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於量子力學中一個新密度函數理論之有限元素數值解初探 

學生：陳永彬                                          指導教授：吳宗信 

國立交通大學機械工程研究所 

摘要 

在此研究中，我們利用有限元素法解一個由 Hsu[Hsu, 2003]推導出的新密度

函數理論公式，此公式不同於 Kohn-Sham方程式，其沒有因 exchange-correlation

項而另外做特別的假設來逼近問題。以有限元素法線性形狀函數的 Galerkin殘差

加權法來獲得特徵值線性代數方程式，再使用 Jacobi-Davison法求解特徵值方程

式。發展一維和三維有限元素法的程式並和實驗或理論資料做比較。用來測試程

式的問題包含一顆電子系統（如氫原子）沒有電子間的作用、兩顆電子系統（如

類氦原子）和四顆電子系統（如類鈹原子）有電子間的作用。結果顯示一維和三

維的程式所獲得的氫原子特徵狀態能量與實驗資料相當接近，對氦原子的穩態能

量而言，其三維的程式尚在發展中，相關的結果希望能夠在論文口頭報告時呈

現，另外由於三維有限元素法勁度矩陣的對角線優勢，三維程式的收斂速度遠快

於一維程式。 
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Preliminary Finite-Element Solution of a Self-consistent Density 

Functional Theory Formulation in Quantum Mechanics 

Student：Yung-Bin Chen                          Advisor：Dr. Jong-Shinn Wu 

Institute of Mechanical Engineering 

National Chiao Tung University 

 

ABSTRACT 

In the current study, we have used the finite element method (FEM) to solve a 

new formulation in density functional theory by Hsu [Hsu, 2003], in which, unlike 

Kohn-Sham equation, there is no exchange-correlation term, often requiring ad hoc 

assumption to close the problem. In this finite element method, Galerkin weighted 

residual method with linear shape function is used to obtain the eigenvalued linear 

algebra equations. Resulting eigenvalued equations are then solved using 

Jacobi-Davison method. Both 1-D and 3-D FEM codes are developed and compared 

with experimental or theoretical data wherever available. Benchmark test problems 

include one-electron system (e.g., hydrogen atom) without electron-electron 

interaction, two-electron system (e.g., helium-like atoms) and four-electron system 

(e.g., beryllium-like atoms) with electron-electron interactions. Results show that the 

eigenstate energies of hydrogen atom obtained by both 1-D and 3-D codes approach 
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the experimental data. The ground state energy of helium atom using 3-D FEM code 

is still in progress. Related results hopefully will be presented in the oral examination 

of my thesis. In addition, convergence rate in 3-D code is generally much faster than 

that in 1-D code due to the diagonal dominance in the stiffness matrix of 3-D FEM. 
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CHAPTER 1  INTRODUCTION 

1.1  Motivation 

1.1.1  Multiscale Simulation in Materials Processing 

Vapor deposition (Fig. 1.1) is a multiscale process in the sense that growth of the 

film occurs in a reactor whose dimensions are of O (1m) for a time of O (102s), while 

the atomic assembly events involve length scales of O (10-10m) with time scales in the 

pico- to micro-second region. In fact, atomic assembly is more fundamentally 

determined by the making and breaking of chemical bonds which is described by the 

wave functions of bonding electrons with length and time scales of O (10-13m and 

10-16s), respectively. Vapor deposition is not unique in this respect ─ all of materials 

science confronts a similar issue and many approaches have evolved for treating it 

[Ohno et al., 1999; Olson, 1997]. 

The ability to design processes for the growth of an atomic scale structure is 

critically tied to our ability to connect models with very disparate time and length 

scales. This ranges from the use of quantum mechanics to describe atomic binding to 

computational fluid dynamics (CFD) or direct simulation Monte Carlo (DSMC) [Bird, 

1994] to account for complex flow fields, thermal gradients and reaction 
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environments in the deposition chamber. This modeling hierarchy is summarized in 

Fig. 1.2. Some state-of-the-art modeling and simulation tools such as density 

functional theory (DFT), molecular dynamics (MD), kinetic Monte Carlo (kMC) and 

CFD when used alone enable analysis of only a part of a synthesis process. Among 

these, kMC method can be used to study the slow thermal diffusion of the deposited 

atoms/molecules on the substrate surface, which is important for predicting the correct 

morphology of the material structure. Energy barrier for atom jump at various atomic 

configurations on the substrate surface is required in the kMC method. However, it is 

very hard to obtain the data from experiment due to the difficulty of manipulating 

atom by atom precisely. Quantum computation considering large-scale atomic 

structure using DFT is the most possible and correct method to derive the data 

[Wadley et al., 2001].  

1.2  Background 

To describe completely the quantum mechanical behavior of electrons in solids it 

is strictly necessary to calculate the many-electron wave function for the system. In 

principle this may be obtained from the time-independent Schrödinger equation, but 

in practice the potential experienced by each electron is dictated by the behavior of all 

the other electrons in the solid. To solve the Schrödinger equation directly for all these 
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electrons would thus require us to solve a system of around 1023 simultaneous 

differential equations. Such a calculation is beyond the capabilities of computers 

nowadays, and is likely to remain so for the foreseeable future. Evidently, we must 

involve some approximations to render the problem soluble albeit tricky. Here we 

have our simplest definition of DFT: A method of obtaining an approximate solution 

to the Schrödinger equation of a many-body system. 

For the past 30 years density functional theory has been the dominant method for 

the quantum mechanical simulation of periodic systems. In recent years it has also 

been adopted by quantum chemists and is now very widely used for the simulation of 

energy surfaces in molecules (Fig. 1.3). 

Either Schrödinger equation or DFT formulation are the eigenvalue problems. In 

the current thesis, we use the finite element method (FEM) to derive the matrix 

equation from DFT formulation and then use some efficient matrix solver to solve the 

eigenvalue (energy) and corresponding eigenvector. Advantages of using FEM for 

solving the DFT formulation include easier parallel implementation employing 

domain decomposition [Wu and Hsu, 2004] and possible mesh refinement in the 

regions where solution changes rapidly [Wu et al., 2004]. 
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1.3  Literature Surveys 

1.3.1  Theoretical Development 

1.3.1.1 Schrödinger equation 

The foundation of the theory of electronic structure of matter is the 

non-relativistic Schrödinger equation for the many-electron wave function 

Ψ [Schrödinger, 1926]. The much heavier nuclei are considered as fixed in space by 

the Born-Oppenheimer approximation, so the wave function Ψ depends on the 

position and spins of the N electrons [Michael, 2000]. 

1.3.1.2 Hartree-Fock Theory 

Within Hartree-Fock theory one assumes the wave function of the N particle 

(electron) system to be an anti-symmetrized product of one particle (electron) 

functions [Markus, 2002]. Moreover, the HF is an approximation, as it does not 

account for dynamic correlation due to the rigid form of single determinant wave 

function. To account for dynamic correlation, one has to go to correlated methods, 

which use multi-determinant wave functions, and these scales as fifth, or even greater 

powers with the size of a system [Jan, 1996]. 

The calculation of the many-body wave function of a system of interacting 

electrons is a formidable task, which can only be carried out – and is only 
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meaningful – for systems with a few tens of electrons [Kohn, 1999]. Its observables 

for larger systems are to be determined; the calculation of the many-body wave 

functions has to be avoided due to the seemingly formidable computational difficulty. 

1.3.1.3 Hohenberg & Kohn Theorem 

In the year 1964 Hohenberg and Kohn published a paper in Physical Review, 

where they stated two fundamental theorems, which gave birth to modern density 

functional theory, an alternative approach to deal with the many body problem in 

electronic structure theory [Hohenberg and Kohn, 1964]. 

Up till now, both the exact ground state density as well as the Hohenberg-Kohn 

functional is still unknown, so one cannot make use of the Hohenberg-Kohn theorems 

to calculate the molecular properties. 

1.3.1.4 Kohn-Sham Equations 

Kohn and Sham introduced a fictitious system of N non-interacting electrons to 

be described by a single determinant wave function in N “orbits” [Kohn and Sham, 

1965]. The construction of the density explicitly from a set of orbits ensures that it is 

legal – it can be constructed from an asymmetric wave function. Due to the second 

part of the H&K theorem, namely that the total energy is minimized by the true 

ground-state density, the variational principle can now be utilized. With the standard 

functional derivatives and the additional definition of the so-called 
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exchange-correlation potential. The exchange-correlation functional ,εxc, which is 

simply the sum of the error made in using a non-interacting kinetic energy and the 

error made in treating the electron-electron interaction classically [Harrison]. 

