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A Shrinkage Least Square Imputation Method for

Microarray Missing Value Estimation
Student : Yi-Jing Wu Advisor : Dr. Hsiuying Wang

Dr. Wei-Sheng Wu

Institute of Statistics
National Chiao Tung University

Abstract

Microarray data analysis has widely used.in biological studies. However, it is
common that there are missing values in‘microarray data, which affects the result of
analysis. As many downstream analysis methods require complete datasets, missing
value estimation has been an important pre-processing step in the microarray analysis.
Among the existed missing value imputation methods, the regression-based methods
are very popular. Many algorithms are developed for reconstructing these missing
values. In this study, we propose a James-Stein type modified estimator for the
regression coefficients. We compare the performance of the conventional imputations
and the James-Stein type adjusted imputation method, our approach shows better

performance than the others on various datasets.

Keywords : missing value estimation; James-Stein estimator
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1. Introduction

Microarray data analysis is becoming an important and useful tool in functional
genomics research. The analysis allows the characterization of the gene expression of the
whole genome by measuring the relative transcript levels between thousands of genes in
various experimental conditions or time points [1, 2]. Microarray data have been widely used
to study various biological processes such as cell cycle process[3, 4], stress response[5, 6],
sporulation[7], and immune response[8]. In addition, it is also successfully applied in
numerous studies, for instance, identification of genes relevant to a specific therapy or
diagnosis, cancer classification, cancer prognosis and investigation the mechanism of drug
action.

Microarray dataset is usually-in-the form-of large matrices of expression levels of genes
(rows) under experimental conditions (columns). Although the analysis has been developed
for more than a decade, the missing value problem still .affects the result of analysis. There
still contain more than 5% missing values of-the dataset such that more than 90% genes
affected [9]. The occurrence of missing-values.could be caused by various reasons, including
technology failures, administrative error, insufficient resolution, image corruption, dust or
scratches on the slide [10]. As many downstream analysis methods require complete datasets,
missing value estimation has been an important pre-processing step in the microarray
analysis.

The missing values in microarray dataset are traditionally estimated by repeating the
microarray experiments or simply replacing the missing values with zero[8] or the row
average (the average expression over the samples) [11]. Because these approaches are either
time-consuming or leading to serious estimation errors, more advanced missing value
imputation methods are needed to solve the missing value problems. In 2001, Troyanskaya et

al. [10] published the first two missing value imputation algorithms based on the k-nearest



neighbors (KNNimpute) and the singular value decomposition (SVDimpute). Since then, a lot
of missing value imputation methods have been proposed such as Bayesian principal
component analysis (BPCA) [12], collateral missing value imputation (CMVE)[13], Gaussian
mixture imputation (GMCimpute)[9], support vector regression imputation (SVRimpute)[14],
projection onto convex sets imputation (POCSimpute)[15] and so on. Among the existed
missing value imputation methods, the regression-based methods are very popular and contain
many algorithms, including least squares imputation (LSimpute)[16], local least squares
imputation (LLSimpute)[17], iterated local least squares imputation (ILLSimpute)[18],
weighted local least squares imputation (WLLSimpute) [19], and sequential local least
squares imputation (SLLSimpute)[20].

We focused on the regression-based methods in this study. Since these methods have
better performance than others, we propose a regression coefficient adjusted method to
improve the regression-based methods. The rest of the thesis is organized as follow. We first
introduce some major existing missing value imputation methods which have been widely
used in Section 2. The James-Stein estimator for the normal distribution is introduced and the
detailed formulas for the existing methods are given in Section 3. Regression coefficients
based on the James-Stein adjusted estimation approach are proposed. Four datasets such as
SP.Alpha, SP.Elu, GA.Env, and Environ, are used to illustrate the proposed method. We
conduct a simulation study to evaluate the proposed method and the existing methods through

the four data sets. Finally, a conclusion is given in Section 6.

2. Review of literature

In a typical microarray data matrix, the rows are the genes under investigation and the
columns are the experimental conditions or time points. The microarray data matrix is
obtained by performing a series of experiments on the same set of genes, one for each column.

Let the microarray data be represented as an MxN matrix Y where the entries of Y are the



respect values for M genes under N different experiments or time points. The objective of
missing value imputation is to estimate the missing entries given the incomplete microarray
data matrix Y. However, missing value imputation makes use of the information about
microarray data to estimate the missing entries. To improve the imputation accuracy, more
microarray missing value imputation algorithms have been provided to combine information
about the underlying biological processes.

