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Improved c Control Charts based on Tolerance
Intervals

Student: Yufen Luo Advisors: Dr. Hsiuying Wang

Institute of Statistics
National Chiao Tung University

Abstract

In the previous studies, c charts are usually constructed by confidence intervals

for the mean of a poisson distribution. When the mean is known, the existing c

charts may lead to a satisfactory result, However, when the mean is unknown, the

existing c charts suffer the drawback of large type I error. In this study, c charts

based on tolerance intervals for the poisson distribution are proposed. A numerical

study shows the proposed c charts outperform the existing ones.
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1 Introduction

Attribute Charts are a set of control charts specifically designed for attribute data,

which is also known as ”count” data. The c-chart is a type of attribute control chart used

to monitor the number of nonconformities per unit.

In most cases, the inspection unit is a single unit of product. However, sometimes

the inspection unit could consist of more than a single unit. A nonconforming item

contains at least one nonconformity. The c control chart is used to detect if the number

of nonconformities in an inspection unit is in control and it is signal when a deviation

from stability occurs.

The random Y of the number of nonconformity in an item can be assumed to follow

a Poisson distribution with the probability function

p(Y = y) =
e−λλy

y!

where λ > 0 is the parameter of the Poisson distribution. Assume that an inspection unit

has n units, that is, subgroup size being n. Let X denote the total number of nonconfor-

mities in this inspection unit. Suppose that the nonconformities in this inspection unit is

done independently. Then X follows the poisson distribution Poi(nλ). Let xi denote the

observation of the ith inspection unit. A monitor process is to monitor xi/n, i = 1, . . ..

The evaluation of c control chart can be based on the type I error, which is the probability

that xi/n does not fall between the upper and the lower limits of the chart. When λ is

known, the widely used c control chart with type I error 0.0027 is the control chart with

1



3-sigma control limits defined as follows

UCL = λ+ 3
√
λ

CL = λ

LCL = λ− 3
√
λ

(1)

If LCL < 0, then assume LCL = 0.

When λ is unknown, the widely used c control chart with type I error 0.0027 is the

control chart with 3-sigma control limits defined as follows

UCL = λ+ 3
√
λ

CL = λ

LCL = λ− 3
√

λ

(2)

where λ is the observed average number of nonconformities in a preliminary sample of

inspection units. (Shewhart 1926)

For the case when λ is known, the type I error of the control chart (1) is not far away

from the nominal level when λ is large. However, when λ is unknown, the type I error

of the conventional control chart (2) does not only depend on inspection unit n, but also

depends on the value of true λ. Since the control chart (1) is constructed based on the

normal approximation, the performance of the control chart (2) may perform poorly when

the sample size n is not large enough.

There are other existing c charts in the literature Bartlett (1936) used a transformation

of Y to approximate a normal distribution to construct a c chart as well as Anscombe

(1948). Bartlett (1947) has further discussion based on this chart. Ryan and Schwertman

(1997) used regression equations to construct a c chart and Winterbottom (1993) applyed

2



Cornish and Fisher asymptotic expansion to construct a c chart.

In this study, we use tolerance interval approach to construct a c chart. Tolerance in-

tervals are useful tools to capture characteristics of the underlying distribution of collected

data in industrial, clinical trials, pharmaceutical and life insurance applications (see Hahn

and Chandra, 1981; Hahn and Meeker, 1991; Zaslavsky, 2007; Wang, 2007; Gebizlioglu

and Yagci, 2008; Cummings, Zhou and Dive, 2011). A tolerance interval is a statistical

interval within which, with some probability, a specified proportion of a population falls.

Let W be a random variable with cumulative distribution function F . An interval

(L(W ), U(W )) is said to be a β-content, (1 − α)-confidence tolerance interval for F (

called a (β, 1− α) tolerance interval for short) if

P{[F (U(W ))− F (L(W ))] ≥ β} = 1− α. (3)

In this paper, we use an adjusted tolerance interval by the Edgeworth expansions to

construct an improved c control chart. Through the simulation study, this new chart

can successfully improved the monitor accuracy when true λ is small and is better than

several existing charts. Edgeworth expansions have also been used very successfully for

the construction of confidence intervals in discrete distributions (see Brown, Cai and

DasGupta, 2002, 2003; Cai, 2005).

