.8)利用數值積分計算Q(q;n)。 步驟三:如果 $|Q(q;n) - \alpha| < \varepsilon$,則q即為所求;否則,進入步驟四。 步驟四:如果 $Q(q;n) < \alpha$,取 $q_L \leftarrow q$;反之,如果 $Q(q;n) > \alpha$,取 $q_U \leftarrow q$ 。接著回到

步驟二。

然而,利用二分法的時候,要特別注意數值積分造成的誤差;如果夾擠時迴圈判斷 句設定的允差較小,而數值積分的誤差又不夠小,就很容易出現夾擠已經收斂但是迴圈 判斷條件仍然大於允差,造成無窮迴圈。例如筆者在使用軟體 Matlab 執行上面的演算 法時,取 $\varepsilon = 10^{-8}$,若將雙重積分指令 dblquad 中的誤差設為10⁻⁶,則在找 $q_{0.9992,5}$ 時就會 出現無窮迴圈。另一種狀況是,因為數值積分的誤差設定得不夠小,導致二分法搜尋時 走向錯誤方向,而造成無窮迴圈;例如筆者在使用軟體 Matlab 執行 3.2 節的演算法時, 就曾經因為計算式(3.10)的誤差設定不夠小,導致原本應該是負數卻算成正的,而二分 法就因此往錯誤的方向搜尋,造成無窮迴圈,這種錯誤尤其容易發生在n、m較大的R管 制圖。因此,在操作 3.1 節和 3.2 節的演算法時,如果是使用軟體內件的數值積分指令, 數值積分的誤差至少要小於迴圈判斷句所設定的允差;如果是利用 for 迴圈算出黎曼和 (Riemann sum),則建議分割(partition)要能夠小於 0.01;如果不太清楚誤差要如何 設定,最簡單的方法就是多試幾種設定直到積分值收斂。

除此之外,如果是瑕積分,積分範圍也要特別注意;像是計算Q(q;n)時,理論上應 該將式(2.8)之中的變數z從負無限大積分到無限大,但有些內建的積分指令會無法積分 這樣的範圍。如式(3.15)待積分之函數(integrand)

 $f(x,z;n) = n(n-1) \{ \Phi(x+z) - \Phi(z) \}^{n-2} \phi(x+z) \phi(z) dz, x > 0, -\infty < z < \infty, (3.17)$ 將 f(x,z;n) 繪製成圖 3.2,可以發現在 -4 < z < 1之外的地方函數值已經趨近於 0,所以 可將 z 從 -4 積分到 1;或者為了準確起見,也可以考慮將 z 的積分範圍擴大成 -8 到 4。

我們將建構修正管制界限和計算整體ARL的程式碼放在附錄B供使用者參考使用, 以應付更多本文所附表格中沒有提及的狀況。注意到S和S²管制圖使用的是軟體R,而 R管制圖使用的是軟體 Matlab,這是因為R管制圖需要用到較複雜的積分指令。

第四章 範例說明

我們利用 Montgomery (2009) 中 232 頁的表 6.1 和 236 頁的表 6.2 之資料來說明: 這是一個半導體製程上,以硬烤 (hard-bake) 結合了光學曝印 (photolithography) 的例 子;每隔一小時抽取一組樣本,總共有45個樣本,而每個樣本中包含了五個晶圓(wafer), 所以n=5。我們將這 45 筆樣本分成兩個部分:表 4.1 是前 25 筆樣本,將它們用在階段 一計算 $\hat{\sigma}_0$,並假設它們都在管制下,則m=25;表 4.2 是後 20 筆樣本,我們將其當作 階段二要監控的資料。

4.1 R管制圖的修正管制界限範例

若要建構 R 管制圖,查詢表 2.1 可以知道此時 $\hat{\sigma}_0 = \overline{R}/d_2$,利用式(2.5)可計算

$$\bar{R} = \frac{1}{25} \sum_{i=1}^{25} R_i = 0.3252, \tag{4.1}$$

而根據表 2.2 可知當 n = 5 時 , $d_2 = 2.3259$, 所以

$$\hat{\sigma}_0 = \frac{0.3252}{2.3259} = 0.1398.$$
 (4.2)

如果設定 $\alpha = 0.0027$,那麼根據表 3.1 可以找出n = 5之下, R 管制圖的傳統管制界限因 子為 $L_{0.0027/2,5} = 0.3965$ 以及 $U_{0.0027/2,5} = 5.3770$ (查詢 $m = \infty$ 的欄位),而中心線(center line) 其實就是 \overline{R} ,所以傳統管制界限為

$$\widehat{\text{UCL}} = 5.3770 \cdot 0.1398 = 0.7517,$$

$$\widehat{\text{CL}} = 0.3252,$$

$$\widehat{\text{LCL}} = 0.3965 \cdot 0.1398 = 0.0554.$$
(4.3)

根據表 3.1 可以找出n=5, m=25之下,對於R管制圖的調整 α 修正管制界限因子為 $L_{0.002432/2,5} = 0.3860 和 U_{0.002432/2,5} = 5.4154$,所以的調整 α 的修正管制界限為

$$\widehat{\text{UCL}} = 5.4154 \cdot 0.1398 = 0.7571,$$

$$\widehat{\text{CL}} = 0.3252,$$

$$\widehat{\text{LCL}} = 0.3860 \cdot 0.1398 = 0.0540.$$
(4.4)

根據表 3.3 可以找出n=5, m=25之下, R 管制圖的整體 ARL 不偏之修正管制界限因 子為 $L_{0.002109.5} = 0.4446 \, \pi U_{0.000292.5} = 5.8994$,所以整體 ARL 不偏的修正管制界限為

$$\widehat{\text{UCL}} = 5.8994 \cdot 0.1398 = 0.8247,$$

$$\widehat{\text{CL}} = 0.3252,$$

$$\widehat{\text{LCL}} = 0.4446 \cdot 0.1398 = 0.0622.$$

(4.5)

我們可以利用這些管制界限繪製管制圖,以監控階段二的資料,如圖 4.1。

4.2 S 管制圖的修正管制界限範例

若要建構S管制圖,查詢表 2.1 可以知道此時
$$\hat{\sigma}_0 = \overline{S}/c_4$$
,利用式(2.9)可計算

$$\overline{S} = \frac{1}{25} \sum_{i=1}^{25} S_i = 0.1316,$$
(4.6)
根據表 2.2 可知當 $n = 5$ 時, $c_4 = 0.94$,所以
 $\hat{\sigma}_0 = \frac{0.1316}{0.94} = 0.14.$
(4.7)

如果設定 $\alpha = 0.0027$,那麼根據表 3.1 可以找出n = 5之下,S管制圖的傳統管制界限因 子為 $L_{0.0027/2,5} = 0.1626$ 以及 $U_{0.0027/2,5} = 2.1095$ (查詢 $m = \infty$ 的欄位),而中心線其實就是 \overline{S} , 所以傳統管制界限為

$$\widehat{\text{UCL}} = 2.1095 \cdot 0.14 = 0.2953,$$

$$\widehat{\text{CL}} = 0.1316,$$

$$\widehat{\text{LCL}} = 0.1626 \cdot 0.14 = 0.0228.$$
(4.8)

根據表 3.1 可以找出 n=5, m=25之下,對於 S 管制圖的調整 α 之修正管制界限因子為 $L_{0.003113/2,5} = 0.1673 和 U_{0.003113/2,5} = 2.1726$,所以調整 α 的修正管制界限為

$$\widehat{\text{UCL}} = 2.1726 \cdot 0.14 = 0.3042,$$

$$\widehat{\text{CL}} = 0.1316 \qquad (4.9)$$

$$\widehat{\text{LCL}} = 0.1673 \cdot 0.14 = 0.0234.$$

根據表 3.3 可以找出n=5, m=25之下, S 管制圖的整體 ARL 不偏之修正管制界限因 子為 $L_{002142.5} = 0.1829$ 和 $U_{0.000263.5} = 2.3132$,所以整體 ARL 不偏的修正管制界限為

$$\widehat{\text{UCL}} = 2.3132 \cdot 0.14 = 0.3238,$$

$$\widehat{\text{CL}} = 0.1316,$$
(4.10)

$$\widehat{\text{LCL}} = 0.1829 \cdot 0.14 = 0.0256.$$

我們可以利用這些管制界限繪製管制圖,以監控階段二的資料,如圖 4.2。

4.3 S^2 管制圖的修正管制界限範例 若要建構 S^2 管制圖,查詢表 2.1 可以知道此時 $\hat{\sigma}_0 = S_p$,利用式(2.12)可計算 $S_p^2 = \frac{1}{25} \sum_{i=1}^{25} S_i^2 = 0.0193,$ (4.11) 所以 $\hat{\sigma}_0 = \sqrt{0.0193} = 0.1389.$ (4.12)

如果設定 $\alpha = 0.0027$,那麼根據表 3.1 可以找出n = 5之下, S^2 管制圖的傳統管制界限因 子為 $L_{0.0027/2,5} = 0.1626$ 以及 $U_{0.0027/2,5} = 2.1095$ (查詢 $m = \infty$ 的欄位),而中心線其實就是 S_p , 所以傳統管制界限為

$$\widehat{\text{UCL}} = 2.1095 \cdot 0.1389 = 0.2930,$$

$$\widehat{\text{CL}} = 0.1389,$$

$$\widehat{\text{LCL}} = 0.1626 \cdot 0.1389 = 0.0226.$$
(4.13)

根據表 3.1 可以找出n=5, m=25之下, 對於 S^2 管制圖的調整 α 之修正管制界限因子為 $L_{003095/2,5}=0.1676 和 U_{0.003095/2,5}=2.1747$,所以調整 α 的修正管制界限為

$$\widehat{\text{UCL}} = 2.1747 \cdot 0.1389 = 0.3021,$$

$$\widehat{\text{CL}} = 0.1389,$$

$$\widehat{\text{LCL}} = 0.1676 \cdot 0.1389 = 0.0233.$$
(4.14)

根據表 3.3 可以找出n=5, m=25之下, S^2 管制圖的整體 ARL 不偏之修正管制界限因 子為 $L_{002166,5} = 0.1835$ 和 $U_{0.000257,5} = 2.3161$,所以整體 ARL 不偏的修正管制界限為

$$\widehat{\text{UCL}} = 2.3161 \cdot 0.1389 = 0.3217,$$

$$\widehat{\text{CL}} = 0.1389,$$

$$\widehat{\text{LCL}} = 0.1835 \cdot 0.1389 = 0.0255.$$
(4.15)

我們可以利用這些管制界限繪製管制圖,以監控階段二的資料。特別注意的是,為了配 合之前運用的符號,我們在這邊使用的是監控 $\hat{\sigma}_t$ 之管制界限,所以階段二監控的統計量 就變成 $\hat{\sigma}_t = \sqrt{S_t^2} = S_t$;如果是套用平常 S^2 管制圖的模式,監控的統計量為 S_t^2 ,只需要把 式(4.13)到式(4.15)建構的管制界限平方即可,如圖 4.3。

第五章 結論與未來研究方向

在使用估計參數時, R、S和S²管制圖的傳統管制界限之整體假警報率和整體 ARL0 無法符合我們所期望的值α和1/α,而本文所提供的修正管制界限使得整體 ARL0 能夠 真正符合我們所期望的值1/α,使得我們不必再將就於傳統管制界限因使用估計參數而 造成的錯誤。有些人會認為它們和傳統管制界限的差別不大,因此仍然使用傳統的管制 界限。不過,它們在使用上的便利性就跟傳統管制界限差不多,只有在一開始建構修正 管制界限比較花時間;既然如此,那麼我們為何不選擇具備正確統計檢定性質的修正管 制界限呢?然而,不管是使用傳統或是修正後的管制界限,在R、S和S²管制圖之中, 我們都較建議使用S²管制圖,因為它在大部分情況下的表現都優於另外兩者。