All that remains now is the question what to do with theεxc, without which one 

cannot do any practical calculations. As mentioned above, this term has to tread on an 

approximate manner. Although there are many different functions available, almost 

all of them are derived from the electron density of a uniform electron gas, which can 

be calculated by means of statistical thermodynamics. 

1.3.1.5 A New Density Functional Theory Formulation 

In a recent paper, a generic derivation from cluster expansion results in a new 

DFT formulation without the exchange-correlation term that makes the computation 

much traceable in physics without ad hoc assumption as mentioned in the above [Hsu, 

2003]. 

1.3.2  Numerical Methods 

In the past, numerical methods for solving DFT formulation can be divided into 

two categories. One is orbital-type method and the other is real-space method. The 

former includes computations using slater-type orbitals (STOs), Gaussian-type 

orbitals (GTOs) and plane waves, while the latter is the real-space method that can be 
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loosely categorized as finite differences (FD), finite elements (FE), and wavelets. 

1.3.2.1 Orbital-type method 

Linear combinations of analytical functions ∑=
j

ii rcr )()( κκ χϕ  

 Plane Waves, )exp()( rikr κκχ =  

 Slater Type Orbitals, )exp()( rzyxr mlk
κκ ζχ κκκ −⋅= , whose shape close to true 

orbits (hydrogen atom) but evaluation of integrals is expensive. 

 Gaussian Type Orbitals, )exp()( 2rzyxr mlk
κκ ζχ κκκ −⋅= , whose evaluation of 

integrals cheap but different from true orbital shape. 

Linear combination of GTOs to approximate STOs that is 1 STO ≈ 3 GTOs, but 

analytical integration is still much faster than with STOs (Fig. 1.4). 

1.3.2.2 Real-space method 

Real-space methods can loosely be categorized as one of three types: finite 

differences (FD), finite elements (FE), or wavelets. All three lead to structured, very 

sparse matrix representations of the underlying differential equations on meshes in 

real space. Applications of wavelets in electronic structure calculations have been 

thoroughly reviewed recently [Arias, 1999]. As implied in the title, the primary focus 

is on calculations in density functional theory (DFT); real-space methods are in no 

way limited to DFT, but since DFT calculations comprise a dominant theme in 

modern electrostatics and electronic structure, the discussion here will mainly be 
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restricted to this particular theoretical approach. 

The early development of FD and FE methods for solving partial differential 

equations stemmed from engineering problems involving complex geometries, where 

analytical approaches were not possible [Strang and Fix, 1973]. Example applications 

include structural mechanics and fluid dynamics in complicated geometries. However, 

even in the early days of quantum mechanics, attention was paid to FD numerical 

solutions of the Schrödinger equation [Kimball and Shortley, 1934; Pauling and 

Wilson, 1935]. 

Real-space calculations are performed on meshes; these meshes can be as simple 

as Cartesian grids or can be constructed to conform to the more demanding 

geometries arising in many applications. Finite-difference representations are most 

commonly constructed on regular Cartesian grids. They result from a Taylor series 

expansion of the desired function about the grid points. The advantages of FD 

methods lie in the simplicity of the representation and resulting ease of 

implementation in efficient solvers. Disadvantages are that the theory is not 

variational, and it is difficult to construct meshes flexible enough to conform to the 

physical geometry of many problems. Finite-element methods, on the other hand, 

have the advantages of significantly greater flexibility in the construction of the mesh 

and an underlying variational-type formulation. Other advantages include easier 
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parallel implementation using domain decomposition and possible mesh refinement in 

regions where solution changes rapidly, as mentioned earlier. However, the cost of the 

flexibility is an increase in complexity and more difficulty in the implementation of 

multiscale or related solution methods [Thomas, 2000]. 

1.4  Objectives of the Thesis 

It is very attractive that this new DFT formulation can be solved without the 

uncertainty caused by the exchange-correlation term in principle. However, this DFT 

formulation is a typical eigenvalue problem, which is in principle more difficult to 

solve than a boundary-value problem from the numerical viewpoint. The design of the 

numerical scheme has to consider the future applications to system having a large 

numbers of electrons, which requires tremendous computing resources. In addition, 

the probability of electrons near the immobile ions (nucleus) often presents very large 

variations. Thus, in the current study we solve this new DFT formulation using finite 

element method, in which the advantages can be taken in the future for mesh 

refinement and parallelization using graph-partitioning technique (or domain 

decomposition). 

Therefore, the objectives of the current study are summarized as follows. 

1. To complete both 1-D and 3-D FE programs for solving the new DFT 
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formulation. 

2. To apply the two programs to compute simple atomic (1 nucleus) systems, 

such as hydrogen atom (1 electron), helium-like atoms (2 electrons) and 

beryllium-like atoms (4 electrons). 

3. To verify and compare the performance of 1-D and 3-D FE programs by 

comparing with available experimental data. 

The thesis begins with descriptions of the FE method appropriate in the 

discreteness of 1-D and 3-D problems. Results of 1-D and 3-D computations are 

presented and discussed. Conclusions are then made in turn. Future development in 

this direction is also recommended at the end. 
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CHAPTER 2  DENSITY FUNCTIONAL THEORY 

2.1  Ab-initio Methods 

2.1.1  Schrödinger Equation 

The initial work on Density Functional Theory (DFT) was reported in two 

publications: the first with Pierre Hohenberg in 1964 and the next with Lu J. Sham in 

1965. This was almost 40 years after E. Schrödinger [Schrödinger, 1926] published 

his first epoch-making paper marking the beginning of wave-mechanics. 

Schrödinger equation: Ψ=Ψ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+

−
−∇− ∑∑ ∑∑ E

rrRr
Z

i a ji jiai

a

i ,

2 1
2
1   (2.1) 

Where ri, rj are the positions of the electrons and Ra, Za are the positions and atomic 

numbers of the nuclei; and E is the energy. We will be primarily concerned with the 

calculation of the ground state energy of a collection of atoms. The energy may be 

computed by solution of the Schrödinger equation – which, in the time independent, 

non-relativistic, Born-Oppenheimer approximation is 

 ),,,(),,,( 2121 NN rrrErrrH LL Ψ=Ψ       (2.2) 

The wave function Ψ depends on the position and spins of the N electrons. The 

Hamiltonian operator, H, consists of a sum of three terms: the kinetic energy, the 

interaction with the external potential (Vext) and the electron-electron interaction (Vee). 
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That is 

∑∑
< −

++∇−=
N

ji ji
ext

N

i
i rr

VH 1
2
1 2        (2.3) 

In materials simulation the external potential of interest is simply the interaction 

of the electrons with the atomic nuclei 

∑∑ −
−=

i a ai

a
ext Rr

ZV         (2.4) 

Note that in order to simplify the notation and to focus the discussion on the 

main features of DFT the spin coordinate is omitted here and throughout this article. 

The lowest energy eigenvalue, E0, is the ground state energy and the probability 

density of finding an electron with any particular set of coordinates {ri} is |Ψ0|2. 

2.1.2  Hartree Theory 

One of the earliest attempts to solve the problem was made by Hartree. He 

simplified the problem by making an assumption about the form of the many-electron 

wave function, namely that it was just the product of a set of single-electron wave 

functions. Having made this assumption it was possible to proceed using the 

variational principle. 

In fact, for an N-electron system there are N equations for each of the N 

single-electron wave functions, which made up the many-electron product wave 

function [Stephen, 1997]. These equations turned out to look very much like the 
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time-independent Schrödinger equation, except the potential (the Hartree potential) 

was no longer coupled to the individual motions of all the other electrons, but instead 

depended simply upon the time-averaged electron distribution of the system. This 

important fact meant that it was possible to treat each electron separately as a 

single-particle. 

∏
=

=Ψ
N

i
ii r

1

)(rϕ          (2.5) 

where the ϕ i are orthonormal. Consequently the Hartree approximation allows us to 

calculate approximate single-particle wave functions for the electrons in crystals, and 

hence calculate other related properties. Unfortunately, the Hartree approximation 

does not provide us with particularly good results. 