The thesis is organized as follows. The existing control charts of the number of noncon-

formities in an inspection unit when the true λ is known or unknown are briefly discussed

in Section 2. The performances of these charts are evaluated in terms of the type I error.

In Section 3, a new chart based on an adjusted tolerance interval which can improve the

3



existing chats by reducing the type I error when the true λ is small. The proposed chart

is compared with the existing methods by evaluating their expected widths in Section 4.

The performances of the new charts are illustrated by a real data example in Section 5.

Finally, a conclusion remark in given Section 6.

2 Existing methods

Besides the conventional control chart (2), the four existing charts with nominal type I

error 0.0027 discussed in Bartlett (1936), Anscombe (1948), Ryan and Schwertman (1997),

and Winterbottom (1993) are introduced as follows.

Bartlett c chart for λ known

Bartlett (1936) based on the fact that the transformation V = 2
√
X approximates a

normal distribution with µ = 2
√
nλ and σ2 = 1. Define vi = 2

√
xi. We can plot v2, v3, . . .

on a chart with control limits defined as follows

UCL = 2
√
nλ+ 3

CL = 2
√
nλ

LCL = 2
√
nλ− 3

(4)

Bartlett c chart for λ unknown

Define λ̂i = xi1 + . . . + xin, and for i = 2, 3, . . . define vi = 2
√
xi, where xi1, . . . , xin

denote the n units in the ith inspection unit. We can plot v2, v3, . . . on a chart with control

4



limits defined as follows

UCL = 2

√
nλ̂i−1 + 3

CL = 2

√
nλ̂i−1

LCL = 2

√
nλ̂i−1 − 3

(5)

Anscombe c chart for λ known

Anscombe (1948) showed that the transformation U = 2
√
X + 3

8
is approximately a

normal distribution with µ = 2
√
nλ+ 3

8
and σ2 = 1.

Define ui = 2
√

xi +
3
8
. We can plot u2, u3, . . . on a chart with control limits defined

as follows

UCL = 2

√
nλ+

3

8
+ 3

CL = 2

√
nλ+

3

8

LCL = 2

√
nλ+

3

8
− 3

(6)

Anscombe c chart for λ unknown

Define λ̂i = xi1+ . . .+xin, and for i = 2, 3, . . . define ui = 2
√

xi +
3
8
, where xi1, . . . , xin

denote the n units in the ith inspection unit. We can plot u2, u3, . . . on a chart with control

5



limits defined as follows

UCL = 2

√
nλ̂i−1 +

3

8
+ 3

CL = 2

√
nλ̂i−1 +

3

8

LCL = 2

√
nλ̂i−1 +

3

8
− 3

(7)

The Ryan and Schwertman c chart for λ known

Ryan and Schwertman (1997) use regression forms to propose the c chart control limits.

Define yi = xi. Plot yi for i=2,3,. . . on a chart with control limits defined as follows

UCL = 0.6195 + 1.0052nλ+ 2.983
√
nλ

LCL = 2.9529 + 1.01956nλ− 3.2729
√
nλ

(8)

The Ryan and Schwertman c chart for λ unknown

Define yi = xi and λ̂i = xi1 + . . . + xin. Plot yi for i = 2, 3, ... on a chart with control

limits defined as follows

UCL = 0.6195 + 1.0052nλ̂i−1 + 2.983

√
nλ̂i−1

LCL = 2.9529 + 1.01956nλ̂i−1 − 3.2729

√
nλ̂i−1

(9)

The modified c Chart by Cornish-Fisher expansion for λ known

Winterbottom (1993), apply a Cornish and Fisher asymptotic expansion to construct

a c chart. Let Y ∗ be an asymptotically normal random variable which is unbiased for a

parameter θ, has variance µ2 = σ2 and µ3 is the third moment about θ. Let zα be the

6



100αth percent point of a standard normal distribution and Y ∗
α be the 100αth percent

point of Y ∗. Then

Y ∗
α ≈ θ + zασ + µ3(z

2
α − 1)/(6σ2). (10)

Now suppose X is a poisson random variable with mean nλ. Then Y ∗ = X/n is the

number of nonconformities per inspection and has mean λ and variance λ/n. From (10),

Y ∗
α ≈ λ+ zα

√
λ/n+ (z2α − 1)/(6n)

Define y∗i = xi/n. Plot y∗i for i = 2, 3, ... on a chart with modified control limits defined

as follows

UCL = λ+ 3

√
λ

n
+

4

3n

CL = λ

LCL = λ− 3

√
λ

n
+

4

3n

(11)

The modified c Chart by Cornish-Fisher expansion for λ unknown

Define y∗i = xi/n and

λ̂i =
x1 + ...+ xi

n
.