There are many methods suggested to deal with the missing value problem nowadays. A
common criterion used to compare the performance of imputations is the normalized root

mean squared error (NRMSE). From the microarray dataset, we can obtain an original data

matrix M, with mg genes and n experiments, then we construct the complete matrix
M, e R™" (m. <m,) by deleting the genes with missing values. After the complete data

matrix M, being established, we randomly select a specific percentage of the data element of
M, and regard those elements as missing values. Then we estimate the missing value using

various imputations and compare the performances with NRMSE calculated by:

£ 2
RUSE Jmeanf (e = Vo)’ | "

std (Y,n)

where y ..andy, are vectors whose elements are those estimated values and the known

answer values, respectively, for all missing entries. The mean and the standard deviation are
calculated over missing entries in the entire matrix.
Under this criterion, many imputations have been proposed to improve the estimating
accuracy. In this section, we review several widely-used missing value imputation methods.
1. zeroimpute or meanimpute
This method uses zero to represent the missing value and it usually does not lead to good
estimation results. In addition, another approach is to estimate the missing entries of

microarray data matrix by the average of the non-missing values of the particular case or



variable (row average or column average, respectively). Row averaging assumes that the
expression of a gene in one of the experiments is similar to its expression in a different
experiment, which is often not true. The two methods may lead to serious estimation
errors.

KNNimpute and SVDimpute

KNNimpute is perhaps one of the earliest and most frequently used missing value
imputation algorithms. This method finds the nearest neighbor genes between the target
gene with missing value and others. The missing value in the target gene is estimated as
the weighted average of the k nearest genes. The weights set proportional to the inverse of
with Euclidean distance between target gene and reference ones. Since Euclidean distance
measure is often sensitive to outliers, which could be present in microarray data.
KNNimpute has been found that log-transforming the data seems to sufficiently reduce
the effect of outliers on gene similarity determination.

SVDimpute has been employed to obtain a set of mutually orthogonal expression patterns.
These patterns are named as Eigen genes which can be linearly combined to approximate
the expression of all genes in the dataset. We identify the most significant Eigen genes by
sorting the Eigen genes based on their corresponding eigenvalue. Although it has been
shown by Alter [21] that several significant Eigen genes are sufficient to describe most of
the expression data, the exact fraction of Eigen genes best for estimation needs to be
determined empirically. SVDimpute can only be performed on complete matrices;
therefore row average has been substituted for all missing values in matrix A, obtaining
AT. We then utilize an expectation maximization method to arrive at the final estimate, as
follows. Each missing value in AT then estimated using the above algorithm, and then the
procedure is repeated on the newly obtained matrix, until the total change in the matrix
falls below the empirically determined threshold of 0.01.

KNNimpute method is more robust than SVDimpute to the type of data for which

4



estimation is performed, performing better on non-time series or noisy data. KNNimpute
is also less sensitive to the exact parameters used (number of nearest neighbors), whereas
the SVDimpute method shows sharp deterioration in performance when a non-optimal
fraction of missing value is used. Both the method does not utilize the correlation
structure in the data.

BPCAiImpute

The estimation ability of KNNimpute and SVDimpute methods depend on important
model parameters, such as the k-value in KNNimpute and the number of eigenvectors in
SVDimpute. However, there is no theoretical way to determine these parameters
appropriately. The following is a general method consisting of three components. First
step is to perform the principal component regression with a low rank approximation of
the dataset. The next step is.to carry out Bayesian estimation under the assumption that the
residual error and the projection of each gene behave as normal independent random
variables with unknown "parameters.<The last step is the Bayesian estimation which
follows by iterations on the expectation-maximization (EM) of unknown parameters.
LSimpute

LSimpute utilizes the least squares principle to estimate missing value using correlation
between genes or arrays. There are two methods as follow; first estimation method utilizes
correlation between genes and the other uses correlations between arrays. Through the
bootstrapping approach, we can combine the two variants of estimate for parameter
estimation. The first, LSimpute_combined uses a fixed global weighting of the estimates
from the basic LSimpute methods, while the second, LSimpute_adaptive, uses an adaptive
weighting scheme taking the data correlation structure into consideration. Linear
regression model for y given x as y=a+bx+e, where e is the error term for which the
variance is minimized when estimating the model (parameters a and b) with least squares.
The single regression model has two parameters to be estimated, while the multiple

5



regression model has 1(k+1) parameters.

LLSimpute

In this method, a target gene with missing values is represented as a linear combination of
similar genes. Rather than using all genes in the dataset, only the gene with high similarity
with the target gene has been used. LLSimpute takes advantage of the local similarity
structures as well as the optimization process by the least squares, which is one of the
most important advances of LLSimpute.

SLLSimpute

In the previously developed methods, they do not use the information of genes with
missing values since the existence of missing values hinders the use of other observed
values of that gene. In the SLLSimpute -method, it estimates the missing values
sequentially from the gene ‘containing the fewest missing values and partially utilizes
these estimated values.

