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摘要 

 

 

生物晶片數據分析在生物學研究已被廣泛應用，然而在生物晶片中常會有遺失值

的問題，往往會影響分析結果。由於許多後續分析都需要完整的數據資料，因此

在生物晶片分析中，估計遺失值成為一個重要的預先處理步驟。在現今使用的遺

失值估計方法中，以利用迴歸分析為基礎的估計方法最常被使用。後來為了改進

估計遺失值的準確度，因此發展出許多演算法。在我們的研究中，提出了

James-Stein 型改進估計中迴歸係數的方法。我們利用多筆生物晶片資料比較了傳

統估計法與利用 James-Stein 型調整方法的表現，我們可以發現 James-Stein 型調

整方法可以有效改進傳統方法，因此我們認為這是一個更有效估計遺失值的方

法。 

 

 

 

關鍵詞：遺失值估計; James-Stein 估計量 
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Abstract 

 

 

Microarray data analysis has widely used in biological studies. However, it is 

common that there are missing values in microarray data, which affects the result of 

analysis. As many downstream analysis methods require complete datasets, missing 

value estimation has been an important pre-processing step in the microarray analysis. 

Among the existed missing value imputation methods, the regression-based methods 

are very popular. Many algorithms are developed for reconstructing these missing 

values. In this study, we propose a James-Stein type modified estimator for the 

regression coefficients. We compare the performance of the conventional imputations 

and the James-Stein type adjusted imputation method, our approach shows better 

performance than the others on various datasets. 
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1. Introduction 

Microarray data analysis is becoming an important and useful tool in functional 

genomics research. The analysis allows the characterization of the gene expression of the 

whole genome by measuring the relative transcript levels between thousands of genes in 

various experimental conditions or time points [1, 2]. Microarray data have been widely used 

to study various biological processes such as cell cycle process[3, 4], stress response[5, 6], 

sporulation[7], and immune response[8]. In addition, it is also successfully applied in 

numerous studies, for instance, identification of genes relevant to a specific therapy or 

diagnosis, cancer classification, cancer prognosis and investigation the mechanism of drug 

action. 

 Microarray dataset is usually in the form of large matrices of expression levels of genes 

(rows) under experimental conditions (columns). Although the analysis has been developed 

for more than a decade, the missing value problem still affects the result of analysis. There 

still contain more than 5% missing values of the dataset such that more than 90% genes 

affected [9]. The occurrence of missing values could be caused by various reasons, including 

technology failures, administrative error, insufficient resolution, image corruption, dust or 

scratches on the slide [10]. As many downstream analysis methods require complete datasets, 

missing value estimation has been an important pre-processing step in the microarray 

analysis. 

The missing values in microarray dataset are traditionally estimated by repeating the 

microarray experiments or simply replacing the missing values with zero[8] or the row 

average (the average expression over the samples) [11]. Because these approaches are either 

time-consuming or leading to serious estimation errors, more advanced missing value 

imputation methods are needed to solve the missing value problems. In 2001, Troyanskaya et 

al. [10] published the first two missing value imputation algorithms based on the k-nearest 
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neighbors (kNNimpute) and the singular value decomposition (SVDimpute). Since then, a lot 

of missing value imputation methods have been proposed such as Bayesian principal 

component analysis (BPCA) [12], collateral missing value imputation (CMVE)[13], Gaussian 

mixture imputation (GMCimpute)[9], support vector regression imputation (SVRimpute)[14], 

projection onto convex sets imputation (POCSimpute)[15] and so on. Among the existed 

missing value imputation methods, the regression-based methods are very popular and contain 

many algorithms, including least squares imputation (LSimpute)[16], local least squares 

imputation (LLSimpute)[17], iterated local least squares imputation (ILLSimpute)[18], 

weighted local least squares imputation (WLLSimpute) [19], and sequential local least 

squares imputation (SLLSimpute)[20]. 

 We focused on the regression-based methods in this study. Since these methods have 

better performance than others, we propose a regression coefficient adjusted method to 

improve the regression-based methods. The rest of the thesis is organized as follow. We first 

introduce some major existing missing value imputation methods which have been widely 

used in Section 2. The James-Stein estimator for the normal distribution is introduced and the 

detailed formulas for the existing methods are given in Section 3. Regression coefficients 

based on the James-Stein adjusted estimation approach are proposed. Four datasets such as 

SP.Alpha, SP.Elu, GA.Env, and Environ, are used to illustrate the proposed method. We 

conduct a simulation study to evaluate the proposed method and the existing methods through 

the four data sets. Finally, a conclusion is given in Section 6.   

2. Review of literature 

In a typical microarray data matrix, the rows are the genes under investigation and the 

columns are the experimental conditions or time points. The microarray data matrix is 

obtained by performing a series of experiments on the same set of genes, one for each column. 

Let the microarray data be represented as an M×N matrix Y where the entries of Y are the 
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respect values for M genes under N different experiments or time points. The objective of 

missing value imputation is to estimate the missing entries given the incomplete microarray 

data matrix Y. However, missing value imputation makes use of the information about 

microarray data to estimate the missing entries. To improve the imputation accuracy, more 

microarray missing value imputation algorithms have been provided to combine information 

about the underlying biological processes.  