The central failing of the Hartree approximation is that it does not recognize the 

Pauli exclusion principle. The true many-body wave function must vanish whenever 

two electrons occupy the same position, but the Hartree wave function cannot have 

this property. Mathematically, the Pauli exclusion principle can be accounted for by 

ensuring that the wave function of a set of identical fermions is anti-symmetric under 

exchange of any pair of particles. That is to say that the process of swapping any one 

of the fermions for any other of the fermions should leave the wave function unaltered 

except for a change of sign. Any wave function possessing that property will tend to 

zero (indicating zero probability) as any pair of fermions with the same quantum 
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numbers approaches each other. The Hartree product wave function is symmetric 

rather than anti-symmetric, so the Hartree approach effectively ignores the Pauli 

exclusion principle! 

2.1.3  Hartree-Fock Theory 

The Hartree-Fock approach is an improvement over the Hartree theory in that the 

many-electron wave function is specially constructed out of single-electron wave 

functions in such a way as to be anti-symmetric. The wave function has to be much 

more complicated than the Hartree product wave function, but it can be written in a 

compact way as a so-called Slater determinant (for those who know what a 

determinant is). 

[ ]NHF N
ϕϕϕϕ L321det

!
1

=Ψ        (2.6) 
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Where the variables ri include the coordinates of space and spin. This simple ansatz 

for the wave function Ψ captures much of the physics required for accurate solutions 

of the Hamiltonian. Most importantly, the wave function is anti-symmetric with 

respect to an interchange of any two-electron positions. 

( ) ( )NiiNii rrrrrrrrrr LLLL ,,,,,,,, 121121 ++ Ψ−=Ψ     (2.8) 
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Starting from this assumption it is once again possible to derive the Hamiltonian 

equation for the system through the variational principle. Just as before, this results in 

a simple equation for each single-electron wave function. However, this time in 

addition to the Hartree potential (which described the direct Coulomb interaction 

between an electron and the average electron distribution) there is now a second type 

of potential influencing the electrons, namely the so-called exchange potential. The 

exchange potential arises as a direct consequence of including the Pauli exclusion 

principle through the use of an anti-symmetric wave function. 

Notably, the exchange potential contributes a binding energy for electrons in a 

neutral uniform system, so correcting one of the major failings of the Hartree theory. 

However, in calculating many other properties the Hartree-Fock approach is actually 

worse than the Hartree approach. 

2.1.4  Exchange-Correlation Energy 

The reason the Hartree-Fock theory gives worse answers than the Hartree theory 

is simply that there is another piece of physics, which we are still ignoring. To some 

extent it cancels out with the exchange effect and so when we use the Hartree 

approach (i.e. we ignore both effects) we obtain reasonable results. On the other hand 

the Hartree-Fock approach includes the exchange effect but ignores the other effect, 
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which balances it somewhat, completely. This new effect is the electrostatic 

correlation of electrons. 

Ignoring the Pauli exclusion principle generated exchange hole for the moment, 

we can also visualize a second type of hole in the electron distribution caused by 

simple electrostatic processes. If we consider the region immediately surrounding any 

electron (spin is now immaterial) then we should expect to see fewer electrons than 

the average, simply because of their electrostatic repulsion. Consequently each 

electron is surrounded by an electron-depleted region that known either the Coulomb 

hole (because of its origin in the electrostatic interaction) or the correlation hole 

(because of it origin in the correlated motion of the electrons). Just as in the case of 

the exchange hole the electron-depleted region is slightly positively charged. The 

effect of the correlation hole is twofold. Thus any other interaction effects, such as 

exchange, will tend to be reduced by the correlation hole [Stephen, 1997]. 

Clearly we can now see why the Hartree-Fock approach fails for solids: firstly 

the exchange interaction should be screened by the correlation hole rather than acting 

in full, and secondly the binding between the correlation hole and electron has been 

ignored. At this point, the Hartree-Fock approach gives quite creditable results for 

small molecules. This is because there are far fewer electrons involved than in a solid, 

and so correlation effects are minimal compared to exchange effects. 
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2.1.5  Hohenberg & Kohn Theorem 

The discussion above has established that direct solution of the Schrödinger 

equation is not currently feasible for systems of interest in condensed matter science – 

this is a major motivation for the development and use of density functional theory. 

DFT is based upon a fundamental observation that the total energy of an 

assembly of atoms is a function of the total electron charge density [Hohenberg and 

Kohn, 1964], which is a function of space and time. The electron density is used in 

DFT as the fundamental property unlike Hartree-Fock theory, which deals directly 

with the many-body wave function. Using the electron density significantly speeds up 

the calculation. Whereas the many-body electronic wave function is a function of 3N 

variables (the coordinates of all N atoms in the system) the electron density is only a 

function of x, y, z only three variables. 

In 1964 Hohenberg and Kohn proved the two theorems: 

1. For a non-degenerate ground state Ψ of the system the external potential Vext(r) 

is determined, within a trivial additive constant, as a functional of the electronic 

density n(r). 

2. Given an external potential Vext(r), the correct ground-state density n(r) 

minimizes the ground-state energy E0, which is a functional uniquely determined 

by n(r). It holds, 
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[ ]nEE v
~

0 ≤         (2.9) 

where n~ (r) is any trial density fulfilling 0)(~ ≥rn  and Nrnrd =∫ )(~3 , N being 

the number of electrons in the system. 

They considered the ground state of the system to be defined by that electron 

density distribution which minimizes the total energy. Furthermore, they showed that 

all other ground state properties of the system (e.g. lattice constant, cohesive energy, 

etc) are functional of the ground state electron density. That is, that once the ground 

state electron density is known all other ground state properties follow (in principle, at 

least). 

The theorem – which has a remarkable short proof (Fig. 2.1) – guarantees the 

existence of an energy functional E[n] that reaches its minimum for the correct 

density n(r) yet gives no explicit prescription for its construction [Stephen, 1997]. In 

order to determine E[n] it is useful to separate the various known contributions to the 

total energy, like Ts[n], the kinetic energy of a non-interacting electron gas, Eext[n], the 

classical Coulomb energy of the electrons moving in the external potential Vext(r), and 

ECoul[n], the classical energy due to the mutual Coulomb interaction of the electrons: 

[ ] [ ] [ ] [ ] [ ])()()()()( rnErnErnErnTrnE xcCoulexts +++=    (2.10) 

The last term Exc[n] contains the quantum-mechanical exchange and correlation 

energy and – in principle – the difference between the true kinetic energy, T[n], and 
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Ts[n], the kinetic energy of the gas of non-interacting Kohn-Sham electrons. But since 

this difference is very small it is typically neglected. 

2.1.6  Kohn-Sham Equations 

Due to the second part of the H&K theorem, namely that the total energy is 

minimized by the true ground-state density, the variational principle can now be 

utilized. With the standard functional derivatives and the additional definition of the 

so-called exchange-correlation potential, 

[ ]
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rn
rnErv xc

xc δ
δ

=         (2.11) 

the following set of equations can be derived 
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2
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where the effective potential – as a functional of the electronic density – is given by 

[ ] [ ]∫ +
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rnrdrvrnvv xcexteffeff     (2.13) 

and the electronic density as 

∑
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i rrn

1

2)()( ϕ         (2.14) 

The set of equations (2.12) to (2.14) are the famous Kohn-Sham (KS) equations. They 

have to be solved self-consistently, i.e., starting from some initial density a potential 

veff [n(r)] is obtained for which the Eq. (2.12) are solved and a new electronic density 

Eq. (2.14) is determined. From the new density an updated effective potential can be 
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calculated and this process is repeated until self-consistency is reached, i.e., until the 

new electronic density equals the previous one [Schöne]. 

In fact, the K-S equations give an exact description of the many-electron system 

since up to this point no approximations have been made. Nevertheless, the method 

has reasonable precision from the past experience. First-principle DFT methods can 

currently predict binding energies to within a tenth of an electron volt and bond 

lengths to within 0.02 Å. It is becoming relatively straightforward to use this method 

to analyze the kinetics of relevant surface processes, including adsorption, chemical 

reaction and diffusion. However, there exists an exchange-correlation functional Exc 

due to electrons in general DFT, which often requires some ad hoc assumptions (e.g., 

local density approximation (LDA) assuming uniform electron gas, [Seminario and 

Politzer, 1995]) to close the problem. 