另一方面,因為本文討論的是 *R*、S和S²管制圖,所以對於階段一的 *m* 筆管制下 子群,只假設它們的標準差都是 σ₀,而每個子群 *i* 的平均 μ_i不一定要相等;若是經由其 他管制圖發現製程平均也在管制下,那麼我們就可以改變參數 σ₀ 的估計式 σ̂₀ 為直接混 和階段一*n*·*m* 筆資料的樣本全距和樣本標準差,這樣的估計式會使用到更多的自由度, 更為準確。所以我們也可以研究在這種估計參數下的修正管制界限,甚至可允許子群有 不相同之樣本數。除此之外, Zhang *et al.* (2005) 提供的 SAC 和 TPC 兩種準則也可以 和我們的想法做結合,由此建構出參數估計時的「最佳化」修正管制界限。

在 SPC 的範疇上,還有很多種管制圖沒有經過修正,而本文提供的概念與演算法還可以套用在很多管制圖上,例如說檢定力更強的 CUSUM 和 EWMA 管制圖,甚至可以 考慮把我們的想法套用在合併管制圖 (combined chart)。

26

附錄 A

表 2.1 之 $L_{\alpha,n}$ 、 $U_{\alpha,n}$ 以及 $l(w;\alpha,n,\rho)$ 的推導

當子群 t 在管制下 (i.e., $\rho=1$), 且 σ_0 已知時 (i.e., w=1), 式(2.4)變為

$$\Pr\left(\frac{\hat{\sigma}_{t}}{\sigma_{0}} < L_{\alpha/2,n}\right) + \Pr\left(\frac{\hat{\sigma}_{t}}{\sigma_{0}} > U_{\alpha/2,n}\right);$$

為了滿足假警報率為 α ,則

$$\Pr\left(\frac{\hat{\sigma}_{t}}{\sigma_{0}} < L_{\alpha/2,n}\right) + \Pr\left(\frac{\hat{\sigma}_{t}}{\sigma_{0}} > U_{\alpha/2,n}\right) = \alpha.$$
(A.1)

對於 R 管制圖, $\hat{\sigma}_t = R_t$, 所以式(A.1)變為

$$\Pr\left(\frac{R_{t}}{\sigma_{0}} < L_{\alpha/2,n}\right) + \Pr\left(\frac{R_{t}}{\sigma_{0}} > U_{\alpha/2,n}\right) = \alpha ;$$

因為子群 t 在管制下,所以 $\sigma_t = \sigma_0$,則 R_t / σ_0 這個隨機變數相當於抽樣自標準常態分配的樣本全距隨機變數 $Z_{(n)} - Z_{(1)}$,所以上式變為 $Q(L_{\alpha/2,n};n) + 1 - Q(U_{\alpha/2,n};n) = \alpha.$

而管制界限因子 $L_{\alpha/2,n}$ 和 $U_{\alpha/2,n}$ 滿足等尾機率,也就是說

$$Q(L_{\alpha/2,n};n) = 1 - Q(U_{\alpha/2,n};n) = \alpha/2,$$
(A.2)

所以 $L_{\alpha/2,n} = q_{\alpha/2,n}$, $U_{\alpha/2,n} = q_{1-\alpha/2,n}$ 。接著,拿掉子群 t 為管制下的條件,討論一般性的狀況 (i.e., ρ 不一定為 1),對於 R 管制圖來說,式(2.4)為

$$l(w;\alpha,n,\rho) = \Pr\left(\frac{R_t}{\rho\sigma_0} < L_{\alpha/2,n}\frac{w}{\rho}\right) + \Pr\left(\frac{R_t}{\rho\sigma_0} > U_{\alpha/2,n}\frac{w}{\rho}\right);$$

注意到上式中, $\rho\sigma_0 = \sigma_t$ 為子群t的標準差,則 R_t / σ_t 這個隨機變數相當於 $Z_{(n)} - Z_{(1)}$,所以上式變為

$$l(w; \alpha, n, \rho) = Q(L_{\alpha/2, n} w / \rho; n) + 1 - Q(U_{\alpha/2, n} w / \rho; n).$$
(A.3)

對於S和 S^2 管制圖, $\hat{\sigma}_t = S_t$,所以式(A.1)變為

$$\Pr\left(\frac{S_{t}}{\sigma_{0}} < L_{\alpha/2,n}\right) + \Pr\left(\frac{S_{t}}{\sigma_{0}} > U_{\alpha/2,n}\right)$$
$$= \Pr\left(\frac{(n-1)S_{t}^{2}}{\sigma_{0}^{2}} < (n-1)L_{\alpha/2,n}^{2}\right) + \Pr\left(\frac{(n-1)S_{t}^{2}}{\sigma_{0}^{2}} > (n-1)U_{\alpha/2,n}^{2}\right) = \alpha ;$$

若子群 t 在管制下 (i.e., $\sigma_t = \sigma_0$), 則 $(n-1)S_t^2/\sigma_0^2$ 這個隨機變數服從於自由度為n-1的 卡方分配,所以上式變為

$$K((n-1)L_{\alpha/2,n}^2;n-1)+1-K((n-1)U_{\alpha/2,n}^2;n-1)=\alpha.$$

同樣的,為了滿足等尾機率,

$$K((n-1)L_{\alpha/2,n}^2;n-1) = 1 - K((n-1)U_{\alpha/2,n}^2;n-1) = \alpha/2,$$
(A.4)

所以
$$(n-1)L_{a/2,n}^2 = \chi_{a/2,n-1}^2$$
, $(n-1)U_{a/2,n}^2 = \chi_{1-a/2,n-1}^2$; 也就是說 $L_{a/2,n} = \left(\chi_{a/2,n-1}^2/(n-1)\right)^{\frac{1}{2}}$,
 $U_{a/2,n} = \left(\chi_{1-a/2,n-1}^2/(n-1)\right)^{\frac{1}{2}}$ 。接著,拿掉子群t為管制下的條件,討論一般性的狀況 (i.e.,
 $\rho \, \pi - 定為 \, 1$),對於 $S \, \pi S^2$ 管制圖來說式(2.4)為
 $l(w; \alpha, n, \rho) = \Pr\left(\frac{S_t}{\rho\sigma_0} < L_{a/2,n}\frac{w}{\rho}\right) + \Pr\left(\frac{S_t}{\rho\sigma_0} > U_{a/2,n}\frac{w}{\rho}\right)$
 $= \Pr\left(\frac{(n-1)S_t^2}{\sigma_t^2} < (n-1)\left(\frac{L_{a/2,n}w}{\rho}\right)^2\right) + \Pr\left(\frac{(n-1)S_t^2}{\sigma_t^2} > (n-1)\left(\frac{U_{a/2,n}w}{\rho}\right)^2\right)$
 $= K\left((n-1)\left(\frac{L_{a/2,n}w}{\rho}\right)^2; n-1\right) + 1 - K\left((n-1)\left(\frac{U_{a/2,n}w}{\rho}\right)^2; n-1\right).$ (A.5)
附錄 B

傳統S管制圖之R程式碼

n=5 m=25 a=0.0027 #alpha ARL0=1/a

```
c4=sqrt(2/(n-1))*gamma(0.5*n)/gamma(0.5*(n-1))
```

M2=(1-c4*c4)/(m*c4*c4)

r=1/(-2+2*sqrt(1+2*M2))

t=M2+1/(16*r*r*r)

v=1/(-2+2*sqrt(1+2*t))

c=1+1/(4*v)+1/(32*v*v)-5/(128*v*v*v) ESh<-function(u) {dchisq(v*u*u/(c*c), df=v)*2*u*v/(c*c)}

 $b=1 \quad \#rho \qquad 1896 \\ Ln=sqrt(qchisq(0.5*a,df=(n-1))/(n-1)) \\ Un=sqrt(qchisq(1-0.5*a,df=(n-1))/(n-1)) \\ L<-function(u) \\ \{pchisq((n-1)*Ln*Ln*u*u/(b*b),df=n-1)+1-pchisq((n-1)*Un*Un*u*u/(b*b),df=n-1)\} \\ \label{eq:sqrt}$

g<-function(u) {h(u)/L(u)} ARL=integrate(g,lower=0,upper=Inf) #overall ARL g2<-function(u) {L(u)*h(u)} avg_alpha=integrate(g2,0,Inf, rel.tol=1e-10) #overall alarm rate

Ln Un ARL avg_alpha

調整 α 的修正S管制圖之R程式碼

n=5 m=25 a=0.0027 ARL0=1/a

```
c4=sqrt(2/(n-1))*gamma(0.5*n)/gamma(0.5*(n-1))
M2=(1-c4*c4)/(m*c4*c4)
r=1/(-2+2*sqrt(1+2*M2))
t=M2+1/(16*r*r*r)
v=1/(-2+2*sqrt(1+2*t))
c=1+1/(4*v)+1/(32*v*v)-5/(128*v*v*v)
h<-function(u) \{dchisq(v*u*u/(c*c), df=v)*2*u*v/(c*c)\}
```

```
aL=a
aU=2*a
a1=0.5*(aL+aU)
b=1
       #rho
Ln=sqrt( qf(0.5*a1, n-1, v) )/c
Un=sqrt( qf(1-0.5*a1, n-1, v) )/c
L<-function(u)
\{pchisq((n-1)*Ln*Ln*u*u/(b*b), df=n-1)+1-pchisq((n-1)*Un*Un*u*u/(b*b), df=n-1)\}
g<-function(u) {h(u)/L(u)}
ARL=integrate(g,lower=0,upper=Inf)
                                        #overall ARL
while(abs(ARL0-ARL$value)>0.001)
{
    if(ARL$value>ARL0) {
         aL=a1
    }else {aU=a1}
    a1=0.5*(aL+aU)
```

```
Ln=sqrt( qf(0.5*a1, n-1, v) )/c
Un=sqrt( qf(1-0.5*a1, n-1, v) )/c
```

ARL=integrate(g,lower=0,upper=Inf)
}
a1
Ln
Un
ARL

整體 ARL 不偏的修正 S 管制圖之 R 程式碼

n=5 m=25 a=0.0027

ARL0=1/a

c4=sqrt(2/(n-1))*gamma(0.5*n)/gamma(0.5*(n-1)) M2=(1-c4*c4)/(m*c4*c4) r=1/(-2+2*sqrt(1+2*M2)) t=M2+1/(16*r*r*r) v=1/(-2+2*sqrt(1+2*t)) c=1+1/(4*v)+1/(32*v*v)-5/(128*v*v*v) $h<-function(u) \{dchisq(v*u*u/(c*c), df=v)*2*u*v/(c*c)\}$

b=1 #rho a2L=0.5*a a2U=a a2=0.5*(a2L+a2U) L2<-function(u) {pchisq(qchisq(a2,df=n-1)*u*u/(b*b),df=n-1)}

a3L=0 a3U=0.5*a a3=0.5*(a3L+a3U) L3<-function(u) {1-pchisq(qchisq(1-a3,df=n-1)*u*u/(b*b),df=n-1)}

g<-function(u) {h(u)/(L2(u)+L3(u))} ARL=integrate(g,lower=0,upper=Inf) #overall ARL

```
while(abs(ARL0-ARL$value)>0.001)
{
    if(ARL$value>ARL0) {
        a3L=a3
    else {a3U=a3}
    a3=0.5*(a3L+a3U)
    ARL=integrate(g,0,Inf)
}
##以下檢驗 overall ARL function 的最小值是否落在 b=1
dL<-function(u)
                    #式(3.12)+ 式(3.13)
{
    dL2=dchisq(qchisq(a2,df=n-1)*(u/b)^2, df=n-1)
    dL2=dL2*qchisq(a2,df=n-1)*u*u*(-2)/(b^3)
    dL3=dchisq( qchisq(1-a3,df=n-1)*(u/b)^2, df=n-1)
    dL3=dL3*qchisq(1-a3,df=n-1)*u*u*2/(b^3)
    return(dL2+dL3)
}
                                         89
gg <-function(u) \{-dL(u)*h(u)/(L2(u)+L3(u))\}
                                               #式(3.10)中待機分之函數(integrand)
dg=integrate(gg,0,Inf)
                                              #ARL'(b) (目前 b=1)
while(abs(dg$value)>1e-5)
{
    if(dg$value<0) {
        a2L=a2
        a3L=0
        a3U=a3
    }else
    {
        a2U=a2
        a3L=a3
        a3U=0.5*a
    }
    a2=0.5*(a2L+a2U)
    a3=0.5*(a3L+a3U)
```

```
ARL=integrate(g,0,Inf)
while(abs(ARL0-ARL$value)>0.001)
{
if(ARL$value>ARL0) {
a3L=a3
}else {a3U=a3}
a3=0.5*(a3L+a3U)
ARL=integrate(g,0,Inf)
}
dg=integrate(gg,0,Inf)
```