There are many methods suggested to deal with the missing value problem nowadays. A 

common criterion used to compare the performance of imputations is the normalized root 

mean squared error (NRMSE). From the microarray dataset, we can obtain an original data 

matrix 0M with m0 genes and n experiments, then we construct the complete matrix 

 ( m ) by deleting the genes with missing values. After the complete data 

matrix

im n
iM R  0i m

iM  being established, we randomly select a specific percentage of the data element of 

iM  and regard those elements as missing values. Then we estimate the missing value using 

various imputations and compare the performances with NRMSE calculated by:  

2( )

( )

guess ans

ans

mean y y
NRMSE

std y

  

and 

                        (1) 

ywhere guess ansy are vectors whose elements are those estimated values and the known 

answer values, respectively, for all missing entries. The mean and the standard deviation are 

calculated over missing entries in the entire matrix. 

Under this criterion, many imputations have been proposed to improve the estimating 

accuracy. In this section, we review several widely-used missing value imputation methods. 

1. zeroimpute or meanimpute 

This method uses zero to represent the missing value and it usually does not lead to good 

estimation results. In addition, another approach is to estimate the missing entries of 

microarray data matrix by the average of the non-missing values of the particular case or 
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variable (row average or column average, respectively). Row averaging assumes that the 

expression of a gene in one of the experiments is similar to its expression in a different 

experiment, which is often not true. The two methods may lead to serious estimation 

errors. 

2. KNNimpute and SVDimpute 

KNNimpute is perhaps one of the earliest and most frequently used missing value 

imputation algorithms. This method finds the nearest neighbor genes between the target 

gene with missing value and others. The missing value in the target gene is estimated as 

the weighted average of the k nearest genes. The weights set proportional to the inverse of 

with Euclidean distance between target gene and reference ones. Since Euclidean distance 

measure is often sensitive to outliers, which could be present in microarray data. 

KNNimpute has been found that log-transforming the data seems to sufficiently reduce 

the effect of outliers on gene similarity determination. 

SVDimpute has been employed to obtain a set of mutually orthogonal expression patterns. 

These patterns are named as Eigen genes which can be linearly combined to approximate 

the expression of all genes in the dataset. We identify the most significant Eigen genes by 

sorting the Eigen genes based on their corresponding eigenvalue. Although it has been 

shown by Alter [21] that several significant Eigen genes are sufficient to describe most of 

the expression data, the exact fraction of Eigen genes best for estimation needs to be 

determined empirically. SVDimpute can only be performed on complete matrices; 

therefore row average has been substituted for all missing values in matrix A, obtaining 

AT. We then utilize an expectation maximization method to arrive at the final estimate, as 

follows. Each missing value in AT then estimated using the above algorithm, and then the 

procedure is repeated on the newly obtained matrix, until the total change in the matrix 

falls below the empirically determined threshold of 0.01. 

KNNimpute method is more robust than SVDimpute to the type of data for which 
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estimation is performed, performing better on non-time series or noisy data. KNNimpute 

is also less sensitive to the exact parameters used (number of nearest neighbors), whereas 

the SVDimpute method shows sharp deterioration in performance when a non-optimal 

fraction of missing value is used. Both the method does not utilize the correlation 

structure in the data. 

3. BPCAimpute 

The estimation ability of KNNimpute and SVDimpute methods depend on important 

model parameters, such as the k-value in KNNimpute and the number of eigenvectors in 

SVDimpute. However, there is no theoretical way to determine these parameters 

appropriately. The following is a general method consisting of three components. First 

step is to perform the principal component regression with a low rank approximation of 

the dataset. The next step is to carry out Bayesian estimation under the assumption that the 

residual error and the projection of each gene behave as normal independent random 

variables with unknown parameters. The last step is the Bayesian estimation which 

follows by iterations on the expectation-maximization (EM) of unknown parameters. 

4. LSimpute 

LSimpute utilizes the least squares principle to estimate missing value using correlation 

between genes or arrays. There are two methods as follow; first estimation method utilizes 

correlation between genes and the other uses correlations between arrays. Through the 

bootstrapping approach, we can combine the two variants of estimate for parameter 

estimation. The first, LSimpute_combined uses a fixed global weighting of the estimates 

from the basic LSimpute methods, while the second, LSimpute_adaptive, uses an adaptive 

weighting scheme taking the data correlation structure into consideration. Linear 

regression model for y given x as y=a+bx+e, where e is the error term for which the 

variance is minimized when estimating the model (parameters a and b) with least squares. 

The single regression model has two parameters to be estimated, while the multiple 
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regression model has 1(k+1) parameters. 

5. LLSimpute 

In this method, a target gene with missing values is represented as a linear combination of 

similar genes. Rather than using all genes in the dataset, only the gene with high similarity 

with the target gene has been used. LLSimpute takes advantage of the local similarity 

structures as well as the optimization process by the least squares, which is one of the 

most important advances of LLSimpute. 

6. SLLSimpute 

In the previously developed methods, they do not use the information of genes with 

missing values since the existence of missing values hinders the use of other observed 

values of that gene. In the SLLSimpute method, it estimates the missing values 

sequentially from the gene containing the fewest missing values and partially utilizes 

these estimated values.  