ILLSimpute

In many neighbor-based methods, the number.of similar genes used to estimate missing
value is fixed but it is quite different from that with another gene. In the ILLSimpute
method, it defines coherent genes as those within a distance threshold to the target genes
instead of fixing a common number of coherent genes for estimation purpose. On the
other hand, estimated values in before iteration are used for missing value estimation in
the next iteration and the method terminates after certain iterations or the imputed values

converge.



3. Existing methods

In this study, we focused on the regression-based methods such as LLSimpute[17],
SLLSimpute[20], and ILLSimpute[18], since these methods have better performance than
others. Several existing regression-based methods are reviewed as follows.

In the following content, we use G € R™"to represent a gene expression data matrix

with m genes and n experiments, and assume m>n . In the matrix G a row
9] €R™" represents expressions of the ith gene in experiments:

T

g
G=| ! [eR™ 1)

T

O
For example, if there is a missing value in-the'lth position of the ith gene, we denote it
asa,ie. G@i,)=9g,()=¢c.
3.1  Selecting genes
Since there are many genes in the microarray data matrix, we want to find some helpful
genes to estimating the missing values..By the-above reason, we select k similar genes to

estimate missing values. Suppose there is a missing value « in the first position of the first

gene, i.e.a =g,(1) in the matrixG € R™", we want to retrieve the missing value and then we

have to find the k nearest neighbor gene vectors for g; based on the Pearson correlation
coefficient. Since the missing value is in the first position of gi, the Pearson correlation
coefficient r,; between two vectors g', =(,,,-+9y,)" and g’; = (g;,.---9;,)" is defined as

1 &(gy-0, gik_g_j
r. = 2
! n—lkz_;‘( o, o @

]

where g_J is the average of the values in g'; = (gjz,---gjn)T and o, is the standard deviation

of theses values. When computing the coefficients, we do not consider the components of g;



which correspond to missing values. In addition, we take advantage of the absolute value of
the Pearson correlation coefficients. Since there are some components of the genes are the
highly correlated but opposite signed, i.e.r = -1, they are also helpful in estimating missing
values. We estimate missing values in the target genes with those highly correlated genes
selected by the Pearson correlation coefficients in the microarray data.

There are other methods to select k-nearest genes such as Euclidean distance and
covariance minimization. In our study, we select k-nearest genes by Pearson correlation
coefficients simplicity; however, ILLSimpute uses Euclidean distance.

3.2  Local least squares imputation

Based on these k-nearest gene vectors selected before, LLSimpute use local least squares
to determine the coefficients to approximate the target gene as a linear combination and we
describe the process as follow. We_construct the matrix AecR*"™® and the two vectors

beR** andweR"™* | The rows of matrix A comprise by k-nearest neighbor genes

g; eR™ 1<i<k, and theirfirst values omitted, the elements of the vector b comprise of

the first components of those k vector g;, and the elements of the vector w are the n-1

elements of the gene vector g; whose missing first entry is omitted. After having the matrix A,

and the vectors b and w, the least squares problem is formulated as

min
X

‘ATX—WHZ. (3)
Solving the above problem, we acquire the coefficients

x=(ATA)" ATw. (4)
In the LLSimpute, the missing value « is estimated by

a=h'x. ®)
In our studies, we want to improve the performance of LLSimpute by adjusted the coefficients

and we discuss in the next section.



There are some symbols need to be noticed which is the coefficients of the regression
model. In the relation articles, they denote the coefficients as x; however, we used to denote
them as £ in the statistical analysis. To avoid confusing, we use x represents the coefficient
in our studies.

For example, suppose there is a missing value of g; (target gene) in the first position
among the total of seven experiments. We want to estimate the missing value by the k similar

genes, and then we have the matrix A, and vectors b and w as follow:

ng (04 W, W, W3 w, W5 WG
g; _ a W _ b1 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6
: b A N : : : : :
ol b A As As Au A, Ay

where ¢« is the missing value and. g¢ .- g _are the genes which are similar to Genel (g, ).

From the second to the last components of the neighbor genes a' ,1<i<k, form the ith

row vector of the matrix A. The vector w of the known elements of target gene g; can be
denoted as a linear combination
W= Xa, +X,a, +-+-+Xa,, (6)
where x. are the coefficients of the linear combination which found by the least squares
formulation (4).
3.3  Sequential local least squares imputation

In the SLLSimpute method, the least squares method is used to estimate the missing

values and the difference with LLSimpute is the data matrix which we select the similar genes.