The success of the density functional theory (DFT) in reproducing measurable 

physical quantities of many-electron systems is rather remarkable, and may be 

attributed to the very fact that in the configuration space where exists a density 

distribution that is unique, and corresponding to the lowest energy state, no matter 

how complex and populous the system might be. There are, however, physical 

properties that will require the phase space information, at the minimum the pair 

correlation in order to quantify the electron-electron interaction energy. 
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2.2  Approximation to the Exchange-correlation Function 

The generation of approximations for Exc has lead to a large and still rapidly 

expanding field of research. There are now many different flavors of functional 

available which are more or less appropriate for any particular study. 

2.2.1  Local Density Approximation (LDA) 

The simplest, and at the same time remarkably serviceable, approximation for 

Exc[n(r)] is the so-called local density approximation (LDA). It is assumed that the 

density of an inhomogeneous system can be locally described by a homogeneous 

electron gas [Hohenberg and Kohn, 1964]. A homogeneous electron gas is fully 

specified by its electronic particle density n, which is often expressed in terms of the 

corresponding Wigner-Seitz radius rs, 
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         (2.15) 

Within the LDA the functional for the exchange-correlation energy, Exc, can be 

written as 

[ ] [ ]∫= )]([)(3 rnrnrdnE xcxc ε        (2.16) 

where εxc is the exchange-correlation energy per particle of a homogeneous electron 

gas of density n. In the next step, the exchange-correlation potential is split into its 

exchange part vx and a correlation part vc,  
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)()()( scsxsxc rvrvrv +=         (2.17) 

The local density approximation can be considered to be the zeroth order 

approximation to the semi-classical expansion of the density matrix in terms of the 

density and its derivatives [Dreizler and Gross, 1990]. 

2.2.2  Generalized Gradient Approximation (GGA) 

In the generalized gradient approximation (GGA) a functional form is adopted 

which ensures the normalization condition and that the exchange hole is negative 

definite [Perdew and Wang, 1986]. This leads to an energy functional that depends on 

both the density and its gradient but retains the analytic properties of the exchange 

correlation hole inherent in the LDA. 

The typical form for a GGA functional is: 

[ ]∫ ∇= ))(),(()(3 rnrnrnrdE xcxc ε       (2.18) 

The GGA improves significantly on the LDA’s description of the binding energy 

of molecules – it was this feature which lead to the very wide spread acceptance of 

DFT in the chemistry community during the early 1990’s. 

2.3  New Density Functional Theory Formulation 

In a recent paper [Hsu, 2003], a generic derivation from cluster expansion results 

in a new DFT formulation (Eq. (2.21) as follows) without the exchange-correlation 



 23

term that makes the computation potentially much traceable in physics itself without 

any ad hoc assumptions. It was derived from the Schrödinger equation and reached a 

different form from the other DFT formulation. The wave function Ψ is chosen as the 

product of a single-electron wave function Φ, and an N-body correlation function, 
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ΓΦ=ΓΨ
N

i
i Ur

1

)()()(        (2.19) 

Γ is the N-particle phase space point equivalent to the expression (r1, r2, …, rn). The 

exchange symmetry is imposed on U and on the indistinguishable particles so that 

each electron is described by the same Φ. This gives the density function as follows: 
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where the index starting from i=2 is chosen for convenience by imposing the 

exchange symmetry, and dτi is the volume element of ith particle. The last derived 

equation is 
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The subscript, I, refers to the immobile ion with charge ZI and N represents the 

number of electrons. This equation differs from the conventional DFT in several 

aspects. The usual exchange-correlation function disappears in this new formulation, 
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while the electron-electron interaction differs by a factor )1(
2
1

−N . The derivation of 

the density functional theory (DFT) from the cluster expansion corrects the spurious 

self-interaction energy in the ‘classical’ DFT, admits the excited states, and has a 

self-consistent exchange correlation effect. 
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CHAPTER 3  NUMERICAL METHOD 

The early development of FD and FE methods for solving partial differential 

equations stemmed from engineering problems involving complex geometries, where 

analytical approaches were not possible [Strang and Fix, 1973]. Example applications 

include structural mechanics and fluid dynamics in complicated geometries. However, 

even in the early days of quantum mechanics, attention was paid to FD numerical 

solutions of the Schrödinger equation [Kimball and Shortley, 1934, 10]. 

Real-space calculations [Thomas, 2000] are performed on meshes; these meshes 

can be as simple as Cartesian grids or can be constructed to conform to the more 

demanding geometries arising in many applications. Finite-difference representations 

are most commonly constructed on regular Cartesian grids. They result from a Taylor 

series expansion of the desired function about the grid points. The advantages of FD 

methods lie in the simplicity of the representation and resulting ease of 

implementation in efficient solvers. Disadvantages are that the theory is not 

variational, and it is difficult to construct meshes flexible enough to conform to the 

physical geometry of many problems. Finite-element methods, on the other hand, 

have the advantages of significantly greater flexibility in the construction of the mesh 

and an underlying variational formulation. In addition, parallel implementation using 
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domain decomposition, combining with adaptive mesh h-refinement, in FE methods 

due to unstructured mesh is rather straightforward by the use of graph-partitioning 

technique. The cost of these flexibilities may be an increase in complexity and more 

difficulty in the implementation. 

3.1  Finite Element Method (FEM) 

We begin with an introduction of the FEM that identifies the broad context of the 

subject [Burnett, 1987]: 

The FEM is the computer-aid mathematical technique for obtaining approximate 

numerical solution to the abstract of calculus that predict the response of physical 

system subjected to the external influences. 

Such problems arise in many areas of engineering, science, and applied 

mathematics. Applications to date have occurred principally in the areas of solid 

mechanics, heat transfer, fluid mechanics, and electromagnetism. New areas of 

application are continually being discovered, recent ones include solid-state physics 

and quantum mechanics. 

The salient features in FEM include the following: 
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1. The domain is divided into smaller regions called elements. Adjacent elements 

touch without overlapping, and there are no gaps between the elements. The 

shapes of the elements are intentionally made as simple as possible. 

2. In each element the governing equations, usually in differential or variational 

(integral) form, are transformed into algebraic equation. The element equations 

are algebraically identical for all elements of the same type, which usually need to 

be derived for only one or two typical elements. 

3. The resulting numbers are assembled (combined) into a much larger set of 

algebraic equations, which are called the system equations. In the process of 

element assembly, boundary conditions can be enforced automatically. Such huge 

systems of equations can be solved economically because the matrix of 

coefficients is “sparse” in essence. 

4. Resulting matrix equation is then solved using suitable efficient matrix solver. 

FEM seeks an approximate solution U~ , an explicit expression for U, in terms of 

known functions, which approximately satisfies the governing equations and 

boundary conditions. It obtains an approximate solution by using the classical 

trial-solution procedure. 

Construction of a trial solution: 

( ) ( ) ( ) ( )xNaxNaxNaaaxU nn++++= L22110;~       (3.1) 
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where x are the independent variables in the problems. The functions ( )xN  are 

known functions called trial functions (basis). The coefficients, a, are undetermined 

parameters called degree of freedom (DOF). 

We apply FEM to solve the new DFT formulation, as shown in Eq. (2.21), which 

is a typical second-order nonlinear eigenvalue problem. The purpose is to determine 

specific numerical values for each of the parameters a. In this FEM, we employ 

Galerkin weighted residual method using C0-linear shape function. For each 

parameter ai we require that a weighted average of R(x;a) over the entire domain be 

zero. The weighting functions of the Galerkin weighted residual method are trial 

functions ( )xN  associated with each ai. 

( ) ( )∫ dxxNaxR i;         (3.2) 

3.1.1  One-dimensional FEDFT Program 

For the system of one nucleus with one or more electrons, Eq. (2.21) can be 

simplified as, by taking the spherical symmetry, 
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KJJ HH +=Π
2
1      for four-electron system (J=1,2; K ≠ J)   (3.4c) 
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where JΨ  is the density function of orbital J that is limited to two electrons with 

spin polarization to satisfy the Pauli exclusion principle and )(e
JΨ  is the density 

function of the last evaluate. r is the radial coordinate originating from the center of 

the nucleus. 