7. ILLSimpute 

In many neighbor-based methods, the number of similar genes used to estimate missing 

value is fixed but it is quite different from that with another gene. In the ILLSimpute 

method, it defines coherent genes as those within a distance threshold to the target genes 

instead of fixing a common number of coherent genes for estimation purpose. On the 

other hand, estimated values in before iteration are used for missing value estimation in 

the next iteration and the method terminates after certain iterations or the imputed values 

converge. 
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3. Existing methods 

In this study, we focused on the regression-based methods such as LLSimpute[17], 

SLLSimpute[20], and ILLSimpute[18], since these methods have better performance than 

others. Several existing regression-based methods are reviewed as follows. 

In the following content, we use m nG R 

m n

1  T n
ig R 

1
T

m n

T
m

g

G R

g

to represent a gene expression data matrix 

with m genes and n experiments, and assume . In the matrix G, a row 

represents expressions of the ith gene in experiments: 



 
 

  
 
 

                                 (1) 

    For example, if there is a missing value in the lth position of the ith gene, we denote it 

as ( , ) ( )iG i l g l , i.e.   . 

3.1 Selecting genes 

Since there are many genes in the microarray data matrix, we want to find some helpful 

genes to estimating the missing values. By the above reason, we select k similar genes to 

estimate missing values. Suppose there is a missing value   in the first position of the first 

gene, i.e. 1(1)g  m n
 in the matrixG R 

1 jr 1 12 1' ( , )T
ng g g  2' ( , )T

j j jng g g 

, we want to retrieve the missing value and then we 

have to find the k nearest neighbor gene vectors for g1 based on the Pearson correlation 

coefficient. Since the missing value is in the first position of g1, the Pearson correlation 

coefficient  between two vectors and is defined as  

1 1
1

2 1

1

1

n
jk jk

j
k j

g gg g
r

n  

  
       

                      (2) 

jg 2 , )T
j jng and is the average of the values in ' (jg g jwhere   is the standard deviation 

of theses values. When computing the coefficients, we do not consider the components of g1 
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which correspond to missing values. In addition, we take advantage of the absolute value of 

the Pearson correlation coefficients. Since there are some components of the genes are the 

highly correlated but opposite signed, i.e. 1r  , they are a lpful in estimating missing 

values. We estimate missing values in the target genes with those highly correlated genes 

selected by the Pearson correlation coefficients in the microarray data.  

lso he

( 1)  k nA R  

There are other methods to select k-nearest genes such as Euclidean distance and 

covariance minimization. In our study, we select k-nearest genes by Pearson correlation 

coefficients simplicity; however, ILLSimpute uses Euclidean distance. 

3.2 Local least squares imputation 

Based on these k-nearest gene vectors selected before, LLSimpute use local least squares 

to determine the coefficients to approximate the target gene as a linear combination and we 

describe the process as follow. We construct the matrix  and the two vectors 

and . The rows of matrix A comprise by k-nearest neighbor genes 

 and their first values omitted, the elements of the vector b comprise of 

the first components of those k vector , and the elements of the vector w are the n-1 

elements of the gene vector g1 whose missing first entry is omitted. After having the matrix A, 

and the vectors b and w, the least squares problem is formulated as 

1  kb R  ( 1) 1  nw R  

1  , 1 ,
i

T n
Sg R i k  

i

T
Sg

2
A x wmin T

x
.                                (3) 

Solving the above problem, we acquire the coefficients 

  1T TA A A w
x .                              (4) 

In the LLSimpute, the missing value  is estimated by 

                            Tb  x .                                     (5) 

In our studies, we want to improve the performance of LLSimpute by adjusted the coefficients 

and we discuss in the next section. 

 8



There are some symbols need to be noticed which is the coefficients of the regression 

model. In the relation articles, they denote the coefficients as x; however, we used to denote 

them as   in the statistical analysis. To avoid confusing, we use x represents the coefficient 

in our studies. 

For example, suppose there is a missing value of g1 (target gene) in the first position 

among the total of seven experiments. We want to estimate the missing value by the k similar 

genes, and then we have the matrix A, and vectors b and w as follow: 

1

1 1 2 3 4 5 6

1,1 1,2 1,3 1,4 1,5 1,6

,2 ,3 ,4 ,5 ,6
k

T

T T
S

T
k k k k k kS

g w w w w w w

g A A A A Aw

b A
A A A A Ag



   
                     

     
1

,1k

b A

b A




  

where  is the missing value and are the genes which are similar to Gene1 ( ). 

From the second to the last components of the neighbor genes  form the ith 

row vector of the matrix A. The vector w of the known elements of target gene g1 can be 

denoted as a linear combination 

1
,T

Sg  1
Tg

,i k 

1 1 2 2 ,k kw x a x a a

k

T
Sg

x

 , 1T
ia

   

i

                             (6) 

where x are the coefficients of the linear combination which found by the least squares 

formulation (4). 

3.3 Sequential local least squares imputation  

In the SLLSimpute method, the least squares method is used to estimate the missing 

values and the difference with LLSimpute is the data matrix which we select the similar genes. 