Ln=sqrt(qchisq(a2,df=n-1)/(n-1)) Un=sqrt(qchisq(1-a3,df=n-1)/(n-1)) a2 a3

Ln Un

傳統 S^2 管制圖之 R 程式碼

n=5 m=25 a=0.0027 ARL0=1/a k=m*(n-1) h<-function(u) {dchisq(k*u*u, df=k)*2*u*k}

b=1 #rho Ln=sqrt(qchisq(0.5*a,df=n-1)/(n-1)) Un=sqrt(qchisq(1-0.5*a,df=n-1)/(n-1)) L<-function(u) {pchisq((n-1)*Ln*Ln*u*u/(b*b),df=n-1)+1-pchisq((n-1)*Un*Un*u*u/(b*b),df=n-1)}

g<-function(u) $\{h(u)/L(u)\}$

 $\begin{array}{ll} ARL=integrate(g,0,Inf) & \mbox{ \#overall ARL} \\ g2<-function(u) \ \{L(u)*h(u)\} \\ avg_alpha=integrate(g2,0,Inf, rel.tol=1e-10) & \mbox{ \#overall } \end{array}$

#overall alarm rate

```
Ln
Un
ARL
avg alpha
```

調整 α 的修正 S^2 管制圖之 R 程式碼

}else {aU=a1}
a1=0.5*(aL+aU)

```
n=5
m=25
a=0.0027
ARL0=1/a
k=m^{(n-1)}
h<-function(u) {dchisq(k*u*u, df=k)*2*
aL=a
                                            89
aU=2*a
a1=0.5*(aL+aU)
b=1
       #rho
Ln = sqrt(qf(0.5*a1, n-1, k))
Un=sqrt(qf(1-0.5*a1, n-1, k))
L<-function(u)
\{pchisq((n-1)*Ln*Ln*u*u/(b*b), df=n-1)+1-pchisq((n-1)*Un*Un*u*u/(b*b), df=n-1)\}
g<-function(u) {h(u)/L(u)}
ARL=integrate(g,lower=0,upper=Inf)
                                          #overall ARL
while(abs(ARL0-ARL$value)>0.001)
{
    if(ARL$value>ARL0) {
         aL=a1
```

```
Ln=sqrt( qf(0.5*a1, n-1, k) )
Un=sqrt( qf(1-0.5*a1, n-1, k) )
ARL=integrate(g,lower=0,upper=Inf)
}
a1
Ln
Un
ARL
```

n=5 m=25 a=0.0027 ARL0=1/a $k=m^{*}(n-1)$ $h \le function(u) \{ dchisq(k*u*u, df=k) \}$ b=1 #rho a2L=0.5*a a2U=a a2=0.5*(a2L+a2U) Ln=sqrt(qchisq(a2,df=n-1)/(n-1)) L2<-function(u) {pchisq(qchisq(a2,df=n-1)*u*u/(b*b),df=n-1)} a3L=0 a3U=0.5*a a3=0.5*(a3L+a3U) Un=sqrt(qchisq(1-a3,df=n-1)/(n-1))

整體 ARL 不偏的修正 S^2 管制圖之 R 程式碼

```
g<-function(u) {h(u)/(L2(u)+L3(u))}
ARL=integrate(g,0,Inf) #overall ARL
while(abs(ARL0-ARL$value)>0.001)
```

L3<-function(u) $\{1-pchisq(qchisq(1-a3,df=n-1)*u*u/(b*b),df=n-1)\}$

```
{
    if(ARL$value>ARL0) {
         a3L=a3
    else {a3U=a3}
    a3=0.5*(a3L+a3U)
    ARL=integrate(g,0,Inf)
}
##以下檢驗 overall ARL function 的最小值是否落在 b=1
dL<-function(u)
                       #式(3.12)+式(3.13)
{
    dL2=dchisq(qchisq(a2,df=n-1)*(u/b)^2, df=n-1)
    dL2=dL2*qchisq(a2,df=n-1)*u*u*(-2)/(b^3)
    dL3=dchisq( qchisq(1-a3,df=n-1)*(u/b)^2, df=n-1 )
    dL3=dL3*qchisq(1-a3,df=n-1)*u*u*2/(b^3)
    return(dL2+dL3)
                                     }
gg <-function(u) \left\{-dL(u)*h(u)/(L2(u)+L3(u))\right\}
                                              #式(3.10)中待機分之函數(integrand)
                                             #ARL'(b)
dg=integrate(gg,0,Inf)
                                                       (目前 b=1)
                                          896
while(abs(dg$value)>1e-5)
{
    if(dg$value<0) {
        a2L=a2
        a3L=0
        a3U=a3
    }else
    {
        a2U=a2
        a3L=a3
        a3U=0.5*a
    }
    a2=0.5*(a2L+a2U)
    a3=0.5*(a3L+a3U)
    ARL=integrate(g,0,Inf)
    while(abs(ARL0-ARL$value)>0.001)
```

```
36
```

```
{
    if(ARL$value>ARL0) {
        a3L=a3
    }else {a3U=a3}
    a3=0.5*(a3L+a3U)
    ARL=integrate(g,0,Inf)
    }
    dg=integrate(gg,0,Inf)
}
```

Ln=sqrt(qchisq(a2,df=n-1)/(n-1)) Un=sqrt(qchisq(1-a3,df=n-1)/(n-1)) a2 a3 Ln Un

ARL0=1/a;

 $f=@(r,s) n*(n-1)*(normcdf(s+r)-normcdf(s)).^{(n-2)}.*normpdf(s).*normpdf(s+r); % x(3.17)$

```
\begin{split} &R1 = @(r,s) r.*f(r,s); \\ &d2 = dblquad(R1,0,20,-8,4,1E-8); \\ &R2 = @(r,s) r.*r.*f(r,s); \\ &v2 = dblquad(R2,0,20,-8,4,1E-8); \\ &v2 = v2-d2*d2; \\ &M1 = v2/(m*d2*d2); \\ &r=1/(-2+2*sqrt(1+2*M1)); \\ &t=M1+1/(16*r*r*r); \\ &v=1/(-2+2*sqrt(1+2*t)); \\ &c=1+1/(4*v)+1/(32*v*v)-5/(128*v*v*v); \end{split}
```

```
b1=0;
          %二分法搜尋Ln的下界
b2=2;
          %二分法搜尋Ln的上界
b3=0.5*(b1+b2);
tmp=dblquad(f,0,b3,-8,4,1E-8);
while( abs(tmp-0.5*a) > a/500)
    if(tmp>0.5*a) b2=b3;
    else b1=b3;
    end
    b3=0.5*(b1+b2);
    tmp=dblquad(f,0,b3,-8,4,1E-8);
end
Ln=b3;
          %二分法搜尋Un的下界
c1=5;
          %二分法搜尋Un的上界
c2=7;
c3=0.5*(c1+c2);
tmp=dblguad(f,0,c3,-8,4,1E-8);
while (abs(tmp-1+0.5*a) > a/500)
    if(tmp>1-0.5*a) c2=c3;
    else c1=c3;
    end
                                         89
    c3=0.5*(c1+c2);
    tmp=dblguad(f,0,c3,-8,4,1E-8);
end
Un=c3;
b=1:
            %rho
L=(a)(u) dblguad(f,0,Ln*u/b,-8,4,1E-8)+1-dblguad(f,0,Un*u/b,-8,4,1E-8);
g=(a)(u) 2^{u}v/(c^{c}).*chi2pdf(v^{u}.*u/(c.*c),v)./L(u);
                                                  %h(u)/L(u)
dx=0.01;
               %黎曼和的partition大小
k=0.5/dx;
                %k為partition的數量
ARL=0;
right=g(0.75);
for i = 1:k
               %此for迴圈目的在做黎曼和,為了節省時間,將w從0積分到3即可
    left=right;
    right=g(0.75+i*dx);
    avg=0.5*(left+right)*dx;
```

```
ARL=ARL+avg;
```

```
g2=@(u) 2*u*v/(c*c).*chi2pdf(v*u.*u/(c*c),v).*L(u); %h(u)*L(u)
avg_alpha=0;
right= g2(0.75);
for i = 1:k %此for迴圈目的在做黎曼和
left=right;
right=g2(0.75+i*dx);
avg=0.5*(left+right)*dx;
avg_alpha=avg_alpha+avg;
end
```

```
Ln
Un
ARL %overall ARL
avg_alpha %overall alarm rate
調整α的修正R管制圖之 matlab程式碼6
n=5
m=25
a=0.0027;
ARL0=1/a;
```

```
f=@(r,s) n^{(n-1)*(normcdf(s+r)-normcdf(s)).^{(n-2).*normpdf(s).*normpdf(s+r); \% x (3.17))}
```

```
\begin{split} & \text{R1} = @(r,s) \text{ r.}*f(r,s); \\ & \text{d2} = \text{dblquad}(\text{R1},0,20,-8,4,1\text{E-8}); \\ & \text{R2} = @(r,s) \text{ r.}*r.*f(r,s); \\ & \text{v2} = \text{dblquad}(\text{R2},0,20,-8,4,1\text{E-8}); \\ & \text{v2} = \text{v2} \cdot \text{d2} \times \text{d2}; \\ & \text{M1} = \text{v2}/(\text{m} \times \text{d2} \times \text{d2}); \\ & \text{r} = 1/(-2 + 2 \times \text{sqrt}(1 + 2 \times \text{M1})); \\ & \text{t} = \text{M1} + 1/(16 \times \text{r} \times \text{r} \times \text{r}); \\ & \text{v} = 1/(-2 + 2 \times \text{sqrt}(1 + 2 \times \text{t1})); \\ & \text{c} = 1 + 1/(4 \times \text{v}) + 1/(32 \times \text{v} \times \text{v}) \cdot 5/(128 \times \text{v} \times \text{v} \times \text{v}); \end{split}
```

```
aL=0.5*a;
aU=a;
a1=0.5*(aL+aU);
```

```
b1=0;
          %二分法搜尋Ln的下界
          %二分法搜尋Ln的上界
b2=2;
b3=0.5*(b1+b2);
tmp=dblquad(f,0,b3,-8,4,1E-8);
while (abs(tmp-0.5*a1) > a1/500)
    if(tmp>0.5*a1) b2=b3;
    else b1=b3;
    end
    b3=0.5*(b1+b2);
    tmp=dblquad(f,0,b3,-8,4,1E-8);
end
Ln=b3;
c1=5;
           %二分法搜尋Un的下
c2=7;
           %二分法搜尋Un的上
c3=0.5*(c1+c2);
tmp=dblquad(f,0,c3,-8,4,1E-8);
while (abs(tmp-1+0.5*a1) > a1/500)
    if(tmp>1-0.5*a1) c2=c3;
    else c1=c3;
    end
    c3=0.5*(c1+c2);
    tmp=dblquad(f,0,c3,-8,4,1E-8);
end
Un=c3;
b=1:
             %rho
L=(a)(u) dblguad(f,0,Ln*u/b,-8,4,1E-8)+1-dblguad(f,0,Un*u/b,-8,4,1E-8);
g=(a)(u) 2^{u}v/(c^{c}).*chi2pdf(v^{u}.*u/(c.*c),v)./L(u);
                                                     %h(u)/L(u)
```

dx=0.01; %黎曼和的partition大小 k=0.5/dx; %k為partition的數量

```
ARL=0;
right=g(0.75);
for i = 1:k %此for迴圈目的在做黎曼和,為節時間,將w從0.75積分到1.25即可
left=right;
right=g(0.75+i*dx);
avg=0.5*(left+right)*dx;
ARL=ARL+avg;
```

```
end
```

```
while(abs(ARL-ARL0)>1E-1 && aU-aL>1E-8)
    if(ARL>ARL0)
        aL=a1;
        b1=Ln;
        b2=2;
        c1=5;
        c2=Un;
    else
        aU=a1;
        b1=0;
        b2=Ln;
        c1=Un;
        c2=7;
    end
    a1=0.5*(aL+aU);
    b3=0.5*(b1+b2);
    c3=0.5*(c1+c2);
```

```
\label{eq:constraint} \begin{array}{l} tmp=dblquad(f,0,b3,-8,4,1E-8);\\ while( abs(tmp-0.5*a1) > a1/500)\\ if(tmp>0.5*a1) b2=b3;\\ else b1=b3;\\ end\\ b3=0.5*(b1+b2);\\ tmp=dblquad(f,0,b3,-8,4,1E-8);\\ end\\ Ln=b3; \end{array}
```

tmp=dblquad(f,0,c3,-8,4,1E-8);

```
while( abs(tmp-1+0.5*a1) > a1/500)

if(tmp>1-0.5*a1) c2=c3;

else c1=c3;

end

c3=0.5*(c1+c2);

tmp=dblquad(f,0,c3,-8,4,1E-8);

end

Un=c3;
```

```
L=@(u) dblquad(f,0,Ln*u/b,-8,4,1E-8)+1-dblquad(f,0,Un*u/b,-8,4,1E-8);
g=@(u) 2*u*v/(c*c).*chi2pdf(v*u.*u/(c.*c),v)./L(u);
```


