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Preliminary Finite-Element Solution of a Self-consistent Density
Functional Theory Formulation in Quantum Mechanics
Student : Yung-Bin Chen Adpvisor : Dr. Jong-Shinn Wu
Institute of Mechanical Engineering

National Chiao Tung University

ABSTRACT

In the current study, we have used the finite element method (FEM) to solve a
new formulation in density functional theory. by Hsu [Hsu, 2003], in which, unlike
Kohn-Sham equation, there-is'no exchange-correlation term, often requiring ad hoc
assumption to close the problem. In this finite element method, Galerkin weighted
residual method with linear shape function is used to obtain the eigenvalued linear
algebra equations. Resulting eigenvalued equations are then solved using
Jacobi-Davison method. Both 1-D and 3-D FEM codes are developed and compared
with experimental or theoretical data wherever available. Benchmark test problems
include one-electron system (e.g., hydrogen atom) without electron-electron
interaction, two-electron system (e.g., helium-like atoms) and four-electron system
(e.g., beryllium-like atoms) with electron-electron interactions. Results show that the
eigenstate energies of hydrogen atom obtained by both 1-D and 3-D codes approach

II



the experimental data. The ground state energy of helium atom using 3-D FEM code
is still in progress. Related results hopefully will be presented in the oral examination
of my thesis. In addition, convergence rate in 3-D code is generally much faster than

that in 1-D code due to the diagonal dominance in the stiffness matrix of 3-D FEM.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

1.1.1 Multiscale Simulation in Materials Processing

Vapor deposition (Fig. 1.1) is a multiscale process in the sense that growth of the
film occurs in a reactor whose dimensions are of O (1m) for a time of O (102s), while
the atomic assembly events involve length scales of O (10"°m) with time scales in the
pico- to micro-second region. In fact, atomic assembly is more fundamentally
determined by the making and breaking of chemical bonds which is described by the
wave functions of bonding-electrons with-length and time scales of O (10"°m and
107'%), respectively. Vapor depositionsisinot unique in this respect — all of materials
science confronts a similar issue and many approaches have evolved for treating it
[Ohno et al., 1999; Olson, 1997].

The ability to design processes for the growth of an atomic scale structure is
critically tied to our ability to connect models with very disparate time and length
scales. This ranges from the use of quantum mechanics to describe atomic binding to
computational fluid dynamics (CFD) or direct simulation Monte Carlo (DSMC) [Bird,

1994] to account for complex flow fields, thermal gradients and reaction



environments in the deposition chamber. This modeling hierarchy is summarized in
Fig. 1.2. Some state-of-the-art modeling and simulation tools such as density
functional theory (DFT), molecular dynamics (MD), kinetic Monte Carlo (kMC) and
CFD when used alone enable analysis of only a part of a synthesis process. Among
these, kMC method can be used to study the slow thermal diffusion of the deposited
atoms/molecules on the substrate surface, which is important for predicting the correct
morphology of the material structure. Energy barrier for atom jump at various atomic
configurations on the substrate surface is required in the kMC method. However, it is
very hard to obtain the data from experiment due to the difficulty of manipulating
atom by atom precisely. -Quantum computation considering large-scale atomic
structure using DFT is the most*possible and correct method to derive the data

[Wadley et al., 2001].

1.2 Background

To describe completely the quantum mechanical behavior of electrons in solids it
is strictly necessary to calculate the many-electron wave function for the system. In
principle this may be obtained from the time-independent Schrodinger equation, but
in practice the potential experienced by each electron is dictated by the behavior of all

the other electrons in the solid. To solve the Schrédinger equation directly for all these



electrons would thus require us to solve a system of around 10* simultaneous
differential equations. Such a calculation is beyond the capabilities of computers
nowadays, and is likely to remain so for the foreseeable future. Evidently, we must
involve some approximations to render the problem soluble albeit tricky. Here we
have our simplest definition of DFT: A method of obtaining an approximate solution
to the Schrodinger equation of a many-body system.

For the past 30 years density functional theory has been the dominant method for
the quantum mechanical simulation of periodic systems. In recent years it has also
been adopted by quantum chemists and is now very widely used for the simulation of
energy surfaces in molecules (Fig. 1.3).

Either Schrodinger equation or DFT formulation are the eigenvalue problems. In
the current thesis, we use the finite element method (FEM) to derive the matrix
equation from DFT formulation and then use some efficient matrix solver to solve the
eigenvalue (energy) and corresponding eigenvector. Advantages of using FEM for
solving the DFT formulation include easier parallel implementation employing
domain decomposition [Wu and Hsu, 2004] and possible mesh refinement in the

regions where solution changes rapidly [Wu et al., 2004].



1.3 Literature Surveys

1.3.1 Theoretical Development
1.3.1.1 Schroédinger equation

The foundation of the theory of electronic structure of matter is the
non-relativistic Schrédinger equation for the many-electron wave function
Y [Schrédinger, 1926]. The much heavier nuclei are considered as fixed in space by
the Born-Oppenheimer approximation, so the wave function ¥ depends on the
position and spins of the N electrons [Michael, 2000].
1.3.1.2 Hartree-Fock Theary

Within Hartree-Fock theory 'one assumes the wave function of the N particle
(electron) system to be an anti-symmetrized product of one particle (electron)
functions [Markus, 2002]. Moreover, the HF is an approximation, as it does not
account for dynamic correlation due to the rigid form of single determinant wave
function. To account for dynamic correlation, one has to go to correlated methods,
which use multi-determinant wave functions, and these scales as fifth, or even greater
powers with the size of a system [Jan, 1996].

The calculation of the many-body wave function of a system of interacting

electrons is a formidable task, which can only be carried out — and is only



meaningful — for systems with a few tens of electrons [Kohn, 1999]. Its observables

for larger systems are to be determined; the calculation of the many-body wave

functions has to be avoided due to the seemingly formidable computational difficulty.

1.3.1.3 Hohenberg & Kohn Theorem

In the year 1964 Hohenberg and Kohn published a paper in Physical Review,

where they stated two fundamental theorems, which gave birth to modern density

functional theory, an alternative approach to deal with the many body problem in

electronic structure theory [Hohenberg and Kohn, 1964].

Up till now, both the exactiground state density as well as the Hohenberg-Kohn

functional is still unknown, S0 'one cannot make use of the Hohenberg-Kohn theorems

to calculate the molecular properties.

1.3.1.4 Kohn-Sham Equations

Kohn and Sham introduced a fictitious system of N non-interacting electrons to

be described by a single determinant wave function in N “orbits” [Kohn and Sham,

1965]. The construction of the density explicitly from a set of orbits ensures that it is

legal — it can be constructed from an asymmetric wave function. Due to the second

part of the H&K theorem, namely that the total energy is minimized by the true

ground-state density, the variational principle can now be utilized. With the standard

functional derivatives and the additional definition of the so-called



exchange-correlation potential. The exchange-correlation functional , € y., which is

simply the sum of the error made in using a non-interacting kinetic energy and the

error made in treating the electron-electron interaction classically [Harrison].

All that remains now is the question what to do with the & ., without which one

cannot do any practical calculations. As mentioned above, this term has to tread on an

approximate manner. Although there are many different functions available, almost

all of them are derived from the electron density of a uniform electron gas, which can

be calculated by means of statistical thermodynamics.

1.3.1.5 A New Density Functional Theory/=ormulation

In a recent paper, a genetic derivation from cluster expansion results in a new

DFT formulation without thé-exchange-correlation term that makes the computation

much traceable in physics without ad hoc assumption as mentioned in the above [Hsu,

2003].

1.3.2 Numerical Methods

In the past, numerical methods for solving DFT formulation can be divided into

two categories. One is orbital-type method and the other is real-space method. The

former includes computations using slater-type orbitals (STOs), Gaussian-type

orbitals (GTOs) and plane waves, while the latter is the real-space method that can be



loosely categorized as finite differences (FD), finite elements (FE), and wavelets.

1.3.2.1 Orbital-type method

Linear combinations of analytical functions ¢,(r)= ZCiK x.(r)
j

® Plane Waves, y, (r)=exp(ik, r)
® Slater Type Orbitals, y, (r)=x"y"z™ -exp(-¢.r), whose shape close to true
orbits (hydrogen atom) but evaluation of integrals is expensive.
® Gaussian Type Orbitals, y (r)=x"y"z™ -exp(~¢ .r*), whose evaluation of
integrals cheap but different from true orbital shape.
Linear combination of GTOs to approximate STOs that is 1 STO ~ 3 GTOs, but
analytical integration is still-much faster than with-STOs (Fig. 1.4).
1.3.2.2 Real-space method
Real-space methods can loosely be categorized as one of three types: finite
differences (FD), finite elements (FE), or wavelets. All three lead to structured, very
sparse matrix representations of the underlying differential equations on meshes in
real space. Applications of wavelets in electronic structure calculations have been
thoroughly reviewed recently [Arias, 1999]. As implied in the title, the primary focus
is on calculations in density functional theory (DFT); real-space methods are in no
way limited to DFT, but since DFT calculations comprise a dominant theme in

modern electrostatics and electronic structure, the discussion here will mainly be



restricted to this particular theoretical approach.