By applying the Galerkin weighted residual to Eq. (3.3) in a typical 1-D element,  

( ) ( ) nidvrNrR i ,...,2,1,0; ==∫∫∫ α                        (3.6) 

where )(rNi  is the shape function, ( ) ( ) ( )∑
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nodes in an element. Note that the residual function, R(r;α), is defined as, 
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In the current study, linear shape function for 1-D element, ( ) ijjiiji rbarN δ=+= , is 

used for 1-D program throughout the research, unless otherwise specified. Note that 

the subscripts i and j are the node numbers in a 1-D element. Substituting Eq. (3.7) 

into Eq. (3.6), after some algebraic arrangement [Appendix A], results in the 

elemental generalized eigenvalue matrix (2x2) equation that its form is rearranged to 

satisfy the matrix solver as 

[ ] [ ]{ }{ } 0=+ αε KM                           (3.8) 
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Resulting system linear algebraic eigenvalue equations, obtained by assembling all 

elemental matrix equations as shown in Eq. (3.8), are then solved by the matrix solver 

by J-D method [Wang et al., 2003]. The stiffness matrix of the system equation 

resulting from the 1-D FEM is “marginally” diagonally dominant, from which the 

convergence is rather slow, which can be clearly shown in Fig. 4.17 ~ 4.18. For 

molecular system with more than one nucleus or with one nucleus and more than four 

electrons, the spherical symmetry is not held; hence, the three-dimensional FE 

program is required and is introduced next. 

3.1.2  Three-dimensional FEDFT Program 

For the system of one nucleus with one or more electrons, Eq. (2.21) can be 

rewritten for density function of orbital J in three-dimensional form as, 
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2/1222 )( zyxr ++=                                            (3.11b) 
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vΠ  the same as Eq. (3.4)                                 (3.11c) 
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By applying the Galerkin FEM to Eq. (3.10) in a typical 3-D element, 
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In the current study, linear shape function for 3-D tetrahedral element, 
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= , where Vc is the element volume, is used for 3-D program 

throughout the research, unless otherwise specified. Similar to the algebraic 

rearrangement in 1-D FEM but comparably complicated [Appendix B], the resulting 

elemental generalized eigenvalue matrix (4x4) equation can be written as 

[ ] [ ]{ }{ } 0=+ αε KM                         (3.14) 
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Note that Gauss Quadrature [Zienkiewicz and Taylor, 2000] with weighting 

factor wk at point k is used for the volume integration throughout the study, unless 

otherwise specified. This generalized eigenvalue formulation can be easily extended 

to more complicated atomic or molecular system (multiple orbits) by modifying the 

electron-electron interaction term, )(rjΠ , based on the Pauli exclusion principle. 

Resulting system equations are then assembled element by element and are solved by 

using J-D matrix solver similar to 1-D FE program. However, the convergence of the 

3-D FE program is expected to be much faster than that in 1-D FE program due to the 

diagonally dominated coefficient matrix, which can be shown in Fig. 4.17 ~ 4.18. 

The system equations are an eigenvalue problem with large-scale sparse matrix. 

Here we use the method of random pack storage (RPS) to just store the nonzero 

entries of the stiffness matrix. This method can save a lot of memories when store a 

large-scale sparse matrix. Resulting eigenvalue linear algebraic equations are then 
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solved using the Jacobi-Davison (JD) method [Wang et al., 2003], which is a 

subspace-type algorithm that will be introduced shortly. Overall procedures of solving 

the DFT eigenvalue problem can be schematically sketched in Fig. 3.1. 

3.2  Jacobi-Davidson Method 

The Jacobi-Davidson method [Voss and Betcke, 2002; Hwang, 2003] is based on 

a combination of two basic principles. The first one is to apply a Galerkin approach 

for the eigenproblem xAx λ= , with respect to some given subspace spanned by an 

orthonormal basis {v1, …, vm}. The Galerkin condition is 

0},,{ *
1 =−⊥− ssAVVvvsVsAV mmmmm θθ K    (3.17) 

where Vm denotes the matrix with columns v1 to vm. This equation has m solutions 

( ))()( , m
j

m
j sθ . The m pairs ( ))()()( , m

jm
m

j
m

j sVu ≡θ are called the Ritz values and Ritz 

vectors of A with respect to the subspace spanned by the columns of Vm. These Ritz 

pairs are approximations for eigenpairs of A, and our goal is to obtain better 

approximations by a well-chosen expansion of the subspace. 

Suppose that we have an eigenvector approximation uj for an eigenvector x 

corresponding to a given eigenvalue λ. We suggested computing the orthogonal 

correction t for uj
(m). 

( ) ( )tutuA m
j

m
j +=+ )()( λ        (3.18) 
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with )(m
jut ⊥ , }0|{ * =≡∈ ⊥

juvvUt . 

The correction equation of Jacobi-Davidson 

( ) jj rtIA −=−⊥ θ                               (3.19) 

where 

jjj uIAr )( θ−=                                (3.20a) 

( ) ( )**
jjjj uuIAuuIA −−=⊥                       (3.20b) 

The next is to solve the t from Eq. (3.19) and add t into subspace to expand the search 

subspace, then iterate again with expansive subspace until convergence. The 

Jacobi-Davidson method has similar convergence properties as inverse iteration if the 

correction equation is solved exactly. Procedures of solving eigenvalue problem using 

J-D algorithm can shown in Fig. 3.2, while the details are summarized as follows 

[Wang et al., 2003]: 

1. Given ( ) 01 AAA += λλ  

2. To choose a random vector Vi as the initial subspace  

3. To compute the Galerkin condition as VAVM ii
*= . 

4. To compute the Ritz pairs ( )s,θ  of ( ) 001 =+ sMMθ  and select the 

desired Ritz pair to be eigenpair with 1
2

=s . 

5. To compute Vsu = , and the residual ( )uAr θ= . 

6. If ( ) uxr ==< ,,
2

θλε , Quit. 



 35

7. To compute correction term t and orthogonalize t against V, 
2

/ ttv =  

8. Expand [ ]vVV ,=  

9. To back to process 3 and iterate until ε<
2

r . 

This J-D solver can efficiently deal with the large-scale sparse eigenvalue matrix 

equation, which is still a very challenging task even nowadays. One of the advantages 

in using J-D algorithm to solve the DFT eigenvalue problem is the feasibility of 

parallelization in the future, considering the computational demanding of the problem 

itself. 
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CHAPTER 4  RESULTS AND DISCUSSIONS 

In this chapter, we first describe the elements of different cases and different 

computational domains and then several computational results are presented in turn. 

4.1  Elements Construction 

We set up two different dimensions of elements to fit the different FEDFT 

programs. 

4.1.1  One-dimensional Elements 

Since the simple atoms that only need to consider the s state of the angular 

momentum are spherical symmetry, we could simplify the computational domain of 

sphere to be just the radial domain. We have to set up the one-dimensional elements to 

match the one-dimensional FEDFT program in the radial domain. The computing 

radii are different for different cases (ex. the hydrogen atom is about 10 for ground 

state and about 20 for first excited state) but the length unit is Bohr radius, a0, (0.053 

nm). The domain is formed by nodes and elements that two nodes compose one 

element in one-dimensional domain. The Fig.4.1 shows the diagram of the elements 

and nodes and the radial domain data of all models in this research are shown in table 

4.1. 
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4.1.2  Three-dimensional Elements 

The radial domain is only suitable for the simple atoms. When the models are 

many electron atoms that have to consider the other angular momentums, molecules 

and cluster of atoms etc. are complicated, we will have to solve the complicated 

problems and need the total real-space computational domain. In the 

three-dimensional elements, we use the tetrahedron as an element that is used for 3-D 

program throughout the research, unless otherwise specified and there are four nodes 

to compose one linear element (Fig.4.2). 

In the case of simple atoms, we cut part of a sphere to simplify the computational 

domain and decrease the computing time. For example the hydrogen atom, we set the 

radius to be 10 Bohr radii and both the zenith and azimuth angle to be 30 degrees as 

shown in Fig. 4.3. There are 60 nodes on the radial and 20 nodes both on the zenith 

and azimuth angle. The computational domain data of all models in this research are 

shown in table 4.2. 