整體 ARL 不偏的修正 R 管制圖之 matlab 程式碼

```
n=5
m=25
a=0.0027;
ARL0=1/a;
f=@(r,s) n*(n-1)*(normcdf(s+r)-normcdf(s)).^(n-2).*normpdf(s).*normpdf(s+r); %式(3.17)
```

```
\begin{split} & \text{R1} = @(r,s) \text{ r.}*f(r,s); \\ & \text{d2} = \text{dblquad}(\text{R1},0,20,-8,4,1\text{E-8}); \\ & \text{R2} = @(r,s) \text{ r.}*r.*f(r,s); \\ & \text{v2} = \text{dblquad}(\text{R2},0,20,-8,4,1\text{E-8}); \\ & \text{v2} = \text{v2} \cdot \text{d2} \times \text{d2}; \\ & \text{M1} = \text{v2}/(\text{m} \times \text{d2} \times \text{d2}); \\ & \text{r} = 1/(-2+2 \times \text{sqrt}(1+2 \times \text{M1})); \\ & \text{t} = \text{M1} + 1/(16 \times \text{r} \times \text{r}); \\ & \text{v} = 1/(-2+2 \times \text{sqrt}(1+2 \times \text{t})); \\ & \text{c} = 1 + 1/(4 \times \text{v}) + 1/(32 \times \text{v} \times \text{v}) \cdot 5/(128 \times \text{v} \times \text{v} \times \text{v}); \end{split}
```

```
a2L=0.5*a;
a2U=a;
```

```
a2=0.5*(a2L+a2U);
```

```
b=1;
            %rho
          %二分法搜尋Ln的下界
b1=0;
b2=2;
          %二分法搜尋Ln的上
b3=0.5*(b1+b2);
tmp=dblquad(f,0,b3,-8,4,1E-8);
while (abs(tmp-a2) > a2/500)
    if(tmp>a2) b2=b3;
    else b1=b3;
    end
    b3=0.5*(b1+b2);
    tmp=dblquad(f,0,b3,-8,4,1E-8);
end
Ln=b3;
L2=(a)(u) dblquad(f,0,Ln*u/b,-8,4,1E-8);
a3L=0;
a3U=0.5*a;
a3=0.5*(a3L+a3U);
```

c1=5; %二分法搜尋Un的下界 c2=7; %二分法搜尋Un的上界 c3=0.5*(c1+c2); tmp=dblquad(f,0,c3,-8,4,1E-8);

```
while (abs(tmp-1+a3) > a3/500)
    if(tmp>1-a3) c2=c3;
    else c1=c3;
    end
    c3=0.5*(c1+c2);
    tmp=dblquad(f,0,c3,-8,4,1E-8);
end
Un=c3;
L3=@(u) 1-dblquad(f,0,Un*u/b,-8,4,1E-8);
L=(a)(u) L2(u)+L3(u);
g=a(u) h(u)./L(u);
dx=0.01;
                %黎曼和的partition大小
                %k為partition的數量
k=0.5/dx;
ARL=0;
                                    right=g(0.75);
for i = 1:k
                                                  間,將w從0.75積分到1.25即可
                %此for迴圈目的
    left=right;
    right=g(0.75+i*dx);
    avg=0.5*(left+right)*dx;
                                         89
    ARL=ARL+avg;
end
```

tmp=dblquad(f,0,c3,-8,4,1E-8);

```
while( abs(tmp-1+a3) > a3/500)
    if(tmp>1-a3) c2=c3;
    else c1=c3;
    end
    c3=0.5*(c1+c2);
    tmp=dblquad(f,0,c3,-8,4,1E-8);
end
Un=c3;
L3=@(u) 1-dblquad(f,0,Un*u/b,-8,4,1E-8);
L=@(u) L2(u)+L3(u);
g=@(u) h(u)./L(u);
```

```
ARL=0;
right=g(0.75);
for i = 1:k
left=right;
right=g(0.75+i*dx);
avg=0.5*(left+right)*dx;
ARL=ARL+avg;
end
```

```
%%以下檢驗overall ARL function的最小值是否落在b=1
%積分對象(Ln*u*R(Ln*u) - Un*u*R(Un*u)).*h(u)./L(u)
dg=0;
k1=0.5/dx;
for i=1:k1
    dg=dg+dx*(Ln*(0.75+(i-0.5)*dx))*R(Ln*(0.75+(i-0.5)*dx))) -
Un*(0.75+(i-0.5)*dx)*R(Un*(0.75+(i-0.5)*dx))).*h((0.75+(i-0.5)*dx))./L((0.75+(i-0.5)*dx)));
end
```

```
while(abs(dg)>0.1 && a2U-a2L>1E-8)
if(dg<0)
```

a2L=a2; b1=Ln; b2=2; a3L=0; a3U=a3; c1=Un; c2=7;

else

```
a2U=a2;
b1=0;
b2=Ln;
a3L=a3;
a3U=0.5*a;
c1=5;
c2=Un;
```

```
a2=0.5*(a2L+a2U);
a3=0.5*(a3L+a3U);
b3=0.5*(b1+b2);
c3=0.5*(c1+c2);
```



```
tmp=dblquad(f,0,b3,-8,4,1E-8);
while( abs(tmp-a2) > a2/500)
if(tmp>a2) b2=b3;
else b1=b3;
end
b3=0.5*(b1+b2);
tmp=dblquad(f,0,b3,-8,4,1E-8);
end
Ln=b3;
L2=@(u) dblquad(f,0,Ln*u/b,-8,4,1E-8);
```

```
tmp=dblquad(f,0,c3,-8,4,1E-8);
while( abs(tmp-1+a3) > a3/500)
if(tmp>1-a3) c2=c3;
else c1=c3;
end
c3=0.5*(c1+c2);
```

```
tmp=dblquad(f,0,c3,-8,4,1E-8);
end
Un=c3;
L3=@(u) 1-dblquad(f,0,Un*u/b,-8,4,1E-8);
L=(a)(u) L2(u)+L3(u);
g=@(u) h(u)./L(u);
ARL=0;
right=g(0.75);
for i = 1:k
    left=right;
    right=g(0.75+i*dx);
    avg=0.5*(left+right)*dx;
    ARL=ARL+avg;
end
                                  while(abs(ARL-ARL0)>0.01 && a3U-a3L>1E-8
    if(ARL>ARL0)
         a3L=a3;
         c1=5;
                                       89
         c2=Un;
    else
         a3U=a3;
         c1=Un;
         c2=7;
    end
    a3=0.5*(a3L+a3U);
    c3=0.5*(c1+c2);
    tmp=dblquad(f,0,c3,-8,4,1E-8);
    while(abs(tmp-1+a3) > a3/500)
         if(tmp>1-a3) c2=c3;
         else c1=c3;
         end
         c3=0.5*(c1+c2);
         tmp=dblquad(f,0,c3,-8,4,1E-8);
```

```
end
```

```
Un=c3;
L3=@(u) 1-dblquad(f,0,Un*u/b,-8,4,1E-8);
L=@(u) L2(u)+L3(u);
g=@(u) h(u)./L(u);
ARL=0;
right=g(0.75);
for i = 1:k
    left=right;
```

```
right=g(0.75+i*dx);
avg=0.5*(left+right)*dx;
ARL=ARL+avg;
```

```
end
```

```
dg=0;
    for i=1:k1
         dg=dg+dx^{*}(Ln^{*}(0.75+(i-0.5)^{*}dx))^{*}R(Ln^{*}(0.75+(i-0.5)^{*}dx)) -
Un*(0.75+(i-0.5)*dx)*R(Un*(0.75+(i-0.5)*dx))).*h((0.75+(i-0.5)*dx))./L((0.75+(i-0.5)*dx)))
;
     end
```

a2		
a3		
Ln		
Un		
ARL		

- Champ, C. W., Jones-Farmer, L. A., and Rigdon, S. E. (2005). Properties of the T^2 control chart when parameters are estimated. *Technometrics* **47**, 437-445.
- Chen, G. (1997). The mean and standard deviation of the run length distribution of \overline{X} charts when control limits are estimated. *Statistica Sinica* **7**, 789-798.
- Chen, G. (1998). The run length distribution of the *R*, *s* and s^2 control charts when σ is estimated. *Canadian Journal of Statistics* **26**, 311-322.
- Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., and Woodall, W. H. (2006). Effects of parameter estimation on control chart properties: a literature review. *Journal of Quality Technology* 38, 349-364.
- Maravelakis, P. E., Panaretos, J., and Psarakis, S. (2002). Effect of estimation of the process parameters on the control limits of the univariate control charts for process dispersion. *Communications in Statistics-Simulation and Computation* **31**, 443-461.
- Montgomery, D. C. (2009). Introduction to Statistical Quality Control. 6th edition. Wiley, New York.
- Patnaik, P.B. (1950). The use of mean range as an estimator of variance in statistical tests. *Biometrika* **37**, 78-87.
- Pignatiello, J. J. Jr., Acosta-Mejia C. A., and Rao, B. V. (1995). The performance of control charts for monitoring process dispersion. *Proc.* 4th *Indust. Engi. Res. Confe.* 320-328.
- Zhang, L., Bebbington, M. S., Lai, C. D., and Govindaraju, K. (2005). On statistical design of the S² chart. *Communications in Statistics-Theory and Methods* 34, 229-244.

	R管制圖	S管制圖	S^2 管制圖
$\hat{\sigma}_{_0}$	\overline{R}/d_2	\overline{S}/c_4	S_P
$\hat{\sigma}_{_t}$	R_{t}	S_t	S_t
k_n	d_2	C_4	1
$L_{\alpha,n}$	$q_{lpha,n}$	$\left(\chi^2_{\alpha,n-1}/(n-1)\right)^{\frac{1}{2}}$	$\left(\chi^2_{\alpha,n-1}/(n-1)\right)^{\frac{1}{2}}$
		或 $\frac{1}{c} (F_{\alpha,n-1,m(n-1)})^{\frac{1}{2}*}$	或 $\left(F_{\alpha,n-1,m(n-1)}\right)^{\frac{1}{2}*}$
$U_{lpha,n}$	$q_{1-lpha,n}$	$\left(\chi^2_{1-\alpha,n-1}/(n-1)\right)^{\frac{1}{2}}$	$\left(\chi^2_{1-\alpha,n-1}/(n-1)\right)^{\frac{1}{2}}$
		或 $\frac{1}{c} (F_{1-lpha,n-1,m(n-1)})^{\frac{1}{2}*}$	或 $\left(F_{1-lpha,n-1,m(n-1)} ight)^{rac{1}{2}*}$
$l(w; \alpha, n, \rho)$	$Q(L_{\alpha/2,n}w/\rho;n)$	$K((n-1)(L_{\alpha/2,n}w/\rho)^2;n-1)$	$K((n-1)(L_{\alpha/2,n}w/\rho)^2;n-1)$
	$+1-Q(U_{\alpha/2,n}w/\rho;n)$	+1- $K((n-1)(U_{\alpha/2,n}w/\rho)^2;n-1)$	+1-K($(n-1)(U_{\alpha/2,n}w/\rho)^2; n$
h(w;m,n)	式(2.19)	式(2.19)8	式(2.17)
$l_2(w;\alpha,n,\rho)$	$Q(L_{\alpha,n}w/\rho;n)$	$K((n-1)(L_{\alpha,n}w/\rho)^2;n-1)$	$K((n-1)(L_{\alpha,n}w/\rho)^2;n-1)$
$l_3(w;\alpha,n,\rho)$	$1 - Q(U_{\alpha,n}w/\rho;n)$	$1 - K((n-1)(U_{\alpha,n}w/\rho)^2; n-1)$	$1 - K((n-1)(U_{\alpha,n}w/\rho)^2; n-1)$