The early development of FD and FE methods for solving partial differential

equations stemmed from engineering problems involving complex geometries, where

analytical approaches were not possible [Strang and Fix, 1973]. Example applications

include structural mechanics and fluid dynamics in complicated geometries. However,

even in the early days of quantum mechanics, attention was paid to FD numerical

solutions of the Schrodinger equation [Kimball and Shortley, 1934; Pauling and

Wilson, 1935].

Real-space calculations areiperformed on. meshes; these meshes can be as simple

as Cartesian grids or can be constructed to -conform to the more demanding

geometries arising in many “applications. Finite-difference representations are most

commonly constructed on regular Cartesian grids. They result from a Taylor series

expansion of the desired function about the grid points. The advantages of FD

methods lie in the simplicity of the representation and resulting ease of

implementation in efficient solvers. Disadvantages are that the theory is not

variational, and it is difficult to construct meshes flexible enough to conform to the

physical geometry of many problems. Finite-element methods, on the other hand,

have the advantages of significantly greater flexibility in the construction of the mesh

and an underlying variational-type formulation. Other advantages include easier



parallel implementation using domain decomposition and possible mesh refinement in
regions where solution changes rapidly, as mentioned earlier. However, the cost of the
flexibility is an increase in complexity and more difficulty in the implementation of

multiscale or related solution methods [Thomas, 2000].

1.4 Objectives of the Thesis

It is very attractive that this new DFT formulation can be solved without the
uncertainty caused by the exchange-correlation term in principle. However, this DFT
formulation is a typical eigenvalue problem, which is in principle more difficult to
solve than a boundary-value problem from the numerical viewpoint. The design of the
numerical scheme has to consider. the future applications to system having a large
numbers of electrons, which requires tremendous computing resources. In addition,
the probability of electrons near the immobile ions (nucleus) often presents very large
variations. Thus, in the current study we solve this new DFT formulation using finite
element method, in which the advantages can be taken in the future for mesh
refinement and parallelization using graph-partitioning technique (or domain
decomposition).

Therefore, the objectives of the current study are summarized as follows.

1. To complete both 1-D and 3-D FE programs for solving the new DFT



formulation.

2. To apply the two programs to compute simple atomic (1 nucleus) systems,

such as hydrogen atom (1 electron), helium-like atoms (2 electrons) and

beryllium-like atoms (4 electrons).

3. To verify and compare the performance of 1-D and 3-D FE programs by

comparing with available experimental data.

The thesis begins with descriptions of the FE method appropriate in the

discreteness of 1-D and 3-D problems. Results of 1-D and 3-D computations are

presented and discussed. Conclusions are then made in turn. Future development in

this direction is also recommended at the-end.
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CHAPTER 2 DENSITY FUNCTIONAL THEORY

2.1 Ab-initio Methods

2.1.1 Schroédinger Equation

The initial work on Density Functional Theory (DFT) was reported in two

publications: the first with Pierre Hohenberg in 1964 and the next with Lu J. Sham in

1965. This was almost 40 years after E. Schrédinger [Schrodinger, 1926] published

his first epoch-making paper marking the beginning of wave-mechanics.

Schrodinger equation: = — %Z DI Zq
i i e |G

Y ‘|‘P>:E|‘P> 2.1)

AU

Where r;, r; are the positions-of the electrons-and R,, Z, are the positions and atomic

numbers of the nuclei; and E is the energy. We will be primarily concerned with the

calculation of the ground state energy of a collection of atoms. The energy may be

computed by solution of the Schrédinger equation — which, in the time independent,

non-relativistic, Born-Oppenheimer approximation is

HlP(lf‘l,rz,---,}"N)=E‘I’(7‘1,I"2,---,}"N) (22)

The wave function ¥ depends on the position and spins of the N electrons. The

Hamiltonian operator, H, consists of a sum of three terms: the kinetic energy, the

interaction with the external potential (Vext) and the electron-electron interaction (Vee).

11



That is

ri_rj

1 N
H=—52v3 +V, +Z—‘ (2.3)

i<j
In materials simulation the external potential of interest is simply the interaction

of the electrons with the atomic nuclei

z
Ve ==2.2. — (2.4)

Note that in order to simplify the notation and to focus the discussion on the
main features of DFT the spin coordinate is omitted here and throughout this article.
The lowest energy eigenvalue, Ej, is the ground state energy and the probability

density of finding an electron'with any particular.set of coordinates {ri} is [,

2.1.2 Hartree Theory

One of the earliest attempts to solve the problem was made by Hartree. He
simplified the problem by making an assumption about the form of the many-electron
wave function, namely that it was just the product of a set of single-electron wave
functions. Having made this assumption it was possible to proceed using the
variational principle.

In fact, for an N-electron system there are N equations for each of the N
single-electron wave functions, which made up the many-electron product wave
function [Stephen, 1997]. These equations turned out to look very much like the

12



time-independent Schrodinger equation, except the potential (the Hartree potential)
was no longer coupled to the individual motions of all the other electrons, but instead
depended simply upon the time-averaged electron distribution of the system. This
important fact meant that it was possible to treat each electron separately as a
single-particle.
N

‘P=l;[¢,-(ﬁ) (2.5)
where the @; are orthonormal. Consequently the Hartree approximation allows us to
calculate approximate single-particle wave functions for the electrons in crystals, and
hence calculate other related properties. Unfortunately, the Hartree approximation
does not provide us with particularly good results:

The central failing of the Hartree approximation is that it does not recognize the
Pauli exclusion principle. The true many-body wave function must vanish whenever
two electrons occupy the same position, but the Hartree wave function cannot have
this property. Mathematically, the Pauli exclusion principle can be accounted for by
ensuring that the wave function of a set of identical fermions is anti-symmetric under
exchange of any pair of particles. That is to say that the process of swapping any one
of the fermions for any other of the fermions should leave the wave function unaltered
except for a change of sign. Any wave function possessing that property will tend to
zero (indicating zero probability) as any pair of fermions with the same quantum

13



numbers approaches each other. The Hartree product wave function is symmetric
rather than anti-symmetric, so the Hartree approach effectively ignores the Pauli

exclusion principle!

2.1.3 Hartree-Fock Theory
The Hartree-Fock approach is an improvement over the Hartree theory in that the
many-electron wave function is specially constructed out of single-electron wave
functions in such a way as to be anti-symmetric. The wave function has to be much
more complicated than the Hartree product wave function, but it can be written in a
compact way as a so-called Slater| determinant (for those who know what a
determinant is).
Pyr = ﬁdet[%%% o, ] (2.6)
P (1) @i (1) - ¢y (ry)

1 (/72(71)¢2(r2)'”(02(rN)

Wil

Wy - (2.7)

Px (1) @y (1) - @y (ry)
Where the variables 7; include the coordinates of space and spin. This simple ansatz
for the wave function ¥ captures much of the physics required for accurate solutions
of the Hamiltonian. Most importantly, the wave function is anti-symmetric with
respect to an interchange of any two-electron positions.

L CRPRETNAS N Ei { IR MRETY (2.8)

27+
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Starting from this assumption it is once again possible to derive the Hamiltonian

equation for the system through the variational principle. Just as before, this results in

a simple equation for each single-electron wave function. However, this time in

addition to the Hartree potential (which described the direct Coulomb interaction

between an electron and the average electron distribution) there is now a second type

of potential influencing the electrons, namely the so-called exchange potential. The

exchange potential arises as a direct consequence of including the Pauli exclusion

principle through the use of an anti-symmetric wave function.

Notably, the exchange potential contributes a binding energy for electrons in a

neutral uniform system, so correcting one of the major failings of the Hartree theory.

However, in calculating many othet propetties the Hartree-Fock approach is actually

worse than the Hartree approach.

2.1.4 Exchange-Correlation Energy

The reason the Hartree-Fock theory gives worse answers than the Hartree theory

is simply that there is another piece of physics, which we are still ignoring. To some

extent it cancels out with the exchange effect and so when we use the Hartree

approach (i.e. we ignore both effects) we obtain reasonable results. On the other hand

the Hartree-Fock approach includes the exchange effect but ignores the other effect,
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which balances it somewhat, completely. This new effect is the electrostatic

correlation of electrons.

Ignoring the Pauli exclusion principle generated exchange hole for the moment,

we can also visualize a second type of hole in the electron distribution caused by

simple electrostatic processes. If we consider the region immediately surrounding any

electron (spin is now immaterial) then we should expect to see fewer electrons than

the average, simply because of their electrostatic repulsion. Consequently each

electron is surrounded by an electron-depleted region that known either the Coulomb

hole (because of its origin in,the electrostatic interaction) or the correlation hole

(because of it origin in the .cotrelated motion of the electrons). Just as in the case of

the exchange hole the electton-depleted region is slightly positively charged. The

effect of the correlation hole is twofold. Thus any other interaction effects, such as

exchange, will tend to be reduced by the correlation hole [Stephen, 1997].