We describe the process of SLLSimpute construct the data matrix as follow. We first separate

the data matrix G € R™" to two subsets: a complete matrix G, € R™" without missing value

and an incomplete matrix G, e R™"containing genes with missing values. In incomplete

matrix G,, we sort the genes by their missing rate. Missing rate is calculate by



F=— )
n
where c; is the number of missing value in ith gene. Then we construct the matrixG, where

the first gene has the smallest missing rate and the last gene has the largest missing rate.
SLLSimpute estimates the missing value through the information supplied by the
complete matrixG,. After having estimated the missing values of the first row, those missing
entries filled by the estimate values and the first row of G,will be changed to the complete
matrixG,. On such way, the information supplied by the complete matrix G, increases and
we can estimate more accuracy. However, if one row with too much missing values, it can not
supply correct information to us. Under such condition, there is a threshold r, to limit rows
which can be changed to the complete matrix. The threshold r, is calculated by:
m,
2.6
izt

r .
% mxn

(8)
That is to say, if one gene whose missing rate is more than the average missing rate (r,), it
can not be changed to G, .

Excluding the difference of the data.matrix-which we select the highly corrected k genes,
the rest estimating procedure of SLLSimpute is similar with LLSimpute.

3.4  Iteration local least squares imputation

LLSimpute and SLLSimpute methods select k nearest genes for a target gene and k is a
fixed number. Therefore, in the ILLSimpute, it does not fix the number of similar genes used.
Rather, it defines the similar genes within a distance threshold ¢ to the target gene. The
impact of setting up a distance threshold rather than a fixed number of similar genes is that
some nearest genes are already far away from target gene. Using the distance ratiod, in the
first iteration of ILLSimpute method, missing value positions are filled with their respective
row averages, similar genes for ever target gene are selected, and then LLSimpute method to

re-estimate the missing values. Afterwards, in each iteration, ILLSimpute method uses the

10



imputed results from the last iteration to re-select similar genes for every target gene, using
the same distance ratio, and takes advantage of LLSimpute method to re-estimate the missing
values. Therefore, the only difference between the first iteration and the latter iterations is the

use of row averages for selecting similar genes.

4. James-Stein estimator

4.1  Shrinkage approach

In the regression analysis, there is a phenomenon in relation to the general observation
that a fitted relationship appears to perform less well on a new dataset than on the dataset
which used for fitting. Particularly the value of the coefficient of determination has shrunk.
This concept is complementary to over fitting and to the standard adjustment made in the
coefficient of determination to atone for the possible effects of further sampling, like
controlling for the potential of new explanatory terms improving the model by chance.

A shrinkage estimator is-an estimator that incorporates the effects of shrinkage either
explicitly or implicitly. Shrinkage is implicit in-Bayesian inference and castigated likelihood
inference; on the other hand, it is explicit.in James=Stein-type inference. By contraries, simple
types of maximum-likelihood and least-squares estimation procedures do not include

shrinkage effects, although they can be used within shrinkage estimation.

The use of shrinkage estimators in the context of regression analysis, where there may be
a large number of explanatory variables, has been described by Copas[22]. In this article, the
values of the estimated regression coefficients are shrunken towards zero with the effect of

reducing the mean square error of predicted values from the model when applied to new data.

One of the shrinkage estimators, the James-Stein estimator, for the normal distribution is
introduced in Section 4.2. A James-Stein type modified estimator for the regression model is

proposed in Section 4.3.
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4.2  James-Stein estimator for the mean of normal distribution

Suppose that VY,,Y,,...,Y, are independent normal random variables andY, follows a
normal distribution N (¢, 5°) . Assume that all of k random variables have a common variance
which is known, but their means are unknown, differ and vary separately. That is to
say, (Y,,Y,,....Y,) ~ N(8,06°1), where 8=(6,,6,,...6,) and | is the kxk identity matrix.
Under the squared-error loss

uadm)zéga—dg%49—¢wf 9)

where d ., isan estimator of & .We want to find estimators of & such that the mean square

)
error E, [ L(6,d,)] is minimized. There is a natural and intuitive estimate of & which is Y

itself. However, Stein[23, 24] showed that the naive estimator 6 =Y is not admissible, that is,

there exists other estimators with smaller mean squared error. Fork > 3, the obvious estimate

Y is dominated by

k=2
S,?

o —(=E=5y, (10)

2

~JS _
The James-Stein estimator @ shrinks the naive estimate towards zero by a factor[l— kS 2],
Y

[
where S,? :ZYi2 depends on the other random variables. Although the risk is optimal
i=1

forc =k —2, more generally, fork >3 and0<c < 2(k —2), any estimator of the form

C

2] =a—§7wi (11)

has uniformly smaller risk for all 4.
The shrinkage estimator approach can also be used to interval estimation approach Wang

[25, 26].
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4.3  James-Stein estimate for LLSimpute

In the model (4), we obtain the coefficients{%,;(z,---,>A<k}of linear combination. In

Section 4.2, we have introduced the James-Stein estimator for the mean of normal distribution.
In this section, we based on the form (10) to propose a shrinkage estimator for the regression

coefficients. By the similar form of (10), we have the new coefficients by:
)X (12)
where o’is the variance of the coefficients {)Aq, ;(2,"',;(k} we obtain before, and S?%is the

k
norm of the coefficients, i.e. S% = x’
i=1

~JS ~JS ~JS
After we have the new coefficients{x1 X2y, Xk } , We estimate the missing value « by

~JS ~JS ~JS
@ = X1 Q +Xody + -+ Xk Q.