We describe the process of SLLSimpute construct the data matrix as follow. We first separate 

the data matrix  to two subsets: a complete matrix without missing value 

and an incomplete matrix 

m nG R  1
1

m nG R 

2
2

m nG R 

2

containing genes with missing values. In incomplete 

matrixG , we sort the genes by their missing rate. Missing rate is calculate by 
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                                ,  i
i

c
r

n


2

1

2G

1 G

                                 (7) 

where ci is the number of missing value in ith gene. Then we construct the matrixG  where 

the first gene has the smallest missing rate and the last gene has the largest missing rate. 

SLLSimpute estimates the missing value through the information supplied by the 

complete matrixG . After having estimated the missing values of the first row, those missing 

entries filled by the estimate values and the first row of will be changed to the complete 

matrixG . On such way, the information supplied by the complete matrix  increases and 

we can estimate more accuracy. However, if one row with too much missing values, it can not 

supply correct information to us. Under such condition, there is a threshold  to limit rows 

which can be changed to the complete matrix. The threshold  is calculated by: 

1

0r

0r

2

1 .
ic

0

m

i

m n
                   r



                                         (8) 

That is to say, if one gene whose missing rate is more than the average missing rate ( ), it 

can not be changed to .  

0r

1G

Excluding the difference of the data matrix which we select the highly corrected k genes, 

the rest estimating procedure of SLLSimpute is similar with LLSimpute. 

3.4 Iteration local least squares imputation  

LLSimpute and SLLSimpute methods select k nearest genes for a target gene and k is a 

fixed number. Therefore, in the ILLSimpute, it does not fix the number of similar genes used. 

Rather, it defines the similar genes within a distance threshold  to the target gene. The 

impact of setting up a distance threshold rather than a fixed number of similar genes is that 

some nearest genes are already far away from target gene. Using the distance ratio , in the 

first iteration of ILLSimpute method, missing value positions are filled with their respective 

row averages, similar genes for ever target gene are selected, and then LLSimpute method to 

re-estimate the missing values. Afterwards, in each iteration, ILLSimpute method uses the 
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imputed results from the last iteration to re-select similar genes for every target gene, using 

the same distance ratio, and takes advantage of LLSimpute method to re-estimate the missing 

values. Therefore, the only difference between the first iteration and the latter iterations is the 

use of row averages for selecting similar genes.  

4. James-Stein estimator 

4.1 Shrinkage approach 

In the regression analysis, there is a phenomenon in relation to the general observation 

that a fitted relationship appears to perform less well on a new dataset than on the dataset 

which used for fitting. Particularly the value of the coefficient of determination has shrunk. 

This concept is complementary to over fitting and to the standard adjustment made in the 

coefficient of determination to atone for the possible effects of further sampling, like 

controlling for the potential of new explanatory terms improving the model by chance. 

A shrinkage estimator is an estimator that incorporates the effects of shrinkage either 

explicitly or implicitly. Shrinkage is implicit in Bayesian inference and castigated likelihood 

inference; on the other hand, it is explicit in James–Stein-type inference. By contraries, simple 

types of maximum-likelihood and least-squares estimation procedures do not include 

shrinkage effects, although they can be used within shrinkage estimation. 

The use of shrinkage estimators in the context of regression analysis, where there may be 

a large number of explanatory variables, has been described by Copas[22]. In this article, the 

values of the estimated regression coefficients are shrunken towards zero with the effect of 

reducing the mean square error of predicted values from the model when applied to new data. 

One of the shrinkage estimators, the James-Stein estimator, for the normal distribution is 

introduced in Section 4.2. A James-Stein type modified estimator for the regression model is 

proposed in Section 4.3. 
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4.2 James-Stein estimator for the mean of normal distribution 

Suppose that Y Y  are independent normal random variables andY  follows a 

normal distribution

1 2, , , kY i

2( , )iN  

2
1 2( , , , ) ( , )kY Y Y N I   1 2( , , )k

. Assume that all of k random variables have a common variance 

which is known, but their means are unknown, differ and vary separately. That is to 

say, , where      k k and I is the  identity matrix. 

Under the squared-error loss 

22
( ) ( )

1

( , ) ( )
k

Y i i Y
i

L d d d  


   

( )Yd i

                         (9) 

where  is an estimator of  .We want to find estimators of   such that the mean square 

error  is minimized. There is a natural and intuitive estimate of( )( , )Y YE L d     which is Y 

itself. However, Stein[23, 24] showed that the naive estimator  Y  is not admissible, that is, 

there exists other estimators with smaller mean squared error. For k , the obvious estimate 

Y is dominated by 

3

              
2

2
(1 )

JS

Y

k
Y

S
 

,                           (10)  

The James-Stein estimator 
JS

 shrinks the naive estimate towards zero by a factor
2

2
1

Y

k

S

 
 

 

2 2

1

k

Y i
i

S Y




2  3k  0 2( 2)c k

, 

where  depends on the other random variables. Although the risk is optimal 

for c k , more generally, for  and   



, any estimator of the form  

2
(1 )

JS

i i
Y

c
Y

S
                                           (11) 

 .  has uniformly smaller risk for all 

The shrinkage estimator approach can also be used to interval estimation approach Wang 

[25, 26]. 
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4.3 James-Stein estimate for LLSimpute 

In the model (4), we obtain the coefficients    1, 2 , , kx x x



of linear combination. In 

Section 4.2, we have introduced the James-Stein estimator for the mean of normal distribution. 