Clearly we can now see why the Hartree-Fock approach fails for solids: firstly

the exchange interaction should be screened by the correlation hole rather than acting

in full, and secondly the binding between the correlation hole and electron has been

ignored. At this point, the Hartree-Fock approach gives quite creditable results for

small molecules. This is because there are far fewer electrons involved than in a solid,

and so correlation effects are minimal compared to exchange effects.
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2.1.5 Hohenberg & Kohn Theorem

The discussion above has established that direct solution of the Schrodinger

equation is not currently feasible for systems of interest in condensed matter science —

this is a major motivation for the development and use of density functional theory.

DFT 1is based upon a fundamental observation that the total energy of an

assembly of atoms is a function of the total electron charge density [Hohenberg and

Kohn, 1964], which is a function of space and time. The electron density is used in

DFT as the fundamental property unlike Hartree-Fock theory, which deals directly

with the many-body wave function. Using the.electron density significantly speeds up

the calculation. Whereas the many-body €lectronic wave function is a function of 3N

variables (the coordinates of ‘all N“atoms in the-system) the electron density is only a

function of x, y, z only three variables.

In 1964 Hohenberg and Kohn proved the two theorems:

1. For a non-degenerate ground state ¥ of the system the external potential Vext«(r)

is determined, within a trivial additive constant, as a functional of the electronic

density n(r).

2. Given an external potential Vexi(r), the correct ground-state density n(r)

minimizes the ground-state energy £y, which is a functional uniquely determined

by n(r). It holds,
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E, <E[i] (2.9)
where 7 (r) is any trial density fulfilling 7 (r)>0 and J. d’rii(r)= N, N being
the number of electrons in the system.

They considered the ground state of the system to be defined by that electron
density distribution which minimizes the total energy. Furthermore, they showed that
all other ground state properties of the system (e.g. lattice constant, cohesive energy,
etc) are functional of the ground state electron density. That is, that once the ground
state electron density is known all other ground state properties follow (in principle, at
least).

The theorem — which -has a remarkable short proof (Fig. 2.1) — guarantees the
existence of an energy functional' E[n] that reaches its minimum for the correct
density n(r) yet gives no explicit prescription for its construction [Stephen, 1997]. In
order to determine E[n] it is useful to separate the various known contributions to the
total energy, like 7}[#], the kinetic energy of a non-interacting electron gas, E..[n], the
classical Coulomb energy of the electrons moving in the external potential V,.(r), and
Ecouln], the classical energy due to the mutual Coulomb interaction of the electrons:

E[n(n]=T,[n(n)]+ E.,[n()]+ B, [0+ E. [n(r)] (2.10)
The last term E,.[n] contains the quantum-mechanical exchange and correlation
energy and — in principle — the difference between the true kinetic energy, 7]#], and
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Ti[n], the kinetic energy of the gas of non-interacting Kohn-Sham electrons. But since

this difference is very small it is typically neglected.

2.1.6 Kohn-Sham Equations

Due to the second part of the H&K theorem, namely that the total energy is

minimized by the true ground-state density, the variational principle can now be

utilized. With the standard functional derivatives and the additional definition of the

so-called exchange-correlation potential,

Ve (1) =—5E"i[n ) (2.11)
on(r)
the following set of equations can be derived
1
[— 5 Vitv, (7)}(0; ()= &,¢0:r) (2.12)

where the effective potential — as‘a funetional of the electronic density — is given by

Vg =V ()] = v, (r) + j ar' |:(_rr)| +v,_[n(r)] (2.13)
and the electronic density as
N
n(r)= lp,(r)° (2.14)
i=1

The set of equations (2.12) to (2.14) are the famous Kohn-Sham (KS) equations. They

have to be solved self-consistently, i.e., starting from some initial density a potential

veg[n(r)] 1s obtained for which the Eq. (2.12) are solved and a new electronic density

Eq. (2.14) is determined. From the new density an updated effective potential can be
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calculated and this process is repeated until self-consistency is reached, i.e., until the
new electronic density equals the previous one [Schone].

In fact, the K-S equations give an exact description of the many-electron system
since up to this point no approximations have been made. Nevertheless, the method
has reasonable precision from the past experience. First-principle DFT methods can
currently predict binding energies to within a tenth of an electron volt and bond
lengths to within 0.02 A. It is becoming relatively straightforward to use this method
to analyze the kinetics of relevant surface processes, including adsorption, chemical
reaction and diffusion. Howevert, there exists.an exchange-correlation functional Ex
due to electrons in general DFT, which often requires some ad hoc assumptions (e.g.,
local density approximation (LDA) assuming uniform electron gas, [Seminario and
Politzer, 1995]) to close the problem.

The success of the density functional theory (DFT) in reproducing measurable
physical quantities of many-electron systems is rather remarkable, and may be
attributed to the very fact that in the configuration space where exists a density
distribution that is unique, and corresponding to the lowest energy state, no matter
how complex and populous the system might be. There are, however, physical
properties that will require the phase space information, at the minimum the pair
correlation in order to quantify the electron-electron interaction energy.
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2.2 Approximation to the Exchange-correlation Function
The generation of approximations for Ey. has lead to a large and still rapidly
expanding field of research. There are now many different flavors of functional

available which are more or less appropriate for any particular study.

2.2.1 Local Density Approximation (LDA)

The simplest, and at the same time remarkably serviceable, approximation for
Ey[n(r)] is the so-called local density approximation (LDA). It is assumed that the
density of an inhomogeneous system can be locally described by a homogeneous
electron gas [Hohenberg and Kohn, 1964]. A" homogeneous electron gas is fully
specified by its electronic particle 'density n, which is often expressed in terms of the

corresponding Wigner-Seitz radius 7,

3 1/3
7= —— 2.15
) (47[11} ( )

Within the LDA the functional for the exchange-correlation energy, Ey., can be
written as

E, [n]=[d*rn(r)z, [n(r)] (2.16)
where ¢ . 1s the exchange-correlation energy per particle of a homogeneous electron
gas of density #. In the next step, the exchange-correlation potential is split into its
exchange part vy and a correlation part v,
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Ve (1) =v (r) +v. () 2.17)
The local density approximation can be considered to be the zeroth order
approximation to the semi-classical expansion of the density matrix in terms of the

density and its derivatives [Dreizler and Gross, 1990].

2.2.2 Generalized Gradient Approximation (GGA)

In the generalized gradient approximation (GGA) a functional form is adopted
which ensures the normalization condition and that the exchange hole is negative
definite [Perdew and Wang, 1986]. This leads to an energy functional that depends on
both the density and its gradient but retains thé analytic properties of the exchange
correlation hole inherent in the LDA:

The typical form for a GGA functional is:

E,. =[dr[n(r)e. (n(r),Vn(r)] (2.18)

The GGA improves significantly on the LDA’s description of the binding energy
of molecules — it was this feature which lead to the very wide spread acceptance of

DFT in the chemistry community during the early 1990’s.

2.3 New Density Functional Theory Formulation
In a recent paper [Hsu, 2003], a generic derivation from cluster expansion results
in a new DFT formulation (Eq. (2.21) as follows) without the exchange-correlation
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term that makes the computation potentially much traceable in physics itself without
any ad hoc assumptions. It was derived from the Schrodinger equation and reached a
different form from the other DFT formulation. The wave function ¥ is chosen as the
product of a single-electron wave function @, and an N-body correlation function,
N
Y@ =] [e0)Uum) (2.19)
i=1
I' is the N-particle phase space point equivalent to the expression (11, 12, ..., ry). The
exchange symmetry is imposed on U and on the indistinguishable particles so that
each electron is described by the same ®. This gives the density function as follows:
N 2 2 2
n(r) = j [ 147, 0@ Uk B, r)OE) =¥, (1) (2.20)
i=2
where the index starting from i=2 is-chosen-for convenience by imposing the
exchange symmetry, and dz;4s the' volume element of ith particle. The last derived

equation is

e, (F)= —;vzlPO(f)—ZI: 2y, (f)+;(N—1)‘I’O(;7)<_1?'> (2.21a)

where

D=t /[ d*r (2.21b)
The subscript, /, refers to the immobile ion with charge Z; and N represents the

number of electrons. This equation differs from the conventional DFT in several

aspects. The usual exchange-correlation function disappears in this new formulation,



while the electron-electron interaction differs by a factor l( N -1)- The derivation of
2

the density functional theory (DFT) from the cluster expansion corrects the spurious
self-interaction energy in the ‘classical’ DFT, admits the excited states, and has a

self-consistent exchange correlation effect.
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CHAPTER 3 NUMERICAL METHOD

The early development of FD and FE methods for solving partial differential

equations stemmed from engineering problems involving complex geometries, where

analytical approaches were not possible [Strang and Fix, 1973]. Example applications

include structural mechanics and fluid dynamics in complicated geometries. However,

even in the early days of quantum mechanics, attention was paid to FD numerical

solutions of the Schrodinger equation [Kimball and Shortley, 1934, 10].