For estimating each missing value, we need to construct the matrices A and vector w and
b, and solve the least squares problem to gain the coefficients of the selected genes. Then we
adjust the coefficients by James-Stein estimators. At last, to take advantage of non-missing
entries of neighbor genes which have missing values, each missing value is estimated by
regression model with the adjusted coefficients. This process is helpful in achieving more

accurate estimation result since it circumvents possible errors generated by shrinkage.

4.4  James-Stein estimate for SLLSimpute and ILLSimpute
By the similar argument as for the LLSimpute, we apply the shrinkage estimator to
SLLSimpute and ILLSimpute. In these imputations, we adjust the coefficients before
estimating missing values by formula (5). After adjust those coefficients through the formula
(12), we estimate the missing values as the same process. In the next section, we will compare
the performance of the conventional imputations and the shrinkage type adjusted imputation
method.

13



5. Results and discussion

5.1 Datasets

We use four microarray datasets in our experiments. They are obtained from Spellman
cell cycle data (SP.Alpha and SP.Elu dataset), Gasch stress data (GA.Env dataset), and
Causton stress data (Environ dataset).

The Spellman yeast cell cycle analysis is to identify all genes whose mRNA levels are
regulated by the cell cycle[3]. The data for one gene corresponds to one row, and the time
points of each experiment are the columns. The ratio of induction/repression is such that the
magnitude is indicated by the intensity of the colors displayed. This dataset contains all the
tab delimited data for the alpha factor, cdc15, and elutriation time courses. In our studies, we
use two data of this dataset, alpha«factor-and-elutriation time courses. The first dataset was
alpha-factor block release set.of this dataset (SP.Alpha). After deleting those rows with
missing values, we built a complete data matrix of 4304-genes and 18 experiments to asses
missing value estimation methods. The second dataset is-based on an elutriation time courses
(SP.Elu).and its complete matrix with 4304 genes-and 14 experiments. The 4304 genes had no
missing values in the alpha-factor block release set and the elutriation dataset.

The third dataset is obtained from a study of response to environmental changes in
yeast[27]. Each row displays the data for each spot on the array and each column headers
indicate the signal intensity, background, and background corrected intensity for each spot. It
contains 6152 genes and 173 experiments which have time-series of specific treatments. After
removing experimental columns that have more than 8% missing value, we acquire the

complete matrix of 5431 genes and 13 experiments (GA.Env).

The forth dataset is the Environ microarray data. The goal of this dataset is to investigate
how expression of the yeast genome is remodeled upon exposure to a variety of

environmental conditions. After removing those rows with missing values, we acquire the
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complete matrix of 6191 genes and 45 experiments. With the complete matrix, we could

estimate the missing values by imputations.

With the above datasets, we could compare the performance of imputations. In the later
section, we will introduce how to measure the performance and compare the performance of

different imputations on these datasets.

5.2  Measure of performance
In our studies, there are four steps to evaluate the performance of the imputations. At
first, we remove the genes with missing value to construct a complete data matrix. We
randomly select the entries of matrix as the artificial missing values with specific missing
percentage at the second step. And then, we estimate the missing value through the different
imputations. Finally, we repeat the above processes n-times and calculate the average NRMSE
of the n times for each imputation. In addition, we compare those imputations in various

situations, such as different k value selection, or different missing value percentage selection.
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5.3  Simulation results for LLSimpute
We compare the performance between LLSimpute and our approach on the different
situations as follow.

(1) Comparison of the NRMSEs against the number of genes for two methods.

In this comparison, we consider the case that the specific percentage (5% or 10%) entries
of each dataset are missing, when LLS and LLS-J denote the LLSimpute and James-Stein
estimation based LLSimpute. The vertical axe indicates the NRMSE of each input scheme,
and the horizontal axe represents the number of similar genes selected. In the following
content, we denote k as the number of similar genes used.

(i) Comparison of the NRMSEs against percentage of missing entries for two methods.
Figure 3 and 4 show the performance of twoe methods on the datasets. The vertical axe
indicates the NRMSE of .each_input scheme, and the horizontal axe represents the
percentage of missing values.

(i)  Comparison of the NRMSEs with respect to noise levels.

We add artificial noise with ‘normal distribution” N (, o*) where the mean =0 and the
standard deviationo . The vertical axe indicates the NRMSE of each input scheme, and
the horizontal axe represents the different level of  standard

deviationo =0.01,0.05,0.1,0.15,0.2,0.25.
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Fig. 1. Comparison of the NRMSEs of two methods and the effect of the number of genes for estimating missing

values on SP.Alpha dataset and SP.Elu dataset.