4.2  One-dimensional FEDFT 

We take the hydrogen atom, helium-like atoms and beryllium-like atoms as 

models to validate the one-dimensional FEDFT program. The 1s state energies and 2s 

state energies of all models obtained by one-dimensional FEDFT program that are 
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compared with the known experimental ones and numerical ones obtained by Hsu 

[Hsu, 2003] are shown in table 4.3 - 4.5. The numerical energies obtained by Hsu are 

obtained by finite difference method (FDM). The Z column shows the numbers of 

positive charge of the nucleus. The exp column shows the ionization energy of the 

electron from experiments. The n=1 column shows the 1s state energy of the electron 

from numerical results. The n=2 column shows the 2s state energy of the electron 

from numerical results. The subscripts F and H mean the numerical results by FEDFT 

and Hsu. The models set the different cutoff radii that all are divided by 0.001 Bohr 

radii as an element. Since there are four electrons in beryllium-like atoms, the ground 

state energy, G, is the sum of 1s and 2s state energies. 

From the table 4.3, the numerical ground state energy of hydrogen atom almost 

conforms to the experiment. It shows that the one-dimensional FEDFT program has 

good performance to compute the energy of hydrogen atom. But the table 4.4 and 4.5 

show that the numerical results of both FEDFT and FDM do not conforms to the 

experiments closely. The reason should be the electron-electron interaction term that 

can not directly be solved by the initial equation but integrates by the last eigenvectors. 

The results of FEDFT are worse than FDM shown in table 4.4 and 4.5. When in 

one-dimensional, the matrices of both FEDFT and FDM are tri-diagonal matrices. In 

the current research, the stiffness matrix of the one-dimensional FEDFT is 



 39

“marginally” diagonally dominant, and it would obtain the worse solution and 

converge slowly. 

The probabilities of finding the electron in a hydrogen atom for the 1s and 2s 

states that are compared with exact solutions are shown in Fig. 4.4. The probabilities 

of finding the electron in helium-like atoms for the 1s and 2s state are shown in Fig. 

4.5 ~ 4.9 and the comparisons of the probabilities of finding the electron in 

helium-like atoms for the 1s and 2s state are shown in Fig. 4.10 and 4.11. The 

probabilities of finding the electron in beryllium-like atoms for the 1s and 2s state are 

shown in Fig. 4.12 ~ 4.14 and the comparisons of the probabilities of finding the 

electron in helium-like atoms for the 1s and 2s state are shown in Fig. 4.15. Fig. 16 

shows the photographic representation of the electron probability-density distribution 

and the numerical results conform to them. 

4.3  Three-dimensional FEDFT 

To solve the complicated models, we construct the three-dimensional FEDFT 

program. To validate the three-dimensional FEDFT program, we take the hydrogen 

and helium atoms to be test models. The cutoff radius is 20 Bohr radii divided by 300 

nodes in radial direction, and both the zenith and azimuth angle are 30 degrees 

divided by 20 nodes in all angular directions for hydrogen atom model, and there are 
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total 165150 nodes and 796588 elements in this computational domain. The cutoff 

radius is 5 Bohr radii divided by 50 nodes in radial direction, and both the zenith and 

azimuth angle are 15 degrees divided by 15 nodes in all angular directions for helium 

atom model, and there are total 3668 nodes and 14629 elements in this computational 

domain. The numerical energies of hydrogen and helium atoms are shown in table 4.6 

and 4.7. The subscripts 1d and 3d mean the numerical results obtained by 

one-dimensional and three-dimensional FEDFT, and H means the numerical results 

by Hsu. Note that the three-dimensional ground state energy of helium atom with 

electron-electron interactions is a temporal solution. 

The numerical ground state energy of hydrogen atom almost conforms to the 

experiment and the three-dimensional numerical results also conform to the 

one-dimensional numerical ones. Although the one-dimensional and 

three-dimensional FEDFT both obtain the good approximation, the rate of 

convergence of three-dimensional FEDFT is much quicker than the one of 

one-dimensional FEDFT for hydrogen atom model that are shown in Fig. 4.17 ~ 4.18. 

Obviously, there are a lot of jumps in the convergence of one-dimensional FEDFT but 

it almost converges directly by three-dimensional FEDFT, mainly due to the strong 

diagonal dominance of the stiffness matrix in the three-dimensional FEDFT. From 

table 4.7, the numerical ground state energy of helium atom obtained by 
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three-dimensional FEDFT has a better approximation than those obtained by Hsu and 

one-dimensional FEDFT. It is probably due to the strong diagonal dominance of the 

stiffness matrix in the three-dimensional FE formulation. To compare the solutions of 

two kinds of FEDFT, the FEM has better performance for three-dimensional model 

than one-dimensional model. 

The probabilities of finding the electron in a hydrogen atom for the 1s and 2s 

states that are compared with exact solutions are shown in Fig. 4.19. The probability 

of finding the electron in a helium atom for the 1s state that is compared with 

one-dimensional FEDFT is shown in Fig. 4.20. 
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CHAPTER 5  CONCLUSIONS 

In the current study, the approximations of new density-functional-theory 

formulation with different atoms obtained by one-dimensional and three-dimensional 

finite element methods that the eigenpairs of the stiffness matrices solved by 

Jacobi-Davidson method are presented. The major findings of the current research are 

summarized as follows: 

1. The method of random-pack-storage that only records the value of the nonzero 

entries of matrices reduces the storage space of memory substantially and can 

avoid the problem of the large-scale sparse matrix that needs a lot of space to 

record all entries. 

2. The matrix solver of Jacobi-Davidson method has good performance to compute 

the desired eigenpair of large-scale sparse matrices in an eigenproblem. It can 

solve rather efficiently the stiffness matrix derived from finite element method. 

3. The Gauss Quadrature is a powerful numerical integration that can simplify a 

complicated integral and obtain a very good approximation. 

4. For the same size of elements, the larger cutoff radius is, the better approximation 

is. 

5. For hydrogen atom, the one-dimensional and three-dimensional FEDFT programs 
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both have good approximations of the 1s and 2s state energies. 

6. The solutions of one-dimensional finite element method are worse than those of 

one-dimensional finite difference method for the new density-functional-theory 

formulation probably due to the marginally diagonal dominance of the stiffness 

matrix in the 1-D FE formulation. 

7. Convergence rates of three-dimensional FEDFT are much faster than those of 

one-dimensional FEDFT, mainly due to the strong diagonal dominance of the 

stiffness matrix in the 3-D FE formulation. 

8. For helium atom, the three-dimensional FEDFT obtains a better solution than 

one-dimensional FEDFT. 
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CHAPTER 6  FUTURE WORKS 

From this study, future work is summarized as follows: 

1. To confirm the three-dimensional FEDFT program that computes the helium-like 

and beryllium-like atoms successfully. 

2. To compute the hydrogen molecule that is a two nuclei and two electrons system 

by the three-dimensional FEDFT program. 

3. To compute the carbon atom that is a one nucleus and six electrons system and it 

has to consider the 2p orbit. 

4. If the serial code performs correctly, we will parallelize it to improve the 

efficiency and to solve more complicated cases. 
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APPENDIX A 

One-Dimensional FEDFT 

In this appendix, we provide the detail of the one-dimensional finite element 

form of the new DFT formulation from the governing equation to the system equation. 

We will use the Galerkin weighted residual method [Burnett, 1987] throughout the 

research, unless otherwise specified. 

The general governing equation is written as [Hsu, 2003] 
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where 0Ψ  is the density function, r and R is the coordinate from the zero point of the 

computing space, Z is the number of positive charge of the nucleus, the subscript I 

means the kind of nucleus and N is the number of electrons. 

For the system of one nucleus that is the simple atom like hydrogen or helium 

atom with one or more electrons, Eq. (A.1) can be simplified as, by taking the 

spherical symmetry, 

( ) ( ) ( ) ( ) )(
2
1

2

2

rrr
r
Zr

dr
dr JJJJJ ΠΨ+Ψ−Ψ−=Ψε               (A.2) 

where 

0=Π J          for one-electron system (J=1)               (A.3a) 
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JJ H
2
1

=Π      for two-electron system (J=1)                (A.3b) 

KJJ HH +=Π
2
1   for four-electron system (J=1,2; K ≠ J)       (A.3c) 
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where JΨ  is the density function of orbital J that is limited to two electrons with 

spin polarization to satisfy the Pauli exclusion principle and r is the radial coordinate 

originating from the center of the nucleus. 