表	2.1	:	三種管制圖	引中	各符號)	新對)	應的言	艺子	0
1	4.1		-12 - 11-	4 1		1 21	~~~~~	<u>```</u>	

*在 3.1 節,對於使用估計參數的 $S an S^2$ 管制圖,我們將管制界限因子由卡方分配的分位數改為 F 分配的分位數。

表 2.2:校正係數 d_2 和 c_4 。

	-				
п	d_2	\mathcal{C}_4	п	d_2	\mathcal{C}_4
2	1.1284	0.7979	32	4.1393	0.9920
3	1.6926	0.8862	33	4.1648	0.9922
4	2.0588	0.9213	34	4.1894	0.9925
5	2.3259	0.9400	35	4.2132	0.9927
6	2.5344	0.9515	36	4.2362	0.9929
7	2.7044	0.9594	37	4.2586	0.9931
8	2.8472	0.9650	38	4.2802	0.9933
9	2.9700	0.9693	39	4.3012	0.9934
10	3.0775	0.9727	40	4.3216	0.9936
11	3.1729	0.9754	41	4.3414	0.9938
12	3.2585	0.9776	42	4.3606	0.9939
13	3.3360	0.9794	43	4.3794	0.9941
14	3.4068	0.9810	44	4.3976	0.9942
15	3.4718	0.9823	1F C 4 5	4.4154	0.9943
16	3.5320	0.9835		4.4328	0.9945
17	3.5879	0.9845	47	4.4497	0.9946
18	3.6401	0.9854	1896 48	4.4662	0.9947
19	3.6890	0.9862	49	4.4824	0.9948
20	3.7350	0.9869	50	4.4981	0.9949
21	3.7783	0.9876	51	4.5136	0.9950
22	3.8194	0.9882	52	4.5286	0.9951
23	3.8583	0.9887	53	4.5434	0.9952
24	3.8953	0.9892	54	4.5578	0.9953
25	3.9306	0.9896	55	4.5720	0.9954
26	3.9643	0.9901	56	4.5858	0.9955
27	3.9965	0.9904	57	4.5994	0.9955
28	4.0274	0.9908	58	4.6127	0.9956
29	4.0570	0.9911	59	4.6258	0.9957
30	4.0855	0.9914	60	4.6386	0.9958
31	4.1129	0.9917			

表 2.3: 當 $\alpha = 0.0027$, 三種傳統管制圖在不同 $n \cdot m \cdot \rho$ 之下的整體 ARL, 其中 $m = \infty$ 代表參數已知的情況。

			整體 ARL										
n	т	管制圖	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
5	25	R	24.04	107.96	313.14	395.81	384.01	333.75	262.45	190.99	90.11	6.53	1.85
		S	23.83	107.41	314.21	400.83	388.14	334.06	258.15	183.60	82.56	5.76	1.74
		S^2	23.98	108.17	316.74	403.22	388.57	331.87	254.09	179.11	79.73	5.67	1.73
	50	R	23.46	105.14	312.2	416.73	408.75	349.33	263.85	182.99	81.1	6.26	1.84
		S	23.28	104.73	312.78	422.12	413.71	349.55	258.37	174.38	73.60	5.53	1.73
		S^2	23.35	105.09	314.01	423.76	414.28	348.30	255.86	171.77	72.22	5.49	1.72
	75	D	22.27	104.22	211.14	424.42	410.00	255.52	2(2)((170.07	77.05	(17	1.02
	/5	R	23.27	104.22	311.14	424.43	418.99	355.52	263.66	179.27	77.95	6.17	1.83
		5	23.10	103.86	311.57	429.92	424.35	355.71	257.63	1/0.19	70.52	5.46	1.72
		52	23.15	104.10	312.38	431.13	424.87	354.84	255.80	168.36	69.63	5.43	1.72
	100	R	23.18	103.77	310.47	428.38	424.63	358.87	263.35	177.16	76.37	6.13	1.83
		S	23.01	103.43	310.84	433.91	430.24	359.05	257.00	167.83	68.99	5.43	1.72
		S^2	23.05	103.61	311.43	434.86	430.70	358.37	255.56	166.42	68.33	5.41	1.72
	∞	R	22.91	102.44	307.93	440.20	444.32	370.37	261.09	169.63	71.63	6.01	1.82
		S	22.75	102.16	308.15	445.75	450.97	370.37	253.53	159.56	64.45	5.33	1.71
		S^2	22.75	102.16	308.15	445.75	450.97	370.37	253.53	159.56	64.45	5.33	1.71
10		P	2 (2	20.45			189		250.20	1 (5.10	(1.(2)	2.40	1.00
10	25	R	2.62	20.45	146.09	302.18	349.38	327.27	250.38	165.18	61.63	3.49	1.23
		5	2.33	18.92	141.25	306.29	358.49	327.24	233.83	140.64	44.90	2.56	1.13
		52	2.34	19.02	142.17	308.19	359.70	326.39	231.44	138.34	44.05	2.55	1.13
	50	R	2.58	19.76	140.61	307.82	369.6	345.87	253.03	157.95	56.38	3.41	1.23
		S	2.30	18.35	136.29	310.81	379.53	345.44	233.12	131.59	40.71	2.52	1.13
		S^2	2.30	18.40	136.73	311.85	380.38	344.97	231.68	130.35	40.32	2.51	1.13
	75	R	2.56	19.54	138.73	309.06	377.4	353.34	253.39	154.84	54.67	3.38	1.23
		S	2.29	18.17	134.63	311.57	387.64	352.75	232.07	127.97	39.38	2.51	1.13
		S^2	2.29	18.20	134.92	312.27	388.28	352.43	231.03	127.13	39.13	2.50	1.13
	100	D	2.50	10.42	127.79	200.40	201.52	257.4	252.4	152 12	52.02	2.27	1.00
	100	R	2.56	19.43	137.78	309.49	381.52	357.4	253.4	155.15	55.82	3.37	1.23
		5	2.28	18.08	133.80	311.74	391.92	356.73	231.31	126.04	38.74	2.50	1.13
		52	2.28	18.10	154.02	312.28	392.44	336.48	230.49	125.41	38.33	2.50	1.13
	x	R	2.54	19.11	134.96	309.81	394.83	370.37	252.45	147.40	51.34	3.34	1.22
		S	2.27	17.81	131.34	311.29	405.66	370.37	227.71	119.86	36.87	2.48	1.13
		S^2	2.27	17.81	131.34	311.29	405.66	370.37	227.71	119.86	36.87	2.48	1.13

表 2.3(續): 當 $\alpha = 0.0027$,三種傳統管制圖在不同 $n \cdot m \cdot \rho$ 之下的整體 ARL,其中 $m = \infty$ 代表參數已知的情況。

			整體 ARL										
n	т	管制图	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
15	25	R	1.33	7.9	84.35	241.65	322.6	324.3	244.79	151.12	49.36	2.57	1.09
		S	1.16	6.45	75.94	238.14	332.44	324.76	216.91	113.39	29.23	1.72	1.03
		S^2	1.16	6.48	76.37	239.52	333.70	324.25	215.06	111.89	28.85	1.72	1.03
	50	R	1.32	7.66	80.24	240.3	338.17	344.02	247.44	144.01	45.62	2.53	1.09
		S	1.15	6.29	72.80	235.32	347.95	343.94	214.60	105.00	26.93	1.71	1.03
		S^2	1.15	6.30	73.01	236.03	348.75	343.66	213.50	104.24	26.75	1.71	1.03
	75	R	1.32	7.58	78.9	239.11	343.78	351.97	247.79	141.1	44.42	2.51	1.09
		S	1.15	6.24	71.79	233.72	353.42	351.67	212.97	101.90	26.21	1.70	1.03
		S^2	1.15	6.25	71.93	234.19	354.00	351.48	212.19	101.40	26.10	1.70	1.03
	100	R	1.32	7.54	78.25	238.34	346.64	356.3	247.81	139.55	43.83	2.51	1.09
		S	1.15	6.21	71.30	232.79	356.17	355.89	211.92	100.31	25.86	1.70	1.03
		S^2	1.15	6.22	71.40	233.14	356.63	355.74	211.32	99.93	25.78	1.70	1.03
	∞	R	1.31	7.43	76.32	235.34	355.21 S	370.37	246.90	134.48	42.11	2.49	1.08
		S	1.15	6.14	69.83	229.49	364.17	370.37	207.61	95.42	24.85	1.69	1.03
		S^2	1.15	6.14	69.83	229.49	364.17	370.37	207.61	95.42	24.85	1.69	1.03
20	25	R	1.1	4.42	55.73	200.47	18 301.15	96 322.42	241.31	141.62	42.32	2.12	1.04
		S	1.02	3.23	46.20	189.45	309.32	323.50	202.68	93.78	20.91	1.38	1.01
		S^2	1.02	3.24	46.43	190.47	310.52	323.13	201.12	92.73	20.71	1.38	1.01
	50	R	1.09	4.31	52.78	195.91	312.86	342.72	243.78	134.63	39.39	2.1	1.04
		S	1.01	3.17	44.26	184.06	320.00	343.17	198.94	86.38	19.50	1.37	1.01
		S^2	1.01	3.18	44.37	184.57	320.72	342.98	198.03	85.86	19.40	1.37	1.01
	75	R	1.09	4.27	51.85	193.78	316.76	350.93	244.05	131.87	38.45	2.09	1.04
		S	1.01	3.15	43.64	181.88	323.35	351.12	196.83	83.79	19.06	1.37	1.01
		S^2	1.01	3.16	43.71	182.21	323.87	350.99	196.19	83.45	19.00	1.37	1.01
	100	R	1.09	4.25	51.39	192.59	318.66	355.4	244.02	130.41	37.99	2.08	1.04
		S	1.01	3.15	43.33	180.72	324.92	355.45	195.56	82.48	18.84	1.37	1.01
		S^2	1.01	3.15	43.39	180.97	325.32	355.35	195.07	82.23	18.80	1.37	1.01
	∞	R	1.09	4.20	50.04	188.61	323.82	370.37	243.01	125.76	36.66	2.07	1.04
		S	1.01	3.12	42.44	177.06	328.87	370.37	190.71	78.56	18.22	1.36	1.01
		S^2	1.01	3.12	42.44	177.06	328.87	370.37	190.71	78.56	18.22	1.36	1.01

表 2.4: 當 $\alpha = 0.0027$, 三種傳統管制圖在不同 $n \cdot m \cdot \rho$ 之下的整體警報率, 其中 $m = \infty$ 代表參數已知的情況。