Real-space calculations [Thomas, 2000]are performed on meshes; these meshes

can be as simple as Cartesian grids or.can be constructed to conform to the more

demanding geometries arising in many applications. Finite-difference representations

are most commonly constructed on regular Cartesian grids. They result from a Taylor

series expansion of the desired function about the grid points. The advantages of FD

methods lie in the simplicity of the representation and resulting ease of

implementation in efficient solvers. Disadvantages are that the theory is not

variational, and it is difficult to construct meshes flexible enough to conform to the

physical geometry of many problems. Finite-element methods, on the other hand,

have the advantages of significantly greater flexibility in the construction of the mesh

and an underlying variational formulation. In addition, parallel implementation using
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domain decomposition, combining with adaptive mesh h-refinement, in FE methods
due to unstructured mesh is rather straightforward by the use of graph-partitioning
technique. The cost of these flexibilities may be an increase in complexity and more

difficulty in the implementation.

3.1 Finite Element Method (FEM)
We begin with an introduction of the FEM that identifies the broad context of the

subject [Burnett, 1987]:

The FEM is the computer-aid_mathematical technique for obtaining approximate
numerical solution to the abstract of® calculus that predict the response of physical
system subjected to the external influences:

Such problems arise in many" areas of engineering, science, and applied
mathematics. Applications to date have occurred principally in the areas of solid
mechanics, heat transfer, fluid mechanics, and electromagnetism. New areas of
application are continually being discovered, recent ones include solid-state physics

and quantum mechanics.

The salient features in FEM include the following:
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1.

The domain is divided into smaller regions called elements. Adjacent elements
touch without overlapping, and there are no gaps between the elements. The
shapes of the elements are intentionally made as simple as possible.

In each element the governing equations, usually in differential or variational
(integral) form, are transformed into algebraic equation. The element equations
are algebraically identical for all elements of the same type, which usually need to
be derived for only one or two typical elements.

The resulting numbers are assembled (combined) into a much larger set of
algebraic equations, whichare called the system equations. In the process of
element assembly, boundary conditions can be enforced automatically. Such huge
systems of equations can be solved .eeconomically because the matrix of
coefficients is “sparse” in essence.

Resulting matrix equation is then solved using suitable efficient matrix solver.

FEM seeks an approximate solution U, an explicit expression for U, in terms of

known functions, which approximately satisfies the governing equations and

boundary conditions. It obtains an approximate solution by using the classical

trial-solution procedure.

Construction of a trial solution:
U(x;a)=a, + a,N,(x)+ a,N,(x)+---+a,N,(x) (3.1)
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where x are the independent variables in the problems. The functions N(x) are
known functions called trial functions (basis). The coefficients, a, are undetermined
parameters called degree of freedom (DOF).

We apply FEM to solve the new DFT formulation, as shown in Eq. (2.21), which
is a typical second-order nonlinear eigenvalue problem. The purpose is to determine
specific numerical values for each of the parameters a. In this FEM, we employ
Galerkin weighted residual method using C’-linear shape function. For each
parameter a; we require that a weighted average of R(x;a) over the entire domain be
zero. The weighting functions ‘of the Galerkin weighted residual method are trial

functions N(x) associated:with each .

IR(x; a)N. (x)dx (3.2)

3.1.1 One-dimensional FEDFT Program
For the system of one nucleus with one or more electrons, Eq. (2.21) can be

simplified as, by taking the spherical symmetry,

£, ()= -2 Lo ()= L e, (), ) 63

where
I1,=0 for one-electron system (J=1) (3.4a)
I, = %H ; for two-electron system (J=1) (3.4b)
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IT, =%H S, +H, for four-electron system (J=1,2; K#J) (3.4c)

1 % 2 % 2
" J‘dr'|‘P}e)(r')1 r J‘dr'|‘P}e)(r')1 r'
r'=0 r'=r

HJ(F):<|r—1r'> - % 2
J Idr'|‘P}")(r')| '

r'=0

(3.5)

where ¥, is the density function of orbital J that is limited to two electrons with

spin polarization to satisfy the Pauli exclusion principle and ¥ is the density

function of the last evaluate. r is the radial coordinate originating from the center of
the nucleus.

By applying the Galerkin weighted residual to Eq. (3.3) in a typical 1-D element,

J”R(r;a)Ni (r)dv =0, i=12,..,n (3.6)

n

where N,(r) is the shape funection, P(r)x ﬁ(r; a)= zaj N, (r) and # is the number of

Jj=1
nodes in an element. Note that the residual function, R(7; ), is defined as,

2

R(r;a)= —%%ﬁj(r;a)—%ﬁj(r;a)+l7j(r;a)HJ —5(7J(r;a) (3-7)

In the current study, linear shape function for 1-D element, n, (V_,-)=a[ +br, =6, 18
used for 1-D program throughout the research, unless otherwise specified. Note that
the subscripts i and j are the node numbers in a 1-D element. Substituting Eq. (3.7)
into Eq. (3.6), after some algebraic arrangement [Appendix A], results in the
elemental generalized eigenvalue matrix (2x2) equation that its form is rearranged to
satisfy the matrix solver as

telM]+[K]Ha)=0 (3.8)
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where

- —%bibjl_[]rs +%[Zbl.b/. —(ab, +ab ), |+ 00
K, |= 9a
j %|:Z(aibj +a.ibi)_%bib_i _aiajnj}”3 +§aa r’

i4;

[MU]: {%b,b‘,rs +i(aib‘/ +ab, )r4 +§aiajr3} (3.9b)
Resulting system linear algebraic eigenvalue equations, obtained by assembling all
elemental matrix equations as shown in Eq. (3.8), are then solved by the matrix solver
by J-D method [Wang et al., 2003]. The stiffness matrix of the system equation
resulting from the 1-D FEM is “marginally” diagonally dominant, from which the
convergence is rather slow, which can be elearly shown in Fig. 4.17 ~ 4.18. For
molecular system with more than one nucleus or with one nucleus and more than four

electrons, the spherical symmetry i1s not held; hence, the three-dimensional FE

program is required and is introduced next.

3.1.2 Three-dimensional FEDFT Program
For the system of one nucleus with one or more electrons, Eq. (2.21) can be
rewritten for density function of orbital J in three-dimensional form as,
_ 1_, N\ Z _ _ _
g‘PJ(r)=—EV ‘Pj(r)—?‘PJ(r)+ ¥ (7T, (7) (3.10)
where

r=(x,,2) (3.11a)
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r=(x*+y +z°)"? (3.11b)
I1,(7): the same as Eq. (3.4) (3.11¢)

H,0) = (-7 ={[aF e fF-r/[areee]  6a2)

By applying the Galerkin FEM to Eq. (3.10) in a typical 3-D element,

\P(f)zﬁ(f;a)zzn:aj N,(7) and n is the number of nodes in an element. Note that
j=1

N,(7) 1s the shape function in a typical 3-D element. Residual function, R(7 ;@), is

then defined as,

R(F;a) = —%VzﬁJ(F;a)— U,Fa)+U, (7o), —eU,(F;a) (3.13)

SN

In the current study, linear shape function for 3-D tetrahedral element,

N = a,+bx+c,y+d;z
J
4

c

, where. V; is the-element volume, is used for 3-D program

throughout the research, unless* otherwise specified. Similar to the algebraic

rearrangement in 1-D FEM but comparably complicated [Appendix B], the resulting

elemental generalized eigenvalue matrix (4x4) equation can be written as

{elM]+[K]Hal=0 (3.14)
where
[M!./.]:% i=j,T=10;i#j,T=20 (3.152)
|k, |=4,+B,+C, (3.15b)
4 = bb, +;:;:I%+didj (3.150)

7 & (ai+b,.xk+cl.yk+d,.zk)(aj+bjxk+cjyk+djzk)w (3.15d)

B[f - ' 2 2 2 k
36V, IS X2+ yl 42
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c.,:—% L i=jT=10;i% j,T =20 (3.15¢)

i
oy e,
H,(7F) = - _=Z (3.16)
Loy s
o= v 2 (3.16b)

1

tot%rjzent|: Gauss _points ‘\IJ;@) (Fk l)

c Wk
SN S Y ey R
S Vi~ Yk Zj T %k
tot.element

Gauss points
B= 2 {Vc > ‘P}e’(fk')zwk} (3.16¢)

1 k=1

Note that Gauss Quadrature [Zienkiewicz and Taylor, 2000] with weighting
factor wy at point k is used for the volume integration throughout the study, unless
otherwise specified. This generalized eigenvalue formulation can be easily extended
to more complicated atomic.or molecular system (multiple orbits) by modifying the
electron-electron interaction term, Ii(#),.based on the Pauli exclusion principle.
Resulting system equations are then assembled element by element and are solved by
using J-D matrix solver similar to 1-D FE program. However, the convergence of the
3-D FE program is expected to be much faster than that in 1-D FE program due to the
diagonally dominated coefficient matrix, which can be shown in Fig. 4.17 ~ 4.18.