In this section, we based on the form (10) to propose a shrinkage estimator for the regression 

coefficients. By the similar form of (10), we have the new coefficients by: 

                              
2

2

( 2)
(1 )

JS

i i

k
x x

nS


 

2

                        (12) 

   1, 2 , , kx x where  is the variance of the coefficients x 2S

2 2

1

k

i
i

S x


 we obtain before, and is the 

norm of the coefficients, i.e.   .  

   After we have the new coefficients 1 2, , ,
JS JS JS

kx x x , we estimate the missing value   by 

  
1 21 2 .
JS JS JS

k kx a x a x a     

For estimating each missing value, we need to construct the matrices A and vector w and 

b, and solve the least squares problem to gain the coefficients of the selected genes. Then we 

adjust the coefficients by James-Stein estimators. At last, to take advantage of non-missing 

entries of neighbor genes which have missing values, each missing value is estimated by 

regression model with the adjusted coefficients. This process is helpful in achieving more 

accurate estimation result since it circumvents possible errors generated by shrinkage. 

 

4.4 James-Stein estimate for SLLSimpute and ILLSimpute 

By the similar argument as for the LLSimpute, we apply the shrinkage estimator to 

SLLSimpute and ILLSimpute. In these imputations, we adjust the coefficients before 

estimating missing values by formula (5). After adjust those coefficients through the formula 

(12), we estimate the missing values as the same process. In the next section, we will compare 

the performance of the conventional imputations and the shrinkage type adjusted imputation 

method. 
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5. Results and discussion 

5.1 Datasets 

We use four microarray datasets in our experiments. They are obtained from Spellman 

cell cycle data (SP.Alpha and SP.Elu dataset), Gasch stress data (GA.Env dataset), and 

Causton stress data (Environ dataset). 

The Spellman yeast cell cycle analysis is to identify all genes whose mRNA levels are 

regulated by the cell cycle[3]. The data for one gene corresponds to one row, and the time 

points of each experiment are the columns. The ratio of induction/repression is such that the 

magnitude is indicated by the intensity of the colors displayed. This dataset contains all the 

tab delimited data for the alpha factor, cdc15, and elutriation time courses. In our studies, we 

use two data of this dataset, alpha factor and elutriation time courses. The first dataset was 

alpha-factor block release set of this dataset (SP.Alpha). After deleting those rows with 

missing values, we built a complete data matrix of 4304 genes and 18 experiments to asses 

missing value estimation methods. The second dataset is based on an elutriation time courses 

(SP.Elu).and its complete matrix with 4304 genes and 14 experiments. The 4304 genes had no 

missing values in the alpha-factor block release set and the elutriation dataset.  

The third dataset is obtained from a study of response to environmental changes in 

yeast[27]. Each row displays the data for each spot on the array and each column headers 

indicate the signal intensity, background, and background corrected intensity for each spot. It 

contains 6152 genes and 173 experiments which have time-series of specific treatments. After 

removing experimental columns that have more than 8% missing value, we acquire the 

complete matrix of 5431 genes and 13 experiments (GA.Env).  

The forth dataset is the Environ microarray data. The goal of this dataset is to investigate 

how expression of the yeast genome is remodeled upon exposure to a variety of 

environmental conditions. After removing those rows with missing values, we acquire the 
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complete matrix of 6191 genes and 45 experiments. With the complete matrix, we could 

estimate the missing values by imputations. 

With the above datasets, we could compare the performance of imputations. In the later 

section, we will introduce how to measure the performance and compare the performance of 

different imputations on these datasets. 

5.2 Measure of performance 

In our studies, there are four steps to evaluate the performance of the imputations. At 

first, we remove the genes with missing value to construct a complete data matrix. We 

randomly select the entries of matrix as the artificial missing values with specific missing 

percentage at the second step. And then, we estimate the missing value through the different 

imputations. Finally, we repeat the above processes n times and calculate the average NRMSE 

of the n times for each imputation. In addition, we compare those imputations in various 

situations, such as different k value selection, or different missing value percentage selection. 
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5.3 Simulation results for LLSimpute 

We compare the performance between LLSimpute and our approach on the different 

situations as follow.  

(i) Comparison of the NRMSEs against the number of genes for two methods. 

In this comparison, we consider the case that the specific percentage (5% or 10%) entries 

of each dataset are missing, when LLS and LLS-J denote the LLSimpute and James-Stein 

estimation based LLSimpute. The vertical axe indicates the NRMSE of each input scheme, 

and the horizontal axe represents the number of similar genes selected. In the following 

content, we denote k as the number of similar genes used. 

(ii) Comparison of the NRMSEs against percentage of missing entries for two methods.  

Figure 3 and 4 show the performance of two methods on the datasets. The vertical axe 

indicates the NRMSE of each input scheme, and the horizontal axe represents the 

percentage of missing values.  

(iii) Comparison of the NRMSEs with respect to noise levels.  