In Figure 1, we find that the James-Stein approach shows better performance than LLSimpute
when the k -value is small on SP.Alpha and SP.Elu datasets. When k is small, the James-Stein

based method improves the conventional imputation.
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Fig. 2. Comparison of the NRMSEs of two methods and the effect of the number of genes for estimating missing

values on GA.Env dataset and Environ dataset.

As shown in Figure 2, the James-Stein approach has better performance than LLSimpute both
on GA.Env and Environ dataset.
In Figures land 2, we conclude that James-Stein approach improve LLSimpute when k is

small on these four datasets.
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Fig. 3. Comparison of the NRMSESs against percentage of missing entries for two methods on SP.Alpha
dataset and GA.Elu dataset.

In Figure 3, we compare NRMSE these imputations in the high level missing percentage. The
James-Stein approach shows better performance on the SP.Alpha dataset and it performs

better on the 15-20% missing on the SP.Elu dataset.
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In Figure 4, we find the James-Stein approach has good performance on both the GA.Env

dataset and Environ dataset. In virtue of Figure 3 and 4, The James-Stein approach improves

2 4 5 a 10 12
missing percentage

Ermiran

14 16 18 20

1 2 3 4 5
missing percentage

LLSimpute as the missing percentage increasing on the above datasets.
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MNRMSE

In Figure 5, to show how the methods respond to higher noise levels, we add some artificial
noise by random normal distribution with different standard deviation. The Figure 5 shows
that James-Stein approach improves LLSimpute efficiently on these datasets.
5.4  Simulation results for other imputations

In this section, we compare the performance of LLSimpute, SLLSimpute, ILLSimpute
and the James-Stein approach for these methods on the SP.Alpha and GA.Env datasets;
however, there is one problem with ILLSimpute. Among the comparison, ILLSimpute has
some situation with serious estimation error such that the NRMSE value is large. The
following figure is one of examples. The figure is to compare LLSimpute, SLLSimpute,

ILLSimpute, and James-Stein approach with different missing percentage on SP.Alpha and

GA.Env dataset.

SP Alpha GAEny

—o— L3

MNRMSE

missing percentage missing percentage

There are some sharps on the curve of ILLSimpute on the above figures. We find
ILLSimpute leads to worse estimates on some situations; however, other imputations perform
stably at the same time. We delete the point where ILLSimpute has serious error to compare

the different methods.
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Fig. 6. NRMSEs comparison of four methods respect to the number of genes for estimating missing values on
SP.Alpha dataset and GA.Env dataset.

As shown in Figure 6, SLLSimpute and ILLSimpute have smaller NRMSE than that of
LLSimpute, revealing SLLSimpute and ILLSimpute are better than LLSimpute overall. In
addition, the James-Stein estimator based methods efficiently improve these three imputations

for small k.
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Fig. 7. Comparison of the NRMSEs against percentage of missing entries for two methods on Alpha

dataset and Env dataset.

In Figure 7, ILLSimpute has better performance than LLSimpute and SLLSimpute.
In addition, James-Stein estimator based method can improve these three imputations

efficiently as the missing percentage increases.
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Fig. 8 Comparison of the NRMSEs of four methods with respect to noise levels on Alpha dataset and Env
dataset.

In Figure 8, we find that these three imputations have worse performance as the artificial
noise’s standard deviation increase. However, the James-Stein based method for these three
imputations performance better overall. We conclude the James-Stein based method is less
sensitive to the noise level.
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6. Conclusion

Efficient imputation of missing values is needed for the using of microarray data, since
most of downstream analyses require a complete dataset. Therefore, exploring accurate and
efficient methods for estimating missing values has become a more important issue. In our
studies, a shrinkage estimator method associated with a regression model is proposed to
estimate missing values on microarray data. Our method takes advantage of the correlation
structures existing in microarray data and selects similar genes for the target gene by Pearson
correlation coefficients. Furthermore, we incorporate the least squares principle and utilize the
James-Stein estimator to adjust the coefficients of the least squared estimation in the
regression model to estimate missing values. A simulation study demonstrated that shrinkage
estimator based method provided_superior estimation accuracy for various types of datasets
compared with LLSimpute and SLLSimpute. when the: k-value is less than 50. Since our
proposed method can apply to any regression model based method and can provide better
missing value estimation, it is a competitive alternative to the conventional least squares

method.
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Table 1 Improvement ratio against specific percentage (p %) of missing entries

p 10% 119% 13% 15% 17% 19% 20%
Alpha  0.0078  0.0079  0.0089 0.01 0.011 0.0124  0.0137
Elu 0.0017 0.0016 0.0033 0.0049 0.0056 0.0066  0.0077
Env 0.0055 0.0052  0.0057 0.0056  0.0053 0.0057 0.0062
Environ 0.0143  0.0142  0.0149 0.015 0.0156  0.0156  0.0157