Plot y∗i for i = 2, 3, ... on a chart with control limits defined as follows

UCL = λ̂i−1 + 3

√
λ̂i−1

n
+

4

3n

CL = λ̂i−1

LCL = λ̂i−1 − 3

√
λ̂i−1

n
+

4

3n

(12)
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Figure 1: Type I errors of the standard chart (2) with the nominal level 0.0027 when λ is
known and unknown for n=20 and n=50.
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Figure 2: Type I errors of the standard chart (2) with the nominal level 0.05 when λ is
known and unknown for n=20 and n=50.
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We evaluate the existing methods in terms of their performances of the type I error.

In order to simplify the calculation of type I error, we approximate it by the type I error

calculated by assuming that λ̂i−1 and λ̂i follow the same distribution Poi(λ). Hence, for

the standard chart and the modified chart by Cornish-Fisher expansion, the type I error

of control chart with limits LCL and UCL at λ = λ0 is computed by calculating the

probability

1− (Prλ0(X ≤ nUCL)− Prλ0(X < nLCL)). (13)

Because of nUCL and nLCL are not always integers, we use 1 − (Pλ0(X < [nUCL] +

1)− Pλ0(X ≤ [nLCL])) to approximate (13), where [x] denotes the largest number equal

to or less than x. The type I errors of Bartlett chart and Anscombe chart, and the Ryan

and Schwertman chart can be calculated by a similar way. The type I errors of the charts

based on the three existing methods with respect to λ known and λ unknown for n = 20

and n = 50 cases are shown in Figures 1-10. For the standard control chart with λ known

case, Figure 1 shows that the type I error oscillates in the nominal level 0.0027 and it is

getting closer to the nominal level when λ is larger. Although when the true λ is small,

the type I error is not very close to the nominal level, the bias is less than 0.02, which is

not very large. Nevertheless, for the λ unknown case, the type I error has a smooth curve

and has the same trend as λ known case, but it is much larger than λ known case. In

real application, the situation of small λ is important because true λ may be very small.

Figure 1 shows that the standard chart may be acceptable if λ is known, but the chart

(2) is not satisfactory when λ is unknown.
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Figure 3: Type I errors of Bartlett chart (5) with the nominal level 0.0027 when λ is
known and unknown for n=20 and n=50.
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Figure 4: Type I errors of Bartlett chart (5) with the nominal level 0.05 when λ is known
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Figure 5: Type I errors of Anscombe chart (7) with the nominal level 0.0027 when λ is
known and unknown for n=20 and n=50.
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Figure 6: Type I errors of Anscombe chart (7) with the nominal level 0.05 when λ is
known and unknown for n=20 and n=50.
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For the Bartlett chart and Anscombe chart, Figures 3 and 5 show that the type I

error for the λ known, is not far away from the nominal level 0.0027, which is similar to

standard chart. However, when λ is unknown, the type I error is improved a little, but it

is too large when λ is small.
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Figure 7: Type I errors of the Ryan and Schwertman chart (9) with the nominal level
0.0027 when λ is known and unknown for n=20 and n=50.

For the Ryan and Schwertman control chart, Figure 7 shows that when λ is known

case, the bias of the type I error is less than 0.02 and it is improved a lot. Besides, the
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Figure 8: Type I errors of the Ryan and Schwertman c charts (9) with the nominal level
0.05 when λ is known and unknown for n=20 and n=50.

16



type I error for the λ unknown case is much larger than the nominal level 0.0027 when

the true λ is small.

0.5 1.0 1.5 2.0

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30
0.

00
35

modified chart by Cornish−Fisher expansion for λ known

n = 20,α = 0.0027
λ

ty
pe

 I 
er

ro
r

0.
00

27

0.5 1.0 1.5 2.0
0.

01
0.

02
0.

03
0.

04

modified chart by Cornish−Fisher expansion for λ unknown

n = 20,α = 0.0027
λ

ty
pe

 I 
er

ro
r

0.
00

27

0.5 1.0 1.5 2.0

0.
00

20
0.