We add artificial noise with normal distribution 2( , )N   0where the mean   and the 

standard deviation .  The vertical axe indicates the NRMSE of each input scheme, and 

the horizontal axe represents the different level of standard 

deviation 0.01,0.05,0.1,0.15,0.2,0.25  .  
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Fig. 1. Comparison of the NRMSEs of two methods and the effect of the number of genes for estimating missing 

values on SP.Alpha dataset and SP.Elu dataset. 

In Figure 1, we find that the James-Stein approach shows better performance than LLSimpute 

when the k -value is small on SP.Alpha and SP.Elu datasets. When k is small, the James-Stein 

based method improves the conventional imputation. 
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Fig. 2. Comparison of the NRMSEs of two methods and the effect of the number of genes for estimating missing 

values on GA.Env dataset and Environ dataset. 

As shown in Figure 2, the James-Stein approach has better performance than LLSimpute both 

on GA.Env and Environ dataset.   

In Figures 1and 2, we conclude that James-Stein approach improve LLSimpute when k is 

small on these four datasets.  
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Fig. 3. Comparison of the NRMSEs against percentage of missing entries for two methods on SP.Alpha 

dataset and GA.Elu dataset. 

In Figure 3, we compare NRMSE these imputations in the high level missing percentage. The 

James-Stein approach shows better performance on the SP.Alpha dataset and it performs 

better on the 15-20% missing on the SP.Elu dataset.  
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Fig. 4. Comparison of the NRMSEs against percentage of missing entries for two methods on Env dataset 

and Environ dataset. 

In Figure 4, we find the James-Stein approach has good performance on both the GA.Env 

dataset and Environ dataset. In virtue of Figure 3 and 4, The James-Stein approach improves 

LLSimpute as the missing percentage increasing on the above datasets.  
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Fig. 5. Comparison of the NRMSEs with respect to noise levels on SP.Alpha dataset, SP.Elu dataset, and 

GA.Env dataset. 
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In Figure 5, to show how the methods respond to higher noise levels, we add some artificial 

noise by random normal distribution with different standard deviation. The Figure 5 shows 

that James-Stein approach improves LLSimpute efficiently on these datasets. 

5.4 Simulation results for other imputations 

In this section, we compare the performance of LLSimpute, SLLSimpute, ILLSimpute 

and the James-Stein approach for these methods on the SP.Alpha and GA.Env datasets; 

however, there is one problem with ILLSimpute. Among the comparison, ILLSimpute has 

some situation with serious estimation error such that the NRMSE value is large. The 

following figure is one of examples. The figure is to compare LLSimpute, SLLSimpute, 

ILLSimpute, and James-Stein approach with different missing percentage on SP.Alpha and 

GA.Env dataset. 

 

There are some sharps on the curve of ILLSimpute on the above figures. We find 

ILLSimpute leads to worse estimates on some situations; however, other imputations perform 

stably at the same time. We delete the point where ILLSimpute has serious error to compare 

the different methods. 
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Fig. 6. NRMSEs comparison of four methods respect to the number of genes for estimating missing values on 

SP.Alpha dataset and GA.Env dataset. 

As shown in Figure 6, SLLSimpute and ILLSimpute have smaller NRMSE than that of 

LLSimpute, revealing SLLSimpute and ILLSimpute are better than LLSimpute overall. In 

addition, the James-Stein estimator based methods efficiently improve these three imputations 

for small k. 
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Fig. 7. Comparison of the NRMSEs against percentage of missing entries for two methods on Alpha 

dataset and Env dataset. 

In Figure 7, ILLSimpute has better performance than LLSimpute and SLLSimpute. 

In addition, James-Stein estimator based method can improve these three imputations 

efficiently as the missing percentage increases. 
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Fig. 8 Comparison of the NRMSEs of four methods with respect to noise levels on Alpha dataset and Env 

dataset. 

In Figure 8, we find that these three imputations have worse performance as the artificial 

noise’s standard deviation increase. However, the James-Stein based method for these three 

imputations performance better overall. We conclude the James-Stein based method is less 

sensitive to the noise level. 
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6. Conclusion 

Efficient imputation of missing values is needed for the using of microarray data, since 

most of downstream analyses require a complete dataset. Therefore, exploring accurate and 

efficient methods for estimating missing values has become a more important issue. In our 

studies, a shrinkage estimator method associated with a regression model is proposed to 

estimate missing values on microarray data. Our method takes advantage of the correlation 

structures existing in microarray data and selects similar genes for the target gene by Pearson 

correlation coefficients. Furthermore, we incorporate the least squares principle and utilize the 

James-Stein estimator to adjust the coefficients of the least squared estimation in the 

regression model to estimate missing values. A simulation study demonstrated that shrinkage 

estimator based method provided superior estimation accuracy for various types of datasets 

compared with LLSimpute and SLLSimpute when the k-value is less than 50. Since our 

proposed method can apply to any regression model based method and can provide better 

missing value estimation, it is a competitive alternative to the conventional least squares 

method. 
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Table 1 Improvement ratio against specific percentage (p %) of missing entries 

p 10％ 11％ 13％ 15％ 17％ 19％ 20％ 

Alpha 0.0078 0.0079 0.0089 0.01 0.011 0.0124 0.0137 

Elu 0.0017 0.0016 0.0033 0.0049 0.0056 0.0066 0.0077 

Env 0.0055 0.0052 0.0057 0.0056 0.0053 0.0057 0.0062 

Environ 0.0143 0.0142 0.0149 0.015 0.0156 0.0156 0.0157 

 