The system equations are an eigenvalue problem with large-scale sparse matrix.
Here we use the method of random pack storage (RPS) to just store the nonzero
entries of the stiffness matrix. This method can save a lot of memories when store a

large-scale sparse matrix. Resulting eigenvalue linear algebraic equations are then
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solved using the Jacobi-Davison (JD) method [Wang et al, 2003], which is a
subspace-type algorithm that will be introduced shortly. Overall procedures of solving

the DFT eigenvalue problem can be schematically sketched in Fig. 3.1.

3.2 Jacobi-Davidson Method
The Jacobi-Davidson method [Voss and Betcke, 2002; Hwang, 2003] is based on
a combination of two basic principles. The first one is to apply a Galerkin approach
for the eigenproblem Ax = Ax, with respect to some given subspace spanned by an
orthonormal basis {vy, ..., vi}. The Galerkin condition is
AV, s—0V sl v VAV s—0s=0 (3.17)
where Vi, denotes the matrix with c¢olumns v; to vi,. This equation has m solutions

(91(.’”),s_§m)). The m pairs (Qﬁm),uﬁm) EVms;’”))are called the Ritz values and Ritz
vectors of A with respect to the subspace spanned by the columns of V},,. These Ritz
pairs are approximations for eigenpairs of 4, and our goal is to obtain better
approximations by a well-chosen expansion of the subspace.

Suppose that we have an eigenvector approximation u; for an eigenvector x
corresponding to a given eigenvalue L. We suggested computing the orthogonal

correction ¢ for ;™.

Al +1)= 2u +1) (3.18)
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: (m) 1 _ =
with 7 Lu™, teU” ={v|vu,=0}.

The correction equation of Jacobi-Davidson

(4t -6,1)1=-r, (3.19)
where

r,=(4-6,1u, (3.20a)

A = (T—up ) AT -u ) (3.20b)

The next is to solve the ¢ from Eq. (3.19) and add ¢ into subspace to expand the search
subspace, then iterate again with expansive subspace until convergence. The
Jacobi-Davidson method has similar convergence properties as inverse iteration if the
correction equation is solved exactly. Procedures of solving eigenvalue problem using
J-D algorithm can shown in-Fig.*3.2, while the details are summarized as follows
[Wang et al., 2003]:

1. Given A(A)=14, + A4,

2. To choose a random vector V; as the initial subspace

3. To compute the Galerkin conditionas M=V AV .

4. To compute the Ritz pairs (6,s) of (@M, +M,)s=0 and select the

desired Ritz pair to be eigenpair with ||s|| , =1
5. Tocompute u=Vs,and the residual = A(0)u .
6. If (“r||2 < g), A=60, x=u,Quit.
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7. To compute correction term ¢ and orthogonalize ¢ against V, v=t/ ||t|| 5

8. Expand V =[V,v]

9.  To back to process 3 and iterate until ||r||2 <eg.

This J-D solver can efficiently deal with the large-scale sparse eigenvalue matrix
equation, which is still a very challenging task even nowadays. One of the advantages
in using J-D algorithm to solve the DFT eigenvalue problem is the feasibility of
parallelization in the future, considering the computational demanding of the problem

itself.
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CHAPTER 4 RESULTS AND DISCUSSIONS

In this chapter, we first describe the elements of different cases and different

computational domains and then several computational results are presented in turn.

4.1 Elements Construction
We set up two different dimensions of elements to fit the different FEDFT

programs.

4.1.1 One-dimensional Elements

Since the simple atoms that only need to consider the s state of the angular

momentum are spherical symmetry, we could simplify the computational domain of

sphere to be just the radial domain. We have to set up the one-dimensional elements to

match the one-dimensional FEDFT program in the radial domain. The computing

radii are different for different cases (ex. the hydrogen atom is about 10 for ground

state and about 20 for first excited state) but the length unit is Bohr radius, ao, (0.053

nm). The domain is formed by nodes and elements that two nodes compose one

element in one-dimensional domain. The Fig.4.1 shows the diagram of the elements

and nodes and the radial domain data of all models in this research are shown in table

4.1.
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4.1.2 Three-dimensional Elements

The radial domain is only suitable for the simple atoms. When the models are

many electron atoms that have to consider the other angular momentums, molecules

and cluster of atoms etc. are complicated, we will have to solve the complicated

problems and need the total real-space computational domain. In the

three-dimensional elements, we use the tetrahedron as an element that is used for 3-D

program throughout the research, unless otherwise specified and there are four nodes

to compose one linear element (Fig.4.2).

In the case of simple atomsj we cut part of a sphere to simplify the computational

domain and decrease the computing time: For example the hydrogen atom, we set the

radius to be 10 Bohr radii and both the zenith and azimuth angle to be 30 degrees as

shown in Fig. 4.3. There are 60 nodes on the radial and 20 nodes both on the zenith

and azimuth angle. The computational domain data of all models in this research are

shown in table 4.2.

4.2 One-dimensional FEDFT

We take the hydrogen atom, helium-like atoms and beryllium-like atoms as

models to validate the one-dimensional FEDFT program. The 1s state energies and 2s

state energies of all models obtained by one-dimensional FEDFT program that are
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compared with the known experimental ones and numerical ones obtained by Hsu

[Hsu, 2003] are shown in table 4.3 - 4.5. The numerical energies obtained by Hsu are

obtained by finite difference method (FDM). The Z column shows the numbers of

positive charge of the nucleus. The exp column shows the ionization energy of the

electron from experiments. The n=1 column shows the 1s state energy of the electron

from numerical results. The n=2 column shows the 2s state energy of the electron

from numerical results. The subscripts /' and H mean the numerical results by FEDFT

and Hsu. The models set the different cutoff radii that all are divided by 0.001 Bohr

radii as an element. Since there are four electrons in beryllium-like atoms, the ground

state energy, G, is the sum of 1§ and 2s state energies.

From the table 4.3, the numerical ground state energy of hydrogen atom almost

conforms to the experiment. It shows that the one-dimensional FEDFT program has

good performance to compute the energy of hydrogen atom. But the table 4.4 and 4.5

show that the numerical results of both FEDFT and FDM do not conforms to the

experiments closely. The reason should be the electron-electron interaction term that

can not directly be solved by the initial equation but integrates by the last eigenvectors.

The results of FEDFT are worse than FDM shown in table 4.4 and 4.5. When in

one-dimensional, the matrices of both FEDFT and FDM are tri-diagonal matrices. In

the current research, the stiffness matrix of the one-dimensional FEDFT is
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“marginally” diagonally dominant, and it would obtain the worse solution and

converge slowly.

The probabilities of finding the electron in a hydrogen atom for the 1s and 2s

states that are compared with exact solutions are shown in Fig. 4.4. The probabilities

of finding the electron in helium-like atoms for the 1s and 2s state are shown in Fig.

4.5 ~ 49 and the comparisons of the probabilities of finding the electron in

helium-like atoms for the 1s and 2s state are shown in Fig. 4.10 and 4.11. The

probabilities of finding the electron in beryllium-like atoms for the 1s and 2s state are

shown in Fig. 4.12 ~ 4.14 and:the comparisons of the probabilities of finding the

electron in helium-like atoms for the 1s-and 2s state are shown in Fig. 4.15. Fig. 16

shows the photographic représentation of the electron probability-density distribution

and the numerical results conform to them.

4.3 Three-dimensional FEDFT

To solve the complicated models, we construct the three-dimensional FEDFT

program. To validate the three-dimensional FEDFT program, we take the hydrogen

and helium atoms to be test models. The cutoff radius is 20 Bohr radii divided by 300

nodes in radial direction, and both the zenith and azimuth angle are 30 degrees

divided by 20 nodes in all angular directions for hydrogen atom model, and there are
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total 165150 nodes and 796588 elements in this computational domain. The cutoff

radius is 5 Bohr radii divided by 50 nodes in radial direction, and both the zenith and

azimuth angle are 15 degrees divided by 15 nodes in all angular directions for helium

atom model, and there are total 3668 nodes and 14629 elements in this computational

domain. The numerical energies of hydrogen and helium atoms are shown in table 4.6

and 4.7. The subscripts /d and 3d mean the numerical results obtained by

one-dimensional and three-dimensional FEDFT, and H means the numerical results

by Hsu. Note that the three-dimensional ground state energy of helium atom with

electron-electron interactions is,a temporal solution.