			整體警報率										
n	т	管制图	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
5	25	R	0.04465	0.01004	0.00339	0.00261	0.00284	0.00367	0.00531	0.00802	0.01764	0.17380	0.54914
		S	0.04492	0.01006	0.00338	0.00259	0.00283	0.00374	0.00557	0.00862	0.01958	0.19481	0.58323
		S^2	0.04448	0.00995	0.00334	0.00256	0.00282	0.00375	0.00560	0.00870	0.01982	0.19663	0.58565
	50	R	0.04415	0.00990	0.00332	0.00242	0.00252	0.00315	0.00453	0.00692	0.01576	0.17015	0.54900
		S	0.04444	0.00992	0.00331	0.00239	0.00249	0.00318	0.00471	0.00740	0.01751	0.19131	0.58341
		S^2	0.04422	0.00987	0.00329	0.00238	0.00249	0.00318	0.00472	0.00743	0.01762	0.19222	0.58463
	75	R	0.04398	0.00985	0.00329	0.00237	0.00242	0.00299	0.00429	0.00657	0.01515	0.16892	0.54895
		S	0.04428	0.00988	0.00329	0.00234	0.00240	0.00301	0.00445	0.00701	0.01684	0.19013	0.58347
		S^2	0.04413	0.00984	0.00327	0.00233	0.00239	0.00301	0.00445	0.00703	0.01691	0.19073	0.58429
	100	R	0.04390	0.00983	0.00328	0.00234	0.00238	0.00292	0.00417	0.00639	0.01485	0.16829	0.54893
		S	0.04420	0.00986	0.00328	0.00231	0.00235	0.00293	0.00432	0.00682	0.01650	0.18953	0.58350
		S^2	0.04409	0.00983	0.00327	0.00231	0.00234	0.00293	0.00432	0.00683	0.01655	0.18998	0.58412
	x	R	0.04365	0.00976	0.00325	0.00227	0.00225	0.00270	0.00383	0.00590	0.01396	0.16641	0.54886
		S	0.04396	0.00979	0.00325	0.00224	0.00222	0.00270	0.00394	0.00627	0.01551	0.18773	0.58360
		S^2	0.04396	0.00979	0.00325	0.00224	0.00222	0.00270	0.00394	0.00627	0.01551	0.18773	0.58360
10	25	D	0 20507	0.05422	0.00786	0.00256	18	96	0.00507	0.00840	0 02278	0 20464	0.81407
10	23	л S	0.39307	0.05707	0.00780	0.00350	0.00297	0.00338	0.00575	0.01053	0.02278	0.30404	0.88538
		5 5 ²	0.43996	0.05753	0.00302	0.00348	0.00290	0.00348	0.00575	0.01055	0.03167	0.40771	0.88538
		5	0.43770	0.05755	0.00774	0.00540	0.00200	0.00540	0.00500	0.01005	0.05107	0.40771	0.00010
	50	R	0.39463	0.05329	0.00763	0.00339	0.00274	0.00302	0.00450	0.00761	0.02111	0.30223	0.81555
		S	0.44149	0.05705	0.00781	0.00335	0.00267	0.00307	0.00505	0.00941	0.02924	0.40472	0.88669
		S^2	0.44061	0.05683	0.00778	0.00334	0.00266	0.00307	0.00506	0.00946	0.02938	0.40560	0.88708
	75	R	0.39448	0.05297	0.00756	0.00333	0.00267	0.00291	0.00431	0.00733	0.02056	0.30142	0.81605
		S	0.44142	0.05675	0.00775	0.00330	0.00260	0.00294	0.00482	0.00905	0.02853	0.40430	0.88713
		S^2	0.44083	0.05660	0.00772	0.00329	0.00259	0.00294	0.00483	0.00908	0.02862	0.40488	0.88739
	100	R	0.39441	0.05281	0.00752	0.00331	0.00263	0.00285	0.00422	0.00719	0.02029	0.30101	0.81630
		S	0.44139	0.05659	0.00771	0.00328	0.00256	0.00288	0.00471	0.00887	0.02817	0.40408	0.88736
		S^2	0.44094	0.05648	0.00769	0.00327	0.00256	0.00288	0.00472	0.00889	0.02824	0.40452	0.88755
	∞	R	0.39419	0.05234	0.00741	0.00323	0.00253	0.00270	0.00396	0.00678	0.01948	0.29976	0.81705
		S	0.44128	0.05613	0.00761	0.00321	0.00247	0.00270	0.00439	0.00834	0.02712	0.40344	0.88802
		S^2	0.44128	0.05613	0.00761	0.00321	0.00247	0.00270	0.00439	0.00834	0.02712	0.40344	0.88802

表 2.4(續): 當 $\alpha = 0.0027$, 三種傳統管制圖在不同 $n \cdot m \cdot \rho$ 之下的整體警報率, 其中 $m = \infty$ 代表參數已知的情況。

				整體警報率									
n	т	管制图	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
15	25	R	0.75538	0.13786	0.01400	0.00469	0.00326	0.00331	0.00505	0.00902	0.02698	0.40488	0.91931
		S	0.86476	0.16624	0.01514	0.00473	0.00315	0.00340	0.00613	0.01274	0.04487	0.58937	0.97351
		S^2	0.86396	0.16539	0.01502	0.00469	0.00314	0.00341	0.00618	0.01285	0.04520	0.59076	0.97370
	50	R	0.75815	0.13622	0.01355	0.00446	0.00303	0.00299	0.00453	0.00821	0.02535	0.40343	0.92070
		S	0.86787	0.16461	0.01473	0.00454	0.00294	0.00303	0.00545	0.01159	0.04255	0.58992	0.97414
		S^2	0.86747	0.16418	0.01467	0.00452	0.00293	0.00304	0.00547	0.01164	0.04271	0.59062	0.97423
	75	R	0.75909	0.13566	0.01340	0.00439	0.00295	0.00289	0.00437	0.00795	0.02481	0.40294	0.92116
		S	0.86892	0.16406	0.01459	0.00448	0.00287	0.00292	0.00524	0.01122	0.04178	0.59010	0.97435
		S^2	0.86866	0.16377	0.01456	0.00446	0.00287	0.00292	0.00525	0.01125	0.04188	0.59057	0.97441
	100	R	0.75957	0.13538	0.01332	0.00435	0.00292	0.00284	0.00429	0.00782	0.02455	0.40269	0.92139
		S	0.86945	0.16378	0.01452	0.00445	0.00284	0.00286	0.00513	0.01103	0.04139	0.59020	0.97445
		S^2	0.86925	0.16357	0.01450	0.00444	0.00284	0.00286	0.00514	0.01105	0.04147	0.59055	0.97450
	∞	R	0.76100	0.13455	0.01310	0.00425	0.00282	0.00270	0.00405	0.00744	0.02375	0.40193	0.92210
		S	0.87104	0.16295	0.01432	0.00436	0.00275	0.00270	0.00482	0.01048	0.04023	0.59048	0.97477
		S^2	0.87104	0.16295	0.01432	0.00436	0.00275	0.00270	0.00482	0.01048	0.04023	0.59048	0.97477
20	25	R	0 91376	0 24111	0 02137	0.00587	18	96	0.00505	0 00947	0.03051	0 48441	0 96352
20	20	S	0.98458	0.32334	0.02489	0.00612	0.00345	0.00336	0.00656	0.01512	0.05985	0.73000	0.99453
		S^2	0 98446	0.32224	0.02473	0.00608	0.00343	0.00337	0.00661	0.01523	0.06022	0.73101	0 99457
		5											
	50	R	0.91639	0.23954	0.02068	0.00558	0.00332	0.00298	0.00457	0.00869	0.02888	0.48373	0.96451
		S	0.98581	0.32211	0.02423	0.00588	0.00324	0.00302	0.00588	0.01391	0.05737	0.73152	0.99473
		S^2	0.98575	0.32155	0.02414	0.00586	0.00323	0.00302	0.00590	0.01396	0.05755	0.73203	0.99475
	75	R	0.91727	0.23901	0.02044	0.00549	0.00324	0.00288	0.00441	0.00844	0.02834	0.48349	0.96484
		S	0.98621	0.32169	0.02400	0.00580	0.00317	0.00291	0.00567	0.01351	0.05654	0.73203	0.99479
		S^2	0.98617	0.32132	0.02395	0.00579	0.00316	0.00291	0.00568	0.01354	0.05666	0.73237	0.99481
	100	R	0.91771	0.23874	0.02033	0.00544	0.00320	0.00284	0.00434	0.00832	0.02808	0.48338	0.96501
		S	0.98641	0.32148	0.02388	0.00576	0.00314	0.00286	0.00556	0.01331	0.05612	0.73229	0.99483
		S^2	0.98638	0.32120	0.02384	0.00575	0.00313	0.00286	0.00557	0.01334	0.05621	0.73255	0.99484
	∞	R	0.91904	0.23794	0.01998	0.00530	0.00309	0.00270	0.00412	0.00795	0.02728	0.48302	0.96550
		S	0.98700	0.32084	0.02356	0.00565	0.00304	0.00270	0.00524	0.01273	0.05487	0.73307	0.99493
		S^2	0.98700	0.32084	0.02356	0.00565	0.00304	0.00270	0.00524	0.01273	0.05487	0.73307	0.99493

55

在此相	當於傳	統管制	界限因]子。
-----	-----	-----	-----	-----

n	т	管制圈	α_1	$L_{\alpha_1/2,n}$	$U_{\alpha_1/2,n}$	n	т	管制圆	α_1	$L_{\alpha_1/2,n}$	$U_{\alpha_1/2,n}$
5	25	R	0.002432	0.385997	5.415373	15	25	R	0.002349	1.572655	6.182977
		S	0.003113	0.167343	2.172565			S	0.002914	0.478440	1.60715
		S^2	0.003095	0.167578	2.174745			S^2	0.002910	0.478776	1.607983
	50	R	0.002545	0.390641	5.398123		50	R	0.002503	1.581148	6.163231
		S	0.002923	0.165307	2.139992			S	0.002796	0.478342	1.597232
		S^2	0.002913	0.165399	2.141073			S^2	0.002795	0.478514	1.597635
	75	R	0.002588	0.392530	5.391552		75	R	0.002559	1.584792	6.155213
		S	0.002855	0.164515	2.129507			S	0.002761	0.478366	1.593819
		S^2	0.002848	0.164567	2.130236			S^2	0.002760	0.478481	1.594083
	100	R	0.002622	0.393220	5.389011		100	R	0.002587	1.585963	6.153263
		S	0.002819	0.164087	2.124365			S	0.002745	0.478391	1.592087
		S^2	0.002813	0.164122	2.124917			S ²	0.002744	0.478478	1.592284
	∞	R	0.0027	0.396484	5.376953	ED	x	R	0.0027	1.591797	6.138672
		S	0.0027	0.162609	2.109527			Ŏ S	0.0027	0.478542	1.586767
		S^2	0.0027	0.162609	2.109527	189	6	S ² .	0.0027	0.478542	1.586767
10	25	R	0.002377	1.108294	5.916950	20	25	R	0.002335	1.897727	6.362325
		S	0.002962	0.372865	1.764706			S	0.002891	0.544016	1.518031
		S^2	0.002955	0.373240	1.765954			S^2	0.002888	0.544305	1.51865
	50	R	0.002517	1.116163	5.898026		50	R	0.002489	1.906871	6.343386
		S	0.002827	0.372086	1.749986			S	0.002781	0.544265	1.510382
		S^2	0.002824	0.372275	1.750588			S^2	0.002780	0.544413	1.510682
	75	R	0.002563	1.119269	5.890893		75	R	0.002559	1.910594	6.334301
		S	0.002784	0.371841	1.745028			S	0.002750	0.544418	1.507714
		S^2	0.002782	0.371966	1.745424			S^2	0.002750	0.544518	1.507911
	100	R	0.002602	1.120922	5.887157		100	R	0.002587	1.911362	6.331856
		S	0.002762	0.371721	1.742539			S	0.002736	0.544513	1.506351
		S^2	0.002761	0.371815	1.742835			S^2	0.002736	0.544589	1.506498
	x	R	0.0027	1.125977	5.875000		∞	R	0.0027	1.917969	6.318359
		S	0.0027	0.371372	1.735035			S	0.0027	0.544893	1.502121
		S^2	0.0027	0.371372	1.735035			S^2	0.0027	0.544893	1.502121