00
25

0.
00

30
0.

00
35

modified chart by Cornish−Fisher expansion for λ known

n = 50,α = 0.0027
λ

ty
pe

 I 
er

ro
r

0.
00

27

0.5 1.0 1.5 2.0

0.
01

0.
02

0.
03

0.
04

modified chart by Cornish−Fisher expansion for λ unknown

n = 50,α = 0.0027
λ

ty
pe

 I 
er

ro
r

0.
00

27

Figure 9: Type I errors of the c charts (12) with the nominal level 0.0027 modified by
Cornish-Fisher expansion when λ is known and unknown.

For the modified chart by Cornish-Fisher expansion, the type I error for the λ known

case is close to the nominal level 0.0027. However, for the λ unknown case, the type I

error is not close to the nominal level, resulting in a unsatisfactory performance.

Combined the above results, when λ is known, the standard chart, the Bartlett chart,
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Figure 10: Type I errors of the c charts (12) with the nominal level 0.05 modified by
Cornish-Fisher expansion when λ is known and unknown.
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the Anscombe chart, and the modified chart by Cornish-Fisher expansion can monitor

λ̂i well. The Ryan and Schwertman chart performs well, but this control limits do not

depend on confidence level α. When λ is unknown, the four charts are not satisfactory.

Therefore, a better chart which can reduce the type I error is proposed in the next section.

3 Improved c chart

Besides providing control limits with a nominal level 0.0027. We also present the figures

for control chart with a nominal level 0.05.

We first introduce a poisson tolerance interval in the literature, and then construct an

approximated control chart based on this interval. Let X =
∑n

i=1 Xi be a random variable

following a poisson distribution Poi(nλ). It is well known that the coverage probability of

the two-sided tolerance interval is too conservative with the nominal level for the poisson

distribution. The tolerance interval proposed by Cai and Wang (2009) can be used to

construct a useful c chart.

The Two-sided Tolerance interval. LetX be the random variable from the poisson

distribution with mean nλ. Let a = 1
6
(zα + z1−β′)(2zα + z1−β′), b = zα + z1−β′ and

d = 1
36
(7−z21−β′+zαz1−β′+2z2α). Here β

′ is the (1+β)/2 that at least contain β proportion

of the population. The first order and second order β-content, (1−α)-confidence two-sided

tolerance intervals have proposed by Cai and Wang (2009)

TI1(X) = (X + a− b
√
X,X + a+ b

√
X)

TI2(X) = (X + a− b
√
X + d,X + a+ b

√
X + d)
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Based on these intervals, we propose new control charts. The control chart based on

the first order TI are

UCLTI1 = X + a+ b
√
X

LCLTI1 = X + a− b
√
X.

(14)

We call it is first order TI control chart.

The control chart based on the second order TI are

UCLTI2 = X + a+ b
√
X + d

LCLTI2 = X + a− b
√
X + d.

(15)

We call it is second order TI control chart.

This new chart can successfully reduce the type I error when λ is unknown, see Figure

11.

There are other improved confidence intervals except the Tolerance interval proposed

in the literature to improved the coverage probability of the Wald interval, like the Jeffreys

interval and the likelihood ratio interval (see Brown, Cai and DasGupta, 2002). However,

chart limits based on the Jeffreys interval and the likelihood ratio test are more difficult

to present and compute in an informal environment. The chart based on the Edgeworth

expansions tolerance interval does not have the above disadvantage and possess a simple

closed form.

4 Width comparison

In this section, we compare the expected width of the new charts with the existing

charts. The width does not depend on the observation when λ is known so that we can

be directly derived by taking the difference of the upper limit and the lower limit. For the
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Figure 11: Type I errors of the new c chart with the nominal level 0.0027 when λ is
unknown for first order and second order.
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Figure 12: Type I errors of the new c chart with the nominal level 0.05 when λ is unknown
for first order and second order.
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case of λ unknown, the width depends on the observation. Hence we make a comparison

on their expected widths for the λ unknown case. The expected width of a chart is defined

as the expect value of the upper limit minusing the expect value of the lower limit, which

can be calculated using the formula

n∑
i=0

(UCL(i)− ICL(i))
e−λλi

i!
.

The expected widths for the conventional chart, Bartlett chart and Anscombe chart, Ryan

and Schwertman chart and the new charts with the nominal level 0.0027 are shown in

Figure 13.