The numerical ground-state energy- of hydrogen atom almost conforms to the

experiment and the three-dimensional numerical results also conform to the

one-dimensional  numerical ones. Although the one-dimensional and

three-dimensional FEDFT both obtain the good approximation, the rate of

convergence of three-dimensional FEDFT is much quicker than the one of

one-dimensional FEDFT for hydrogen atom model that are shown in Fig. 4.17 ~ 4.18.

Obviously, there are a lot of jumps in the convergence of one-dimensional FEDFT but

it almost converges directly by three-dimensional FEDFT, mainly due to the strong

diagonal dominance of the stiffness matrix in the three-dimensional FEDFT. From

table 4.7, the numerical ground state energy of helium atom obtained by
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three-dimensional FEDFT has a better approximation than those obtained by Hsu and

one-dimensional FEDFT. It is probably due to the strong diagonal dominance of the

stiffness matrix in the three-dimensional FE formulation. To compare the solutions of

two kinds of FEDFT, the FEM has better performance for three-dimensional model

than one-dimensional model.

The probabilities of finding the electron in a hydrogen atom for the 1s and 2s

states that are compared with exact solutions are shown in Fig. 4.19. The probability

of finding the electron in a helium atom for the 1s state that is compared with

one-dimensional FEDFT is shown in Fig. 4.20.
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CHAPTER 5 CONCLUSIONS

In the current study, the approximations of new density-functional-theory

formulation with different atoms obtained by one-dimensional and three-dimensional

finite element methods that the eigenpairs of the stiffness matrices solved by

Jacobi-Davidson method are presented. The major findings of the current research are

summarized as follows:

1. The method of random-pack-storage that only records the value of the nonzero

entries of matrices reducesithe storage space of memory substantially and can

avoid the problem of the large-scale ‘sparse matrix that needs a lot of space to

record all entries.

2. The matrix solver of Jacobi-Davidson method has good performance to compute

the desired eigenpair of large-scale sparse matrices in an eigenproblem. It can

solve rather efficiently the stiffness matrix derived from finite element method.

3. The Gauss Quadrature is a powerful numerical integration that can simplify a

complicated integral and obtain a very good approximation.

4. For the same size of elements, the larger cutoff radius is, the better approximation

1S.

5. For hydrogen atom, the one-dimensional and three-dimensional FEDFT programs
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both have good approximations of the 1s and 2s state energies.

The solutions of one-dimensional finite element method are worse than those of

one-dimensional finite difference method for the new density-functional-theory

formulation probably due to the marginally diagonal dominance of the stiffness

matrix in the 1-D FE formulation.

Convergence rates of three-dimensional FEDFT are much faster than those of

one-dimensional FEDFT, mainly due to the strong diagonal dominance of the

stiffness matrix in the 3-D FE formulation.

For helium atom, the three=dimensional . FEDFT obtains a better solution than

one-dimensional FEDFT.
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CHAPTER 6 FUTURE WORKS

From this study, future work is summarized as follows:

To confirm the three-dimensional FEDFT program that computes the helium-like

and beryllium-like atoms successfully.

To compute the hydrogen molecule that is a two nuclei and two electrons system

by the three-dimensional FEDFT program.

To compute the carbon atom that is a one nucleus and six electrons system and it

has to consider the 2p orbit.

. If the serial code performs correctly, we -will parallelize it to improve the

efficiency and to solve more complicated cases.
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APPENDIX A

One-Dimensional FEDFT

In this appendix, we provide the detail of the one-dimensional finite element
form of the new DFT formulation from the governing equation to the system equation.
We will use the Galerkin weighted residual method [Burnett, 1987] throughout the
research, unless otherwise specified.

The general governing equation is written as [Hsu, 2003]

LTS 1>\P<K_1_,> "

< . > . { farl). } /jdfppo ) (A1b)

where ¥, is the density function,# and Ris the coordinate from the zero point of the

&, (7) = —lvz\y z‘

computing space, Z is the number of positive charge of the nucleus, the subscript /

means the kind of nucleus and N is the number of electrons.

For the system of one nucleus that is the simple atom like hydrogen or helium

atom with one or more electrons, Eq. (A.1) can be simplified as, by taking the

spherical symmetry,

1d’ zZ
glPJ(r)z_EFLPJ(F)_7\PJ(F)+lPJ(r)HJ(r) (A.2)
where
I1, =0 for one-electron system (J=1) (A.3a)
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I, = % H, for two-electron system (J=1) (A.3b)

I, _1 H,+H, for four-electron system (J=1,2; K#.J) (A.3¢)
2

¥ () 2
ot B e

where ¥, is the density function of orbital J that is limited to two electrons with

spin polarization to satisfy the Pauli exclusion principle and 7 is the radial coordinate
originating from the center of the nucleus.
We construct a trial solution to approximate the density function¥(r)~ U(r;a).
The typical 1-D element trial solution can always be written in the general form,
0 ) 23N (7) (A.5)
it
The coefficients «,,,,...cr, are undetermined parameters, frequently called degrees
of freedom (DOF). We would say that U (r;a) in Eq. (A.5) has n DOF. In the
following theoretical development, the first three steps are short, formal operations

using only the general form Eq. (A.5). It is not until step 4 that we decide on the value

of n and the specific form of each of the shape functions N, (r).

Step 1 : Write the Galerkin residual equations for a typical element.

The residual for Eq. (A.2) is

1 d* ~ 7 ~ ~ ~
R(”;a):_EFUJ(”;Q)_7Uj(r;a)+UJ(r;a)HJ_ng(r;a) (A.6)
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We need one residual equation for each DOF in Eq. (A.5):
MR r;a)N(r)dv=0 i=12,.,n (A.7)
where the integration integrate over one element and 7 is the number of nodes in an

element. Substituting Eq. (A.5) into Eq. (A.7) yields

(A.8)

2
I[ ;j U, a)—gUJ(r;a)+UJ(r;a)HJ—gﬁj(r;a) N,-(r)(4irr2)dr=0
r

i=12,,n

Step 2 : Integrate by parts.

The second derivative term is integrated by parts once:

ljrz dN .(r) dU , (r;a)

. - a2 j AN (@) dr + [N, (r;e)TL dr

(A.9)

p j PN, (ra) = —K—%%ﬁj (r;a)le.(r)} . 1,2,...,n

1

where 7, r, are the two boundary nodes of the element.

The boundary term contains, as usual, the flux,

—K—%di (7 a)JN (r)} = [?(r;a)Ni]:l” (A.10)
As is characteristic of eigenproblems, there cannot be any loads. Thus the interior
load is zero, and the boundary conditions must be zero. For the eigenproblems, the

boundary term contains the flux must vanish from the system equations. The

boundary term occurs in two different ways in the system equations: at each node on
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the boundary of the domain, and as the difference of two such expressions at each

node on inter-element boundaries. In the first case, the boundary conditions require

that the term vanish at the domain boundary nodes. In the second case, a nonzero

difference in flux at an inter-element boundary represents an applied concentrated

load; however, the eigenproblems does not permit applied loads. Since the boundary

term must vanish from the system equations, we will ignore it right at the outset by

eliminating it from the element equations. Therefore Eq. (A.9) may be written as

follows:

L dVi0) dU,(r,a)
2 dr dr
—&[ PPN, (MU, (r;0) =0 =i =d2,0m

dr <2 [N, (U, (@) dr + [’ N, (T, ;)11 dr ALD)

Step 3 : Substitute the general form of the element trial solution into integrals in

residual equations. Inserting Eq. (A.5) into Eq. (A.11) yields

13 , dN,(r) dN, (r)
22[-[ dr dr

} ZZU N ()N, (r)dr]a

J=1

(A.12)

N

[N e, e, drle, —gz[[ PN(ON, (drla, =0 i=12....

These are the element equations for a typical element.
Eq. (A.12) may be written in conventional matrix form that is rearranged to

satisfy the matrix solver as:
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{elM]+[K]Hal=0 (A.13)

where
1 ¢, dN,(r) dN,(r)
K== j 2 TTW +Z j rN,(r)N ,(r) dr - j P2N,(r)N,("I1, dr (A.14a)
M, = j F*N,N, dr (A.14b)

Step 4 : Develop specific expressions for the shape functions N, (r)

We use the two-node linear element to be the 1-D typical element (Fig. 4.1). For
convenience, we repeat those results here:
_ 2
U(r;a)zZaij(r) (A.15)
j=1

where the shape functions possess the requisite interpolation property,

Nj(rk):aj+bjrk=5jk (A.16a)

j=1 = aq=—2— p=->" (A.16b)
Hh=h h=h

j=2 = a=--"— p="1 (A.16c)
rn=n r,—n

This element is frequently referred to as a C’-linear element, in obvious reference to

the continuity and completeness properties it process.