 

Table 2 the NRMSEs against specific percentage (p %) of missing entries 

Alpha 

p 10％ 11％ 13％ 15％ 17％ 19％ 20％ 

LLS 0.5652 0.5819 0.6192 0.6526 0.6830 0.7124 0.7250 

LLS-J 0.5608 0.5773 0.6137 0.6461 0.6755 0.7036 0.7151 

Elu 

p 10％ 11％ 13％ 15％ 17％ 19％ 20％ 

LLS 0.4739 0.4890 0.5187 0.5461 0.5676 0.5900 0.6001 

LLS-J 0.4731 0.4882 0.5170 0.5434 0.5644 0.5861 0.5955 

Env 

p 1％ 2％ 3％ 4％ 5％ 10％ 15％ 

LLS 0.6333 0.6359 0.6355 0.6375 0.6390 0.6515 0.6611 

LLS-J 0.6298 0.6326 0.6319 0.6339 0.6356 0.6478 0.6570 

Environ 

p 1％ 2％ 3％ 5％ 6％ 7％ 8％ 

LLS 0.3783 0.4087 0.3964 0.4344 0.4371 0.4495 0.4776 

LLS-J 0.3729 0.4029 0.3905 0.4279 0.4303 0.4425 0.4701 

 

 

Table 3 Improvement ratio against different number of similar genes (k) 

k 20 30 50 80 100 

Alpha 0.0382 0.0185 0.0071 0.0017 0 

Elu 0.0279 0.0124 0.0011 -0.0046 -0.0068

Env 0.0299 0.0152 0.0059 0.0009 -0.001 

Environ 0.0059 0.0128 0.0188 0.0201 0.0153 
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Table 4 the NRMSEs against different number of similar genes (k) 

Alpha 

k 20 30 50 80 100 

LLS 0.8629 0.6286 0.5637 0.5412 0.535 

LLS-J 0.8299 0.6170 0.5597 0.5403 0.535 

Elu 

k 20 30 50 80 100 

LLS 0.5834 0.5086 0.4744 0.4608 0.4556 

LLS-J 0.5671 0.5023 0.4739 0.4629 0.4587 

Env 

k 20 30 50 80 100 

LLS 0.7888 0.6951 0.6489 0.6335 0.6283 

LLS-J 0.7652 0.6845 0.6451 0.6329 0.6289 

Environ 

k 10 20 30 50 100 

LLS 0.3719 0.4444 0.6602 0.7305 0.4312 

LLS-J 0.3697 0.4387 0.6478 0.7158 0.4246 

Table 5 Improvement ratio against artificial noise with different standard deviations ( ) 

  0.01 0.05 0.10 0.15 0.20 0.25 

Alpha 0.0034 0.0066 0.0088 0.0099 0.0105 0.0118 

Elu -0.0056 0.0025 0.0075 0.0097 0.0112 0.0127 

Env 0.0055 0.0051 0.0062 0.0067 0.0080 0.0088 

Table 6 the NRMSEs against artificial noise with different standard deviations ( )  

Alpha 

  0.01 0.05 0.10 0.15 0.20 0.25 

LLS 0.4475 0.6053 0.7293 0.8056 0.8638 0.9094 

LLS-J 0.4460 0.6013 0.7229 0.7976 0.8547 0.8987 

Elu 

  0.01 0.05 0.10 0.15 0.20 0.25 

LLS 0.3761 0.5125 0.6391 0.7189 0.7783 0.8255 

LLS-J 0.3782 0.5112 0.6343 0.7119 0.7696 0.8150 

Env 

  0.01 0.05 0.10 0.15 0.20 0.25 

LLS 0.6394 0.6448 0.6661 0.6854 0.7112 0.7374 

LLS-J 0.6359 0.6415 0.6620 0.6808 0.7055 0.7309 
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Table 7 Improvement ratio against specific percentage (p %) for three imputations. 

p  5％ 7％ 10％ 11％ 13％ 15％ 17％ 20％ 

LLS 0.0043 0.0058 0.0076 0.0079 0.0087 0.0098 0.0111 0.0132

SLLS 0.0019 0.0041 0.0057 0.0058 0.0060 0.0066 0.0070 0.0083

Alpha 

ILLS -0.0044 -0.0004 0.0006 0.0009 0.0030 0.0029 0.0187 0.0050

LLS 0.0052 0.0055 0.0057 0.0058 0.0056 0.0061 0.0059 0.0065

SLLS 0.0055 0.0064 0.0061 0.0060 0.0063 0.0077 0.0068 0.0073

Elu 

ILLS -0.0017 -0.0017 0.0008 0.0385 0.0005 0.0018 0.0024 0.0035

 

Table 8 the NRMSEs against specific percentage (p %) for three imputations. 