We construct a trial solution to approximate the density function ( ) ( )α;~ rUr ≈Ψ . 

The typical 1-D element trial solution can always be written in the general form, 

( ) ( )∑
=

=
n

j
jj rNrU

1
;~ αα         (A.5) 

The coefficients nααα K,, 21  are undetermined parameters, frequently called degrees 

of freedom (DOF). We would say that ( )α;~ rU  in Eq. (A.5) has n DOF. In the 

following theoretical development, the first three steps are short, formal operations 

using only the general form Eq. (A.5). It is not until step 4 that we decide on the value 

of n and the specific form of each of the shape functions ( )rN j . 

 

Step 1：Write the Galerkin residual equations for a typical element. 

The residual for Eq. (A.2) is 

);(~);(~);(~);(~
2
1);( 2

2

αεαααα rUrUrU
r
ZrU

dr
drR JJJJJ −Π+−−=        (A.6) 
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We need one residual equation for each DOF in Eq. (A.5):  

( ) ( ) nidvrNrR i ,...,2,10; ==∫∫∫ α                 (A.7) 

where the integration integrate over one element and n is the number of nodes in an 

element. Substituting Eq. (A.5) into Eq. (A.7) yields 
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Step 2：Integrate by parts. 

The second derivative term is integrated by parts once: 
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where r1, rn are the two boundary nodes of the element. 

 The boundary term contains, as usual, the flux, 
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As is characteristic of eigenproblems, there cannot be any loads. Thus the interior 

load is zero, and the boundary conditions must be zero. For the eigenproblems, the 

boundary term contains the flux must vanish from the system equations. The 

boundary term occurs in two different ways in the system equations: at each node on 
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the boundary of the domain, and as the difference of two such expressions at each 

node on inter-element boundaries. In the first case, the boundary conditions require 

that the term vanish at the domain boundary nodes. In the second case, a nonzero 

difference in flux at an inter-element boundary represents an applied concentrated 

load; however, the eigenproblems does not permit applied loads. Since the boundary 

term must vanish from the system equations, we will ignore it right at the outset by 

eliminating it from the element equations. Therefore Eq. (A.9) may be written as 

follows: 
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Step 3：Substitute the general form of the element trial solution into integrals in 

residual equations. Inserting Eq. (A.5) into Eq. (A.11) yields 
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These are the element equations for a typical element. 

Eq. (A.12) may be written in conventional matrix form that is rearranged to 

satisfy the matrix solver as: 
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[ ] [ ]{ }{ } 0=+ αε KM                        (A.13) 

where 
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∫= drNNrM jiij
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Step 4：Develop specific expressions for the shape functions ( )rN j  

We use the two-node linear element to be the 1-D typical element (Fig. 4.1). For 

convenience, we repeat those results here: 
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where the shape functions possess the requisite interpolation property, 

( ) jkkjjkj rbarN δ=+=                            (A.16a) 
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This element is frequently referred to as a C0-linear element, in obvious reference to 

the continuity and completeness properties it process. 

 

Step 5：Substitute the shape functions into the element equations, and transform 

the integrals into a form appropriate for numerical evaluation. 

Substitute Eq. (A.16) into Eq. (A.14) : 
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Step 6：Derive expression for the JΠ . 

The nonlinear term, JΠ , in the Eq. (A.2) describes as Eq. (A.3). The rr ′−/1  

of the integration, JH , may expand the solutions in terms of the Legendre 

polynomials yields  
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)(e
JΨ  is the density function of the last evaluate. 

 This completes the six steps for deriving the element equations. After performing 

the addition operations, all elemental matrix equations are assembled to be system 

equations that are then solved by J-D matrix solver. 
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APPENDIX B 

Three-Dimensional FEDFT 

In this appendix, we provide the detail of the three-dimensional finite element 

form of the new DFT formulation from the governing equation to the system equation. 

We will use the Galerkin weighted residual method [Burnett, 1987] throughout the 

research, unless otherwise specified. 

The general governing equation is written as [Hsu, 2003] 
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where 0Ψ  is the density function, r and R is the coordinate from the zero point 

of the computing space, Z is the number of positive charge of the nucleus, the 

subscript I means the kind of nucleus and N is the number of electrons. 

For the system of one nucleus with one or more electrons, Eq. (B1) can be 

rewritten for density function of orbital J in three-dimensional form as, 

( ) ( ) ( ) ( ) )(
2
1 2 rrr

r
Zrr JJJJJ

vvv
v

vv ΠΨ+Ψ−Ψ∇−=Ψε            (B.2) 

where 

),,( zyxr =v                                                  (B.3a) 

2/1222 )( zyxr ++=                                          (B.3b) 
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0=Π J          for one-electron system (J=1)               (B.3c) 

JJ H
2
1

=Π      for two-electron system (J=1)               (B.3d) 

KJJ HH +=Π
2
1  for four-electron system (J=1,2; K ≠ J)        (B.3e) 

∫∫ ′Ψ′′−′Ψ′=′−=
2)(32)(3 )(})({1)( rrdrrrrdrrrH e

J
e

JJ
vv     (B.4) 

where JΨ  is the density function of orbital J that is limited to two electrons with 

spin polarization to satisfy the Pauli exclusion principle and r is the radial coordinate 

originating from the center of the nucleus. 

We construct a trial solution to approximate the density function ( ) ( )α;~ rUr ≈Ψ . 

The typical 3-D element trial solution can always be written in the general form, 

( ) ( )∑
=

=
n

j
jj rNrU

1

;~ vv αα        (B.5) 

In the current study, linear shape function for 3-D tetrahedral element is used for 3-D 

program throughout the research, unless otherwise specified. 

 

Step 1：Write the Galerkin residual equations for a typical element. 

The residual for Eq. (B.2) is 
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We need one residual equation for each DOF in Eq. (B.5):  

( ) ( ) nidvrNrR i ,...,2,10; ==∫∫∫
vv α                 (B.7) 

where the integration integrate over one element and n is the number of nodes in an 
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element. Substituting Eq. (B.5) into Eq. (B.7) yields 
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Step 2：Integrate by parts. 

The second derivative term is integrated by parts once: 

( ) ( ) ( ) ( ) ( ) ( )