Table 2 the NRMSEs against specific percentage (p %) of missing entries
Alpha

p 10% 11% 13% 15% 17% 19% 20%
LLS 0.5652 0.5819 0.6192 0.6526 0.6830 0.7124  0.7250
LLS-J 0.5608 0.5773 0.6137 0.6461 0.6755 0.7036 0.7151

Elu

P 10% 11% 139% 159% 179% 199 20%
LLS 0.4739 0.4890 ~ 05187 0.5461 = 0.5676 0.5900 0.6001
LLS-J 0.4731 0.4882 " 0.5170 05434  0.5644 0.5861 0.5955

Env

p 1% 2% 3% 49 5% 10% 15%
LLS 0.6333  0.6359 <. 0.6355 0.6375. 0.6390 0.6515 0.6611
LLS-J 0.6298 0.6326 0.6319 1 0.6339 0.6356 0.6478 0.6570

Environ

p 1% 2% 3% 5% 6% 7% 8%
LLS 0.3783  0.4087 0.3964 0.4344 0.4371 0.4495 0.4776
LLS-J 0.3729 0.4029 0.3905 0.4279 0.4303 0.4425 0.4701

Table 3 Improvement ratio against different number of similar genes (k)

k 20 30 50 80 100
Alpha  0.0382 0.0185 0.0071  0.0017 0
Elu 0.0279  0.0124 0.0011 -0.0046 -0.0068
Env 0.0299 0.0152 0.0059 0.0009 -0.001
Environ 0.0059 0.0128 0.0188 0.0201  0.0153
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Table 4 the NRMSEs against different number of similar genes (k)

Alpha
K 20 30 50 80 100
LLS 0.8629 0.6286 0.5637 0.5412 0.535
LLS-J 0.8299 0.6170 0.5597 0.5403 0.535
Elu
k 20 30 50 80 100
LLS 0.5834 0.5086 0.4744 0.4608 0.4556
LLS-J 0.5671 0.5023 0.4739 0.4629 0.4587
Env
K 20 30 50 80 100
LLS 0.7888 0.6951 0.6489 0.6335 0.6283
LLS-J 0.7652 0.6845 0.6451 0.6329 0.6289
Environ
k 10 20 30 50 100
LLS 0.3719 0.4444 0.6602 0.7305 0.4312
LLS-J 0.3697 0.4387 0.6478 0.7158 0.4246

Table 5 Improvement ratio against artificial noise with different standard deviations (o)

o 0.01 0.05 0.10 0.15 0.20 0.25
Alpha  0.0034 0.0066 < 0.0088  0.0099- 0.0105 0.0118

Elu -0.0056  0.0025  0.0075 - 0.0097 0.0112  0.0127

Env 0.0055 0.0051 0.0062 0.0067 0.0080  0.0088

Table 6 the NRMSEs against artificial noise with different standard deviations (o)

Alpha
o) 0.01 0.05 0.10 0.15 0.20 0.25
LLS 0.4475 0.6053 0.7293 0.8056 0.8638 0.9094
LLS-J 0.4460 0.6013 0.7229 0.7976 0.8547 0.8987
Elu
o) 0.01 0.05 0.10 0.15 0.20 0.25
LLS 0.3761 0.5125 0.6391 0.7189 0.7783 0.8255
LLS-J 0.3782 0.5112 0.6343 0.7119 0.7696 0.8150
Env
o) 0.01 0.05 0.10 0.15 0.20 0.25
LLS 0.6394 0.6448 0.6661 0.6854 0.7112 0.7374
LLS-J 0.6359 0.6415 0.6620 0.6808 0.7055 0.7309
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Table 7 Improvement ratio against specific percentage (p %) for three imputations.