Note that the expected width of the modified chart by Cornish-Fisher expansion is

the same as that of the standard chart because its upper and lower limits are the upper

and lower limits of the standard interval adding the same value 4/(3n). Thus, we do not

present it in Figure 13.

For the Bartlett chart and Anscombe chart, since the chart is used to detect V and

U , which approximates the normal distribution with unit variance. Unlike the other

three charts whose limits are used to detect λ̂, the transformed chart detects another

random variable V and U . Thus, we do not directly compare the expected width of the

transformed chart with those of the other three charts.

The Ryan and Schwertman control chart and the new charts are detect the number of

nonconformities in an inspection unit n so that we can not directly compare the expected

width with the other three charts. Thus we ,divided by n, can compared with the other

three charts. Figure 13 shows that the expected width of the new charts is relatively lager
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Figure 13: Expected widths of various control charts respectively for the cases of n = 20
and n = 50 with the nominal level 0.0027. From bottom to top, the expected width of
Ryan and Schwertman chart, conventional chart, the first order new chart, the second
order new chart.
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and Schwertman chart, conventional chart, the first order new chart, the second order
new chart.
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Table 1: The data for the numbers of nonconformities.

Sample number Number of nonconformities Sample number Number of nonconformities

1 21 14 19
2 24 15 10
3 16 16 17
4 12 17 13
5 15 18 22
6 5 19 18
7 28 20 39
8 20 21 30
9 31 22 24
10 25 23 16
11 20 24 19
12 24 25 17
13 16 26 15

than above existing charts. However, the new charts can be recommended that has better

performance for λ unknown case.

5 Example

We illustrate the new charts by a real data example with a small number of defects.

Example 1. The data in this example are about the number of nonconformities

printed circuit boards. Table 1 presents the number of nonconformities observed in 26

successive samples of 100 printed circuit boards. The inspection unit in this example is

defined as 100 boards. We found that the the samples 6 and 20 fall outside the control

limits because the new inspector had examined the boards in this sample and he did not

recognize several of type nonconformities that could have been present and sample 20

resulted from a temperature control problem in the wave soldering machine.

From Figures 15 and 18, there are several points out of the control region for conven-
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Figure 15: The dashed lines are the UCL and LCL for the conventional chart.
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Figure 16: The dashed lines are the UCL and LCL for the Bartlett chart.
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Figure 17: The dashed lines are the UCL and LCL for the Anscombe chart.
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Figure 18: The dashed lines are the UCL and LCL for the Ryan and Shcwertman chart.
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Figure 19: The dashed lines are the UCL and LCL for the chart modified by Cornish-
Fisher expansion.
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Figure 20: The dashed lines are the UCL and LCL for the new chart with first order.
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Figure 21: The dashed lines are the UCL and LCL for the new chart with second order.
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tional chart and Ryan and Schwertman chart under the nominal level 0.0027. Figures

16, 17, and 19 show that the same two points are plot outside the control limits for the

Bartlett chart, the Anscombe charts, and the modified chart by Cornish-Fisher expan-

sion. Figures 20 and 21 show that all of the points are fall between the limits for the first

and second order new charts. Therefore, under the nominal level, the new charts are too

conservative. When under the level 0.05, the proposed chart can detect the out control

points. The new charts can exactly detect the assignable cause under the level 0.05. The

other existing charts detect more out control points than the proposed chart with level

0.05. Compared with the existing charts the new charts performs better in this real data

example.

6 Conclusion

In this paper, we evaluate the four existing charts, the standard chart, the Bartlett

chart, the Anscombe chart, the Ryan and Schwertman chart and the modified chart by

Cornish-Fisher expansion, in terms of the type I error and expected width criteria. The

existing methods can perform well when the number of nonconformities is known, but

they are unsatisfactory when the number of nonconformities is unknown. Therefore, we

propose a new chart in this paper for the number of nonconformities unknown case, which

is based on the form of the tolerance interval.

Compared with the existing charts, the new charts are too conservative with the

nominal level 0.0027 but the new charts can successfully reduce the type I error with the

level 0.05. It is certainly true that the expected width is larger than the four existing
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charts. But it has a simple closed form which can be easily adopted in real applications and

it has decisive improvement over the four existing charts for the number of nonconformities

unknown case.
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