整體 ARL п m 管制圖 ρ=0.4 0.6 0.8 0.9 0.95 1 1.05 1.1 1.2 1.7 2.5 5 25 R 26.46 119.57 347.70 439.74 427.28 370.37 290.58 210.42 98.02 6.78 1.88 21.50 96.30 390.70 370.37 109.80 S285.61 401.79 306.10 230.31 6.71 1.84 S^2 21.54 96.46 286.41 392.45 403.18 370.37 304.35 227.44 107.26 6.62 1.83 50 R 370.37 279.00 192.82 84.76 24.74 111.25 330.88 442.26 433.81 6.38 1.85 S 21.95 98.37 370.37 84.99 294.72 412.01 419.31 285.14 198.07 5.94 1.77 S^2 21.98 98.50 295.26 413.32 420.44 370.37 283.87 196.28 83.84 5.90 1.77 108.27 441.91 370.37 75 R 24.12 323.58 436.33 273.89 185.76 80.31 6.26 1.84 S370.37 22.16 99.35 298.46 421.35 427.49 185.83 77.54 5.72 276.15 1.75 S^2 22.18 370.37 99.46 298.87 422.39 428.41 275.17 184.55 76.82 5.70 1.75 100 R 23.87 107.09 320.67 442.79 439.01 370.37 271.74 182.40 78.25 6.20 1.84 426.63 432.27 S22.28 99.93 300.54 370.37 271.14 179.45 74.03 5.61 1.74 S^2 22.30 427.48 433.05 370.37 100.02 300.87 270.34 178.46 73.50 5.60 1.74 307.93 R 22.91 102.44 440.20 444.32 370.37 261.09 169.63 6.01 ∞ 71.63 1.82 308.15 S22.75 102.16 445.75 450.97 370.37 253.53 159.56 64.45 5.33 1.71 S^2 22.75 102.16 308.15 445.75 450.97 370.37 253.53 159.56 64.45 5.33 1.71 1896 342.04 370.37 10 25 R 2.78 22.59 164.33 396.00 282.00 184.61 67.59 3.61 1.24 379.47 370.37 S2.30 18.44 137.30 308.01 281.70 176.33 56.35 2.76 1.15 S^2 2.30 308.16 379.92 370.37 55.77 18.42 137.16 280.75 175.04 2.75 1.15 50 370.37 R 2.66 20.87 150.00 329.60 396.21 270.03 167.67 59.20 3.47 1.23 S2.28 18.13 134.39 310.52 390.21 370.37 259.13 148.68 45.52 2.61 1.14 S^2 2.28 18.12 134.32 310.57 390.53 370.37 258.48 147.96 45.28 2.61 1.14 R 20.28 144.97 323.82 395.83 370.37 264.93 56.51 75 2.62 161.27 3.43 1.23 S2.28 370.37 18.02 133.39 311.06 394.70 249.87 139.05 42.40 2.57 1.13 S^2 2.28 18.02 311.08 394.94 370.37 133.34 249.37 138.57 42.25 2.56 1.13 100 R 2.60 19.98 142.42 320.56 395.54 370.37 262.13 157.94 55.19 3.41 1.23 S2.27 17.97 370.37 40.93 2.54 132.88 311.24 397.17 244.82 134.22 1.13 S^2 2.27 17.97 132.84 311.25 397.36 370.37 244.43 133.85 40.82 2.54 1.13 2.54 19.11 134.96 309.81 370.37 R 394.83 252.45 147.40 51.34 3.34 1.22 ∞ S 2.27 370.37 36.87 17.81 131.34 311.29 405.66 227.71 119.86 2.48 1.13 S^2 2.27 17.81 131.34 311.29 405.66 370.37 227.71 119.86 36.87 2.48 1.13

表 3.2: 當 $\alpha = 0.0027$,調整 α 的修正管制界限在各種情況下的整體 ARL,其中 $m = \infty$ 代表參數已知的情況。

			整體 ARL										
n	т	管制图	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
15	25	R	1.37	8.58	94.74	274.92	368.22	370.37	278.26	170.27	54.43	2.66	1.09
		S	1.16	6.46	76.12	243.28	354.94	370.37	262.36	140.87	35.36	1.80	1.03
		S^2	1.16	6.45	76.02	243.14	355.09	370.37	261.69	140.13	35.15	1.80	1.03
	50	R	1.34	8.01	85.52	257.87	363.97	370.37	265.57	153.64	48.07	2.57	1.09
		S	1.15	6.31	73.11	237.87	359.78	370.37	238.84	117.78	29.59	1.75	1.03
		S^2	1.15	6.30	73.05	237.76	359.86	370.37	238.39	117.40	29.50	1.75	1.03
	75	R	1.33	7.81	82.27	250.44	360.91	370.37	259.76	147.32	45.99	2.54	1.09
		S	1.15	6.25	72.06	235.47	361.41	370.37	229.43	110.14	27.91	1.73	1.03
		S^2	1.15	6.25	72.02	235.38	361.47	370.37	229.10	109.89	27.85	1.73	1.03
	100	R	1.33	7.73	81.01	247.73	361.17	370.37	258.18	144.90	45.19	2.53	1.09
		S	1.15	6.23	71.52	234.13	362.20	370.37	224.37	106.38	27.11	1.72	1.03
		S^2	1.15	6.22	71.49	234.06	362.24	370.37	224.11	106.19	27.07	1.72	1.03
	∞	R	1.31	7.43	76.32	235.34	355.21 S	370.37	246.90	134.48	42.11	2.49	1.08
		S	1.15	6.14	69.83	229.49	364.17	370.37	207.61	95.42	24.85	1.69	1.03
		S^2	1.15	6.14	69.83	229.49	364.17	370.37	207.61	95.42	24.85	1.69	1.03
20	25	R	1.11	4.74	62.64	229.04	345.88	370.37	275.39	159.86	46.65	2.19	1.04
		S	1.02	3.27	47.07	195.57	331.80	370.37	245.30	115.33	24.68	1.42	1.01
		S^2	1.02	3.27	47.02	195.40	331.82	370.37	244.79	114.86	24.58	1.42	1.01
	50	R	1.10	4.47	56.22	210.62	337.76	370.37	262.47	143.97	41.56	2.13	1.04
		S	1.01	3.20	44.85	187.45	331.95	370.37	221.31	96.25	21.18	1.39	1.01
		S^2	1.01	3.20	44.82	187.33	331.94	370.37	220.97	96.02	21.14	1.39	1.01
	75	R	1.09	4.38	54.05	203.26	333.13	370.37	255.89	137.59	39.78	2.11	1.04
		S	1.01	3.17	44.08	184.27	331.49	370.37	211.92	90.14	20.14	1.38	1.01
		S^2	1.01	3.17	44.06	184.18	331.47	370.37	211.68	89.99	20.12	1.38	1.01
	100	R	1.09	4.35	53.34	200.97	333.22	370.37	254.12	135.19	39.10	2.10	1.04
		S	1.01	3.16	43.68	182.58	331.09	370.37	206.93	87.16	19.65	1.38	1.01
		S^2	1.01	3.16	43.67	182.51	331.08	370.37	206.74	87.05	19.63	1.38	1.01
	x	R	1.09	4.20	50.04	188.61	323.82	370.37	243.01	125.76	36.66	2.07	1.04
		S	1.01	3.12	42.44	177.06	328.87	370.37	190.71	78.56	18.22	1.36	1.01
		S^2	1.01	3.12	42.44	177.06	328.87	370.37	190.71	78.56	18.22	1.36	1.01

表 3.2(續): 當 $\alpha = 0.0027$,調整 α 的修正管制界限在各種情況下的整體 ARL,其中 $m = \infty$ 代表參數已知的情況。

表 3.3: 當 $\alpha = 0.0027$, 三種管制圖在不同n、m的整體 ARL 不偏之修正管制界限因子; 其中 $m = \infty$ 代表參數已知

的情况。

n	т	管制图	α2	α3	$L_{\alpha_2,n}$	$U_{\alpha_3,n}$		n	т	管制图	α2	α3	$L_{\alpha_2,n}$	$U_{\alpha_3,n}$
5	25	R	0.002109	0.000292	0.444589	5.899378		15	25	R	0.001603	0.000741	1.617983	6.32793
		S	0.002142	0.000263	0.182934	2.313219				S	0.001752	0.000598	0.489816	1.638876
		S^2	0.002166	0.000257	0.183457	2.316058				S^2	0.001768	0.000589	0.490205	1.639784
	50	R	0.002152	0.000375	0.446488	5.817729			50	R	0.001666	0.000827	1.623561	6.29335
		S	0.002177	0.000345	0.183687	2.281107				S	0.001807	0.000688	0.491173	1.630063
		S^2	0.002190	0.000342	0.183961	2.282203				S^2	0.001815	0.000684	0.491374	1.630485
	75	R	0.002152	0.000424	0.446488	5.777903			75	R	0.001688	0.000868	1.625469	6.279252
		S	0.002191	0.000381	0.183990	2.269117				S	0.001829	0.000726	0.491706	1.626722
		S^2	0.002200	0.000379	0.184176	2.269748				S^2	0.001835	0.000723	0.491842	1.626993
	100	R	0.002173	0.000431	0.447626	5.771497			100	R	0.001709	0.000880	1.627314	6.274803
		S	0.002199	0.000401	0.184155	2.262793				S	0.001841	0.000746	0.491992	1.624948
		S^2	0.002205	0.000400	0.184296	2.263222				S ²	0.001845	0.000744	0.492094	1.625148
	∞	R	0.002194	0.000506	0.448974	5.717122	E S		x	R	0.001751	0.000949	1.631079	6.251011
		S	0.002225	0.000475	0.184723	2.242319				Ŏ S	0.001881	0.000819	0.492952	1.619101
		S^2	0.002225	0.000475	0.184723	2.242319	18	98	6	S ²	0.001881	0.000819	0.492952	1.619101
10	25	R	0.001793	0.000574	1.167455	6.152463		20	25	R	0.001498	0.000841	1.932927	6.464918
		S	0.001880	0.000484	0.387142	1.818083	M	11		S	0.001675	0.000668	0.553363	1.540296
		S^2	0.001899	0.000475	0.387627	1.819500				S^2	0.001688	0.000660	0.553684	1.540957
	50	R	0.001835	0.000669	1.171196	6.103699			50	R	0.001561	0.000931	1.939085	6.43343
		S	0.001928	0.000574	0.388389	1.804717				S	0.001733	0.000759	0.554735	1.533547
		S^2	0.001938	0.000569	0.388641	1.805354				S^2	0.001740	0.000754	0.554900	1.533859
	75	R	0.001856	0.000705	1.172782	6.086797			75	R	0.001582	0.000971	1.940988	6.420225
		S	0.001948	0.000612	0.388882	1.799671				S	0.001756	0.000796	0.555272	1.530982
		S^2	0.001955	0.000608	0.389052	1.800074				S^2	0.001761	0.000793	0.555383	1.531184
	100	R	0.001877	0.000717	1.174469	6.081235			100	R	0.001603	0.000979	1.943355	6.418352
		S	0.001958	0.000632	0.389147	1.796998				S	0.001769	0.000817	0.555560	1.529619
		S^2	0.001963	0.000630	0.389275	1.797290				S^2	0.001773	0.000814	0.555644	1.529768
	x	R	0.001909	0.000791	1.177226	6.049608			∞	R	0.001651	0.001049	1.947128	6.396688
		S	0.001993	0.000707	0.390022	1.788136				S	0.001812	0.000888	0.556523	1.525110
		S^2	0.001993	0.000707	0.390022	1.788136				S^2	0.001812	0.000888	0.556523	1.525110

表 3.4: 當 $\alpha = 0.0027$, 整體 ARL 不偏的修正管制界限在各種情況下的整體 ARL, 其中 $m = \infty$ 代表參數已知。