Step 5 : Substitute the shape functions into the element equations, and transform

the integrals into a form appropriate for numerical evaluation.
Substitute Eq. (A.16) into Eq. (A.14) :
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K, = I—%bz‘bﬂ”2 +Z(ai +bir)(aj +bjr)r—HJ(ai +bir)(aj +bjr)r2 dr
1 1
= bb L + Z[Zb,.b —(ab, +ap,)m, ] (A.17a)
+%[Z(aibj + ajbi)—%bibj —aiajHJ}f3 +§aiajr2
M, = [(a+brNa, +br)dr=2bb 5+ (ap +ap )t +2aar (A1T5
,.j—J.al.+ T \a; +br)r r—g bir +Zal. tab)r +§aiajr (A.17b)
Step 6 : Derive expression for the IT,.
The nonlinear term, IT,, in the Eq. (A.2) describes as Eq. (A.3). The 1/|r—r'|
of the integration, /, , may expand the solutions in terms of the Legendre

polynomials yields

1j.dr’
Hj<r)=< : >=

2
Py (r'] r

2 o0
‘I’J(e)(r'X Fe o+ Idr'
r'=r

0
I dr!
7'=0

P9 is the density function of the last evaluate.

(A.18)
‘I’J(e) (r'x2 r'?

This completes the six steps for deriving the element equations. After performing
the addition operations, all elemental matrix equations are assembled to be system

equations that are then solved by J-D matrix solver.
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APPENDIX B

Three-Dimensional FEDFT

In this appendix, we provide the detail of the three-dimensional finite element
form of the new DFT formulation from the governing equation to the system equation.
We will use the Galerkin weighted residual method [Burnett, 1987] throughout the
research, unless otherwise specified.

The general governing equation is written as [Hsu, 2003]

)3V )3 wo<f>+§(zv—1>wo<f{#> .12

PR, 7 7]

<;7 _1 7 > - {Idf ioff;x,‘z }/J‘ d ] () (B.1b)

where ¥, is the density funetion, 7and.R"1s the coordinate from the zero point

of the computing space, Z is the number of positive charge of the nucleus, the
subscript / means the kind of nucleus and N is the number of electrons.
For the system of one nucleus with one or more electrons, Eq. (B1) can be
rewritten for density function of orbital J in three-dimensional form as,
£V, (7)= =3V, ()= 2, () ¥, (), ) (B2)
where
r=(x,y,2) (B.3a)
1/2

r=(x*+y>+z% (B.3b)
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I1,=0 for one-electron system (J=1) (B.3¢)

I, = % H, for two-electron system (J=1) (B.3d)
I, =% H, +H, for four-electron system (J=1,2; K=#.J) (B.3e)

H,0) = (-7 ={[aF e[ [F-7)/[areee] @4
where ¥, is the density function of orbital J that is limited to two electrons with
spin polarization to satisfy the Pauli exclusion principle and 7 is the radial coordinate
originating from the center of the nucleus.

We construct a trial solution to approximate the density function¥(r)~ U(r;a).
The typical 3-D element trial solution can always be written in the general form,
U(Fa)= ilajzvj ) (B.5)
-
In the current study, linear shape function for.3-D tetrahedral element is used for 3-D

program throughout the research, unless otherwise specified.

Step 1 : Write the Galerkin residual equations for a typical element.
The residual for Eq. (B.2) is
— 1 277 - Z ~ - ~ - -~ —
R(r;a) = _Ev U,ra)-=U,(Fa)+U,(r;a)ll, —eU,(F;a) (B.6)
r
We need one residual equation for each DOF in Eq. (B.5):
[[[RF;a)N,(F)dv=0 i=12,..n (B.7)

where the integration integrate over one element and 7 is the number of nodes in an
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element. Substituting Eq. (B.5) into Eq. (B.7) yields

m[_%vzﬁ"(?;m_gﬁf(?;“)JrﬁJ(f;“)HJ —817](7;06)}Ni(f)d73 =0
r

(B.8)
i=12,---,n
Step 2 : Integrate by parts.
The second derivative term is integrated by parts once:
7J‘” 7)oU, (F; a) oN,(7) aU, (F; a) oN () aU, (F; a)d_3 Z”J-N(F)U G a)d_
Oy oy oz oz r
(B.9)

+ mn N.(F)U,(?;a)dFS —gmN.(f)ﬁ (F;a)dF’

ﬁ{(aU]Nn a’ydz+(a ]N n dza’x+(a ]Nn dxdy}
oy oz

where n,, n, and n, are the direction cosines of the outward unit normal to the element
boundary.

As the same in Appendix A,*the boundary term contains the flux must vanish
from the system equations for the eigenproblems. We will ignore it right at the outset
by eliminating it from the element equations. Therefore Eq. (B.9) may be written as

follows:

IJ‘J‘J'@N:(?) 8(7](}7;0() +M GﬁJ(F;a)+8]\7i(;7) aﬁJ(F;a)dfs _Z.”J‘M(’?)(?J(F;a)dfs
ox y oz oz
[N, Faydr® - e[ [N, 7 a)dr® =

(B.10)

Step 3 : Substitute the general form of the element trial solution into integrals in

residual equations. Inserting Eq. (B.5) into Eq. (B.10) yields
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: [(7)oN, () [(7)oN,(F) (F)oN,(F) _,
%;Dﬂ a]\éx() ox +8A2y() oy +a]\éz() oz }“f

- Z;{mw dfﬂaj + ; “”HJNI.(F)NJ (7) df3]aj B.11)
—gi UJINi(F)NJ(?)d?3]aj =0 i=12,...,n
j=1
These are the element equations for a typical element.
Eq. (B.11) may be written in conventional matrix form that is rearranged to
satisfy the matrix solver as:
{e[M]+[K]Hea}=0 (B.12)

where

K, - 1 il oN,(7) 6Nj(;7)+8N,.(F) oN () L ON,(F)ON, (F)df3
S (7 3 (B.13a)
<2 [[[FEEEa{n N N, ()

M, = [[[ NN, (P (B.13b)

Step 4 : Develop specific expressions for the shape functions N ; (r)

We use the linear tetrahedral element to be the 3-D typical element (Fig. 4.2).
The typical 3-D element trial solution can be written
- 4
U(F;a)=> a,N,(x,y,z) (B.14)
j=1
The special coordinates are introduced defined by (Fig. B.1) :

x=Lx +Lx,+Lx,+Lx, (B.15a)
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y=Liyy+Ly,+Ly;+L,y,
z=Lz+L,z,+ Lz, +L,z,

=L +L,+L,+L,

a,+bx+c,y+d;z
6V,

Solving Eq. (B.15) gives L, =

the linear element are simply

N, =L N,=L, etc.

where V. represents the volume of the tetrahedron.

I x y z

111 x z

vo=- 2 W 2

6l x99 z,

IR, 2,
X Ve 2,
a,;=x,="Yy, Z
1y, z
bj:_l Yo Z
Ly, z,
x, 1 z
c,=-x, 1 z
x, 1 z,
X,y 1
d,=—x, y 1
Xy Yy 1
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(B.15d)

etc. The linear shape functions for

(B.16)

(B.17a)

(B.17b)

(B.17¢)

(B.17d)

(B.17¢)



Step 5 : Substitute the shape functions into the element equations, and transform

the integrals into a form appropriate for numerical evaluation.

Substitute Eq. (B.16) into Eq. (B.13) :

M, = [[[NON, G =2 (i i)
(B.18a)

25 (i i#))

K=4A+B+C (B.18b)

A:_l“‘j oN,(F) aN./(f)JraN,-(f) aN./(F)+aNi(F) 6N/.(17)d73 _ bbj+ce; +dd, (B.18c)
2 Ox Ox oy Oy oz 0z 72V,

by Gauss Quadrature (GQ):

B:Z”—[wdiﬁ

(ai +hx, +c,p; +di2k)(aj +hx;, +¢,, +djzk) (B.18d)

VA
= . Wk
36, 2 Sty 422

where G is the total numbers of the Gauss pomt, wy is the weighting factor and the

G
k=

subscript k£ means that the related values on the Gauss point (Table B.1) [Zienkiewicz
and Taylor, 2000]. We will use the quadratic of GQ throughout the research, unless

otherwise specified.

I o
C,.j=—mHJN,.(r)NJ(r)dr T W i=)) (B.18¢)

Step 6 - Derive expression for the IT,.

The nonlinear term, IT,, in the Eq. (B.2) describes as Eq. (B.3). The integration,
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H , , integrate by Gauss Quadrature.

\P(e)
1 mm_rﬁ a
H,(F)=(7=—= =— (B.19a)
7, sty 7
tot.element G ‘\P(e) (7 'j 2
a= 2 |V.2 L w, (B.19b)

T = \/(x _xk)2+( j_yk)2+(zj_zk)2
ﬁ _ mm[fmm[Vcir{l;@ (;72 '12 Wki| (B19C)

1 k=1

P9 is the density function of the last evaluate.