Alpha 

p 5％ 7％ 10％ 11％ 13％ 15％ 17％ 20％ 

LLS 0.4369 0.4966 0.5653 0.5842 0.6191 0.6506 0.6817 0.7270

LLS-J 0.4350 0.4937 0.5610 0.5796 0.6137 0.6442 0.6741 0.7174

SLLS 0.4291 0.4844 0.5410 0.5559 0.5832 0.6065 0.6268 0.6501

SLLS-J 0.4283 0.4824 0.5379 0.5527 0.5797 0.6025 0.6224 0.6447

ILLS 0.4049 0.4580 0.5147 0.5274 0.5634 0.5785 0.7972 0.6232

ILLS-J 0.4067 0.4582 0.5144 0.5269 0.5617 0.5768 0.7823 0.6201

Env 

p 5％ 7％ 9％ 11％ 13％ 15％ 17％ 20％ 

LLS 0.6392 0.6422 0.6472 0.6521 0.6565 0.6602 0.6658 0.6728 

LLS-J 0.6359 0.6387 0.6435 0.6483 0.6528 0.6562 0.6619 0.6684 

SLLS 0.6379 0.6397 0.6442 0.6474 0.6507 0.6532 0.6575 0.6608 

SLLS-J 0.6344 0.6356 0.6403 0.6435 0.6466 0.6482 0.6530 0.6560 

ILLS 0.6036 0.6023 0.6125 0.9456 0.6152 0.6210 0.6266 0.6321 

ILLS-J 0.6046 0.6033 0.6120 0.9092 0.6149 0.6199 0.6251 0.6299 

 

Table 9 Improvement ratio against different number (k) for three imputations. 

k  20 30 50 70 100 

LLS 0.0380 0.0186 0.0078 0.0031 0 

SLLS 0.0393 0.0154 0.0055 0.0013 0 

Alpha 

ILLS 0.0117 0.0014 0.0117 0.0010 0.0111

LLS 0.0302 0.0156 0.0057 0.0017 0 

SLLS 0.0298 0.0161 0.0061 0.0027 0 

Elu 

ILLS 0.0097 0.0458 0.0007 -0.0002 0.0016
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Table 10 the NRMSEs against different number of similar genes selected (k) 

Alpha 

k 20 30 50 70 100 

LLS 0.8624 0.6295 0.5653 0.5454 0.537 

LLS-J 0.8296 0.6178 0.5609 0.5437 0.537 

SLLS 0.8285 0.5976 0.5409 0.5224 0.515 

SLLS-J 0.7959 0.5884 0.5379 0.5217 0.515 

ILLS 0.6320 0.5148 0.6320 0.5155 0.632 

ILLS-J 0.6246 0.5141 0.6246 0.5150 0.625 

Env 

k 20 30 50 70 100 

LLS 0.7935 0.6937 0.6492 0.6334 0.627 

LLS-J 0.7695 0.6829 0.6455 0.6323 0.627 

SLLS 0.7853 0.6894 0.6445 0.6300 0.623 

SLLS-J 0.7619 0.6783 0.6406 0.6283 0.623 

ILLS 0.6816 1.5308 0.6120 0.6074 0.615 

ILLS-J 0.6750 1.4607 0.6116 0.6075 0.614 

 

Table 11 Improvement ratio against artificial noise with different standard deviations ( ) for 

three imputations. 

   0.01 0.05 0.1 0.15 0.2 0.25 

LLS 0.0072  0.0080  0.0096  0.0106  0.0118  0.0131 

SLLS 0.0066  0.0102  0.0108  0.0109  0.0116  0.0125 

Alpha 

ILLS 0.0014  0.0108  0.0553  0.0064  0.0072  0.0067 

LLS 0.0057  0.0059  0.0063  0.0069  0.0078  0.0090 

SLLS 0.0059  0.0064  0.0069  0.0075  0.0081  0.0094 

Elu 

ILLS 0.0018  0.0096  0.0002  -0.0008 -0.0009 -0.0003 
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Table 12 the NRMSEs against artificial noise with different standard deviations ( ) 

Alpha 

  0.01 0.05 0.1 0.15 0.2 0.25 

LLS 0.5682 0.6610 0.7610 0.8288 0.8846 0.9335 

LLS-J 0.5641 0.6557 0.7537 0.8200 0.8742 0.9213 

SLLS 0.5449 0.6397 0.7422 0.8086 0.8641 0.9115 

SLLS-J 0.5413 0.6332 0.7342 0.7998 0.8541 0.9001 

ILLS 0.5166 0.6126 3.7703 0.7499 0.8075 0.8462 

ILLS-J 0.5159 0.6060 3.5619 0.7451 0.8017 0.8405 

Env 

  0.01 0.05 0.1 0.15 0.2 0.25 

LLS 0.6489 0.6556 0.6717 0.6955 0.7186 0.7466 

LLS-J 0.6452 0.6517 0.6675 0.6907 0.7130 0.7399 

SLLS 0.6451 0.6523 0.6690 0.6923 0.7151 0.7439 

SLLS-J 0.6413 0.6481 0.6644 0.6871 0.7093 0.7369 

ILLS 0.6172 0.6847 0.6296 0.6447 0.6645 0.6877 

ILLS-J 0.6161 0.6781 0.6295 0.6452 0.6651 0.6879 
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