			整體 ARL										
n	т	管制圖	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
5	25	R	16.05	69.94	208.37	310.87	352.24	370.37	356.87	314.28	193.53	11.07	2.26
		S	15.71	68.74	205.39	308.63	351.36	370.37	356.05	310.90	185.12	9.66	2.09
		S^2	15.66	68.48	204.66	308.13	351.24	370.37	355.55	309.41	182.37	9.53	2.08
	50	R	15.46	67.12	200.38	304.99	350.59	370.38	351.21	297.38	164.07	9.59	2.16
		S	15.15	66.02	197.57	302.58	349.61	370.37	349.85	292.46	154.36	8.38	2.00
		S^2	15.12	65.88	197.16	302.20	349.48	370.37	349.46	291.30	152.65	8.32	2.00
	75	R	15.34	66.55	198.73	304.01	350.87	370.41	347.19	287.25	150.54	9.05	2.12
		S	14.95	65.08	194.76	299.92	348.64	370.37	347.05	284.14	142.72	7.98	1.98
		S^2	14.93	64.98	194.46	299.63	348.53	370.37	346.73	283.21	141.51	7.95	1.97
	100	R	15.15	65.64	195.99	300.97	349.15	370.42	347.28	285.48	146.83	8.91	2.11
		S	14.53	63.09	188.70	293.21	345.45	370.37	339.54	261.70	117.78	7.23	1.92
		S^2	14.53	63.09	188.70	293.21	345.45	370.37	339.54	261.70	117.78	7.23	1.92
	x	R	14.82	64.08	191.31	295.86	346.59S	369.94	341.14	268.43	127.51	8.23	2.06
		S	1.97	14.53	63.09	188.70	293.21	370.37	261.70	117.78	27.14	10.27	5.42
		S^2	1.97	14.53	63.09	188.70	293.21	370.37	261.70	117.78	27.14	10.27	5.42
10	25	R	2.31	16.36	112.88	254.19	18 333.37	96 370.39	338.01	256.75	106.46	4.45	1.31
		S	2.02	14.56	104.01	242.95	328.15	370.37	331.63	237.76	83.77	3.19	1.18
		S^2	2.02	14.52	103.72	242.47	327.94	370.37	331.18	236.71	83.01	3.18	1.18
	50	R	2.25	15.52	105.78	243.68	328.99	370.32	328.18	234.25	88.72	4.14	1.29
		S	1.97	13.86	97.87	232.15	322.80	370.37	320.43	213.03	68.40	3.01	1.17
		S^2	1.97	13.85	97.72	231.85	322.63	370.37	320.08	212.31	68.03	3.00	1.16
	75	R	2.23	15.23	103.31	239.37	326.88	370.57	324.34	225.53	83.10	4.05	1.28
		S	1.95	13.63	95.78	227.97	320.31	370.37	315.36	202.92	63.51	2.95	1.16
		S^2	1.95	13.62	95.68	227.75	320.17	370.37	315.08	202.39	63.27	2.95	1.16
	100	R	2.21	15.02	101.53	235.90	324.45	370.38	322.98	221.93	80.85	4.01	1.28
		S	1.95	13.51	94.72	225.76	318.87	370.37	312.43	197.44	61.12	2.92	1.16
		S^2	1.95	13.50	94.64	225.58	318.75	370.37	312.20	197.01	60.94	2.92	1.16
	∞	R	2.18	14.58	97.78	228.42	319.55	370.21	313.73	204.66	72.21	3.85	1.27
		S	1.92	13.14	91.49	218.65	313.54	370.37	301.33	178.93	54.15	2.83	1.15
		S^2	1.92	13.14	91.49	218.65	313.54	370.37	301.33	178.93	54.15	2.83	1.15

			整體 ARL										
n	т	管制图	<i>ρ</i> =0.4	0.6	0.8	0.9	0.95	1	1.05	1.1	1.2	1.7	2.5
15	25	R	1.29	7.08	72.42	217.05	319.43	370.14	321.96	219.12	73.75	2.98	1.11
		S	1.12	5.50	60.45	194.88	306.83	370.37	308.90	185.83	47.72	1.95	1.04
		S^2	1.12	5.49	60.32	194.52	306.62	370.37	308.51	185.12	47.45	1.94	1.04
	50	R	1.28	6.72	66.70	203.52	312.02	370.36	311.16	197.95	63.02	2.85	1.11
		S	1.11	5.27	56.48	183.07	298.61	370.37	294.07	161.81	39.97	1.88	1.03
		S^2	1.11	5.27	56.41	182.86	298.45	370.37	293.77	161.38	39.85	1.88	1.03
	75	R	1.27	6.61	64.89	198.64	308.97	370.45	305.98	189.28	59.45	2.80	1.10
		S	1.11	5.19	55.14	178.75	294.99	370.37	287.48	152.78	37.58	1.86	1.03
		S^2	1.11	5.19	55.10	178.61	294.86	370.37	287.24	152.47	37.50	1.86	1.03
	100	R	1.27	6.53	63.69	195.18	306.16	370.43	304.16	185.79	58.06	2.78	1.10
		S	1.11	5.15	54.47	176.53	292.95	370.37	283.73	148.07	36.41	1.85	1.03
		S^2	1.11	5.15	54.43	176.41	292.84	370.37	283.53	147.83	36.35	1.85	1.03
	x	R	1.26	6.34	60.85	186.72	299.I1 S	370.41	293.63	170.99	52.94	2.71	1.10
		S	1.11	5.03	52.40	169.53	285.67	370.37	269.94	133.22	33.02	1.82	1.03
		S^2	1.11	5.03	52.40	169.53	285.67	370.37	269.94	133.22	33.02	1.82	1.03
20	25	R	1.09	4.20	51.26	189.40	18 307.36	96 370.66	311.27	195.64	58.27	2.36	1.05
		S	1.01	2.93	38.70	159.28	287.38	370.37	288.16	148.65	31.29	1.48	1.01
		S^2	1.01	2.93	38.64	159.01	287.17	370.37	287.81	148.17	31.17	1.48	1.01
	50	R	1.08	4.02	46.94	175.10	297.87	370.33	298.18	174.69	50.35	2.27	1.04
		S	1.01	2.83	36.10	148.00	277.00	370.37	270.75	127.50	26.86	1.45	1.01
		S^2	1.01	2.83	36.07	147.85	276.84	370.37	270.49	127.23	26.81	1.45	1.01
	75	R	1.08	3.96	45.64	170.35	294.34	370.37	291.99	166.37	47.70	2.24	1.04
		S	1.01	2.80	35.23	144.03	272.59	370.37	263.20	120.02	25.49	1.44	1.01
		S^2	1.01	2.80	35.21	143.93	272.47	370.37	262.99	119.83	25.46	1.44	1.01
	100	R	1.08	3.92	44.66	166.60	290.73	370.71	290.84	163.89	46.91	2.23	1.04
		S	1.01	2.78	34.79	142.01	270.15	370.37	258.96	116.21	24.82	1.44	1.01
		S^2	1.01	2.78	34.77	141.93	270.06	370.37	258.79	116.06	24.79	1.44	1.01
	x	R	1.07	3.82	42.64	158.61	282.94	370.95	278.98	150.51	43.14	2.18	1.04
		S	1.01	2.73	33.45	135.76	261.74	370.37	243.80	104.58	22.84	1.42	1.01
		S^2	1.01	2.73	33.45	135.76	261.74	370.37	243.80	104.58	22.84	1.42	1.01

表 3.4(續): 當 $\alpha = 0.0027$,整體 ARL 不偏的修正管制界限在各種情況下的整體 ARL,其中 $m = \infty$ 代表參數已知。

階段一			晶圓			D	c	\mathbf{C}^2
様本 i	1	2	3	4	5	Λ_i	\mathcal{S}_i	\mathcal{S}_i
1	1.3235	1.4128	1.6744	1.4573	1.6914	0.3679	0.1635	0.0267
2	1.4314	1.3592	1.6075	1.4666	1.6109	0.2517	0.1111	0.0123
3	1.4284	1.4871	1.4932	1.4324	1.5674	0.1390	0.0565	0.0032
4	1.5028	1.6352	1.3841	1.2831	1.5507	0.3521	0.1389	0.0193
5	1.5604	1.2735	1.5265	1.4363	1.6441	0.3706	0.1412	0.0199
6	1.5955	1.5451	1.3574	1.3281	1.4198	0.2674	0.1168	0.0136
7	1.6274	1.5064	1.8366	1.4177	1.5144	0.4189	0.1614	0.0260
8	1.4190	1.4303	1.6637	1.6067	1.5519	0.2447	0.1077	0.0116
9	1.3884	1.7277	1.5355	1.5176	1.3688	0.3589	0.1439	0.0207
10	1.4039	1.6697	1.5089	1.4627	1.5220	0.2658	0.0988	0.0098
11	1.4158	1.7667	1.4278	1.5928	1.4181	0.3509	0.1548	0.0240
12	1.5821	1.3355	1.5777	1.3908	1.7559	0.4204	0.1682	0.0283
13	1.2856	1.4106	1.4447	1.6398	1.1928	0.4470	0.1699	0.0289
14	1.4951	1.4036	1.5893	1.6458	1.4969	0.2422	0.0937	0.0088
15	1.3589	1.2863	1.5996	1.2497	1.5471	0.3499	0.1568	0.0246
16	1.5747	1.5301	1.5171	1.1839	1.8662	0.6823	0.2423	0.0587
17	1.3680	1.7269	1.3957	1.5014	1.4449	0.3589	0.1432	0.0205
18	1.4163	1.3864	1.3057	1.6210	1.5573	0.3153	0.1289	0.0166
19	1.5796	1.4185	1.6541	1.5116	1.7247	0.3062	0.1195	0.0143
20	1.7106	1.4412	1.2361	1.3820	1.7601	0.5240	0.2230	0.0497
21	1.4371	1.5051	1.3485	1.5670	1.4880	0.2185	0.0819	0.0067
22	1.4738	1.5936	1.6583	1.4973	1.4720	0.1863	0.0832	0.0069
23	1.5917	1.4333	1.5551	1.5295	1.6866	0.2533	0.0922	0.0085
24	1.6399	1.5243	1.5705	1.5563	1.5530	0.1156	0.0431	0.0019
25	1.5797	1.3663	1.6240	1.3732	1.6887	0.3224	0.1482	0.0220
					平均值	0.3252	0.1316	0.0193

表 4.1:前 25 筆樣本中,硬烤製程的流量寬度(flow width)資料(單位:微米)。

階段二			晶圓			P	S	\mathbf{S}^2
様本 t	1	2	3	4	5	Λ_t	D_t	D_t
1	1.4483	1.5458	1.4538	1.4303	1.6206	0.1903	0.0811	0.0066
2	1.5435	1.6899	1.5830	1.3358	1.4187	0.3541	0.1391	0.0194
3	1.5175	1.3446	1.4723	1.6657	1.6661	0.3215	0.1367	0.0187
4	1.5454	1.0931	1.4072	1.5039	1.5264	0.4523	0.1877	0.0352
5	1.4418	1.5059	1.5124	1.4620	1.6263	0.1845	0.0716	0.0051
6	1.4301	1.2725	1.5945	1.5397	1.5252	0.3220	0.1265	0.0160
7	1.4981	1.4506	1.6174	1.5837	1.4962	0.1668	0.0689	0.0047
8	1.3009	1.5060	1.6231	1.5831	1.6454	0.3445	0.1395	0.0195
9	1.4132	1.4603	1.5808	1.7111	1.7313	0.3181	0.1434	0.0206
10	1.3817	1.3135	1.4953	1.4894	1.4596	0.1818	0.0783	0.0061
11	1.5765	1.7014	1.4026	1.2773	1.4541	0.4241	0.1628	0.0265
12	1.4936	1.4373	1.5139	1.4808	1.5293	0.0920	0.0353	0.0012
13	1.5729	1.6738	1.5048	1.5651	1.7473	0.2425	0.0966	0.0093
14	1.8089	1.5513	1.8250	1.4389	1.6558	0.3861	0.1659	0.0275
15	1.6236	1.5393	1.6738	1.8698	1.5036	0.3662	0.1440	0.0207
16	1.4120	1.7931	1.7345	1.6391	1.7791	0.3881	0.1571	0.0247
17	1.7372	1.5663	1.4910	1.7809	1.5504	0.2899	0.1264	0.0160
18	1.5971	1.7394	1.6832	1.6677	1.7974	0.2003	0.0757	0.0057
19	1.4295	1.6536	1.9134	1.7272	1.4370	0.4839	0.2048	0.0419
20	1.6217	1.8220	1.7915	1.6744	1.9404	0.3187	0.1258	0.0158

表 4.2:後 20 筆樣本中,硬烤製程的流量寬度資料(單位:微米)。

圖 2.1: 當 $\alpha = 0.0027$,參數已知時,傳統 S^2 管制圖對應不同 n 的函數 $ARL_{w=1}(\rho)$ 之圖形。

圖 2.2: 當 $\alpha = 0.0027$, m = 25時, 傳統 S^2 管制圖對應不同 n 的函數 $ARL(\rho)$ 之圖形。

圖 2.3: 當 $\alpha = 0.0027$, n = 5時, 傳統 S^2 管制圖對應不同 m 的函數 $ARL(\rho)$ 之圖形。

圖 3.1: 當 α = 0.0027 , n = 5 , m = 25 之下,傳統管制界限與兩種修正管制界限的 整體 ARL 函數 ARL(ρ)之圖形。

圖 4.1: R 管制圖的修正管制界限範例。

10

t

15

20

5

0.2

0.0

圖 4.3: S² 管制圖的修正管制界限範例。