P 5% 7% 10% 11% 13% 15% 17% 20%
Alpha LLS 0.0043 0.0058 0.0076 0.0079 0.0087 0.0098 0.0111 0.0132
SLLS 0.0019 0.0041 0.0057 0.0058 0.0060 0.0066 0.0070 0.0083
ILLS -0.0044 -0.0004 0.0006 0.0009 0.0030 0.0029 0.0187 0.0050
Elu LLS 0.0052 0.0055 0.0057 0.0058 0.0056 0.0061 0.0059 0.0065
SLLS 0.0055 0.0064 0.0061 0.0060 0.0063 0.0077 0.0068 0.0073
ILLS -0.0017 -0.0017 0.0008 0.0385 0.0005 0.0018 0.0024 0.0035
Table 8 the NRMSEs against specific percentage (p %) for three imputations.
Alpha
P 5% 7% 109 119 139% 159 179% 20%
LLS 0.4369 0.4966 0.5653 0.5842 0.6191 0.6506 0.6817 0.7270
LLS-J 0.4350 0.4937 0.5610 05796 0.6137 0.6442 0.6741 0.7174
SLLS 0.4291 0.4844 05410 - 0.5559 0.5832 0.6065 0.6268 0.6501
SLLS-J 0.4283 0.4824 05379 __ 0.5527 0.5797 0.6025 0.6224 0.6447
ILLS 0.4049 0.4580 < 0.5147 - 0.5274 05634 05785 0.7972 0.6232
ILLS-J 0.4067 0.4582 0.5144 0.5269 0.5617 0.5768 0.7823 0.6201
Env
p 5% 7% 9% 119% 13%  15% 179% 20%
LLS 0.6392 0.6422 " 0.6472 0.6521.  0.6565 0.6602 0.6658 0.6728
LLS-J 0.6359 0.6387 0.6435 ' 0.6483 0.6528 0.6562 0.6619 0.6684
SLLS 0.6379 0.6397 0.6442 0.6474 0.6507 0.6532 0.6575 0.6608
SLLS-J 0.6344 0.6356 0.6403 0.6435 0.6466 0.6482 0.6530 0.6560
ILLS 0.6036  0.6023 0.6125 0.9456 0.6152 0.6210 0.6266 0.6321
ILLS-J 0.6046 0.6033 0.6120 0.9092 0.6149 0.6199 0.6251 0.6299

Table 9 Improvement ratio against different number (k) for three imputations.

k 20 30 50 70 100
Alpha LLS 0.0380 0.0186 0.0078 0.0031 0
SLLS 0.0393 0.0154 0.0055 0.0013 0
ILLS 0.0117 0.0014 0.0117 0.0010 0.0111
Elu LLS 0.0302 0.0156 0.0057 0.0017 0
SLLS 0.0298 0.0161 0.0061 0.0027 0
ILLS 0.0097 0.0458 0.0007 -0.0002 0.0016
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Table 10 the NRMSEs against different number of similar genes selected (k)

Alpha

k 20 30 50 70 100
LLS 0.8624 0.6295 0.5653 0.5454 0.537
LLS-J 0.8296 0.6178 0.5609 0.5437 0.537
SLLS 0.8285 0.5976 0.5409 0.5224 0.515
SLLS-J 0.7959 0.5884 0.5379 0.5217 0.515
ILLS 0.6320 0.5148 0.6320 0.5155 0.632
ILLS-J 0.6246 0.5141 0.6246 0.5150 0.625

Env

k 20 30 50 70 100
LLS 0.7935 0.6937 0.6492 0.6334 0.627
LLS-J 0.7695 0.6829 0.6455 0.6323 0.627
SLLS 0.7853 0.6894 0.6445 0.6300 0.623
SLLS-J 0.7619 0.6783 0.6406 0.6283 0.623
ILLS 0.6816 1.5308 0.6120 0.6074 0.615
ILLS-J 0.6750 1.4607 0.6116 0.6075 0.614

Table 11 Improvement ratio against artificial noise with different standard deviations (o) for

three imputations.

o 0.01 0.05 01 0.15 0.2 0.25

Alpha LLS 0.0072 0.0080 0.0096 0.0106 0.0118 0.0131
SLLS 0.0066 0.0102 0.0108 0.0109 0.0116 0.0125
ILLS 0.0014 0.0108 0.0553 0.0064 0.0072 0.0067

Elu LLS 0.0057 0.0059 0.0063 0.0069 0.0078 0.0090
SLLS 0.0059 0.0064 0.0069 0.0075 0.0081 0.0094
ILLS 0.0018 0.0096 0.0002 -0.0008 -0.0009 -0.0003
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Table 12 the NRMSEs against artificial noise with different standard deviations (o)

Alpha

o) 0.01 0.05 0.1 0.15 0.2 0.25
LLS 0.5682 0.6610 0.7610 0.8288 0.8846 0.9335
LLS-J 0.5641 0.6557 0.7537 0.8200 0.8742 0.9213
SLLS 0.5449 0.6397 0.7422 0.8086 0.8641 0.9115
SLLS-J 0.5413 0.6332 0.7342 0.7998 0.8541 0.9001
ILLS 0.5166 0.6126 3.7703 0.7499 0.8075 0.8462
ILLS-J 0.5159 0.6060 3.5619 0.7451 0.8017 0.8405

Env

o) 0.01 0.05 0.1 0.15 0.2 0.25
LLS 0.6489 0.6556 0.6717 0.6955 0.7186 0.7466
LLS-J 0.6452 0.6517 0.6675 0.6907 0.7130 0.7399
SLLS 0.6451 0.6523 0.6690 0.6923 0.7151 0.7439
SLLS-J 0.6413 0.6481 0.6644 0.6871 0.7093 0.7369
ILLS 0.6172 0.6847 0.6296 0.6447 0.6645 0.6877

ILLS-J 0.6161 0.6781 0.6295 0.6452 0.6651 0.6879
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