∫∫

∫∫∫∫∫∫

∫∫∫∫∫∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

−Π+

−
∂

∂
∂

∂
+

∂
∂

∂
∂

+
∂

∂
∂

∂

dxdynN
z
UdzdxnN

y
UdydznN

x
U

rdrUrNrdrUrN

rd
r

rUrN
Zrd

z
rU

z
rN

y
rU

y
rN

x
rU

x
rN

ziyixi

JiJiJ

JiJiJiJi

~~~

2
1

);(~)();(~)(

);(~)(;~;~;~

2
1

33

33

vvvvvv

v
v

vv
v

vvvvvv

αεα

αααα

 (B.9) 

where nx, ny and nz are the direction cosines of the outward unit normal to the element 

boundary. 

 As the same in Appendix A, the boundary term contains the flux must vanish 

from the system equations for the eigenproblems. We will ignore it right at the outset 

by eliminating it from the element equations. Therefore Eq. (B.9) may be written as 

follows: 

( ) ( ) ( ) ( ) ( ) ( )

0);(~)();(~)(

);(~)(;~;~;~

2
1

33

33

=−Π+

−
∂

∂
∂

∂
+

∂
∂

∂
∂

+
∂

∂
∂

∂

∫∫∫∫∫∫

∫∫∫∫∫∫
rdrUrNrdrUrN

rd
r

rUrN
Zrd

z
rU

z
rN

y
rU

y
rN

x
rU

x
rN

JiJiJ

JiJiJiJi

vvvvvv

v
v

vv
v

vvvvvv

αεα

αααα
 (B.10) 

 

Step 3：Substitute the general form of the element trial solution into integrals in 

residual equations. Inserting Eq. (B.5) into Eq. (B.10) yields 
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These are the element equations for a typical element. 

Eq. (B.11) may be written in conventional matrix form that is rearranged to 

satisfy the matrix solver as: 

[ ] [ ]{ }{ } 0=+ αε KM                        (B.12) 

where 
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Step 4：Develop specific expressions for the shape functions ( )rN j  

We use the linear tetrahedral element to be the 3-D typical element (Fig. 4.2). 

The typical 3-D element trial solution can be written  
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The special coordinates are introduced defined by (Fig. B.1) : 

44332211 xLxLxLxLx +++=                       (B.15a) 
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44332211 yLyLyLyLy +++=                       (B.15b) 

44332211 zLzLzLzLz +++=                        (B.15c) 

43211 LLLL +++=                              (B.15d) 

Solving Eq. (B.15) gives
c
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j V
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=  etc. The linear shape functions for 

the linear element are simply 

.2211 etcLNLN ==                       (B.16) 

where Vc represents the volume of the tetrahedron. 
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Step 5：Substitute the shape functions into the element equations, and transform 

the integrals into a form appropriate for numerical evaluation. 

Substitute Eq. (B.16) into Eq. (B.13) : 
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by Gauss Quadrature (GQ): 
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where G is the total numbers of the Gauss point, wk is the weighting factor and the 

subscript k means that the related values on the Gauss point (Table B.1) [Zienkiewicz 

and Taylor, 2000]. We will use the quadratic of GQ throughout the research, unless 

otherwise specified. 

( )

( )jiif
V

jiif
V

rdrNrNC

J
c

J
c

JiJij

≠Π−=

=Π−=Π−= ∫∫∫

20

10
)()( 3vvv

                    (B.18e) 

 

Step 6：Derive expression for the JΠ . 

The nonlinear term, JΠ , in the Eq. (B.2) describes as Eq. (B.3). The integration, 
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JH , integrate by Gauss Quadrature. 
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)(e
JΨ  is the density function of the last evaluate. 

This completes the six steps for deriving the element equations. After performing 

the addition operations, all elemental matrix equations are assembled to be system 

equations that are then solved by J-D matrix solver. 
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Table 4.1  The radial domain data of all models for one-dimensional FEDFT in this 
research. Cutoff radius is in units of Bohr radius. 

 

        

Atom cutoff radius nodes elements
H 20 20001 20000 
He 10 10001 10000 
Li+ 6 6001 6000 
Be+2 5 5001 5000 
B+3 4 4001 4000 
C+4 3 3001 3000 
Be 6 6001 6000 
B+ 5 5001 5000 
C+2 4 4001 4000 
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Table 4.2  The computational domain data of all models for three-dimensional 
FEDFT in this research. Cutoff radius is in units of Bohr radius. 
 

        

Atom cutoff radius nodes elements 
H 20 165150 796588 
He 5 3668 14629 
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Table 4.3  Hydrogen atom. The energies of the electron obtained by one-dimensional 
FEDFT program compared with experiment. Energy is in units of eV. 

 

Atom Z exp n=1 F n=2 F 
H 1 13.6 13.60002372 3.400007348 
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Table 4.4  Helium-like atoms. The energies of the electron obtained by 
one-dimensional FEDFT program compared with experimental ones and numerical 
ones obtained by Hsu. Energy is in units of eV. 

 

Atom Z exp n=1 H n=2 H n=1 F n=2 F 
He 2 79 78 19 77.10271484 19.46709836 
Li+ 3 198 196 50 196.0677136 49.34028086 
Be+2 4 371 370 93 369.4731368 92.84837742 
B+3 5 600 598 150 597.2802483 149.9571332 
C+4 6 882 880 220 879.4880575 220.6660783 
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Table 4.5  Beryllium-like atoms. The energies of the electron obtained by 
one-dimensional FEDFT program compared with experimental ones and numerical 
ones obtained by Hsu. Energy is in units of eV. 

 

Atom Z exp G H GF 
Be 4 399 390 387.5745747 
B+ 5 663 662 649.4520744 
C+2 6 991 989 979.4498507 
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Table 4.6  Hydrogen atom. The energies of the electron obtained by 
three-dimensional FEDFT program compared with experimental ones and numerical 
ones obtained by one-dimensional FEDFT. Energy is in units of eV. 

 

Atom Z exp n=11d n=21d n=13d n=23d 
H 1 13.6 13.60002372 3.400007348 13.6006394 3.399937991
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Table 4.7  Helium atom. The energies of the electron obtained by three-dimensional 
FEDFT program compared with experimental ones and numerical ones obtained by 
Hsu and one-dimensional FEDFT. Energy is in units of eV. 

 

Atom Z exp n=1 H n=11d n=13d 
He 2 79 78 77.10271 78.34722 

 

 



 67

 

 

 

 

Table B.1  Numerical integration formula of Gauss Quadrature for tetrahedral 
element [Zienkiewicz and Taylor, 2000]. 
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Fig. 1.1  Sketch of the multiscale and physical processes in a DC-magnetron 
sputtering chamber. 

 



 69

 

 

 

 

 

 

Fig. 1.2  The analysis of vapor deposition spans both a wide length and time scale. 
Overlapping modeling methods are beginning to allow an increasingly rigorous 
multiscale treatment [Ohno et al., 1999; Olson, 1997]. 
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Fig. 1.3  The publications about DFT [Friedrich]. 
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Fig. 1.4  STOs & GTOs [Friedrich] 
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Fig. 2.1  The proof of Hohenberg & Kohn second theorem 
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Fig. 3.1  The flow chart of the FEDFT. 
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Fig. 3.2  The flow chart of the J-D solver. 
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Fig. 4.1  One-dimensional meshes with 4 elements and 5 nodes. 
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Fig. 4.2  The tetrahedral element. 
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Fig. 4.3  The surface meshes of three-dimensional computational domain with 
different view points. (r=10 Bohr radii, θ=30°, φ=30°) 
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Fig. 4.4  The probabilities of finding the electron in a hydrogen atom at a distance 
between r and r + dr from the nucleus for the 1s and 2s state obtained by 
one-dimensional FEDFT compared with exact solutions. 
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Fig. 4.5  The probabilities of finding the electron in a He at a distance between r and 
r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT. 
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Fig. 4.6  The probabilities of finding the electron in a Li+ at a distance between r and 
r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT. 
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Fig. 4.7  The probabilities of finding the electron in a Be+2 at a distance between r 
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional 
FEDFT. 
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Fig. 4.8  The probabilities of finding the electron in a B+3 at a distance between r and 
r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT. 
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Fig. 4.9  The probabilities of finding the electron in a C+4 at a distance between r and 
r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT. 
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Fig. 4.10  The probabilities of finding the electron in helium-like atoms at a distance 
between r and r + dr from the nucleus for the 1s state obtained by one-dimensional 
FEDFT. 
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Fig. 4.11  The probabilities of finding the electron in helium-like atoms at a distance 
between r and r + dr from the nucleus for the 2s state obtained by one-dimensional 
FEDFT. 
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Fig. 4.12  The probabilities of finding the electron in a Be at a distance between r 
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional 
FEDFT. 
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Fig. 4.13  The probabilities of finding the electron in a B+ at a distance between r 
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional 
FEDFT. 
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Fig. 4.14  The probabilities of finding the electron in a C+2 at a distance between r 
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional 
FEDFT. 
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Fig. 4.15  The probabilities of finding the electron in beryllium-like atoms at a 
distance between r and r + dr from the nucleus for the 1s and 2s state obtained by 
one-dimensional FEDFT. 
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Fig. 4.16  Photographic representation of the electron probability-density distribution 
for 1s and 2s states. These may be regard as sectional views of the distribution in a 
plane containing the polar axis, which is vertical and in the plane of the paper [Arthur, 
1995]. 
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Fig. 4.17  The 1s state convergence of residual with iterations for hydrogen atom by 
one-dimensional and three-dimensional FEDFT. 
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Fig. 4.18  The 2s state convergence of residual with iterations for hydrogen atom by 
one-dimensional and three-dimensional FEDFT. 
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Fig. 4.19  The probabilities of finding the electron in a hydrogen atom at a distance 
between r and r + dr from the nucleus for the 1s and 2s state obtained by 
three-dimensional FEDFT compared with exact solutions. 
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Fig. 4.20  The probability of finding the electron in a helium atom at a distance 
between r and r + dr from the nucleus for the 1s state obtained by three-dimensional 
FEDFT compared with one-dimensional FEDFT. 
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Fig. B.1  The coordinates of point P described by four edge nodes in the tetrahedral 
element [Zienkiewicz and Taylor, 2000]. 