This completes the six steps for deriving the element equations. After performing
the addition operations, all elemental matrix equations are assembled to be system

equations that are then solved by J-D matrix:solver.
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Table 4.1 The radial domain data of all models for one-dimensional FEDFT in this
research. Cutoff radius is in units of Bohr radius.

Atom  cutoff radius nodes elements

H 20 20001 20000
He 10 10001 10000
Li’ 6 6001 6000
Be'? 5 5001 5000
B" 4 4001 4000
c 3 3001 3000
Be 6 6001 6000
B" 5 5001 5000
c" 4 4001 4000
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Table 4.2 The computational domain data of all models for three-dimensional

FEDFT in this research. Cutoff radius is in units of Bohr radius.

Atom cutoffradius'’ *nodes  elements
H 20 165150 796588
He 5 3668 14629

61



Table 4.3 Hydrogen atom. The energies of the electron obtained by one-dimensional

FEDFT program compared with experiment. Energy is in units of eV.

Atom Z exp n=1z n=2r
H 1 13:6 13.:60002372 3.400007348
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Table 4.4 Helium-like atoms. The energies of the electron obtained by
one-dimensional FEDFT program compared with experimental ones and numerical

ones obtained by Hsu. Energy is in units of eV.

Atom exp n=lyg«n=2y n=1r n=2r

V4

He 2 79 78 19 77.10271484 19.46709836

Li" 3 198 196 50 196.0677136 49.34028086

Be" 4 371 370 93 369.4731368 92.84837742
5 600 598 150 597.2802483 149.9571332
6

c* 882 880 220 879.4880575 220.6660783
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Table 4.5 Beryllium-like atoms. The energies of the electron obtained by
one-dimensional FEDFT program compared with experimental ones and numerical

ones obtained by Hsu. Energy is in units of eV.

Atom Z exp Gy Gr

Be 4 399 390 387.5745747
B" 5 663 662 649.4520744
c" 6 991 989 979.4498507
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Table 4.6 Hydrogen atom. The energies of the electron obtained by
three-dimensional FEDFT program compared with experimental ones and numerical

ones obtained by one-dimensional FEDFT. Energy is in units of eV.

Atom Z exp n=1y4g n=2jy n=1;, n=23,

H 1 13.6 13.60002372  -3.400007348 13.6006394  3.399937991
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Table 4.7 Helium atom. The energies of the electron obtained by three-dimensional
FEDFT program compared with experimental ones and numerical ones obtained by

Hsu and one-dimensional FEDFT. Energy is in units of eV.

Atom Z exp. n=lgy n=1;, n=13,
He 2 79 78 77.10271 78.34722
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Table B.1

element [Zienkiewicz and Taylor, 2000].

Numerical integration formula of Gauss Quadrature for tetrahedral

No. Order Figure Error

1 Lincar R = ()(.‘rJ]
2 Quadratic R = 0"
3 Cubic R =0

Points

a

b

o

o

b
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¢
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3,3, 3, o
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Water cooling
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Substrate

Fig. 1.1

sputtering chamber.

Sketch of the multiscale and physical processes in a DC-magnetron
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MULTISCALE MODELLING TOOLS FOR VAPOR DEPOSITION

10? .
Reactor scale simulation
. {CFD, DSMC, plasma modals, ...)

107} Hyperthermal, ]
'é‘ allay klnetlc_MC
— Ay

. Hybrid (atomistic
Lt \x Eilm scale continuum) models
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Electronic .
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Fig. 1.2 The analysis of vapor deposition spans both a wide length and time scale.
Overlapping modeling methods are beginning to allow an increasingly rigorous
multiscale treatment [Ohno et al., 1999; Olson, 1997].
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Fig. 1.3 The publications about DFT [Friedrich].
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Fig. 1.4 STOs & GTOs [Friedrich]
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Fig. 2.1

1. EXACT GENERAL FORMULATION
. The Density as Basic Variable
We shall be considering a collection of an arbitrary
nunber of electrons, enclosed in & farge box and moving
under the influence of an external potential ©(r) and
the mutual Coulomb repulsion. The Hamiltonian has
the form

H=T+V+U, (1)
where'?
1
7= f VA )i, 2)
V= f vy {rdr, (3)

f—ﬁf (e (e () drde’. (4)

We shall in all that follows assume for simplicity Chat
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density
in the ground state ¥ by

w(r)=(Fy*{rh(rF), (5)

which is clearly a functional of o(r).

We shall now show that conversely »(r) is & unique
functional of #(r), apart from a trivial additive constant.

The proof proceeds by reduclic ad abswrdum. As-
sume that another potential ¢ (r), with ground state
B gives rise to the same density n(r). Now clearly
[unless o' (r)—o(r)=const ] ¥ cannot be equal to W
since they satisfy different Schradinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with ¥ and ¥ by H, H' and E, E',
we have by the minimal property of the ground state,

= (W H W) < (W HW) = (¥, (H+ V' — V),
a0 that
f'J'CE€+f[ﬂ’(r}—n{r)]w (r)dr. (6)

[nterchanging primed and unprimed quantities, we find
in exactly the same way that

E<E+ [[1'(r)—v'{r)]::fr}dr_ {7}

Addition of (6) and (7) leads to the inconsistency
E4E < F4E (&)
Thusv(r) is (to within a constant) a unique functional
of u(r); since, in turn, o{r) fixes H we see that the full

many-particle ground state is a unique functional of
n(r).

from P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964)
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Fig. 3.1 The flow chart of the FEDFT.
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Fig. 3.2 The flow chart of the J-D solver.
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Fig. 4.1 One-dimensional meshes with 4 elements and 5 nodes.
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Fig. 4.2 The tetrahedral element.

76



Fig. 4.3 The surface meshes of three-dimensional computational domain with
different view points. (=10 Bohr radii, 6=30°, ¢p=30°)
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Fig. 4.4 The probabilities of finding the electron in a hydrogen atom at a distance

between r and r + dr from the nucleus for the 1s and 2s state obtained by

one-dimensional FEDFT compared with exact solutions.
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Fig. 4.5 The probabilities of finding the electron in a He at a distance between r and

r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT.

79



00016 ——m——m————T——T—T—T—T—T— T
0.0013 SYM. State
0.0014 ”
0.0013 o
0.0012
0.0011
0.001

1 0.0009

1:0.0008

0 5.0007
0.0006
0.0005
0.0004
0.0003
0.0002 }
0.0001 |

P AN NURY NRTTY NTURARTNE1 NUNN ARAA1 FUNE ANER1 NAH A v A e

r {(a0)

Fig. 4.6 The probabilities of finding the electron in a Li" at a distance between r and

r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT.
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Fig. 4.7 The probabilities of finding the electron in a Be™ at a distance between r
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional
FEDFT.
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Fig. 4.8 The probabilities of finding the electron in a B™ at a distance between r and

r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT.
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Fig. 4.9 The probabilities of finding the electron in a C™ at a distance between r and

r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional FEDFT.
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Fig. 4.10 The probabilities of finding the electron in helium-like atoms at a distance
between r and r + dr from the nucleus for the 1s state obtained by one-dimensional
FEDFT.
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Fig. 4.11 The probabilities of finding the electron in helium-like atoms at a distance
between r and r + dr from the nucleus for the 2s state obtained by one-dimensional
FEDFT.
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Fig. 4.12 The probabilities of finding the electron in a Be at a distance between r
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional
FEDFT.
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Fig. 4.13 The probabilities of finding the electron in a B" at a distance between r
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional
FEDFT.
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Fig. 4.14 The probabilities of finding the electron in a C™ at a distance between r
and r + dr from the nucleus for the 1s and 2s state obtained by one-dimensional
FEDFT.
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Fig. 4.15 The probabilities of finding the electron in beryllium-like atoms at a
distance between r and r + dr from the nucleus for the 1s and 2s state obtained by

one-dimensional FEDFT.
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Fig. 4.16 Photographic representation of the electron probability-density distribution
for 1s and 2s states. These may be regard as sectional views of the distribution in a

plane containing the polar axis, which is vertical and in the plane of the paper [Arthur,
1995].
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The iterations of the ground state
convergence for 10 and 30 models
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Fig. 4.17 The 1s state convergence of residual with iterations for hydrogen atom by

one-dimensional and three-dimensional FEDFT.
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The iterations of the first excited state
convergence for 10 and 3D models
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Fig. 4.18 The 2s state convergence of residual with iterations for hydrogen atom by

one-dimensional and three-dimensional FEDFT.
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Fig. 4.19 The probabilities of finding the electron in a hydrogen atom at a distance

between r and r + dr from the nucleus for the 1s and 2s state obtained by

three-dimensional FEDFT compared with exact solutions.
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Fig. 4.20 The probability of finding the electron in a helium atom at a distance

between r and r + dr from the nucleus for the 1s state obtained by three-dimensional
FEDFT compared with one-dimensional FEDFT.
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Fig. B.1 The coordinates of point P described by four edge nodes in the tetrahedral
element [Zienkiewicz and Taylor, 2000].
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